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ABSTRACT

Spatial Stochastic Processes for Yield and Reliability Management

with Applications to Nano Electronics. (December 2004)

Jung Yoon Hwang, B.A., Korea Military Academy;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Way Kuo

This study uses the spatial features of defects on the wafers to examine the

detection and control of process variation in semiconductor fabrication. It applies

spatial stochastic process to semiconductor yield modeling and the extrinsic reliabil-

ity estimation model. New yield models of integrated circuits based on the spatial

point process are established. The defect density which varies according to location

on the wafer is modeled by the spatial nonhomogeneous Poisson process. And, in

order to capture the variations in defect patterns between wafers, a random coeffi-

cient model and model-based clustering are applied. Model-based clustering is also

applied to the fabrication process control for detecting these defect clusters that are

generated by assignable causes. An extrinsic reliability model using defect data and

a statistical defect growth model are developed based on the new yield model.
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CHAPTER I

INTRODUCTION

The importance of nanotechnology is growing in many fields, such as medicine,

semiconductor fabrication, materials, etc. Although this emerging technology has

tremendous potential for changing human life in the near future, there is a barrier to

overcome before the mass production of nano products is feasible. It is known that

both the yield and reliability of nano products are very low [1]. One of the unique

characteristics of nano products is feature sizes. The feature sizes are so small that

atomic or molecular level precision is required. In the nano world where quantum

physics and chemical reactions come into play, small variations caused by human

factors, parameter settings of equipment or environmental factors, which have been

ignored in traditional production, may lead to big changes in the performance of the

products. Nanotechnology is beyond the scope of classic physics where the manipu-

lation of parameters is allowed, and the objects in the process are so small that they

are susceptible to numerous variations. In order to improve the yield and reliability

of nano products, methods of controlling and reducing the variations are needed, and

detecting these variations is the starting point for improving nano product yield and

reliability. This study investigates methods for monitoring and detecting variations

in the semiconductor fabrication process.

In semiconductor fabrication, which has more than two hundred process steps

each with more than ten key process measures, tracing the process variation by mon-

itoring these measures is not well developed nor efficient [2]. Summary measures like

This dissertation follows the style of the IEEE Transactions on Reliability.
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defect counts, defect density or yield, are typically monitored instead. Variations in

the fabrication process are the source of yield loss. Thus, the magnitude of variation

can be partially modeled by yield models. However, yield is a summary measure of

process variations and is not sensitive enough to capture all of the variations. The

parameters of yield models, such as defect density distributions in compound Poisson

yield models, also provide partial information about process variations since varia-

tion is modeled numerically by the defect density distributions without providing

any information about defect density variation by location.

Defects are the main source of both yield loss and extrinsic reliability loss

in semiconductors. Since defects are generated from variations in the fabrication

processes, traces of the variations are contained in the defects. Hence, finding and

removing the variations can be achieved by examining the defects on the wafers. If

the defects were uniformly distributed, i.e., defects generated from a homogeneous

Poisson process, yield modeling and process control would be much easier. However,

defect density is known to vary within wafers, between wafers and between lots. The

spatial and temporal factors of process variations are the cause of the nonhomogeneity

in defect densities. Thus, useful information about yield loss and extrinsic reliability

can be retrieved from the defect pattern. Up until now, the study of defect density

variation in yield modeling and the study of defect patterns for process control have

been conducted separately in different ways since yield models do not have capability

to model the spatial defect pattern on the wafer.

Yield is one of the very important measures of the semiconductor fabrication

process. Since it is a measure of the success of a manufacturing process and is closely

related to the profitability, it has been a major concern of the semiconductor industry

for many years. In the semiconductor industry where the manufacturers can sell all

of the products they produce, yield is an even more important factor than in any
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other industry. Yield is estimated and predicted by yield models. In addition to

estimating or predicting yield, yield models are used in the performance evaluation

of the fabrication process, including investment decisions about new products and

production cost estimations. Thus, building and utilizing an accurate yield model is

essential to the success of the semiconductor manufacturer. However, accurate yield

modeling is still a challenging task. In existing compound Poisson yield models, the

defect density variation is modeled by the defect density distribution, which cannot

describe the spatial variation of the defect density. The defect density distributions,

estimated from different layers of integrated circuits or different kinds of defects,

cannot be incorporated to get an overall defect density distribution. To overcome

this limitation of existing yield models, the spatial point process is adopted because

it models the spatial variation of defect patterns very well.

Considering the tremendous expense of semiconductor fabrication facilities

and the rapid advance of the technology, manufacturers have to improve their yield

on an appropriate time schedule. The yield improvement process is called yield

learning. Yield learning represents the dynamic aspect of the procedure that is

strongly governed by time. Rapid yield learning is critical for the economic success

of a semiconductor manufacturing process. Several months difference in a yield

improvement schedule can result in a net profit loss of billions of dollars [3]. Yield

learning is a continuous process that discovers the causes of yield loss and removes

them. Finding the causes of yield loss is done by examining defects on the wafers.

Subjective decisions are made based on the results of defect inspection of the size,

color or shape of the defects. Considering the huge size of wafer defect data, it is

too expensive to examine all of the defects [4]. Thus, inspection efforts are focused

on defects generated by assignable causes. The assignable causes generate multiple

defects which leave specific defect patterns on the wafer. These spatial defect patterns
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can be utilized to increase the efficiency of defect inspection for root-cause analyses.

Using model-based clustering, the defects from assignable causes are identified by

the defect patterns of defect clusters.

Reliability is a measure that is closely related to the profitability of semi-

conductor fabrication along with yield. Conceptually, reliability can be decomposed

into two failure modes: intrinsic and extrinsic failure mode [5]. Intrinsic failure mode

is the inherited failure mechanism of the products, while extrinsic failure mode re-

sults from extraneous factors such as defects, bad assembly, misuse or environmental

shock. Extrinsic failure mode shares the same source of failure as yield, the defects.

Defects that don’t cause an integrated circuit to fail until the end of the fabrication

process or in the yield test may cause failure in the operation as the severity of de-

fects increases, especially in the early stages of IC life. Thus, yield information can

be utilized in extrinsic reliability estimation using a statistical defect growth model.

It is known that well-designed and well-manufactured integrated circuits have a long

useful life due to their high intrinsic reliability up to the mission time. Hence, extrin-

sic reliability has a significant influence on reliability and, consequently, on burn-in

decisions that are made based upon information about early failures.

In this study, the spatial pattern of defects is modeled by the spatial point

process and utilized in the yield modeling, defect pattern recognition for root-cause

analysis and extrinsic reliability estimation from defect data. These methods will

provide an unified framework of defect control and modeling in association with

yield, yield learning and reliability.

The research objectives of this study are to (1) develop new yield and reli-

ability models that directly attack defect density variation by location on the wafer

and between wafers for better yield estimation and prediction and for fabrication

process control applications, (2) develop an automated wafer defect data classifica-
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tion algorithm that facilitates wafer map analysis especially for root-cause analysis

in the yield learning process, and (3) develop an extrinsic reliability model based on

yield information with new yield models and a statistical defect growth model.

The remainder of this dissertation is composed as follows. Chapter II reviews

yield and the yield learning process. Several definitions of yield are presented and the

basic elements of yield modeling such as defect/fault, defect density, defect density

distribution, defect size distribution, fault ratio, critical area are discussed. Existing

yield models are introduced and the limitations of these models are discussed. The

notion of yield learning and the impact of the yield learning rate to the profitability

of a semiconductor company is discussed.

Chapter III discusses basic notions of reliability. a definition of reliability

and the mathematical properties of the reliability function are introduced. The aging

property of a system is investigated using the failure rate function. Several measures

related to reliability are defined. The notion of intrinsic and extrinsic reliability

is presented. And existing yield-reliability relation models, which predict extrinsic

reliability from yield data, are reviewed.

In chapter IV, yield models of integrated circuits using spatial point process

are studied. The defect density variation by location within the wafer is modeled

by the spatial nonhomogeneous Poisson process, and the defect density variation

between wafers is modeled by the doubly stochastic point process. The assumption

of point defect is generalized by the spatial marked point process in the general

defect yield model. Construction of the intensity functions of spatial point processes

is discussed, and estimation methods are presented. The results of a simulation are

provided.

Chapter V studies a defect data analysis method of root-cause analysis in

semiconductor fabrication. This model-based clustering method detects the existence
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and the location of defect clusters generated from assignable causes, and it provides

the characteristics of the clusters to facilitate wafer map analysis and eventually

capture information about the process variations. In order to incorporate the various

defect patterns on wafers, the bivariate normal distribution and the principal curve

are applied.

Chapter VI studies the extrinsic reliability estimation model based on yield

information. The extrinsic reliability model is based on the yield model studied

in Chapter IV and the statistical defect growth model for describing the different

defect growth behaviors of various kinds of defects. Defect growth factor models are

discussed, and the property of the reliability function in terms of the failure rate

function is investigated.

Chapter VII briefly summarizes this study.
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CHAPTER II

YIELD AND YIELD LEARNING

In this section, the basic concepts used in yield modeling are introduced, and current

yield models of integrated circuit(IC) are reviewed. Also, the notion of yield learning

is discussed. For more information about yield models, refer to [6, 7, 8]. The ideas

used in the existing yield models are useful for developing new yield models.

Yield can be estimated and predicted by yield models. Also, yield models can

be used in the estimation of the manufacturing cost of products, process evaluation

and investment decisions about new products. Yield models can compute the prob-

ability of at least one defect landing on an arbitrary die location and of any of those

defects causing a failure of the IC. To compute this, we need the number of defects

on a die area and the probability of a defect causing a circuit failure. The number of

defects on a die area is governed by the defect density distribution. And the prob-

ability of a defect causing circuit failure, which depends on the interaction between

the defect size and the IC topology, is evaluated using the defect size distribution

and the critical area. The notation is defined as follows:

• D: defect density, a random variable

• f(D): probability density function(PDF) of defect density D

• D0, D0(x): average defect density and average defect density of size x

• X: defect size, a random variable

• g(x): PDF of defect size X

• Ac(x): critical area of defect size x



8

II.1. Yield

Yield is one of the most important measures of manufacturing processes [6]. It is

closely related to the profitability of the manufacturer. The chip cost is defined as [5]

chip cost =
cost per wafer

yield× number of dies per wafer
.

Thus, by increasing the yield, the semiconductor manufacturer can produce IC’s at

a lower production cost. The overall yield is defined as the product of the yield

components:

Yoverall = YwaferYprobeYassemblyYfinal test.

The yield components are defined as

• Ywafer =
number of wafers completing parametric test

number of wafers started

• Yprobe =
number of dies that pass the specification
number of dies that reach electrical test

• Yassembly =
number of chips assembled successfully
number of chips that pass electrical test

• Yfinal test =
number of chips that pass the final test

number of assembled chips

Among the yield components, Ywafer and Yprobe are critical to the overall yield.

This study is focused on modeling and improving Yprobe.

II.2. Defects and defect density

A defect is defined as a variation in quality that changes the IC topology. The main

source of yield loss is defects, especially visible defects on the wafer. A visible defect

is a visible object on the wafer such as particles, holes, etc. The causes of these

visible defects are particles in the cleanroom, particles from equipment, or chemical
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stains and scratches on the wafer caused by improper batch handling. The failure of

a chip is caused by a defect on it. However, not all defects cause circuit failure. A

fatal defect that causes circuit failure is called a fault. In order to compute the yield,

information about the faults is needed, and it is obtained from defect data. Whether

a defect becomes a fault is determined by its size and location on the die. The

probability of a defect with an arbitrary size and location causing circuit failure is

computed using the defect size distribution and the critical area, which are discussed

in the next sections.

Denote N(ds) to be the number of defects over an infinitesimal area around

a point s. The defect density is defined as [9]

D = lim
|ds|→0

P{N(ds) = 1}
|ds| .

Here, the probability that more than one defect occurs in a very small area is assumed

to be negligible. From the definition, the following are obtained:

D0(x) = D0g(x),

and, consequently,

D0 =

∫ ∞

0

D0(x)dx,

II.3. Defect size distribution

The size of a defect plays an important role in determining whether the defect be-

comes a fault or not. Defect size is considered a random variable by the defect size

distribution. And the critical area of an arbitrary defect size, the average critical

area, is the integrated product of the critical area and the defect size distribution.

For inference of the defect size distribution, a specially constructed test structure is
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used since an optical measurement of the defect size is not reliable. It is assumed

that there is a dominating defect size in the observation frequency, i.e., there is a

peak in the probability density function at a particular defect size and the density

diminishes on both sides of it [10, 11]. The probability density follows the power law

for defects smaller than the optically resolvable size x0 and the inverse power law for

defects bigger than x0 [10, 12]:

g(x) =





(q + 1)(p− 1)

q + p

xq

xq+1
0

, if x ≤ x0,

(q + 1)(p− 1)

q + p

xp−1
0

xp
, if x > x0,

where p 6= 1, q > 0. From experiments at IBM, Stapper [11] finds that the probability

density of defects smaller than x0 increases linearly, i.e., q = 1:

g(x) =





2(p− 1)x

(p + 1)x2
0

, if x ≤ x0,

2(p− 1)xp−1
0

(p + 1)xp
, if x > x0.

The distribution is sketched in Figure 1.

g(x)

x0 x0

Figure 1: Defect size distribution.
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II.4. Critical area

Compound Poisson yield models require the number of faults on a die. However,

what we gain from wafer inspection is information about the defects. We need to

compute the probability of a defect with an arbitrary size and location causing a

circuit failure. This probability can be estimated by the fault probability defined as

Φ ≡ number of faults out of defects

number of defects
.

Whether a defect becomes a fault depends on the location and the size of the defect

associated with the circuit design. Figure 2 illustrates the different sensitivities of two

chip designs. Wider conductive lines and wider pitches lead to lower fault-to-defect

ratios. Given a defect with particular size and location on a die, we can probably

find out whether or not it will cause a failure. However, since it is impossible to

examine all of the defects, a probabilistic method using the notion of critical area is

considered.

