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ABSTRACT 
 
 
 

Design of Large Time-Constant Switched-Capacitor Filters 

for Biomedical Applications. 

(December 2004) 

Sanjay Tumati, B.Tech., Indian Institute of Technology, Mumbai, India 

Chair of Advisory Committee: Dr. Jose Silva-Martinez 
 
 
 
This thesis investigates the various techniques to achieve large time constants and the 

ultimate limitations therein. A novel circuit technique for the realization of large time 

constants for high pass corners in switched-capacitor filters is also proposed and 

compared with existing techniques. The switched-capacitor technique is insensitive to 

parasitic capacitances and is area efficient and it requires only two clock phases. The 

circuit is used to build a typical switched-capacitor front end with a gain of 10. The low 

pass corner is fixed at 200 Hz. The high pass corner is varied from 0.159Hz to 4 Hz and 

various performance parameters, such as power consumption, silicon area etc., are 

compared with conventional techniques and the advantages and disadvantages of each 

technique are demonstrated. The front-ends are fully differential and are chopper 

stabilized to protect against DC offsets and 1/f noise. The front-end is implemented in 

AMI0.6um technology with a supply voltage of 1.6V and all transistors operate in weak 

inversion with currents in the range of tens of nano-amperes.  
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CHAPTER I 

INTRODUCTION 

1. INTRODUCTION 

1.1 Motivation 

The realization of large time constants on-chip is of considerable interest in biomedical 

and electrochemical applications, which require real time processing of analog voltages 

[1]. One example is a pre-amp used in a pacemaker circuit. Other examples include 

some biomedical applications in which stand alone differentiators and high pass filters 

are required [2,3]. In this thesis, we explore the problem of large time constants and 

present some novel differentiators and high pass structures, which realize large time 

constants. The novel structures will be used in a biomedical switched-capacitor pre-

amplifier, which is used in pacemaker circuits.  

In pacemaker circuits, whenever the heart is given a pacing pulse, the heart 

responds through a set of signals. The response of the heart to a pacing pulse is referred 

to as the evoked response. This response is first captured by the analog front-end, 

amplified, filtered and fed to the DSP core. The DSP core performs signal processing on 

this amplified and filtered version of the response and the decision circuit uses the 

results of this processing. A block level schematic of a pacemaker [4] is given in Fig. 1-1.  

To make an intelligent decision, the pacemaker front end needs to capture as much 

information as possible in the evoked response.  

_____________ 

This thesis follows the style and format of IEEE Journal of Solid State Circuits. 
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              Fig. 1-1: Experimental pacemaker 

 

The front end is basically a filter, which provides amplification to the evoked 

response. The input to the front end comes from the leads that are connected to the 

various chambers of the heart (left/right atrium/ventricle). The wideband analog front-

End consists of all circuits up to the Narrow-Band Band-pass filter and the ADC. 

The front end includes the following: 

1. High input impedance buffers so as not to load the heart chambers. 

2. A switch matrix to multiplex the inputs from the leads. There are a total of 8 

input leads. Only two have been shown in Fig. 1.1. 

3. The first HPF, which consists of a differential amplifier providing a gain of 10 

and passive RC components. 

4.  The first LPF, which consists of a buffer and passive RC components. 

5.  A second HPF incorporating a gain of 5. 
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6. A second LPF incorporating a gain of 2. 

7. A buffer at the end to interface with the narrow band filter and the rest of the 

digital circuitry. 

8. One must have also observed a large number of switches in what appears to be 

continuous time circuitry. The reason for the switches is that the Front end must 

be switched on gradually. First the high pass switches on and is given some time 

to settle down to its steady state. Once the high pass settles, the low pass filter 

switches ON and so on and so forth. The reason for switching on the front-end 

gradually is that if a large device with such high open loop gain is switched on 

all at once, there will be a considerable amount of ringing. And this ringing 

might bury the evoked response.  

It must be mentioned here that Fig. 1-1 is only a conceptual discrete 

implementation.  The actual on-chip implementation will be considerably different as 

will be discussed later in this chapter. 

The evoked response contains useful information in frequencies less than 1Hz. 

The information can be processed by the DSP in the pacemaker to decide on whether a 

pacing pulse must be given to the heart. More sophisticated pacemakers are expected to 

decide on even the amplitude and duration of the pacing pulse.  Since the pulse generator 

in the pacing circuit consumes so much power, it is not desirable to give the heart a 

pacing pulse when it is not needed.  Thus the front-end needs to capture the evoked 

response with a fair amount of accuracy, i.e. low distortion, high SNR and accurate filter 

corners. Currently the biomedical industry uses front-ends with a high pass corner of 4 
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Hz and a low pass corner of 200 Hz with a clock frequency of 2.5KHz. The main aim is 

to push the high pass corner to sub-hertz frequencies.  

 

1.2 On-chip Implementation 

The block diagram in Fig. 1-1 shows the discrete realization of the pacemaker front-end. 

However, an on-chip realization is required. The problem with on-chip implementations 

is that precise resistors and capacitors are not available on-chip in most CMOS processes. 

Typically the RC time-constant varies by 20%. Thus, either Laser trimming is required 

for on-chip passive components or else they have to go off-chip. Both options are 

expensive.  

Switched-capacitor implementations can offer very accurate time constants and 

are thus ideal for low frequency applications such as pacemaker circuitry. Another 

advantage is that switched-capacitor circuits are very linear. Continuous time circuits 

based on transconductances inherit their non-linearity from the MOS transistor. 

Switched-capacitor circuits are much less dependent on the non-linearity of the MOS 

transistor.  

However, we cannot completely eliminate the continuous time circuitry. The 

reason is that switched-capacitor circuits cause aliasing (down-conversion) of high 

frequency noise to low frequencies and degrade the SNR. Thus a continuous time anti-

aliasing low pass filter will always be required to attenuate the high frequency noise 

before it is aliased by the switched-capacitor circuitry. Fig. 1-2 shows a high level block 

diagram of an on-chip pacemaker pre-amp. 



 5

 

    

 

 

 

Continuous-
Time

Circuitry

Switched
Capacitor
Circuitry

Heart Signal, V1

Heart Signal, V2

Vx
Vout

Fig. 1-2: High level block diagram of pacemaker pre-amp 

  

The continuous time circuitry consists of: 

1. A low noise gain stage of 10. This ensures that the noise of succeeding stages is 

less important. This is similar to the use of Low Noise amplifiers in RF front-

ends.  

2. A high pass filter to remove the offsets, which are residues from the pacing pulse. 

3. A low pass anti-aliasing filter. 

The switched-capacitor circuitry consists of a high pass filter, a low pass filter 

and an amplifier with a gain of 10. Thus the complete front end has a second order roll 

off for both the high pass and low pass corners and a combined gain of 100. 

 

1.3   The Switched-Capacitor Circuitry 

Our focus here is the switched-capacitor circuitry and the problem of realizing large time 

constants therein. The switched-capacitor circuitry has a gain of 10, a low pass corner of 

4Hz and a high pass corner of 200 Hz. In addition, the continuous time circuitry is 

followed immediately by a switched-capacitor S/H hold stage to isolate the continuous 
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time circuitry from the switched-capacitor circuitry. A S/H stage is used as a buffer 

between the blocks to prevent loading on the continuous circuitry and the switched-

capacitor circuitry.  

The realization of large time constants is the main bottleneck in the design of the 

front-end. The clock frequency is 3-4 orders of magnitude larger than the high pass 

corner. Two factors are involved in the selection of 2.5 KHz as the clock frequency. One 

is the low pass corner (quite high at 200 Hz) and the other is the need to maintain 

compatibility with the rest of the system. If conventional switched-capacitor structures 

are used in the above applications, the capacitor ratios tend to be large enough to 

discourage their implementation in integrated circuits. 

Many techniques have been proposed to implement large time constants [5-9]. 

These techniques will be discussed in subsequent chapters. All of the techniques are for 

use in integrators or in first order low pass sections. To the author’s knowledge, there is 

no technique yet to achieve large time constants in first order high pass sections or 

differentiators. Switched-capacitor differentiators are used in audio codecs and in some 

biomedical applications [2,3]. It is quite intuitive that the best way to achieve a high pass 

corner is through the use of high pass sections rather than by combining low pass 

sections and amplifiers. We will see that this intuition holds in some cases, but not in 

others.  

Conventionally, there are two methods to achieve a high pass corner in switched-

capacitor circuits. 
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1. Band-pass biquads: Biquads are usually used in narrow band filtering applications 

where complex poles are required. In pacemaker applications, the front-end is a 

wideband filter and hence it is hard to justify using a biquad. One reason is that 

wideband transfer functions realized using Bi-quads have a greater passband ripple than 

by using first order sections. The other reason is that in wideband applications, biquads 

introduce greater errors than first order sections. Biquads, in general, also have lower 

dynamic range than first order sections. Further, in any implementations of band pass 

functions using ideal biquads, the zero of the transfer function is at DC. However, in real 

biquads, due to finite DC gain of the op-amps, the zero of the transfer function is not at 

DC. Rather, it is at a low frequency. This low frequency zero introduces an error in the 

3-dB high pass corner, especially if that 3-dB corner is at a very low frequency. This 

statement will be proved further in Chapter II when we discuss biquad implementations 

of large time constants. Thus the error (in the corner) would be greater in a bi-quad. 

Nevertheless, the Fleischer-Laker biquad can achieve wide band operation. Indeed, the 

Fleischer-Laker biquad is widely used in single ended applications where DC offset is a 

problem. In differential ended applications, these offsets are largely eliminated by the 

common mode feedback circuitry.   

2. First order sections: A high pass corner can be achieved, by designing a low pass 

filter with the same low pass corner as the desired high pass corner and then subtracting 

from a buffer or a gain stage as illustrated in the equations below 
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If by some way, we could build a first order high pass section, we could 

eliminate the buffer or the gain stage and thus save power. This provides our motivation 

for coming up with a new scheme to realize large time constants in high pass sections. 
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CHAPTER II 

OTA DESIGN 

8 CONCLUSIONS 

2.1 Operation in Weak Inversion 

Biomedical applications are very low frequency applications. Thus the operational 

transconductor amplifiers (OTAs) used in switched-capacitor circuits for such 

applications have a much greater amount of time for settling. For this reason, the 

transistors in biomedical applications operate in weak inversion and carry currents in the 

nano-ampere range. Usually, the OTA power requirements in switched-capacitor 

applications are set by the required DC gain as well as the unity gain frequency. 

However, for biomedical applications, one further consideration comes into play. 

Transistors operating in weak inversion for biomedical applications must carry a 

minimum current regardless of the DC gain or settling time requirements. The reason for 

this is mentioned below. 

Transistor currents are quite hard to control as they get smaller and smaller. The 

reason for this is that a large biasing resistor is required to set the biasing currents. Large 

resistors inject greater noise and also have lower tolerances. Thus, the biasing resistor 

cannot be allowed to get arbitrarily large.  

      The other consideration comes from the digital circuitry. Most pacemakers have 

analog and digital circuitry on the same chip (true mixed signal product). This makes the 

analog circuitry quite susceptible to substrate coupling from the digital circuitry. This 

coupling could momentarily cause spikes in the current flowing in the transistors in the 
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OTA. If the current is small enough, it could even momentarily disappear and heavily 

impact settling of the OTAs. Thus, a large enough bias current provides a good degree of 

protection from such coupling.  

Finally, the matching between transistors also deteriorates with decreasing 

current flowing through them.  

For all these reasons, the biomedical industry requires that at least 10nA of bias 

current flows through all transistors. More current might be required depending on 

settling requirements, or DC gain or noise. But 10nA is the minimum bias current that 

must flow in any transistor for such applications. 

 In weak inversion operation, the I-V characteristics of the MOS transistor are 

given by  equation (2.1) [1].  

