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ABSTRACT 

The Prediction of Bus Arrival Time 

Using Automatic Vehicle Location Systems Data. (December 2004) 

Ran Hee Jeong, B.S., Hong-ik University; 

M.S., Hong-ik University 

Co-Chairs of Advisory Committee: Dr. Laurence R. Rilett 
          Dr. Amy Epps Martin 

 

Advanced Traveler Information System (ATIS) is one component of Intelligent 

Transportation Systems (ITS), and a major component of ATIS is travel time 

information. The provision of timely and accurate transit travel time information is 

important because it attracts additional ridership and increases the satisfaction of transit 

users. The cost of electronics and components for ITS has been decreased, and ITS 

deployment is growing nationwide. Automatic Vehicle Location (AVL) Systems, which 

is a part of ITS, have been adopted by many transit agencies. These allow them to track 

their transit vehicles in real-time. The need for the model or technique to predict transit 

travel time using AVL data is increasing. While some research on this topic has been 

conducted, it has been shown that more research on this topic is required. 

 

The objectives of this research were 1) to develop and apply a model to predict bus 

arrival time using AVL data, 2) to identify the prediction interval of bus arrival time and 

the probabilty of a bus being on time. In this research, the travel time prediction model 

explicitly included dwell times, schedule adherence by time period, and traffic 

congestion which were critical to predict accurate bus arrival times. The test bed was a 

bus route running in the downtown of Houston, Texas. A historical based model, 

regression models, and artificial neural network (ANN) models were developed to 

predict bus arrival time. It was found that the artificial neural network models performed 

considerably better than either historical data based models or multi linear regression 

models.  It was hypothesized that the ANN was able to identify the complex non-linear 
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relationship between travel time and the independent variables and this led to superior 

results. 

 

Because variability in travel time (both waiting and on-board) is extremely important for 

transit choices, it would also be useful to extend the model to provide not only estimates 

of travel time but also prediction intervals.   With the ANN models, the prediction 

intervals of bus arrival time were calculated. Because the ANN models are non 

parametric models, conventional techniques for prediction intervals can not be used. 

Consequently, a newly developed computer-intensive method, the bootstrap technique 

was used to obtain prediction intervals of bus arrival time. 

 

On-time performance of a bus is very important to transit operators to provide quality 

service to transit passengers. To measure the on-time performance, the probability of a 

bus being on time is required. In addition to the prediction interval of bus arrival time, 

the probability that a given bus is on time was calculated. The probability density 

function of schedule adherence seemed to be the gamma distribution or the normal 

distribution. To determine which distribution is the best fit for the schedule adherence, a 

chi-squared goodness-of-fit test was used. In brief, the normal distribution estimates well 

the schedule adherence. With the normal distribution, the probability of a bus being on 

time, being ahead schedule, and being behind schedule can be estimated.  
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CHAPTER I 

INTRODUCTION 

1  

One component of Intelligent Transportation Systems (ITS) is Advanced Traveler 

Information System (ATIS), and a major component of ATIS is providing travel time 

information by different modes to travelers. The provision of timely and accurate transit 

arrival time information is important because it attracts additional transit ridership and 

increases the satisfaction of transit users (1-5).  

 

The cost of electronics and components for ITS has been decreased, and ITS deployment 

is growing nationwide (6, 7). Automatic Vehicle Location (AVL) Systems, which are a 

part of ITS, have been adopted by many transit agencies, allowing them to track their 

transit vehicles in real-time (7). While the provision of real-time information, such as 

bus location, is relatively straightforward, forecasting transit information, such as when a 

bus will arrive at a particular location, is significantly more complex. Consequently, the 

need for predicting transit arrival time using AVL data is increasing. While some 

research on this topic has been conducted, there is still important work to be done (8-12). 

 

1.1 STATEMENT OF PROBLEM  

 

1.1.1 Need to Develop a Bus Arrival Time Prediction Model Using AVL Data 

The increase in the transit ridership and the satisfaction of transit users can be achieved 

by the provision of current traveler information (1-5). In addition, transit operators can 

identify vehicles that 1) have fallen behind schedule or 2) are in danger of falling behind 

schedule, and react in a proactive way. For example, bus priority at traffic signals could 
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be enabled. Because ITS technologies are deployed nationwide (1, 2, 6, 7), the usage of 

AVL systems by transit agencies continues to increase (7). Consequently, the need for 

robust prediction algorithms increases. While there has been some preliminary work in 

this area, there are a number of questions that need to be considered. 

 

1.1.2 Need to Explicitly Consider Traffic Congestion 

In order to predict travel time in an accurate and timely manner, the consideration of 

traffic conditions is essential, including traffic congestion. The impact of recurrent and 

non recurrent congestion has been ignored. Lin and Zeng did not consider traffic 

congestion because their algorithm was formulated primarily for a rural area and because 

they did not have a system which measured traffic congestion (9). Ojili used one-minute 

time zones where a bus can run for one minute (10). After finding the current bus 

location, he predicted the arrival time by counting the estimated number of one-minute 

time zones between the current location and the given stop. Because the one-minute time 

zones could be changed by time period or by traffic condition, the model would have to 

be recalibrated if traffic conditions change. Because Shalaby and Farhan used a Kalman 

filtering technique, they assumed that the pattern of link travel time is cyclical (13). In 

summary, a prediction model that explicitly considers traffic congestion is needed.   

 

1.1.3 Need to Explicitly Consider Dwell Times at Bus Stops 

The major difference in predicting bus and auto travel times is that the former needs to 

consider dwell time at bus stops. However, there has been little research that explicitly 

considers bus dwell times when predicting transit arrival times. Lin and Zeng used 

regular global positioning systems (GPS), not differential global positioning systems 

(DGPS), and their GPS unit provided bus location every forty six seconds. They were 

not able to measure exact dwell time at stops, and consequently they did not explicitly 

consider it in their model (9). Similar to the previous argument, Ojili (10) and Wall and 

Dailey (8) did not consider dwell times when they predicted transit arrival time. Shalaby 

and Farhan assumed that dwell times increase when a bus arrives late because there 
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would be more passengers waiting for the bus (13). In addition, they assumed that dwell 

time is directly proportional to passenger demand and simply multiplied by 2.5 seconds 

per passenger. However, they did not consider the fact that the bus driver will stay 

longer to keep to schedule when they arrive early or that the bus driver can stay at bus 

stops even though there is no passenger. Because dwell time is a function of the behavior 

of the bus driver and passengers, a model that can explain the uncertainty of the behavior 

is required. In summary, a prediction model which explicitly considers dwell time at bus 

stops is needed.   

     

1.1.4 Need to Consider Schedule Adherence 

Transit vehicles have a predefined schedule to follow. Because of this requirement, bus 

drivers may stay longer at bus stops if they are ahead of schedule and/or to pass some 

stops if they are behind schedule. In other words, bus schedules control the behavior of 

bus drivers, dwell times at bus stops, and link travel times. Schedule adherence is the 

difference between schedule time and actual arrival time. A positive value of schedule 

adherence means that the bus arrives late and negative value means that the bus arrives 

early. Consequently, a bus arrival time prediction model should consider schedule 

adherence as an input variable. 

 

1.1.5 Need to Provide Prediction Intervals 

Most existing bus arrival time prediction models only provide the mean value of bus 

arrival time. For example, the information might be that the bus will arrive in 10 minutes. 

However, prediction errors tend not to be provided. If a prediction interval is provided 

with the mean value, it should give more useful information for passengers when making 

their decisions. For example, the information would be that the bus will arrive in 10 

minutes plus or minus 1 minute. Rather than providing a point prediction value, an 

interval prediction value would be more valuable information for transit users. 
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1.1.6 Need to Provide the Probability of a Bus Being on Time 

On-time performance of a bus is very substantial to transit operators because customers 

use this to measure quality of service. It would be extremely important to identify, in 

real-time, whether a given bus is on schedule or not. To measure the on-time 

performance, the probability of a bus being on time is required. In addition to the 

prediction interval of bus arrival time, the probability that a given bus is on time is 

needed to be estimated. 

 

1.2 RESEARCH OBJECTIVES 

It is hypothesized that a bus arrival time prediction model considering traffic congestion 

and dwell time will give a superior result compared to simple conventional prediction 

models. The objectives of this research are to develop and apply a statistical model to 

predict bus arrival time using AVL data. Arrival time information can be provided to 

travelers to help in their decision making and can be used by transit operators to improve 

their operations. Specific objectives of this research are as follows: 

 

Analyze the characteristics of AVL data, including arrival time, dwell time, and schedule 

adherence data. 

Select reasonable input variables for a bus prediction model. 

Cluster input data by time period to implicitly consider traffic congestion. 

Develop prediction models including historical data based models, multi linear 

regression models, and artificial neural network models.  

Forecast the bus arrival travel time with three developed models. 

Evaluate these three models in terms of prediction accuracy. 

Develop a methodology for identifying the prediction interval of the bus arrival time. 

Identify a probability function to estimate the probability of a bus being on time. 
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1.3 RESEARCH FRAMEWORK AND METHODOLOGIES 

 

1.3.1 Perform a Literature Review 

Related research reports, journal articles, and Ph. D. dissertations were reviewed. The 

primary areas of interest are 1) the current state of practice and trends in the provision of 

traveler information 2) the technology of AVL systems, 3) GPS theory, and 4) the 

methodology for travel time prediction. The purpose of this task is to ensure that no 

research relevant to this study is overlooked or inappropriately duplicated. 

 

1.3.2 Collect Data and Define Test Bed 

Actual AVL data collected in Houston, Texas, were used as a test bed. The Houston data 

were collected by Houston Metro buses equipped with DGPS receivers that collect data 

at 5 seconds intervals. Data were collected over 6 months in 2000 (from June to 

November). The test bed is route 60, which runs on a congested corridor in Houston. 

This DGPS provides time, speed, heading, etc., as well as bus location.   

 

There are two test bed sites: a downtown area corridor and a north area corridor. The 

first corridor has 9 bus stops and is 1.6 kilometer long. Stop 1 and stop 9 are time check 

points where bus drivers should keep to scheduled time. The second corridor has 25 bus 

stops and is 4.26 kilometer long. Stop 6 and stop 20 are time check points. The schedule 

headway during weekday peak period is about 30 minutes and during the weekday non-

peak period and weekends is about 1 hour.   

  

1.3.3 Reduce Data and Correct Errors  

There are two types of errors associated with GPS data. The first is noise errors added by 

the U.S. DOD in order to degrade the accuracy of GPS data. This error was corrected by 

using DGPS. The second type of error is measurement errors. It is anticipated that some 

of the bus location data were correspond to off-route locations (i.e. parking lot, refueling 

station, etc.). In addition, even if the bus is located on the road, there would be errors 
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associated with its exact location. An additional source of data error would be missing 

data. Where the data are missing, existing data were used to calculate input data 

according to distance. Outliers were also identified when the data are located 

unreasonably far away from the road. 

  
1.3.4 Cluster Data   

The transit schedule and congestion for weekday peak hour, non-peak hour, evening, and 

weekend, are different. It would be expected that dwell time and link travel time would 

also be different. To account for these differences, data were clustered by time of the 

week and time of the day. 

 
1.3.5  Develop Prediction Models  

A number of modeling techniques were used including a simple statistical model 

(historical data), a regression model, and an artificial neural network model. In this 

research, the input variables were be arrival time, dwell time, and schedule adherence at 

each stop. To consider traffic congestion, schedule adherence was calculated by 

subtracting the scheduled data from the actual arrival time. A positive value of schedule 

adherence means that the bus is delayed at the stop while a negative value means that the 

bus arrives early. To consider traffic congestion, the link travel times were clustered by 

time period in task 4. The output variable is arrival time at each stop.  

 

1.3.6  Evaluate Prediction Models  

All three model architectures were calibrated. With these calibrated models, the arrival 

times were predicted. A validation data set was obtained in order to test which model is 

most appropriate. Predicted arrival times were compared to the observed arrival times 

from the validation data set. The Mean Absolute Percentage Error (MAPE) was used as 

the measure of effectiveness (MOE). The MAPE is shown in Equation 1-1. It represents 

the average percentage difference between the observed value (in this case observed 

arrival times at a bus stop) and the predicted value (in this case predicted arrival times at 
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a bus stop). Smaller MAPE means that the model predicts more accurately than other 

models.  

%1001
×

−
= ∑

n

i o

oi

y
yy

n
MAPE       (1-1) 

where, 

yi = Predicted value (i.e. arrival time at given transit stop); 

yo= Observed value (i.e. arrival time at given transit stop);  

n = The number of data considered. 

 

1.3.7 Identify the Prediction Interval of the Bus Arrival Time  

The model with the smallest MAPE is chosen for the prediction model for the bus arrival 

time. With the selected model, prediction intervals on these estimates were provided. If 

ANN models are chosen for the outperformed model, the conventional method for 

finding prediction interval is not appropriate. In that case, the bootstrap method, which is 

a statistical method that provides prediction intervals for non-parametric models, was 

used. In order to statistically test the differences in mean and variance of the three 

different models, one of several pairwise comparison methods, such as Tukey’s 

procedure was used. 

 

1.3.8 Identify the Probability of a Bus Being on Time 

The probability density function of schedule adherence was identified. To determine 

which distribution was the best fit for schedule adherence, a chi-squared goodness-of-fit 

test was used. After identifying the best fit probability density function, the probability 

of a bus being on time, being ahead schedule, and being behind schedule were able to be 

estimated.   

 

The framework for this research is shown in FIGURE 1-1. 
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FIGURE 1-1 Framework for Research 

 

 

1.4 CONTRIBUTION OF THE RESEARCH 

Providing travel time information is a major component of ATIS. With the deployment 

of ATIS, the provision of traveler information can extend the ridership and increase the 
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satisfaction of transit users. Many transit agencies have adopted Automatic Vehicle 

Location (AVL) Systems and track their transit vehicles in real-time. The need for a 

model or technique to predict transit arrival time using AVL data is increasing. While 

some research on this topic has been conducted, there is still important work to be done. 

  

To provide accurate and timely traveler information, consideration of the traffic 

conditions is essential. However, recent research has not fully considered traffic 

congestion and dwell times at bus stops, which are critical factors for predicting bus 

arrival time. This research can provide more accurate prediction of bus arrival time 

considering traffic congestion and dwell time. In addition to the mean value of arrival 

time, prediction interval information was provided. This would be more reliable 

information for both passengers and transit agencies, leading to better operation. 

   

1.5 ORGANIZATION OF THE RESEARCH 

This dissertation is organized into eight chapters. Chapter I is an introduction to the 

research and discusses the background of the problem, statement of the problem, 

research objectives, research methodology, contribution of the research, and the 

organization of the dissertation. Chapter II presents a literature reviews on advanced 

traveler information systems, automatic vehicle location systems, global positioning 

systems, travel time prediction models, and bus arrival time prediction models. Chapter 

III describes the details of the test bed and the reduction of the data. Chapter IV 

describes and graphically depicts the characteristics of the input variables. The 

development of three bus arrival time prediction models is included in chapter IV, 

including a historical data based model, a multi linear regression model, and an artificial 

neural network model. Chapter V discusses the evaluation of the three prediction models. 

In addition to this, the statistical test for model comparison is conducted in this chapter. 

Chapter VI discusses the prediction interval of bus arrival time and the probability that a 

bus is behind schedule. Chapter VII provides contributions and recommendations based 

on the research. Suggestions for further research are also included in this chapter. The 
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references are followed by a glossary of frequently used terms and acronyms. The 

appendices also include the results of artificial neural network models with different 

training and learning functions. 
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CHAPTER II 

LITERATURE REVIEW 

2  

2.1 ADVANCED TRAVELER INFORMATION SYSTEMS (ATIS) 

 

2.1.1 Types of Traveler Information Systems 

A traveler who wants to move from point A to point B faces a number of decisions 

including: what transportation mode do I need to use, what time do I need to depart, 

what transit route or what road do I need to use, etc. Traveler information systems help 

travelers to make decisions regarding mode, route, and departure time. There are three 

types of traveler information, and they can be categorized according to the time at which 

information is provided: pre-trip information, in-terminal/wayside information, and in-

vehicle information (1).  

 

Pre-trip information, which is provided before the trip begins, includes transit routes, 

maps, schedules, fares, park-and-ride lot locations, points of interest, and weather. The 

information can be distributed by touch-tone telephone, Internet, kiosks, personal pagers, 

hand-held data receivers, and cable television.  

 

In-terminal/Wayside transit information is provided to transit riders who are already en-

route. The information can be distributed by electronic signs, interactive information 

kiosks, and closed-circuit television monitors.  

 

In-vehicle transit information is provided to transit users while they are in the transit 

vehicle. Many transit agencies use automated annunciators and in-vehicle displays to 

provide information about audible and visual next stop, intersection, and transfer point.  
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2.1.2 Importance of the Provision of Traveler Information 

There are a number of reasons why travelers do not use transit. It has been shown that 

the lack of information and the lack of schedule reliability discourage transit use (1-3, 

14).  It is hypothesized that if reliable transit information could be provided, travelers 

would be more likely to use transit. Additionally, it has also been shown that out-of-

vehicle waiting time is more critical than in-vehicle travel time when users perceive the 

quality of transit service (4). Therefore, a reduction in the uncertainty of out-of-vehicle 

waiting time would enhance the satisfaction of transit users. If accurate arrival time 

forecasts could be provided to transit users through ATIS, then this uncertainty would be 

reduced and ridership would increase. Consequently, the provision of accurate and 

timely traveler information encourages positive attitudes toward transit resulting in 

increased ridership (1-3, 5). The provision of traveler information is important for transit 

operators because it not only attracts additional ridership but also increases the 

satisfaction of current users (1-5). In addition, transit operators can identify vehicles that 

1) have fallen behind schedule or 2) are in danger of falling behind schedule, and react in 

a proactive way. For example, bus priority at traffic signals could be enabled. 

 

2.1.3  Real-time Information 

A recent trend, which is directly related to the advances in ITS technologies, is the 

provision of real-time transit information (2, 15). Real-time transit information includes: 

transit vehicle arrival time, transit vehicle departure time, current transit vehicle location, 

speed, and delay. Real-time information is very valuable to transit users because 1) the 

knowledge of the arrival time can reduce their anxiety related to waiting, and 2) the 

transit riders can decide whether to wait at transit stops or seek another mode of travel 

(5). To provide better service for transit patrons, many transit agencies are planning or 

providing real-time information (6, 16). Real-time data are obtained from Automatic 

Vehicle Location (AVL) Systems or Automatic Vehicle Identification (AVI) devices, 

and it can be provided as real-time traveler information directly. However, more 

commonly the data are processed in order to provide information such as bus arrival 
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time, link travel time, delay, etc., because this is the type of information most valuable to 

transit users. 

 

2.2 AUTOMATIC VEHICLE LOCATION (AVL) SYSTEMS 

Automatic Vehicle Location (AVL) Systems are computer-based vehicle tracking 

systems. They are also referred to as Automatic Vehicle Monitoring (AVM) Systems or 

Automatic Vehicle Location and Control (AVLC) Systems (1).  They are used in transit, 

trucking fleets, police cars, ambulances, and for military purposes, and their use in 

transit continues to grow (1). FIGURE 2-1 shows the schematic display of an AVL 

system used in transit agencies (2). 

 

 

 

 

 

FIGURE 2-1 Schematic Display of an AVL System Used in Transit Agencies 
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2.2.1 Benefits of AVL Systems 

The benefits of AVL systems are as follows: 

1) they collect real-time information which can be provided to the public,  

2) they improve schedule reliability,   

3) they reduce operating and maintenance costs,  

4) they improve service efficiency,  

5) they enhance safety and security, and  

6) the transit agencies can respond more quickly to emergency situations (17-19).  

 

The benefits of AVL systems have been well documented. Schedule adherence 

improved by 23% in Baltimore, 12.5% in Kansas City, 8.5% in Hamilton, Ontario, and 

4.4% in Milwaukee after AVL installation (18, 20). Operating costs were reduced 

$500,000/year in Kansas City, and $45,000/year in London, Ontario (21). Paratransit 

ridership increased by 17.5% and paratransit passenger waiting time decreased by 50% 

in Winston-Salem, North Carolina (21). 

  

2.2.2 Uses of AVL Systems 

The first use of AVL technology in transit was in London, England in the late 1950s, and 

the first use in the United States was in Chicago in the late 1960s (6). A number of 

transit systems in North America and abroad began to plan for and implement AVL 

systems during the 1980s (6). 

   

According to the research of Casey in 2002, 322 transit agencies are either operating, 

implementing, or planning/ testing/ demonstrating AVL systems (16). The number of 

transit agencies used AVL systems increased by four hundred percent as compared to 

earlier studies in 1995 (7, 16, 22). An increasing number of transit agencies are planning 

to install AVL systems because the cost of AVL systems has rapidly dropped (6, 18-22). 
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2.2.3 Technologies of AVL Systems 

AVL systems consist of two technologies, location technology and data transmission 

technology. “Location technology is used to measure actual real-time position of each 

vehicle, and data transmission technology is used to relay the information to a central 

location” (1).  

 

2.2.3.1 LocationTechnology  

Location technology includes dead-reckoning, signpost and odometer, global positioning 

systems (GPS), differential GPS (DGPS), etc. For transit vehicle, a single location 

technology is usually insufficient for determining position. For instance, tall buildings 

block the signals and result in multi-path errors. Therefore, the primary location 

technology is supplemented with another location technology (1). TABLE 2-1 details the 

advantages and disadvantages of different location technologies. 

 

Dead-reckoning is the most self-determined form of location technology. The transit 

vehicle determines its own location without the help of external technologies. First, the 

transit vehicle is told its starting point. The vehicle measures the traveled distance from 

the starting point by reading the odometer. Then the vehicle determines the traveled 

direction by compass headings. Dead-reckoning location technology is seldom used by 

itself because the equipment has to be reset frequently from a known location. Dead-

reckoning is usually supplemented by one of other location technologies like signpost or 

GPS (1). It is relatively inexpensive, but the accuracy degrades with distance traveled 

(23). 

  

Signpost and odometer uses a series of radio beacons placed along the bus routes. The 

beacons send a low power signal and the signal is detected by a receiver on the transit 

vehicle. Then the transit vehicle reports its position to dispatch according to the traveled 

distance, which is taken from the odometer (1). This technology requires low in-vehicle 
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cost and it is well established and proven. However, additional installation is required 

with route changes and it can not track the vehicle when a bus is off-route (1, 23).  

 

Global positioning systems (GPS) determine the position using the signals which are 

transmitted from up to 24 satellites. GPS works anywhere the satellites reach, and it is 

much more robust than other location technologies. However, satellite signals do not 

reach underground and they can be interrupted by tall buildings or foliage. Where these 

problems happen, signpost and odometer can supplement the GPS (1). 

 

The U.S. Department of Defense (DOD) intentionally degraded the accuracy of GPS for 

safety reason. To correct this interruption, an additional (differential) correction was 

added and this system is called Differential GPS (DGPS) (1).  

 

 

TABLE  2-1 The Advantages and Disadvantages by Location Technologies 

Type Advantages Disadvantages 

Dead 
reckoning 

Relatively inexpensive 
Self-contained on vehicle (no 
infrastructure costs) 
Only odometer needed (if on-
route is assumed) 

Accuracy degrades with distance traveled 
(errors can accumulate between known 
locations) 

- Requires direction indicator and 
maybe map matching for off-route 
use 

Corrupted by uneven road surfaces, steep 
hills, or magnetic interference 

Signpost 
and 

odometer 

Low in-vehicle cost 
No blind spots or interference 
Repeatable accuracy 

Requires well-equipped infrastructure  
No data outside of deployed infrastructure
Frequency of updates depends on density 
of signpost 

GPS 
Moderately accurate 
Global coverage 
Moderate cost per vehicle 

Signal attenuation by foliage and tunnels 
Subject to multi-path errors 

DGPS 

Very accurate 
Moderate cost per vehicle 

Signal attenuation by foliage and tunnels 
Subject to multi-path errors 
Must be within range of differential signal
Differential correction must be updated 
frequently 
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In the early 1990s, more than 60 percent of transit agencies choose signpost and 

odometer systems as their AVL location technology (7). However, by 1999, it was found 

that more than 80 percent of transit agencies choose GPS/DGPS technology (7). 

FIGURE 2-2 shows the current use of AVL location technologies. The accuracy of AVL 

systems is critical for transit applications and, ultimately, to increase ridership (6). The 

use of GPS eliminates the concern about accuracy of information from ground-based 

AVL systems using odometer readings (6). 

 

 

GPS/DGPS
86%

Other
2%

Loran-C
1%

Dead reckoning
1%

Signpost and 
odometer

10%

GPS/DGPS

Signpost and
odometer

Loran-C

Dead reckoning

Other

 

FIGURE 2-2 Current Use of AVL Location Technologies 
 

 

2.2.3.2 Data Transmission Technology  

Position information, regardless of which location technology is adopted, is usually 

stored on the transit vehicle for some period of time. The information is relayed to the 
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dispatch center in raw form or is processed on-board the vehicle. The two most common 

data transmission technology are polling and exception reporting (1, 18).  

 

With polling technology, the computer at the dispatch center asks each bus for its 

location at regular intervals. The accuracy of location is a function of how often the 

transit vehicle is polled. In addition, the number of radio frequencies which are available 

in urban areas is limited. Due to this reason, many transit agencies have chosen another 

technology, exception reporting (1). 

 

Under the exception reporting method, each bus reports its location at a few specified 

locations or when the bus is found to be off-schedule by some pre-defined tolerance. 

Exception reporting requires each transit vehicle to know not only its position but also 

its scheduled position. Many agencies combine the polling and exception reporting 

methods (1, 18). 

 

2.3 GLOBAL POSITIONING SYSTEMS (GPS) 

GPS is a satellite-based navigation system which is funded and controlled by the U.S. 

Department of Defense (DOD) (23). Even though it was intended for military use, the 

system has been available for civilian applications world-wide since the 1980s (24). The 

GPS consists of 24 satellites (see FIGURE 2-3) and transmits the estimated position, 

velocity, and current time to GPS receivers. To compute position, velocity, and current 

time, signals from at least four satellites are used (see FIGURE 2-4). 
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FIGURE 2-3 Twenty Four Satellites of GPS 
 

 

 

FIGURE 2-4 Calculation of Position, Speed, and Time Using Four Satellites 
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2.3.1 Accuracy of GPS 

GPS has two positioning services, Precise Positioning Service (PPS) and Standard 

Positioning Service (SPS). PPS is used by authorized users such as U.S. and Allied 

military while SPS is used by civilian users worldwide (24). For security reasons the 

DOD intentionally degraded SPS accuracy. The accuracy of PPS was within 22 meters, 

and the accuracy of SPS was within 100 meters (24). To improve the accuracy of SPS, 

an additional correction (differential) signal was added, and is called Differential GPS 

(DGPS) (25). The accuracy of DGPS was better than 10 meters (23).  

 

The SPS accuracy was dramatically improved when the US military removed the 

intentional degradation to the signal on May 1, 2000 (25). Currently the accuracy of PPS 

and SPS are the same. The current accuracy of GPS is between 10 and 20 meters, and 

that of DGPS is between 3 and 5 meters (18, 26).   

  

2.3.2 Use of GPS in Transportation 

While traditional methods of data collection techniques in transportation are burdensome, 

time consuming, and error prone, GPS provides better accuracy, consistency, automation, 

and easier integration between collected data and the data based on GIS (27-28). 

Because of the advantages of GPS, a number of studies on data collection using GPS 

have been conducted (28-32). They used GPS to collect travel time, speed, route choice, 

and travel surveys. They have shown that the use of GPS for collecting data is easier and 

more accurate than traditional methods (28-32). 

   

2.4 TRAVEL TIME PREDICTION MODELS 

The accurate prediction of link travel time is critical to ITS transit applications. With the 

development of Advanced Travelers Information Systems (ATIS), the importance of the 

short-term travel time prediction has increased markedly (33). A number of prediction 

models, including historical data based models, regression models, time series models 
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and neural network models, have been developed over the years by various transit 

agencies.   

 

2.4.1 Historical Data Based Models  

Historical data based models predict travel time for a given time period using the 

average travel time for the same time period obtained from a historical data base. These 

models assume that traffic patterns are cyclical and the ratio of the historical travel time 

on a specific link to the current travel time reported in real-time will remain constant 

(34). The procedure requires an extensive set of historical data and it is difficult to install 

the system in a new setting (34). Real-time models assume that the most recently 

observed transit travel times will stay consistently into the future. Chen et al developed a 

prediction algorithm that combined these two approaches. First a historical data base was 

used to obtain estimated travel time. This time was subsequently adjusted as real-time 

location data are obtained (35).  

 

2.4.2 Regression Models 

Regression models are conventional approaches for predicting travel time (36). 

Regression models predict a dependent variable with a mathematical function formed by 

a set of independent variables (12). To establish a regression model, the dependent 

variables need to be independent. This requirement limits the applicability of the 

regression model to the transportation areas because variables in transportation systems 

are highly inter-correlated (12).  

 

2.4.3 Time Series Models 

Time series models assume that the historical traffic patterns will remain the same in the 

future. The accuracy of Time series models is a function of the similarity between the 

real-time and historical traffic patterns (12).  Variation in historical data or changes in 

the relationship between historical data and real-time data could significantly cause 

inaccuracy in the prediction results (37). D’Angelo used a non-linear time series model 
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to predict a corridor travel time on a highway (37). He compared two cases: the first 

model used only speed data as a variable, while the second model used speed, occupancy, 

and volume data to predict travel time. It was found that the single variable model using 

speed was better than the multivariable prediction model. 

 

2.4.4 Kalman Filtering Models 

Kalman filtering models have been used extensively in travel time prediction research 

(12, 38). Chen and Chien (33, 39-40) and Wall and Dailey (8, 41) used Kalman filtering 

techniques to predict auto travel time. The Kalman filtering model has the potential to 

adapt to traffic fluctuation with time-dependent parameters (12). These models are 

effective in predicting travel time one or two time periods ahead, but they deteriorate 

with multiple time steps (42). Park and Rilett compared neural network models with 

other prediction models including Kalman filtering techniques to predict freeway link 

travel time. While the average mean absolute percentage error (MAPE) of neural 

network models changed from 8.7 for one time period to 16.1 for 5 time periods, that of 

Kalman filtering changed from 5.7 to 20.1 (42) 

  

2.4.5 Artificial Neural Network Models 

Due to their ability to solve complex non-linear relationships, artificial neural network 

models (ANNs) have been developed for transportation since the early 1990s (43-50). 

ANN models had better results than those of existing link travel time techniques, 

including a Kalman filtering model, an exponential smoothing model, a historical profile, 

and a real-time profile (42, 51-52). In addition, ANN model showed better performance 

than historical average and autoregressive integrated moving average (ARIMA) models 

to predict short-term traffic flow (34). While other models are dependent on cyclical 

traffic data patterns or need independence between dependent and independent variables, 

ANNs do not require that variables be uncorrelated and/or that they have a cyclic pattern 

(41).  
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ANNs emulate the learning process of the human brain (53). They are good at pattern 

recognition, prediction, classification, etc. ANNs have two stages, training and testing. 

During the training stage, inductive learning principles are used to learn patterns from a 

training set data. There are two types of learning processes used: unsupervised and 

supervised learning. In unsupervised learning, the network attempts to classify the 

training set data into different groups based on input patterns. In supervised learning, the 

desired output from output layer neurons is known, and the network adjusts the weight 

of connections between neurons to produce the desired output (54). During this process, 

the error in the output is propagated back from one layer to the previous layer by 

adjusting the weights of the connections (54). This is called the back-propagation 

method, which is the most frequently used technique in transportation applications (34, 

45, 49, and 54). The learning process of ANNs can be continuous so that the models can 

adapt to changes in environmental characteristics. In other words, ANN models can be 

considered dynamic prediction models because they can be updated and modified using 

new online data (41).  

  

2.5 BUS TRAVEL TIME PREDICTION MODELS 

In the previous section, travel time prediction models which have been developed were 

discussed. The travel time prediction models focused on travel time for passenger cars. 

In this section, travel time prediction models for transit vehicles are reviewed. 

 

In the context of input data source, various types of data source including loop detectors, 

microwave detectors, radar, etc., have been used. Travel time data can be obtained from 

these data sources. However, it is not realistic that the entire urban roadway network 

would be covered by such devices. Thanks to the development of technologies, more 

reliable data from specific devices that can track the vehicles such as GPS can be 

collected (33).  Recently, a few cities have conducted research on predicting transit 

travel time using AVL data.  
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2.5.1 Mathematical Algorithm 

Lin and Zeng developed a mathematical algorithm to provide real-time bus arrival 

information for Blacksburg, Virginia (9). They used bus location data, schedule 

information, the difference between scheduled and actual arrival time, and waiting time 

at time-check stops as their main inputs. Their algorithm was primarily developed for 

rural traveler information systems, and their test bed was a rural area where no 

congestion exists. Their algorithm could not consider traffic congestion and dwell time 

at stops. They used regular GPS, not DGPS, and regular GPS gave many GPS errors. 