Critical area is defined as the collection of points in which the existence of

the center of a defect causes the failure of the IC [11]. The critical area is a function

of defect size x, and it is denoted as Ac(x). The following are illustrations of the

critical area with simple circuit design. Consider the missing material defects on a

circuit with a conducting line in the middle of the circuit. Defects smaller than w, the

width of the conducting line, don’t cause the circuit to fail, and defects larger than

H +w cause circuit failure wherever they are located on the circuit. For defects sizes

between w and H + w, the critical area is found in the mid part of the conducting

line, and it depends on the defect size. We have the critical area of Figure 3:
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Figure 2: Defects and faults.

Two different designs of chips. Both chips have the same defects on them.

20 black dots represent extra material causing shorts and 20 circles represent

missing material causing open. In the left figure, 2 of the extra defects and

none of the missing defects become faults. On the other hand, in the right

figure, 9 of the extra defects and 9 of missing defects become faults.

L

Hw

x

x-w

Figure 3: Chip with single conduction line.

The left two defects don’t cause failure of the chip: the first one is smaller

than the critical dimensions of the chip, while the second that is bigger than

the width of the conductive line is located out of the critical area. The third

defect causes a circuit failure. The critical area is found along the center of

the conductive line.



13

Ac(x) =





0, for 0 ≤ x < w,

L(x− w), for w ≤ x < H + w,

LH, for x ≥ H + w.

This kind of analytical model of the critical area cannot be applied to actual ICs

since the geometry is too complicated, and the shape of defects is not perfectly round.

Instead, simulation methods are used in practice [13].

Now, the fault probability of defect size x can be defined using the critical

area [12, 11]:

Φ(x) ≡ Ac(x)

A
,

where A is the die area. And the number of defects can be computed

AD(x)dx.

Thus, the number of faults is obtained by the product of the number of defect and

faults probability:

Φ(x)AD(x)dx = Ac(x)D(x)dx.

Define the average critical area as

Ac ≡
∫ ∞

o

Ac(x)g(x)dx,

then the average number of faults of all of sizes on a die is

µ =

∫ ∞

0

Ac(x)D0(x)dx = D0

∫ ∞

0

Ac(x)g(x)dx = AcD0. (2.1)
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II.5. Yield models

The Poisson model which is derived from the Poisson distribution is one of the sim-

plest models. Given the average number of faults on a die, µ = AcD0, the probability

that a die contains n faults can be computed from the Poisson distribution:

Pn =
e−µµn

n!
, n = 0, 1, · · · .

The Poisson yield model is defined as

Y ≡ P0 = e−µ. (2.2)

The binomial model is derived from the binomial distribution:

P (k) =
n!

k!(n− k)!
pk(1− p)n−k.

P (k) is the probability of k success in n trials with p probability of success. In

the binomial yield models, n represents the total number of defects on the wafer

computed AwD0, where Aw is the area of wafer. And the probability of success for

each trial p is computed by Ac/Aw. The yield model which is defined as P (0) with

n and p obtained as above is

Y ≡
(

1− Ac

Aw

)AwD0

.

This model converges to the Poisson yield model, equation (2.2), as Aw →∞.

Poisson and binomial yield models assume that defects on a die are uniformly

distributed (however, it is worth noting that it doesn’t mean that the distances

between them are all the same). These models provide relatively accurate yields

for small die sizes of less than 0.25 cm2 [6]. But as the chip size increases, they
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underestimate the yield because of the assumption of the uniform distribution of the

defects.

The defects on IC products are known to cluster, and this causes variation in

defect density. In order to take the defect density variation into account, compound

Poisson yield models are introduced. In these yield models, the defect density is con-

sidered as a random variable, and yield is defined as the expectation of equation (2.2)

against the defect density distribution. The yield is then

Y =

∫ ∞

0

e−AcDf(D)dD. (2.3)

Different compound Poisson yield models are variations with different defect density

distributions f(D).

It can be assumed that the defect density distribution has a peak and dimin-

ishes symmetrically on both sides. This distribution can be modeled by the normal

distribution. However, a compound yield model in a closed form with the normal

distribution does not exist. If the triangular distribution, which is the approximation

of the normal distribution, is compounded to the Poisson yield model:

f(D) =





D
D0

, for 0 ≤ D < D0,

2D0−D
D2

0
, for D0 ≤ D ≤ 2D0,

then the resulting Murphy’s [14] yield model is

Y =

(
1− e−AcD0

ACD0

)2

.

Seeds [15] proposes a yield model with the exponential distribution:

f(D) =
e−D/D0

D0

, D ≥ 0.
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This distribution assumes that the chance of high defect density decreases rapidly.

The resulting yield model is

Y =
1

1 + AcD0

.

The advantage of this model is that the shape of the distribution can be adjusted

according to the mean and variance of the defect density. This is the first work that

points out the statistical aspect of defect density variation [6].

If we assume the uniform distribution on [0, 2D0], then we have

Y =
1− e−2AcD0

2AcD0

.

This model assumes that the defect density is uniform up to 2D0. It can be considered

as an approximation of the normal distribution [16].

Stapper [17] proposes a yield model with the half Gaussian distribution de-

fined as

f(D) =
2

πD0

exp

{
− 1

π

(
D

D0

)2
}

, D ≥ 0,

and the resulting yield model is written as

Y =
2√
π

exp

{
π(AcD0)

2

4

} ∫ ∞

√
πAcD0/2

e−u2

du

= exp

{
π(AcD0)

2

4

}
erfc

(√
πAcD0

2

)
,

where the complementary error function is defined as

erfc(z) =
2√
π

∫ ∞

z

e−u2

du.

In some applications, the actual yield is observed between Seed’s and Murphy’s yields

and can be calculated from the averaged yields of those two yield models. In those

cases, this yield model represents the averaged yield [17].
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One of the widely used compound yield models is the negative binomial

model which uses the gamma distribution defined as

f(D) =
1

Γ(α)βα
Dα−1e−D/β, D ≥ 0.

The yield model is

Y =

∫ ∞

0

e−AcD 1

Γ(α)βα
Dα−1e−D/βdD

= (1 + Acβ)−α

=

(
1 +

AcD0

α

)−α

. (2.4)

The parameter, α, is called the clustering factor. By varying the value of α, the

negative binomial yield model covers all of the range of defect clustering effects.

The smaller the α, the higher the degree of clustering. With different α values, the

negative binomial model can represent several yield models [6, 8]. If α → ∞, then

equation (2.4) becomes equal to the Poisson yield model. The range of α in practice

is known to be from 0.3 to 5 [7]. Figure 4 sketches the defect density distributions

used in yield modeling and the yield models derived from those distributions are

summarized in Table 1. Figure 5 shows plots of yield vs average number of faults

per chip.

An approach other than the compound Poisson yield models was studied by

Berglund[18]. Berglund points out that the yield loss which occurs on multiple die

locations can be explained by defects that have comparable, or even larger, defects

than the die size and thus destroy several overlapped dies. He combines the second

equation of equation (2.1) and equation (2.2) to get

Y = exp

{
−

∫ ∞

0

Ac(x)D0(x)dx

}
, (2.5)
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Figure 4: Defect density distributions: half Gaussian, exponential, triangular, uni-

form and gamma distribution(α = 2).

with

Ac(x) = LW + (L + W )x + πx2/4,

where L and W are the width and length of the die, respectively. And equation(2.5)

becomes

Y = YdYs = exp{−LWD0} exp{−(L + W )E[X]D0 − E[X2]D0}.

Yd is equivalent to the Poisson yield model, and Ys can be interpreted as the yield

loss caused by large-size defects.

II.6. Limitations of existing yield models

Defect density variation is modeled by the defect density distribution in compound

yield models. It describes the mean and variance of defect density. However,

it doesn’t provide any information about defect density variation by location on
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Table 1: Compound Poisson yield models

Name f(D) Y

Seed’s e−D/D0

D0
, D ≥ 0 1

1+AcD0

Murphy’s





D
D0

, for 0 ≤ D < D0,

2D0−D
D2

0
, for D0 ≤ D ≤ 2D0

(
1−e−AcD0

ACD0

)2

Half-Gaussian 2
πD0

exp

{
− 1

π

(
D
D0

)2
}

, D ≥ 0 exp
{

π(AcD0)2

4

}
erfc

(√
πAcD0

2

)

Uniform 1
2D0

, 0 ≤ D ≤ 2D0
1−e−2AcD0

2AcD0

Negative binomial 1
Γ(α)βα Dα−1e−D/β, D ≥ 0

(
1 + AcD0

α

)−α

Poisson

Uniform

Exponential

Triangular

Half-Gaussain

Gamma(α=0.5)

Gamma(α=2)

Gamma(α=10)

AcD0
0 1 2 3

1

0.5

4

Yi
el

d

Figure 5: Yield models.
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the wafer [19]. Also, defect density distribution is hard to infer from the actual

wafers [13]. Due to these limitations, the defect density distributions estimated from

different layers of the ICs, different process steps or different defect types cannot

be incorporated to get an overall defect density distribution. And, since the yield

models fail to describe the defect pattern, the yield itself and the parameters of these

yield models are not suitable measures for process control [20].

II.7. Defect monitoring and yield learning

Yield learning is a procedure of removing the sources of defects to achieve a desired

yield for the process. In the dynamic semiconductor industry, high yield alone doesn’t

guarantee the success of a company. The target yield must be achieved on time for

increased profit to result. The pressure of rapid yield learning comes from increased

competition, the shortened life cycles of IC products and rapid advances in technol-

ogy. As Weber [3] points out, several months difference in a yield learning schedule

can make a difference of several billion dollars in net profit. Finding the sources of

yield loss, called root-cause analysis, calls for the statistical process control methods

along with summarized measures of the process parameters and measurements of the

products. Even with abundant data, however, root-cause analysis is still in an art

form. Huge amounts of data and unclear relationships between the yield loss mecha-

nisms and their measurements are the main obstacles inhibiting root-cause analysis

in the semiconductor industry. The semiconductor manufacturing process comprises

several hundred processes including epitaxy, deposition, diffusion, etching, etc, and

each process has more than twenty parameters. Thus, finding the relation between

these parameters and yield is very challenging [2].

Defects are the result of process variations and are the main source of yield



21

loss. Consequently, they contain useful information about process variations for yield

learning. Information about defects is obtained from in-line and off-line inspection.

Normally, defects are categorized according to their sources. In this study, the sources

of variation are categorized into two groups, the random causes and the assignable

causes, for the purpose of process control. The random causes produce defects on

ICs by chance. The defects generated from random causes are called global defects.

These defects are observed all over the wafer. It is known that a defect is more likely

to occur on the edge of the wafer due to thermal variation in the annealing process

and mechanical stress. The assignable causes, on the other hand, generate defects

systematically, and, thereby, generate sets of aggregated defects, or clusters. These

defects are called local defects.

II.8. Summary

In this chapter, basic notions of yield and yield learning are introduced, and existing

yield models are reviewed. Variations in semiconductor manufacturing processes

still keep the yield modeling from being precise in spite of numerous attempts to

improve them during the last several decades. Defect density variation is modeled

by the compound distribution which describes the randomness of the defect density.

Different defect density distributions lead to different yield models. And those yield

models have different properties and represent different defect clustering effects. For

this reason, the negative binomial yield model is powerful since it can represent the

full range of defect clusterings. However, defect density distribution doesn’t provide

spatial information about defect density variation, and the lack of spatial information

about defect patterns in the yield models restricts them from being fully utilized in

the yield learning process, especially in root-cause analysis which is conducted based
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on defect information.
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CHAPTER III

RELIABILITY

Reliability is a factor that is related to customer satisfaction and, consequently,

to a manufacturer’s profit. Reliability is defined as the probability that a system

works properly up to a specified time under specified working conditions [5], and

the reliability function is a function of the mission time t. If the time is assumed to

be fixed at specific value, the reliability is called static reliability. Since the actual

failure mechanism can never be fully analyzed, statistical inference is widely used

for the reliability estimation of a system. The following are the basic concepts of

reliability derived from the life time distribution of a system.

III.1. Reliability concepts

Denote a random variable, T , to be the life time of a system and F to be the

cumulative distribution function of T :

F (t) = Pr{T ≤ t}.

Then, the reliability function R(t) is

R(t) = Pr{system works without failure up to time t}

= Pr{T > t}

= 1− Pr{T ≤ t}

= 1− F (t).



24

Define the conditional reliability of age t as

R(x|t) ≡ Pr{T > t + x|T > t} =
R(t + x)

R(t)
, if R(t) > 0.

The conditional probability of failure during the next interval x of age t is

F (x|t) ≡ Pr{t < T ≤ t + x|T > t} =
F (t + x)− F (t)

R(t)
= 1−R(x|t).

The failure rate(or hazard rate) function is defined as

h(t) ≡ lim
x→0

1

x

F (t + x)− F (t)

R(t)
= lim

x→0

1

x
[1−R(x|t)], if R(t) > 0.

If f(t) ≡ dF (t)

dt
exists,

h(t) =
f(t)

R(t)
. (3.1)

From equation (3.1) and f(t) = −dR(t)

dt
,

∫ t

0

h(x)dx = − log R(t).

Thus,

R(t) = exp

{
−

∫ t

0

h(u)du

}
.

The failure rate function represents the aging characteristic of a system. If a

system ages, i.e., the system deteriorates in time, the conditional reliability of age t,

R(x|t) is decreasing in t, ∀x ≥ 0, (3.2)

then, we have

h(t) = lim
x→0

1

x
[1−R(x|t)] is increasing in t.
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Conversely, if the failure rate is increasing in t, then

R(x|t) = exp

{
−

∫ t+x

t

h(u)du

}
is decreasing in t, ∀x ≥ 0.

Thus, if a failure rate function exists, increasing the conditional reliability is equiv-

alent to increasing the failure rate function.

A distribution with decreasing conditional reliability is defined as an increas-

ing failure rate(IFR) distribution, and a distribution with increasing conditional re-

liability is called a decreasing failure rate(DFR) distribution [21].