  

.3
2

])[( ///)(
0

TDS

TTHGS

VVVVVVV
DD

VV
VVV

eee
L

WII TDTSTTHG

>
+<

−= −−−

η

η

 (2.1)

 

Assuming Vs=0 and VD >> ηVT, the equation above can be simplified as 
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From the equation above the trans conductance can be derived as 

.
T

D
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η

=                                                                                                                     (2.3) 
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Characterization of long channel as well as short channel transistors gives us a 

value of around 25-45 mV for ηVT. The equations (2.1)-(2.3) above do not model the 

output resistance of the transistor. The output resistance due to channel length 

modulation by the drain-source voltage may be expressed in terms of an extrapolated 

voltage by 

  .
D

A
O I

Vr =             (2.4) 

 VA can be referred to as the early voltage. 

While the above equations are highly simplified, they greatly aid in design 

analysis. One can also expect a 20% variation in gm and a greater variation in the output 

resistance from the above equations. 

 

2.2.  The Folded-Cascode OTA  

Folded-cascode OTAs [11] are popular in switched-capacitor circuits because of their 

large DC gain and the fast settling time. One such structure is shown in Fig. 2-1. The 

large DC gain comes from the output stage that is a stack of a common source transistor 

(M5) and a common gate transistor (M4). Folded-cascode OTAs have a dominant pole at 

the output and have very good phase margin that allow them to be analyzed as single-

pole systems.  The good phase margin and absence of any pole-zero pair means that its 

transient step response has remarkably low ringing. The OTA has a p-channel input pair, 

which is preferred to an n-channel input pair because of the lower flicker noise of p-

channel devices and also the absence of the bulk-effect.  
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                  Fig. 2-1: Conventional fully differential folded-cascode OTA 

  

The various parameters of the Folded-cascode OTA are given by equation (2.5). 
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The OTA may consume a minimum of 40nA of current (not counting the biasing 

circuitry). For this minimum power, and a supply of 1.6V, a gm of 0.25uA/V and a DC 

gain of 74 dB are obtained quite easily. As will be seen later, these parameters are 

enough for almost all of our applications. For instance, a DC gain of 74dB results in less 

than 1% steady state error for capacitor ratios up to 50. A gm of 0.25uA/V can tolerate 

capacitor loads of up to 10pF for less than 1% settling error for the given clock 

frequency.   

M4

M6

C1C2 C2

12

12

1

1

2

2

CMFB

I6

VO
U

T+

VO
U

T-

Fig. 2-2:  Switched-capacitor CMFB Circuit 

 

 

The structure in Fig. 2-1 is fully differential. Therefore a common mode 

feedback circuit is required. The switched-capacitor common-mode feedback circuit 

used is shown in Fig. 2-2 [10]. 
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The output of the circuit is the node labeled CMFB. This voltage is applied to the 

gates to transistors M5 in Fig. 2-1. M6 (of Fig. 2-2) is similar in geometry to M5 (of Fig. 

2-1) by matching. M6 generates the nominal CMFB voltage. The relation between M5 

and M6 is given by 
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Finally, note that the CMFB circuit is a discrete time circuit. Its z-domain 

transfer function is given by equation (2.7) below 
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VO,CM is the output common mode voltage of the OTA.  To analyze the complete CMFB 

loop, we need to convert the z-domain representation to an s-domain representation. 

Note that such an approximation will always be crude owing to the fact the CMFB 

circuit is expected to settle at a speed that is comparable to the clock frequency. 

However, such an approximation provides us with some insight into the issues involved 

in designing the CMFB network. The approximate s-domain representation is given by 

equation (2.8) 
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The CMFB loop gain is given by 
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To improve stability, one could increase CL, or C2. Increasing CL will push the 

dominant pole to a lower frequency, while increasing C2 would push the dominant pole 

to a lower frequency and the non-dominant pole to a higher frequency. To increase 

speed, one could increase gm5. 

 

2.3  The Single-Stage OTA 

 

 

                               

Vin+ Vin-M1 M1

Ibias

VSS

VDD

CMFB

M2 M2

Vout- Vout+

 

Fig. 2-3: Conventional fully differential single-stage OTA 
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Folded cascode OTAs provide very high gain, but for some applications like buffering, 

such high gains are not required. In such cases, a single stage OTA is good enough. The 

schematic such an OTA is shown in Fig. 2-3. 

The minimum power consumption of such an OTA may be as low as 20nA 

following the rule that each transistor must carry at least 10nA of current. The various 

parameters of this OTA are: 
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       (2.10) 

For a 40nA current and at the supply of 1.6V, this OTA gives us 40 dB of DC 

gain and gm of 0.25uA/V. This OTA has lower power than a folded-cascode OTA and 

since buffering does not require a very high DC gain, this OTA is most suitable for 

buffering.  

 

2.4 Mismatches in OTA Transistors 

In differential ended structures like in Fig. 2-1 to Fig. 2-3, we do not need to worry about 

systematic offsets (biasing). However, random offsets could be a problem. We assume 

that each pair of transistors labeled M1 –M5 are perfectly matched. Under such 

conditions, there are no differential offsets. However, in real OTAs, offsets are always a 



 17

problem. All random offsets are a result of such mismatches between transistors or 

capacitors that are ideally perfectly matched. Such mismatches lead to differential 

offsets that could become very critical, as the time constants get larger. This will be 

demonstrated in succeeding chapters.  The offset can be solved by a technique known as 

chopper stabilization [10] that basically just swaps the asymmetrical signal paths. 

Chopper stabilization is illustrated in Fig. 2-4 below.  

1
1

2

1
1

2

VIN+

VIN-

VOUT+

VOUT-

Fig. 2-4: Chopper stabilization to chop the OTA offsets to higher frequencies 

 

The switches are controlled by a chopper clock, whose frequency (chopping 

frequency) is typically an even multiple of the switched-capacitor clock frequency. The 

chopping action is very much like the action of a mixer in RF circuits. The offsets as 

well as 1/f noise is up converted to the chopping frequency. Assume that we have 1/f 

noise in the bandwidth from 1 Hz to 10Hz. If the chopping clock runs at 1KHz, then the 

noise is up converted to a frequency bandwidth between 1001 Hz and 1010 Hz. Thus 

offsets can be taken care of by a chopper clock. 
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However, chopper stabilization leads to increased swing at both the output nodes 

of the OTA. This leads to greater settling time and hence greater power consumption. 

Fig. 2-5 illustrates chopping action for a DC output.  

 

 

 

 

 

 

 

 

 

 

Fig 2-4 

Fig. 2-5: The effect of chopper stabilization on an ideally stationary output 

 

           There is another non-ideality introduced by mismatches in the CMFB circuit. 

Refer back to Fig. 2-2. Lets consider what happens if the capacitors labeled C1 are not 

equal. Let us also assume that the capacitors labeled C2 are also not equal. Let us further 

assume that the ratio C2/C1 is matched. In this case the total load capacitance at the two 

differential outputs of the OTA is mismatched causing a mismatch in the dominant pole 

frequency. This causes a pole-zero doublet, which could introduce common mode 
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ringing. This effect can be minimized by careful matching and cannot be removed by 

chopper stabilization. 

 

2.5 Conclusions 

The minimum power consumption in the OTA is set by requirements such as 

controllability of bias currents, substrate coupling and matching. Thus, a minimum of 

10nA of bias current must flow through each transistor. Thus, a folded-cascode OTA 

may have power consumption not lower than 40nA. This current, though small provides 

an OTA with enough gm and DC gain so that up to certain values of the capacitor size, 

the power consumption of the OTA is independent of the loading effect on the OTA. 

Therefore, even though high pass filters load the OTA more than low pass filters, they 

do not increase the power consumption up to a certain value of time constants. 
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CHAPTER III 

LARGE TIME CONSTANTS IN SC CIRCUITS 

2 CONCLUSIONS  

3.1  Conventional Integrator 

If conventional switched-capacitor (SC) structures are used to implement large time 

constants, the required capacitor ratios tend to be huge enough to occupy a large area 

thus preventing on-chip implementation. To illustrate this consider the conventional 

lossless integrator shown in Fig. 3-1 below [9].  

 CLUSIONS 

1 1

2 2

VIN

CIN

CF

VOUT

 

Fig. 3-1: Conventional SC lossless integrator 

 

When the output of the integrator is taken in phase 1, the z-domain transfer 

function is given by 
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The relationship between the time constant and clock frequency for such an 

integrator can be approximately given by equation (3.2). 
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If large time constants are desired, two options are available, decreasing the 

clock frequency or increasing the CF/CIN ratio. Decreasing the clock frequency is not 

really an option because we want to realize a wideband band pass function with a low 

pass corner at 200Hz. To prevent pre-warping errors, the clock frequency should be at 

least one order of magnitude larger than the low pass corner. Thus, the clock frequency 

is limited by the low pass corner we want to achieve. This leaves us with the option of 

increasing the CF/CIN ratio. The required capacitor spread can easily run into a several 

hundreds or even a few thousands in practice. For instance, a 1Hz high pass corner 

working from a 2.5 KHz clock would require a capacitor spread of around 400.  

 Several approaches have been investigated for realizing very large time constants 

in an area efficient manner. Most of these approaches achieve the required capacitor 

ratio as a product of two smaller capacitor ratios. For instance, if a capacitor spread of 

400 can be realized as a product of two capacitor ratios of 20 each. Thus the total area 

has been reduced by a factor of 10 in the above case. In subsequent sections, we will 

discuss the various techniques by which this is achieved.   For each of the techniques, we 

will demonstrate capacitor spread, capacitor area, the effects of op-amp DC gain and 

GBW, the sensitivity to capacitor mismatch, sensitivity to op-amp mismatches 

(differential mode offsets). We will do this for the extremes of the corner frequency, viz. 

4Hz and 0.159 Hz. 
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3.2     Fleischer-Laker (FL) Biquad 

The Fleischer-Laker biquad [8] is a wideband low-Q biquad. It consists of a two 

integrator loop, one lossy and one lossless. The switched-capacitor implementation is 

shown in Fig. 3-2 below.  

1

2
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2

2 2

1 1

2

1

C3
C4

CF1

CF2

C1

C2

OTA1
OTA2

VIN

VOUT

2

 

Fig. 3-2: Conventional Fleischer-Laker biquad for low Q applications 

 

The output of OTA 1 is a low pass function and the output of OTA 2 is the 

required wideband band pass function. The z-domain transfer function is given by 
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To analyze approximately for the corners, the z-domain representation must be 

converted to an s-domain representation. This is not necessary, but since we are more 
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used to dealing in the continuous-time, it is more convenient. The universal 

transformation is given by 

            (3.4) .1 clksTez −− ↔

TCLK is the sampling clock  frequency. This is a nonlinear transformation and can lead to 

cumbersome expressions sometimes. If the clock frequency is sufficiently higher than 

the operating frequency of the SC filter, then a bi-linear transformation can be used. The 

transformation can be approximated by 
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A few more approximations are in order to derive a less cluttered expression and 

develop insight.  
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This transformation will give us an accurate result for the high pass corner, 

which is low frequency, but it will give some error for the low pass corner (a large 

value). Using the above transformation, we obtain  
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For obtaining the high pass corner, which is at low frequency, we can make one 

further approximation, i.e. 15.01 ≈+ CLKsT . This will give us 
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In the above transfer function, the roots of the denominator (or the poles of the 

transfer function) will give us the approximate high pass and low pass corners. The 

corners can be derived as 
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The derived high pass corner is much more accurate than the derived low pass 

corner. For greater accuracy in deriving the low pass corner, we need to pre warp the 

low pass corner. We can thus obtain the more accurate low pass corner as in [8] 

        .
2

2

2
2

2
2

2
2

42

4

42

4

42

4

42

4

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

=
CC

C
Sinf

CC
C

CC
CSin

CC
Cf

F
clk

F

FF
clk

LPFρ   (3.10) 

Thus, the problem of realizing the large time constant has been solved by now 

involving four capacitors rather than just two in conventional switched-capacitor 

structures. From the above equations a few facts are clear: 

1. C4 < CF2 because the clock is one order higher than the low pass corner 

2. C4 and CF1 are much larger than C2, C3 for large time constants 
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3. C1 is as large as C4 if a gain of 1 is desired and larger for larger gains 

 

3.2.1  Capacitors, matching and sensitivity 

C4, C2, C1 and CF2 must be mutually matched, as must C3 and CF1. Since C2 and C3 are 

the only small capacitors in their respective cluster, both can be unit capacitors for 

common centroid matching to be possible. The capacitor values are given in Table 3-1. 