Their GPS unit provided bus location data every forty six seconds on average. The 

minimum sample interval was thirty seconds and about fifteen percent of the data had 

sample intervals over one minute. In this research, the longest time interval was almost 

seven minutes. These long intervals of location data could result in inaccurate travel time 

predictions. According to the authors, this research was the first attempt to estimate 

arrival time at bus stops based on real-time bus location data. However, their research in 

1999 gave inaccurate predictions because they used regular GPS data. As mentioned in 

previous section, the accuracy of regular GPS dramatically improved since the U.S. 

DOD remove the intentional degrade by noise in May 2000. 

  

Ojili developed a bus arrival time notification system in College Station, Texas (10). The 

model breaks the route into one-minute time zones along the bus route. After locating 

the current bus with respect to these zones, the arrival time is predicted by counting the 

estimated number of the one-minute time zones between the current location and the 

given stop. When he decided on the one-minute time zones, he calculated them by 

averaging the travel time between bus stops and dwell times at stops. For example, when 

the dwell time at a specific bus stop is about three minutes, the bus stop has three one-

minute time zones. The use of static one mile blocks implicitly ignored the effect of 

congestion and variation in dwell times by the time of the day and the day of the week. 

For the test bed chosen, this was not critical. However, for larger cities that have wide 

variations in travel times (due to congestion) and in dwell time (due to passenger 
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demand and/or congestion), the model would have to be calibrated for the specific 

conditions for each application. 

  

Bae and Kachroo used the dynamics of bus behavior to develop a bus arrival time 

prediction model (11). The dynamics of bus behavior were simulated based on the ratio 

between passenger arrival rate and passenger boarding time. They used least square 

estimation techniques to estimate the parameters for headway and passenger boarding 

time. Finally, their arrival time prediction model was based on the parameter adaptation 

algorithm using the parameters for headway and passenger boarding time. 

 

2.5.2 Kalman Filter Model with Historical Data 

Wall and Dailey used a combination of both AVL data and historical data to predict bus 

arrival time in Seattle, Washington (8, 55). Their algorithm consists of two components: 

tracking and prediction. For the tracking component, they used a Kalman filter model to 

track a vehicle location. For the prediction component, they used a statistical estimation 

technique. To produce a distribution of travel times, real-time AVL data were combined 

with a historical data source. The expected travel time was calculated using the 

distribution. The predicted travel time is equal to the expected travel time plus the 

current time. It was found that they could predict bus arrival time with less than 12% 

error (i.e. when the predicted bus arrival time is 15 minutes, 70 percent of the buses will 

arrive in between 13 and 17 minutes).  However, they did not explicitly deal with dwell 

time as an independent variable.  

 

Shalaby and Farhan developed a bus travel time prediction model using the Kalman 

filtering technique (13, 56). They used downtown Toronto data collected with four buses 

equipped with AVL and automatic passenger counter (APC). They found that Kalman 

filtering techniques outperformed the historical models, regression models, and time lag 

recurrent neural network models. They used five-weekday data in May 2001. Four days 

of data were used for learning and developing models, and one-day data were used for 
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testing. They developed two Kalman filtering algorithms to predict running times and 

dwell times separately. However, when they developed a historical average model, a 

regression model, and a time lag recurrent neural network model, they included dwell 

times in link travel time. They defined a link as the distance between two time check 

point stops and each link included between 2 and 8 bus stops. Consequently, they 

predicted dwell time only at time check points, not at every stop. To develop a dynamic, 

real-time model, they updated the predicted time of bus arrival and departure at time 

check points. Of the 27 stops on the route, their model was updated at only the six time 

check points. 

 

2.5.3 Artificial Neural Network Model  

Chien et al developed an artificial neural network model to predict dynamic bus arrival 

time in New Jersey (12). They stated that the back-propagation algorithm, which is the 

most used algorithm for transportation problems, is unsuitable for on-line application 

because of its time consuming learning process. Consequently they developed an 

adjustment factor to modify their travel time prediction using recent observed real-time 

data (12). They used generated data to predict bus arrival time, and they did not consider 

dwell time and scheduled data (12). They generated non AVL traffic information, which 

included traffic volume and passenger demand that AVL can not collect, using Corridor 

Simulation model (CORSIM). For an actual implementation they assumed they could 

obtain similar data from Automatic Passenger Counters (APC) and AVL systems. 

However, typical AVL systems cannot collect these types of data. In addition transit 

agencies use Automatic Passenger Counters (APC) in only about 40 percent of AVL-use 

agency (16). Therefore, prediction model which use only AVL data will be more 

common until APC and other passenger data collection methods are deployed more 

widely. In summary, prediction model considering traffic congestion and dwell time at 

bus stops are required in urban congested areas.   
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In a recent study, it was found that buses spend 20 percent of their service hours stopped 

at intersections, 23 percent of the time boarding and alighting passengers (dwell time), 5 

percent of the time in traffic congestion, and the remaining time, 52 percent, moving 

(57). According to the report, traffic congestion is clearly not the most significant factor 

for bus delay. It was hypothesized that in order to improve transit speed, reliability, and 

on-time performance, the focus should be on the delay caused at bus stops and traffic 

signals (57). These delays would also be an important factor for prediction of arrival 

time. 

 

2.6 CONCLUDING REMARKS 

Chapter II presented a literature review on advanced traveler information systems, 

automatic vehicle location systems, global positioning systems, travel time prediction 

models, and bus arrival time prediction models. According to this literature review, the 

provision of accurate and timely bus arrival time information can help travelers to make 

their travel decisions and it encourages positive attitudes toward transit resulting in 

increased ridership. In addition, transit operators can identify vehicles that 1) have fallen 

behind schedule or 2) are in danger of falling behind schedule, and react in a proactive 

way. For example, bus priority at traffic signals could be enabled. Recently, the 

provision of real-time information can be provided through automatic vehicle location 

systems. Many transit agencies have used global positioning system especially as the 

location technology for automatic vehicle location systems. Therefore, there is a need to 

develop a model for bus arrival time information using automatic vehicle location 

system data. To predict auto travel time, many models have been developed including 

historical data based models, regression models, time series models, and artificial neural 

network models. However, while there is some research on bus arrival time prediction 

models, there is still important work to be done, as described in chapter I.  
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CHAPTER III 

STUDY DESIGN 

3  

In chapter II, a literature review on advanced traveler information systems, automatic 

vehicle location systems, global positioning systems, travel time prediction models, and 

bus arrival time prediction models was presented. In this chapter, the process of data 

collection and data reduction is discussed. In the first section of this chapter, the test bed 

for this research is detailed. Subsequently, the data reduction procedure and results are 

presented. 

 

3.1 DATA COLLECTION 

 

3.1.1 Test Bed 

 

3.1.1.1 Description of the Test Bed 

AVL data collected in Houston, Texas was used for the test bed. The Houston data were 

collected by Houston Metro buses equipped with the differential global positioning 

systems (DGPS) receivers at five-second intervals. This DGPS data provides time, speed, 

heading, etc. as well as bus location. The data were collected over 6 months in 2000, 

from June to November. Only the southbound direction was studied in this dissertation. 

 

There are two test bed sites as shown in FIGURE 3-1; the downtown area corridor and 

the north area corridor. Data from 340 buses were used for this research. A total of 240 

buses were used for calibrating the bus arrival time prediction models and 100 buses for 

evaluating models.   
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FIGURE 3-1 Map of Route 60 Running in Houston 
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The test bed 1, the downtown area corridor, has 9 bus stops and is 1.6 kilometers long 

(1.02 miles). Stop 1 and stop 9 are used as time check points for schedule adherence. 

The test bed was Route 60 which is highly congested in the morning and afternoon. The 

test bed 2, the north area corridor, has 25 bus stops and is 4.26 kilometers long (2.66 

miles). Stop 6 and stop 20 are used as time check points. These two sites are shown in 

FIGURE 3-2 and FIGURE 3-3, respectively. The schedule headway during the weekday 

peak period is 30 minutes and during the weekday non-peak period and weekends is one 

hour. A detailed schedule by stop for the study period is provided in TABLE A-1 

through A-4 of Appendix A. 

 

 

FIGURE 3-2 Map of Route 60 Running in the Test Bed 1 (Downtown) 
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FIGURE 3-3 Map of Route 60 Running in the Test Bed 2 (North Area) 
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TABLE 3-1 and TABLE 3-2 show the distance between stops. In the downtown area, 9 

bus stops are placed along the 1.63 kilometer distance (1.02 miles). The average distance 

between stops in the downtown area is 0.20 kilometers (0.13 miles). In the north area, 25 

bus stops are placed along the 4.26 kilometers distance (2.66 miles). The average 

distance between stops in the downtown area is 0.18 kilometers (0.11 miles). In the 

downtown area, the distances between stops are almost the same. However, in the north 

area, the distance between stops varies from 0.10 kilometer to 0.24 kilometer (from 0.06 

miles to 0.15 miles). 

 

 

TABLE  3-1 Distance between Stops in the Test Bed 1 (Downtown) 

Distance between stops Accumulated Distance to stop i Stop 
number miles Kilometers miles Kilometers 

1 0.00 0.00 0.00 0.00 
2 0.13 0.21 0.13 0.21 
3 0.13 0.21 0.26 0.42 
4 0.13 0.21 0.39 0.62 
5 0.13 0.21 0.52 0.83 
6 0.12 0.19 0.64 1.02 
7 0.13 0.21 0.77 1.23 
8 0.12 0.19 0.89 1.42 
9 0.13 0.21 1.02 1.63 
 Average 0.13 Average 0.20 Total 1.02 Total 1.63 
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TABLE  3-2 Distance between Stops in the Test Bed 2 (North Area) 

Distance between stops Accumulated Distance to stop i Stop 
number miles Kilometers miles Kilometers 

1 0.00 0.00 0.00 0.00 
2 0.08 0.13 0.08 0.13 
3 0.12 0.19 0.20 0.32 
4 0.12 0.19 0.32 0.51 
5 0.12 0.19 0.44 0.70 
6 0.12 0.19 0.56 0.90 
7 0.11 0.18 0.67 1.07 
8 0.12 0.19 0.79 1.26 
9 0.12 0.19 0.91 1.46 
10 0.15 0.24 1.06 1.70 
11 0.09 0.14 1.15 1.84 
12 0.10 0.16 1.25 2.00 
13 0.13 0.21 1.38 2.21 
14 0.12 0.19 1.50 2.40 
15 0.12 0.19 1.62 2.59 
16 0.12 0.19 1.74 2.78 
17 0.12 0.19 1.86 2.98 
18 0.10 0.16 1.96 3.14 
19 0.06 0.10 2.02 3.23 
20 0.10 0.16 2.12 3.39 
21 0.06 0.10 2.18 3.49 
22 0.13 0.21 2.31 3.70 
23 0.14 0.22 2.45 3.92 
24 0.14 0.22 2.59 4.14 
25 0.07 0.11 2.66 4.26 

 Average 0.11 Average 0.18 Total 2.66 Total 4.26 
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3.1.1.2 Number of Observations 

TABLE 3-3 and TABLE 3-4 show the number of observations for the test bed 1 and the 

test bed 2, respectively. All data sets are clustered by time period, because transit 

vehicles have different schedules by time period, resulting in different travel patterns. 

The four time periods are weekend, weekday peak, weekday non-peak, and weekday 

evening. In this research, weekday means Monday through Friday, and weekend means 

Saturday and Sunday. Weekday peak period data included the bus data when the bus 

arrived at the first bus stop during 6:15 A.M. ~ 8:15 A.M. and 4:15 P.M. ~ 6:10 P.M. 

Weekday non-peak period data included the bus data when it arrived before 6:15 A.M., 

8:15 A.M. ~ 4:15 P.M., and 6:10 P.M. ~ 7:15 P.M. Weekday evening period data include 

the bus data when the bus arrived after 7:15 P.M. These time periods were determined 

by the predetermined bus schedule shown in Appendix A. The bus location data have the 

current time at specific bus stops, and the time data determined by GPS unit were used to 

decide in which time period a bus is located.  

 

These tables present the number of observations for each time period. To calibrate and 

evaluate the prediction models (historical data model, multi linear regression models, 

and artificial neural network models), 340 data sets were used for the test bed 1, the 

downtown area, and 326 data for the test bed 2, the north area. The weekend time period 

has more observations. The number of observations of each time period in the total data 

was determined by the data collector, the Houston METRO. If the weekday peak period 

data are more available, the effect of congestion should be analyzed more effectively. 
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TABLE  3-3 Number of Training Data Sets and Test Data Sets for the Test Bed 1 
(Downtown) 

Clustering Training Set Test Set Total 
Weekend 100 47 147 

Weekday peak 53 15 68 
Weekday non-peak 65 20 85 
Weekday evening 30 10 40 
Non-Clustering 240 100 340 

 

 

TABLE  3-4 Number of Training Data Sets and Test Data Sets for the Test Bed 2 
(North Area) 

Clustering Training Set Test Set Total 
Weekend 96 43 139 

Weekday peak 31 13 44 
Weekday non-peak 71 32 103 
Weekday evening 28 12 40 
Non-Clustering 226 100 326 

 

 

3.1.2 Description of the AVL Data 

In this section, the AVL data using GPS is described. The GPS consists of 24 satellites 

and transmits the estimated position, velocity, and current time to GPS receivers. 

Typically, these 24 satellites transmit a signal once a second. Because of the wide 

coverage in the U.S., the location of transit vehicles equipped with GPS can be 

determined every second. However, to analyze data more conveniently, the AVL  
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systems are configured to transmit the location data less often, such as every five 

seconds. The interval for the Houston Metro data is about five seconds 

 

3.1.2.1 AVL Raw Data 

TABLE 3-5 presents the raw form of AVL data. The AVL data consists of current time, 

latitude, longitude, altitude, heading, speed, GPS week, ID, etc. The current location of a 

transit vehicle can be calculated by latitude, longitude, and altitude. These values are 

straight from the GPS unit, in World Geodetic System 1984 (WGS84) decimal degree. 

Heading represents the direction that the transit vehicle is moving toward. Time means 

GPS Time-of-the-Week (TOW), which starts at midnight Sunday in UTC. UTC stands 

for Coordinated Universal Time, which is also known as GMT, or Greenwich Mean 

Time. GPS time in UTC format is converted to Central Standard Time. The time 

combined with GPS week provides the exact date and time stamp of the measurement. 

Houston Metro used sixteen vehicles for this data collection and ID shows which 

specific transit vehicle runs for a specific data set. Speed data are calculated within the 

GPS unit itself. 
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TABLE  3-5 Structure of AVL Data 

 time latitude longitude altitude heading speed GPS 
week 

ID 

GPS 279093 29.73174 -95.31279 0.0000000 0.000 0.000 46 4244 2
GPS 279098 29.73162 -95.31322 0.0000000 0.000 0.000 46 4244 2
GPS 279103 29.73163 -95.31320 0.0000000 0.000 0.000 46 4244 2
GPS 279108 29.73166 -95.31319 0.0000000 0.000 0.000 46 4244 2
GPS 279113 29.73168 -95.31319 0.0000000 0.000 0.000 46 4244 2
GPS 279118 29.73168 -95.31316 0.0000000 0.000 0.000 46 4244 2
GPS 279123 29.73169 -95.31315 0.0000000 0.000 0.000 46 4244 2
GPS 279128 29.73168 -95.31315 0.0000000 0.000 0.000 46 4244 2
GPS 279133 29.73169 -95.31315 0.0000000 0.000 0.000 46 4244 2
GPS 279138 29.73169 -95.31315 0.0000000 0.000 0.000 46 4244 2
GPS 279143 29.73168 -95.31315 0.0000000 0.000 0.000 46 4244 2
GPS 279148 29.73168 -95.31315 0.0000000 0.000 0.000 46 4244 2
GPS 279153 29.73168 -95.31315 0.0000000 0.000 0.000 46 4244 2
GPS 279158 29.73167 -95.31315 0.0000000 0.000 0.000 46 4244 2
GPS 279163 29.73166 -95.31315 0.0000000 0.000 0.000 46 4244 2
GPS 279168 29.73166 -95.31316 0.0000000 0.000 0.000 46 4244 2
GPS 279173 29.73166 -95.31316 0.0000000 0.000 0.000 46 4244 2
GPS 279178 29.73165 -95.31316 0.0000000 0.000 0.000 46 4244 2
GPS 279183 29.73166 -95.31316 0.0000000 0.000 0.000 46 4244 2
GPS 279188 29.73166 -95.31319 0.0000000 0.000 0.000 46 4244 2
GPS 279193 29.73165 -95.31319 0.0000000 0.000 0.000 46 4244 2
GPS 279198 29.73165 -95.31319 0.0000000 0.000 0.000 46 4244 2
GPS 279203 29.73166 -95.31319 0.0000000 0.000 0.000 46 4244 2
GPS 279208 29.73166 -95.31319 0.0000000 0.000 0.000 46 4244 2
GPS 279213 29.73166 -95.31319 0.0000000 0.000 0.000 46 4244 2
GPS 279218 29.73166 -95.31319 0.0000000 0.000 0.000 46 4244 2
GPS 279223 29.73167 -95.31316 0.0000000 0.000 0.000 46 4244 2
GPS 279228 29.73167 -95.31316 0.0000000 0.000 0.000 46 4244 2
GPS 279233 29.73167 -95.31315 0.0000000 0.000 0.000 46 4244 2
GPS 279238 29.73167 -95.31315 0.0000000 0.000 0.000 46 4244 2
GPS 279243 29.73169 -95.31315 0.0000000 0.000 0.000 46 4244 2
GPS 279248 29.73169 -95.31315 0.0000000 0.000 0.000 46 4244 2
GPS 279253 29.73169 -95.31315 0.0000000 0.000 0.000 46 4244 2
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3.2 DATA REDUCTION 

To predict bus arrival time, the reduction and modification of AVL data are required. 

AVL data consists of the current location (latitude, longitude, and altitude), current time 

(time, and GPS week), speed, heading, and vehicle ID. From these raw data, input data 

for predicting bus arrival time were derived. Input variables for this dissertation are 

arrival time, dwell time, and schedule adherence at each stop. Before calculating arrival 

time, dwell time, and schedule adherence, modification of GPS errors is required.  

 

3.2.1 Description of the GPS Error   

 

3.2.1.1 Noise Error 

There are two types of error associated with GPS data. The first is noise error added by 

the U.S. DOD in order to degrade the accuracy of GPS data. This error can be corrected 

by using DGPS. The Houston Metro data were collected by DGPS and consequently the 

noise error was already eliminated. 

 

3.2.1.2 Measurement Error 

The second type of error is measurement error, which is mainly due to tall buildings in 

the downtown area. In the north area, this type of error is seldom found.  

 

First, because the tall buildings block communication between satellites and transit 

vehicles, there are some links with no data. FIGURE 3-4 shows the downtown area of 

Houston. Dots show the data location. In this figure, more than two blocks do not have 

location data received from GPS. This type of GPS data error is called “missing data” in 

this dissertation. 

 

Second, there is off route or off road error. Because of this error, it is anticipated that 

some of the observed bus locations would be off the roadway. In addition, even if the 
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bus was located on the road, there may be error associated with its exact location. 

FIGURE 3-4 shows these errors. 

 

 

FIGURE 3-4 GPS Measurement Errors 
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Third, there is another error type called “backward data” in this dissertation. FIGURE 3-

5 shows this error. In this section, the data arrive as a sequence of zero speeds. However, 

because of the aforementioned error, the location of the bus may appear to move. When 

this movement is backward, it is assumed that the bus stopped. These types of data were 

corrected as part of the pre processing step. 

 

 

 

 

 

 

FIGURE 3-5 Backward Data Error 
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3.2.2 Method for Modifying GPS Error 

The GPS measurement errors including missing data, off route/road data, and backward 

data are modified in this section. With modified GPS location data, input data for bus 

arrival time will be calculated. The input data are arrival time, dwell time, and schedule 

adherence at each stop. Even though most of the problematic data were found in the 

downtown area, north area data were also modified. In north area, missing data and 

backward data were not found and the major issue was almost off road data. These errors 

were mainly found in the center of downtown area. The major reason of error was the 

tall buildings in this area. In the outer part of the downtown area, these errors occurred 

infrequently. About 23 percent of total data were modified and the exact bus stop 

location data were used to fix these errors. How large the effect of modifying these 

errors to the result of the prediction models will not be discussed because the dwell time 

data can not be estimated without correcting the arrival time data at every stop and 

because the arrival time data can not be estimated without modifying these errors. 

 

TABLE 3-6 shows the amount of modified error. The total number of GPS location data 

in the downtown area was 37,968. Among them, 18 percent of data were off road data 

and 5 percent of data were off route data. Backward data appeared 200 times and it 

represents 0.53 percent of the total data. Missing data were modified 650 times in the 

downtown area, while 70 times in the north area. On road data are within plus/minus 25 

meters from the center line of the road. The size of one block in the downtown area is 

about 100 meters. Off road data are between plus/minus 25 and plus/minus 100 meters 

from the center line. Consequently, off road data are located within half block from the 

center line of the road. Off route data are outside plus/minus 100 meters from the center 

line of the road. The largest off route data were located 250 meters from the road. 
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TABLE  3-6 Numbers of Modified Data 

Total number of data 37,968 100.00 % 
On road data  29,153  76.78 % 
Off road data    6,913  18.21 % 
Off route data     1,902    5.01 % 
Backward data        200    0.53 % 

 

 

3.2.2.1  Missing Data 

Missing data are modified by extrapolation according to distance between the nearest 

two observed data. In FIGURE 3-6, there is a missing data area between data i-1 and 

data i+1. Because only input data at each stop are required, GPS location data are also 

needed at each bus stop only. In FIGURE 3-6, the location data of data i are required. 

With the assumption that the traveling speed between data i-1 and data i+1 is constant, 

the location of data i can be determined using extrapolation according to the distance 

between two observed data, data i-1 and data i+1. Equation 3-1 is used to estimate the 

time that the bus was at location i. 

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−×+= −+

+−

−
− )( 11

1,1

,1
1 ii

ii

ii
ii TT

X
X

TT       (3-1) 

 

Where, 

=+− 1,1 iiX Distance between data i-1 and data i+1; 

1,,11,1 +−+− += iiiiii XXX               

=iT GPS Time of data i. 

 

Missing data were modified 650 times in the downtown area, while 70 times in the north 

area. The raw GPS data were logged every five seconds. Sometimes, the duration of the 

data were larger than five seconds. TABLE 3-7 shows the number of observation data by 

the missing duration. For example, the duration of 2,700 data points were ten seconds 
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(i.e. there is one missing logged data.) However, because GPS data at only bus stops are 

required, the 2700 data points were not treated missing data in this research. The total 

number of input data for the downtown area was 3,060 (i.e. 340 data set multiply by 9 

bus stops). The 650 missing data indicated that about 21 percent of bus stops had 

missing data. In contrast, only 80 missing data points were modified for the north data 

and it was about 0.9 percent of bus stops in the area. 

 

 

 

 

FIGURE 3-6 Modification of Missing Data 
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TABLE  3-7 Number of Observation Data Points by the Missing Duration 

Missing duration Downtown area North Area 
  10 seconds   2,700  1,033 
  15 seconds   2,060     399 
  20 seconds   1,650     285 
  25 seconds   1,473     237 
  30 seconds   1,285     181 
  60 seconds      550       70 
120 seconds      155         9 
180 seconds        59         0 
240 seconds        26         0 

Total number of data 37,968 72,563 
 

 

3.2.2.2  Off Route/Road Data 

Some GPS location data indicates that the bus is off the road or off the bus route. In this 

case, the location data are pulled to the road where the bus is running with a 90-degree 

angle. FIGURE 3-7 illustrates this situation. 

 

On road data are within plus/minus 25 meters from the center line of the road. The size 

of one block in the downtown area is about 100 meters. Off road data are between 

plus/minus 25 and plus/minus 100 meters from the center line. Consequently, off road 

data are located within half block from the center line of the road. Off route data are 

outside plus/minus 100 meters from the center line of the road. The largest off route data 

were located 250 meters from the road. The average value of off road data were 37 

meters and the standard deviation was 6.4 meters. Total number of GPS location data 

points in the downtown area was 37,968. Among them, 18 percent of data were off road 

data and 5 percent of data were off route data.   
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FIGURE 3-7 Modification of Off Route/Road Data 
 

Off route/road data were modified using Equation 3-2 through Equation 3-9. According 

to FIGURE 3-8,  
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where, 

=dx difference between x coordinate of stop 1 and x coordinate of stop 9; 

=dy difference between y coordinate of stop 1 and y coordinate of stop 9; 

=1a slope of the line connecting stop 1 and stop 9; 

=1b the point of contact of the line connecting stop 1 and stop 9; 

=2a slope of the line connecting point P1 and point P2; 

=2b the point of contact of the line connecting point P1 and point P2; 

=2Px x coordinate of point P2; 

=2Py y coordinate of point P2. 

 

 

FIGURE 3-8 Illustration of Modifying Off Route/Road Error 
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3.2.2.3  Backward Data 

In FIGURE 3-9, data i+1 is moving backward. Usually the vehicle speed of data point i 

and backward data point i+1 is zero. In this case, it can be assumed that the data i+1 is 

stopped at bus stop j. Consequently, the location of data i+1 is replaced with the location 

of data i for this research. When there are more than two backward data, all backward 

data have the same location data. Backward data appeared 200 times and it represents 

0.53 percent of the total data in the downtown area. In the north area, this type of error 

occurred infrequently. 

 

 

 

 

FIGURE 3-9 Modification of Backward Data 
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3.2.3 Calculating Input Data 

In the previous section, GPS measurement error was modified. In this section, with the 

modified location data, the input data to predict bus arrival time are determined. The 

three input data are arrival time, dwell time, and schedule adherence at each stop. 

 

3.2.3.1 Arrival Time 

The GPS time of the nearest location data from each bus stop (the shortest distance from 

the bus stop) is considered as the arrival time at the stop. In FIGURE 3-10 the time of 

data i are the arrival time at bus stop j. Even though the distance between stop j and data 

i +1 is shorter than the distance between stop j and data i, the time of the nearest data 

before arriving at the bus stop is considered the arrival time at stop j.  

 ij TA =          (3-10) 

where, 

=jA  Arrival time at bus stop j; 

=iT  GPS Time of the nearest location data i. 

 

However, a bus may stop passing the bus stop sign. Consequently, when the bus is in 

some cases shown in Equation (3-11) through (3-13), the bus is considered as stopped at 

the bus stop even if it has positive speed.  

 

Case 1:  When the speed of the bus is zero; and 

   01 =+iV        (3-11) 

  where, 

=+1iV  Speed of a bus at point i+1. 

 

Case 2:  When data i is far more than data i+1; and 

   metersXX ijji 401,, ≥− +      (3-12) 

  where, 
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=jiX ,  Distance between data i and stop j. 

Case 3:  When the location of bus is less than 5 meters over the bus stop sign. 

   metersX ij 51, ≤+       (3-13) 

 

Even if a bus did not stop due to no passenger demand, the GPS time of the nearest 

location data from each bus stop is considered as the arrival time at the stop as the same 

approach. In other words, regardless of whether a bus stops at a bus stop or not, the basic 

principle of determining the arrival time is that the GPS time of the nearest location data 

from each bus stop is considered as the arrival time at the stop. 

 

 

 

 

FIGURE 3-10 Calculating Arrival Time at Bus Stop 

 

 

3.2.3.2 Dwell Time 

Dwell time is the time that a bus stays at a given bus stop once it has stopped there. This 

time depends on the passenger demand, intersection signal, schedule adherence, and the 

behavior of the bus driver. Dwell time can be measured by the difference between the 
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arrival time and the departure time at the bus stop. Dwell time at bus stop j is equal to 

the departure time at stop j minus the arrival time at stop j. This is shown in Equation 3-

14.  

 

bjjkjkjk NADW ,1=∀−=       (3-14) 

where, 

=jkW  Dwell time of bus k at bus stop j; 

=jkD Departure time of bus k at bus stop j; 

=jkA Arrival time of bus k at bus stop j; 

=bN Last bus stop of test bed b. 

         For the downtown area this is equal to 9 ( 91 =N ) and  

         for the north area this is equal to 25 ( 252 =N ). 

         b = test bed. Test bed 1 is the downtown area and test bed 2 is the north area. 

 

Departure time is determined when the stopped bus is moving. In other words, when the 

first location data appears just after the stopped data with speed zero, the time of the first 

moving data are the departure time of the bus from the bus stop.  

 

 nijk TD +=          (3-15) 

 

where, 

=+niT GPS Time of data i+n. 

          n = the number of data points that appeared between when the bus stopped and  

                 when the bus starts moving. 

                 nth bus is the first moving data after the bus stopped at bus stop j. 
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When the bus is passing without stopping at bus stop, the dwell time at the bus stop is 

definitely zero. In FIGURE 3-11, the dwell time at the bus stop j+1 is zero. In the 

downtown area of Houston, the distance between two stops is relatively short and the 

bus stops are located every other block. The bus stops are located at the near side of the 

block and the distance between the bus stop and the intersection is relatively short. 

Therefore, when the intersection signal is red, the bus tends to stay at the bus stop. 

Because the intersection signal data for the data collection period is unavailable, the 

dwell time due to intersection delay could not be determined.  In this dissertation, the 

time when the bus is forced to stay at the bus stop due to the traffic signal, this additional 

delay is included in the dwell time of the stop. 

 

 

 

FIGURE 3-11 Calculating Dwell Time at Bus Stop 
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3.2.3.3  Schedule Adherence 

Transit vehicles have a predefined schedule to follow. Because of this requirement, bus 

drivers may stay longer at bus stops if they are ahead of schedule or by-pass some stops 

if they are behind schedule. In other words, bus schedule controls the behavior of bus 

drivers, and consequently can affect the dwell time at bus stops and the link travel time. 

Schedule adherence is the difference between schedule time and actual arrival time. A 

positive value of schedule adherence means that the bus arrives late, and a negative 

value means that the bus arrives early. Schedule adherence at each stop is determined by 

Equation 3-16. 

 

jkjkjk PAS −=         (3-16) 

 

where, 

=jkS  Schedule adherence of bus k at bus stop j; 

=jkA Arrival time of bus k at bus stop j; 

=jkP  Predetermined/Scheduled arrival time of bus k at bus stop j. 

 

3.3 DATA CHARACTERISTICS 

The transit schedule and the congestion for the weekday peak hour, the non-peak hour, 

the evening, and the weekend period are different. TABLE A-1 through TABLE A-4 in 

APPENDIX A list the predetermined schedule data by the time period. The four time 

periods are weekend, weekday peak, weekday non-peak, and weekday evening. In this 

research, weekday means Monday through Friday, and weekend means Saturday and 

Sunday. It was determined based on the predetermined bus schedule shown in Appendix 

A. Weekday peak period is 6:15 A.M. ~ 8:15 A.M. and 4:15 P.M. ~ 6:10 P.M. Weekday 

non-peak period is before 6:15 A.M., 8:15 A.M. ~ 4:15 P.M., and 6:10 P.M. ~ 7:15 P.M. 

Weekday evening period is after 7:15 P.M.  
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Intuitively it would be expected that dwell time and link travel time would also be 

different by the time period. To account for these differences, data were clustered by 

time of the week and time of the day.  FIGURE 3-12 through FIGURE 3-17 show the 

pattern of arrival time, dwell time, and schedule adherence by different time periods. Not 

surprisingly, these variables are a function of time of day, and there is a wide variation in 

values.  

In general, the variability of the downtown data is larger than that of the north area data. 

In addition, it was found that the variability of dwell time is larger than that of arrival 

time. This means that the influence of dwell time on the predicted bus arrival time is 

relatively large. In the downtown area, stop 1 and stop 9 are time check points. However, 

drivers stayed longer at stop 1 and stop 5. This phenomenon could have resulted from 

various reasons, including more demand at stop 5, intersection delay, and the driver 

staying longer at these locations to stay on schedule. It would be expected that the bus 

drivers would stay longer at a time check point if they arrive early. However, the pattern 

of dwell time in FIGURE 3-12 shows that drivers tend to stay when they have passenger 

demand or intersection delays. In other words, it appears they spent more time at 

locations where they stopped rather at time check points to keep on schedule. Therefore, 

for this test bed it can not be assumed that a bus waits at a time check point when it 

arrives early. 