The mean residual life of age t is defined as

m(t) ≡ E[T − t|T > t] =

∫∞
t

R(u)du

R(t)
, if R(t) > 0.

An increasing failure rate function is a stronger condition than an increasing mean

residual life [22].

Electronic devices including ICs are known to have the bathtub-shaped fail-

ure rate curve. The bathtub-shaped failure rate curve can be broken down into two

independent failure rate curves with competing risk reliability model. One failure

rate curve results from the extrinsic failure mode which has an IFR failure distribu-

tion. And the other DFR curve represents the intrinsic failure mode. Figure 6 shows

a typical failure rate curve of IC products.

III.2. Burn-in

Burn-in is a technique for improving the reliability of a product by screening out

weak products before they reach customers. This effect is achieved by applying

intentional aging of the products with stress. Burn-in has long been used as a method

for reducing early failures. However, burn-in has several side effects: reducing the
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Figure 6: Bathtub-shaped failure rate curve.

mean residual life of the system and associated costs. If products are well designed

and manufactured, conditional reliability is not increasing in burn-in time, it merely

reduces the mean residual life. Thus, conditions for the necessity of burn-in should

be examined carefully.

Conditional reliability and the mean residual life are used for criteria of

burn-in [23]. If we use either conditional reliability or mean residual life for a burn-

in criterion, increasing the failure rate is a sufficient condition for the necessity of

burn-in. However, the optimal burn-in times for two criteria are not necessarily the

same. Thus the level, duration and stress of burn-in should be wisely determined to

maximize the burn-in effect.

Mean residual life is a long term measure compared to conditional reliability.

The mission time of a system should be considered. Even with an increased mean

residual life burn-in, if the conditional reliability is up to mission time tb + x, the

procedure has little impact on profit.
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III.3. Yield-reliability relation models

Reliability estimation from yield data has been studied by several researchers [24, 25,

26, 27]. Yield and reliability are known to have positive correlation [28]. However,

the exact modeling of the relationship between yield and reliability is far from precise

as yet. Before I proceed to the relation models, let’s examine the theoretical aspects.

Reliability is a function of time. A system is perfect at the beginning of the

operation, i.e., R(0) = 1. However, the point at t = 0 depends on the epoch of

the end of the production and the duration of the tests and burn-in. To avoid the

difficulty of choosing t = 0, let’s define a random variable St to represent the state

of a product at epoch t:

St =





1, if product is working at t,

0, if product is failed at t.

and a probability function Q such that

Q(t) = Pr{St = 1}.

Q is a nonincreasing function in t.

Let tm denote the time just after production. Then, yield can be written as

Y = Q(tm).

If we redefine the reliability function with conditional probability, then

R(t) = Q(tm + t|tm) =
Q(tm + t)

Y
, if Y > 0.

Unfortunately, the general function of Q doesn’t exist since the failure mechanisms of
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yield and reliability are not necessarily the same. However, if we consider the extrinsic

reliability which is determined by the defects introduced during the manufacturing

processes, we may be able to find Q.

The following is review of existing yield-reliability relation models. Existing

models can be classified into two approaches: the latent defect approach and the

defect growth approach. In the reliability defect( or latent defect) approach, it is

assumed that there exist a certain portion of reliability defects that do not damage

ICs during manufacturing, but cause the failure of ICs in operation. Denote Dr and

Dy to be the reliability defect density and the yield defect density, respectively. And

we assume the relation:

Dr = αDy.

Then, the reliability is obtained using the yield model [24]:

R = e−AcDr = e−AcγDy = Y γ. (3.3)

By introducing clustering and the edge excursion factor M > 0.9, the reliability

is [29, 28]

Y =

(
Y

M

)γ

.

A similar, but essentially the same, approach uses the reliability critical area which

has the relation [25]:

Ar = αAc.

When a Poisson yield model is used, this model provides the same result as equation

(3.3) if α = γ . Since Dr is not a function of time, the reliability in these models is

static.

The defect growth model is applied to gate oxide [26, 27]. The defect growth
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rate is derived from the defect-related time-to-breakdown of oxide:

tBD = τ exp

{
G

V
(w − x)

}
,

where tBD: the breakdown time in seconds, w: the oxide thickness, τ : a constant(≈
10−11 sec), V : the voltage across the oxide and G: a constant(≈ 350 MV/cm). T.

Kim et al. [27] derive the reliability critical area of defect size x, Ar(x) using the

threshold defect growth, wg, at a given mission time, t:

wg =
V

G
ln

(
t

τ

)
.

The reliability critical area for a single conductive line with length L is

Ar(x) =





0, 0 ≤ x ≤ w − wg,

L(x + 2wg − w), w − wg ≤ x ≤ w,

2Lwg, w ≤ x.

K.O. Kim et al. [26] assume that there exists a certain threshold defect size x∗ and

that defects larger than x∗ cause the gate oxide which is to fail at the end-of-line test.

For an arbitrary defect on the gate oxide, given a mission time t, the probability that

the defect won’t break down the oxide, Pr{T ≤ t} is computed by

Pr

{
X ≥ w − V

G
ln

t

τ

}

from the defect size distribution, g(x). Thus, the average number of defects that

pass the end-of-line test but fail the oxide in operation before t is

AD Pr

{
T ≤ t, T ≥ τ exp

{
G

V
(w − x∗)

}}
, (3.4)
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where A is the gate oxide area and D is the defect density. The reliability is obtained

from Poisson or negative binomial yield model with (3.4).

III.4. Summary

The aging characteristic is described by the failure rate function of the life distribu-

tion. According to a property of the failure rate function, a life distribution can be

classified into a decreasing failure rate or an increasing failure rate distribution. The

typical bathtub-shaped failure rate function of ICs can be modeled by summation of

two independent monotone failure rate functions based on the competing risk model.

Extrinsic reliability, which has a decreasing failure rate, is determined by the defects.

Since yield and extrinsic reliability have the same source of loss, extrinsic reliability

can be estimated from defect data or yield.
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CHAPTER IV

YIELD MODELING OF INTEGRATED CIRCUITS

BASED ON SPATIAL NONHOMOGENEOUS POISSON PROCESS

Yield models of ICs using spatial point process are studied. The point defect yield

model assumes that regardless of the defect size, every defect causes a circuit failure

. The defect density variation by location is modeled by spatial nonhomogeneous

Poisson process, and defect density variation by wafer is modeled using a doubly

stochastic point process. The assumption of the point defect is generalized by spatial

marked point process in the general defect yield model. Construction of the intensity

functions of the spatial point processes are discussed and estimation methods are

presented. Validation of the new yield models with simulated data is also provided.

IV.1. Introduction

Yield, the measure of the success of a manufacturing process, is a particularly impor-

tant characteristic in the semiconductor industry because the yield of IC products is

closely related to profitability [30]. Yield is estimated and predicted by yield models.

With these models, variations in the manufacturing process that cause yield loss can

be estimated. Also, yield models are useful for estimating the manufacturing cost

of products under development, for facilitating IC design by providing yield predic-

tions at the design stage and for improving manufacturing processes by providing a

measure of the success of a process [6]. Although there have been many attempts to

model the yield of ICs since the 1960s, accurate yield modeling remains elusive.

The most widely used yield models are the compound the Poisson yield mod-

els that compound Poisson distribution with other distributions. Refer to [6, 7, 8].
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These yield models have some limitations such as (1) the defect density distribution

and defect size distribution are hard to infer from the actual wafers [13] or (2) they

can’t provide information about defect density by location [19]. Due to these limita-

tions, the defect densities estimated by each processes cannot be incorporated to find

the overall defect density. Also, since these yield models fail to describe the defect

pattern, the yield itself, and the parameters of these yield models are not suitable

measures for process control [20]. Hence a new technique for yield modeling and

statistical process control that directly deals with spatial defect density variation is

needed.

Modeling the spatial distribution of events has been a concern in many

fields [31, 32]. Spatial point processes have been widely studied in epidemiology,

meteorology, astronomy and so on. The spatial Poisson process is a point process

which describes spatial point patterns that are generated by unknown random mech-

anisms [32]. The defects on a wafer can be considered as a realization of a spatial

nonhomogeneous Poisson process(NHPP).

In this dissertation, I propose new yield models of ICs based on the spatial

NHPP. In the point defect yield model, it is assumed that every defect on a die

causes a circuit failure. Thus, the spatial defect pattern is the main interest. The

point defect yield model can be generalized with the spatial marked point process

to incorporate various sizes of defects. In the general defect yield model, the size of

the defect is considered the marked value. The spatial defect pattern is modeled by

an intensity function of the process defined as equation (6.4). The new yield models

have several advantages as follows: (1) a huge amount of wafer defect data can be

reduced by the coefficients of the intensity function, (2) by the additivity of the

intensity function, the intensities of the different defect types and those estimated

for different processes can be added to describe the spatial defect distribution of the
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whole process and (3) they provide more sensitive measures of the variations of the

manufacturing processes than does yield alone since the intensity function contains

information about the average defect number and defect clustering.

The defect pattern on a wafer can be considered a superposition of defect

patterns from several independent defect generation mechanisms. Modeling this vari-

ation with a single intensity function is not appropriate since it requires numerous

parameters. To overcome this limitation, I consider clustering methods for construct-

ing and estimating an intensity function that is accurate and flexible.

Since defect data in the semiconductor industry is proprietary, the perfor-

mance of the new yield models are evaluated by simulation.

The remainder of this chapter is arranged as follows: In section IV.2, existing

yield models are reviewed. The basic concepts in compound Poisson yield models

in particular are examined. Section IV.3 presents the background of the spatial

point process. Section VI.3 discusses the point defect yield model using NHPP and

general defect yield model that deals with various sizes of defects. Intensity function

estimation and modeling using clustering is examined in section IV.5. Simulation

methods and results are presented in section IV.6. And section VI.7 concludes the

chapter.

IV.2. Yield model review

In this section, current yield models are reviewed. For more information on yield

models, see [6, 7, 8]. The concepts used to develop these yield models are also

relevant to the new yield models. Yield models compute the probability of a event

that at least one defect lands on an arbitrary die location and that it causes a failure

of the IC. A defect is defined as a variation in quality that changes the IC topology.
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The failure of a chip is caused by a defect on it. However, not all the defects cause

failures. A defect which causes the failure of an IC is called a fault. If the size of

the defect on a die is given, then it is the location that differentiates a defect from a

fault. A collection of locations where the existence of the center of a defect causes

a failure is called a critical area. Whether a defect on a die causes a failure of an

IC depends on the factors that affect the size of critical area, e.g., defect size, defect

location and the layout of IC such as the gate oxide thickness, the length and width

of the conducting path and the thickness of the insulation layers, etc. The notation

is as follows:

• D: defect density, a random variable

• D0, D0(x): average defect density and average defect density of size x

• g(x): probability density function(PDF) of defect size X

• f(D): PDF of defect density

• µ: average number of faults

• Ac(x): critical area of defect size x

Let’s begin with the definition of defect density. Denote N(ds) to be the number of

defects over the infinitesimal area around a point s. Defect density is defined as [9]:

D = lim
|ds|→0

P{N(ds) = 1}
|ds| .

Here the probability that more than one defect occurs at the same location is assumed

to be negligible. From the definitions, the following relations are obtained:

D0(x) = D0g(x).
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So,

D0 =

∫ ∞

0

D0(x)dx,

The average critical area is obtained as

Ac ≡
∫ ∞

o

Ac(x)g(x)dx. (4.1)

Then the average number of faults on a die is

µ =

∫ ∞

0

Ac(x)D0(x)dx = D0

∫ ∞

0

Ac(x)g(x)dx = AcD0. (4.2)

The Poisson model which is derived from the Poisson distribution is one

of the simplest models. This model assumes that defects on a die are distributed

uniformly and randomly. Given µ = AcD0, the probability that a die contains n

faults can be computed from the Poisson distribution:

Pn =
e−µµn

n!
, n = 0, 1, · · · . (4.3)

Thus the Poisson yield model is

Y ≡ P0 = e−µ. (4.4)

This model provides relatively accurate yields for small die sizes [6]. But as the

chip size increases, it underestimates the yield because of the assumption of random

defects. Defects in IC products are known to cluster, which causes variations in

defect density.

In order to take defect density variation into account, compound Poisson

yield models are introduced. In these yield models, defect density is considered as a

random variable and yield is defined as the expectation of equation (4.4) against the
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defect density distribution. The yield is then

Y =

∫ ∞

0

e−AcDf(D)dD. (4.5)

Different compound yield models are variations with different defect density distribu-

tions f(D). One of the widely used compound yield models is the negative binomial

model which uses the gamma(α, β) defect density distribution:

f(D) =
1

Γ(α)βα
Dα−1e−D/β, D ≥ 0.

Then we have

Y =

∫ ∞

0

e−AcD 1

Γ(α)βα
Dα−1e−D/βdD

= (1 + Acβ)−α

=

(
1 +

AcD0

α

)−α

. (4.6)

One of the parameters of the gamma distribution, α, is called the clustering factor.

By varying the value of α, the negative binomial yield model covers all of the range

of defect clustering. The smaller the α, the higher the degree of clustering. The

range of α in practice is from 0.3 to 5 [7]. With different α values, the negative

binomial model can represent several yield models [6, 8]. If α → ∞, then equation

(4.6) becomes equal to the Poisson yield model.

An approach that is different from the compound Poisson yield models was

studied by Berglund[18]. Berglund points out that yield loss that occurs on multiple

die locations can be explained by defects that have comparable, or even larger, defects

than the die size, thus they destroy several overlapped dies. He combines the second
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equation of equation (4.2) and equation (4.4) to get

Y = exp

{
−

∫ ∞

0

Ac(x)D0(x)dx

}
, (4.7)

with

Ac(x) = LW + (L + W )x + πx2/4,

where L and W are the width and length of a die, respectively. And equation(4.7)

becomes

Y = YdYs = exp{−LWD0} exp{−(L + W )E[X]D0 − E[X2]D0}.

The first term of the last equation is equivalent to the Poisson yield model, and the

second term can be interpreted as the yield loss caused by the large-size defects.