The low pass corner is always fixed at 200Hz. The values have been optimized for 

spread. They can also be optimized for GBW as will become clear in the discussion in 

section 3.2.3. 

 

Table 3-1: Capacitor values for FL biquad of Fig. 3-2 

fHPF C1 C2 C3 C4 CF1 CF2

0.159 Hz 36 1 1 36 70 70 

4 Hz 8 1 1 8 14 14 

 

 

The capacitor spreads depend on both the high pass and the low pass corner. 

While having a small high pass corner causes a large capacitor spread, the presence of a 

low pass corner pushes the spreads to even higher values. This is one disadvantage of 

this biquad.  
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The sensitivities with respect to all capacitor mismatches have a magnitude of 1. 

As an example for calculation, let us calculate the sensitivity of the high pass corner with 

respect of CF1. 

 .1
11

1
−=÷⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
F

HPF

F

HPF
C CC

S HPF

F

ρρρ       (3.11) 

Similarly it can be shown that the sensitivity with respect to C2 and C3 is 1 while 

the sensitivity of the high pass corner with respect to C4 is -1. Thus the absolute value of 

sensitivity with respect to all capacitors is 1. The absolute sensitivity is given by 

.4432!1
=+++= HPFHPFhpfHPF

F CCCC SSSSS ρρρρ        (3.12) 

 

3.2.2 Effects of finite DC gain 

The ideal transfer function in a Fleischer-Laker biquad has a zero at the origin and two 

left half poles in the s-plane for a continuous time implementation. For a discrete time 

implementation, the zero ideally lies on the unit circle and the poles lie within the unit 

circle of the z-plane. This is true if the op-amps are ideal. However, if the op-amp is not 

ideal, then the transfer function contains a zero inside the unit circle (analogous to a left 

half zero). This causes not only a phase error, but also an error in the 3-dB high pass 

corner. The main reason for this zero is that a lossless integrator if implemented by a 

non-ideal op-amp is actually lossy. The larger the gain of the op-amp, the smaller the 

loss. The transfer function considering finite DC gain is given by 
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The frequency of the zero is given by 
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 For small DC gains, this zero can be uncomfortably close to the required high 

pass corner. For instance, in the biquad above, if OTA 1 has a DC gain of 40 dB (normal 

for a current mirror OTA), then the zero frequency is only three times lower than the 

frequency of the required pole. By increasing the spread, the zero can be pushed to lower 

frequencies, but the spreads are already too high. Thus, OTA 1 must have a large DC 

gain. A typical folded-cascode (gain = 74 dB) can push the zero to reasonably lower 

frequencies, so that it does not affect the response too much.    

 Another error is due to the apparent change in the values of CF1, CF2 and C4. This 

change is entirely due to the DC gain. The apparent values become 
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These errors are quite obvious from inspection. These errors are quite small 

however. The point that we are trying to make here is that one has to use large DC gain 
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to realize the required transfer function with a reasonable accuracy. These conclusions 

can be verified via simulations.  

   

3.2.3    Op-amp GBW 

OTA 1 is effectively loaded by capacitor C3 during phase 1 and C2 during phase 2. Both 

of these are small capacitors and hence OTA 1 has minimal GBW requirements. OTA 2 

however is loaded by a parallel combination of C1, C2 and C3 during phase 2. The 

loading diagrams for OTA 2 are shown below in Fig. 3-3a and Fig. 3-3b. 

C3C2 C1

CF2

C4

CL

 

Fig. 3-3a: Loading configuration for OTA 2 of Fig. 3-2 during phase 2 

C1+C2

VIN

VOUT
CL+C3

CF2+C4

 

Fig. 3-3b: Circuit of Fig. 3-3a with feedback loop opened 
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 The loop GBW is given by 
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C1 is a big capacitor and loads the OTA, impacting settling time. Thus, as the 

time constants increase and push up the spread, C1 increases and thus OTA 2 requires 

greater power consumption (gm) for proper settling. 

 

3.2.4  Op-amp offsets 

One advantage of the Fleischer-Laker biquad is that it is robust with respect to op-amp 

offsets. This is why, in single ended implementations of large time constants, the FL 

biquad is preferred over other methods. For differential ended structures, this advantage 

vanishes because of the very nature of differential ended circuitry. In differential ended 

circuits, the biasing offsets (systematic offsets) appear as a common mode voltage, 

which is eliminated by the common mode feedback circuitry. Mismatch offsets (random 

offsets) can be eliminated by chopper stabilization. The output offset of the FL biquad is 

approximately equal to (but of opposite sign) the input referred offset of the OTA 1. This 

can be intuitively seen by understanding that in steady state, no charge flows through 

either integrating capacitor CF1 or CF2. Thus, 

          (3.17) .1,,, OTAoffinoffout VV −=
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3.3 The T-Cell Method [4] 

To understand the T-Cell method, consider the discrete time integrator in Fig. 3-4. To 

achieve a large time constant CIN needs to be as small as possible and CF should be as 

large as possible. Conceptually, this can be achieved by placing an attenuator between 

the input and CIN and/or an amplifier between the output and CF. The conceptual 

schematic is shown below in Fig. 3-4. 

Vin

Vout

1 1

2 2

Cin
Cf

˜  

attenuator

amplifier

 

Fig. 3-4: Conceptual implementation of large integrator time constants 

 

Thus the input signal is reduced by an attenuating factor (>1) and the feedback 

signal is increased by the amplification factor (>1). Thus, the time constant of the 

integrator increases by the product of the attenuation and amplification factors. The 

effect is equivalent to reducing the input capacitor, Cin (increasing the resistor) and 

increasing the feedback capacitor CF (the integrating capacitor). Amplification can be 

implemented only by adding an extra OTA. This increases power consumption. 
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Attenuation does not need active elements. Passive voltage division can implement it. 

This is the theory behind the T-Cell implementation. The T-Cell method implements a 

small input capacitor by means of capacitive (switched capacitive) voltage division. The 

switched-capacitor implementation of the T-Cell integrator is shown in Fig. 3-5. 

C1

C2

1

2 2

1

2

CIN

CF

VIN

VOUT

 

Fig. 3-5: Large TC integrator using the T-Cell technique 

 

C1 and C2 make sure that only a small fraction of the input charge is actually 

integrated by passage through CF. The z-domain transfer function, when the output is 

sampled in phase 1 is given by 
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To implement a lossy integrator using the T-Cell, one will have to use it in the 

Fleischer-Laker biquad. This structure is not parasitic-insensitive. When using poly 
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capacitors, the bottom plate parasitic capacitor could be as large as 20% of the main 

capacitor. Metal-Metal capacitors have smaller parasitic effects, but they occupy a huge 

amount of chip area compared to poly capacitors. Therefore, we will not be using this 

structure or discussing it further. 

 

3.4 The Split-Integrating Capacitor Technique [3] 

Consider the lossless integrator again. The T-Cell technique was concerned with making 

the input capacitor look small. The split-integrator technique uses the same principle, but 

the implementation is parasitic-insensitive. The way it does this is by throwing away a 

big fraction of the input charge and only passing a small fraction of it through the 

feedback integrating capacitor. The conceptual diagram is shown in Fig. 3-6. 

 

Qin

Qf

Cin
Cf
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Fig. 3-6: Conceptual diagram of the split-integrating capacitor technique 
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In the conventional integrator, the whole of the input charge passes through the 

integrating feedback capacitor. In the split-integrating technique, a considerable fraction 

of the input charge is sucked in by the charge pulling network and only a small fraction 

of the input charge passes through the integrating feedback capacitor. This operation 

makes the feedback capacitor look much larger than it actually is or conversely, we can 

say that it makes the input capacitor look small.  

Fig. 3-7 demonstrates the discrete time implementation of the technique. The 

feedback capacitor CF is split into three capacitors, CF1, CF2 and CF3. The circuit exploits 

an extra op-amp phase. In the conventional integrator, the integration and sampling are 

performed only in phase 1. In phase 2, the op-amp is idle and the output is a don’t care. 

In the split-integrator technique, both phases are used. In phase 1, the input charge (Qin = 

CinVin) is divided between CF1 and CF2. In phase 2, the bigger capacitor, CF1 discharges 

to ground, and a significant portion of the input charge is lost. The smaller capacitor, 

CF2, which holds only a small portion of the input charge, discharges through the 

integrating capacitor. Thus only a small portion of the input charge is integrated, making 

the integrating capacitor look really very big.  
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Fig. 3-7: SC implementation of the concept shown in Fig. 3-6 

 

The z-domain transfer function can be written as 
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The relationship between the time constant and the clock frequency is given by 
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Thus for a large time constant, CF3 and CF1
 must be large while CIN and CF2 must 

be small. Also CIN, CF2, CF1, CF3 must all be mutually matched.  

        Now, we must, at this point, begin to wonder whether a lossy integrator can be 

synthesized using this technique. It may be impossible to do this using only one op-amp. 

To implement a lossy integrator, let us go back to the conceptual diagram as given 

below. 
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Fig. 3-8: Conceptual implementation of  large TC LPF 

 

The technique makes the input capacitor CIN look small (using the attenuator). To 

maintain gain and also a large time constant, it must also make CR look small. To do 

this, it must attenuate the output VOUT(n). Both clock phases are already utilized (one is 

utilized in attenuating the input signal and the other in the integration). So we would 

need an extra clock to make CR look small. Thus, we cannot implement a lossy 

integrator, using just this one op-amp and only two clock phases. To implement a lossy 

integrator using this technique and only two clock phases, we will need to use this 

integrator in an FL biquad. The discrete-time implementation is shown in Fig. 3-9. The 

loop implements a high pass function. Technically, we don’t need CF2. I have just 

included it for completeness. We can allow the value of CF2 to be any value of our 

choosing, i.e. any arbitrarily small value. 
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Fig. 3-9: A large time constant integrator in the FL biquad 

 

The transfer function is given by 
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The high pass corner is then given by 
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If C1=C3=C5 = C, and CF1 = C2 = Cβ, and C4 = (β-1) C, then the corner is given 

by equation (3.23). 
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3.4.2 Capacitors, matching and sensitivity 

C5, C3, C4, CF1 form one cluster. C1, Cin, Cf2 and C2 form another cluster. The various 

capacitor sizes are given in Table 3-2. 

 

Table 3-2: Capacitor values for Fig. 3-9, DNM stands for does not matter 

Corner C1 C2 C3 C4 C5 CIN CF1 CF2

4 Hz 1 4 2 8 2 4 5 DNM 

0.159 1 14 2 26 2 14 26 DNM 

 

 

The magnitude of sensitivity of the high pass corner with respect to all capacitor 

ratios is 1. Sensitivity is defined the same way as in section 3.2.1. However, the structure 

is more sensitive that first order sections or even the conventional FL biquad, because 

there are more ratios (3 rather than 2) involved in determining the time constant. The 

value of total sensitivity (as defined in B1) is 6.  