  

3.3.1 Arrival Time 

FIGURE 3-12 shows the plot of arrival time at each stop in the downtown area. It was 

found that the variability in the weekday non-peak period is larger than that in the 

weekday peak period and that the weekday peak period gives the least variability in 

arrival time among four time periods. TABLE 3-8 shows the mean and standard 

deviation value of the arrival time for the test bed 1, the downtown area. During 

weekday peak period, the average standard deviation for stop 3 to 9 is about 87 seconds 

while the average standard deviation for stop 3 to stop 9 is about 151 seconds during 

weekday non-peak period. This value indicates that the standard deviation of the 
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weekday non-peak period is 173 percent of that of weekday peak period. In other words, 

the variability in the weekday non-peak period is 73 percent larger than that in the 

weekday peak period. According to this table, the average standard deviation for stop 3 

to stop 9 during weekend is 128 seconds, weekday peak is 87 seconds, weekday non-

peak is 151 seconds, and weekday evening is 147 seconds. Consequently, the weekday 

peak period gives the least variability in arrival time among four time periods. This 

result is expected given that less variable traffic conditions result in less variability in 

arrival time in the weekday peak period.  

 

 

 

FIGURE 3-12 Arrival Time by Time Period of the Test Bed 1 (Downtown) 
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TABLE  3-8 Mean and Standard Deviation of Arrival Time for the Test Bed 1 
(Downtown) 

Time Period Stop Number Mean (sec) Standard Deviation (sec) 
1     0.5     0.5 
2   99.2   92.3 
3 171.6   96.8 
4 240.5 104.2 
5 319.7 116.0 
6 400.7 141.0 
7 456.4 145.5 
8 502.9 144.5 

Weekend 

9 551.0 147.6 
1     0.5     0.5 
2 108.9   68.1 
3 191.3   80.9 
4 269.3   81.1 
5 362.1   90.9 
6 424.1   94.9 
7 496.2   88.7 
8 562.8   82.5 

Weekday Peak 

9 621.6   89.9 
1     0.5     0.5 
2 107.8   87.3 
3 189.6 123.2 
4 265.7 126.8 
5 359.5 131.6 
6 475.8 168.1 
7 544.4 167.6 
8 592.8 166.2 

Weekday Non-Peak 

9 645.2 170.2 
1     0.5     0.5 
2   83.5   80.1 
3 168.9 108.9 
4 249.4 137.4 
5 454.6 190.8 
6 648.9 145.4 
7 710.8 141.8 
8 769.3 147.8 

Weekday Evening 

9 813.3 157.1 
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FIGURE 3-13 shows the plot of arrival time at each stop in the north area. TABLE 3-9 

through TABLE 3-12 show the mean and standard deviation value of the arrival time for 

the test bed 2, the north area. During weekday peak period, the standard deviation for 

stop 3 to 25 is about 57 seconds while the standard deviation for stop 3 to stop 25 is 

about 80 seconds during weekday non-peak period. This value indicates that the standard 

deviation of the weekday non-peak period is 141 percent of that of weekday peak period. 

In other words, the variability in the weekday non-peak period is 41 percent larger than 

that in the weekday peak period. According to this table, the average standard deviation 

for stop 3 to stop 25 during weekend is 54 seconds, weekday peak is 57 seconds, 

weekday non-peak is 80 seconds, and weekday evening is 92 seconds. Like the 

downtown area, the variability in the weekday peak period is less than that in the 

weekday non-peak period. However, in case of the north area, the standard deviation in 

the weekend period is slightly less than that in the weekday peak period. Consequently, 

the weekend period gives the least variability in arrival time among four time periods. 

However, in general, the result for the north area is similar to that for the downtown area. 

In other words, the variability in the weekday peak periods is less than those in the 

weekday non-peak and weekday evening. This result is expected given that less variable 

traffic conditions result in less variability in arrival time in the weekday peak period.  

 

In general, the north area had less variability for all time periods. It is expected that the 

downtown area experiences more variable traffic conditions due to traffic congestion 

resulting in more variable arrival time. 
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FIGURE 3-13 Arrival Time by Time Period of the Test Bed 2 (North Area) 
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TABLE  3-9 Mean and Standard Deviation of Arrival Time for the Test Bed 2 
(North Area, Weekend) 

Stop Number Mean (sec) Standard Deviation (sec) 
  1     0.5   0.5 
  2   12.9   6.7 
  3   31.3 10.6 
  4   47.8 12.6 
  5   63.3 14.6 
  6   91.9 25.2 
  7 127.3 39.4 
  8 144.7 40.6 
  9 163.3 41.7 
10 185.5 44.2 
11 200.7 46.8 
12 223.7 50.0 
13 272.8 61.2 
14 293.8 63.1 
15 311.2 64.5 
16 331.4 66.1 
17 349.1 66.8 
18 377.8 69.2 
19 391.5 69.8 
20 414.8 70.0 
21 432.7 71.8 
22 466.8 71.7 
23 504.6 74.3 
24 545.2 82.6 
25 569.5 83.4 

 

 



 59

TABLE  3-10 Mean and Standard Deviation of Arrival Time for the Test Bed 2 
(North Area, Weekday Peak) 

Stop Number Mean (sec) Standard Deviation (sec) 
  1     0.5   0.5 
  2   18.9 10.3 
  3   45.7 19.7 
  4   72.3 28.5 
  5   98.9 34.4 
  6 133.6 36.1 
  7 174.5 38.6 
  8 196.1 38.3 
  9 215.2 39.4 
10 242.6 44.1 
11 258.6 46.3 
12 283.4 50.3 
13 320.7 54.6 
14 341.6 54.8 
15 365.3 56.7 
16 387.3 57.3 
17 423.8 69.8 
18 459.7 73.4 
19 487.2 75.0 
20 516.2 78.4 
21 536.9 80.9 
22 569.5 82.2 
23 610.5 82.7 
24 654.0 84.5 
25 684.9 85.6 
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TABLE  3-11 Mean and Standard Deviation of Arrival Time for the Test Bed 2 
(North Area, Weekday Non-Peak) 

Stop Number Mean (sec) Standard Deviation (sec) 
  1     0.5     0.5 
  2   15.7     9.9 
  3   43.5   57.9 
  4   62.0  59.2 
  5   79.4  60.0 
  6 108.0   60.9 
  7 140.4   62.3 
  8 158.5   62.7 
  9 176.6   63.6 
10 202.5   68.7 
11 217.3   69.7 
12 239.0   71.1 
13 278.6   74.6 
14 298.0   76.2 
15 316.5   77.9 
16 335.7   79.7 
17 362.3   91.8 
18 393.2   95.0 
19 407.1   97.6 
20 431.5   98.8 
21 452.5 100.1 
22 484.4 103.2 
23 525.6 105.5 
24 566.0 106.9 
25 591.6 107.3 
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TABLE  3-12 Mean and Standard Deviation of Arrival Time for the Test Bed 2 
(North Area, Weekday Evening) 

Stop Number Mean (sec) Standard Deviation (sec) 
  1     0.5     0.5 
  2   14.4     8.7 
  3   52.0   66.7 
  4   68.2   67.7 
  5   85.3   69.0 
  6 110.2   71.4 
  7 139.4   73.0 
  8 155.1   73.4 
  9 173.9   76.2 
10 200.1   80.4 
11 214.5   83.4 
12 240.0   83.4 
13 285.0   88.8 
14 303.7   90.4 
15 318.7   91.7 
16 336.5   91.7 
17 353.9   92.7 
18 407.2 105.6 
19 428.2 109.4 
20 453.6 117.9 
21 469.8 119.6 
22 495.3 119.4 
23 529.2 117.8 
24 570.5 114.9 
25 589.6 115.8 

 

 

3.3.2 Dwell Time 

FIGURE 3-14 shows the plot of dwell time at each bus stop in the downtown area. 

Dwell time is a function of passenger demand, intersection signal and delay, schedule 

adherence, and the behavior of the bus driver.  
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FIGURE 3-14 Dwell Time by Time Period of the Test Bed 1 (Downtown) 
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TABLE 3-13 presents the mean and standard deviation value of the dwell time for the 

test bed 1, the downtown area. It was found that the buses stayed for a long time at stop 

1 and stop 5. For example, during the weekend period, the mean value of the dwell time 

at bus stop 1 is 24.7 seconds and at stop 5 is 10.1 seconds, while at other stops is 

between 0.4 to 3.8 seconds. During the same time period, the standard deviation of the 

dwell time at stop 1 is 73.2 seconds and at stop 5 is 46.5 seconds, while at other stops, it 

is between 2.5 to 7.5 seconds. 

 

Stop 1 and stop 9 are the schedule time check points for bus drivers to follow the 

predefined schedule. Therefore, it is hypothesized that the longer dwell time at stop 1 

results from schedule adherence. In other words, when the bus arrived ahead of the 

schedule, it stayed longer even without passenger demand. However, because stop 5 is 

not the time check point, it is likely that the high dwell time was due to demand or 

intersection signal. They might stay at stop 5 to keep on schedule trying not to stop again 

at stop 9 that has usually less passenger demand. 
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TABLE  3-13 Mean and Standard Deviation of Dwell Time for the Test Bed 1 
(Downtown) 

Time Period Stop Number Mean (sec) Standard Deviation (sec) 
1 24.7 73.2 
2   3.6   7.1 
3   1.5   4.0 
4   3.8   7.2 
5 10.1 46.5 
6   1.9   5.8 
7   2.6   7.5 
8   0.4   2.5 

Weekend 

9   1.8   5.1 
1 32.1 53.7 
2   9.7 18.4 
3   8.6 21.5 
4   6.8 15.7 
5   3.9   7.3 
6   3.1   7.3 
7 10.4 23.2 
8   4.3 14.8 

Weekday Peak 

9   7.8 10.1 
1 33.6 76.1 
2   7.3 22.9 
3   2.6   6.4 
4   5.0 11.3 
5 20.9 56.0 
6   3.6 11.8 
7   4.3   8.6 
8   3.0   6.3 

Weekday Non-Peak 

9   3.7   6.9 
1 15.4 48.4 
2   3.1   8.3 
3   3.2   7.8 
4 12.1 40.0 
5 92.7 125.1 
6   7.3 16.2 
7   6.5 13.0 
8   2.2   6.7 

Weekday Evening 

9   3.3   6.2 
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TABLE 3-14 shows the total and average dwell time for the test bed 1, the downtown 

area. According to this table, the average dwell time in the weekend period is 5.6 

seconds, in the weekday peak is 9.6 seconds, in the weekday non-peak period is 9.3 

seconds, and in the weekday evening is 16.2 seconds. It was found that the dwell time 

during the weekend period is the shorter than that during other time periods. The dwell 

time during three weekday periods is larger than that during weekend period. This 

phenomenon would result from larger passenger demand during weekdays. 

 

Interestingly, relatively long dwell time such as over 200 seconds or 300 seconds was 

found infrequently during the weekday peak period. TABLE 3-15 shows the number of 

data that the dwell time is longer than 100, 200, and 300 seconds. It was also found that 

during the weekday peak period, buses did not stay longer at stops. However, during 

other time periods, bus drivers stayed longer to follow the schedule. It is likely that the 

traffic congestion of weekday peak periods resulted in delay and the delayed buses 

tended not to stay longer at stops. The dwell time of more than 300 seconds would not 

result from high passenger demand. The extremely long dwell time would include 

passenger demand, intersection delay, and driver’s behavior. It is likely that bus drivers 

stayed longer when and where they stopped due to demand and intersection delay. This 

behavior usually did not happen in weekday peak periods. 

 

 

TABLE  3-14 Total and Average Dwell Time by the Time Period for the Test Bed 1 
(Downtown) 

Time Period Total Dwell Time 
(sec) 

Number of 
Observation 

Average Dwell 
Time (sec) 

Weekend 7,382 147 5.6 
Weekday Peak 5,895 68 9.6 

Weekday Non-Peak 7,140 85 9.3 
Weekday Evening 5,828 40 16.2 
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TABLE  3-15 Number of Long Dwell Time by the Time Period for the Test Bed 1 
(Downtown) 

Time Period Over 100 seconds Over 200 seconds Over 300 seconds 
Weekend 1.1 % 15.9 % 4.0 % 

Weekday Peak 2.1 %   1.2 % 0.9 % 
Weekday Non-Peak 1.7 %   9.5 % 2.6 % 
Weekday Evening 4.4 %   4.8 % 2.1 % 

 

 

FIGURE 3-15 shows the plot of dwell time at each stop in the north area. In this north 

area, there are two time check points, stop 6 and stop 20.  

 

 

FIGURE 3-15 Dwell Time by Time Period of the Test Bed 2 (North Area) 
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TABLE 3-16 through TABLE 3-19 show the mean and standard deviation value of the 

dwell time for the test bed 2, the north area by the time period, weekend, weekday peak, 

weekday non-peak, and weekday evening, respectively.  

 

It was found that the buses stayed for a long time at stop 6. For example, according to 

TABLE 3-16, during the weekend period, the mean value of the dwell time at bus stop 6 

is 11.4 seconds, while at other stops is between 0.1 to 4.0 seconds. During the same time 

period, the standard deviation of the dwell time at stop 6 is 19.8 seconds, while at other 

stops is between 0.6 to 6.0 seconds.  

 

Sometimes, the dwell time at other stops is relatively longer than the dwell time at most 

stops, it has no regularity. Stop 6 is the schedule time check points for bus drivers to 

follow the predefined schedule. Therefore, it is hypothesized that the longer dwell time 

at stop 6 results from schedule adherence. In other words, when the bus arrived ahead of 

the schedule, it stayed longer even without passenger demand.  However, the dwell time 

at stop 20 has the same pattern. 
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TABLE  3-16 Mean and Standard Deviation of Dwell Time for the Test Bed 2 
(North Area, Weekend) 

Stop Number Mean (sec) Standard Deviation (sec) 
  1   0.3   2.7 
  2   0.4   2.5 
  3   0.0   0.4 
  4   0.0   0.0 
  5   0.4   3.8 
  6 11.4 19.8 
  7   0.0   0.0 
  8   0.3   2.0 
  9   0.1   0.6 
10   0.7   3.2 
11   0.0   0.4 
12 10.8 23.2 
13   0.5   1.9 
14   0.3   1.9 
15   0.3   2.5 
16   0.3   3.0 
17   0.3   1.7 
18   2.2   5.2 
19   0.3   1.8 
20   0.2   1.3 
21   1.1   6.0 
22   1.3   4.4 
23   4.0 23.9 
24   0.5   1.7 
25   0.5   2.4 
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TABLE  3-17 Mean and Standard Deviation of Dwell Time for the Test Bed 2 
(North Area, Weekday Peak) 

Stop Number Mean (sec) Standard Deviation (sec) 
  1   0.2   1.1 
  2   2.5   5.0 
  3   1.3   5.0 
  4   3.3   8.4 
  5   0.1   0.8 
  6 14.8 23.6 
  7   0.2   1.1 
  8   0.0   0.0 
  9   0.1   0.8 
10   0.9   3.5 
11   0.0   0.0 
12   3.8   7.9 
13   0.1   0.8 
14   0.6   1.6 
15   1.3   3.8 
16   0.1   0.8 
17   0.0   0.0 
18 13.0 50.2 
19   0.8   2.6 
20   0.0   0.0 
21   3.5 10.4 
22   2.3   7.3 
23   3.2   7.0 
24   2.2   8.7 
25   6.5 10.4 
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TABLE  3-18 Mean and Standard Deviation of Dwell Time for the Test Bed 2 
(North Area, Weekday Non-Peak) 

Stop Number Mean (sec) Standard Deviation (sec) 
  1 0.1   1.1 
  2 8.7 50.9 
  3 0.0   0.5 
  4 0.2   2.0 
  5 0.2   1.2 
  6 8.4 10.7 
  7 0.0   0.5 
  8 0.3   1.7 
  9 1.8 18.7 
10 0.5   2.2 
11 0.0   0.5 
12 5.3 11.2 
13 0.1   1.5 
14 0.8   4.4 
15 0.2   1.0 
16 0.5   2.1 
17 3.1 31.4 
18 1.7   5.3 
19 1.0   3.4 
20 0.0   0.5 
21 2.3   5.0 
22 2.2   8.0 
23 3.0   5.9 
24 0.3   1.4 
25 1.0   4.3 
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TABLE  3-19 Mean and Standard Deviation of Dwell Time for the Test Bed 2 
(North Area, Weekday Evening) 

Stop Number Mean (sec) Standard Deviation (sec) 
  1 0.0   0.0 
  2 18.8 61.7 
  3 0.0   0.0 
  4 0.0   0.0 
  5 0.0   0.0 
  6 7.0 11.1 
  7 0.0   0.0 
  8 0.0   0.0 
  9 3.4 19.1 
10 1.0   4.1 
11 0.3   1.6 
12 8.9 13.4 
13 0.0   0.0 
14 0.1   0.8 
15 0.0   0.0 
16 0.1   0.8 
17 0.0   0.0 
18 1.8   4.3 
19 4.4 26.1 
20 0.0   0.0 
21 0.1   0.8 
22 0.1   0.8 
23 6.8 36.3 
24 0.0   0.0 
25 0.3   1.6 
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TABLE 3-20 shows the total and average dwell time for the test bed 1, the downtown 

area. According to this table, the average dwell time in the weekend period is 1.4 

seconds, in the weekday peak is 2.4 seconds, in the weekday non-peak period is 1.7 

seconds, and in the weekday evening is 2.1 seconds. It was found that the dwell time 

during the weekend period is the shorter than that during other time periods. The dwell 

time during three weekday periods is larger than that during weekend period. This 

phenomenon would result from larger passenger demand during weekdays. In general, 

the dwell time in the north area is shorter than that in the downtown area. This result 

would result from relatively lower demand, less traffic volume, etc. 

 

 

TABLE  3-20 Total and Average Dwell Time by the Time Period for the Test Bed 2 
(North Area) 

Time Period Total Dwell Time 
(sec) 

Number of 
Observation 

Average Dwell 
Time (sec) 

Weekend 5,028 139 1.4 
Weekday Peak 2,674   44 2.4 

Weekday Non-Peak 4,334 103 1.7 
Weekday Evening 2,115   40 2.1 

 

 

Interestingly, relatively long dwell time such as over 200 seconds was found 

infrequently during the weekday peak period. TABLE 3-21 shows the number of data 

that the dwell time is longer than 100, 200, and 300 seconds. It was also found that 

during the weekday peak period, buses did not stay longer at stops. However, during 

other time periods, bus drivers stayed longer to follow the schedule. It is likely that the 

traffic congestion of weekday peak periods resulted in delay and the delayed buses 

tended not to stay longer at stops. The dwell time of more than 300 seconds would not 

result from high passenger demand. The extremely long dwell time would include 

passenger demand, intersection delay, and driver’s behavior. It can be believed that bus 

drivers stayed longer when and where they stopped due to demand and intersection delay. 
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This behavior usually did not happen in weekday peak periods. In general, the amount of 

relatively long dwell time in the north area is less than that in the downtown area. 

 

 

TABLE  3-21 Number of Long Dwell Time by the Time Period for the Test Bed 2 
(North Area) 

Time Period Over 100 seconds Over 200 seconds Over 300 seconds 
Weekend 0.14 % 5.53 % 0.00 % 

Weekday Peak 0.36 % 1.65 % 1.00 % 
Weekday Non-Peak 0.19 % 7.13 % 2.40 % 
Weekday Evening 0.60 % 5.67 % 0.67 % 

 

 

3.3.3 Schedule Adherence 

FIGURE 3-16 shows the schedule adherence at each stop in the downtown area. Transit 

vehicles have a predefined schedule to follow. Schedule adherence was calculated by 

subtracting the scheduled data from the actual arrival time. A positive value of schedule 

adherence means that bus was delayed at the stop while a negative value means that the 

bus arrived early.  
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FIGURE 3-16 Schedule Adherence by Time Period of the Test Bed 1 (Downtown) 
 

 

 

 

  

 

 

 

 

 



 75

TABLE 3-2 shows the schedule adherence at each stop in the downtown area. The mean 

value of the schedule adherence during the weekend period is 91 seconds, weekday peak 

period is minus 29 seconds, weekday non-peak period is 40 seconds, and weekday 

evening is 159 seconds. 

 

For this test bed, it was found that there is a pattern for the buses during the weekday 

peak period to arrive ahead of schedule. This result did not meet the expectation that 

buses during peak period tend to arrive beyond schedule. This result would be different 

in other sites and the result can not be generalized. 

 

The standard deviation of the schedule adherence is larger than that of the arrival time 

and the dwell time. In other words, the variability in the schedule adherence is larger 

than that in the other two variables. 
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TABLE  3-22 Mean and Standard Deviation of Schedule Adherence for the Test 
Bed 1 (Downtown) 

Time Period Stop Number Mean (sec) Standard Deviation (sec) 
1   45.1 179.1 
2   81.3 172.6 
3   85.2 177.2 
4   88.6 182.7 
5 101.0 190.3 
6 118.2 185.2 
7 115.2 177.7 
8 105.0 162.9 

Weekend 

9   80.6 154.8 
1 -86.6 199.3 
2 -50.4 182.4 
3 -38.2 193.7 
4 -32.9 195.6 
5     3.0 200.7 
6 -14.7 213.0 
7 -16.8 215.3 
8   -8.8 200.4 

Weekday Peak 

9 -15.3 176.6 
1 -36.3 209.4 
2     3.5 178.2 
3   15.4 196.1 
4   18.6 188.1 
5   48.0 185.0 
6   91.3 187.4 
7   91.3 185.3 
8   71.8 172.0 

Weekday Non-Peak 

9   52.0 168.0 
1 122.8 145.0 
2   96.9 145.8 
3   81.6 164.4 
4   58.8 203.6 
5 188.1 181.9 
6 282.2 106.7 
7 246.2   95.3 
8 205.6   76.9 

Weekday Evening 

9 147.7   89.7 
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FIGURE 3-17 shows the schedule adherence at each stop in the north area.  

 

 

 

FIGURE 3-17 Schedule Adherence by Time Period of the Test Bed 2 (North Area) 
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TABLE 3-23 through TABLE 3-26 show the schedule adherence at each stop in the 

north area by the time period, weekend, weekday peak, weekday non-peak, and weekday 

evening, respectively.  

 

The standard deviation of the schedule adherence during the weekend period is 202 

seconds, weekday peak period is minus 271 seconds, weekday non-peak period is 201 

seconds, and weekday evening period is 182 seconds. For this test bed, it was found that 

the variability in the schedule adherence is larger than that in the arrival time and the 

dwell time.  

 

Like the downtown area, it was found that there is a pattern for the buses during the 

weekday peak period to arrive ahead of schedule. In addition to the weekday peak period, 

the schedule adherence during the weekday non-peak period also has negative values 

meaning for the buses to arrive ahead of schedule. The standard deviation of the 

schedule adherence is larger than that of the arrival time and the dwell time. In other 

words, the variability in the schedule adherence is larger than that in the other two 

variables. 
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TABLE  3-23 Mean and Standard Deviation of Schedule Adherence for the Test 
Bed 2 (North Area, Weekend) 

Stop Number Mean (sec) Standard Deviation (sec) 
  1 184.5 207.9 
  2 168.4 206.8 
  3 158.9 206.2 
  4 147.3 205.9 
  5 134.8 204.2 
  6 135.4 202.5 
  7 140.8 202.9 
  8 128.2 202.7 
  9 116.8 203.9 
10 109.1 202.3 
11   94.3 201.6 
12   87.2 202.5 
13 106.3 205.4 
14   97.3 205.3 
15   84.7 205.5 
16   74.9 205.9 
17   62.6 206.2 
18   61.3 205.8 
19   45.1 205.2 
20   38.3 204.1 
21   56.2 202.7 
22   90.3 199.5 
23 128.1 197.3 
24 168.8 188.0 
25 193.1 185.7 
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TABLE  3-24 Mean and Standard Deviation of Schedule Adherence for the Test 
Bed 2 (North Area, Weekday Peak) 

Stop Number Mean (sec) Standard Deviation (sec) 
  1   22.5 274.0 
  2     6.1 276.0 
  3   -1.9 283.5 
  4 -10.1 286.3 
  5 -18.3 289.0 
  6 -18.4 290.8 
  7   -7.6 277.3 
  8 -16.0 277.8 
  9 -26.9 277.4 
10 -29.5 278.1 
11 -43.5 280.7 
12 -48.7 284.8 
13 -41.3 288.4 
14 -50.4 289.2 
15 -56.8 288.4 
16 -64.7 288.0 
17 -58.3 261.1 
18 -52.3 262.6 
19 -54.8 256.0 
20 -55.9 248.9 
21 -35.2 245.0 
22   -2.5 241.7 
23   38.5 242.8 
24   82.0 242.3 
25 112.8 246.3 
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TABLE  3-25 Mean and Standard Deviation of Schedule Adherence for the Test 
Bed 2 (North Area, Weekday Non-Peak) 

Stop Number Mean (sec) Standard Deviation (sec) 
  1   67.0 216.2 
  2   49.1 214.9 
  3   44.2 215.5 
  4   29.9 214.1 
  5   14.6 213.2 
  6   10.5 212.3 
  7   13.3 211.1 
  8     1.8 209.9 
  9   -9.6 208.3 
10 -13.3 207.8 
11 -28.1 208.0 
12 -35.9 207.3 
13 -25.9 205.1 
14 -36.1 203.8 
15 -47.2 201.0 
16 -57.6 198.8 
17 -60.5 194.2 
18 -59.2 191.2 
19 -74.9 192.1 
20 -79.6 191.9 
21 -58.6 189.8 
22 -26.7 188.9 
23   14.5 187.2 
24   54.8 187.6 
25   80.5 187.5 
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TABLE  3-26 Mean and Standard Deviation of Schedule Adherence for the Test 
Bed 2 (North Area, Weekday Evening) 

Stop Number Mean (sec) Standard Deviation (sec) 
  1 127.1 184.1 
  2 112.9 182.8 
  3 122.4 188.1 
  4 110.5 187.6 
  5   99.5 186.3 
  6   96.3 187.9 
  7   99.4 185.7 
  8   89.0 185.0 
  9   81.7 186.1 
10   81.8 186.8 
11   70.1 187.1 
12   69.5 184.4 
13   88.4 181.4 
14   81.0 179.9 
15   69.9 180.8 
16   61.6 179.5 
17   52.9 178.9 
18   80.1 179.0 
19   75.0 175.4 
20   78.2 179.8 
21   94.4 179.2 
22 119.9 176.4 
23 153.8 173.1 
24 195.1 177.6 
25 214.2 175.2 

 

 

3.4 CONCLUDING REMARKS 

In this chapter, the test bed and the data reduction process were described. To consider 

traffic congestion for predicting bus arrival time, a bus route running on congested 

corridor of Houston was selected. To verify the accuracy of the predicted model in a 

different environment, two test sites were chosen: the down town area and the north area. 

Even though the Houston Metro used transit vehicles equipped with DGPS, some GPS 

measurement errors still exist. To predict bus arrival time accurately, accurate input data 
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are essential. The second section of this chapter discussed the characteristics of the 

errors and the method for modifying these errors. With these modified GPS location data, 

the three input data were determined. The three input variables were also described in 

this chapter: arrival time, dwell time, and schedule adherence. Unexpectedly, dwell time 

shows more variability and uncertainty than arrival time. Consequently, there should be 

a need for a prediction model that can explain this uncertainty. In chapter IV, three 

prediction models will be developed. 
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CHAPTER IV 

MODEL DEVELOPMENT 

4  

In the previous chapter, the GPS location data were modified and the input data were 

calculated. With the modified input data, prediction models are developed in this chapter. 

A number of modeling techniques were used in this study including a simple statistical 

model (historical data based model), a multi linear regression model, and an artificial 

neural network model. The input variables are arrival time, dwell time, and schedule 

adherence at each stop.  

 

In order to consider traffic congestion and different travel patterns, the data set is 

clustered into four time periods: weekend, weekday peak, weekday non-peak, and 

weekday evening. In this dissertation, the term “non-clustering data set” indicates the 

data set before this clustering. The three input variables and link travel time were also 

clustered by time period. In addition, schedule adherence was calculated by subtracting 

the scheduled arrival time from the actual arrival time. A positive value of schedule 

adherence means that bus was delayed at the stop while a negative value means that the 

bus arrived early. The output variable of the model is the forecast arrival time at each 

stop. 

 

In this chapter, a number of model specifications mbtnM were developed and tested. The 

subscript m refers to the model classification and three model classifications were used 

in this research: a historical data base model, a regression model, and an artificial neural 

network model. The subscript b refers to the test bed and two test beds were used: the 

downtown area and the north area. The subscript t refers to the time period and four time 

periods were used: the weekend period, the weekday peak period, the weekday non-peak 

period, and the weekday evening period. The subscript n refers to the model number. 

Model n used the input data of previous n stops. The subscripts are shown in TABLE 4-1. 
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TABLE  4-1 Model Specifications 

1 Historical data based model 
2 Regression model Script m 
3 Artificial neural network model 
1 Downtown area Script b 2 North area 
1 Weekend period 
2 Weekday peak period 
3 Weekday non-peak period Script t 

4 Weekday evening period 
1 Model uses input data of stop 1 and predicts arrival 

time at stop 2 through 9 (for the downtown area) or 
25 (for the north area) 

2 Model uses input data of stop 1 to 2 and predicts 
arrival time at stop 3 through 9 (for the downtown 
area) or 25 (for the north area) 

3 Model uses input data of stop 1 to 3 and predicts 
arrival time at stop 4 through 9 (for the downtown 
area) or 25 (for the north area) 

4 Model uses input data of stop 1 to 4 and predicts 
arrival time at stop 5 through 9 (for the downtown 
area) or 25 (for the north area) 

. 

. 

. 

. 

. 

. 

. 

. 
23 Model uses input data of stop 1 to 23 and predicts 

arrival time at stop 24 through 25 (for the north area) 

Script n 

24 Model uses input data of stop 1 to 24 and predicts 
arrival time at stop 25 (for the north area) 

 

 

For example, in the downtown area, the test bed for this research has nine bus stops. 

Consequently, eight separate models were developed for each of the three techniques 

analyzed. For example, Model 1 uses the arrival time, dwell time, and schedule 

adherence data of stop 1 as input variables and predicts the arrival time at stop 2 through 

stop 9. In contrast, Model 5 uses the input data from the first five stops and predicts 

arrival times at stops 6 through 9. In the north area, there are 25 bus stops and 
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consequently 24 models were developed using the same approach. The generalization of 

this model structure is as follows: 

 

Model :mbtnM   

Input data = Arrival time, dwell time, and scheduled adherence  

                     at stop 1 through n; 

Output = Predicted arrival time at stop n+1 through bN . 

 

where,  

=mbtnM model n with m classification, b test bed, and t time period; 

m = model classification; 

    = 1 (historical data based model), 

    = 2 (regression model), and 

    = 3 (artificial neural network model)  

b = test bed;  

   = 1 (test bed 1: downtown area) and  

   = 2 (test bed 2: north area) 

t = time period; 

   = 1 (weekend period), 

   = 2 (weekday peak period), 

   = 3 (weekday non-peak period), and 

   = 4 (weekday evening period) 

n = model number; 

=bN  Number of last bus stop of test bed b. 

       =1 (downtown area) and  

       =2 (north area) 

 

TABLE 4-2 and TABLE 4-3 show the structure of the models for test beds 1 and 2, 

respectively..  
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TABLE  4-2 Model Structure of the Test Bed 1 (Downtown) 

Model Input data Output 

11tmM  
A1k 
W1k 
S1k 

A2k, A3k, A4k, A5k, A6k, A7k, A8k, A9k 

21tmM  A1k, A2k 
W1k,W2k 
S1k, S2k 

A3k, A4k, A5k, A6k, A7k, A8k, A9k 

31tmM  A1k, A2k, A3k 
W1k,W2k,W3k 
S1k, S2k, S3k 

A4k, A5k, A6k, A7k, A8k, A9k 

41tmM  A1k, A2k, A3k, A4k 
W1k,W2k,W3k,W4k 
S1k, S2k, S3k, S4k 

A5k, A6k, A7k, A8k, A9k 

51tmM  A1k, A2k, A3k, A4k, A5k 
W1k,W2k,W3k,W4k,W5k 
S1k, S2k, S3k, S4k, S5k 

A6k, A7k, A8k, A9k 

61tmM  A1k, A2k, A3k, A4k, A5k, A6k 
W1k,W2k,W3k,W4k,W5k,W6k 
S1k, S2k, S3k, S4k, S5k, S6k 

A7k, A8k, A9k 

71tmM  A1k, A2k, A3k, A4k, A5k, A6k, A7k 
W1k,W2k,W3k,W4k,W5k,W6k,W7k 
S1k, S2k, S3k, S4k, S5k, S6k, S7k 

A8k, A9k 

81tmM  A1k, A2k, A3k, A4k, A5k, A6k, A7k, A8k 
W1k,W2k,W3k,W4k,W5k,W6k,W7k,W8k 
S1k, S2k, S3k, S4k, S5k, S6k, S7k, S8k 

A9k 

=jkA Arrival time of bus k at bus stop j; 

=jkW  Dwell time of bus k at bus stop j; 

=jkS  Schedule adherence of bus k at bus stop j. 
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TABLE  4-3 Model Structure of the Test Bed 2 (North Area) 

Model Input data Output 

12tmM  
A1k 
W1k 
S1k 

A2k, A3k, A4k,,,, A23k, A24k, A25k 

22tmM  A1k, A2k 
W1k,W2k 
S1k, S2k 

A3k, A4k, A5k,,,, A23k, A24k, A25k 

32tmM  A1k, A2k, A3k 
W1k,W2k,W3k 
S1k, S2k, S3k 

A4k, A5k, A6k,,,, A23k, A24k, A25k 

42tmM  A1k, A2k, A3k, A4k 
W1k,W2k,W3k,W4k 
S1k, S2k, S3k, S4k 

A5k, A6k, A7k,,,,,,, A23k, A24k, A25k 

52tmM  A1k, A2k, A3k, A4k, A5k 
W1k,W2k,W3k,W4k,W5k 
S1k, S2k, S3k, S4k, S5k 

A6k, A7k, A8k,,,, A23k, A24k, A25k 

62tmM  A1k, A2k, A3k, A4k, A5k, A6k 
W1k,W2k,W3k,W4k,W5k,W6k 
S1k, S2k, S3k, S4k, S5k, S6k 

 A7k, A8k,,,, A23k, A24k, A25k 

72tmM  A1k, A2k, A3k, A4k, A5k, A6k, A7k 
W1k,W2k,W3k,W4k,W5k,W6k,W7k 
S1k, S2k, S3k, S4k, S5k, S6k, S7k 

A8k, A9k,,,,, A24k, A25k 

. 