As shown in Berglund’s yield model which is constructed without a defect

clustering effect, the clustering effect of defective chips is explained by an effect that

affects more than one chip area. Likewise, but from a slightly different perspective,

the clustering of defects on a wafer can be explained by a large defect density on a

portion of the wafer area.

IV.3. Spatial nonhomogeneous Poisson process

In order to estimate yield, three things must be known: the spatial distribution of the

defect density, the defect size distribution and the interaction of these two variables

with the layout of the IC. These are the factors of compound Poisson yield models

as described in the previous section. The defect density distribution, which is not

well modeled in compound Poisson yield models, can be nicely described by spatial

point processes. In the new yield models based on spatial NHPP, defect clustering is
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explained by the higher defect density areas that produce aggregated defects. Useful

concepts and definitions of the spatial point process are summarized below from

Diggle [32] and Cressie [31].

The spatial process is used to model spatial data. The general model of

spatial process is

{Z(s) : s ∈ D},

where Z(s) is a random quantity at a location s ∈ D. In many cases, among many

possible measures of events, the locations of events s1, s2, . . . on D ⊂ Rd are the main

concern. The locations can be modeled by the spatial point process as follows. Let

(Ω,F , P ) be a probability space and let Φ be a collection of locally finite counting

measures on D ⊂ Rd. On Φ, define N , the smallest σ-algebra generated by sets of

the form {φ ∈ Φ : φ(B) = n} ∀B ⊂ D and ∀n ∈ {0, 1, 2, 3, . . .}. Then a spatial point

process on D is a measurable mapping of (Ω,F) into (Φ,N ). If an event located at

s ∈ Rd is marked by x ∈ A, then (s, x) is a point in (Rd,A). So a marked point

process is a point process on the product space (Rd,A).

Consider a point process {N(B) : |B| ≥ 0} on a planar region B ∈ R2.

N(B) is the number of events on B. The events of interest in this model are the

locations of the defects on the wafer. And the size of the defects is dealt with by the

marked point process. A NHPP N(B) is defined on a finite planar region B with

the following postulates:

1. N(B) has a Poisson distribution with mean µ(B) =
∫

B
λ(s)ds, where s ∈ B

and λ(s) is the intensity function on B defined as equation (4.8).

2. Given N(B) = n, the n events form an independent random sample from the

distribution on B with a PDF proportional to λ(s).
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The intensity function λ(s) is defined as

λ(s) ≡ lim
|ds|→0

E[N(ds)]

|ds| . (4.8)

Thus, we can compute the average number of defects on B with

E[N(B)] =

∫

B

λ(s)ds.

IV.4. Yield models

IV.4.1. Point defect yield model

Let’s consider a yield model based on the results shown above. In compound Poisson

yield models, the defect variation is modeled by the defect density distribution which

doesn’t include spatial information about the defect density variation. The new yield

models basically use the Poisson yield model, equation (4.4). However, the average

number of faults varies die-by-die and this is computed using the intensity function

of the spatial NHPP. Since the equation (4.3) is not identical for all dies, we need to

modify the definition of yield as the ratio of the number of conforming products at

the end of the production process to the number of potentially usable products[?].

The point defect model treats each defect as a fault, e.g., any defect located on a die

area is assumed to cause a failure of the chip regardless of the location on the die or

the size of the defect.

The following is the mathematical derivation of a new yield model. Define

{Bj}k
1 as a set of finite disjoint regions of the die area on the wafer, where k is the
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number of dies on a wafer. Let’s define a random variable

XBj
=





1 if Bj is good,

0 if Bj is defective, j = 1, · · · , k.

Then, the chip yield of die area Bj given λ(s) is

E[XBj
] = Pr{XBj

= 1}

= Pr{no defects on die Bj}

= P0

= e−µ(Bj), j = 1, · · · , k, (4.9)

where µ(Bj) =
∫

Bj
λ(s)ds. The last equation holds by the first postulate of the spatial

NHPP. If the intensity function is regarded as random with random coefficients β

(for detailed discussion, refer to section IV.5.1), then the chip yield is

E[XBj
] = E[E[XBj

|β]]

=

∫

β
exp

{
−

∫

Bj

λ(s|β)ds

}
f(β)dβ,

for j = 1, · · · , k.

To build a yield model, let’s define a new random variable X =
∑k

i=1 XBi
.

X represents the number of conforming dies on a wafer. Thus, we have a yield model

defined as the average portion of conforming dies per wafer:

Y =
E[X]

k

=
E[XB1 ] + E[XB2 ] + · · ·+ E[XBk

]

k
(4.10)
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IV.4.2. General defect yield model

Given the location of a defect, a bigger defect is more likely to cause the failure of a

chip. In order to deal with various defect sizes, marked point process is adopted. The

size of defect x is the spatial marked random quantity of the marked point process.

The intensity of the spatial marked point process on the product space (R2 ×A) is

defined:

ν(s, x) ≡ lim
|ds×dx|→0

E[N(ds× dx)]

|ds× dx| (4.11)

Then
∫

B
ν(s, dx)ds is the average number of defects of size dx on region B and,

consequently, the defect density of defect size x on region B is

D0(x) =

∫
B

ν(s, x)ds

|B| .

From equation (4.2), the average number of faults on region B, µ(B) is:

µ(B) =

∫ ∞

0

Ac(x)D0(x)dx

=

∫ ∞

0

Ac(x)

∫
B

ν(s, x)ds

|B| dx.

The chip yield of region B is

E[XB] = exp

{
−

∫ ∞

0

Ac(x)

∫
B

ν(s, x)ds

|B| dx

}
.

Note that the intensity function of the marked Poisson process is factorized

as

ν(s, x) = λ(s)g(x|s),

where g(x|s) is the conditional distribution of the defect size given the defect location.
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The marginal defect size distribution on region B is

g(x) =

∫

B

g(x|s) λ(s)∫
B

λ(s)ds
ds.

Then the critical area of chip region B is

Ac(B) =

∫ ∞

0

Ac(x)g(x)dx

=

∫ ∞

0

Ac(x)

∫

B

g(x|s) λ(s)∫
B

λ(s)ds
dsdx

=
1∫

B
λ(s)ds

∫ ∞

0

Ac(x)

∫

B

g(x|s)λ(s)dsdx.

If g(x|s) = g(x), then

E[XB] = exp

{
−

∫∞
0

∫
B

Ac(x)g(x|s)λ(s)dsdx

|B|
}

= exp

{
−

∫∞
0

Ac(x)g(x)dx
∫

B
λ(s)ds

|B|
}

.

If β is regarded as a random vector, then

E[XB] = E[E[XB|β]] =

∫

β
exp

{
−

∫∞
0

Ac(x)g(x)dx
∫

B
λ(s|β)ds

|B|
}

f(β)dβ.

The yield model is the same as equation (4.10).

IV.5. Intensity function

IV.5.1. Estimation

The nonhomegeneity of the defect density on a wafer is modeled by the intensity

function. In this study, a parametric intensity function is considered. Assume an
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intensity function:

λ(s|β) = q[βTh(s)], (4.12)

where h(s) is a known function of location; q(·) is a function and β represents the

vector of the coefficients. The estimator of the unknown parameters β is obtained

by maximizing the likelihood function [33]:

L(β|s) =
m∏

i=1

λ(si|β) exp

{
−

∫

A

λ(s|β)ds

}
, (4.13)

where m is the number of defects on a wafer, si ∈ A is the location of defect i,

i = 1, · · · ,m and A is the wafer region. Generally, there is no closed form for the

maximum likelihood estimator of β.

Other than the nonhomogeneity of intensity related to the location on the

wafer, variations in the intensity function among wafers should be taken into account

in estimation. To this end, I consider a doubly stochastic point process(or Cox

process). A Cox process is defined as a point process N with random intensity

function Λ(s). If Λ = λ, then N is a NHPP with λ(s). A hierarchical model which

has random coefficients is a general assumption for a random intensity function. One

wafer is considered as a realization from the random defect generation mechanism.

The random intensity function is defined as equation (4.12) with random vector β

that follows a multivariate distribution, f(β|θ). The estimation method for θ is as

follows:

1. Collect M wafers.

2. Get β̂1, · · · , β̂M using maximum likelihood estimation with equation (4.13).

3. Regard β̂1, · · · , β̂M as a random sample of size M from a multivariate distri-

bution. And estimate θ.
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For the intensity function of a nonhomogeneous marked Poisson process, let

α be the vector of parameters of g(x|s); then the loglikelihood function is

l(α,β|s,x) =
m∑

i=1

log ν(si, xi|α,β)−
∫ ∞

0

∫

A

ν(s, x|α,β)dsdx

=
m∑

i=1

log λ(si|β)−
∫

A

λ(s|β)ds +
m∑

i=1

log g(xi|si,α).

If the first two terms and the third term have no common parameters, we can max-

imize the loglikelihood by maximizing them separately.

A fixed intensity function that represents the defect pattern of a manufac-

turing process can be obtained from Λ(s) by taking E[Λ(s)]. Also, we may use

λ(s) = q{E[β]Th(s)} (4.14)

in order to reduce the effort in computation if the variance of f(β) is small.

IV.5.2. Construction

A defect is a variation in quality that may cause the failure of the circuit. A visible

defect is a visible object on the wafer such as a particle, hole, etc. The causes

of these visible defects are particles in the cleanroom, particles from equipments,

chemical stains or scratches on the wafer due to improper batch handling. The

pattern of defects on the wafer results from the superposition of results from the

two defect generation mechanisms. One is the random cause that creates the global

defect pattern. The other is the assignable cause that generates the local patterns

that are normally found as members of a defect cluster. The global pattern results

from cleanroom environment variations such as particles in cleanroom and thermal

variation in the annealing process. The local pattern results from local destructive
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mechanism such as the mishandling of wafers, particles from equipment, dislocation

of wafer crystals or chemical stains on the wafers.

In order to model different sources of the defect generation mechanisms in

an intensity function, I take the advantage of the additivity of the intensity function.

Since the intensity function of a NHPP contains the defect density variation by

location, we can add up all of the intensity functions estimated for the different

sources of defects. If we define λk(s) to be the intensity function of the kth defect

source, then the overall intensity function is

λ(s) =
G∑

k=1

λk(s),

where G is the number of different sources of defects. Estimating the individual

intensity function of each defect generation mechanism can be accomplished by a

method called clustering.

Clustering is a procedure that categorizes data into meaningful subgroups.

In model-based clustering, the observations are assumed to be generated by a mixture

probability distribution:

f(s|β) =
G∑

k=1

pkfk(s|βk),

where β = (β1, · · · ,βG), pk ≥ 0 ∀k,
∑G

k=1 pk = 1. fk(s|βk) is the probability density

at location s from the kth component and is obtained from λk(s) by

fk(s|βk) =
λk(s|βk)∫

A
λk(s|βk)ds

.

The characteristics of clusters can be summarized by the parameters such as pk,βk,

k = 1, · · · , G.

In the estimation of the parameters, the locations are regarded as missing

data. The complete data are considered to be yi = (si, zi), where zi = (zi1, · · · , ziG),
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where

zik =





1, if si belongs to kth cluster,

0, otherwise.

zi is assumed to follow the identical and independent multinomial distribution of one

trial with parameters p1, · · · , pG. And the distribution of si, given zi, is given by

f(si) =
G∏

k=1

fk(si)
zik .

Using the complete data, the estimators are obtained by maximizing the complete-

data likelihood function [34, 35, 36]:

L(β,p, z|s) =
n∏

i=1

G∏

k=1

[pkfk(si|βk)]
zik . (4.15)

Even with the clustering algorithm, the maximization problem is a combi-

natorial optimization problem and is hard to solve. An iterative solving method is

provided by the EM(expectation-maximization) algorithm that uses iterative steps

of expectation and maximization. The EM algorithm is a general algorithm for com-

puting the maximum likelihood estimates of pk, βk (1 ≤ k ≤ G). The EM algorithm

with complete-data likelihood criteria is as follows:

Repeat step 1 and 2

1. M-step

Maximize the complete likelihood function, equation(5.1), in terms of p and β given

ẑ(m−1), the conditional expectation of (m− 1)st iteration.

The optimal solution at the mth iteration is

p̂
(m)
k =

∑n
i=1 ẑ

(m−1)
ik

n
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and β̂
(m)

k is the optimal solution of the likelihood function

L(βk|s) =
n∏

i=1

[λk(si|βk)]
ẑ
(m−1)
ik exp

{
−

∫

A

λk(s|βk)ds

}
,

where A is the area of interest. In this case it is the region of the wafer.

2. E-step

Compute the conditional expectation E[zik|si, β], the conditional probability that si is

from the kth cluster.

ẑ
(m)
ik =

p̂
(m)
k fk(si|β̂(m)

k )
∑G

j=1 p̂
(m)
j fj(si|β̂(m)

j )
.

until the convergence criteria are satisfied.

If the intensity function of a local defect has the form of λ(s) = wφ(s), where

φ(·) is a probability density function, then the loglikelihood function given z is

l(w, β|s) = log

{
n∏

i=1

[wφ(si|β)]zie−
∫

A wφ(s|β)ds

}

= (log w)
n∑

i=1

zi +
n∑

i=1

zi log φ(si|β)− w

∫

A

φ(s|β)ds. (4.16)

Let (w∗,β∗) be the optimal solution of the maximization problem. If we assume that

the optimal solution is not obtained on the boundary of the feasible region, then by

the necessary condition for an optimum,

∂l(w, β|s)
∂w

∣∣∣∣
w∗,β∗

=

∑n
i=1 zi

w∗ −
∫

A

φ(s|β∗)ds = 0.

Thus,

w∗
∫

A

φ(s|β∗)ds =
n∑

i=1

zi.
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Now the equation (4.16) can be considered as a separable problem and the optimal

solution β∗ is obtained from MLE of φ(s) given z, s and w∗ =
∑n

i=1 zi/
∫

A
φ(s|β∗)ds.