 

3.4.3 Op-amp DC gain 

If the finite DC gain of the op-amp is considered, the transfer function is given by 

equation 3.24 below. 
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 Just like in the conventional FL biquad, the finite DC gain of OTA moves a zero 

within the unit circle. The frequency of this zero is given by 
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F
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For small gains of OTA 1, the zero is too close to the high pass corner.  

 

3.4.4 Op-amp GBW 

OTA 1 is loaded by the parallel combination of C5 and C1 while OTA 2 is loaded by the 

parallel combination of Cin, C1 and C3. All of these are small capacitors and hence there 

will not be much of a problem with respect to settling even for minimum power 

consumption. 

 

3.4.5 Op-amp offsets 

The output offset of this biquad can be shown to be equal in magnitude to the input 

referred offset of OTA 1. So offsets are not a problem in this biquad.  
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3.5  The Nagaraj Technique [5] 

The Nagaraj technique is by far the most area efficient method of implementing large 

time constants yet. A circuit schematic of the Nagaraj integrator is shown in Fig. 3-10. 

 

 

 

 

 

 

 

 

VIN

1
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CIN CF

2
1

CR

2
VOUT

2

         Fig. 3-10: The Nagaraj integrator 

 

In each of the schemes discussed earlier, the basic trick has been the same. The 

charge passing through the integrating capacitor must be limited to as small a fraction of 

the input charge as possible. The Nagaraj technique is no different in this respect. 

However, in the techniques discussed above, attenuation and integration were performed 

by different capacitors. In the Nagaraj technique, the same capacitor is used to perform 

the integration as well as the attenuation function resulting an almost 50% saving in total 

capacitance. In the above circuit schematic, capacitor C2 is used for attenuation as well 

as for integration. This is illustrated by Fig. 3-11.  
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The circuit on the left illustrates the charge transfer in phase 1 while that on the 

right illustrates the charge transfer in phase 2. In phase 1, the entire input charge (QIN = 

QF) flows through CF, which is the big integrating capacitor. In phase 2, almost the entire  

CIN

CF

CR

QIN

QF-QR

QR

CIN

CF
QIN

QF

Fig. 3-11: Illustrating the integrating principle in the Nagaraj integrator 

 

input charge (QIN-QR) flows through the integrating capacitor, but in the reverse 

direction. Thus, in effect, only a small portion of the input charge (QR) is integrated by 

the large capacitor CF. Voltage waveforms are shown in Fig. 3-12. 
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During phase 1, the output voltage takes a step of a certain size in the negative 

direction. This is when the input charge flows through CF. During phase 2, when a large 

fraction of the input charge is returned by CF, the voltage waveform takes a step in the 

positive direction. The step in the positive direction is a little less than the one in the 

negative direction.  

PHASE 2
VOUT(n-1)

PHASE 2
VOUT(n)

PHASE 1
VOUT(n-1/2)

 

Fig. 3-12: Illustrating the voltage waveforms in the Nagaraj integrator 

 

The z-domain transfer function of the integrator is 
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The time constant of the integrator is given by 
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Thus CF is a large capacitor and CIN, C2 are small capacitors. Rather large time 

constants can be implemented with reasonable capacitor ratios. 

The idea above can be extended to realize lossy integrators as shown in Fig. 3-

13. The transfer function of the integrator can be shown to be  
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The DC gain of this lossy integrator (LPF) is equal to CIN/C1.  
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Fig. 3-13: The Nagaraj low pass filter 
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The corner frequency is given by 
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Large time constants are obtained by keeping CF large and C1, C2, CIN small. Let us now 

analyze the Nagaraj low pass filter for various parameters. 

 

3.5.2 Capacitors, matching and sensitivity 

Capacitors C1, C2, Cin and CF belong to the same cluster and hence must be mutually 

matched. Since C1,2,in are all small capacitors, all three of them cannot be mutually 

matched and be unit capacitors at the same time. Here, we come across a tradeoff 

between capacitor spread and capacitor area. Given in Table 3-3 is the list of capacitor 

values optimizing spread. Table 3-4  optimizes area. 

 

Table 3-3: Capacitor values for Fig. 3-13 optimizing spread 

Corner CIN C1 C2 CF

0.159 2 2 2 98 

4 2 2 2 18 
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Table 3-4: Capacitor values for Fig. 3-13 optimizing area 

Corner CIN C1 C2 CF

0.159 2 2 1 70 

4 2 2 1 13 

 

 

The sensitivities are given by 

           (3.29) 
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The Nagaraj structure is about as sensitive as the conventional Fleischer-Laker 

biquad.  

  

3.5.3 Op-amp DC gain 

If op-amp DC gain is taken into account, the transfer function for the low-pass filter can 

be derived to equal the expression in equation (3.30). 
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                       (3.30) 

The new corner frequency is given by 
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The error in the time constant is thus given by 
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If CIN = C1 = C2 = C and CF = βC, then the error is given by 

   .
A
βε =                  (3.33) 

Thus for a time constant of 1s (cutoff of 0.159 Hz) and a clock of 2.5 KHz, the 

Spread required is 50 and the DC gain required for 1% error would be 5000 or 74dB.  
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3.5.4 Op-amp GBW 

There is not much stress on the GBW of the OTA because the AC loading capacitor in 

both phases is CIN, which is a small capacitor. The GBW requirement can be met easily 

by the minimum power OTA (40nA). 

 

3.5.5 Op-amp offsets 

The effects of the op-amp offsets can be derived in straightforward manner. The way to 

do this, is to set the input to zero, assume infinite DC gain and assign an input referred 

offset of VIN,off,OTA to the OTA. The output offset can be derived to be  

   .2 ,,, OTAoffinoffout VV β=        (3.34) 

Since we are using fully differential configurations, we do not worry about 

biasing offsets. Mismatch offsets can be removed by chopper stabilization [10].  

    

3.6. Combining the FL Biquad with the Nagaraj Integrator 

We might recall that the FL biquad contained a two integrator loop of which one 

integrator was lossy and the other, lossless. Two of the problems, viz. large capacitor 

spread and area, and loading effect can be greatly alleviated, by replacing the 

conventional integrator with the Nagaraj integrator. Doing so reduces the area as well as 

the spread as compared with the first order Nagaraj lossy integrator. The switched-

capacitor implementation of the improved FL biquad is shown in Fig. 3-14. 
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Fig. 3-14: FL biquad using the Nagaraj integrator 

 

Opa-1 implements the lossless Nagaraj integrator while opa-2 implements the 

conventional lossy integrator. Recall that in the conventional FL biquad, CIN, Cf2 and C2 

would be large capacitors increasing the area as well as the loading on opa-2. In this 

improved biquad, the sizes of CIN, C2 and Cf2 can be drastically reduced because the 

large time constant is chiefly being realized by the capacitors C1, C3 and Cf1. This is well 

illustrated by the transfer function that is written below as 
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The above z-domain transfer function can be converted to s-domain quite trivially as 
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The roots of the denominator will give us the respective corner. Our concern is with the 

high pass corner. The high pass corner is given by 
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And the corresponding time constant is given by 

    .1
1

1

431

2
12

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

F

F

C
C

CCC
CC

τ       (3.38) 

Thus the time constant here is a ratio of three transistors. Thus the loading effect 

on OTA 2 can be reduced in comparison with the conventional Fleischer-Laker 

structure. Further, lower spreads can be achieved because now three ratios are involved. 

The low pass corner is given by 
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F
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Both C2 and CF2 can be small capacitors. 

 

3.6.2 Capacitors, matching and sensitivity 

If we optimize for spread, Table 3-5 gives the values of the capacitors in numbers of unit 

capacitors. 
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                     Table 3-5: Capacitor values for Fig. 3-14 optimizing spread 

Corner C1 C2 C3 C4 CIN CF1 CF2

.159 Hz 2 12 2 1 12 28 18 

4 Hz 2 4 2 1 4 10 6 

 

 

Thus, this structure does a better job of reducing spread and area than the Nagaraj 

integrators. However, for large time constants, OTA 2 might be loaded by CIN. Thus, we 

can optimize loading for 0.159 Hz using the values of capacitors as given in Table 3-6. 

 

Table 3-6: Capacitor values for Fig. 3-14 optimizing loading on opa-2 

Corner C1 C2 C3 C4 CIN CF1 CF2

0.159 Hz 2 2 2 2 2 100 3 

 

 

Note that if we eliminate Cf2, we get a one-integrator loop with two OTAs. The 

structure will be a pure high pass. This is not a problem if a stand-alone high pass is 

required or if the succeeding stage is available to implement a low pass. Thus, we may 

be able to reduce the area by eliminating CF2. If we eliminate CF2, the low pass corner is 

not defined. It is set by the OTA bandwidth. However, to define the low pass corner, we 

can have another low pass block following this stage.  
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The FL biquad using the Nagaraj integrator is more sensitive to capacitor 

mismatch than the other structures because of the number of capacitor ratios (3) involved 

in implementing the time constant. The sensitivities are given by 

         (3.40) 
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3.6.3 Op-amp DC gain 

If the finite DC gain of the OTA is considered, then again we end up with a zero in the 

unit circle just as was the case with the conventional Fleisher-Laker biquad. The transfer 

function is given by 
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Thus the frequency of the zero is given by 
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Thus, the DC gain of OTA 1 must be large. Otherwise the zero will be too close to the 

pole. This is exactly the same as for the conventional Fleischer-Laker biquad. 
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3.6.4    Op-amp GBW 

The settling time of OTA 2 is dictated by its gm and the parallel combination of C4, Cin 

and C3. The settling of OTA 1 is dictated by its gm and C3 during phase 1 and by C4 

during phase 2. If the large time constant is dictated mainly by the Nagaraj integrator, 

then settling of the OTA will not be a problem because the gm corresponding to 

minimum power consumption (10nA per transistor) should be enough for all purposes.  

  

3.6.5  Op-amp offsets 

The output voltage in the presence of op-amp offsets is given by 
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Thus the output offset of the entire biquad is scaled up by the input referred offset of 

OTA 1, which implements the Nagaraj integrator. 

 

3.7  Conclusions 

Of the various schemes discussed here, it appears that from the point of view of 

capacitor area or capacitor spread, the best technique is the one by Nagaraj. All the 

techniques require identical DC gains and gm from the OTA for implementing the same 

time constant. Thus, it is the Nagaraj technique, which will be compared with the high 

pass structures that we will present in the next chapter. 
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CHAPTER IV 

LARGE TIME CONSTANTS IN SC HIGH PASS FILTERS 

 

This chapter includes the main contributions of this thesis. To the author’s knowledge, 

no work on achieving large time constants in switched-capacitor high pass filters or 

differentiators has ever been reported in literature. All the structures in this chapter are 

thus the contributions of this thesis. As was pointed out in the first chapter, the main 

motivation for focusing on SC HPFs is that they are the most natural way to implement 

low frequency high pass corners in wideband applications. Another advantage is that 

they conserve power. A conventional method of implementing a high pass function is by 

subtracting a low pass function from a unity gain buffer, i.e. HPF = 1 – LPF. Thus, if we 

could realize a high pass structure as is, we could eliminate the buffer. We begin with a 

discussion on differentiators and then move on to high-pass filters. 
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4.1  Realizing a Differentiator 

A conventional switched-capacitor differentiator is shown in Fig. 4-1. 
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Fig. 4-1: Conventional SC differentiator 

 

The ideal z-domain transfer function is given by 
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For slowly carrying input signals, large time constants are required. The time constant is 

given by 
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 TCLK is the clock frequency. For very large time constants, CIN could occupy a very 

large on-chip area. 
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4.2 Basic High Pass Filter 

The basic continuous-time HPF is given below in Fig. 4.2. 
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Fig. 4-2: Conventional continuous time high pass filter 

 

To have a large time constant CF and RF must both be made as large as possible. 