. 

. 

. 
 

. 

. 

. 

. 
 

. 

. 

. 

. 
 

222tmM  
A1k, A2k, A3k,,,,  A20k, A21k, A22k 
W1k,W2k,W3k,,,,,W20k,W21k,W22k 
S1k, S2k, S3k,,,,,,  S20k, S21k, S22k 

A23k, A24k, A25k 

232tmM  A1k, A2k, A3k,,,, A21k, A22k, A23k 
W1k,W2k,W3k,,,,W21k,W22k,W23k 
S1k, S2k, S3k,,,,,, S21k, S22k, S23k 

A24k, A25k 

242tmM  A1k, A2k, A3k,,,, A22k, A23k, A24k 
W1k,W2k,W3k,,,,W22k,W23k,W24k 
S1k, S2k, S3k,,,,,, S22k, S23k, S24k 

A25k 

=jkA Arrival time of bus k at bus stop j; 

=jkW  Dwell time of bus k at bus stop j; 

=jkS  Schedule adherence of bus k at bus stop j. 
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4.1 HISTORICAL DATA BASED MODELS 

In this section, a simple statistical model, (i.e. a historical data based model), is 

developed. The historical data based models for link travel time and bus arrival time are 

shown in Equations 4-1 and 4-2, respectively.  FIGURE 4-1 illustrates link travel time, 

dwell time, and arrival time. First, the link travel time between transit stops is calculated. 

It can be seen in Equation 4-1 that this is a function of the difference in the average time 

of arrival of the downstream stops and the average departure time (i.e. arrival time + 

dwell time) at the upstream stop. Subsequently a recursive formula is used to predict the 

arrival time at the remaining stops as shown in Equation 4-2. Link travel time does 

include stopped delay at intersections but does not include dwell times. The arrival time 

calculations are done only at transit stops and only when the bus first arrives at a given 

stop. These constraints could be generalized, but they were useful for limiting the 

number of models that were calibrated in this study. 

 

TNM tbijtjttjit ,1,,)(,1 =∀=∀+−= + ϖαατ    (4-1) 

 

where, 

=jtτ  Estimated link travel time from stop i to stop j+1 departing during time period t; 

=jtα Average arrival time at stop j departing during time period t; 

=jtϖ Average dwell time at stop j departing during time period t ;   

T = Number of time periods. For the test bed, this is equal to 4 ;  

       weekend, weekday peak, weekday off-peak, and weekday evening ; 

M = Current bus stop. i.e. from 1 to 1−bN . 

  

TNMAA tj

N

Mi
jt

N

Mi
jtkMtkjt ,1,,1

11

=∀+=∀++= ∑∑
−

=

−

=

ϖτ   (4-2) 

 

where,  
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=kjtA Forecast arrival time for bus k at bus stop j departing during time period t; 

=kMtA Observed arrival time for bus k at current stop M departing during time period t. 

 

The results of the historical data based model can be seen in next chapter with the results 

of the other models. 

 

 

 

 

 

FIGURE 4-1 Arrival Time, Link Travel Time and Dwell Time 
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4.2 MULTI LINEAR REGRESSION MODELS 

In this section, multi linear regression models are developed. To develop regression 

models, the input variables should not be inter-correlated. In this research, arrival time, 

and dwell time and schedule adherence at each stop were used as the input variables. 

The correlation coefficients are calculated by Equation 4-3. A value close to one means 

that the two independent variables are highly correlated and they should not both be used 

in the regression model. 

 

)(var)(var
)(var

2211

21

XXianceCoXXianceCo
XXianceCo

tsCoefficiennCorrelatio =  (4-3) 

 

From the analysis of the correlation coefficients, it was found that the correlation 

coefficient of the arrival time at previous stop and the arrival time at next stops is too 

high (near 0.9) and can not be used as an independent variable. Therefore, the distance 

from current stop to each stop is used as an independent variable. Consequently, distance 

from current stop to each stop, dwell time, and schedule adherence at each stop are 

chosen as the independent variables for multi linear regression models. TABLE 4-4 and 

TABLE 4-5 give the result of correlation coefficients of the downtown area and the 

north area, respectively. The values of the coefficients between independent variables 

were less than 0.15. Consequently, the three variables were chosen for use as the 

independent variables for the regression models. 

 

 

TABLE  4-4 Correlation Coefficients of the Test Bed 1 (Downtown) 

 Distance Dwell 
Time 

Schedule 
Adherence 

Dependent 
variable 

Distance 1.000 -0.127 0.127 0.836 
Dwell Time -0.127 1.000 -0.150 -0.111 

Schedule Adherence 0.127 -0.150 1.000 0.247 
Dependent variable 0.836 -0.111 0.247 1.000 
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TABLE  4-5 Correlation Coefficients of the Test Bed 2 (North Area) 

 Distance Dwell 
Time 

Schedule 
Adherence 

Dependent 
variable 

Distance 1.000 -0.003 -0.059 0.925 
Dwell Time -0.003 1.000 -0.032 0.005 

Schedule Adherence -0.059 -0.032 1.000 -0.057 
Dependent variable 0.925 0.005 -0.057 1.000 

 

 

With three independent variables, many regression models can be developed. To select 

the best multi linear regression models, a forward stepwise regression technique was 

used. TABLE 4-6 and TABLE 4-7 show the results of the stepwise regression for the 

downtown area and the north area, respectively. Forty one regression models are 

analyzed with this stepwise regression technique. Among the forty one models, only 

eleven models showed a reasonable R2 value and had statistically significant values of 

beta (i.e. the coefficients of the independent variables). According to the results of the 

stepwise regression technique, dwell time was not found to be statistically significant 

and therefore it was not be used to develop regression models. Consequently, the other 

two variables, distance and schedule adherence, are used as independent variables and to 

predict the dependent variable, arrival time at each stop. Among the eleven regression 

models, five models were chosen to predict bus arrival time because some models had 

unreasonable results (i.e. extremely large MAPE, which indicates the prediction errors). 

These regression models shown in Equation 4-4 through Equation 4-8 were tested in this 

research. Arrival time at the bus stop is predicted by Equation 4-9. 
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TABLE  4-6 Stepwise Regression of the Test Bed 1 (Downtown) 
Independent variables Significance of betas No. L L2 S S2 W W2 R2 b1 b2 b3 

1 O      0.6996 O   
2  O     0.6221 O   
3   O    0.0612 O   
4    O   0.0098 O   
5     O  0.0124 O   
6      O 0.0061 O   
7 O O     0.7030 O O  
8 O  O    0.7199 O O  
9 O   O   0.7083 O O  

10 O    O  0.6997 O X  
11 O     O 0.6999 O X  
12  O O    0.6506 O O  
13  O  O   0.6333 O O  
14  O   O  0.6227 O X  
15  O    O 0.6227 O X  
16   O O   0.0615 O X  
17   O  O  0.0669 O O  
18   O   O 0.0634 O X  
19    O O  0.0236 O O  
20    O  O 0.0168 O O  
21     O O 0.0158 O O  
22 O O O    0.7221 O O O 
23 O O  O   0.7111 O O O 
24 O O   O  0.7030 O O X 
25 O O    O 0.7032 O O X 
26 O  O O   0.7220 O O O 
27 O  O  O  0.7201 O O X 
28 O  O   O 0.7199 O O X 
29 O   O O  0.7084 O O X 
30 O   O  O 0.7087 O O X 
31 O    O O 0.7003 O X X 
32  O O O   0.6532 O O O 
33  O O  O  0.6506 O O X 
34  O O   O 0.6506 O O X 
35  O  O O  0.6342 O O X 
36  O  O  O 0.6341 O O X 
37  O   O O 0.6227 O X X 
38   O O O  0.0675 O X O 
39   O O  O 0.0639 O X X 
40   O  O O 0.0697 O O X 
41       O O O 0.0270 O O O 

L: Distance from current stop to stop i 

S: Schedule adherence 

W: Dwell time 
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TABLE  4-7 Stepwise Regression of the Test Bed 2 (North Area) 
Independent variables Significance of betas No. L L2 S S2 W W2 R2 b1 b2 b3 

1 O      0.8557 O   
2  O     0.8309 O   
3   O    0.0033 O   
4    O   0.0027 O   
5     O  0.0000 X   
6      O 0.0000 X   
7 O O     0.8605 O O  
8 O  O    0.8555 O X  
9 O   O   0.8555 O X  

10 O    O  0.8555 O X  
11 O     O 0.8554 O X  
12  O O    0.8326 O O  
13  O  O   0.8312 O O  
14  O   O  0.8309 O X  
15  O    O 0.8309 O X  
16   O O   0.0049 O O  
17   O  O  0.0033 O X  
18   O   O 0.0033 O X  
19    O O  0.0028 O X  
20    O  O 0.0027 O X  
21     O O 0.0001 X X  
22 O O O    0.8607 O O O 
23 O O  O   0.8607 O O X 
24 O O   O  0.8606 O O X 
25 O O    O 0.8605 O O X 
26 O  O O   0.8555 O X X 
27 O  O  O  0.8555 O X X 
28 O  O   O 0.8555 O X X 
29 O   O O  0.8556 O X X 
30 O   O  O 0.8555 O X X 
31 O    O O 0.8558 O O O 
32  O O O   0.8327 O O X 
33  O O  O  0.8326 O O X 
34  O O   O 0.8326 O O X 
35  O  O O  0.8313 O O X 
36  O  O  O 0.8313 O O X 
37  O   O O 0.8314 O O O 
38   O O O  0.0050 O O X 
39   O O  O 0.0049 O O X 
40   O  O O 0.0034 O X X 
41    O O O 0.0029 O X X 

L: Distance from current  stop to stop i 

S: Schedule adherence 

W: Dwell time 



 95

Regression 1: MjkMjkt Lbb 10 +=τ        (4-4) 

Regression 2: 2
10 MjkMjkt Lbb +=τ       (4-5) 

Regression 3: MktMjkMjkt SbLbb 2
2

10 ++=τ       (4-6) 

Regression 4: 2
2

2
10 MktMjkMjkt SbLbb ++=τ      (4-7) 

Regression 5: MktMjkMjkMjkt SbLbLbb 3
2

210 +++=τ      (4-8)

  

 where, 

=Mjktτ  Travel time from current stop M to stop j for bus k  

            departing during time period t,   j = M, bN ; 

=MjkL Distance from stop M to stop j for bus k;   

=MktS  Schedule adherence of bus k at bus stop M departing during time period t;  

            Equal to observed arrival time at current stop M (AMkt) minus scheduled arrival  

            time; 

M = Current bus stop. i.e. from 1 to N-1;  

=bN Number of last bus stop of test bed b. 

         For the downtown area this is equal to 9 ( 91 =N ) and  

         for the north area this is equal to 25 ( 252 =N ). 

 

MjkkMtkjt AA τ+=         (4-9) 

 

where, 

=kjtA Forecast arrival time for bus k at bus stop j departing during time period t; 

=kMtA Observed arrival time for bus k at current stop M departing during time period t. 

  

All three model architectures were calibrated using the calibration and testing data sets.  

The Mean Absolute Percentage Error (MAPE) is used as the measure of effectiveness 
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(MOE) in this dissertation.  The MAPE is shown in Equation 4-10. This represents the 

average percentage difference between the observed value (in this case arrival time at a 

transit stop) and the predicted value (in this case predicted arrival time at a transit stop).  

In general, the smaller the MAPE value the better the prediction model.   

 

%1001
×

−
= ∑

n

i o

oi

y
yy

n
MAPE       (4-10) 

where, 

yi Predicted value (i.e. arrival time at given transit stop); 

yo Observed value (i.e. arrival time at given transit stop);  

n Number of observations. 

 

TABLE 4-8 through TABLE 4-13 shows the MAPE result for the five different 

regression models. In this section, MAPE was used to select the best multi linear 

regression model among the five regression models. According to TABLE 4-8, in the 

downtown area, regression 1 gives the best results for the non-clustering, the weekend, 

the weekday non-peak, and the weekday evening period. Regression 5 gives the best 

results for the weekday peak period. However, according to TABLE 4-9 through 

TABLE 4-13, the results are slightly different for the north area. Regression 5 gives the 

best results for the non-clustering, weekend, and weekday non-peak periods. Regression 

1 gives the best results for the weekday peak and weekday evening periods. In general, 

regression 1 and regression 5 give the best results for both the downtown area and the 

north area. TABLE 4-14 and TABLE 4-15 present the best results for the downtown area 

and the north area, respectively. Consequently, the best regression model shown in these 

tables will be used to evaluate the three different prediction models. 
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TABLE  4-8 MAPE for Different Linear Regression Models of the Test Bed 1 
(Downtown) 
Time Period Model Reg. 1 Reg. 2 Reg. 3 Reg. 4 Reg. 5 

1 33.94 39.86 42.48 40.96 36.65 
2 27.56 26.63 27.94 28.18 29.38 
3 25.07 24.55 24.86 25.88 25.87 
4 23.11 23.70 24.64 24.83 23.15 
5 22.68 23.56 23.44 24.31 22.21 
6 22.03 23.38 23.45 24.04 21.45 
7 21.97 24.51 24.65 24.91 21.02 
8 22.40 27.58 27.43 27.71 20.70 

Non 
Clustering 

Average 24.85 26.72 27.36 27.60 25.05 
1 35.09 42.61 43.50 42.52 36.56 
2 24.66 24.30 24.64 24.78 26.74 
3 22.29 22.48 21.99 22.87 23.54 
4 20.57 21.55 21.30 22.01 21.20 
5 19.87 20.99 20.97 21.14 19.68 
6 19.80 21.32 21.27 21.24 19.03 
7 19.87 22.77 22.90 22.72 18.58 
8 20.30 26.28 26.36 26.21 18.15 

Weekend 

Average 22.81 25.29 25.37 25.44 22.94 
1 24.19 29.96 30.02 30.49 24.31 
2 19.11 19.26 19.11 19.78 20.03 
3 15.22 16.36 15.91 16.87 16.08 
4 13.85 15.74 15.10 16.03 13.88 
5 13.28 14.62 14.13 15.04 12.99 
6 12.00 14.05 13.78 14.66 11.23 
7 11.98 15.05 15.08 15.62 10.63 
8 12.20 18.43 18.48 18.76 9.90 

Weekday 
Peak 

Average 15.23 17.93 17.70 18.41 14.88 
1 31.41 35.73 37.66 38.69 33.56 
2 28.72 28.67 28.68 31.47 29.40 
3 25.58 26.12 25.05 28.47 25.87 
4 21.74 23.42 22.83 25.36 22.33 
5 21.39 23.10 22.27 24.47 21.46 
6 19.85 21.59 21.25 22.50 20.41 
7 19.32 21.66 22.63 21.72 20.11 
8 19.84 24.60 25.13 24.71 20.35 

Weekday 
Non-Peak 

Average 23.48 25.61 25.69 27.17 24.19 
1 28.91 36.93 46.11 32.57 39.86 
2 25.18 24.95 31.36 23.24 28.52 
3 22.50 22.95 24.93 20.93 22.60 
4 17.65 21.35 19.68 19.83 16.64 
5 16.19 20.53 18.06 18.16 15.79 
6 16.03 18.38 17.42 17.12 15.48 
7 16.03 18.99 17.54 17.88 15.08 
8 17.25 23.16 19.08 20.67 14.62 

Weekday 
Evening 

Average 19.97 23.41 24.27 21.30 21.07 
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TABLE  4-9 MAPE for Different Linear Regression Models of the Test Bed 2 
(North Area, Non-Clustering) 

Time 
Period Model Reg. 1 Reg. 2 Reg. 3 Reg. 4 Reg. 5 

1 22.61 52.65 50.85 52.32 21.25 
2 18.51 28.02 27.56 28.02 18.69 
3 17.84 22.14 21.99 22.20 17.85 
4 17.50 19.58 19.56 19.65 17.18 
5 16.98 18.29 18.32 18.34 16.56 
6 16.69 18.02 18.0 18.08 16.29 
7 16.45 17.76 17.80 17.83 16.01 
8 16.19 17.48 17.53 17.53 15.77 
9 16.00 17.22 17.27 17.27 15.61 
10 15.75 16.94 17.00 16.98 15.45 
11 15.38 16.61 16.71 16.68 15.20 
12 15.02 16.33 16.40 16.36 14.97 
13 14.83 15.73 15.78 15.74 14.71 
14 14.66 15.22 15.27 15.22 14.50 
15 14.48 14.83 14.90 14.83 14.32 
16 14.31 14.60 14.69 14.60 14.10 
17 14.01 14.48 14.55 14.47 13.96 
18 13.84 14.33 14.41 14.32 13.80 
19 13.62 14.19 14.28 14.18 13.58 
20 13.53 14.23 14.31 14.22 13.47 
21 13.48 14.36 14.40 14.35 13.37 
22 13.46 14.53 14.51 14.52 13.26 
23 13.43 14.70 14.63 14.67 13.14 
24 13.48 14.66 14.55 14.62 13.03 

Non 
Clustering 

Average 15.50 18.20 18.14 18.21 15.25 
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TABLE  4-10 MAPE for Different Linear Regression Models of the Test Bed 2 
(North Area, Weekend) 

Time 
Period Model Reg. 1 Reg. 2 Reg. 3 Reg. 4 Reg. 5 

1 23.55 52.86 51.46 52.57 19.10 
2 17.81 28.27 27.91 28.23 17.52 
3 16.87 22.30 22.28 22.31 17.05 
4 16.74 19.84 19.95 19.87 16.73 
5 16.36 18.65 18.83 18.68 16.25 
6 16.24 18.62 18.85 18.65 16.13 
7 16.00 18.31 18.51 18.33 15.80 
8 15.78 17.95 18.13 17.96 15.54 
9 15.68 17.63 17.78 17.62 15.40 
10 15.50 17.33 17.46 17.32 15.29 
11 15.17 17.02 17.15 16.99 15.08 
12 14.96 16.69 16.80 16.65 14.96 
13 14.60 15.83 15.91 15.78 14.48 
14 14.24 15.02 15.06 14.95 14.00 
15 13.92 14.31 14.34 14.24 13.59 
16 13.69 13.76 13.77 13.68 13.29 
17 13.50 13.40 13.34 13.26 13.03 
18 13.26 12.98 12.97 12.90 12.76 
19 13.10 12.68 12.69 12.60 12.52 
20 13.10 12.52 12.55 12.44 12.40 
21 13.12 12.38 12.40 12.31 12.24 
22 13.21 12.36 12.35 12.29 12.11 
23 13.30 12.28 12.26 12.21 11.92 
24 13.42 12.22 12.19 12.16 11.75 

Weekend 

Average 15.13 17.72 17.71 17.67 14.54 
  



 100

TABLE  4-11 MAPE for Different Linear Regression Models of the Test Bed 2 
(North Area, Weekday Peak) 

Time 
Period Model Reg. 1 Reg. 2 Reg. 3 Reg. 4 Reg. 5 

1 16.77 50.61 50.57 49.27 20.04 
2 14.88 22.55 22.55 22.40 14.57 
3 13.77 16.19 16.19 16.41 13.51 
4 12.96 13.82 13.83 14.18 12.81 
5 12.41 12.87 12.87 13.31 12.27 
6 12.22 12.68 12.69 13.25 12.11 
7 12.09 12.40 12.40 12.92 11.97 
8 12.12 12.06 12.06 12.55 11.96 
9 12.16 11.76 11.76 12.21 11.96 
10 12.06 11.65 11.64 12.07 11.94 
11 11.80 11.64 11.63 12.03 11.81 
12 11.59 11.42 11.41 11.78 11.74 
13 11.52 11.24 11.24 11.56 11.82 
14 11.45 11.29 11.28 11.54 11.95 
15 11.31 11.53 11.52 11.76 12.04 
16 11.02 11.94 11.93 12.12 12.02 
17 10.38 12.38 12.37 12.45 11.68 
18 10.14 12.92 12.91 12.88 11.69 
19 9.99 13.65 13.64 13.47 11.74 
20 9.97 14.65 14.64 14.33 11.93 
21 9.89 15.85 15.83 15.37 12.10 
22 9.56 16.75 16.73 16.20 11.94 
23 9.07 17.28 17.26 16.67 11.49 
24 8.60 17.07 17.06 16.38 11.00 

Weekday 
Peak 

Average 11.57 15.26 15.25 15.30 12.42 
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TABLE  4-12 MAPE for Different Linear Regression Models of the Test Bed 2 
(North Area, Weekday Non-Peak) 

Time 
Period Model Reg. 1 Reg. 2 Reg. 3 Reg. 4 Reg. 5 

1 22.80 52.72 50.37 52.49 23.18 
2 19.73 28.46 27.58 28.68 20.07 
3 19.40 22.58 21.97 22.67 19.18 
4 19.08 19.95 19.50 19.96 18.52 
5 18.68 18.71 18.32 18.66 18.02 
6 18.42 18.41 18.10 18.38 17.77 
7 18.36 18.31 18.04 18.31 17.67 
8 18.28 18.19 18.01 18.25 17.60 
9 18.21 18.12 17.99 18.22 17.58 
10 18.05 17.96 17.87 18.09 17.50 
11 17.73 17.75 17.68 17.90 17.31 
12 17.39 17.56 17.51 17.72 17.12 
13 17.28 17.32 17.27 17.49 17.04 
14 17.22 17.23 17.23 17.40 17.03 
15 17.12 17.21 17.25 17.38 17.02 
16 16.95 17.24 17.31 17.38 16.95 
17 16.59 17.15 17.19 17.28 16.69 
18 16.45 17.17 17.21 17.32 16.62 
19 16.21 17.16 17.16 17.32 16.45 
20 16.10 17.32 17.29 17.49 16.37 
21 16.15 17.70 17.63 17.89 16.48 
22 16.11 18.02 17.87 18.21 16.45 
23 16.12 18.38 18.14 18.53 16.40 
24 16.15 18.30 17.97 18.37 16.30 

Weekday 
Non 
Peak 

Average 17.69 19.96 19.69 20.06 17.56 
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TABLE  4-13 MAPE for Different Linear Regression Models of the Test Bed 2 
(North Area, Weekday Evening) 

Time 
Period Model Reg. 1 Reg. 2 Reg. 3 Reg. 4 Reg. 5 

1 22.39 45.87 44.36 45.49 32.40 
2 17.57 26.23 27.83 26.08 25.46 
3 16.22 22.16 24.99 22.02 22.98 
4 15.78 20.24 23.87 20.10 21.40 
5 15.37 19.49 23.36 19.35 20.33 
6 14.94 19.28 22.85 19.13 19.33 
7 14.47 18.91 22.15 18.75 18.37 
8 14.14 18.55 21.44 18.38 17.61 
9 13.86 18.16 20.76 17.99 17.04 
10 13.51 17.64 20.10 17.49 16.56 
11 13.19 17.19 19.38 17.04 16.20 
12 12.91 16.49 18.45 16.33 15.76 
13 12.73 15.42 17.23 15.25 15.18 
14 12.61 14.46 16.11 14.28 14.74 
15 12.58 13.76 15.20 13.56 14.44 
16 12.73 13.37 14.54 13.14 14.27 
17 12.80 13.37 14.29 13.16 14.21 
18 12.52 12.87 13.61 12.70 13.78 
19 12.36 12.45 12.89 12.29 13.29 
20 12.25 12.22 12.30 12.11 12.83 
21 12.24 12.17 11.81 12.12 12.35 
22 12.26 12.32 11.53 12.28 11.96 
23 12.23 12.50 11.32 12.45 11.47 
24 12.51 12.55 11.40 12.49 11.44 

Weekday 
Evening 

Average 13.92 17.40 18.82 17.25 16.81 
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TABLE  4-14 Best Regression of the Test Bed 1 (Downtown) 

Non-
Clustering Weekend Weekday 

Peak 
Weekday 
Non-Peak 

Weekday 
Evening Model 

Reg. 1 Reg. 1 Reg. 5 Reg. 1 Reg. 1 
1 33.94 35.09 24.31 31.41 28.91 
2 27.56 24.66 20.03 28.72 25.18 
3 25.07 22.29 16.08 25.58 22.50 
4 23.11 20.57 13.88 21.74 17.65 
5 22.68 19.87 12.99 21.39 16.19 
6 22.03 19.80 11.23 19.85 16.03 
7 21.97 19.87 10.63 19.32 16.03 
8 22.40 20.30 9.90 19.84 17.25 

Average 24.85 22.81 14.88 23.48 19.97 
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TABLE  4-15 Best Regression of the Test Bed 2 (North Area) 

Model Non-
Clustering Weekend Weekday 

Peak 
Weekday 
Non-Peak 

Weekday 
Evening 

 Reg. 5 Reg. 5 Reg. 1 Reg. 5 Reg. 1 
1 21.25 19.10 16.77 23.18 22.39 
2 18.69 17.52 14.88 20.07 17.57 
3 17.85 17.05 13.77 19.18 16.22 
4 17.18 16.73 12.96 18.52 15.78 
5 16.56 16.25 12.41 18.02 15.37 
6 16.29 16.13 12.22 17.77 14.94 
7 16.01 15.80 12.09 17.67 14.47 
8 15.77 15.54 12.12 17.60 14.14 
9 15.61 15.40 12.16 17.58 13.86 
10 15.45 15.29 12.06 17.50 13.51 
11 15.20 15.08 11.80 17.31 13.19 
12 14.97 14.96 11.59 17.12 12.91 
13 14.71 14.48 11.52 17.04 12.73 
14 14.50 14.00 11.45 17.03 12.61 
15 14.32 13.59 11.31 17.02 12.58 
16 14.10 13.29 11.02 16.95 12.73 
17 13.96 13.03 10.38 16.69 12.80 
18 13.80 12.76 10.14 16.62 12.52 
19 13.58 12.52 9.99 16.45 12.36 
20 13.47 12.40 9.97 16.37 12.25 
21 13.37 12.24 9.89 16.48 12.24 
22 13.26 12.11 9.56 16.45 12.26 
23 13.14 11.92 9.07 16.40 12.23 
24 13.03 11.75 8.60 16.30 12.51 

Average 15.25 14.54 11.57 17.56 13.92 
 

 

4.3 ARTIFICIAL NEURAL NETWORK (ANN) MODELS  

 

4.3.1 Structure of Artificial Neural Network (ANN) Models  

In this dissertation, a fully connected multilayer neural network model was chosen. The 

backpropagation neural network, arguably the most popular algorithm for transportation 

use, was adopted in this research. The ANN architecture used in the research has three 
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layers: an input layer, a hidden layer, and an output layer. The structure of this three-

layer ANN model is shown in FIGURE 4-2. A complete description of the ANN training 

and testing process may be found elsewhere (53).   

 

 

FIGURE 4-2 Input-Output Structure of the ANN Models 
  

 

The hidden layer generates weight and bias parameter during the training process. The 

optimal values were based on minimizing prediction error. Initial parameters were 

randomly generated and these parameters influence on the prediction results. There were 

three types of parameters: the number of hidden neurons, weight, and bias parameters. In 

order to study the impact that the number of neurons had on the final result, a total of 

one to thirty neurons were tested. It was found that the number of neurons did not 

substantially impact on the result of ANN models. Therefore, in this dissertation, fifteen 

different number of neurons, from one to fifteen inclusive, were used to save running 

time.  
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4.3.2  Selecting Input Variables 

Similar to the previous techniques, arrival time, dwell time, and schedule adherence 

were used as input, as shown in Equation 4-11.  

 

 ),,( jktjktjktMjkt SWAf=τ         (4-11) 

 

where, 

=Mjktτ  Travel time from current stop M to stop j for bus k  

            departing during time period t,   j = M, bN ; 

=jktA Arrival time for bus k at bus stop j departing during time period t; 

=jktW  Dwell time of bus k at bus stop j departing during time period t; and 

=jktS  Schedule adherence of bus k at bus stop j departing during time period t 

            Equal to observed arrival time at current stop M (AMk) minus scheduled arrival  

            Time. 

 

In this section, different combinations of the three input variables are tested. To select 

input variables for Artificial Neural Network Models, seven different scenarios were 

conducted. There were three input variables; arrival time, dwell time, and schedule 

adherence. Model I to III used each of the three variables, Model IV to VI used a pair of 

variables, and Model VII used all three variables. TABLE 4-16 and TABLE 4-17 show 

the MAPE results of these seven models. 

 

For the downtown area, Model VII shows the best results. In the north area, however, 

Model V shows better results than Model VII. It should be noted that in the downtown 

test bed Model V had, on average, 1.38 percent higher MAPE value. This small 

difference in results means that dwell time is not very useful for predicting bus arrival 

time at this site. Choosing variables is highly dependent on the characteristics of each 

site and driver behavior. TABLE 4-18 shows that running time for Model V and Model 
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VII are, on average, within 4.99 percent of each other. This means that using three 

variables as opposed to two does not appreciably effect computation time. Consequently 

in this dissertation, all three variables are used to develop the artificial neural network 

models. 

 

 

TABLE  4-16 MAPE of Artificial Neural Network Models of the Test Bed 1 
(Downtown, Non-Clustering) 

I II III IV V VI VII 
Model AT DT SA AT, DT AT, SA DT, SA AT,DT,

SA 
1 34.37 25.78 14.11 26.00 14.09 12.91 13.84 
2 19.59 22.44 11.04 19.58 5.35 10.05 6.10 
3 18.01 21.38 10.50 17.91 4.61 9.58 4.92 
4 17.43 20.61 9.86 17.42 4.55 9.86 3.62 
5 12.05 16.12 9.04 9.27 4.09 9.97 3.50 
6 7.46 15.84 8.59 7.98 3.04 10.49 3.46 
7 5.20 15.63 9.09 4.79 3.10 9.95 2.63 
8 4.06 14.52 9.05 3.90 2.30 7.73 2.48 

Average 14.77 19.04 10.16 13.36 5.14 10.06 5.07 
AT: Arrival time; 

DT: Dwell time; 

SA: Schedule Adherence.  
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TABLE  4-17 MAPE of Artificial Neural Network Models of the Test Bed 2 (North 
Area, Non-Clustering) 

I II III IV V VI VII 
Model AT DT SA AT, DT AT, SA DT, SA AT,DT,

SA 
1 20.03 19.94 10.65 19.92 11.78 10.72 12.35 
2 15.29 15.68 8.58 14.68 6.81 8.70 8.31 
3 13.36 15.06 7.76 13.91 5.14 9.12 6.40 
4 13.33 15.08 7.70 13.42 5.26 8.48 6.05 
5 12.40 14.59 6.51 13.32 5.37 7.66 5.02 
6 10.47 13.64 6.19 10.42 4.15 7.06 4.75 
7 9.32 12.92 5.88 9.99 1.58 6.63 1.73 
8 9.06 13.29 5.32 9.45 1.50 6.23 1.64 
9 8.80 14.08 5.56 10.23 1.32 6.16 1.82 
10 7.79 13.86 5.29 8.34 0.95 5.99 1.84 
11 7.71 13.78 4.91 8.30 0.97 5.69 1.72 
12 7.48 13.87 4.60 8.23 1.04 5.97 1.70 
13 6.02 13.43 4.65 6.62 0.92 6.16 1.84 
14 6.27 13.19 4.96 6.61 0.83 5.92 1.45 
15 5.81 12.94 4.45 6.73 0.78 5.66 1.45 
16 5.93 15.18 4.54 6.87 0.70 5.41 1.61 
17 5.21 12.95 4.35 5.91 0.62 5.20 1.18 
18 4.74 12.40 4.38 4.30 0.79 4.82 1.28 
19 3.70 11.97 4.22 3.83 0.78 4.65 1.52 
20 3.42 12.90 3.90 3.57 0.70 4.40 1.16 
21 3.21 12.09 3.83 3.42 0.27 4.16 1.34 
22 3.09 12.27 3.69 3.60 0.52 3.97 1.12 
23 2.49 15.77 3.68 2.52 0.26 3.49 0.70 
24 1.56 14.32 3.48 2.16 0.19 3.71 1.08 

Average 7.77 13.97 5.38 8.18 2.22 6.08 2.88 

 

TABLE  4-18 Running Time of Artificial Neural Network Models 

Model I II III IV V VI VII 
Area AT DT SA AT, DT AT, SA DT, SA AT,DT,

SA 
Downtown 7 min 13 min 27 min 13 min 23 min 28 min 21 min 

North 
Area 

4 hours 
31 min 

7 hours 
33 min 

19 
hours 
57 min

7 hours 
38 min 

11 hours 
1 min 

19 
hours 
44 min 

11 hours 
34 min 
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4.3.3 Selecting the Training Functions 

Twelve different training functions were tested with the downtown and the north area 

data and these are listed in TABLE 4-19. TABLE 4-20 and TABLE 4-22 show the 

running time by training function for the downtown area and the north area, respectively. 