IV.6. Simulation

In this section, simulation results for the point defect yield model and the general

defect yield model are provided. For the point defect yield model, the effects of

various coefficients, the die size and the existence of local defects are investigated.

For the general defect yield model, the effect of the various parameters of the defect

size distribution and the critical area are examined. Two die sizes of 1× 1 cm2 and

1.5× 1.5 cm2 are used on a 20cm wafer, which make 260 and 112 dies, respectively.

IV.6.1. Simulation setup

Relative error(RA), |Y−Ŷ |
Y

is used as a performance measure of the yield models,

where Y is the counted yield (which is counted from the wafers) and Ŷ is the esti-

mated yield (which is estimated with the new yield models). The estimated yield is

computed with an intensity function obtained using equation (4.14). To evaluate the

average performance and the stability of the models, average relative error(ARE) and

maximum relative error(MRE) are used. They are simply the average and maximum

values of the RA’s from runs of the simulations. 30 wafers are used for computing

counted yield and estimated yield.

As discussed in section IV.5.2, I consider two types of defects, global defects

and local defects. The global defects are generated by the thinning method [37]; the

local defects are generated from the bivariate normal distribution. Figure 7 shows

the simulation patterns of those defect types.
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Figure 7-(a) Figure 7-(b)

Figure 7: Simulated defects.

(a) is the global defect pattern and (b) is the superposition of global and

local patterns.

For the intensity function of the global defects, a quadratic function form is

used. The advantage of the quadratic intensity function is that the constant term

can be considered as the intensity of the background defect pattern that generates

the random defects and the other terms as the intensity of the edge defects that

produces the ring shape defect pattern on the wafers. Polar coordinate is used with

the assumption that the defect pattern is isotropic, i.e., there is no angular term in

the intensity function. The intensity function used is

λ1(r|β) =
1

103
(β0 + β1r + β2r

2),

where r represents the distance from the center of a wafer in centimeters. We scale

the intensity with 103 to deal with the coefficients, β’s, with convenient numbers

between 0 and 10. The coefficients are assumed to be independent and to follow a
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left truncated normal distribution with µ, σ and truncation point k:

f(y) =
1
σ
φ(y−µ

σ
)

1− Φ(k−µ
σ

)
,

where φ and the Φ are PDF and CDF of the standard normal distribution, respec-

tively. The truncation point k is set to be zero to guarantee nonnegativity of the

coefficients. To examine the effect of different clustering effect with various variances

of β, we use two mean vectors (µβ1 µβ2 µβ3) and three variance vectors (σ2
β1

σ2
β2

σ2
β3

).

For the intensity function of local defects, we use the bivariate normal dis-

tribution:

λ2(s|w, µN ,ΣN) = w
1

2π|ΣN | 12
exp

{
−1

2
(s− µN)TΣ−1

N (s− µN)

}
,

where w ≥ 0 is a parameter that governs the height of the intensity function. The

multivariate normal distribution is widely considered in model-based clustering [38,

39], since the properties of a defect cluster can be described by the parameters of the

distribution- µN represents the center of the cluster and ΣN describes the shape and

orientation of the defect cluster. Like the intensity function of the global defects,

the parameters of the bivariate normal distribution, µN and ΣN , are assumed to be

random.

The defect size distribution is assumed as

g(x) =





2(p−1)x

(p+1)x2
0
, if x ≤ x0,

2(p−1)xp−1
0

(p+1)xp , if x > x0,

with p = 3 [11], and graph of the distribution function is illustrated in Figure 1. The

number of defects and the defect locations are generated with the same algorithms
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as used for the point defect yield model. And the critical area model is assumed as

Ac(x) =





0, if x < w0,

x−w0

w1−w0
|B|, if w0 ≤ x < w1,

|B|, if x ≥ w1.

Figure 8 sketches the critical area with this model. We assume that the critical

C
ri

ti
ca

l A
re

a

w0 w1 x

|B|

Figure 8: Critical area.

area is linear to the defect size x, such that w0 ≤ x ≤ w1, and is bounded by the die

area. It is an useful assumption that the maximum critical area is equal to the die

area since the probability density of a large defect size is very small [11].

IV.6.2. Simulation results

The simulation of the point defect yield model with global defects is summarized in

Table 2. As shown in the table, ARE’s that are less than 0.5% indicate the accuracy

of the yield model and MRE’s that are less than 2% show that the point defect model
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and estimation method are stable. The ARE and MRE remain stable as the variance

of the parameters increases but they change as the die size increases.

Table 2: Simulation with various intensity functions

Die size (µβ1 µβ2 µβ3) (σ2
β1

σ2
β2

σ2
β3

) ARE MRE

(1 1 0.1) 0.001702 0.005125

1× 1 (6 6 2) (5 5 0.5) 0.001912 0.005175

(10 10 1) 0.002274 0.006597

(1 1 0.1) 0.002350 0.007143

1× 1 (2 2 3) (5 5 0.5) 0.002658 0.007280

(10 10 1) 0.002609 0.008993

(1 1 0.1) 0.004379 0.012733

1.5× 1.5 (6 6 2) (5 5 0.5) 0.003925 0.015019

(10 10 1) 0.004139 0.012277

(1 1 0.1) 0.004992 0.014548

1.5× 1.5 (2 2 3) (5 5 0.5) 0.004665 0.014916

(10 10 1) 0.004878 0.019051

Table 3: Simulation with or without clustering algorithm

Local defects Without clustering With clustering

ARE MRE ARE MRE

All over wafer 0.019236 0.035538 0.028683 0.287910

On local area 0.014556 0.029932 0.005447 0.024954

Table 3 presents the results of simulations of the point defect yield model

with global and local defects. The global defects are generated from the intensity

function with (µβ1 µβ2 µβ3) = (2 2 3) and (σ2
β1

σ2
β2

σ2
β3

) = (1 1 0.1). Forty local

defects are generated from the bivariate normal distribution for each wafer. For
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the simulation with the “all over wafer,” the mean vector of the bivariate normal

distribution, µN , is assumed to be distributed uniformly on the wafer. The results

show that if the local defect clusters occur all over the wafer area, the intensity

function just with global effects is still able to estimate yield with high accuracy.

Introducing a clustering algorithm for estimation makes it even worse. The random

occurrence of local defects shifts the intensity function of the global defects up, and

the intensity function of the local defects provides no information on the defects.

In the simulation with the “on local area,” the µN is assumed to follow the normal

distribution. Table 3 indicates that the performance of the yield model is improved

by introducing the clustering algorithm.

Table 4: Simulation of the general defect yield model with various defect size distri-

butions and critical area functions

w0(micron) w1(micron) x0(micron) ARE MRE

0.1 0.4 0.3 0.004102 0.019383

0.1 0.4 0.5 0.004190 0.014005

0.1 1 0.3 0.002697 0.010026

0.2 0.4 0.3 0.004353 0.022170

For the simulation of the general defect yield model, only global defects are

used with a 1.5×1.5 cm2 die size. The global defects are generated from the intensity

function with (µβ1 µβ2 µβ3) = (2 2 3) and (σ2
β1

σ2
β2

σ2
β3

) = (1 1 0.1). The results of

simulations with various w0, w1 and x0 are summarized in Table 4. All of the results

show the accuracy and stability of the model.
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IV.7. Conclusion

I build new yield models of ICs that incorporate the spatial defect distributions of

wafers based on spatial NHPP, which has never before been successfully modeled.

The intensity function of the spatial NHPP, combined with the model-based cluster-

ing method is flexible enough to deal with various defect sizes and defect patterns

including local defects. Judging from the simulation studies, the accuracy of the yield

estimation is very high. However, the real benefits of the new models can be found in

the fact that the information about the defect distributions also provides appropriate

measures for fabrication process control since the information about spatial defect

distributions can be used to (1) visualize the defect pattern through the intensify

function, (2) incorporate various intensity functions estimated for different defect

types or for different manufacturing processes, (3) reduce the wafer map information

that is critical for process control with several parameters of the intensity functions

such as location and shape of local defect clusters and global defect patterns, and

(4) find sources of yield loss by identifying local defects generated from assignable

causes.
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CHAPTER V

MODEL-BASED CLUSTERING FOR INTEGRATED CIRCUIT

YIELD ENHANCEMENT

This chapter studies the defect data analysis method for semiconductor yield en-

hancement. Given the defect locations on a wafer, the local defects generated from

the assignable causes are classified from the global defects generated from the ran-

dom causes by model-based clustering, and the clustering methods can identify the

characteristics of local defect clusters. The information obtained from this method

can facilitate process control, particularly, root-cause analysis. The global defects

are modeled by the spatial nonhomogeneous Poisson process, and the local defects

are modeled by the bivariate normal distribution or by the principal curve.

V.1. Introduction

Detecting process variation, the most serious factor affecting yield, is the starting

point for yield improvement in IC products. In semiconductor fabrication, which

has more than two hundred process steps, and each of which has more than ten

key process measures, tracing process variation by monitoring those measures is not

well developed nor efficient [2]. Instead, wafer map analysis is an useful method

for controlling process variation. Wafer map analysis is a procedure of extracting

information about process variation from the visible defects. A defect is a variation

in quality that may cause circuit failure. And visible defects are the visible objects

on a wafer, such as particles, extra material, holes, etc, and they are the main sources

of information about process variation.

Wafer map analysis can be classified largely into visual inspection or auto-
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mated defect scanning. Visual inspection with a high-resolution microscope is the

main method employed by defect data root-cause analysis. This method has the

advantages of low cost and root-cause analysis capability, and it is the only method

that can detect the causes of defects. By examining size, location, color and shape

with a high resolution microscope, the visual inspector finds the defect cause. How-

ever, it also has limitations- the speed of visual inspection is so low that it takes

several hours to examine a wafer; it takes a long time to train visual inspectors; and

visual inspectors cannot concentrate for very long time periods due to fatigue. Thus,

considering the huge number of wafers produced, examining all of the defects is far

too time consuming and costly [4]. On the other hand, low-resolution automated

defect scanning uses laser light to scan the surface of wafers. Using scattered light,

it can identify the locations of defects and their relative sizes. It is fast enough to

examine a wafer in several minutes. However, it cannot replace visual inspection

for root-cause analysis because of its low resolution. Thus, root-cause analysis relies

mostly on visual inspection which is slow and inconsistent.

There is another factor that affects the profit of a semiconductor company

as much as improved yield. That is the time factor of the yield learning process.

The yield learning rate, i.e., how soon a process reaches the desired yield level, is as

crucial as the yield itself to the success of the factory [3]. Therefore, a technique filling

the gap between the above two wafer map inspection methods is needed in order to

sensitize process control to process variations and to shorten the root-cause analysis

cycle. Also, although eliminating all of the variation sources is the ideal way to

improve yield, it is not the optimal way from an economical perspective. The sources

of variation can be categorized into random causes and assignable causes. Since the

cost of fixing random causes is much higher than the cost of fixing assignable causes,

yield improving efforts are mostly focused on finding and removing assignable causes.
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Consequently, we need a method that can discover the assignable causes from the

wafer map.

The purpose of this study is to provide an automated wafer map analysis

method that combines the strengths of the two wafer inspection methods to detect

the existence, location and orientation of defect clusters in order to distinguish the

wafers that deserve further visual investigation. Root-cause analysis is still something

of an art in that it requires subjective judgements. However, it can be facilitated

to produce better results by the reduction and preprocessing of data. The basic

idea of this study is to use spatial features like cluster patterns and the geometrical

properties of these clusters to identify the defects generated by the assignable causes

from low resolution defect data and to feed the results to high resolution analysis.

The defect pattern on a wafer results from the superposition of two defect

patterns as shown in Figure 9. One is the global defect pattern which results from

random causes. These random causes produce defects on ICs by chance. The ran-

dom causes are cleanroom environment variations such as particles in the cleanroom

and thermal variation in the annealing process, and they are expensive to remove.

The other pattern is local defects which are generated by assignable causes. The

assignable causes generate defects systematically, and thereby, generate a set of ag-

gregated defects, a cluster. The assignable causes are local destructive mechanisms,

such as the mishandling of wafers, particles from equipment, dislocation of wafer

crystals or chemical stains on the wafers. Thus, the defects from assignable causes

can be identified by detecting the presence of defect clusters and partitioning the

defect clusters from the global defects. Each defect cluster can be categorized into

its defect generation causes according to its spatial pattern. For example, a cluster

of curvilinear shape is assigned to scratches, and a round shape cluster is assigned to

particles from equipment or chemical stains. Using the spatial pattern of the local
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defect cluster, valuable information about the defect cause can be obtained for the

visual inspection.

(a) (b) (c)

Figure 9: Simulated defect patterns.

Figure (a) is a stacked defect pattern of different sources of defect generation

mechanisms: Global defects (b) and three local defect clusters (c).

Figure (c) shows curvilinear, double curvilinear and ellipsoidal pattern.

There have been numerous studies on retrieving information about process

variations from defect data or test data [40, 41, 42, 43, 44, 20, 45]. Traditionally,

summary measures such as wafer yield or lot yield were used to this end. But due to

the presence of defect clustering, these measures are not appropriate for extracting

useful information about process variations. Methods using probe data of the loca-

tions of defective chips are discussed in the literature [20, 44]. But these methods are

more for detecting the existence of process variations than for root-cause analysis.

Spatial pattern recognition using wafer probe data on the location of defective chips

is studied in literature [40, 45]. The results provide information about the fabrica-

tion process and can be used for root-cause analysis. However, the judgements of

root-cause analysis can be made only from defect data [42]. This is because multiple

defects on a chip result in a single failed chip, and, consequently, lots of information
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is lost. Gleason et al. [43] employ an automated clustering algorithm using artificial

intelligence. Chen and Liu [41] use neural-networks for pattern recognition, and Cun-

ningham and Mackinnon [42] use an empirical clustering algorithm. These methods

are focused on retrieving the spatial features of the defects. This study extends these

works to a combined yield management method that simultaneously identifies defect

clusters and obtains information for the yield model.