However, to maintain the passband gain CIN must also be scaled up along with CF. Thus 

for large time constants all the components must be increased. The discrete-time version 

of the SC HPF is shown in Fig. 4-3. 
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              Fig. 4-3: Conventional SC high pass filter 

 

The z-domain transfer function is given by 
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The time constant is given by 

                     .1
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And the gain is given by CIN/C2. Thus, for large time constants CR must be made small 

while CF must be made large. To maintain gain, CIN must also be scaled up with CF. 

However, scaling up CIN and CF requires amplification circuitry, which cannot be 

implemented using passive components. Besides, scaling up CIN will place a severe 

stress on the settling time of the OTA during phase 1, which is the high-pass filtering 

phase (phase 2 is the reset phase for CR and the idle phase for the OTA). This is readily 

apparent by breaking the OTA feedback loop at the inverting terminal during phase 1 as 

shown in Fig. 4-4. 
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Fig. 4-4: Illustrating loading by breaking the feedback loop in Fig. 4-3  

  

The loop gain of the overloaded circuit is given by 
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And the GBW of the loop gain is given by 
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Thus we need a larger gm as the CIN increases. And a larger gm is obtained only by 

increasing the power consumption of the OTA. 

A second solution to large time constants involves the reduction of CR. Thus we 

will concentrate on techniques to reduce the effective size of CR. 
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4.3 Partial Positive Feedback 

The basic idea of partial positive feedback is given for a continuous time high pass filter 

below in Fig. 4-5. 
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Fig. 4-5: Conceptual partial positive feedback (conductance subtraction) 

                

A positive resistance is placed in parallel with a negative resistance. The positive 

resistance is slightly less than the negative resistance (positive conductance is slightly 

greater than the negative conductance). Thus the parallel combination would yield a 

positive resistance that is quite large (or a positive conductance that is quite small). The 

switched-capacitor implementation of just such an idea is shown below in Fig. 4-6. 
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Fig. 4-6: Simple SC implementation of partial positive feedback  

 

The z-domain transfer function is given by 
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And the time constant being implemented is given by 
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Thus, for a large time constant C1 should be slightly greater than C2. However, as 

in any scheme involving partial positive feedback, the sensitivity of the time constant 

increases as the difference between C1 and C2 is lowered. C1 and C2 cannot be made 

arbitrarily close to each other. The circuit depends on the closeness of C1 and C2 and not 
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on the ratio. Thus it is not possible to match C1 and C2 to arbitrarily close values using 

unit capacitors. 

A more sophisticated structure using partial positive feedback, but allowing the 

use of unit capacitors for better matching is given below in Fig. 4-7. 
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Fig. 4-7: A sophisticated SC implementation of partial positive feedback 

 

The z-domain transfer function of this structure is given by 
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And the time constant is given by 
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If C1=C3=C and C2=2C and CF=CIN=βC, then theoretically very large time 

constants can be obtained since the time constant changes to 

.)1( 2

clkf
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=
βτ           (4.11) 

β is the capacitor ratio. However, note that this technique relies on the assumption that 

the sum of C1 and C3 can be made equal to C2. Thus this structure is very sensitive to 

variations in C1, C2 and C3. To demonstrate this sensitivity, let C1=C3=C and 

C2=2(C+∆C) and CF=CIN=βC. The time constant in this presence of this mismatch on 

the part of C2 is given by 
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The sensitivity of the time constant with respect to the capacitor ratio mismatch 

is approximately given by 

  .βτ ≈∆
C
CS         (4.13) 

Thus, the sensitivity increases with the capacitor ratio. As an example, consider 

that a high pass corner of 1Hz requires a capacitor ratio of 20. A 0.5% mismatch in 

capacitor ratio can thus cause a 10% error in the time constant. Therefore this method is 

more suitable for medium time constants (which require smaller capacitor ratios), not for 

large ones (larger ratios). 
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4.4 Attenuated Feedback HPF 

Partial positive feedback causes the circuit to be too sensitive to process variations since 

it relies on capacitive cancellation and not capacitive ratios. However, the technique of 

attenuated feedback relies on ratios and, as a rule the resulting structure should be much 

less sensitive to process variations. 

The basic idea of attenuated feedback in continuous time HPF is illustrated in 

Fig. 4-8. 

1/ARF

CF

CIN

VIN

VOUT

VOUT/A

   

 

 

 

 

 

Fig. 4-8: Conceptual attenuated feedback 

 

By attenuating the output, the resistor looks much larger than it actually is. By 

simulating a larger resistance, we can obtain a larger time constant. In a switched- 

capacitor circuit, a larger resistance means a smaller capacitor. The idea for a switched- 

capacitor is illustrated in Fig. 4-9. 
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Fig. 4-9: Conceptual SC implementation of attenuated feedback 

 

Notice in Fig. 4-9 that VOUT(n) and VOUT(n)/G (the attenuated version of the 

output) are available at the same instant. In switched-capacitor circuits, this is not 

possible. Thus, we some how have to make do with an attenuated version of the output 

from the previous phase (or previous sample). To prevent positive feedback, we need –

VOUT(n-1)/G when the input VIN(n) is being sampled. One way to do this using the T-

Cell technique is shown below in Fig. 4-10. 
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Fig. 4-10: The T-Cell technique adapted to high pass filters 

 

In the above structure CIN=CF=CR2= ΒCR1. The time constant can be shown to be 

                                          ( ) .1 2

clkf
+

=
βτ       (4.14) 

However, the obvious problem is that this structure is not parasitic-insensitive. 

Thus some other way to attenuate the feedback must be found.  

One very obvious way to attenuate the feedback using an extra OTA is given 

below in Fig. 4-11. 
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Fig. 4-11: Attenuated feedback in SC HPFs using two OTAs 

 

However, this method uses an extra-OTA, just the problem we were trying to 

avoid while using the low pass filter. In Fig. 4-11, OTA 2 performs the attenuation. An 

obvious question arises. Can we use OTA 1 itself to perform the attenuation during 

phase 2? The answer in single ended structure is no. The reason is that any such attempt 

to attenuate the output and feed back the charge to the non-inverting terminal during the 

next phase will lead to positive feedback. That is because OTA 1 cannot generate the 

attenuated sample of the correct polarity in the one phase that is available. However, in 

fully differential circuits, this problem is solved, as outputs of both polarities are 

available. The switched-capacitor implementation of this new HPF is shown below in 

Fig. 4-12. 
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Fig. 4-12: Fully differential LTC SC HPF using only one OTA 

 

In the structure above the attenuation is achieved by C1 and CG and is given by 

C1/CG. That attenuated voltage is stored on C2. This is illustrated in Fig. 4-13a. 
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Fig. 4-13a: HPF of Fig. 4-12 in phase 2 performing attenuation 

 

During phase 1, the voltage stored on C2 from phase 2 is used for the high pass 

filtering. Fig. 4-13b illustrates exactly what is happening during phase 2. 
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Fig. 4-13b: HPF of Fig. 4-12 in phase 1 performing high pass filtering 

 

Note that because of the nature of the feedback, this structure has no single ended 

equivalent. The transfer function of the structure above is given by 
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The time constant is given by  

    .1
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fCC
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For large time constants, CG and CF should be larger than C1 and C2. If CIN = CF 

= CG = βC, C1 = C2 = C, then the time constant is given by τ=β2/fclk.  

 

4.4.2 Capacitors, matching and sensitivity 

From Fig. 4-13a and Fig. 4-13b, capacitors CIN, C2 and CF form one cluster. Capacitors 

CG and C1 form the other cluster. The capacitor values are given in Table 4-1. 

 

                     Table 4-1: Capacitor values for Fig. 4-12 

Corner (Hz) C1 C2 CIN CF CG

4 Hz 1 1 10 10 10 

0.159 Hz 1 1 50 50 50 

 

 

The sensitivities all capacitor ratios with respect to the time constant have a 

magnitude of 1. This is the same as for the Nagaraj technique and the conventional 

Fleischer-Laker biquad and less than the FL-Nagaraj implementation.  
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4.4.3 Op-amp DC gain 

If the op-amp DC gain is considered, then the transfer function can be written as 
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The corner frequency is given by 
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The error in time constant is thus given by 

 .
1 AAC

CG βε ==       (4.19) 

Thus, as the time constant increases (corner frequency decreases), the DC gain 

requirements also increase. For a corner of 0.159 Hz and a clock of 2.5 KHz, a DC gain 

of 5000 (74dB) is required for an error requirement of 1%.  

 

4.4.4 Op-amp GBW 

This feature is the main disadvantage of high pass filters with respect to low pass filters. 

The critical phase for loading is phase 1. During phase 1, the OTA is loaded by CIN, 

which is as large as CF or CG. The loading diagram is illustrated in Fig. 4-14. The circuit 

on the left shows the equivalent closed loop representation during phase 2. The circuit on 
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the right shows the open loop representation by breaking the feedback loop and injecting 

a test signal (VIN). 
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C1 CIN+C2

CFC1

VIN

VOUT

Fig. 4-14: Loading on OTA of Fig. 4-12 during phase 1 

 

The loop GBW is given by 
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As the time constants get larger CIN gets larger. This increases the required gm of 

the OTA. For medium-large time constants, gm is not a problem because the minimum 

gm (power consumption) is set by other considerations mentioned in Chapter 2. 

However, as the time constants get larger, so does CIN and the loading on the OTA 

becomes very large.  

       Finally, there is one more strain on the GBW. This structure requires more than 5 

time constants for the output voltage to settle within the required accuracy of 1%. Note 

that the OTA in Fig. 4-12 swings by very large amounts between the two clock phases. 
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The reason is that in one phase, the output is attenuated (to a small value) and in the next 

phase, it is again a large value. This is illustrated in Fig. 4-15. 

VOUT(n-1), phase 1 VOUT(n), phase 1

VOUT(n-1)C1/CG,
phase2

 

Fig. 4-15: Transient waveforms for the structure of Fig. 4-12 

 

In any SC filtering application, the quantity of importance is VOUT(n) - VOUT (n-

1). Thus, this difference must settle to within 1% for 1% accuracy. Thus the number of 

time constants required to settle can be derived to be 
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Thus, as the time constant increases, not only does the loading increase, but the 

number of time constants required to settle to the required accuracy also increases. 
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4.4.5 Op-amp offsets 

Just like in the Nagaraj technique, the input referred offset of this structure appears at the 

output magnified by a factor of CG/C1, which is the attenuation factor. This can be 

intuitively understood by considering that a large attenuating factor means the 

transportation of very small amounts of charges via small voltage differentials. For large 

time constants, these voltages become comparable to the input referred offsets, which 

appear at the output amplified by the attenuation factor.  

 

4.5 Differentiators 

The technique above can also be adapted to provide differentiators having very large 

time constants. Differentiators are required in some biomedical or electrochemical 

applications [2-3], where continuous time processing of an analog signal is required. 

Other applications include use in audio equalizers. Fig. 4-16 illustrates a differentiator 

using the technique previously discussed. 
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Fig. 4-16: Large time constant SC differentiator 

 

The z-domain transfer function can be expressed as 
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The time constant is given by 
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4.6 Noise Analysis 

Unfortunately, Cadence Spectre does not have the ability to perform noise analysis of 

switched-capacitor circuits. However, a bit of insight is necessary in order to understand 

the noise issues and tradeoffs involved. One way to acquire such insight is to analyze the 

continuous time counterparts of these switched-capacitor circuits. While not very 

accurate, they provide us with some degree of insight in comparing the various 

topologies.   In the following subsections, we will perform the noise analysis of the FL 

biquad, the Nagaraj LPF and the proposed HPF.  