TABLE 4-21 and TABLE 4-23 show the average MAPE by training function for the 

downtown area and the north area, respectively. In Appendix B, TABLE B-1 through 

TABLE B-12 (for the downtown area) and TABLE B-13 through TABLE B-24 (for the 

north area) show the MAPE of eight models and average MAPE by training function.  

 

According to TABLE 4-21 and TABLE 4-23, the Bayesian Regularization training 

function and the Levenberg-Marquardt Backpropagation training function outperformed 

the other eleven training functions. The average MAPE of the Bayesian Regularization 

training function was approximately twelve percent lower than that of the Levenberg-

Marquardt Backpropagation training function for the downtown area, and 55 percent for 

the north area. It may be seen in TABLE 4-20 and TABLE 4-22, the running time of the 

Bayesian Regularization training function was 102 minutes for the downtown area and 

63 hours 7 minutes for the north area while the running time of the Levenberg-

Marquardt Backpropagation training function was 40 minutes for downtown and 19 

hours 7 minutes for the north area. The running time of the Bayesian Regularization 

training function was approximately 255 percent higher than that of the Levenberg-

Marquardt Backpropagation training function for the downtown area and 330 percent for 

the north area. Therefore, the Levenberg-Marquardt Backpropagation training function  

was chosen as the best training function for this research in terms of efficiency and 

accuracy.   
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TABLE  4-19 Lists of Training Functions 

No Function 
1 Batch Training with Weight and Bias Learning Rule 
2 BFGS Quasi-Newton Backpropagation 
3 Bayesian Regularization 
4 Powell-Beale Conjugate Gradient Backpropagation 
5 Fletcher-Powell Conjugate Gradient Backpropagation 
6 Gradient Descent Backpropagation 
7 Gradient Descent with Adaptive Learning Rate Backpropagation 
8 Levenberg-Marquardt Backpropagation 
9 One Step Secant Backpropagations 
10 Resilient Backpropagation 
11 Sequential Order Incremental Update 
12 Scaled Conjugate Gradient Backpropagation 

 

 

TABLE  4-20 Running Time by Training Function of the Test Bed 1 (Downtown) 

No Function Running time 
1 Batch Training with Weight and Bias Learning Rule 6 min 
2 BFGS Quasi-Newton Backpropagation 29 min 
3 Bayesian Regularization 102 min 
4 Powell-Beale Conjugate Gradient Backpropagation 13 min 
5 Fletcher-Powell Conjugate Gradient Backpropagation 12 min 
6 Gradient Descent Backpropagation 5 min 
7 Gradient Descent with Adaptive Learning Rate 

Backpropagation 
6 min 

8 Levenberg-Marquardt Backpropagation 40 min 
9 One Step Secant Backpropagations 11 min 
10 Resilient Backpropagation 5 min 
11 Sequential Order Incremental Update 2 min 
12 Scaled Conjugate Gradient Backpropagation 10 min 
* This running time includes training, testing, and calculation of prediction errors 
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TABLE  4-21 Average MAPE of Different Training Functions of the Test Bed 1 
(Downtown) 

Average MAPE 

No Functions Non-
Clusterin

g 
Weekend Weekday 

Peak 

Weekday 
Non-
Peak 

Weekday 
Evening 

1 
Batch Training with 

Weight and Bias 
Learning Rule 

109.46 134.35 146.59 136.10 118.91 

2 
BFGS  

Quasi-Newton 
Backpropagation 

12.28 11.11 9.80 12.96 11.19 

3 Bayesian 
Regularization 5.09 4.12 4.82 7.88 5.08 

4 
Fletcher-Powell 

Conjugate Gradient 
Backpropagation 

11.64 11.55 9.99 13.84 10.38 

5 
Powell-Beale 

Conjugate Gradient 
Backpropagation 

12.94 11.49 9.29 13.92 10.60 

6 Gradient Descent 
Backpropagation 146.68 156.29 163.00 145.96 144.74 

7 

Gradient Descent 
with Adaptive 
Learning Rate 

Backpropagation 

27.95 29.02 25.79 26.53 26.65 

8 
Levenberg-
Marquardt 

Backpropagation 
5.18 4.28 5.33 8.65 7.18 

9 One Step Secant 
Backpropagations 14.83 13.17 12.16 15.73 13.34 

10 Resilient 
Backpropagation 12.66 11.92 10.26 15.24 12.74 

11 Sequential Order 
Incremental Update 294.74 309.56 301.65 265.92 185.52 

12 
Scaled Conjugate 

Gradient 
Backpropagation 

13.17 11.96 10.67 13.96 11.77 
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TABLE  4-22 Running Time by Training Function of the Test Bed 2 (North Area) 

No Function Running time 
1 Batch Training with Weight and Bias Learning Rule 20 min 
2 BFGS Quasi-Newton Backpropagation 10 hr 23 min 
3 Bayesian Regularization 63 hr 7 min 
4 Powell-Beale Conjugate Gradient Backpropagation 45 min 
5 Fletcher-Powell Conjugate Gradient Backpropagation 40 min 
6 Gradient Descent Backpropagation 18 min 
7 Gradient Descent with Adaptive Learning Rate 

Backpropagation 
19 min 

8 Levenberg-Marquardt Backpropagation 19 hr 7 min 
9 One Step Secant Backpropagations 44 min 
10 Resilient Backpropagation 19 min 
11 Sequential Order Incremental Update 8 min 
12 Scaled Conjugate Gradient Backpropagation 26 min 
* This running time includes training, testing, and calculation of prediction errors 
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TABLE  4-23 Average MAPE of Different Training Functions 

Average MAPE 
No Functions Non-

Clustering Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

1 
Batch Training with 

Weight and Bias 
Learning Rule 

213.88 229.69 216.61 238.56 225.36 

2 BFGS Quasi-Newton 
Backpropagation 8.62 7.59 7.38 8.80 8.53 

3 Bayesian 
Regularization 2.25 0.90 1.34 2.43 1.60 

4 
Fletcher-Powell 

Conjugate Gradient 
Backpropagation  

8.07 6.81 6.55 8.01 7.87 

5 
Powell-Beale 

Conjugate Gradient 
Backpropagation 

9.21 8.40 7.21 8.92 9.17 

6 Gradient Descent 
Backpropagation 219.58 234.88 219.69 243.25 228.73 

7 

Gradient Descent 
with Adaptive 
Learning Rate 

Backpropagation 

31.77 33.32 33.36 30.03 35.45 

8 
Levenberg-
Marquardt 

Backpropagation 
2.77 1.93 4.68 4.39 5.09 

9 One Step Secant 
Backpropagations 11.18 9.80 8.29 11.29 11.21 

10 Resilient 
Backpropagation 8.05 8.02 6.95 8.76 8.81 

11 Sequential Order 
Incremental Update 316.69 314.69 280.97 298.85 297.30 

12 
Scaled Conjugate 

Gradient 
Backpropagation 

10.06 8.83 7.68 9.35 9.56 
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4.3.4 Selecting the Learning Functions 

In this section, fourteen different learning functions were tested. TABLE 4-24 lists the 

name of the fourteen learning functions. TABLE 4-25 and TABLE 4-27 show the 

running time by learning functions for the downtown area and the north area, 

respectively. TABLE 4-26 and TABLE 4-28 show the average MAPE by learning 

function for the downtown area and the north area, respectively. In Appendix B, TABLE 

B-25 to TABLE B-38 and TABLE B-39 to TABLE B-52 show the average MAPE by 

learning function.   

 

TABLE 4-26 and TABLE 4-28 show the average MAPE for each of the fourteen 

learning functions tested for the downtown area and the north area, respectively. It can 

be seen that the results from these functions were not significantly different. For 

example, the average difference was only 0.04 percent. However, the Perceptron Weight 

and Bias Learning Function outperformed the other thirteen learning functions by 

approximately 5.30 percent for the test bed 1, the downtown area. According to TABLE 

4-25 and TABLE 4-27, the running times of these fourteen learning functions are almost 

the same. Consequently, the Perceptron Weight and Bias Learning Function was chosen 

for this research.  
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TABLE  4-24 Lists of Training Functions 

No Function 
1 Conscience Bias Learning Function 
2 Gradient Descent Weight/bias Learning Function 
3 Gradient Descent with Momentum Weight/bias Learning Function 
4 Hebb Weight Learning Function 
5 Hebb with Decay Weight Learning Function 
6 Instar Weight Learning Function 
7 Kohonen Weight Learning Function 
8 LVQ1 Weight Learning Function 
9 LVQ2 Weight Learning Function 
10 Outstar Weight Learning Function 
11 Perceptron Weight and Bias Learning Function 
12 Normalized Perceptron Weight and Bias Learning Function 
13 Self-organizing Map Weight Learning Function 
14 Widrow-Hoff Weight and Bias Learning Rule 
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TABLE  4-25 Running Time by Learning Functions of the Test Bed 1 (Downtown) 

No Function Running time 
1 Conscience Bias Learning Function 40 min 
2 Gradient Descent Weight/bias Learning Function 39 min 
3 Gradient Descent with Momentum Weight/bias Learning 

Function 41 min 
4 Hebb Weight Learning Function 40 min 
5 Hebb with Decay Weight Learning Function 41 min 
6 Instar Weight Learning Function 41 min 
7 Kohonen Weight Learning Function 41 min 
8 LVQ1 Weight Learning Function 42 min 
9 LVQ2 Weight Learning Function 43 min 
10 Outstar Weight Learning Function 41 min 
11 Perceptron Weight and Bias Learning Function 42 min 
12 Normalized Perceptron Weight and Bias Learning Function 40 min 
13 Self-organizing Map Weight Learning Function 39 min 
14 Widrow-Hoff Weight and Bias Learning Rule 41 min 
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TABLE  4-26 Average MAPE of Different Learning Functions for the Test Bed 1 
(Downtown) 

Average MAPE by the Time period 
No Functions Non-

Clustering Weekend Weekday 
Peak 

Weekday 
Non-Peak

Weekday 
Evening Average

1 Conscience Bias 
Learning Function 5.28 4.14 5.91 8.05 7.57 6.19 

2 
Gradient Descent 

Weight/bias 
Learning Function 

5.19 4.03 5.26 8.61 7.33 6.08 

3 

Gradient Descent 
with Momentum 

Weight/bias 
Learning Function 

5.16 5.20 5.20 8.37 8.24 6.43 

4 Hebb Weight 
Learning Function 5.17 4.55 5.48 8.51 7.50 6.24 

5 
Hebb with Decay 
Weight Learning 

Function 
4.72 4.25 5.15 8.66 8.00 6.16 

6 Instar Weight 
Learning Function 5.33 4.32 5.63 8.97 7.66 6.38 

7 Kohonen Weight 
Learning Function 5.27 3.85 5.16 8.58 7.82 6.14 

8 LVQ1 Weight 
Learning Function 5.18 4.28 5.33 8.65 7.18 6.12 

9 LVQ2 Weight 
Learning Function 5.31 4.33 5.30 8.79 7.77 6.30 

10 Outstar Weight 
Learning Function 5.19 4.21 5.18 8.62 7.60 6.16 

11 
Perceptron Weight 
and Bias Learning 

Function 
5.13 4.31 5.04 7.87 7.17 5.90 

12 

Normalized 
Perceptron Weight 
and Bias Learning 

Function 

5.13 4.70 5.22 8.16 8.61 6.36 

13 
Self-organizing 

Map Weight 
Learning Function 

4.98 4.25 5.30 8.26 7.42 6.04 

14 
Widrow-Hoff 

Weight and Bias 
Learning Rule 

5.04 4.55 5.48 8.57 8.65 6.46 
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TABLE  4-27 Running Time by Learning Function of the Test Bed 2 (North Area) 

No Function Running time 
1 Conscience Bias Learning Function 19hr 24min 
2 Gradient Descent Weight/bias Learning Function 19hr 16min 
3 Gradient Descent with Momentum Weight/bias 

Learning Function 19hr 21min 

4 Hebb Weight Learning Function 19hr 31min 
5 Hebb with Decay Weight Learning Function 19hr 59min 
6 Instar Weight Learning Function 19hr 23min 
7 Kohonen Weight Learning Function 19hr 32min 
8 LVQ1 Weight Learning Function 19hr 20min 
9 LVQ2 Weight Learning Function 19hr 42min 
10 Outstar Weight Learning Function 19hr 45min 
11 Perceptron Weight and Bias Learning Function 19hr 18min 
12 Normalized Perceptron Weight and Bias Learning 

Function 19hr 25min 

13 Self-organizing Map Weight Learning Function 19hr 31min 
14 Widrow-Hoff Weight and Bias Learning Rule 19hr 19min 
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TABLE  4-28 Average MAPE of Different Learning Functions for the Test Bed 2 
(North area) 

Average MAPE by the Time period 
No Functions Non-

Clustering Weekend Weekday 
Peak 

Weekday 
Non-Peak

Weekday 
Evening Average

1 Conscience Bias 
Learning Function 2.84 1.97 4.42 4.10 5.06 3.68 

2 
Gradient Descent 

Weight/bias 
Learning Function 

2.83 1.99 4.25 4.42 5.21 3.74 

3 

Gradient Descent 
with Momentum 

Weight/bias 
Learning Function 

2.75 1.97 4.54 4.58 5.06 3.78 

4 Hebb Weight 
Learning Function 2.84 1.95 4.39 4.20 5.05 3.69 

5 
Hebb with Decay 
Weight Learning 

Function 
2.87 1.95 4.43 4.42 5.07 3.75 

6 Instar Weight 
Learning Function 2.75 1.91 4.35 4.53 5.11 3.73 

7 Kohonen Weight 
Learning Function 2.82 1.98 4.42 4.51 5.22 3.79 

8 LVQ1 Weight 
Learning Function 2.84 1.92 4.43 4.51 5.17 3.77 

9 LVQ2 Weight 
Learning Function 2.90 1.94 4.26 4.30 5.26 3.73 

10 Outstar Weight 
Learning Function 2.77 2.05 4.16 4.64 5.05 3.73 

11 
Perceptron Weight 
and Bias Learning 

Function 
2.82 1.92 4.39 4.36 5.12 3.72 

12 

Normalized 
Perceptron Weight 
and Bias Learning 

Function 

2.83 1.96 4.48 4.24 5.28 3.76 

13 
Self-organizing 

Map Weight 
Learning Function 

2.89 1.93 4.50 4.40 5.14 3.77 

14 
Widrow-Hoff 

Weight and Bias 
Learning Rule 

2.77 1.96 4.27 4.08 5.11 3.64 

 

 

4.3.5 Number of Neurons 

Fifteen different numbers of hidden neurons, from one to fifteen inclusive, were tested. 

TABLE 4-29 and FIGURE 4-3 show the MAPE by the different number of hidden 
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neurons. After the ANN models were tested with the fifteen different neurons, the best 

number of neuron was selected for each ANN model. Consequently, the downtown area, 

as an example, could have a different number of neurons than that of the north area and 

the weekend time period could have a different number of neurons than that of weekday 

peak time period. It should be noted that the results from the fifteen different neurons 

were very similar so for this test bed the results would not be appreciably different if the 

number of neurons were the same for all models. 

 

 

TABLE  4-29 Average MAPE by Different Number of Neurons 

No. of 
Neurons 

model 
1 

model 
2 

model 
3 

model 
4 

model 
5 

model 
6 

model 
7 

model 
8 

1 24.17 13.55 13.22 7.79 7.55 5.79 4.40 3.14 
2 17.52 9.76 8.41 7.22 4.12 4.16 3.67 3.02 
3 16.83 7.92 8.34 7.37 6.07 3.61 2.79 5.15 
4 16.46 10.25 4.70 5.95 4.73 5.45 3.97 4.68 
5 17.24 10.37 5.76 5.71 6.41 4.51 5.63 3.32 
6 15.03 6.13 7.76 5.34 2.77 6.75 5.40 3.78 
7 14.76 5.58 5.37 4.38 5.90 4.11 3.89 3.90 
8 19.53 8.13 6.96 7.11 5.64 3.85 2.60 4.30 
9 15.30 5.94 4.72 4.36 6.55 6.87 3.38 4.07 
10 15.77 7.32 4.68 6.99 7.72 5.04 3.26 3.77 
11 15.92 7.14 7.15 6.38 5.67 4.37 3.95 3.05 
12 17.89 6.30 6.74 5.99 9.68 3.96 3.79 4.18 
13 17.92 6.14 4.33 10.84 5.65 5.37 3.50 6.10 
14 21.78 5.62 6.46 8.03 6.69 4.57 2.71 4.76 
15 22.16 6.66 4.72 4.83 5.80 4.47 3.96 7.58 
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FIGURE 4-3 Average MAPE by Different Number of Neurons 

 

 

4.4 CONCLUDING REMARKS 

 

In this chapter, three prediction models were developed. The models includes historical 

data based models, multi linear regression models, and artificial neural network models. 

For all three, the input data are arrival time, dwell time, and schedule adherence at each 

stop. However, link travel time was used instead of arrival time for the historical data 

based model. For regression models, it was found that dwell time was not statistically 

significant and the arrival time was highly inter-correlated with other variables. 

Consequently, distance from current stop to each stop and schedule adherence at each 

stop were used as the independent variables. In case of ANN models, three layer 

feedforward ANN models were used. Backpropagation with the Levenberg-Marquardt 

training function and the Perceptron Weight and Bias learning function were used for the 
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training process. Fifteen different hidden neurons were also used and the best neuron 

resulting in the smallest prediction error was used to predict bus arrival time.  

In chapter V, these three prediction models will be evaluated and statistically tested in 

order to identify the best modeling approach for the test bed. 



 123

CHAPTER V 

MODEL EVALUATION 

5  

Three different models for bus arrival time prediction were developed in the previous 

chapter: historical data based models, multi linear regression models, and artificial 

neural network models. In this chapter, these models are compared in terms of the 

accuracy of predicted bus arrival time discussed in the previous section. In addition to 

this, these three different models are tested statistically. 

 

5.1 MAPE OF THE HISTORICAL DATA BASED MODELS 

TABLE 5-1 and TABLE 5-2 show the historical model MAPE for each of the eight (for 

the downtown area) and 24 models (for the north area) of the five clustering options.  It 

can be seen that the MAPE decreases as the prediction time decreases. For example, the 

MAPE for model 1 of the downtown area, which predicts the arrival time at the next 8 

stops, is considerably higher than for model 8, which predicts the arrival time at the last 

stop, all other things being equal.  It can also be seen that the clustering in the data leads 

to a smaller MAPE.  For example, the average MAPE of the downtown area over all 

eight models for any of the clustering groups is smaller than for the non-clustering 

MAPE. The average MAPE of the north area over all eight models for three of the 

clustering groups is smaller than the non-clustering MAPE. The only exception is the 

weekday non-peak period which had a higher MAPE. The fact that clustering data gave 

better results would be expected because the clustering explicitly accounts for different 

levels of congestion and demand levels associated with different times of the day.  

Interestingly, the lowest MAPE of the downtown area was for the weekday peak. It is 

hypothesized that congestion reduces variability in travel times and that this makes the 

historic model more accurate for this time period. It is important to note, however, that 

the overall error rate is still relatively high. For example, during the weekday peak in the 
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downtown area, the average prediction error at transit stop 1 would still be on the order 

of twenty-five percent.   

 

 

TABLE  5-1 MAPE for Historical Data Based Models of the Test Bed 1 
(Downtown) 

Model Non-
Clustering Weekend Weekday 

Peak 
Weekday 
Non-Peak 

Weekday 
Evening 

1 33.94 35.93 25.22 31.15 24.63 
2 19.73 15.89 12.03 21.24 16.30 
3 17.19 13.87 10.87 15.96 16.99 
4 17.09 13.05 9.15 17.07 15.16 
5 11.60 9.54 7.91 11.74 15.51 
6 8.31 6.71 9.88 9.15 6.84 
7 5.32 5.10 6.63 4.74 4.50 
8 3.84 4.12 4.51 3.65 2.63 

Average 14.63 13.03 10.78 14.34 12.82 
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TABLE  5-2 MAPE for Historical Data Based Models of the Test Bed 2 (North 
Area) 

Model Non-
Clustering Weekend Weekday 

Peak 
Weekday 
Non-Peak 

Weekday 
Evening 

1 20.02 18.22 16.63 21.60 19.15 
2 16.51 15.59 11.98 17.96 16.42 
3 13.29 13.91 11.44 14.98 8.57 
4 12.69 13.26 11.41 14.54 8.85 
5 12.23 12.65 10.77 14.52 8.68 
6 10.68 11.52 10.37 11.47 8.38 
7 9.20 9.18 6.96 10.88 7.45 
8 8.92 8.77 7.05 10.77 7.70 
9 8.85 8.45 7.35 10.64 7.38 
10 7.71 7.92 6.80 9.07 5.04 
11 7.57 7.48 6.54 9.21 5.10 
12 7.12 7.24 7.40 8.15 5.19 
13 5.45 4.33 6.40 6.75 5.47 
14 5.46 4.43 7.10 6.43 5.53 
15 5.42 4.22 7.39 6.44 6.46 
16 5.41 4.24 7.89 6.17 7.01 
17 4.79 4.08 4.66 4.62 7.96 
18 4.32 4.02 4.81 5.02 3.56 
19 3.50 3.16 3.46 4.37 2.10 
20 3.35 3.13 3.48 4.30 1.91 
21 3.18 2.98 2.94 4.15 1.46 
22 2.65 2.39 2.48 3.47 1.45 
23 2.21 2.02 1.96 2.58 2.25 
24 1.39 1.24 1.22 1.69 1.30 

Average 7.58 7.27 7.02 8.74 6.43 
 

 

FIGURE 5-1 and FIGURE 5-2 show the tendency for the MAPE results to decrease as 

prediction time decreases. Both the downtown area and the north area had similar 

tendencies. However, the MAPE of the downtown area shown in FIGURE 5-1 is higher 

than that of the north area shown in FIGURE 5-2. In chapter 4, it was found that the 

values of input variables for the downtown area had more variability than those of the 

north area. Therefore, the larger MAPE of the downtown area is a reasonable result. In 
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other words, more variable traffic conditions due to traffic congestion leads to more 

prediction error. 

 

 

MAPE Result of Historical Data Based Models (Downtown)
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FIGURE 5-1 MAPE Result of Historical Data Based Models of the Test Bed 1 by 
Time Period (Downtown) 



 127

MAPE Result of Historical Data Based Models (North Area)
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FIGURE 5-2 MAPE Result of Historical Data Based Models of the Test Bed 2 by 
Time Period (North Area) 

 

 

FIGURE 5-3 and FIGURE 5-4 show that clustering data leads to more precise prediction 

results. Both the downtown area and the north area had similar patterns. However, the 

MAPE of the downtown area shown in FIGURE 5-2 is higher than that of the north area 

shown in FIGURE 5-4. It is expected that clustering the data results in less variability in 

the input variables, which in turn, results in more precise prediction results. 
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MAPE Result of Historical Data Based Models (Downtown)
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FIGURE 5-3 MAPE Result of Historical Data Based Models of the Test Bed 1 by 
Model (Downtown) 

MAPE Result of Historical Data Based Models (North Area)
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FIGURE 5-4 MAPE Result of Historical Data Based Models of the Test Bed 2 by 
Model (North Area) 
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5.2 THE MAPE OF REGRESSION MODELS 

The MAPE results for the Multiple Linear Regression (MLR) models are shown in 

TABLE 5-3 and TABLE 5-4.  The results for the five model specifications for each of 

the eight model types (for the downtown area) and the 24 model types (for the north 

area) are shown for each of the five clustering options.  Similar to the historic model 

analysis, the MLR regression results tend to improve as prediction time decreases. In 

addition, the clustering results provided better results than the non-clustering approach.   

Interestingly, the lowest MAPE of the regression models of both the downtown area and 

the north area was for the weekday peak. It is hypothesized that the congestion reduces 

the variability in travel times and this makes the models more accurate for this time 

period. The use of real-time schedule adherence data did not significantly improve the 

results. It is hypothesized that there is a non-linear relationship between arrival time and 

schedule adherence and this caused the relatively poor results.  In addition, the various 

non-linear model specifications were unable to capture this phenomenon. For this test 

bed the historic model gave superior results, in terms of MAPE, in comparison to the 

MLR results.  

 

 

TABLE  5-3 MAPE of Multi Linear Regression Models of the Test Bed 1 
(Downtown) 

Model Non-
Clustering Weekend Weekday 

Peak 
Weekday 
Non-Peak 

Weekday 
Evening 

 Reg. 1 Reg. 1 Reg. 5 Reg. 1 Reg. 1 
1 33.94 35.09 24.31 31.41 28.91 
2 27.56 24.66 20.03 28.72 25.18 
3 25.07 22.29 16.08 25.58 22.50 
4 23.11 20.57 13.88 21.74 17.65 
5 22.68 19.87 12.99 21.39 16.19 
6 22.03 19.80 11.23 19.85 16.03 
7 21.97 19.87 10.63 19.32 16.03 
8 22.40 20.30 9.90 19.84 17.25 

Average 24.85 22.81 14.88 23.48 19.97 
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TABLE  5-4 MAPE of Multi Linear Regression Models of the Test Bed 2 (North 
Area) 

Model Non-
Clustering Weekend Weekday 

Peak 
Weekday 
Non-Peak 

Weekday 
Evening 

 Reg. 5 Reg. 5 Reg. 1 Reg. 5 Reg. 1 
1 21.25 19.10 16.77 23.18 22.39 
2 18.69 17.52 14.88 20.07 17.57 
3 17.85 17.05 13.77 19.18 16.22 
4 17.18 16.73 12.96 18.52 15.78 
5 16.56 16.25 12.41 18.02 15.37 
6 16.29 16.13 12.22 17.77 14.94 
7 16.01 15.80 12.09 17.67 14.47 
8 15.77 15.54 12.12 17.60 14.14 
9 15.61 15.40 12.16 17.58 13.86 
10 15.45 15.29 12.06 17.50 13.51 
11 15.20 15.08 11.80 17.31 13.19 
12 14.97 14.96 11.59 17.12 12.91 
13 14.71 14.48 11.52 17.04 12.73 
14 14.50 14.00 11.45 17.03 12.61 
15 14.32 13.59 11.31 17.02 12.58 
16 14.10 13.29 11.02 16.95 12.73 
17 13.96 13.03 10.38 16.69 12.80 
18 13.80 12.76 10.14 16.62 12.52 
19 13.58 12.52 9.99 16.45 12.36 
20 13.47 12.40 9.97 16.37 12.25 
21 13.37 12.24 9.89 16.48 12.24 
22 13.26 12.11 9.56 16.45 12.26 
23 13.14 11.92 9.07 16.40 12.23 
24 13.03 11.75 8.60 16.30 12.51 

Average 15.25 14.54 11.57 17.56 13.92 
 

 

FIGURE 5-5 and FIGURE 5-6 show the MAPE results of the regression models by 

model for the downtown area and the north area, respectively. Similar to the historical 

data based model analysis, the MAPE tends to increase as prediction time increase. 

However, this tendency is not strong in comparison to the historical data based models. 

Similar to the previous analysis, the MAPE of the downtown area is higher than that of 

the north area.    
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MAPE Result of Regression Models (Downtown)
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FIGURE 5-5 MAPE Result of Regression Models of the Test Bed 1 by Time Period 

(Downtown) 

 

 

MAPE Result of Regression Models (North Area)
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FIGURE 5-6 MAPE Result of Regression Models of the Test Bed 2 by Time Period 

(North Area) 
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FIGURE 5-7 and FIGURE 5-8 show that clustering data leads to more precise prediction 

results. It is expected that clustering data have less variability in input variables resulting 

in more precise prediction results. However, the MAPE of the weekday non-peak period 

is the largest one in the north area, while the MAPE of the non-clustering data set is 

larger than that of the other four clustering data set in the downtown area. 

 

 

MAPE Result of Regression Models (Downtown)
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FIGURE 5-7 MAPE Result of Regression Models of the Test Bed 1 by Model 
(Downtown) 
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MAPE Result of Regression Models (North Area)
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FIGURE 5-8 MAPE Result of Regression Models of the Test Bed 2 by Model 
(North Area) 

 

 

5.3 MAPE OF ARTIFICIAL NEURAL NETWORK MODELS 

TABLE 5-5 and TABLE 5-6 show the MAPE results for the optimal ANN model for 

each of the eight model types (for the downtown area) and the 24 model types (for the 

north area) of five clustering options. Similar to the previous two models the MAPE 

decreased as prediction time decreased.  In contrast to the previous two techniques, the 

clustering resulted in poorer results than the non-clustering option.  It is hypothesized 

that the ANN, as a universal function approximator, was able to identify the non-linear 

relationships associated with the different clusters. While in general the clustering 

should not do worse than the non-clustering option, it is hypothesized that there may not 

have been enough observations to adequately fit the functions. If more observations were 

available the results of the two approaches might have been more similar.   
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TABLE  5-5 MAPE of Artificial Neural Network Models of the Test Bed 1 
(Downtown) 

Model Non-
Clustering Weekend Weekday 

Peak 
Weekday 
Non-Peak 

Weekday 
Evening 

1 14.76 10.79 7.11 17.96 11.04 
2 5.58 4.11 5.75 7.65 9.92 
3 4.33 4.15 5.79 7.86 8.70 
4 4.36 3.73 5.01 7.07 7.64 
5 2.77 3.05 5.14 6.82 6.30 
6 3.61 2.52 3.70 5.52 4.70 
7 2.60 3.21 3.51 5.58 4.29 
8 3.02 2.91 4.30 4.52 4.74 

Average 5.13 4.31 5.04 7.87 7.17 
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TABLE  5-6 MAPE of Artificial Neural Network Models of the Test Bed 2 (North 
Area) 

Model Non-
Clustering Weekend Weekday 

Peak 
Weekday 
Non-Peak 

Weekday 
Evening 

1 11.77 4.93 8.52 14.33 8.09 
2 8.05 3.53 5.89 10.37 8.58 
3 6.69 3.08 6.05 10.15 6.48 
4 5.90 3.11 5.48 8.57 5.72 
5 5.09 2.50 5.05 6.18 5.84 
6 4.80 2.14 5.02 6.08 5.25 
7 1.77 2.22 4.82 4.16 5.21 
8 1.66 1.91 4.28 4.83 6.65 
9 1.74 1.95 4.78 3.49 5.05 
10 1.77 1.98 5.11 3.35 6.50 
11 1.79 1.78 3.33 3.63 4.87 
12 1.38 1.57 3.83 3.09 5.23 
13 1.29 1.78 4.22 2.78 5.12 
14 1.60 1.64 3.85 2.77 4.58 
15 1.51 1.56 6.12 3.17 4.90 
16 1.40 1.58 3.30 2.27 4.83 
17 1.73 1.22 4.22 2.05 5.15 
18 1.17 1.24 2.89 1.74 3.63 
19 1.53 1.35 4.36 2.64 3.72 
20 0.92 1.30 3.18 2.34 4.43 
21 0.93 0.93 3.39 1.89 3.72 
22 1.08 0.70 2.92 1.39 3.07 
23 0.70 0.66 2.44 0.89 4.04 
24 1.36 1.37 2.27 2.53 2.15 

Average 2.82 1.92 4.39 4.36 5.12 
 

 

FIGURE 5-9 and FIGURE 5-10 show the MAPE results of ANN models by model for 

the downtown area and the north area, respectively. These figures show the tendency for 

the MAPE results to decrease as prediction time decreases. Both the downtown area and 

the north area show the same tendencies. However, the MAPE of the downtown area 

shown in FIGURE 5-9 is higher than that of the north area shown in FIGURE 5-10. In 

the previous chapter, it was found that the values of input variables of the downtown 

area had more variability than those of the north area. Therefore, the larger MAPE of the 
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downtown area is a reasonable result. In other words, more variable traffic conditions 

due to traffic congestion leads to higher prediction errors. 