I propose a model-based clustering for wafer map analysis. The model-based

clustering has the following advantages: (1) It is so flexible no training data is needed,

and new defect patterns can be easily detected, and (2) the results of the clustering

provide information for yield estimation as well as process monitoring. Probabilistic

methods can apply the Bayesian information criteria(BIC) to estimate the number of

clusters, and they are capable of partitioning the overlapped clusters. In model-based

clustering, the data are considered to be generated from a mixture distribution, and

normally, clustering with the multivariate normal distribution or detecting clusters

from random background noise are studied. However, curvilinear defect patterns are

observed on the defect wafer map, and the background noise is not random. Thus,

I propose a model-based clustering method that uses a distribution estimated from

the global defects with a spatial nonhomogeneous Poisson process and the principal

curve to model the curvilinear defect patterns. According to the pattern of the local

defects, they can be modeled with bivariate normal distributions or the principal

curves.

The rest of this chapter consists of the following. Section V.2 reviews the

background of model-based clustering. In this section, we review probability models

for model-based clustering, the maximization criteria for the parameter estimation,

expectation-maximization(EM) and classification EM(CEM) algorithm for the maxi-

mization problem, BIC for estimating the number of clusters and the principal curve.
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In Section V.3, the clustering strategy for wafer defect data analysis is discussed.

Section V.4 describes the simulated defect generation and discusses the results of

clustering. And Section V.5 concludes this chapter.

V.2. Model-based clustering

V.2.1. Probability models

My interest in this study is in classifying the defects into clusters and gaining in-

formation about the clusters. A cluster is defined as an aggregation of the defects.

However, it can be redefined as the meaningful subgroup of defects that are generated

from the same defect generation mechanism. Thus, the global defects that occur all

over the wafer are also called a cluster. It is assumed that the global defects are

generated from random causes. Although there might be several sources of variation

in these random causes, they are considered to be the same defect generation mecha-

nism. The purpose of this study is to discriminate the defects from assignable causes

and to find the characteristics of their clusters using model-based clustering. The

underlying assumptions are that the defects from assignable causes tend to cluster

and that different defect generation mechanisms generate different defect patterns

accordingly.

In model-based clustering, the observations are assumed to be generated by

a mixture distribution:

f(s|θ) =
G∑

k=1

pkfk(s|θk),

where θ = (θ1, · · · ,θG), pk ≥ 0 ∀k,
∑G

k=1 pk = 1 and G is the number of components

in the mixture. Without loss of generality, let k = 1 represent the cluster of global

defects. The clusters generated from assignable causes are classified into different
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clusters according to their causes. fk(si|θk) is the probability density function(PDF)

of an observation si from the kth component. The characteristics of the clusters

can be summarized by parameters such as pk and θk, k = 1, · · · , G. When it is

uniformly distributed over the region of interest, the PDF of the cluster of global

defects, f1(s|θ1), is [34, 36]

f1(s|θ1) =
1

D
,

where D is the area of the region of interest. For the clusters of local defects, the

multivariate normal distribution has been widely considered in model-based cluster-

ing [38, 39]. The spatial defect pattern can be nicely described by the parameters of

the distribution: the mean vector, µ, represents the center of the cluster, and the co-

variance matrix, Σ, describes the shape and the orientation of the ellipsoid composed

of the members of the cluster. A symmetric matrix, Σ, has positive eigenvalues, and

the largest eigenvalue and the corresponding eigenvector represent the magnitude

and the direction of the main axis of the set of defects in multidimensional space,

respectively. In this study, the defects are assumed to take two dimensions. Thus,

the eigenvector which corresponds to the larger eigenvector represents the longer axis

of the ellipsoid, and the ratio of the eigenvalues are equal to the ratio of the lengths

of the two axis of the ellipsoid. The principal components of two dimensional data

set are illustrated in Figure 10.

In the parameter estimation, the locations are regarded as missing data. The

complete data are considered to be yi = (si, zi), where zi = (zi1, · · · , ziG), where

zik =





1, if si belongs to kth cluster,

0, otherwise.

It is assumed that zi follows an identical and independent multinomial distribution
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Figure 10: Principal components.

of a single trial with parameters (p1, · · · , pG) and that the PDF of si given zi is given

by

f(si) =
G∏

k=1

fk(si)
zik .

Using the complete data, the estimators are obtained by maximizing one of the

following likelihood criteria. The complete-data likelihood function is [34, 35, 36]

L1(θ,p, z|s) =
n∏

i=1

G∏

k=1

[pkfk(si|θk)]
zik . (5.1)

The classification likelihood function is [39]

L2(θ, γ1, · · · , γn|s) =
n∏

i=1

fγi
(si|θγi

),

where the γi’s are the indexing values for classification such that γi = k if zik = 1.
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V.2.2. EM algorithm for clustering

Maximization problems with L1 or L2 are hard to solve because of their combi-

natorial feature. An iterative solving method is provided by the EM(expectation-

maximization) algorithm or by the CEM(classification EM) algorithm that use it-

erative steps for classification (in CEM), expectation and maximization. The EM

algorithm with the L1, equation (5.1) is studied in this section.

The EM algorithm is a general algorithm for computing the maximum likeli-

hood estimates of pk and θk (1 ≤ k ≤ G). The EM algorithm with the complete-data

likelihood criteria is summarized as follows [46].

Repeat step 1 and 2

1. M-step

Maximize L1 in equation (5.1) with respect to p and θ given ẑ(m−1), the estimate of

the conditional expectation E[zik|si,p, θ] of the (m− 1)st iteration.

As a result of the maximization, the optimal solution at the mth iteration is

p̂
(m)
k =

∑n
i=1 ẑ

(m−1)
ik

n

and θ̂
(m)

k is the optimal solution of the likelihood function

L(θ
(m)
k |s) =

n∏
i=1

[fk(si|θ(m)
k )]ẑ

(m−1)
ik .

2. E-step

Compute ẑ(m) given p̂(m), θ̂
(m)

:

ẑ
(m)
ik =

p̂
(m)
k fk(si|θ̂(m)

k )
∑G

j=1 p̂
(m)
j fj(si|θ̂(m)

j )
.
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until the convergence criteria are satisfied.

The initial point, ẑ(0), is chosen arbitrarily or by certain rules. Since the

algorithm depends on the initial point, the algorithm can be applied with several

initial points, and the best result in terms of likelihood can be chosen [47].

V.2.3. CEM algorithm

The CEM algorithm is summarized [47]:

Repeat steps 1, 2 and 3

1. E-step

Compute ẑ(m) given p̂(m−1), θ̂
(m−1)

:

ẑ
(m)
ik =

p̂
(m−1)
k fk(si|θ̂(m−1)

k )
∑G

j=1 p̂
(m−1)
j fj(si|θ̂(m−1)

j )
.

2. C-step

Partition s1, · · · , sn into the sets of elements, P
(m)
1 , . . . , P

(m)
G , according to ẑ

(m)
ik . si

will be partitioned in a cluster which provides the maximum ẑ
(m)
ik .

3. M-step

Compute the maximum likelihood estimates p̂
(m)
k , θ̂

(m)

k :

p̂
(m)
k =

#P
(m)
k

n
,

where #P
(m)
k is the number of elements in P

(m)
k . θ̂

(m)

k is obtained by maximizing the

likelihood

L(θ
(m)
k |s) =

∏

si∈P
(m)
k

[fk(si|θ(m)
k )].
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until the convergence criteria are satisfied.

V.2.4. Number of clusters

The number of the clusters in the defect data is estimated by the BIC [48]. The

applications of BIC in model-based clustering can be found in [34, 35]. The BIC is

2 log p(s|M) + C,

where p(s|M) is the likelihood of the data for model M, and C is a constant term.

The posterior probability of model M, given sample s is

p(M|s) ∝ p(s|M)p(M).

If the prior probability p(M) is the same for any model M, then the model with the

highest p(s|M) is chosen. Suppose we have an unknown parameter θ, then

p(s|M) =

∫

θ
p(s|θ,M)p(θ|M)dθ.

The integral is hard to evaluate. BIC is approximated as

2lM(s, θ̂)−mM log(n), (5.2)

where lM(s, θ̂) is the maximized log-likelihood of model M; mM is the number of

independent parameters in model M; and n is the sample size. The second term

is a penalty of the increased number of parameters. The fit of a model is increased

as more parameters are introduced. However, it is not desirable to introduce too

many parameters. Thus, we choose the model that maximizes the approximated

BIC criteria (5.2). In order to reduce computational effort, the first local maxima
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of the criteria is chosen. Figure 11 shows a simulated defects with overlapped local

clusters and a graph of the BIC of the data. The first local maxima is obtained

at three, the number of expected clusters including the set of global defects. With

the BIC, the estimates of the parameters and the number of clusters is obtained

simultaneously. The simulation with overlapped local clusters as shown on the left

of Figure 11 correctly estimates the number of clusters with 98% accuracy.
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Figure 11: Bayesian information criteria.

V.2.5. Principal curve

The curvilinear feature is one of the typical patterns observed on wafer defect maps

with an ellipsoidal pattern. Approximate modeling of curvilinear defect patterns

with the bivariate normal distribution may provide incorrect information about the

characteristics of clusters and decrease the classification capability [36]. Therefore, in

this study, clusters with curvilinear pattern are modeled by the principal curve [49].

The principal curve is a one dimensional curve that passes through d-dimensional

data. The one dimensional curve in Rd is defined as a vector function f(λ) of a scalar
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variable λ. Define s ∈ Rd, a random vector. Then, f(λ) is the principal curve of s if

E[s|λf (s) = λ] = f(λ),

where

λf (s) = sup
λ
{λ : ||s− f(λ)|| = inf

µ
||s− f(µ)||}.

λf (s) is the projection point λ, i.e., the closest point on f(λ) from s.

The principal curve of data s of size n is composed of n tuples. The algorithm

for finding the principal curve from data s is [49]:

Initialization:

Find f0(λ) = s̄ + aλ where a is the principal component of X.

Repeat:

Find λi
f (sj), for j = 1, . . . , n.

Find f i+1(λ).

Until

|Di+1 −Di| is less than a criterion where Di =
∑n

j=1 ||sj − f i(λi
f (sj))||2.

In finding f i+1(λ), the principal curve in the i+1st iteration, the natural way

is to get the average of the points that project to the same point on the principal

curve. However, with a finite number of data points, we have only one such point.

Thus, we use a locally weighted running-line smoother with a fraction ω of points.

The weight of sj for si is [49]:

wij =

[
1−

( |λi − λj|
hi

)3
]3

,

where hi is the distance on the principal curve from λi to the ωnth closest point. The
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weight is one for the point itself and diminishes as the distance increases. Figure 12

shows the illustration of a principal curve of a two dimensional data.

Figure 12: Principal curve.

V.3. The clustering strategy

V.3.1. Global defect pattern and distribution

The global defects take a non-random pattern which has a larger defect density

as the distance from the center of the wafer increases. This pattern cannot be

modeled as background random noise and, thereby, needs a distribution function

that describes its non-random pattern for the model-based clustering. Non-random

defects on a wafer can be considered as the realization from a spatial nonhomogeneous

Poisson process. In a spatial nonhomogeneous Poisson process, the pattern of event

locations is modeled by the intensity function which governs the likelihood of an

event occurring at a location. From the intensity function, we get the PDF of the
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defect location on the wafer region. Consider a point process {N(D) : |D| ≥ 0} on

a planar region D ∈ Rd. N(D) is the number of events on D. The intensity at

location s ∈ D, λ(s), is defined as [31]

λ(s) = lim
|ds|→0

E[N(ds)]

|ds| , (5.3)

where E[N(ds)] is the average number of events on a infinitesimal region around s,

ds. Then, the PDF of the process is

f(s) =
λ(s)∫

D
λ(s)ds

. (5.4)

The estimators of the parameters, α, are obtained by maximizing the likelihood

function [33]:

L(α|s) =
n∏

i=1

λ(si) exp

{
−

∫

D

λ(s)ds

}
. (5.5)

Generally, a closed form maximum likelihood estimator does not exist.

V.3.2. Local defect patterns

The local defect clusters have specific patterns according to their causes. Particles

or stains generate ellipsoidal shape defect patterns [43], and these are well described

by a bivariate normal distribution. Linear features can be modeled well by a bivari-

ate normal distribution. However, non-convex objects, like curvilinear patterns, are

not modeled well by a bivariate normal distribution. Human induced scratches or

bad batch handling cause curvilinear defect patterns [50]. In modeling curvilinear

patterns, I use the principal curve that is defined by Hastie and Stuetzle [49]. Appli-

cations of clustering with the principal curve can be found in [51, 52]. The principal

curve is a generalization of the principal component of a data set. The likelihood of
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the principal curve is defined as [52]

L(s|f) =
n∏

i=1

L(si|f),

where

L(si|f) =
1

ν

1√
2πσ

exp

(
−||si − λf (si)||2

2σ2

)
, (5.6)

where ν is the length of f and ||s− λf (s)|| is the distance from s to f . It is assumed

that the defects are uniformly distributed on [0, ν] along the principal curve and that

they are normally distributed about the principal curve.

V.3.3. Statistical clustering algorithm

The proposed clustering algorithm consists of two steps; the orientation step and the

local tuning step. I combine the BIC and EM with a complete-data loglikelihood

criterion and a classification loglikelihood criterion in order to develop a stable and

refined algorithm. The basic idea is:

• Find the number of clusters and the initial point with BIC using L1 criterion

with the bivariate normal distribution.

• Apply the L2 criterion with the principal curve distribution, equation (5.6).

• Choose the cluster that yields the larger BIC between the bivariate normal

distribution and the principal curve.