               

4.6.1. Proposed HPF 

CIN

CF

RF

VIN

VOUT

               

Fig. 4-17a: The CT HPF 

 

Fig. 4-17a is used as a reference to compute the noise of the proposed HPF. The total 

noise originating from RF is given by 



 74

.2
,

F
outn C

kTv =        (4.24) 

The noise spectral density from the OTA is given by 
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gm is the trans conductance of the OTA. The output referred noise decreases with large 

time constants. The effect of CIN does not appear in the equation. However, in real SC 

circuits, a large CIN reduces the noise of the switches and also the noise of the OTA in 

the previous stage. Flicker noise has not been considered as it is assumed to be chopped 

out of band by the chopper clock. Let us just compute the total noise for the two cases of 

a 0.159Hz HP corner and a 4Hz HP Corner. For a 0.159HZ Corner, RFCF = 1 = RFCIN. 

Further CF = CIN = 12.5pF. gm = 0.3uA/V. For a detailed derivation of these values, the 

reader is urged to jump to section 5.2 in Chapter V. We are using these values simply to 

get a pulse on the noise in the circuit. The integrated noise from the resistor is calculated 

as  
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The noise from the OTA will have to be integrated in the bandwidth from 

0.159Hz to 200Hz. The mathematical derivation proceeds as 
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Thus the total output noise can be given by 3.456e-10 V2 for a cutoff of 0.159Hz. For a 

cutoff frequency of 4Hz, the total thermal noise power would be 1.6e-9 V2. 
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4.6.2. Nagaraj LPF 
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Fig. 4-17b: The CT LPF 

 

Fig. 4-17b is used a reference to compute the noise of the Nagaraj LPF. The noise 

spectral density of the gm stage is given by 
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For 0.159Hz, RFCF=1, CF = 24.5pF and for 4Hz, RFCF = 1/25, CF = 4.5pF. 

 gm = 0.25uA/V for each of these cases. The derivation of all these values is shown in 

section 5.3 in Chapter V. For each of these cases, we could integrate the noise in the 

bandwidth to obtain 
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The noise spectral density due to RF and RIN is given by 
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However, to implement a high pass corner, two more buffers are needed as shown in 

Fig. 4-17c. 
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Fig. 4-17c: HPF implementation using buffers and an LPF 

 

The two buffers add extra noise of their own. The noise from the buffers is given by 
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B denotes the bandwidth in which the noise is integrated and CBUF denotes the value of 

the cap used in the buffer. This noise hardly changes with changes in the time constant. 

Indeed, the noise from the buffers is the dominant source of noise in this 

implementation. Even assuming that the Buffer capacitors are equal to the feedback 

capacitor in the LPF (unrealistic), it is clear that this noise is dominant. If we assume that 

the buffer capacitors equal 5pF each, the total noise would be 1.1e-8V2, which is much 
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higher than the HPF noise. Thus using extra buffers to realize a high pass function using 

a LPF not leads to greater power consumption, but also greater noise.  

 

4.6.3. FL biquad 
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Fig. 4-17d: CT FL biquad 

 

Fig. 4-17d will be used as a reference to compute the noise of the FL-Nagaraj structure. 

The noise of the FL biquad is given by 

.
)_1(

1
1

||
1

_1
1

111
1

2

2
422

4

2
2,

2

442

4

332
1,

4

2

2
,

gainloop
RsCRR

R

G

Gv
gainloop

RsCR
R

RsC
v

R
R

C
kTv

FIN

OTAnOTAn
INF

outn

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+
=

+

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

                                                                          (4.32) 

 



 78

Above, loop_gain denotes the gain of the 2-integrator loop. The loop gain is given by 
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Note that the loop gain at DC is very large. Thus the FL biquad effectively 

suppresses the 1/f noise and the offsets of the OTA. This feature is not available in first 

order structures discussed in sections 4.6.1 and 4.6.2. We will perform the noise analysis 

for the cases where total spread is minimized. The reason is that so far whenever we 

have compared topologies, we did it while optimizing spread in all cases. Therefore, we 

will use the values in Table 3-5, with the unit capacitor equal to 0.25pF. The dominant 

noise in the equation above comes from the thermal noise of RIN and R4. The total noise 

is 
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Thus the noise in the biquad is intermediate between the proposed topology and 

the Nagaraj low pass. 

       

4.6.4 Conclusions of noise analysis 

From the noise analysis performed, two things are immediately apparent: 

1. The FL biquad suppresses Flicker noise unlike first order structures. 

2. The noise of the LPF is the greatest and this comes from the buffers 

3. Noise reduces with larger time constants because the capacitor areas increase. 

4. The proposed HPF has the lowest noise. 
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From calculations, it becomes apparent that the proposed HPF has the best noise 

performance when it comes to thermal noise. 

 

4.7 Comparisons  

Tables 4-2 and 4-3 compare various topologies. The two tables show the comparisons 

for different 3-dB corner frequencies. 

 

Table 4-2: Table of comparisons for various structures for a 4Hz 3-dB corner 

Topology Cap ratio Cap area OTA gain Sensitivity Power 

Std. FL 10 66 units 74 dB 4 60nA 

Split-I 4 44 units 74 dB 6 60nA 

Nagaraj LPF 9 68 units 60 dB 4 80nA 

FL-Nagaraj 5 34 units 74 dB 6 60nA 

Proposed HPF 10 64 units 60 dB 4 40 nA 
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Table 4-3: Comparison table for various structures for a 0.159 Hz 3 dB corner 

Topology Cap ratio Cap area OTA gain Power 

Std. FL 50 306 units 74 dB 60nA 

Split-I 14 204 units 74 dB 60nA 

Nagaraj LPF 49 228 units 74 dB 80nA 

FL-Nagaraj 14 120 units 74 dB 60nA 

Proposed HPF 50 304 units 74 dB 90 nA 

 

 

Of these, we will now consider only three structures because these will be the 

ones that will be compared in the pre-amp design of the following chapter. The three 

structures are: 

1. The proposed HPF 

2. The Nagaraj LPF 

3. The FL-Nagaraj biquad 
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The plots of Figs. 4-18, 4-19 and 4-20 compare the three structures for the 

parameters of power, area and noise. 
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Fig. 4-18: Power comparison plots 

 

Fig. 4-18 shows the power comparison plots. For small to medium time 

constants, the power consumption is set by constraints other than the required GBW and 

DC gain (see Chapter II). For such frequencies, the proposed HPF saves power because 

it uses only one OTA as compared to two for the others. For smaller HP corners, the 

power consumption of the HPF increases because the size of the input capacitor rises. 

For the other two structures, the size of the input capacitor remains the same and only 

the size of the feedback capacitor rises. Thus larger time constants have no effect on the 

power consumption of the Nagaraj LPF or the FL-Nagaraj structure. In fact, the plots of 
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power consumption of the Nagaraj LPF and the FL-Nagaraj biquad are superimposed on 

each other. Thus, there appear to be only two plots when there are actually three. The 

cross over frequency where the power consumption of all structures is the same is 0.6Hz. 
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Fig. 4-19: Capacitor area comparisons 

 

Fig. 4-19 compares the capacitor area of the three structures. The FL-Nagaraj 

structure is by far the best because we have three capacitor ratios to implement the large 

time constant.  
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Finally, Fig. 4-20 compares the noise of the three structures. The Nagaraj LPF 

has the worst performance because of the use of buffers, which contribute most of the 

noise. The FL-Nagaraj structure is competent with the proposed HPF. 
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                                          Fig. 4-20: Noise comparison plots 
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4.8 Conclusions 

In applications where a stand alone HPF is required, the topology proposed in this 

chapter definitely saves power. Up to cutoff frequency of 0.6Hz, the proposed structure 

consumes minimum power.  Noise performance also exceeds the existing topologies. 

The main disadvantage comes up in capacitor area where three big capacitors are being 

used. Both the Nagaraj and the FL-Nagaraj structure use just one big capacitor. Thus the 

proposed topology trades of power and noise against area in comparison with existing 

topologies for implementing a stand-alone high pass SC filter. 
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CHAPTER V 

PRE-AMP DESIGN 

 

5.1.      Introduction and Specifications 

Except in some niche applications, stand alone high pass filters and differentiators are 

simply not used. Usually, they are used in conjunction with other circuits. In this 

chapter, we shall design biomedical pre-amplifiers using the proposed high pass filter 

and compare it with the conventional structures.  Given below are the pre-amp 

specifications. 

1. Supply Voltage = 1.6V (+/- 0.8V) 

2. Clock Frequency = 2.5 KHz 

3. Gain = 10 

4. High pass corner = 4Hz and 0.159  

5. Max tolerable error for HP Corner = 3% for 4Hz, 5% for 0.159Hz 

6. Low pass corner = 200Hz ± 3% 

7. Output Swing = 1.6Vp-p 

8. Input signal range (amplitude) = 4mV < VIN < 40mV 

9. SNR > 30dB for 4Hz and SNR > 26dB for 0.159 HP Corner 

10. Static Current consumption < 200nA 

11. Minimum unit capacitor = 0.25pF 

12. Minimum Transistor current = 10nA 
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Given below in Fig. 5-1 is the block diagram of the pre-amplifier. 

 

From  Continuous-time
Circuitry

CT-SC
isolation
buffer

HPF LPF To DSP
CoreBuffer

 

Fig. 5-1: Block diagram of pacemaker pre-amp 

 

Either the LPF or the HPF will have a passband gain of 10. Either approach has 

its advantages. If the HPF is given a gain of 10, then we get better noise performance at 

the expense of power consumption. If the LPF is given a gain of 10, we get lower power 

consumption at the expense of noise. One reason is that the HPF sees larger load 

capacitors than the LPF and these load capacitors will be multiplied by the gain when 

loading on the OTA is considered. The other reason is that now the swing on the OTA in 

the HPF is reduced and this also has the potential to save power. As will be 

demonstrated in the following sections when we design the pre-amp, we will be able to 

meet the noise specifications even if the gain of 10 is given to the LPF. Thus to 

minimize power consumption, the LPF must have a passband gain of 10.  

 

5.2 Pre-amp Using the Proposed HPF 

Given in Fig. 5-2 is the schematic of the pre-amp using the proposed HPF. 
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Fig. 5-2: Pre-amp using proposed fully differential HPF 
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Fig. 5-3: Pre-amp using attenuated feedback HPF and OTA reuse 
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The first stage is a S/H, the second is a HPF and the third is an LPF with a gain 

of 10. As demonstrated in section 4.4.4 of Chapter IV, OTA 2 is heavily strained 

because of the heavy loading (CIN) well as a large swing between clock phases. As a 

result, a large GBW is demanded of it.  The HPF structure being used in Fig. 5-2 is more 

suitable for stand-alone applications. For use in a pre-amp, we must use the HPF 

structure presented in Fig. 4-11, which uses two OTAs. Thus the pre-amp of Fig. 5-2 is 

slightly modified as shown in Fig. 5-3.  

OTA 1 performs just the differentiation, while OTA 2 performs two functions. In 

phase 1, it performs low pass filtering and in phase 2, it performs attenuation for the high 

pass filter. Thus OTA 2, which is mainly for the low pass filtering is being re-used in its 

idle phase to perform the attenuation for the HPF.  

The defining equations for a 4Hz HPF cutoff and a 200Hz LPF cutoff follow 

below. For a high pass corner, the equation is 

  .100
31

1 =
RR

GF

CC
CC

          (5.1) 

For a low pass cutoff, the equation is 

  .5.1
2

2 =
R

F

C
C            (5.2) 

And the gain is given by 

  .10
2

2 =
R

IN

C
C

          (5.3) 
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We use a unit capacitor of 0.25p. We choose the capacitors in such a way that the 

smallest possible capacitors are used to perform common centroid matching. Table 5-1 

gives the capacitor values. 