 

 

MAPE Result of Artificial Neural Network Models (Downtown)
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FIGURE 5-9 MAPE Result of Artificial Neural Network Models of the Test Bed 1 
by Time Period (Downtown) 
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MAPE Result of Artificial Neural Network Models (North Area)
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FIGURE 5-10 MAPE Result of Artificial Neural Network Models of the Test Bed 2 
by Time Period (North Area) 

  

 

FIGURE 5-11 and FIGURE 5-12 show the MAPE results by time period. Unlike the 

historical data based models and multi linear regression models, the MAPE of clustering 

data is not smaller than that of non-clustering data.   
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MAPE Result of Artificial Neural Network Models (Downtown)
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FIGURE 5-11 MAPE Result of Artificial Neural Network Models of the Test Bed 1 
by Model (Downtown) 

 

 

 

MAPE Result of Artificial Neural Network Models (North Area)
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FIGURE 5-12 MAPE Result of Artificial Neural Network Models of the Test Bed 2 
by Model (North Area) 
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5.4 EVALUATION OF PREDICTION MODELS 

The Average Mean Absolute Percent Error (MAPE) was used to measure model 

performance in this dissertation.  TABLE 5-7, and FIGURE 5-13 through FIGURE 5-14 

show the results of the model evaluation. For both the downtown area and the north area, 

the artificial neural networks give better results in terms of prediction accuracy. In the 

previous chapter, the need for a prediction model that can explain the uncertainty in 

input variables became clear. It is hypothesized that the ANN models that were able to 

identify the non-linear relationship among the input variables and therefore they were 

able to give the best results.    

 

 

TABLE  5-7 Average MAPE of Prediction Models 

Site Time Period 

Historical 
Data 

 
Based Models

Regression  
 

Models 

Artificial 
Neural 

Network 
Models 

Non-Clustering 14.63 24.85 5.13 
Weekend 13.03 22.81 4.31 

Weekday Peak 10.78 14.88 5.04 
Weekday Non-Peak 14.34 23.48 7.87 

Downtown 

Weekday Evening 12.82 19.97 7.17 
Non-Clustering 7.58 15.25 2.82 

Weekend 7.27 14.54 1.92 
Weekday Peak 7.02 11.57 4.39 

Weekday Non-Peak 8.74 17.56 4.36 
North area 

Weekday Evening 6.43 13.92 5.12 
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Averag MAPE of Prediction Models (Downtown)
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FIGURE 5-13 MAPE of Prediction Models of the Test Bed 1 (Downtown) 

 

 

Average MAPE of Prediction Models (North Area)
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FIGURE 5-14 Average MAPE of Prediction Models of the Test Bed 2 (North Area) 
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Average MAPE of Prediction Models (Downtown)
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FIGURE 5-15 Average MAPE of Prediction Models of the Test Bed 1 (Downtown) 
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FIGURE 5-16 Average MAPE of Prediction Models of the Test Bed 2 (North Area) 
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 The most important point to note is that the ANN had the lowest MAPE as compared to 

the historic model and the MLR model. On average, the ANN models had a 55 percent 

improvement with respect to the best historic model and a 71 percent improvement 

compared to the best MLR models in the downtown area. For the north area, the ANN 

models were 49 percent and 74 percent better as the historical data based model and the 

regression models, respectively. TABLE 5-8 presents these figures. It is hypothesized 

that the use of historic data (representing congestion) coupled with real-time schedule 

adherence data (representing real-time congestion and demand inputs) resulted in the 

better performance of the ANN model.   

 

 

TABLE  5-8 Improvement of ANN Models with Respect to Historical Data Based 
Models and Regression Models 

Site Time Period Historical Data Based 
Models 

Regression Models 

Non-Clustering 65 % 79 % 
Weekend 67 % 81 % 

Weekday Peak 53 % 66 % 
Weekday Non-Peak 45 % 66 % 
Weekday Evening 44 % 64 % 

Downtown 

Average 55 % 71 % 
Non-Clustering 63 % 82 % 

Weekend 74 % 87 % 
Weekday Peak 37 % 62 % 

Weekday Non-Peak 50 % 75 % 
Weekday Evening 20 % 63 % 

North area 

Average 49 % 74 % 
 

 

5.5 MODEL COMPARISON 

Three different models for bus arrival time prediction were developed in the previous 

chapter: a historical data based model, a regression model, and a artificial neural network 

model. These models were compared in terms of the accuracy, as measured by MAPE, 
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of predicted bus arrival time in the previous section. In this section, these three different 

models are tested statistically using Tukey’s procedure (the T method). 

  

To check statistically the differences among the predicted models, Tukey’s procedure 

was performed. Let  

 

I = the number of models being compared, 3 (a historical data based model,  

      a multi linear regression model, and an artificial neural network model); 

J = the number of elements of a sample data set; 

MAPE H = MAPE of the historical data based models; 

MAPE R = MAPE of the regression models; 

MAPE N = MAPE of the artificial neural network models; 

The null hypotheses and alternative hypotheses were set as  

H0 : MAPE H = MAPE R = MAPE N and  

Ha : MAPE N ≤ MAPE H ≤  MAPE R  

α = 0.05 (The level of significance per test is 0.05). 

 

Tukey’s procedure involves the use of another probability distribution called the 

Studentized range distribution. The distribution depends on two parameters: a numerator 

degree of freedom m and a denominator degree of freedom v. Let vmQ ,,α denote the 

upper-tail α critical value of the Studentized range distribution with m numerator degree 

of freedom and v denominator degree of freedom (analogous to 
21 ,, vvFα ). Values of 

vmQ ,,α  are given and can be used to obtain simultaneous confidence intervals for all 

pairwise differences ji µµ − . (58) 

Tukey’s procedure is described as follows: 

 

Step 1:  Select α and find )1(,, −JIIQα from appropriate tables (58)   

Step 2:  Determine  JMSEQw JII /)1(,, −= α  
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  MSE = mean square for error 

Step 3:  List the sample means in increasing order and underline those pairs that  

differ by less than w. Any pair of sample means not underscored by the  

same line corresponds to a pair of true treatments means that are judged  

significantly different. 

 

In this dissertation, α is equal to 0.05, and 49.327,3,05.0)1(,, ==− QQ JIIα . The MSE value 

for the non-clustering, weekend, weekday peak, weekday non-peak, and weekday 

evening are shown in TABLE 5-9 through TABLE 5-13, respectively. w values are 

show in TABLE 5-14. Step 3 of Tukey’s procedure is shown in TABLE 5-15. The mean 

MAPE of the three prediction models is arranged in increasing order. For the non-

clustering data set, the w value is 2.03, and the difference between the pairs HEPMA -

NEPMA   and REPMA - HEPMA  is 9.37 and 10.10, respectively. These two values are 

significantly higher than 2.03. This means the MAPE of the historical data based models 

and the MAPE of the regression models are significantly higher than the MAPE of the 

artificial neural network models. For all five time periods, the w values are significantly 

smaller than the difference between every pair. Consequently, the MAPE of the artificial 

neural network models is statistically smaller than the MAPE of the historical data based 

models and the MAPE of the regression models with a significance level of 0.05. 

Consequently, the ANN method was adopted as the preferred prediction method. 
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TABLE  5-9 ANOVA Table for Non-Clustering Data Set 

Source of variation df Sum of squares Mean square F 
Models 2 977.22 488.61 145.11 
Error 27 90.91 3.37 F crit 
Total 29 1068.13  3.35 

F crit: F critical value with significance level of 0.05 

 

 

TABLE  5-10 ANOVA Table for Weekend Data Set 

Source of variation df Sum of squares Mean square F 
Models 2 3992.05 1996.02 1428.87 
Error 27 37.72 1.40 F crit 
Total 29 4029.77  3.35 

 

 

TABLE  5-11 ANOVA Table for Weekday Peak Data Set 

Source of variation df Sum of squares Mean square F 
Models 2 2339.92 1169.96 2405.34 
Error 27 13.13 0.49 F crit 
Total 29 2353.06  3.35 

 

 

TABLE  5-12 ANOVA Table for Weekday Non-Peak Data Set 

Source of variation df Sum of squares Mean square F 
Models 2 977.22 488.61 145.11 
Error 27 90.91 3.37 F crit 
Total 29 1068.13  3.35 

 

 

TABLE  5-13 ANOVA Table for Weekday Evening Data Set 

Source of variation df Sum of squares Mean square F 
Models 2 450.58 225.29 348.51 
Error 27 17.45 0.65 F crit 
Total 29 468.03  3.35 
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TABLE  5-14 w Values 

Clustering 27,3,05.0Q  MSE w  

Non-Clustering 3.49 3.37 2.03 
Weekend 3.49 1.40 1.31 

Weekday peak 3.49 0.49 0.77 
Weekday Non-Peak 3.49 3.37 2.03 
Weekday evening 3.49 0.65 0.89 

 

 

TABLE  5-15 Result of Tukey’s Procedure 

Clustering 
NEPMA   HEPMA  REPMA  

5.30 14.67 24.77 Non-Clustering  9.37 10.10  
5.03 13.19 32.54 Weekend  8.16 19.35  
6.70 10.87 27.17 Weekday peak  4.17 20.47  
10.07 14.56 23.78 Weekday Non-Peak  4.49 9.22  
10.52 13.30 19.77 Weekday evening  2.78 6.47  

  

 

5.6 CONCLUDING REMARKS 

In this chapter, the three prediction models developed in chapter IV were evaluated and 

statistically tested. The ANN models give superior results than historical data based 

models and regression models in term of prediction accuracy. It was hypothesized that 

the ANN, as a universal function approximator, was able to identify the non-linear 

relationships associated with the different clusters. It is found that MAPE decreases as 

prediction time decrease. It was also seen that clustering data leads to smaller MAPE in 

historical data based models and regression models. However, for the ANN models, 

clustering the data did not give a smaller MAPE. While in general the clustering should 

not do worse than the non-clustering option, it is hypothesized that there may not have 

been enough observations to adequately fit the functions. If more observations were 
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available, the results between the two approaches might have been more similar. It was 

also found that the input data at five previous bus stops could give about five percent of 

MAPE.  

 

The three prediction models were statistically tested with Tukey’s procedure. It was 

found that the MAPE of artificial neural networks is statistically smaller than the MAPE 

of the historical data based models and the MAPE of the regression models with a 

significance level of 0.05. Consequently, the ANN method was adopted as the preferred 

prediction method. In chapter VI, three issues related to bus arrival time will be studied: 

the prediction interval of bus arrival time, the probability of a bus being on time, and the 

feasibility for real-time application. 
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CHAPTER VI 

PREDICTION INTERVAL, THE PROBABILITY OF  

A BUS BEING ON TIME, AND REAL-TIME APPLICATION 

6  

Having access to accurate and timely travel time information would be very useful to 

transit patrons as well as transit authorities. For transit users, the prediction interval of 

bus arrival time is very important information for making travel decisions. For example, 

when the predicted bus arrival time is 30 minutes, no one knows what time exactly the 

bus will arrive. This was shown in chapter III where the variability (standard deviation) 

of the arrival times in the test bed 1 during the weekday non-peak period was 150 

seconds.  Because variability in travel time (both waiting and on-board) is extremely 

important for transit choice, it would also be useful to extend the model to provide not 

only estimates of the travel time but also prediction intervals. It is hypothesized if transit 

users were to receive prediction interval information, they can make better decisions.  

 

In addition, on-time performance of a bus is very significant to transit operators because 

customers use this information to measure quality of service and because operators use 

this information to decide when to activate strategies such as bus priority. It would be 

extremely important to identify, in real-time, whether a given bus is on schedule or not. 

To measure the on-time performance, the probability of a bus being on time is required. 

The prediction interval can be used to identify, in real-time, the probability that a given 

bus is on time. 

 

Thanks to the wide-spread deployment of AVL technology, obtaining real-time bus 

location data in most major urban areas is possible. Real-time information on the current 

location of a given bus is would be useful for passengers. However, real-time bus 

location data should be processed into real-time bus arrival information because this 

information is more useful for travelers. While getting real-time location data is 
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relatively easy, predicting real-time bus arrival times is more complicated. Intuitively, 

when using complex models, predicting real-time arrival information every second or 

every five seconds would be very difficult. A methodology for developing a real-time 

prediction model will be discussed later in this chapter. 

   

In chapter V, three different prediction models for bus arrival time were evaluated and 

statistically tested. It was found that the artificial neural network models gave the best 

results in terms of prediction accuracy. Subsequently, in this chapter, based on the ANN 

models, a methodology for identifying the prediction interval of the bus arrival time and 

the probability of a given bys being on time is developed. Because ANNs are non 

parametric models, conventional techniques for calculating prediction intervals can not 

be used. Consequently, a new computer-intensive method, known as the bootstrap 

technique, is used to obtain the prediction interval of bus arrival time. In addition, the 

probability that a given bus is on time was calculated as part of this work. The 

methodology for real-time application is also discussed in the last section. 

 

6.1 PREDICTION INTERVAL 

Because the ANN model is a non-parametric method, a bootstrap technique was chosen 

to obtain the prediction interval for bus arrival time. The bootstrap technique is a 

recently developed computer-based method for conducting statistical inference. In 

general, a narrower prediction interval indicates a more precise arrival time estimate.  

 

6.1.1 Bootstrap Technique 

The bootstrap technique is a computer-intensive method used to make statistical 

inferences about an estimate. FIGURE 6-1 shows the schematic diagram of the bootstrap 

technique. The original data set consists of n elements of data, ).,,.........,,( 321 nxxxxx = . 

From the data set, a statistical estimate θ̂  is calculated. Subsequently, B bootstrap 

samples are generated from the original data set using a computer and a specific random 

sampling strategy.. Each bootstrap sample has n elements generated by sampling with 
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replacement n times from the original data set. The first bootstrap sample has 

).,,.........,,( **
3

*
2

*
1

*
1 nxxxxx =  and the Bth bootstrap sample has ).,,.........,,( **

3
*
2

*
1

*
nB xxxxx = . 

The value of the statistics *θ̂ ,  the bootstrap replications, for each bootstrap sample are 

calculated. Typically, the value of B is set in the range of 100 to 200 (58-59). A major 

advantage of the bootstrap technique is that, because it is computer based, as many 

bootstrap replications can be calculated as desired (58-59). 

 

 

FIGURE 6-1 A Schematic Diagram of a Bootstrap Technique 
 

 

The bootstrap procedure for the prediction interval of the arrival time for the ANN 

models is described as follows: 

Step1:  Generate a bootstrap sample from the original data set 
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Sampling is random and with replacement 

Step 2:  The ANN model runs with the bootstrap sample data generated in Step 1 

Step 3:  Repeat Step 1 and Step 2 B times 

Step 4:  Calculate mean ( γ̂ ) and variance (S2) of B bootstrap replications *θ̂  

Step 5:  Calculate the prediction interval of arrival time with Equation 6-1 

Prediction Interval = 
n

SSt n

2
2

2,2/'ˆ +± −αγ    (6-1) 

where,  

γ̂  = mean of predicted bus arrival time; 

S2 = variance of predicted bus arrival time; 

  =−2,2/' nt α critical values να ,t for the t distribution. 

 

To calculate a prediction interval of bus arrival time, the ANN model for the non-

clustering downtown data was used. According to TABLE 5-5, the MAPE of models 1, 

2, 3, and 4 were 14.76, 5.58, 4.33, and 4.36, respectively and the MAPE of model 5 was 

2.77. In other words, when the input data consists of the five previous bus stops, the 

model could predict bus arrival time with less than three-percent error. Consequently, 

ANN model 5 with non-clustering downtown data was used to calculate the prediction 

interval of bus arrival time. The number of data for model training, n, is 240. A 

sensitivity analysis on the number of bootstrap samples (B) was conducted to identify 

the relationship between B and the interval. In this research, three values were used: 100, 

200, and 1000. 

 

6.1.2 Result of the Prediction Interval of Bus Arrival Time  

The results of the prediction interval of bus arrival time are shown in TABLE 6-1 

through TABLE 6-3 and FIGURE 6-2.  TABLE 6-1 shows the result of the prediction 

interval when B is equal to 100. It can be seen that the arrival time at stop 6 is 447.5 

seconds and the prediction interval is plus/minus 55.3 seconds. TABLE 6-2 shows the 
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result of the prediction interval when B is equal to 200. It can be seen that the arrival 

time and the prediction interval are 447.5 seconds plus/minus 57.8 seconds. TABLE 6-3 

shows the result of the prediction interval when B is equal to 1000. It can be seen that 

they are 447.4 seconds plus/minus 60.6 seconds. While the prediction interval tends to 

increase with B, the values are all relatively close together.  

 

In contrast, the prediction interval at stop 9 shows a large difference for different values 

of B. When B is equal to 100, the prediction interval of bus arrival time at stop 9 is 

plus/minus 111.3 seconds as shown in TABLE 6-1. When B is equal to 200 and 1000, 

the prediction intervals of arrival time at stop 9 are plus/minus 83.1 seconds and 83.4 

seconds, respectively as shown in TABLE 6-2 and TABLE 6-3. It appears that a larger B 

such as 200 or 1000 gives a better prediction interval. However, the results between 200 

and 1000 bootstrap samples were only 0.5 percent different. Consequently, for this test 

bed, it was decided that 200 bootstrap samples were enough to calculate the prediction 

interval of bus arrival time. 

 

 

TABLE  6-1 Results of Prediction Interval (B=100) 

Prediction interval (sec) Arrival time at stop Mean 
(sec) 

Variance
(sec) Lower Upper Lower Upper 

Stop 6 447.5 27.9 392.2* 502.8 -55.3 55.3 
Stop 7 511.2 25.3 461.2 561.2 -50.0 50.0 
Stop 8 564.4 34.1 496.9 632.0 -67.5 67.5 
Stop 9 611.2 56.2 499.9 722.5 -111.3 111.3 

* : 95% significance level was used to calculate the prediction interval 
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TABLE  6-2 Results of Prediction Interval (B=200) 

Prediction interval (sec) Arrival time at stop Mean 
(sec) 

Variance
(sec) Lower Upper Lower Upper 

Stop 6 447.5 29.5 389.7 505.3 -57.8 57.8 
Stop 7 511.0 26.0 460.1 561.9 -50.9 50.9 
Stop 8 564.3 27.7 510.0 618.7 -54.4 54.4 
Stop 9 611.8 42.4 528.6 694.9 -83.1 83.1 

 

 

TABLE  6-3 Results of Prediction Interval (B=1000) 

Prediction interval (sec) Arrival time at stop Mean 
(sec) 

Variance
(sec) Lower Upper Lower Upper 

Stop 6 447.4 30.9 386.7 508.0 -60.6 60.6 
Stop 7 511.1 30.0 452.3 570.0 -58.8 58.8 
Stop 8 564.7 27.2 511.3 618.0 -53.3 53.3 
Stop 9 612.5 42.6 529.1 695.9 -83.4 83.4 

 

 

FIGURE 6-2 shows the difference of the prediction interval with three different B values. 

In this figure, the prediction interval at stop 9 has the largest prediction interval. In 

addition, the bootstrap sample of B = 100 had the largest interval at this stop. 
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The population prediction interval for the MLR can be readily calculated using Equation 

6-2 (58).  

 

∑ ∑−
−

++⋅±+
∗

−
∗

22

2

2,2/10 )(
)(11ˆˆ

ii
n xxn

xxn
n

stx αββ     (6-2) 

 

TABLE 6-4 shows the prediction interval of the bus arrival time estimated by the ANN 

models and the regression models. Both prediction intervals are for the population, not 

for the mean (58-59). The prediction interval of regression model for the mean can be 

seen in TABLE 6-4 and it was calculated using Equation 6-3 (58). It can be seen that the 

ANN models had smaller prediction intervals than the regression models. For example, 

at stop 6, the ANN prediction interval is between 389.7 seconds and 505.3 seconds while 

the regression model prediction interval is between 152.5 seconds and 678.4 seconds. 
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Intuitively, the former would be preferred by transit users and operators because it has a 

smaller interval.  

 

 

TABLE  6-4 Prediction Interval by ANN Models and Regression Models 

Regression ANN 
(for population) (for population) (for mean) 

Bus stop 
Lower 

Prediction 
Interval 

Upper 
Prediction 
Interval 

Lower 
Prediction 
Interval 

Upper 
Prediction 
Interval 

Lower 
Prediction 
Interval 

Upper 
Prediction 
Interval 

Stop 6 389.7 505.3 152.5 678.4 409.4 421.5 

Stop 7 460.1 561.9 233.5 759.4 489.3 503.6 

Stop 8 510.0 618.7 308.3 834.2 562.6 579.8 

Stop 9 528.6 694.9 389.3 915.2 641.8 662.6 

 

 

∑ ∑−
−

+⋅±+
∗

−
∗

22

2

2,2/10 )(
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n xxn

xxn
n

stx αββ     (6-3) 

 

 

FIGURE 6-3 shows that the prediction interval by the regression models gave wider 

prediction intervals at all stops than that by the ANN models.  
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6.2 PROBABILITY OF A BUS BEING ON TIME 

On-time performance of a bus is very important metric used by transit operators because 

customers use this to measure quality of service. In addition, certain transit operation 

strategies, such as bus priority, require this information as an input. Consequently, it 

would be extremely important to identify, in real-time, whether a given bus is on 

schedule or not. To estimate the on-time performance in real-time, the probability of a 

bus being on time is required. In this section, the probability of a bus being on time, 

being ahead of the schedule, or being behind schedule is studied. 

 

6.2.1 Characteristics of Schedule Adherence 

FIGURE 6-4 through FIGURE 6-8 shows the observed histogram of schedule adherence 

by the time period. The histograms of schedule adherence by time period and bus stop 

can be seen in FIGURE C-1 through FIGURE C-45 in APPENDIX C. A positive value 
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of schedule adherence means that the bus is behind schedule and a negative value of 

schedule adherence means that the bus is ahead of schedule. While each stop has a 

slightly different shape, these are some general trends.  

 

FIGURE 6-4 shows the observed histogram of schedule adherence for the non-clustering 

data set. According to this figure, the distribution seems to follow a gamma distribution 

or a normal distribution. FIGURE 6-6 shows the observed histogram of schedule 

adherence for weekday peak period and FIGURE 6-7 shows the observed histogram of 

schedule adherence for weekday non-peak period. The mean of schedule adherence is 

approximately zero and these graphs are symmetric and bell-shaped. FIGURE 6-5 shows 

the observed histogram of schedule adherence for the weekend period and FIGURE 6-8 

shows the observed histogram of schedule adherence for weekday evening period. In 

contrast to the weekday peak and non-peak period, it should be noted that the histograms 

have a long right tail and a short left tail for the weekend and weekday evening periods. 

Therefore, both the gamma distribution and the normal distribution are tested using a 

chi-squared goodness-of-fit test.  
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FIGURE 6-6 Schedule Adherence of Weekday Peak 
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FIGURE 6-8 Schedule Adherence of Weekday Evening 

 

 

6.2.2 Gamma Distribution 

The chi-squared goodness-of-fit test for gamma distribution follows the steps below (60). 

 

Step 1:  Calculate mean and standard deviation 

 

Step 2:  Select an appropriate value of K that affects the shape of the distribution 

  The K values can vary from 0 to ∞; if K is selected to be 1, the resulting  

distribution takes the form of a negative exponential distribution. The K  

value can be determined using Equation 6-4. 

 

   
s

K αµ −
=        (6-4) 
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  where,  

  µ = mean; 

α = a value that effects the shift of the distribution,  

              the α value is greater than or equal to zero,  

in this dissertation α value is zero;  

  s = standard deviation. 

 

Step 3:  Calculate λ value which is a function of mean and K value 

  λ value can be determined using Equation 6-5 

 

   
αµ

λ
−

=
K        (6-5) 

 

Step 4:   Calculate the Gamma function [Γ(K)]. The [Γ(K)] is equal to (K-1)!. If K  

is a integer such as 1,2,3, etc. the Gamma function is simply 0!, 1!, 2!, etc. However if K 

is a non integer value such as 4.602, the Gamma function is 3.602!, which is not so 

easily calculated. A Gamma function table is given in statistical books (60). 

 

Step5:  Solve probability density function f(t) for various desired values of  

schedule adherence t using Equation 6-6. 

 

   )(1)]([
)(

)( απαλλ −−−−
Γ

= tK et
K

tf     (6-6) 

 

  where, 

  f(t) = probability density function; 

     λ = parameter that is a function of mean and user-specified parameters,  

         K and α; 

    K = user-selected parameter between 0 and ∞  

                    that affects the shape of distribution; 
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      α = user-selected parameter greater than or equal to zero  

                    that affects the shift of distribution (seconds); 

      t = schedule adherence (seconds); 

              Γ(K) = the Gamma function, equivalent to (K-1)!. 

 

Step 6:  Calculate probability of grouped schedule adherence using Equation 6-7 

 

   tttftfttxtP ∆
∆++

=∆+<≤ ]
2

)()([)(    (6-7) 

 

  where, ∆t is equal to sixty seconds 

In this dissertation, the schedule adherence is grouped in sixty-second  

intervals. 

 

Step 7:  Calculate frequencies of grouped schedule adherence using Equation 6-8 

 

   )]([)( ttxtPNttxtF ∆+<≤=∆+<≤    (6-8) 

   

where, 

  N = total number of observations; 

  )( ttxtF ∆+<≤ = predicted number of schedule adherence in the  

schedule adherence group ttxt ∆+<≤ . 

 

Step 8:  Calculate chi-square value using Equation 6-9 

 

   ∑
=

−
=

I

i t
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1

2
2 )(

χ       (6-9) 

 

  where, 
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  2
calχ = calculated chi-square value; 

       fO = observed number of frequency of observations in schedule  

           adherence interval I; 

       ft = theoretical number of frequency of expected observations in  

          schedule adherence interval I; 

       i = any time interval of schedule adherence; 

       I = total number of intervals. 

 

Step 9:  Compare the values of 2
calχ  and 2χ , where 2χ is the table value from a  

statistics book with two user-selected parameters α and degrees of  

freedom. The null hypothesis HO is that the Gamma distribution gives a  

good fit of schedule adherence. If 2
calχ is greater than 2χ , HO is rejected,  

meaning a poor fit. If 2
calχ  is less than 2χ , HO is accepted meaning a  

good fit.  

  

In Step 1, the mean and standard deviations of schedule adherence is calculated. TABLE 

6-5 shows the values by time period. In Step 2 through Step 4, the k values, the λ values, 

and the Gamma function [Γ(K)] are determined by Equation 6-4 and Equation 6-5, 

respectively. These values are shown in TABLE 6-6. In Step 5 through 7, the probability 

density function, probability, and frequencies for grouped schedule adherence are 

calculated using Equation 6-6 through Equation 6-8, respectively. These results are 

shown in TABLE 6-7 through TABLE 6-11 by time period. As can be seen in these 

tables, all five time periods give the same result, namely that 2
calχ is greater than 2χ . 

Therefore the null hypothesis (HO) is rejected. This means that the gamma distribution 

gives a poor fit of schedule adherence. FIGURE 6-9 through 6-13 shows the difference 

between the observed schedule adherence and the predicted schedule adherence by the 

Gamma distribution. It can be seen that there are large differences between the two 
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distributions. Consequently, the normal distribution will be applied for the goodness-of-

fit test in the next section.  

 

 

TABLE  6-5 Mean and Standard Deviation of Schedule Adherence 

Time Period Number of 
Observations Mean (sec) Standard Deviation 

(sec) 
Non-Clustering 340 62 189 

Weekend 147 99 174 
Weekday peak 68 -28 179 

Weekday non-peak 85 43 200 
Weekday evening 40 151 146 

 

 

TABLE  6-6 Parameters for Gamma Distribution 

Time Period K value λ value Gamma Function, [Γ(K)] 
Non-Clustering 4.602 0.0053 13.4158 

Weekend 5.212 0.0057 33.2084 
Weekday peak 4.353 0.0056 9.5127 
Weekday Non-

Peak 
4.270 0.0050 8.5079 

Weekday evening 6.589 0.0069 337.95 
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TABLE  6-7 Probability and Predicted Frequencies of Non-Clustering 

Group 
Schedule 

Adherence, 
x (sec) 

Observed 
frequency, fO

Probability, 
P(x) 

Predicted 
Frequency, F(x) t

to

f
ff 2)( −

1 -809 ~-750 0 0.00014 0 0.0 
2 -749 ~ -690 0 0.00135 0 0.0 
3 -689 ~ -630 0 0.00502 2 2.0 
4 -629 ~ -570 0 0.01163 4 4.0 
5 -569 ~ -510 1 0.02054 7 5.1 
6 -509 ~ -450 2 0.03059 11 7.4 
7 -449 ~ -390 3 0.04054 15 9.6 
8 -329 ~ -270 4 0.04939 18 10.9 
9 -269 ~ -210 6 0.05645 20 9.8 
10 -209 ~ -150 7 0.06140 22 10.2 
11 -149 ~   -90 14 0.06416 23 3.5 
12   -89 ~   -30  18 0.06489 23 1.1 
13   -29 ~    30 35 0.06386 23 6.3 
14     31 ~    90 57 0.06141 22 55.7 
15     91 ~  150 58 0.05789 21 65.2 
16   151 ~  210 37 0.05364 19 17.1 
17   211 ~  270 37 0.04896 18 20.1 
18   271 ~  330 25 0.04410 16 5.1 
19   331 ~  390 12 0.03926 14 0.3 
20   391 ~  450 10 0.03458 12 0.3 
21   451 ~  510 4 0.03017 11 4.5 
22   511 ~  570 2 0.02610 9 5.4 
23   571 ~  630 3 0.02240 8 3.1 
24   631 ~  690 3 0.01909 7 2.3 
25   691 ~  750 1 0.01616 6 4.2 
26   751 ~  810  1 0.01360 5 3.2 
27   811 ~  870 0 0.01138 4 4.0 

Calculated Chi-square value, 2
calχ  260.2 

Table value of 2χ , α=0.05, df = 27-1-2=24 36.4 
2
calχ is greater than 2χ : HO is rejected 
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TABLE  6-8 Probability and Predicted Frequencies of Weekend 

Group 
Schedule 

Adherence, 
x (sec) 

Observed 
frequency, fO

Probability, 
P(x) 

Predicted 
Frequency, F(x) t

to

f
ff 2)( −

1 -809 ~-750 0 0.00004 0 0.0 
2 -749 ~ -690 0 0.00058 0 0.0 
3 -689 ~ -630 0 0.00265 1 1.0 
4 -629 ~ -570 0 0.00715 1 1.0 
5 -569 ~ -510 0 0.01416 2 2.0 
6 -509 ~ -450 0 0.02308 4 4.0 
7 -449 ~ -390 0 0.03287 5 5.0 
8 -329 ~ -270 1 0.04246 7 5.1 
9 -269 ~ -210 1 0.05093 8 6.1 
10 -209 ~ -150 2 0.05765 9 5.4 
11 -149 ~   -90 4 0.06230 9 2.8 
12   -89 ~   -30  5 0.06480 10 2.5 
13   -29 ~    30 13 0.06529 10 0.9 
14     31 ~    90 26 0.06403 10 25.6 
15     91 ~  150 27 0.06135 9 36.0 
16   151 ~  210 20 0.05762 9 13.4 
17   211 ~  270 20 0.05317 8 18.0 
18   271 ~  330 11 0.04831 7 2.3 
19   331 ~  390 5 0.04329 7 0.6 
20   391 ~  450 4 0.03832 6 0.7 
21   451 ~  510 2 0.03354 5 1.8 
22   511 ~  570 1 0.02907 5 3.2 
23   571 ~  630 1 0.02496 4 2.3 
24   631 ~  690 2 0.02126 3 0.3 
25   691 ~  750 1 0.01796 3 1.3 
26   751 ~  810  0 0.01507 3 3.0 
27   811 ~  870 1 0.01257 2 0.5 

Calculated Chi-square value, 2
calχ  144.9 

Table value of 2χ , α=0.05, df = 27-1-2=24 36.4 
2
calχ is greater than 2χ : HO is rejected 
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TABLE  6-9 Probability and Predicted Frequencies of Weekday Peak 

Group 
Schedule 

Adherence, 
x (sec) 

Observed 
frequency, fO

Probability, 
P(x) 