In the orientation step, the bivariate normal distribution with a variable covariance

matrix is used as the distribution of the cluster in order to find the initial point for

the next step. I also apply the BIC to choose the number of clusters. I use the

EM algorithm with criterion L1, equation (5.1). The number of cluster is found by

the BIC with the bivariate normal distribution for the local defect clusters. This



71

step can identify the locations of the clusters but is not suitable for capturing the

properties of the clusters with curvilinear patterns. In the local tuning step, the

CEM algorithm is applied with the clustering result of the orientation step as the

initial point. The discovered clusters are run with the principal curve distribution,

which can be obtained from equation (5.6). This step examines whether the cluster

feature is closer to a curvilinear pattern than an ellipsoidal pattern. The BIC of each

cluster obtained by the principal curve is compared with that of each cluster detected

by the bivariate normal distribution in the orientation step to identify the pattern

of the cluster. Between the bivariate normal distribution and the principal curve,

the model that yields the larger BIC is selected. If the principal curve has a larger

BIC, then it is an indication that the cluster has a linear or curvilinear signature.

For the convergence criteria for both EM and CEM algorithms, I use the coefficients

of global intensity function in equation (5.7).

V.4. Simulated defects

The global defects are generated by the thinning method [37] from random defects

on the wafer. I use the quadratic intensity function. The advantage of the quadratic

intensity function is the flexibility of the function. A polar coordinate is used with

the assumption that the defect pattern is isotropic, i.e., there is no angular term in

the intensity function. The intensity function used is

λ(r) = α0 + α1r + α2r
2, (5.7)

where r represents the distance from the center of a wafer.

Since I don’t have the actual defect data nor a description of the data, I

generate local defects that resemble the patterns shown in [50]. These local defects
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are generated from distributions that are different from the distributions adopted

in the clustering algorithm. The ellipsoidal pattern is generated from an uniform

distribution on a rectangle. The curvilinear pattern is generated from the assumption

that the defects are distributed uniformly along and about the arc. The double

curvilinear pattern is obtained by concatenating a curvilinear pattern and a linear

pattern.

Figure 13 shows the the results of clustering with simulated defects. The

general pattern of defect clusters is captured by the algorithm, and the parameters

of the clusters, such as the center and the covariance for the ellipsoidal pattern and

the principal curve for the curvilinear or the amorphous pattern, are obtained. And

most importantly, the simulation results identify, even in the worst case, the locations

of the clusters.

V.5. Conclusion

This chapter proposes an automated wafer defect data analysis method based on

model-based clustering for semiconductor fabrication process control. The model-

based clustering with a spatial nonhomogeneous Poisson process, the bivariate nor-

mal distribution and the principal curve classify the defects according to their defect

generation mechanisms using the spatial patterns of defect clusters. In this pro-

cedure, low speed high resolution methods and high speed low resolution methods

are combined to maximize the root-cause analysis capability by sorting out those

wafers that need further visual inspection and by narrowing down the inspection

area on these wafers. Also, the variation in defect densities of the various defect

generation mechanisms can be monitored by the parameters of the clusters. The

simulation presents a promising result. It successfully finds the number of clusters
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and describes the properties of these clusters. Due to the classification capability of

this algorithm, complicated defect patterns generated by the superposition of several

defect patterns can be modeled with fewer parameters. This result provides useful

information about the defect density variations on a wafer, and it is a good basis for

yield modeling based on the spatial point process.
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Figure 13: Clustering results of simulated defects.

Figures on the left-hand side are the stacked wafer map, and the figures

on the right are the detected clusters with principal curves.
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CHAPTER VI

EXTRINSIC RELIABILITY ESTIMATION FROM YIELD

INFORMATION

This chapter studies the yield-reliability relation model for estimating the extrinsic

reliability of ICs. A yield model based on the spatial nonhomogeneous Poisson

process and a statistical defect growth model are introduced. An extrinsic reliability

model is derived using the yield model and the statistical defect growth model. The

properties of a reliability function, in terms of a failure mechanism using a failure

rate function, is investigated.

VI.1. Introduction

Reliability is defined as the probability that a system works properly up to a speci-

fied time under specified working condition [5]. Varying reliability by time is math-

ematically represented by a reliability function. In estimating reliability, statistical

inference is preferred to analytical failure models due to the complex failure mech-

anisms of ICs. Statistical inference for reliability estimation is normally done from

life testing data. Parametric methods with distribution functions are widely used.

In choosing a parametric distribution family for reliability, one should consider the

physical constraints of the failure mechanism, the failure rate function which rep-

resents the characteristics of the aging process [21]. An increasing failure rate over

time means that the system ages i.e., the system deteriorates in time.

Electronic devices are known to have a bathtub-shaped failure rate curve,

and this curve cannot be well modeled by a single distribution function. Some of the

literature studies several failure modes with the mixture distribution model [53, 54].
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However, the mixture distribution model fails to derive a bathtub-shaped failure

rate curve. The competing risk model describes the bathtub-shaped failure rate

function using monotone failure rate distributions. With this competing risk model,

the failure rate function of a system is obtained with the summation of the failure

rate functions of two or three independent failure modes, which have increasing,

decreasing or constant failure rate functions. Each failure rate function represents

an inherited failure mode in the failure mechanism. An increasing failure rate curve

results from the intrinsic failure mode which is an inherited aging property( or wear-

out), and a decreasing failure rate curve results from the extrinsic failure mode which

causes early failures due to extraneous factors, mostly defects, in the products. A

bathtub-shaped failure rate curve means that the extrinsic failure mode dominates

the failure mechanisms during the early life of a product.

It is known that electronic devices, including ICs have very long useful life

on failure rate curve. Technology in the semiconductor industry has advanced to a

level that insures high intrinsic reliability up to the mission time of products [55].

Consequently, estimating reliability using life testing takes a long time, even with

accelerated life testing. Considering the long life of well designed and produced IC

products, however, only extrinsic reliability is meaningful as feedback to the design

and manufacturing process. Extrinsic reliability is determined by the defects intro-

duced during the manufacturing process and has a decreasing failure rate function.

Extrinsic reliability and yield have the same source of loss. Thus, the relationship

between these two measures and extrinsic reliability estimation from defect data have

been studied by several scholars.

Kuper et al. [29] and Van der Pol et al. [28] observe that yield and reliability

are positively correlated. An effort to retrieve reliability information from yield have

been made by several researchers [24, 25, 26, 27]. This literature can be divided into
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two subcategories. One is the model that identifies proportional defect density as

the cause of reliability failure in operation. The defect density of latent defects(or

reliability defects) is assumed to be proportional to the yield defect density [24,

25]. This assumption consequently restricts the reliability function to be static,

i.e., reliability is not a function of time. The other model assumes defect growth

under operational conditions [26, 27]. The analytical defect growth model of gate

oxide defects has been studied, but it needs modification for other kinds of defects.

Reliability critical area models [56, 57] that assume changes of critical areas under

stress can also be classified in this subcategory.

The purpose of this study is to build an extrinsic reliability estimation model

from yield information. At first, the defect pattern on a wafer is modeled using the

spatial nonhomogeneous Poisson process(NHPP). A yield model is constructed based

on the spatial NHPP. Then, using a statistical defect growth model, an extrinsic

reliability model is derived based on the yield model. Derived extrinsic reliability

deals with general defects in an IC and is a function of time. Due to the intensity

function that describes the spatial pattern of defects on a wafer, unlike the existing

relation models, we can compute a distinct reliability function according to the chip

locations on a wafer. Different reliabilities by chip location can be used for screening

low reliability wafers and determining adjustable burn-in policies according to the

defect density of the specific chip, wafer or lot. Extrinsic reliability estimation doesn’t

rule out the necessity of life testing. However, this method can provide a more reliable

method for reliability estimation.

This chapter is composed as follows: The competing risk model is discussed in

section VI.2. Yield modeling based on the spatial nonhomogeneous Poisson process is

introduced in section VI.3. Section VI.4 discusses a statistical defect growth model.

In section VI.5, reliability estimation from defect data using the new yield model
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based on the spatial nonhomogeneous Poisson process is introduced. The failure rate

function of extrinsic reliability is examined in section VI.6. Section VI.7 concludes

this study and addresses future research.

VI.2. Competing risk model

The property of the aging process of a system can be described by the failure rate

curve. The integral of the failure rate function on [t, t+∆t] represents the probability

that the system in a working state fails in the time interval. Thus, the higher the

failure rate, the higher the failure probability. It is known that electronic devices

including ICs have bathtub-shaped failure rate curves as shown in Figure 6. This

means, in a probabilistic sense, that the population of products rejuvenates as time

goes on up to a certain point, retains its age and then deteriorates when it approaches

the end of its life span. The decreasing failure rate is caused by defects introduced

during the manufacturing process and misuse in operation. The increasing failure

rate results from the natural aspects of aging.

The failure mechanism of a system can be explained with the competing

risk model. The failure mechanism is subdivided into several independent failure

modes. They are considered to be configured in a series system. In other words, the

independent failure modes compete to cause the breakdown of a product. Hence, the

failure time of a product is the minimum of the failure times of the failure modes.

I consider here two failure modes: intrinsic failure and extrinsic failure. Both have

monotone failure rates. The extrinsic failure mode has a decreasing failure rate.

This failure mode is caused mostly by defects and dominates the failure rate in the

early life of a product. The intrinsic failure mode has an increasing failure rate and

dominates wear-out. Each failure mode may contain several failure mechanisms, and
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there may exist interactions between these failure mechanisms. However, they are

treated as a single failure mechanisms. The notation for the derivation of the failure

rate function using the competing risk model is defined as follows:

• TE, FE(t): a random variable, the failure time caused by the extrinsic failure

mode and its cumulative distribution function(CDF)

• TI , FI(t): a random variable, the failure time caused by the intrinsic failure

mode and its CDF

• T, F (t): a random variable, the failure time ≡ min{TI , TE} and its CDF

• R(·) ≡ 1− F (·)

• hj(t), h(t): the failure rates of Tj, j = E, I and T , respectively

From the assumption of the failure time of the system, we can get the reliability

function:

F (t) = 1− Pr{T > t}

= 1− Pr{min{TI , TE} > t}

= 1− Pr{Ti > t and Te > t}

= 1− Pr{Ti > t}Pr{Te > t}

= 1−RI(t)RE(t). (6.1)

Assuming Fj(t) has the probability density function(PDF),
dFj(t)

dt
= fj(t), j = I, E,

f(t) = fI(t)RE(t) + fE(t)RI(t). (6.2)
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We can get the failure rate of T from equation ( 6.1) and ( 6.2):

h(t) =
f(t)

R(t)
= hI(t) + hE(t). (6.3)

We have a failure rate which is a summation of the two failure rate functions as

expected.

VI.3. Yield model based on spatial NHPP

VI.3.1. Spatial nonhomogeneous Poisson process

In order to estimate yield, three things must be known: the spatial distribution

of the defect density; the defect size distribution; and the interaction of the above

information with the layout of the IC. These are the factors of compound Poisson

yield models as seen in previous sections. The defect density distribution which is not

well modeled by compound Poisson yield models can be nicely described by spatial

point processes. In new yield models based on spatial NHPP, defect clustering is

explained by the higher defect density areas that produce aggregated defects. Useful

concepts and definitions of the spatial point process are summarized below from

Diggle [32] and Cressie [31].

The spatial process is used to model spatial data. The general spatial process

model is

{Z(s) : s ∈ D},

where Z(s) is the random quantity at a location s ∈ D. In many cases, among

many possible measures of the events, the locations of events s1, s2, . . . on D ⊂ Rd

are the main concern. The locations can be modeled by the spatial point process as

follows: Let (Ω,F , P ) be a probability space and let Φ be a collection of locally finite
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counting measures on D ⊂ Rd. On Φ, define N , the smallest σ-algebra generated

by sets of the form {φ ∈ Φ : φ(B) = n} ∀B ⊂ D and ∀n ∈ {0, 1, 2, 3, . . .}. Then,

a spatial point process on D is a measurable mapping of (Ω,F) into (Φ,N ). If an

event located at s ∈ Rd is marked by x ∈ A, then (s, x) is a point in (Rd,A). So a

marked point process is a point process on the product space (Rd,A).

Consider a point process {N(B) : |B| ≥ 0} on a planar region B ∈ R2.

N(B) is the number of events on B. The events of interest in this model are the

locations of the defect on the wafer. The size of the defects is dealt with by the

marked point process. A NHPP N(B) is defined on a finite planar region B with

the following postulates:

1. N(B) has a Poisson distribution with mean µ(B) =
∫

B
λ(s)ds, where s ∈ B

and λ(s) is the intensity function on B defined as equation (6.4).

2. Given N(B) = n, the n events form an independent random sample from the

distribution on B with a PDF proportional to λ(s).

The intensity function λ(s) is defined as

λ(s) ≡ lim
|ds|→0

E[N(ds)]

|ds| . (6.4)

Thus, we can compute the average number of defects on B with

E[N(B)] =

∫

B

λ(s)ds.

VI.3.2. Yield model

Let’s consider a yield model based on the results shown above. In compound Poisson

yield models, the defect variation is modeled by the defect density distribution which
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doesn’t have spatial information about the defect density variation. The new yield

models basically use the Poisson yield model. However, the average number of faults

varies die by die, and it is computed using the intensity function of the spatial NHPP.

Since the average number of faults is not identical for all dies, we need to modify the

definition of yield as the ratio of the number of conforming products at the end of a

production process to the number of potentially usable products [7].

The following is the mathematical derivation of the yield model: Define

{Bj}k
1 as the set of finite disjoint regions of the die area on the wafer, where k is the

number of dies on a wafer. Let’s define a random variable

XBj
=





1 if Bj is good,

0 if Bj is defective, j = 1, · · · , k.

Then, the chip yield of die area Bj given λ(s) is

E[XBj
] = Pr{XBj

= 1}

= Pr{no faults on die Bj}

= e−µ(Bj), j = 1, · · · , k, (6.5)

where µ(Bj) is the parameter of the Poisson distribution and means the average

number of faults on die Bj. The equation (6.5) holds by the first postulate of the

spatial NHPP.