 

       Table 5-1: Capacitor values for Fig. 5-3 for a 4 Hz high pass corner 

Cin Cf Cr Cr1 Cr2 Cg Cf2 Cin2 

2.5p 2.5p 0.5p 0.25p 0.25p 2.5p .75p 5p 

 

 

Cin. Cf, Cr2 are matched in one cluster, Cr1, Cg in another and Cr, Cf and Cin2 in the last. 

The loading on OTA 1 during phase is given by 

 .75.32.0 111 pFCCCCC FcmfbRINTOT =+++=         (5.4)             

During phase 2 it is CIN2, which is 5pF. Further, it was assumed that the bottom plate 

parasitic capacitances (on CF1) equal roughly 20% of the capacitor value. Thus the 

maximum loading in this case is during phase 2 and equals 5pF. 

The loading on OTA 2 during phase 1 assuming a load capacitance of 0.5pF for 

the next stage is 

  .15)(10 22 pFCCCC INLcmfbTOT =++×=        (5.5) 

The loading during phase 2 is only CR3, which is a small capacitance. The 

maximum loading is during phase 1 and equals 15pF. 

Assuming that 5 time constants are required for 1% settling error, the trans 

conductance of OTA 1 is given by equation (5.6). 
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 ./125.025 21 VuACfg INCLKm =××=          (5.6) 

For OTA 2, the transconductance is given by 

 .          (5.7) /375.10 22 VuACfg effclkm =×=

From the equations in Chapter IV, OTA 1 and OTA 2 must have a gain in excess 

of 1000 (for 1% error in gain). Thus a simple current mirror OTA is not suitable. A 

folded-cascode is required. From the equations in Chapter II, a current of 5nA is 

required to flow in each transistor of the input differential pair for a trans conductance of 

0.125uA/V and 15nA is required for a trans conductance of 0.375uA/V. 5nA is below 

the minimum specified current of 10nA and thus the concerned OTA 1 must carry 40nA 

(10nA through each branch). OTA 2 must carry a current of 

  I = 15 + 15 + 10 + 10 = 50nA.                                                        

The first stage S&H needs to carry 40 nA. Thus the total power consumption equals 

                   Itotal = 40+40+50 = 130nA. 

Similarly for a 0.159 Hz cutoff frequency, it can be shown that the capacitor 

values are as shown in Table 5-2. 

 

                     Table 5-2: Capacitor values for Fig. 5-3 for a 0.159 Hz high pass corner 

Cin Cf Cr Cr1 Cr2 Cg Cf2 Cin2 

12.5p 12.5p 0.5p 0.25p 0.25p 12.5p .75p 5p 
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The other circuit parameters for the 0.159 Hz cutoff can be shown to be: 

Gm1 = 0.4 uA/V 

ID1 = 16.5*2 + 10* 2 = 53.5nA 

ID2 = 50nA (requirements remain the same) 

Total power = 143.5nA. 

For simulations, it will be noted that the actual power consumption will be 

slightly higher. These equations are for gaining insight and intuition into tradeoffs 

between time constants and power consumption. 

  

5.2.2     Noise analysis 

We will finally round off with the noise analysis. The expressions for noise power of a 

HPF stage, an LPF stage have already been derived in Chapter IV, section 4.6. It was 

proved that the noise from the switches is far greater than that from the OTAs, i.e. the 

kT/C expression dominated the noise. In the pre-amp here, we just combine those results 

to get the complete expression for noise. The total output referred noise of the pre-amp is 

                           .2
1

2
, LPFHPF

INS
inn NN

C
KT

C
kTv +++=         (5.8) 

For complete expressions of NHPF and NLPF, the reader is referred to section 4.6 

in Chapter IV. kT/Cin1 is the result of the white noise from the switch and the white noise 

from the S/H stage. CS = 5pF is added to the input stage. Thus the complete noise power 

is given by 
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                                           (5.9) 
.1049

104.23
210

4

210
159.0

VN

VN

Hz

Hz
−

−

×=

×=

The values above are for the input referred noise. The smallest signal that is input 

to the pre-amp equals 4mV and the largest equals 40mV. For worst case SNR, we must 

use the smallest input signal. Thus the SNR values equal 

   
.32

38

4

159.0

dBSNR
dBSNR

Hz

Hz

=
=

       (5.10) 

These values exceed the specifications. 

 

5.3 Pre-amp Using the FL-Nagaraj Biquad 

A single ended version of the biquad is given below in Fig. 5-4. The design equations to 

determine the power consumption and capacitor sizes will be the same for the 

differential ended and the single ended cases. 
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The following design equations apply for the design. 

The gain is given by 

  .10
2

==
C
C

G IN          (5.11) 

The high pass corner is given by 

  .2

431

2
2

1
clk

F
HPF f

CCC
CC

=ρ         (5.12) 

Since, OTA 2 must implement the gain stage, it is best to keep C2 as small as 

possible, because that would keep CIN small and thus prevent loading OTA 2 too much. 

The low pass corner is given by 

  .
2

2
clk

F
lpf f

C
C

=ρ         (5.13) 

Thus for a 4Hz high pass corner, we have 

  
.5.1

100

2

2

31

2
1

431

2
2

1

=

==

F

FF

C
C

CC
C

CCC
CC

       (5.14) 

Thus the capacitor values for a 4Hz design (assuming common-centroid 

matching and 0.25p unit capacitors) are given in Table 5-3. 
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Table 5-3: Capacitor values for Fig. 5-4 for a 4 Hz high pass corner 

CIN C1 C2 C3 C4 CF1 CF2

5p 0.5p 0.5p 0.5p 0.5p 5p .75p 

 

 

The clusters to be matched are C1, C3, CF1 and C2, C4, CF2, CIN. The capacitor 

values above are the minimum that ensure common centroid. OTA 1 and OTA 2 both 

need high gain, as was discussed earlier in Chapter III, section 3.6.2. Both need to be 

folded- cascode, which can easily attain the required gain.  

OTA 1 is minimally loaded during both phases. The total load of OTA 1 is 

 .5.1431 pFCCCC cmfbeff =++=        (5.15) 

Thus OTA 1 can carry the minimum current of 40nA. 

OTA 2 is loaded effectively by 

 .20)(10 32 pFCCCCC LcmfbINeff =++×+=       (5.16) 

Cl is the loading of the next stage and is assumed at 0.5p. The gm required thus can be 

calculated as 

 ./5.052 22 VuACfg effclkm =×××=        (5.17) 

Thus OTA 2 requires a total current of 60nA (20*2 + 10*2) to attain the required gm.  

The total current is 140nA. If the high pass corner required reduces to 0.159 Hz, 

the power consumption does not change as the loading is not affected by CF1, which 

effectively sets the time constant. Thus the power consumption always remains at 

140nA. The Capacitors required for a 0.159 Hz cutoff are given in Table 5-4. 
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Table 5-4: Capacitor values for Fig. 5-4 for a 0.159 Hz high pass corner 

CIN C1 C2 C3 C4 CF1 CF2

5p 0.5p 0.5p 0.5p 0.5p 24.5 075p 

 

 

5.3.2  Noise Analysis 

The expression for input referred noise is given by 

.22
, BIQUAD

INS
inn N

C
KT

C
kTv ++=          (5.18) 

NBIQUAD has already been derived in section 4.5.3 of Chapter IV. We just have to punch 

in the values.  

.30
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−

        (5.19) 

These results exceed the specifications. 
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5.4 The Nagaraj Low Pass Filter 
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Fig. 5-5: Pre-amp implementation using Nagaraj LPF and OTA reuse 
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Fig. 5-5 shows the pre-amp using the Nagaraj low pass filter. OTA 1 performs the 

buffering, OTA 2 is the Nagaraj low pass filter. OTA 3 performs buffering (1-

LPF=HPF) for the high pass function in phase 2. It performs the low pass filtering with 

gain in phase 1. The design equations follow below. 

The high pass corner is given by 

 .
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The gain of the high pass filter is given by 

  .1
6

3

1
1 C

C
C
C

G IN ===         (5.21) 

The gain of the low pass filter is given by 

  .10 54
2

RR C
C

C
CG ===         (5.22) 

The low pass corner is determined the ratio between  

  .5.1 2

R

F

C
C

=          (5.23) 

For a high pass corner of 4 Hz, the values of the capacitors are given in Table 5-5. 
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Table 5-5: Capacitor values for Fig. 5-5 for a 4 Hz high pass corner 

CIN CF1 CF2 CR C1 C2 C3 C4 C5 C6

0.5p 4.5p 0.75p 0.5p 0.5p 0.5p 0.5p 5p 5p 0.5p 

 

 

The clusters to be matched are (Cin, CF1, C1, C2), (C4, C5, CR, CF) and (C3, C6) 

Thus assuming a unit capacitance of 0.25p, the above values ensure that the smallest 

possible capacitors are used for common centroid matching. 

The DC gain specifications of both OTA 2 and OTA 3 necessitate the use of 

folded-cascode amplifiers just as was discussed in Chapter III.  

Now let’s consider the loading. OTA 2 is mainly loaded during phase 2. The 

loading during phase 2 is 

  .642 pFCCCC cmfbINeff =++=       (5.24) 

This corresponds to a gm that is well below the minimum. So OTA 2 can carry 

40nA of current. OTA 3 is loaded mainly during phase 1. The loading is given by 

  .20)(10 ,543 pFCCCCC nextstageloadCMFBeff =+++=     (5.25) 

This corresponds to a gm of 0.5uA/V. Thus the power consumption of OTA 2 is (20 + 20 

+ 10 + 10 = 60nA). Thus the total power consumption of this pre-amp is 140nA. The 

power consumption does not change with decreasing high pass corner, because 

decreasing high pass corner, only increases the value of CF1 which does not load any 

OTA. 
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For a 0.159 Hz cutoff, the capacitor values are given in Table 5-6. 

 

 Table 5-6: Capacitor values for Fig. 5-5 for a 0.159 Hz high pass corner 

CIN CF1 CF2 CR C1 C2 C3 C4 C5 C6

0.5p 24.5p 0.75p 0.5p 0.5p 0.5p 0.5p 5p 5p 0.5p 

   

 

 Finally, from noise computations, we can compute the SNR for a minimum input 

signal of 4mV to equal 26dB. 

As discussed in section 4.5.2 of Chapter IV, the SNR does not seem to change with 

time constant. We will now discuss some non-ideal effects in SC circuits that might 

cause errors in large time constants. 

 

5.5 Charge Injection and Leakage 

Charge injection is a complex problem and not a well-modeled phenomenon. In 

Cadence, charge injection is modeled by assuming that half the channel charge flows out 

of the source and the other half out of the drain of a switch whenever it goes off. Thus in 

a fully differential circuit, charge injection appears as a common mode offset and its 

effect is seen to be negligible in simulations. Even in single ended circuits, charge 

injection can be easily cancelled in simulations by using dummy transistors. In reality 

however, the utility of dummy transistors is debatable. Dummy transistors work in 

simulations because of the assumption that half the channel charge flows out the source 
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and the other half out the drain. In reality, what percentage of the charge flows out the 

drain or source depends on many factors including the node voltages including the 

impedances seen looking out the switch terminals. The best way to reduce charge 

injection is to use minimum dimensions in the devices, which however might increase 

the leakage.  

Leakage did not seem to be much of an issue in simulations. There are two kinds 

of leakage that we can expect: 

1. The finite OFF resistance of the switches can cause them to conduct small currents 

which when integrated over a large enough time(as in large time constants) can cause 

non-negligible errors. However, the OFF resistance of the switches (MOS transistor in 

accumulation) was measured in simulations (single transistor) to be high enough so that 

this was not a noticeable or measurable problem. 

2. Reverse biased p-n junction currents: In a MOS transistors the reverse biased p-n 

junctions are the source-bulk and the drain-bulk currents. Simulation results indicated 

that these currents were quite negligible as to cause them to be un-measurable.  