Predicted 
Frequency, F(x) t

to

f
ff 2)( −

1 -809 ~-750 0 0.00032 0 0.0 
2 -749 ~ -690 0 0.00266 0 0.0 
3 -689 ~ -630 0 0.00886 1 1.0 
4 -629 ~ -570 0 0.01876 1 1.0 
5 -569 ~ -510 0 0.03075 2 2.0 
6 -509 ~ -450 1 0.04292 3 1.3 
7 -449 ~ -390 3 0.05371 4 0.3 
8 -329 ~ -270 2 0.06211 4 1.0 
9 -269 ~ -210 3 0.06767 5 0.8 
10 -209 ~ -150 2 0.07037 5 1.8 
11 -149 ~   -90 2 0.07051 5 1.8 
12   -89 ~   -30  6 0.06852 5 0.2 
13   -29 ~    30 9 0.06491 4 6.3 
14     31 ~    90 13 0.06018 4 20.3 
15     91 ~  150 12 0.05478 4 16.0 
16   151 ~  210 6 0.04906 3 3.0 
17   211 ~  270 5 0.04333 3 1.3 
18   271 ~  330 2 0.03780 3 0.3 
19   331 ~  390 1 0.03261 2 0.5 
20   391 ~  450 1 0.02786 2 0.5 
21   451 ~  510 0 0.02359 2 2.0 
22   511 ~  570 0 0.01982 1 1.0 
23   571 ~  630 0 0.01653 1 1.0 
24   631 ~  690 0 0.01369 1 1.0 
25   691 ~  750 0 0.01127 1 1.0 
26   751 ~  810  0 0.00923 1 1.0 
27   811 ~  870 0 0.00752 1 1.0 

Calculated Chi-square value, 2
calχ  67.4 

Table value of 2χ , α=0.05, df = 27-1-2=24 36.4 
2
calχ is greater than 2χ : HO is rejected 
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TABLE  6-10 Probability and Predicted Frequencies of Weekday Non-Peak 

Group 
Schedule 

Adherence, 
x (sec) 

Observed 
frequency, fO

Probability, 
P(x) 

Predicted 
Frequency, F(x) t

to

f
ff 2)( −

1 -809 ~-750 0 0.00026 0 0.0 
2 -749 ~ -690 0 0.00209 0 0.0 
3 -689 ~ -630 0 0.00695 1 1.0 
4 -629 ~ -570 0 0.01481 1 1.0 
5 -569 ~ -510 0 0.02459 2 2.0 
6 -509 ~ -450 1 0.03492 3 1.3 
7 -449 ~ -390 0 0.04456 4 4.0 
8 -329 ~ -270 1 0.05265 5 3.2 
9 -269 ~ -210 1 0.05871 5 3.2 
10 -209 ~ -150 3 0.06257 6 1.5 
11 -149 ~   -90 6 0.06430 6 0.0 
12   -89 ~   -30  6 0.06414 6 0.0 
13   -29 ~    30 11 0.06241 5 7.2 
14     31 ~    90 15 0.05947 5 20.0 
15     91 ~  150 15 0.05565 5 20.0 
16   151 ~  210 6 0.05127 5 0.2 
17   211 ~  270 6 0.04660 4 1.0 
18   271 ~  330 5 0.04184 4 0.3 
19   331 ~  390 2 0.03717 3 0.3 
20   391 ~  450 2 0.03270 3 0.3 
21   451 ~  510 1 0.02852 3 1.3 
22   511 ~  570 1 0.02469 2 0.5 
23   571 ~  630 1 0.02121 2 0.5 
24   631 ~  690 1 0.01811 2 0.5 
25   691 ~  750 1 0.01537 1 0.0 
26   751 ~  810  0 0.01298 1 1.0 
27   811 ~  870 0 0.01090 1 1.0 

Calculated Chi-square value, 2
calχ  71.4 

Table value of 2χ , α=0.05, df = 27-1-2=24 36.4 
2
calχ is greater than 2χ : HO is rejected 
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TABLE  6-11 Probability and Predicted Frequencies of Weekday Evening 

Group 
Schedule 

Adherence, 
x (sec) 

Observed 
frequency, fO

Probability, 
P(x) 

Predicted 
Frequency, F(x) t

to

f
ff 2)( −

1 -809 ~-750 0 0.00000 0 0.0 
2 -749 ~ -690 0 0.00009 0 0.0 
3 -689 ~ -630 0 0.00067 0 0.0 
4 -629 ~ -570 0 0.00249 0 0.0 
5 -569 ~ -510 0 0.00631 0 0.0 
6 -509 ~ -450 0 0.01247 1 1.0 
7 -449 ~ -390 0 0.02073 1 1.0 
8 -329 ~ -270 0 0.03034 1 1.0 
9 -269 ~ -210 0 0.04031 2 2.0 
10 -209 ~ -150 0 0.04964 2 2.0 
11 -149 ~   -90 1 0.05749 2 0.5 
12   -89 ~   -30  1 0.06332 3 1.3 
13   -29 ~    30 4 0.06686 3 0.3 
14     31 ~    90 3 0.06813 3 0.0 
15     91 ~  150 4 0.06733 3 0.3 
16   151 ~  210 5 0.06479 3 1.3 
17   211 ~  270 6 0.06091 2 8.0 
18   271 ~  330 8 0.05610 2 18.0 
19   331 ~  390 4 0.05074 2 2.0 
20   391 ~  450 3 0.04514 2 0.5 
21   451 ~  510 1 0.03957 2 0.5 
22   511 ~  570 0 0.03423 1 1.0 
23   571 ~  630 0 0.02925 1 1.0 
24   631 ~  690 0 0.02472 1 1.0 
25   691 ~  750 0 0.02068 1 1.0 
26   751 ~  810  0 0.01714 1 1.0 
27   811 ~  870 0 0.01409 1 1.0 

Calculated Chi-square value, 2
calχ  45.8 

Table value of 2χ , α=0.05, df = 27-1-2=24 36.4 
2
calχ is greater than 2χ : HO is rejected 
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FIGURE 6-9 Observed and Predicted Schedule Adherence by Gamma Distribution 
(Non-Clustering) 
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FIGURE 6-10 Observed and Predicted Schedule Adherence by Gamma 
Distribution (Weekend) 
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FIGURE 6-11 Observed and Predicted Schedule Adherence by Gamma 
Distribution (Weekday Peak) 
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FIGURE 6-12 Observed and Predicted Schedule Adherence by Gamma 
Distribution (Weekday Non-Peak) 
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FIGURE 6-13 Observed and Predicted Schedule Adherence by Gamma 
Distribution (Weekday Evening) 
 

 

6.2.3 Normal Distribution 

The chi-squared goodness-of-fit test for normal distribution follows steps below (60). 

 

Step 1:  Calculate mean and standard deviation 

 

Step 2:  Calculate Z value using Equation 6-10 

 

   
σ

µ−
=

xZ        (6-10) 

  

Step 3:  Solve probability density function f(x) for various desired values of  

schedule adherence t using Equation 6-11 
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   ∞<<∞−= −− xexf x )2/()( 22

2
1),;( σµ

απ
σµ    (6-11) 

 

Step 4:  Calculate probability of grouped schedule adherence using Equation 6-12 

 

   )()()( tFttFttxtP −∆+=∆+<≤     (6-12) 

    

Step 5:  Calculate frequencies of grouped schedule adherence using Equation 6-8 

  

Step 6:  Calculate chi-square value using Equation 6-9 

 

Step 7:  Compare the values of 2
calχ and 2χ , where 2χ is the table value from a  

statistics book, with two user-selected parameters α and degrees of  

freedom. The null hypothesis HO is that the normal distribution gives  

good fit of schedule adherence. If 2
calχ is greater than 2χ , HO is rejected  

meaning poor fit. If 2
calχ  is less than 2χ , HO is accepted meaning good fit.  

 

The mean and standard deviation of schedule adherence are shown in TABLE 6-5.  In 

Step 3 through 5, the probability density function, probability, and frequencies for 

grouped schedule adherence were calculated using Equation 6-11 through Equation 6-12 

and Equation 6-8, respectively. These results are shown in TABLE 6-12 through 

TABLE 6-16 by time period. As can be seen in these tables, all five time periods give 

the same results, namely that 2
calχ is less than 2χ , hence the HO is not rejected. This 

means that the normal distribution gives a good fit of the schedule adherence variable. 

FIGURE 6-14 through FIGURE 6-18 shows the difference between observed schedule 

adherence and predicted schedule adherence by the normal distribution. There are no 

large differences between the two distributions. Consequently, the normal distribution 

adequately estimates schedule adherence.  
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In this chapter, schedule adherence was grouped by sixty seconds. In TABLE 6-12, 

group 13 means that schedule adherence is between minus 29 seconds and plus 30 

seconds. In other words, group 13 means that the bus is on time. The definition of a bus 

being on time varies. Minus one minute to plus three minutes was used in previous 

research paper (61). Because the probability by the normal distribution was calculated by 

60-second interval in this chapter, the probability of a bus being on time, being ahead of 

the schedule, or being behind schedule can be calculated. For example, if the definition 

of a bus being on-time is that the bus arrives 90 seconds early or 210 seconds late, 

according to TABLE 6-14, the probability of a bus being on time in the weekday peak 

period is the summation of the probability of group 11 through group 16, or 0.09210 + 

0.11860 + 0.12910 + 0.12950 + 0.11990 + 0.09353, or 0.6827. This probability can be 

used by transit operators to manage their on-time performance. The operators should 

conduct this probability analysis at regular basis, and they can monitor the pattern of the 

on-time performance. 

 

For transit users who are provided the real-time arrival time information by some 

devices such as internet or kiosk, the probability that a given bus will be on time at bus 

stop i+1, i+2, etc based on the predicted bus arrival time at bus stop i can be provided. 

For example, the prediction model will predict the predicted bus arrival time at stop i+1, 

i+2,······,i+n, based on the arrival time at stop i. In addition to the predicted arrival time, 

the pre-defined bus schedule time already exists. If the predicted arrival time at next 

stops is in between minus one minute and plus three minutes of the scheduled time, the 

probability of the bus being on time is 1.0. If the prediction arrival time at next stops is 

not in between minus one minute to plus three minutes, the probability of the bus being 

on time is zero. For instance, if the scheduled time at bus stop i+n is 8:30 A.M. and the 

predicted arrival time at the stop is 8:45 a.m., the bus will arrive approximately 15 

minutes after the scheduled time. This result means the probability of the bus is on time 

is effectively zero.  
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TABLE  6-12 Probability and Predicted Frequencies of Non-Clustering 

Group 
Schedule 

Adherence, 
x (sec) 

Observed 
frequency, fO

Probability, 
P(x) 

Predicted 
Frequency, F(x) t

to

f
ff 2)( −

1 -809 ~-750 0 0.00000 0 0.0 
2 -749 ~ -690 0 0.00000 0 0.0 
3 -689 ~ -630 0 0.00000 0 0.0 
4 -629 ~ -570 0 0.00040 0 0.1 
5 -569 ~ -510 1 0.00090 0 1.6 
6 -509 ~ -450 2 0.00210 1 2.3 
7 -449 ~ -390 3 0.00500 2 1.0 
8 -329 ~ -270 4 0.01080 4 0.0 
9 -269 ~ -210 6 0.02090 7 0.2 
10 -209 ~ -150 7 0.03480 12 2.0 
11 -149 ~   -90 14 0.05650 19 1.4 
12   -89 ~   -30  18 0.08050 27 3.2 
13   -29 ~    30 35 0.10020 34 0.0 
14     31 ~    90 57 0.12040 41 6.3 
15     91 ~  150 58 0.12710 43 5.1 
16   151 ~  210 37 0.11760 40 0.2 
17   211 ~  270 37 0.10510 36 0.0 
18   271 ~  330 25 0.08200 28 0.3 
19   331 ~  390 12 0.05790 20 3.0 
20   391 ~  450 10 0.03600 12 0.4 
21   451 ~  510 4 0.02160 7 1.5 
22   511 ~  570 2 0.01130 4 0.9 
23   571 ~  630 3 0.00520 2 0.9 
24   631 ~  690 3 0.00240 1 5.8 
25   691 ~  750 1 0.00080 0 1.9 
26   751 ~  810  1 0.00050 0 4.1 
27   811 ~  870 0 0.00000 0 0.0 

Calculated Chi-square value, 2
calχ  42.3 

Table value of 2χ , α=0.05, df = 27-1-2=24 36.4 

Table value of 2χ , α=0.01, df = 27-1-2=24 43.0 

Table value of 2χ , α=0.005, df = 27-1-2=24 45.6 

With α=0.05, 2
calχ is greater than 2χ : HO is rejected 

However, with α=0.01 and α=0.005, 2
calχ is less than 2χ : HO is not rejected 
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TABLE  6-13 Probability and Predicted Frequencies of Weekend 

Group 
Schedule 

Adherence, 
x (sec) 

Observed 
frequency, fO

Probability, 
P(x) 

Predicted 
Frequency, F(x) t

to

f
ff 2)( −

1 -809 ~-750 0 0.00000 0 0.0 
2 -749 ~ -690 0 0.00000 0 0.0 
3 -689 ~ -630 0 0.00000 0 0.0 
4 -629 ~ -570 0 0.00000 0 0.0 
5 -569 ~ -510 0 0.00000 0 0.0 
6 -509 ~ -450 0 0.00080 0 0.1 
7 -449 ~ -390 0 0.00170 0 0.2 
8 -329 ~ -270 1 0.00440 1 0.2 
9 -269 ~ -210 1 0.01010 1 0.2 
10 -209 ~ -150 2 0.02050 3 0.3 
11 -149 ~   -90 4 0.03890 6 0.5 
12   -89 ~   -30  5 0.06150 9 1.8 
13   -29 ~    30 13 0.09170 13 0.0 
14     31 ~    90 26 0.11500 17 4.9 
15     91 ~  150 27 0.13550 20 2.5 
16   151 ~  210 20 0.13400 20 0.0 
17   211 ~  270 20 0.12160 18 0.3 
18   271 ~  330 11 0.10080 15 1.0 
19   331 ~  390 5 0.07010 10 2.7 
20   391 ~  450 4 0.04590 7 1.1 
21   451 ~  510 2 0.02530 4 0.8 
22   511 ~  570 1 0.01310 2 0.4 
23   571 ~  630 1 0.00560 1 0.0 
24   631 ~  690 2 0.00230 0 8.2 
25   691 ~  750 1 0.00090 0 5.7 
26   751 ~  810  0 0.00030 0 0.0 
27   811 ~  870 1 0.00000 0 0.0 

Calculated Chi-square value, 2
calχ  31.1 

Table value of 2χ , α=0.05, df = 27-1-2=24 36.4 

Table value of 2χ , α=0.01, df = 27-1-2=24 43.0 

Table value of 2χ , α=0.005, df = 27-1-2=24 45.6 

With α=0.05, α=0.01 and α=0.005, 2
calχ is less than 2χ : HO is not rejected 
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TABLE  6-14 Probability and Predicted Frequencies of Weekday Peak 

Group 
Schedule 

Adherence, 
x (sec) 

Observed 
frequency, fO

Probability, 
P(x) 

Predicted 
Frequency, F(x) t

to

f
ff 2)( −

1 -809 ~-750 0 0.00000 0 0.0 
2 -749 ~ -690 0 0.00000 0 0.0 
3 -689 ~ -630 0 0.00000 0 0.0 
4 -629 ~ -570 0 0.00090 0 0.1 
5 -569 ~ -510 0 0.00230 0 0.2 
6 -509 ~ -450 1 0.00580 0 0.9 
7 -449 ~ -390 3 0.01230 1 5.6 
8 -329 ~ -270 2 0.02480 2 0.1 
9 -269 ~ -210 3 0.04200 3 0.0 
10 -209 ~ -150 2 0.06770 5 1.5 
11 -149 ~   -90 2 0.09210 6 2.9 
12   -89 ~   -30  6 0.11860 8 0.5 
13   -29 ~    30 9 0.12910 9 0.0 
14     31 ~    90 13 0.12950 9 2.0 
15     91 ~  150 12 0.11990 8 1.8 
16   151 ~  210 6 0.09350 6 0.0 
17   211 ~  270 5 0.06930 5 0.0 
18   271 ~  330 2 0.04330 3 0.3 
19   331 ~  390 1 0.02570 2 0.3 
20   391 ~  450 1 0.01290 1 0.0 
21   451 ~  510 0 0.00610 0 0.4 
22   511 ~  570 0 0.00250 0 0.2 
23   571 ~  630 0 0.00090 0 0.1 
24   631 ~  690 0 0.00030 0 0.0 
25   691 ~  750 0 0.00000 0 0.0 
26   751 ~  810  0 0.00010 0 0.0 
27   811 ~  870 0 0.00000 0 0.0 

Calculated Chi-square value, 2
calχ  16.9 

Table value of 2χ , α=0.05, df = 27-1-2=24 36.4 

Table value of 2χ , α=0.01, df = 27-1-2=24 43.0 

Table value of 2χ , α=0.005, df = 27-1-2=24 45.6 

With α=0.05, α=0.01 and α=0.005, 2
calχ is less than 2χ : HO is not rejected 
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TABLE  6-15 Probability and Predicted Frequencies of Weekday Non-Peak 

Group 
Schedule 

Adherence, 
x (sec) 

Observed 
frequency, fO

Probability, 
P(x) 

Predicted 
Frequency, F(x) t

to

f
ff 2)( −

1 -809 ~-750 0 0.00000 0 0.0 
2 -749 ~ -690 0 0.00000 0 0.0 
3 -689 ~ -630 0 0.00000 0 0.0 
4 -629 ~ -570 0 0.00070 0 0.1 
5 -569 ~ -510 0 0.00170 0 0.1 
6 -509 ~ -450 1 0.00400 0 1.3 
7 -449 ~ -390 0 0.00820 1 0.7 
8 -329 ~ -270 1 0.01570 1 0.1 
9 -269 ~ -210 1 0.02750 2 0.8 
10 -209 ~ -150 3 0.04380 4 0.1 
11 -149 ~   -90 6 0.06400 5 0.1 
12   -89 ~   -30  6 0.08540 7 0.2 
13   -29 ~    30 11 0.10430 9 0.5 
14     31 ~    90 15 0.11640 10 2.6 
15     91 ~  150 15 0.11890 10 2.4 
16   151 ~  210 6 0.11090 9 1.2 
17   211 ~  270 6 0.09480 8 0.5 
18   271 ~  330 5 0.07620 6 0.3 
19   331 ~  390 2 0.05220 4 1.3 
20   391 ~  450 2 0.03400 3 0.3 
21   451 ~  510 1 0.02020 2 0.3 
22   511 ~  570 1 0.01110 1 0.0 
23   571 ~  630 1 0.00550 0 0.6 
24   631 ~  690 1 0.00250 0 2.9 
25   691 ~  750 1 0.00100 0 9.8 
26   751 ~  810  0 0.00060 0 0.1 
27   811 ~  870 0 0.00000 0 0.0 

Calculated Chi-square value, 2
calχ  26.4 

Table value of 2χ , α=0.05, df = 27-1-2=24 36.4 

Table value of 2χ , α=0.01, df = 27-1-2=24 43.0 

Table value of 2χ , α=0.005, df = 27-1-2=24 45.6 

With α=0.05, α=0.01 and α=0.005, 2
calχ is less than 2χ : HO is not rejected 
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TABLE  6-16 Probability and Predicted Frequencies of Weekday Evening 

Group 
Schedule 

Adherence, 
x (sec) 

Observed 
frequency, fO

Probability, 
P(x) 

Predicted 
Frequency, F(x) t

to

f
ff 2)( −

1 -809 ~-750 0 0.00000 0 0.0 
2 -749 ~ -690 0 0.00000 0 0.0 
3 -689 ~ -630 0 0.00000 0 0.0 
4 -629 ~ -570 0 0.00000 0 0.0 
5 -569 ~ -510 0 0.00000 0 0.0 
6 -509 ~ -450 0 0.00000 0 0.0 
7 -449 ~ -390 0 0.00000 0 0.0 
8 -329 ~ -270 0 0.00050 0 0.0 
9 -269 ~ -210 0 0.00140 0 0.1 
10 -209 ~ -150 0 0.00470 0 0.2 
11 -149 ~   -90 1 0.01260 1 0.5 
12   -89 ~   -30  1 0.03030 1 0.0 
13   -29 ~    30 4 0.05800 2 1.2 
14     31 ~    90 3 0.09580 4 0.2 
15     91 ~  150 4 0.13390 5 0.3 
16   151 ~  210 5 0.15880 6 0.3 
17   211 ~  270 6 0.15940 6 0.0 
18   271 ~  330 8 0.13850 6 1.1 
19   331 ~  390 4 0.09680 4 0.0 
20   391 ~  450 3 0.05880 2 0.2 
21   451 ~  510 1 0.03030 1 0.0 
22   511 ~  570 0 0.01330 1 0.5 
23   571 ~  630 0 0.00490 0 0.2 
24   631 ~  690 0 0.00150 0 0.1 
25   691 ~  750 0 0.00050 0 0.0 
26   751 ~  810  0 0.00000 0 0.0 
27   811 ~  870 0 0.00000 0 0.0 

Calculated Chi-square value, 2
calχ  5.0 

Table value of 2χ , α=0.05, df = 27-1-2=24 36.4 

Table value of 2χ , α=0.01, df = 27-1-2=24 43.0 

Table value of 2χ , α=0.005, df = 27-1-2=24 45.6 

With α=0.05, α=0.01 and α=0.005, 2
calχ is less than 2χ : HO is not rejected 
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FIGURE 6-14 Observed and Predicted Schedule Adherence by Normal 
Distribution (Non-Clustering) 

 

 

0

5

10

15

20

25

30

-7
50

-6
30

-5
10

-3
90

-2
70

-1
50 -3

0 90 21
0

33
0

45
0

57
0

69
0

81
0

Schedule adherence (sec)

fre
qu

en
cy observed

predicted

FIGURE 6-15 Observed and Predicted Schedule Adherence by Normal 
Distribution (Weekend) 
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FIGURE 6-16 Observed and Predicted Schedule Adherence by Normal 
Distribution (Weekday Peak) 
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FIGURE 6-17 Observed and Predicted Schedule Adherence by Normal 
Distribution (Weekday Non-Peak) 
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FIGURE 6-18 Observed and Predicted Schedule Adherence by Normal 
Distribution (Weekday Evening) 

 

 

6.3 REAL-TIME APPLICATION 

When using these models in real-time there are two fundamental questions that need to 

be answered. The first is what data should be input. The second is whether the model 

needs to be retrained as new data are obtained. In practice, because real-time vehicle 

location data from AVL systems can be obtained every second, the minimum update 

interval also is one second. In addition, the prediction model may need to have its 

parameters recalibrated at regular intervals. However, it would be prohibitively 

expensive and time consuming to retrain the model every second. It is also unlikely that 

there would be a noticeable benefit to transit agencies or their customers if this was done. 

In this section, the definition of real-time information from the user’s viewpoint is 

defined. In addition, a methodology for updating the prediction model for real-time 

application is discussed. It should be noted that while the artificial neural network 
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models developed in chapter IV are used as the prediction models for bus arrival time, 

the methodology could be applied to any model. 

 

6.3.1 Real-Time Prediction 

  

A real-time prediction model would have the process shown in FIGURE 6-19. The new 

or real-time AVL location data are added to the accumulated AVL data. The new 

accumulated AVL data would be used to train the ANN models. With the calibrated 

parameters from the new accumulated AVL data, the ANN models would be used to 

predict bus arrival time. Theoretically, the models could be updated or retrained every 

second because that is how often new AVL data could be obtained. Intuitively, this 

would be unrealistic because 1) calibrating the ANN models is a time consuming 

business and a one second update would be impossible, and 2) the marginal benefit from 

each successive model would be small. The focus of this following section is on 

identifying the best update interval. A fundamental question is how often the prediction 

models need to be retrained. 
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FIGURE 6-19 Process of Real-Time Prediction 
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6.3.2 Real-Time Service 

 

From the perspective of the transit user, the real-time application should not to be 

retrained every second if the real-time application could give accurate (i.e. acceptable to 

transit user’s tolerance) prediction of arrival time. Therefore, in this section an 

alternative concept is introduced, called real-time service. Real-time service indicates a 

prediction model that predicts the bus arrival time with pre-calibrated parameters and the 

pre-calibrated parameters can be updated at regular intervals. The exact interval, (i.e. 30 

minutes or 3 hours or 3 days) would be obtained through a sensitivity analysis. 

 

6.3.2.1 Real-Time Prediction vs. Real-Time Service 

In this section, the benefits and costs of real-time service are studied. In this dissertation, 

concepts of real-time prediction and real-time service are examined. Real-time 

prediction means that the prediction model is retrained on a regular basis as AVL data 

are obtained. For illustrative purpose, t is set equal to one second. Once the model is 

retrained the arrival time is predicted. In contrast, real-time service means that the bus 

arrival time is predicted using the new AVL data and a calibrated ANN model that is 

updated every u seconds. Note that u is larger than t.   

 

FIGURE 6-20 shows the difference between a real-time prediction model and a real-time 

service model. Model A is a real-time prediction model in that the ANN is retrained 

every t seconds. This model uses newly calibrated bias (Bn) and weight (Wn) parameters 

that are updated every t seconds. Model B is a real-time service model that predicts the 

arrival time with the previously calibrated bias (Bo) and weight (Wo). 
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FIGURE 6-20 Real-time Prediction Model vs. Real-time Service Model 
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6.3.2.2 Simulation of Real-time Prediction Model and Real-time Service Model 

In this section, a methodology for comparing the real-time prediction model and real-

time service model is developed. In order to test the different approaches I observations 

from the test bed are used. Of the total, J observations are used in the database set while 

the remaining K observations represented “new” AVL data. In FIGURE 6-21, the right 

side of the flow chart represents the real-time prediction model, and the left side of the 

flow chart represents the real-time service model. In the case of real-time prediction, the 

real-time data are uploaded every second and therefore the training and prediction of the 

ANN models are repeated. In contrast, in the case of the real-time service model, the 

new AVL data are only used to predict arrival time using previously calibrated models. 

By comparing the predicted arrival time from these two models, the feasibility of the 

real-time service model can be identified. In order to identify the acceptable update 

interval, a specific update interval such as 30 minutes, 1 hour, 3 hours, etc can be tested. 

For example, the pre-calibrated parameters with real-time data obtained 30 minutes 

previously can be used to predict the bus arrival time and it can be accepted if the 

predicted arrival time from the real-time service model is not significantly different from 

that from the real-time prediction model. However, the results of this type of sensitivity 

analysis simulation are not included in this dissertation, because a sufficient amount of 

data was not available for making a valid comparison. 
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FIGURE 6-21 Real-Time Service Availability 
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6.4 CONCLUDING REMARKS 

Having access to accurate and timely travel time information would be very useful to 

transit patrons as well as transit authorities.  Because variability in travel time (both 

waiting and on-board) is extremely important for transit choice it would also be useful to 

extend the model to provide not only estimates of the travel time but also prediction 

intervals. In chapter V, three different prediction models for bus arrival time were 

evaluated and statistically tested. It was found that the artificial neural network models 

gave best results in terms of prediction accuracy. Subsequently, in this chapter, based on 

the artificial neural network (ANN) models, methodology for identifying the prediction 

interval of the bus arrival time and the probability of being on time for a given bus was 

developed. Because ANNs are non parametric models, conventional techniques for 

prediction interval can not be used. Consequently, a new computer-intensive method, a 

bootstrap technique, was used to obtain prediction interval of bus arrival time. 

 

In this chapter, one hundred, two hundred, and one thousand bootstrap samples were 

used to obtain prediction interval of bus arrival time. It was found that the two hundred 

and one thousand bootstrap samples gave better results compared to a one hundred 

bootstrap sample. However, the difference between two hundred and one thousand was 

not significant. Consequently, a two hundred bootstrap sample was adopted. This 

prediction interval information could be provided to transit users with the bus arrival 

time. In addition, the transit agencies could also use this information to manage their on-

time performance and to apply transit signal priority techniques.   

 

In addition, on-time performance of a bus is very valuable to transit operators because 

customers use this to measure quality of service. It would be extremely important to 

identify, in real-time, whether a given bus is on schedule or not. To measure the on-time 

performance, the probability of a bus being on time is required. The prediction interval 

can be used to identify, in real-time, the probability that a given bus is on time. In 

addition to the prediction interval of bus arrival time, the probability that a given bus is 



 190

on time was calculated. The probability density function of schedule adherence seemed 

to be the gamma distribution or the normal distribution. To determine which distribution 

is the best fit for schedule adherence, a chi-squared goodness-of-fit test was used. It was 

found that a normal distribution adequately estimates schedule adherence. With the 

normal distribution, the probability of a bus being on time, being ahead schedule, and 

being behind schedule can be estimated. Transit agencies could use also this information 

to manage their on-time performance and to apply new strategies such as transit priority 

signal. The information can be used to improve operating efficiency (i.e. better headway 

planning etc.) and increase revenue (resulting from becoming more attractive to users). It 

leads to improve schedule reliability resulting in better service quality. In addition, the 

passenger waiting time can be reduced. 

 

In the last section, a methodology for using the techniques in a real-time application was 

discussed. The ANN models is said to be difficult to use in real-time applications 

because the running time for training ANN model is relatively long. Therefore an 

alternative method, a real-time service model was introduced and examined. Real-time 

prediction models retrain ANN models and predict bus arrival time on a regular basis as 

AVL data are obtained. Once the model is retrained the arrival time is predicted.  In 

contrast, real-time service means that the bus arrival time is predicted using the new 

AVL data and the calibrated parameters from the previous ANN training. While a 

methodology for identifying the update interval was provided there was, unfortunately, 

insufficient data to do the analysis.  
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CHAPTER VII 

CONCLUSIONS 

7  

7.1 SUMMARY 

The problem statement of this research identified four main needs: 1) to develop a bus 

arrival time prediction model using AVL data; 2) to explicitly consider traffic congestion, 

dwell times at stops, and schedule adherence in this model; 3) to provide prediction 

intervals for the model; and 4) to provide probability of a bus being on time. A summary 

of how each of these issues was addressed, the main conclusions, and recommendations 

for further research is provided in the following sections. 

 

This research developed a model to predict bus arrival times. Three different prediction 

models were developed and tested. It was found that the ANN models gave the smallest 

prediction errors in terms of prediction accuracy. Because the ANN models are non-

parametric models, a bootstrap technique was used to calculate the prediction intervals 

of bus arrival time. To estimate the probability that a given bus is on time, a gamma and 

a normal distribution were examined with the chi-squared goodness-of-fit test. It was 

found that the normal distribution was the best at identifying the probability of a bus 

being on time, being ahead of schedule, and being behind of schedule. Finally, to 

provide real-time information, a real-time service model was introduced. Each of these 

steps is briefly detailed below. 

 

7.2 BUS ARRIVAL TIME PREDICTION MODELS 

To provide accurate and timely bus arrival time information for transit passengers, bus 

arrival time prediction models were developed. Historical data based models, multi 

linear regression models, and artificial neural network models were developed. These 

three models were calibrated and tested on a transit route in Houston, Texas. The input 
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to the models consisted of arrival time, dwell time, and schedule adherence at each bus 

stop.  

 

7.2.1 Prediction Intervals of Bus Arrival Time 

The ability to provide accurate and timely travel time information would be very useful 

to transit patrons as well as transit authorities. Because variability in travel time (both 

waiting and on-board) is extremely important for transit choices, it would also be useful 

to extend the model to provide not only estimates of travel time but also prediction 

intervals.   With the ANN models, the prediction intervals of bus arrival time were 

calculated. Because the ANN models are non parametric models, conventional 

techniques for prediction intervals can not be used. Consequently, a newly developed 

computer-intensive method, the bootstrap technique was used to obtain prediction 

intervals of bus arrival time. 100, 200, and 1000 bootstrap samples were used to obtain 

prediction interval of bus arrival time.   

 

7.2.2 Probability of a Bus Being On-Time 

On-time performance of a bus is very important to transit operators to provide quality 

service to transit passengers. To measure the on-time performance, the probability of a 

bus being on time is required. In addition to the prediction interval of bus arrival time, 

the probability that a given bus is on time was calculated. The probability density 

function of schedule adherence seemed to be the gamma distribution or the normal 

distribution. To determine which distribution is the best fit for the schedule adherence, a 

chi-squared goodness-of-fit test was used.  

 

7.3 CONCLUSIONS 

 

7.3.1 Bus Arrival Time Prediction Models 

It was found that the artificial neural network models performed considerably better than 

either historical data based models or multi linear regression models.  It was 
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hypothesized that the ANN was able to identify the complex non-linear relationship 

between travel time and the independent variables and this led to superior results. To 

provide useful and trustworthy information, passenger demand, signals, delay due to 

traffic congestion or accidents, etc., must be considered. Especially in larger cities, the 

above factors can significantly influence the predicted arrival time. In this dissertation, 

traffic congestion, dwell time, and schedule adherence were considered, and this 

contributed to predicting bus travel time in larger cities. In order to consider traffic 

congestion and different travel patterns, the data set is clustered into four time periods: 

weekend, weekday peak, weekday non-peak, and weekday evening. The three input 

variables and link travel time were also clustered by time period.   