To build a yield model, let’s define a new random variable X =
∑k

i=1 XBi
;

then X represents the number of conforming dies on a wafer. Thus, we have a yield
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model defined as the average portion of conforming dies per wafer:

Y =
E[X]

k

=
E[XB1 ] + E[XB2 ] + · · ·+ E[XBk

]

k
. (6.6)

The following is a method for getting µ(B), the average number of faults on

an arbitrary chip region B. Given the location of a defect, a bigger defect is more

likely to cause a circuit failure. In order to deal with various defect sizes, the marked

point process is adopted. The size of the defect x is the marked random quantity of

the marked point process. The intensity of the marked point process on the product

space (R2 ×A) is defined as

ν(s, x) ≡ lim
|ds×dx|→0

E[N(ds× dx)]

|ds× dx| .

Then ν(s, x)dsdx is the average number of defects of size x on region s, and the

average number of faults of size x on region s is

Ac(x)

|B| ν(s, x)dsdx.

Consequently, the average number of faults on region B, µ(B) is

µ(B) =

∫ ∞

0

∫

B

Ac(x)

|B| ν(s, x)dsdx. (6.7)

Note that the intensity function of the marked Poisson process is factorized as

ν(s, x) = λ(s)g(x|s),

where g(x|s) is the conditional distribution of the defect size given the defect location.
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If g(x|s) = g(x), then

µ(B) =

∫ ∞

0

Ac(x)g(x)dx

∫
B

λ(s)ds

|B| ,

and the chip yield is obtained as

E[XB] = exp

{
−

∫ ∞

0

Ac(x)g(x)dx

∫
B

λ(s)ds

|B|
}

.

Now, the yield can be computed from equation (6.6) using the chip yields.

VI.4. Defect growth model

VI.4.1. Mixture defect size distribution

The extrinsic reliability model is based on the severity of defects modeled by the

defect growth model. The behavior of defect growth is modeled by the defect size

distribution at time t, gt(x), the PDF of Xt, and the random variable of defect

size at time t. Analytical defect growth models have been applied to gate oxide

reliability [26, 27]. In this study, all kinds of defects are considered. Some kinds of

defects don’t change in severity(size) under operational stress [25], and the defect

growth rate of different kinds of defects may not necessarily be the same. Also,

the composition of defects may vary. Thus, in order to incorporate several defects

that have different growth rates, a statistical defect growth model which is obtained

by a mixture distribution of the defect groups with different defect growth rates is

considered.

I categorize the defects into “growing defects” and “dormant defects.” The

defect size of a dormant defect doesn’t change in time under operation. Let X∗
t , X∗∗

t

be the random variables of the defect size of a growing defect and a dormant defect,
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respectively, and g∗t (x), g∗∗t (x) be the corresponding PDF’s at time t. Denote k as

the proportion of growing defects to the whole number of defects. Then, we have

gt(x) = kg∗t (x) + (1− k)g∗∗t (x). (6.8)

It is assumed that the defect size distribution at t = 0 is known.

VI.4.2. Statistical defect growth model

Since the defect size distribution of dormant defects stays the same in time, i.e.,

g∗∗t (x) = g∗∗0 (x) for any t > 0 and x ≥ 0, gt(x) is obtained by equation (6.8) with

the transformation of g∗0(x) with X∗
t = h(X∗

0 ). The function h(·) is a function of X∗
0 ,

time and stress level, and the time and stress level are modeled through the defect

growth factor, η(t, e) at time t under stress level e. There exists no well-known defect

growth model for all kinds of defects. However, it can be assumed that the defect

growth mechanism is analogous to that of gate oxide defects [58]

tBD = τ exp

{
G

V
(w − x)

}
, (6.9)

where tBD is the breakdown time; G is a constant with a unit of voltage/length; V

is the voltage applied to the oxide; w is the thickness of the oxide; x is the defect

size; and τ is a constant which has a unit in time. Then the breakdown time, tBD,

can be interpreted as the time elapsed for the defect growth of w−x, and we get the

defect growth model:

X∗
t = X∗

0 + η(t, e),

with the relation:

η(t, e) ∝ e ln t,
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where e in this model is the voltage.

VI.5. Extrinsic reliability model

In this section, the extrinsic reliability model is derived. Yield and extrinsic reliability

have the same source of loss-defects. Reliability is a function of the operation time.

If yield and reliability are put on the same line of time flow, yield can be viewed

as reliability at t = 0. However, it is worth noting that the starting time, t = 0,

when the system is put into operation, is considered in a relative sense. That is, the

starting time is not fixed, and it can be adjusted by electrical tests and burn-in.

It is assumed that the intensity function of spatial NHPP, λ(s), doesn’t

change in time, i.e., we don’t observe new defects during operation. Although we

may have new defects in a new location, the probability that the new defects break

down the chip earlier than the existing defects is assumed to be negligible. Suppose

that t = 0 represents the time when the products are produced and the test is over.

Then, the reliability of a chip on region B at time t is defined using conditional

reliability as

R(t) ≡ Pr{T > t|T > 0}

=
Pr{T > t}
Pr{T > 0} , if Pr{T > 0} > 0. (6.10)

We can compute Pr{T > t} using a Poisson distribution with the average number of

faults on chip B at time t, µ(B, t):

Pr{T > t} = Pr{the chip works without failure up to t}

= Pr{no faults on chip up to t}

= e−µ(B,t).
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µ(B, t) is computed from equation (6.7):

µ(B, t) = Ac(t)

∫
B

λ(s)ds

|B| ,

where Ac(t) is the average critical area of region B at time t computed as

Ac(t) =

∫ ∞

0

Ac(x)gt(x)dx.

We have

Pr{T > t} = exp

{
−Ac(t)

∫
B

λ(s)ds

|B|
}

= exp

{
−

∫ ∞

0

Ac(x)gt(x)dx

∫
B

λ(s)ds

|B|
}

, (6.11)

and

Pr{T > 0} = E[XB]

= exp

{
−Ac(0)

∫
B

λ(s)ds

|B|
}

= exp

{
−

∫ ∞

0

Ac(x)g0(x)dx

∫
B

λ(s)ds

|B|
}

. (6.12)

Therefore, the reliability function obtained from equations (6.10),(6.11) and (6.12)

is

R(t) =
exp

{
− ∫∞

0
Ac(x)gt(x)dx

∫
B λ(s)ds

|B|

}

exp
{
− ∫∞

0
Ac(x)g0(x)dx

∫
B λ(s)ds

|B|

}

= exp

{
−

∫ ∞

0

Ac(x)[gt(x)− g0(x)]dx

∫
B

λ(s)ds

|B|
}

= exp

{
−

∫ ∞

0

Ac(x)[g∗t (x)− g∗0(x)]dx
k

∫
B

λ(s)ds

|B|
}

. (6.13)

The reliability function is inversely proportional to the defect density on the chip and
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the ratio of growing defects. Also, it is inversely proportional to the defect growth

rate η(t, e), which is not explicitly shown on the reliability function.

The relationship between yield and reliability at a fixed time with various

k values is illustrated in Figure 14. The shape of the relation curve varies by k.

Given the same yield, the smaller the k value, the higher the reliability. We also

observe that the extrinsic reliability is bounded from below. With the assumption

that Ac(t) → |B| as t → ∞, the extrinsic reliability of the chip on B is bounded

from below, and as t →∞

R(t) → exp{− ∫
B

λ(s)ds}
exp

{
−Ac(0)

∫
B λ(s)ds

|B|

} .
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Figure 14: Yield and reliability relation with various k values.
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VI.6. Failure rate function

Extrinsic reliability has a decreasing failure rate. The reliability derived from the

defect data should be in the decreasing failure rate class. Since f(t) = −dR(t)

dt
when

the derivative exits,

f(t) = −
d exp

{
− ∫∞

0
Ac(x)[gt(x)− g0(x)]dx

∫
B λ(s)ds

|B|

}

dt

= R(t)

∫
B

λ(s)ds

|B|
d

∫∞
0

Ac(x)gt(x)dx

dt
.

Thus, the failure rate function is

h(t) =
f(t)

R(t)

=

∫
B

λ(s)ds

|B|
d

∫∞
0

Ac(x)gt(x)dx

dt

=

∫
B

λ(s)ds

|B|
dAc(t)

dt
.

If the average critical area at t, Ac(t) is concave, h(t) is decreasing in t. Since the

closed form of the failure rate function is not available, the property of the extrinsic

failure rate curve is examined numerically with the following settings.

The defect size distribution is assumed as [11]

g(x) =





2(p− 1)x

(p + 1)x2
0

, if x ≤ x0,

2(p− 1)xp−1
0

(p + 1)xp
, if x > x0.
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Let p = 3 and η(t, e) =
e

a
log

t

b
. Then

g∗t (x) =





x− η(t, e)

x̃2
0

, if η(t, e) ≤ x ≤ x̃0,

x̃2
0

(x− η(t, e))3
, if x > x̃0,

where x̃0 = x0 +
e

a
log

t

b
. And the critical area model is assumed as

Ac(x) =





0, if x < w0,

x− w0

w1 − w0

|B|, if w0 ≤ x < w1,

|B|, if x ≥ w1,

with |B| = 1. I assume that the critical area is linear to the defect size x such that

w0 ≤ x ≤ w1 and is bounded by the die area. Figure 15 shows the failure rate curve

of the extrinsic reliability derived numerically. It shows the monotone decreasing

time

fa
ilu
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 r
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e

0

e=2

e=1.5

e=1

Figure 15: Extrinsic failure rate curve in arbitrary units with η(t, e) =
e

a
log

t

b
.
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property as desired.

VI.7. Conclusion and future research

The relationship between yield and reliability based on defect data using the statis-

tical defect growth model has been examined here. Extrinsic reliability was derived

from the new yield model based on the spatial NHPP. With the extrinsic reliability

model based on the spatial NHPP, the positive correlation between yield and reliabil-

ity was explained. Since this model utilizes the additional information of defect data,

it contributes to more accurate life testing at a reduced cost. Estimating reliability,

especially extrinsic reliability, which is closely related to most failures in the early

life of ICs, provides important feedback to circuit design and the determination of

optimal burn-in times. Without time consuming life testing of ICs, this method can

shorten the feedback loop. More importantly, in this model, the extrinsic reliability

of a specific chip depends on the defect density on the chip location. Thus, based on

the yield of the wafer or the lot, different screening rules for low reliability chips and

for burn-in policy can be applied.

The following directions are suggested for future research. In this study, it

is assumed that the intensity function doesn’t change under operational conditions.

This assumption is based on the underlying assumption that current inspection tech-

nology is powerful enough to detect small defects that may cause circuit failures in

operation. However, due to the scaling of ICs, it is likely in the near future that

undetectably small defects may cause circuit failures [59]. In this case, the intensity

function should be modified in time to model the defects that actually exist on a

wafer but are not counted in the yield modeling.
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CHAPTER VII

CONCLUDING REMARKS

This dissertation studies the variation management methods of nanotechnology us-

ing information about the spatial defect patterns, and the methods are applied in

semiconductor manufacturing to yield modeling, defect pattern recognition and ex-

trinsic reliability estimation. So far, the defect density variation in yield models is

modeled in compound distributions which simply represent the variation in defect

density without considering the spatial defect patterns within and between wafers.

Defect pattern recognition has been studied for IC fabrication process control, espe-

cially for root-cause analysis, independently of yield modeling. This study develops a

method of modeling spatial defect patterns for an unified scheme of process variation

management that includes yield and reliability modeling and root-cause analysis.

The spatial defect pattern is modeled using the spatial point process. Con-

sidering the nonhomogeneity of the defect density on wafers, the spatial nonhomo-

geneous Poisson process is used. The intensity function, which is a function of the

location of the nonhomogeneous Poisson process, governs the spatial distribution of

defects. And in order to incorporate the various defect sizes on a wafer and the vari-

ous intensity functions between wafers, a spatial marked point process and a doubly

stochastic process are adopted. The defect density variation by location is modeled

by the intensity function of the process, and the clustering effect can be explained by

the regions of higher intensity functions. The yield model, pattern recognition algo-

rithm and extrinsic reliability estimation method are based on the intensity function

of the spatial nonhomogeneous Poisson process.

Our new yield model, based on the spatial nonhomogeneous Poisson process,
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captures the defect density variation using the intensity function which is estimated

from a maximum likelihood estimation with a model-based clustering algorithm. The

parameters of the intensity function estimated using model-based clustering contain

useful information on the sources of yield loss. Since the intensity function contains

spatial information about the defect patterns, the intensity functions estimated in

different process steps or in different kinds of defects can be added to get the overall

intensity function without worrying about different clustering effects. Unlike exist-

ing yield models, each chip has a different yield according to the intensity function

evaluation of the chip, and the yield is defined as the average of chip yields on a

wafer.

The model-based clustering algorithm also adopted in the intensity function

estimation is used in pattern recognition for finding the assignable causes of yield loss.

This algorithm facilitates the root-cause analysis by identifying wafers or regions on

wafers that need further visual inspection. The defects generated by the local defect

generation mechanisms, which are normally the assignable causes, are classified as the

defect pattern on the wafer. The characteristics of the defect clusters are represented

by the parameters of a bivariate normal distribution or principal curve.

Extrinsic reliability is estimated from the defect data using the statistical

defect growth model. The defect growth rate of different defects are considered

statistically using a transformation of the defect size distribution. Using the extrinsic

reliability model, a positive correlation between yield and reliability can be explained.

The benefits of the extrinsic reliability estimation model result from the high intrinsic

reliability during the useful life of the IC products. Extrinsic reliability has an

important influence on the feedback to circuit design and the burn-in decisions. This

model enables reliability estimation from yield data without expensive life testing.

And under special assumptions of intrinsic reliability, optimal burn-in time can also
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be determined from extrinsic reliability. Since the reliability depends on the intensity

function of the defects, different policies of warranty and burn-in can be applied based

on the defect density of the chips.

The contributions of this dissertation are (1) providing better process moni-

toring measures that lead to data reduction of wafer map data (2) combining methods

of yield modeling and root-cause analysis that share key information (3) facilitating

yield learning processes by providing a fast and rigorous defect classification method

based on model-based clustering and (4) providing an extrinsic reliability estimation

method that can provide fast feedback to integrated circuit design in the early de-

velopmental stages. In summary, this study furthers the understanding of process

variation using spatial information about defects and provides a unified framework

for defect management.
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