 

5.6   Clock Feed-Through 

It turns out that clock feed-through is the single most important non-ideal effect 

encountered in the design of large time constants. Clock feed-through occurs due to the 

non-idealities of the switch. Whenever, the switch makes a transition, charge is 

transferred via CGS/GD of the switch transistor. When this charge flows through the 

integrating capacitor, it causes a change in the output. This charge is independent of the 



 103

signal level. It is only dependent on the clock swing and the values of the parasitic 

capacitors. Thus it does not cause any non-linearity. Rather, it causes an offset at the 

output.  In single ended circuits, this offset could get to be a problem. In differential 

ended circuits, most of the clock feed through appears as a common mode voltage at the 

output and is compensated by the CMFB circuit. In differential ended circuits, clock feed 

through is greatly reduced as a common mode offset. Differential mode clock feed 

through occurs because of mismatches between the switches used in the two differential 

signal paths. If the signal paths are completely symmetric, clock feed through will 

manifest as a common mode output voltage and will be completely cancelled by the 

CMFB circuit. However, small mismatches always ensure that the two differential paths 

are never completely symmetric. It is this asymmetry that causes a differential mode 

clock feed-through. Usually the circuits are largely symmetric and thus differential mode 

circuits can operate at much lower frequencies than singled ended circuit. However, at 

even lower frequencies, even differential mode clock feed through becomes significant. 

To analyze charge injection in a SC circuit, we must first identify the critical 

switches. The critical switches are usually to be found at the non-inverting input of the 

OTA, this being the most sensitive node in the circuit. The second thing we must 

understand is that, like charge injection, it occurs when the switches go off. Thus for 

NMOS switches, clock feed-through occurs during the falling edge of the clock.  When 

the clock falls, charge flows through the CGS or CGD of the NMOS switch and then flows 

through the integrating capacitor, thus causing a voltage change at the output.  
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       We will analyze a few circuits below for clock feed through to make our point more 

forcefully.   

 

5.6.1   The Nagaraj structures 

Consider the Nagaraj LPF in Fig. 5-6a. 
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Fig. 5-6a: The Nagaraj LPF 

 

The switches that are most responsible for clock feed-through are the two 

switches adjacent to C2. In each case, whenever the switches go off, a small charge 

flows through CF thus causing a small voltage error. In the appendix, a proof will be 

offered as to why the switches adjacent to C1 and CIN do not cause quite as much error. 

Now consider the Nagaraj integrator in Fig. 5-6b. 
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                     Fig. 5-6b: Nagaraj integrator 

 

This structure has two sensitive switches. Both switches adjacent to C2 cause 

clock feed-through. Thus, it is the same as the Nagaraj LPF.  

Now finally consider the proposed HPF structure, which we have used in our 

pre-amp. Use Fig. 5-6c as a reference. 
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   Fig. 5-6c: Proposed HPF 
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Here, the critical switch is the one operating in phase 1, adjacent to C2 to its left 

hand plate. When that switch goes off, a small charge flows through CF causing a small 

error at the output.  

 

5.7 Comparisons 

The graphs in Figs. 5-7 and 5-8 compare the area and power consumption of the three 

structures discussed in this chapter. 
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Fig. 5-7: Power consumption of the three pre-amps. INAGARAJ = IFL-NAGARAJ 
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Fig. 5-8: Capacitor area of the three pre-amps 

 

 

The power consumption of the Nagaraj LPF and the FL-Nagaraj biquad is the same and 

therefore, the plots are superimposed. As can be seen, for medium to large time-

constants, the proposed HPF saves power, but for very large time-constants, 

conventional techniques consume lower power. The FL-Nagaraj biquad occupies the 

lowest area of all structures. 
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5.8 Layout 

Fig. 5-9 shows the layout of the proposed HPF based pre-amp. 
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 Fig. 5-9: HPF based pre-amp layout 
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5.9 Simulation Results 

In this section, we present the simulation results for the three structures we have 

designed. We start with the proposed technique in section 5.9.1, the FL-Nagaraj biquad 

in section 5.9.2 and the Nagaraj LPF in section 5.9.3.  

 

5.9.1. Proposed technique 

The entire structure using the proposed technique was simulated. This schematic of this 

structure is shown in Fig. 5-3. A periodic steady state (PSS) analysis was performed for 

the circuit and the transfer function obtained. The results below show three plots, each of 

them focusing on one aspect of the transfer function, i.e. the low pass corner, the high 

pass corner and the passband gain.  

Fig. 5-10a shows the plot of the transfer function focusing on the high pass corner at 

0.159Hz. The plot shows that the corner is actually at 0.16Hz, which is very close to the 

0.159 Hz that it was designed for. 

 Fig. 5-10b shows focuses on the low pass corner, which was designed to be at 

200Hz. The actual corner is at 197 Hz. The slight error can be attributed to the 

approximation in converting from the z-domain to the s-domain. 

      Finally, Fig. 5-10c shows the entire frequency response of the proposed pre-amp. 
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                   Fig. 5-10a: PSS response showing high pass corner 

 

 

Fig. 5.10b: PSS response showing low pass corner 
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Fig. 5-10c: Complete PSS response for the proposed pre-amp 

 

5.9.2 FL biquad using Nagaraj integrator 

Fig. 5-11a and Fig. 5-11b show the transfer function for the FL biquad using the 

Nagaraj integrator. The reader is referred to Fig. 5-4 for the schematic. Fig. 5-11a 

indicates that the high pass corner is at 0.154 Hz, which is an error of 3% from the 

nominal 0.159Hz. Part of the error is because of the low frequency zero we had 

discussed earlier in section 3.2.2 of Chapter III. Fig. 5-11b shows the complete 

response with the markers indicating the low pass corner. The low pass corner is at 

201.5 Hz, which is an error less than 1%. 
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Fig. 5-11a: Complete PSS response for FL biquad showing the high pass corner 

 

 

Fig. 5-11b: Complete PSS response of FL biquad showing the low pass corner 
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5.9.3 Nagaraj LPF 

Fig. 5-12a and Fig. 5-12b show the transfer function for the pre-amp using the Nagaraj 

integrator. The reader is referred to Fig. 5-5 for the schematic. The high pass corner is at 

0.164 Hz, which is an error of about 3% from the nominal 0.159 Hz. Fig. 5-11b shows 

the complete response with the markers indicating the low pass corner. The low pass 

corner is at 203 Hz, which is an error of 1.5% from the nominal 200 Hz. 

 

   

 

Fig. 5-12a: PSS response showing high pass corner 
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Fig. 5-12b: PSS response showing low pass corner 

 

5.9.4 More results from proposed pre-amp 

The next few results are from the proposed pre-amp of Fig. 5-3. The graphs in Fig. 5-13a 

through 5-13d show the CMRR and PSRR of the proposed pre-amp in the presence of 

path and ratio mismatch. The pre-amp we have is fully differential (FD). In fully 

differential (FD) circuits, we are not interested in the output common mode voltage, 

which has no information and is always close to zero due to the action of the CMFB 

circuit. What we are interested in is the output differential voltage versus the input 

common mode voltage. Ideally, this value should be infinite. But in real FD circuits, 

there is always a mismatch between the two half circuits (the positive half and the 

negative half). It is precisely this mismatch that causes a finite CMRR.  And for a fully 

differential circuit, the CMRR is defined by 
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Mismatches in the transistor sizes in the OTA are removed by chopper stabilization to a 

large extent. However, chopper stabilization cannot remove the mismatches in the 

capacitors of the positive half circuit and the negative half circuit. Thus two kinds of 

mismatches have been introduced. 

1. The capacitor ratios of both half circuits are the same. However, a mismatch in 

their absolute values is introduced. For instance suppose the capacitor ratio is 10 

where the smaller capacitor is 0.5p and the bigger one is 5p. We deliberately 

introduce an error whereby the negative half circuit has capacitor values of 5.4p 

and 0.45p, while the positive half circuit has capacitor values of 0.55p and 5.5p. 

the ratios are the same, but the absolute capacitor values are different. This is 

called a path mismatch. This could go as high as 5%. The result is given in Fig. 

5-12a. For simulation purposed, an error in introduced for every capacitor ratio.  

2. A small mismatch is introduced in the capacitor ratios of the two half circuits. 

For instance, the capacitor ratio for the negative half circuit could be 9.9 while 

that for the positive half circuit could be 10. This kind of mismatch is usually 

limited to less that 1%. The result is given in Fig. 5-12b. Here too, an error is 

introduced in every capacitor ratio.  
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Fig. 5-13a: CMRR in presence of 5% path loading mismatch 

 

 

 

Fig. 5-13b: CMRR in presence of 1% ratio mismatch 
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Fig. 5-13c: PSRR in presence of 5% ratio mismatch 

 

 

Fig. 5-13d: PSRR in presence of 1% ratio mismatch 
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5.9.5 Swing and linearity 

The results below show transient simulations. The purpose is to measure the linearity. 

Switched-capacitor circuits have very high linearity. Most of the non-linearity comes 

from the finite DC gain and the parasitic junction capacitors, which are typically voltage 

dependent. Fig. 5-14a shows the output to a 40mV amplitude input sine wave at 100Hz, 

which is right in the middle of the bandwidth. The simulation indicates the output swing. 

Fig. 5-14b shows the DFT performed on the signal of Fig. 5-14a. Linearity is not much 

of an issue in SC circuits and in this case the linearity is much better than the noise. 

 

                          

Fig. 5-14a: Demonstrating output swing in the OTA 
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Fig. 5-14b: Demonstrating linearity via FFT. THD > 40dB 

 

5.9.6. Results from lab animal 

Finally, real data obtained from a lab animal was given as an input to the pre-amp. The 

data was obtained courtesy of Lee Hudson of Biotronik. The results are shown in Fig. 5-

15.
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                                          Fig. 5-15: Output to the evoked response 

 

The signal on the left shows the output when the evoked response occurs almost after the 

pacing pulse is applied. The signal on the right is the output when the evoked response 

occurs much after the pacing pulse is applied. In pacemaker circuits, the power is turned 

off after processing and turned on just before the pacing pulse is applied. The SC circuit 

must use this short amount of time to quickly come to steady state before the evoked 

response is output by the heart. The simulation above tests how quickly and completely 

the SC circuit settles to steady state. Since the two profiles above are identical, it shows 

that the SC circuit settles to its steady state after power ON fairly quickly.    
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CHAPTER VI 

CONCLUSIONS 

 

This thesis sets out to design a pre-amp with the given specifications using a novel SC 

high pass filter, which can achieve large time constants. This topology is compared with 

two other pre-amp designs using conventional architectures. The result is that capacitor 

area is traded off for improvements in SNR and power consumption. The final designed 

pre-amp had the following characteristics: 

•  Technology AMI0.6u 

• Supply 1.6V 

• Voltage swing 800mVp-p 

• Passband Gain 10 

• HP Corner 0.159 Hz - 4Hz 

• LP Corner 200 Hz 

• Clock 2.5KHz 

• Current 130nA – 150nA 

• Cap Spread 50 

• Error in time constant < 3% 

• SNRMIN > 38 dB (0.159Hz) and 32dB (4 Hz) 

The following are the conclusions of this work: 

• New HPF Structure suitable for small corner frequencies proposed. 
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• Structure consumes lower power for frequencies around 4Hz with small area 

penalty.  

• HPF can be used with advantage for stand-alone applications. 

• Differentiator based on HPF can be used on slow varying biomedical signals. 

• HPF used in pre-amp trades off area for better noise and lower power for some 

applications. 

For very low frequencies, the FL biquad is superior in almost all aspects. 

  

3 CONCLUSIONS 

 

 

5 CONCLUSIONS 
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