  

7.3.2 Prediction Interval of Bus Arrival Time 

Two hundred and one thousand bootstrap samples gave better result in comparison to a 

one hundred bootstrap sample. However, the difference between two hundred and one 

thousand was not significant. Consequently, a two hundred bootstrap sample was enough 

to obtain the prediction interval of bus arrival time with reasonable value. 

 

7.3.3 Probability of a Bus Being On-Time 

In brief, the normal distribution estimates well the schedule adherence. With the normal 

distribution, the probability of a bus being on time, being ahead schedule, and being 

behind schedule can be estimated.   

 

7.4 FUTURE STUDY 

While the results are encouraging, there are still a number of extensions to the model 

that should be studied. It is hypothesized that if other real-time data were available, such 

as variability in passenger demand at any given bus stop, traffic congestion measures, 

signals including progression, delay due to traffic congestion or accident, incident 

information, exclusive HOV or bus lanes, etc., arrival time predictions could be 

improved.  Note that this type of information is typically unavailable on urban street 
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networks.  However, as new ITS data collection techniques, such as cell phone 

monitoring improve, this will not be an impediment.    

 

It is hypothesized that universal function approximator models such as ANN would 

work best for the arrival time prediction problem. However, these models require some 

effort for calibrating, and the best model for a given situation would have to be 

determined on a case by case basis.  A process that would “self-calibrating” would be 

extremely useful for these types of applications. 

 

Recently, the use of AVI data, has been rapidly increasing, itself. At some stage, the 

prediction technique of auto travel time using AVL data, not AVI data, could be used 

using the relationship between bus and auto travel time. There are current attempts to use 

AVL data as probe data for auto travel time data. Thus, there should be opportunities to 

extend bus travel time prediction model to use for the prediction of auto travel time. 

 

The methodology for real-time application was discussed. The ANN models showed that 

it is difficult to predict for real-time application because the running time for training 

ANN is relatively long. Therefore, an alternative method, a real-time service model was 

introduced. While real-time prediction models retrain ANN models and predict bus 

arrival time when the new arrival of real-time data are uploaded, real-time service 

models do not retrain ANN and use parameters which are calibrated before. This 

dissertation did not include the results from the simulation of real-time prediction model 

and real-time service model because the data required for an adequate study were not 

available. Note that different data than that used for training and testing the ANN models 

are required to simulate the real-time prediction and real-time service model. How often 

these types of models should be recalibrated is a subject of future study. 
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GLOSSARY 

 

Arrival Time: The time a bus arrives at a specific bus stop. 

 

Artificial Neural Network Models (ANN Models): Information processing structure 

whose design is motivated by the design and functioning of the human brain and 

components thereof. 

 

Advanced Public Transportation Systems (APTS): Intelligent Transportation Systems 

(ITS) technology that is designed to improve transit services through advanced vehicle 

operations, communications, customer service and market development.  

Advanced Traveler Information Systems (ATIS): The use of intelligent transportation 

systems technologies and communication methods for providing information to travelers. 

 

Automatic Vehicle Location (AVL) Systems: Technology that tracks the current 

location of fleet vehicles to assist in dispatching, maintaining schedules, answering 

specific customer inquiries, etc. 

 

Bootstrap Technique: A computer-intensive method used to make statistical inferences 

 

Bus Stop: A place where passengers can board or alight from the bus, usually identified 

by a sign. 

 

Corridor: A broad geographical band that follows a general directional flow connecting 

major sources of trips that may contain a number of streets, highways and transit route 

alignments.  
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Dwell Time: The scheduled time a vehicle or train is allowed to discharge and take on 

passengers at a stop, including opening and closing doors. 

 

Global Positioning Systems (GPS): A satellite-based navigation system, funded by and 

controlled by the U.S. 

 

Headway: Time interval between vehicles moving in the same direction on a particular 

route. 

  

Intelligent Transportation Systems (ITS): ITS applies state-of-the-art and emerging 

technologies to provide more efficient and effective solutions to current multimodal 

transportation problems, as well as anticipate and address future transportation demands 

through an intermodal, strategic approach.   

 

Mean Absolute Percentage Error (MAPE): The average percentage difference between 

the observed value and the predicted value.   
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where, 

yi Predicted value;   

yo Observed value;    

n Number of observations. 

 

Model: An analytical tool (often mathematical) used by transportation planners to assist 

in making forecasts of land use, economic activity, travel activity and their effects on the 

quality of resources such as land, air and water. 

 

Off-Peak Period: Non-rush periods of the day when travel activity is generally lower 

and less transit service is scheduled.  
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Peak Period: Morning and afternoon time periods when transit riding is heaviest  

  

Ridership: The number of rides taken by people using a public transportation system in 

a given time period. 

  

Schedule Adherence: Transit vehicles have a predefined schedule to follow. Schedule 

adherence can be calculated by subtracting the scheduled data from the actual arrival 

time. 

 

Time Check Point: Transit bus has predetermined schedule along the route. On the 

schedule table, some specific bus stops have the scheduled arrival time. Transit 

passengers assume that the bus arrives at the time and the drivers should keep on 

schedule. These specific bus stops are called time check points. 

 

Travel Time: Time to traverse a route between any two points of interest. 

  

Validation: The process to determine whether a model provides an accurate 

representation of the real-world system under study. It involves comparing the model 

output to generated analytical solutions or to collected field data. 
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NOTATION 

 

=jtα Average arrival time at stop j departing during time period t 

=1a Slope of the line connecting stop 1 and stop 9 

=2a Slope of the line connecting point P1 and point P2 

b = Test bed.  

   = 1 (Test bed 1: downtown area) and  

   = 2 (Test bed 2: north area) 

=1b The point of contact of the line connecting stop 1 and stop 9 

=2b The point of contact of the line connecting point P1 and point P2 

=jktA Arrival time for bus k at bus stop j departing during time period t 

=dx Difference between x coordinate of stop 1 and x coordinate of stop 9 

=dy Difference between y coordinate of stop 1 and y coordinate of stop 9 

=jkD Departure time of bus k at bus stop j 

=MjkL Distance from stop M to stop j for bus k 

M = Current bus stop. i.e. from 1 to N-1  

m = Model classification. 

    = 1 (Historical data based model), 

    = 2 (Regression model), and 

    = 3 (Artificial neural network model)  

=mbtnM Model n with m classification, b test bed, and t time period. 

n = Model number 

=bN  Number of last bus stop of test bed b 

       =1 (Downtown area) and  

       =2 (North area) 

=jkP  Predetermined/Scheduled arrival time of bus k at bus stop j 
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=jktS  Schedule adherence of bus k at bus stop j departing during time period t 

=Mjktτ  Travel time from current stop M to stop j for bus k  

            departing during time period t,   j = M, bN ; 

t = Time period. 

   = 1 (weekend period), 

   = 2 (weekday peak period), 

   = 3 (weekday non-peak period), and 

   = 4 (weekday evening period) 

T = Number of time periods. For the test bed, this is equal to 4 ;  

       weekend, weekday peak, weekday off-peak, and weekday evening  

Ti = GPS Time of data i 

=jtϖ Average dwell time at stop j departing during time period t 

=jktW  Dwell time of bus k at bus stop j departing during time period t 

=2Px x coordinate of point P2 

=2Py y coordinate of point P2 

X i-1, i+1 : Distance between data i-1 and data i+1.  

               X i-1, i+1 is the summation of X i-1, i and X i, i+1.       
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TABLE A- 1 Bus Schedule by Bus Stop for the Study Period (Downtown Area, 
Weekday) 

Time Period Stop 1 Stop 9 
 5:25 A.M.  5:33 A.M. Non-Peak  5:55 A.M.  6:03 A.M. 
 6:25 A.M.  6:34 A.M. 
 6:55 A.M.  7:04 A.M. 
 7:25 A.M.  7:34 A.M. Peak 

 7:55 A.M.  8:04 A.M. 
 8:25 A.M.  8:33 A.M. 
 9:10 A.M.  9:18 A.M. 
10:10 A.M. 10:18 A.M. 
11:10 A.M. 11:18 A.M. 
12:10 P.M. 12:18 P.M. 
 1:10 P.M.  1:18 P.M. 
 2:10 P.M.  2:18 P.M. 
 3:08 P.M.  3:16 P.M. 

Non-Peak 

 3:53 P.M.  4:01 P.M. 
 4:23 P.M.  4:32 P.M. 
 4:53 P.M.  5:02 P.M. 
 5:23 P.M.  5:32 P.M. Peak 

 5:53 P.M.  6:02 P.M. 
 6:23 P.M.  6:31 P.M. Non-Peak  6:53 P.M.  7:06 P.M. 
 7:23 P.M.  7:36 P.M. 
 7:53 P.M.  8:06 P.M. 
 8:53 P.M.  9:06 P.M. 
 9:53 P.M. 10:06 P.M. 
10:53 P.M. 11:06 P.M. 

Evening 

11:53 P.M. 12:06 A.M. 
Weekday: Monday through Friday 

 Peak period: 6:15 A.M. ~ 8:15 A.M. and 4:15 P.M. ~ 6:10 P.M. 

 Non-peak period: Before 6:15 A.M., 8:15 A.M. ~ 4:15 P.M., and  

              6:10 P.M. ~ 7:15 P.M. 

 Evening period: After 7:15 P.M. 
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TABLE A- 2 Bus Schedule by Bus Stop for the Study Period (Downtown Area, 
Weekend) 

Time Period Stop 1 Stop 9 
 5:15 A.M.  5:23 A.M. 
 6:15 A.M.  6:23 A.M. 
 7:15 A.M.  7:23 A.M. 
 8:15 A.M.  8:23 A.M. 
 9:15 A.M.  9:23 A.M. 
10:15 A.M. 10:23 A.M. 
11:15 A.M. 11:23 A.M. 
12:15 P.M. 12:23 P.M. 
 1:15 P.M.  1:23 P.M. 
 2:15 P.M.  2:23 P.M. 
 3:15 P.M.  3:23 P.M. 
 4:15 P.M.  4:23 P.M. 
 5:15 P.M.  5:23 P.M. 
 6:15 P.M.  6:23 P.M. 
 7:24 P.M.  7:37 P.M. 
 8:24 P.M.  8:37 P.M. 
 9:24 P.M.  9:37 P.M. 
10:24 P.M. 10:37 P.M. 
11:24 P.M. 11:37 P.M. 

Saturday 

12:24 A.M. 12:37 A.M. 
 7:17 A.M  7:25 A.M. 
 8:17 A.M  8:25 A.M. 
 9:17 A.M  9:25 A.M. 
10:17 A.M 10:25 A.M. 
11:17 A.M 11:25 A.M. 
12:17 P.M 12:25 P.M. 
 1:17 P.M  1:25 P.M. 
 2:17 P.M  2:25 P.M. 
 3:17 P.M  3:25 P.M. 
 4:17 P.M  4:25 P.M. 
 5:17 P.M  5:25 P.M. 
 6:24 P.M  6:37 P.M. 

Sunday 

 7:24 P.M  7:37 P.M. 
Weekend: Saturday and Sunday 
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TABLE A- 3 Bus Schedule by Bus Stop for the Study Period (North Area, 
Weekday) 

Time Period Stop 6 Stop 20 
 5:11 A.M.  5:17 A.M. Non-Peak  5:41 A.M.  5:47 A.M. 
 6:11 A.M.  6:17 A.M. 
 6:39 A.M.  6:46 A.M. 
 7:08 A.M.  7:15 A.M. 
 7:38 A.M.  7:45 A.M. 

Peak 

 8:08 A.M.  8:15 A.M. 
 8:53 A.M.  9:00 A.M. 
 9:54 A.M. 10:01 A.M. 
10:54 A.M. 11:01 A.M. 
11:54 A.M. 12:01 P.M. 
12:54 P.M.  1:01 P.M. 
 1:54 P.M.  2:01 P.M. 
 2:52 P.M.  2:59 P.M. 
 3:37 P.M.  3:44 P.M. 

Non-Peak 

 4:06 P.M.  4:13 P.M. 
 4:36 P.M.  4:43 P.M. 
 5:06 P.M.  5:13 P.M. 
 5:36 P.M.  5:43 P.M. Peak 

 6:07 P.M.  6:14 P.M. 
 6:38 P.M.  6:45 P.M. Non-Peak  7:10 P.M.  7:16 P.M. 
 7:40 P.M.  7:46 P.M. 
 8:40 P.M.  8:46 P.M. 
 9:40 P.M.  9:46 P.M. 
10:40 P.M. 10:46 P.M. 

Evening 

11:38 P.M. 11:45 A.M. 
Weekday: Monday through Friday 

 Peak period: 6:15 A.M. ~ 8:15 A.M. and 4:15 P.M. ~ 6:10 P.M. 

 Non-peak period: Before 6:15 A.M., 8:15 A.M. ~ 4:15 P.M., and  

             6:10 P.M. ~ 7:15 P.M. 

 Evening period: After 7:15 P.M. 
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TABLE A- 4 Bus Schedule by Bus Stop for the Study Period (North Area, 
Weekend) 

Time Period Stop 6 Stop 20 
 5:00 A.M.  5:07 A.M. 
 6:00 A.M.  6:07 A.M. 
 7:00 A.M.  7:07 A.M. 
 8:00 A.M.  8:07 A.M. 
 9:00 A.M.  9:07 A.M. 
10:00 A.M. 10:07 A.M. 
11:00 A.M. 11:07 A.M. 
12:00 P.M. 12:07 P.M. 
 1:00 P.M.  1:07 P.M. 
 2:00P.M.  2:07 P.M. 
 3:00 P.M.  3:07 P.M. 
 4:00 P.M.  4:07 P.M. 
 5:00 P.M.  5:07 P.M. 
 6:00 P.M.  6:07 P.M. 
 7:09 P.M.  7:16 P.M. 
 8:09 P.M.  8:16 P.M. 
 9:09 P.M.  9:16 P.M. 
10:09 P.M. 10:16 P.M. 
11:09 P.M. 11:16 P.M. 

Saturday 

12:09 A.M. 12:16 A.M. 
Weekend: Saturday  
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TABLE B-1 MAPE of ANN Models with Different Training Functions (Batch 
Training with Weight and Bias Learning Rule) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 287.36 339.03 339.99 341.69 319.33 
Model 2 173.72 267.41 229.37 234.61 236.02 
Model 3 140.58 183.44 221.59 169.01 151.71 
Model 4 120.67 145.14 160.55 114.66 95.549 
Model 5 49.07 52.677 59.055 64.105 70.361 
Model 6 55.27 43.444 100.93 87.481 37.617 
Model 7 25.67 30.516 38.478 58.595 19.722 
Model 8 23.37 13.12 22.721 18.642 20.944 
Average 109.46 134.35 146.59 136.10 118.91 
 

 

TABLE B-2 MAPE of ANN Models with Different Training Functions (BFGS 
Quasi-Newton Backpropagation) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 23.69 20.98 19.08 20.56 20.92 
Model 2 16.68 15.09 12.17 20.27 15.95 
Model 3 15.85 12.18 11.42 17.01 16.12 
Model 4 13.93 10.95 9.16 13.47 10.80 
Model 5 8.87 8.37 9.25 10.15 8.25 
Model 6 8.13 8.58 6.14 7.36 7.58 
Model 7 6.39 6.87 6.16 7.32 6.10 
Model 8 4.66 5.86 5.00 7.51 3.77 
Average 12.28 11.11 9.80 12.96 11.19 
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TABLE B-3 MAPE of ANN Models with Different Training Functions (Bayesian 
Regularization) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 14.75 11.88 6.23 18.52 11.03 
Model 2 5.56 4.40 6.41 8.36 10.27 
Model 3 4.21 3.23 6.72 7.72 5.06 
Model 4 4.95 2.64 4.45 5.94 4.11 
Model 5 3.34 2.49 4.47 6.64 2.58 
Model 6 2.50 2.96 3.58 6.97 2.87 
Model 7 2.71 3.07 3.80 5.41 2.43 
Model 8 2.66 2.31 2.91 3.49 2.29 
Average 5.09 4.12 4.82 7.88 5.08 
 

  

TABLE B-4 MAPE of ANN Models with Different Training Functions (Powell-
Beale Conjugate Gradient Backpropagation) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 20.35 23.72 19.38 23.33 16.90 
Model 2 16.81 14.18 13.73 19.19 16.64 
Model 3 15.36 13.87 10.23 15.23 14.53 
Model 4 12.62 10.37 9.33 14.65 11.76 
Model 5 8.47 9.77 8.71 11.64 7.90 
Model 6 7.88 7.43 6.53 9.62 6.10 
Model 7 6.55 7.03 6.69 9.30 4.09 
Model 8 5.13 6.02 5.31 7.77 5.12 
Average 11.64 11.55 9.99 13.84 10.38 
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TABLE B-5 MAPE of ANN Models with Different Training Functions (Fletcher-
Powell Conjugate Gradient Backpropagation) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 24.14 22.74 15.90 21.86 16.53 
Model 2 17.72 14.95 12.02 15.85 16.17 
Model 3 14.86 13.23 11.05 16.79 15.27 
Model 4 13.45 9.99 9.45 15.09 11.61 
Model 5 10.77 8.99 8.61 15.35 5.65 
Model 6 8.98 8.79 6.52 11.77 8.46 
Model 7 7.06 7.02 5.46 7.31 5.65 
Model 8 6.58 6.22 5.33 7.31 5.43 
Average 12.94 11.49 9.29 13.92 10.60 
 

 

TABLE B-6 MAPE of ANN Models with Different Training Functions (Gradient 
Descent Backpropagation) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 381.93 402.29 318.94 317.39 409.05 
Model 2 252.64 237.89 315.72 279.78 252.33 
Model 3 147.96 177.15 155.59 218.48 180.74 
Model 4 139.35 159.53 157.32 110.79 92.86 
Model 5 124.48 116.82 128.65 110.46 89.12 
Model 6 62.55 54.61 68.65 61.82 50.34 
Model 7 45.96 74.88 90.47 34.71 55.67 
Model 8 18.54 27.16 68.69 34.28 27.78 
Average 146.68 156.29 163.00 145.96 144.74 
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TABLE B-7 MAPE of ANN Models with Different Training Functions (Gradient 
Descent with Adaptive Learning Rate Backpropagation) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 50.37 66.06 33.58 38.93 91.43 
Model 2 37.71 42.08 54.24 42.32 28.80 
Model 3 31.71 29.25 38.12 29.77 18.67 
Model 4 25.93 26.75 36.06 21.14 21.59 
Model 5 24.47 24.17 13.41 26.78 12.85 
Model 6 24.73 18.66 11.67 21.17 12.96 
Model 7 17.67 14.33 9.51 16.81 14.61 
Model 8 10.99 10.88 9.77 15.30 12.28 
Average 27.95 29.02 25.79 26.53 26.65 
 

 

TABLE B-8 MAPE of ANN Models with Different Training Functions (Levenberg-
Marquardt Backpropagation) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 13.62 10.88 8.76 18.55 12.50 
Model 2 5.07 4.48 5.47 9.31 7.42 
Model 3 4.71 4.05 6.10 8.55 9.15 
Model 4 4.14 3.84 4.23 7.75 6.91 
Model 5 4.89 2.82 5.29 6.26 6.16 
Model 6 3.89 2.67 4.13 7.13 7.14 
Model 7 3.25 2.57 3.61 6.34 5.03 
Model 8 1.87 2.91 5.03 5.29 3.13 
Average 5.18 4.28 5.33 8.65 7.18 
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TABLE B-9 MAPE of ANN Models with Different Training Functions (One Step 
Secant Backpropagations) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 25.41 24.46 21.43 21.83 23.32 
Model 2 19.96 16.05 16.54 17.73 16.01 
Model 3 16.36 15.00 12.84 18.23 18.28 
Model 4 16.09 11.47 12.60 18.69 12.13 
Model 5 13.70 12.30 11.10 16.29 9.95 
Model 6 12.02 10.41 9.39 13.34 10.40 
Model 7 8.24 9.11 7.82 9.98 9.60 
Model 8 6.85 6.58 5.59 9.76 7.08 
Average 14.83 13.17 12.16 15.73 13.34 
 

 

TABLE B-10 MAPE of ANN Models with Different Training Functions (Resilient 
Backpropagation) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 25.80 23.73 14.99 24.22 18.38 
Model 2 17.34 13.86 16.12 19.19 18.14 
Model 3 15.38 14.17 8.86 16.43 15.87 
Model 4 13.31 11.73 15.52 19.32 14.35 
Model 5 10.07 8.12 11.14 15.76 10.68 
Model 6 7.43 7.13 5.41 9.23 7.97 
Model 7 7.09 8.19 6.24 9.58 9.29 
Model 8 4.88 8.45 3.84 8.19 7.23 
Average 12.66 11.92 10.26 15.24 12.74 
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TABLE B-11 MAPE of ANN Models with Different Training Functions (Sequential 
Order Incremental Update) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 599.15 502.43 563.42 501.99 348.05 
Model 2 270.77 486.37 420.62 356.57 283.76 
Model 3 342.42 383.90 355.89 441.58 230.71 
Model 4 344.58 296.51 296.37 169.85 242.88 
Model 5 304.68 322.91 230.17 277.07 95.94 
Model 6 230.09 223.48 215.08 68.56 107.14 
Model 7 146.95 195.73 153.60 143.75 96.17 
Model 8 119.31 65.14 178.06 167.98 79.53 
Average 294.74 309.56 301.65 265.92 185.52 
 

 

TABLE B- 12 MAPE of ANN Models with Different Training Functions (Scaled 
Conjugate Gradient Backpropagation) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 23.74 24.37 17.86 22.29 20.38 
Model 2 18.46 15.63 14.78 15.74 17.24 
Model 3 16.24 13.86 12.42 19.28 15.33 
Model 4 13.24 10.51 9.06 15.00 12.19 
Model 5 8.92 7.84 9.71 13.73 8.46 
Model 6 10.18 9.66 6.97 10.88 8.94 
Model 7 7.41 8.19 7.95 6.31 5.99 
Model 8 7.20 5.62 6.60 8.44 5.65 
Average 13.17 11.96 10.67 13.96 11.77 
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TABLE B-13 MAPE of ANN Models with Different Training Functions (Batch 
Training with Weight and Bias Learning Rule) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 829.14 587.55 699.25 1012.40 766.14 
Model 2 421.25 615.84 503.43 572.67 491.26 
Model 3 352.05 393.34 457.98 516.53 429.25 
Model 4 308.99 365.58 420.63 333.19 404.38 
Model 5 318.38 382.15 293.15 363.55 382.82 
Model 6 260.19 347.93 253.90 298.21 205.40 
Model 7 279.90 301.22 264.70 298.37 305.08 
Model 8 270.36 306.44 276.60 279.03 283.04 
Model 9 256.62 285.71 222.30 243.49 238.66 
Model 10 252.42 242.37 207.95 228.29 214.90 
Model 11 206.01 200.28 228.89 220.99 238.77 
Model 12 175.81 217.24 184.78 191.14 186.80 
Model 13 188.87 212.13 153.96 195.18 222.16 
Model 14 166.03 168.47 164.25 157.48 133.04 
Model 15 174.19 196.93 140.96 147.03 179.98 
Model 16 139.53 136.79 146.03 141.20 131.30 
Model 17 127.54 97.94 109.72 141.74 121.91 
Model 18 110.97 96.18 111.52 94.60 130.62 
Model 19 81.40 105.83 93.87 86.41 97.76 
Model 20 68.60 102.57 86.00 63.35 93.96 
Model 21 51.80 81.485 94.87 61.79 53.14 
Model 22 45.83 29.28 52.82 40.82 50.07 
Model 23 29.93 28.57 14.45 23.66 30.70 
Model 24 17.38 10.79 16.73 14.28 17.49 
Average 213.88 229.69 216.61 238.56 225.36 
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TABLE B-14 MAPE of ANN Models with Different Training Functions (BFGS 
Quasi-Newton Backpropagation) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 17.56 13.32 16.17 17.63 18.08 
Model 2 13.34 15.50 11.97 14.90 14.94 
Model 3 11.51 13.47 11.44 15.14 14.17 
Model 4 11.20 9.99 9.96 11.52 11.76 
Model 5 10.23 10.78 8.25 12.01 10.90 
Model 6 8.51 8.85 8.13 10.50 10.91 
Model 7 8.55 10.64 9.69 12.10 11.24 
Model 8 8.16 7.10 9.08 8.95 11.63 
Model 9 9.69 8.93 7.58 10.04 9.49 
Model 10 8.09 9.60 7.08 8.58 8.54 
Model 11 11.37 9.91 7.52 8.17 8.39 
Model 12 10.62 5.96 8.80 7.33 8.17 
Model 13 8.47 5.70 5.92 7.03 8.21 
Model 14 9.20 6.22 8.43 7.10 7.01 
Model 15 8.10 6.05 6.39 7.52 6.37 
Model 16 5.66 4.55 4.50 6.48 5.68 
Model 17 5.89 4.72 5.34 7.17 5.28 
Model 18 8.71 6.24 5.30 5.83 6.56 
Model 19 6.05 4.12 3.69 5.52 6.19 
Model 20 6.32 4.16 4.63 6.59 5.36 
Model 21 5.27 4.31 5.60 6.15 3.90 
Model 22 5.86 5.03 3.91 5.47 3.89 
Model 23 4.56 4.29 3.88 4.54 3.51 
Model 24 3.85 2.72 3.92 4.82 4.66 
Average 8.62 7.59 7.38 8.80 8.53 
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TABLE B-15 MAPE of ANN Models with Different Training Functions (Bayesian 
Regularization) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 12.23 4.48 9.94 12.49 5.36 
Model 2 8.07 2.24 2.86 10.78 3.50 
Model 3 5.82 2.26 2.28 7.99 3.07 
Model 4 4.92 1.82 1.97 6.94 2.68 
Model 5 4.53 1.48 3.23 6.17 2.23 
Model 6 5.18 1.50 1.29 6.34 2.73 
Model 7 1.23 1.28 1.12 2.43 2.63 
Model 8 0.82 0.69 1.00 0.70 2.17 
Model 9 1.55 1.11 0.79 0.67 1.78 
Model 10 1.14 0.63 0.66 0.25 1.33 
Model 11 0.19 0.23 0.57 0.24 1.32 
Model 12 1.24 0.07 0.51 0.19 1.14 
Model 13 1.21 0.86 1.20 0.09 0.84 
Model 14 1.01 0.06 0.46 0.22 0.82 
Model 15 0.99 0.40 0.46 0.49 0.84 
Model 16 0.95 0.53 0.46 0.26 0.79 
Model 17 0.06 0.09 0.43 0.13 0.62 
Model 18 0.75 0.70 0.50 0.96 0.65 
Model 19 0.39 0.11 0.54 0.30 0.67 
Model 20 0.62 0.42 0.51 0.27 0.64 
Model 21 0.14 0.36 0.46 0.17 0.67 
Model 22 0.70 0.12 0.32 0.05 0.61 
Model 23 0.13 0.11 0.33 0.10 0.65 
Model 24 0.18 0.05 0.32 0.06 0.61 
Average 2.25 0.90 1.34 2.43 1.60 
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TABLE B-16 MAPE of ANN Models with Different Training Functions (Powell-
Beale Conjugate Gradient Backpropagation) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 14.59 12.83 13.96 14.54 13.83 
Model 2 12.26 11.68 10.71 13.97 11.65 
Model 3 11.01 12.05 10.51 11.70 11.97 
Model 4 9.08 8.35 8.31 9.19 11.89 
Model 5 9.81 8.96 7.99 10.78 8.07 
Model 6 8.09 7.85 7.98 11.03 8.69 
Model 7 7.99 7.96 6.21 9.66 11.12 
Model 8 6.85 8.32 6.15 7.34 8.97 
Model 9 13.02 7.08 7.04 9.61 9.43 
Model 10 7.68 6.65 6.30 8.45 8.27 
Model 11 7.30 5.80 5.65 8.42 7.69 
Model 12 6.60 7.16 6.52 6.57 6.63 
Model 13 6.01 5.22 7.05 6.40 8.13 
Model 14 7.26 6.29 5.40 6.37 7.74 
Model 15 7.53 5.46 5.57 5.73 7.44 
Model 16 8.77 5.08 5.88 6.17 6.42 
Model 17 6.68 4.42 5.53 6.16 5.64 
Model 18 6.68 4.22 5.57 5.70 4.77 
Model 19 8.94 4.61 3.95 6.08 5.18 
Model 20 6.21 4.82 3.62 5.63 6.27 
Model 21 5.82 4.78 3.78 5.90 6.42 
Model 22 6.08 4.66 6.66 5.54 3.73 
Model 23 5.02 5.39 3.31 5.51 4.75 
Model 24 4.36 3.71 3.63 5.71 4.23 
Average 8.07 6.81 6.55 8.01 7.87 

 

  



 225

TABLE B-17 MAPE of ANN Models with Different Training Functions (Fletcher-
Powell Conjugate Gradient Backpropagation) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 15.66 16.58 15.51 16.46 18.50 
Model 2 13.49 15.19 12.59 12.78 14.37 
Model 3 12.81 13.14 10.51 12.25 11.98 
Model 4 10.38 10.70 10.64 13.36 12.70 
Model 5 10.03 10.57 6.17 11.97 12.00 
Model 6 9.71 9.73 10.09 9.18 12.19 
Model 7 8.02 9.04 8.75 11.19 10.12 
Model 8 8.80 7.26 8.62 10.24 8.90 
Model 9 12.05 9.38 7.35 8.14 12.04 
Model 10 9.75 8.36 6.19 8.32 10.30 
Model 11 11.66 7.67 5.77 10.19 9.01 
Model 12 10.16 9.44 6.19 7.80 9.63 
Model 13 10.50 8.73 5.16 7.07 9.33 
Model 14 8.45 6.61 5.63 6.32 8.16 
Model 15 11.38 8.92 5.68 8.16 9.50 
Model 16 5.50 5.73 6.80 8.85 7.18 
Model 17 8.61 6.37 4.36 7.56 5.27 
Model 18 8.10 6.57 5.05 7.14 7.99 
Model 19 8.21 5.41 6.24 6.86 8.14 
Model 20 5.81 5.78 5.73 5.68 5.03 
Model 21 5.71 6.16 6.04 6.62 7.05 
Model 22 5.62 4.12 4.49 6.30 3.96 
Model 23 5.55 5.52 4.95 6.32 4.16 
Model 24 5.08 4.54 4.56 5.31 2.55 
Average 9.21 8.40 7.21 8.92 9.17 
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TABLE B-18 MAPE of ANN Models with Different Training Functions (Gradient 
Descent Backpropagation) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 835.79 587.92 704.73 1012.70 768.02 
Model 2 423.10 616.79 504.03 576.45 493.78 
Model 3 353.06 393.42 458.53 518.67 429.64 
Model 4 310.18 367.96 422.46 333.70 404.94 
Model 5 319.62 385.83 293.79 364.37 384.08 
Model 6 264.17 350.42 254.37 300.30 206.82 
Model 7 282.68 302.70 265.84 298.71 306.84 
Model 8 278.97 315.59 280.99 279.36 283.48 
Model 9 257.03 287.07 223.41 254.16 239.17 
Model 10 265.46 256.35 208.71 241.61 215.14 
Model 11 215.88 215.43 235.86 223.38 239.06 
Model 12 178.02 221.64 186.06 193.12 190.03 
Model 13 189.66 213.53 155.45 207.33 227.28 
Model 14 170.84 173.07 166.29 163.63 134.18 
Model 15 180.86 201.26 141.55 154.23 185.25 
Model 16 151.65 144.67 149.50 152.25 131.82 
Model 17 131.50 106.75 114.19 148.53 127.27 
Model 18 120.58 100.65 113.59 94.54 137.17 
Model 19 84.05 112.17 106.74 89.52 105.15 
Model 20 79.29 108.13 88.95 74.86 106.58 
Model 21 67.63 85.98 108.76 73.13 56.01 
Model 22 56.46 38.51 54.08 44.28 53.82 
Model 23 30.11 39.86 18.00 24.97 37.56 
Model 24 23.22 11.31 16.75 14.28 26.44 
Average 219.58 234.88 219.69 243.25 228.73 

 

 



 227

TABLE B-19 MAPE of ANN Models with Different Training Functions (Gradient 
Descent with Adaptive Learning Rate Backpropagation) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 90.48 83.03 151.65 71.51 123.38 
Model 2 65.57 61.51 80.73 76.94 82.86 
Model 3 67.29 36.64 73.45 47.53 33.39 
Model 4 59.37 51.27 66.33 41.57 28.15 
Model 5 27.57 84.75 24.58 48.66 57.22 
Model 6 36.21 54.36 49.35 28.40 38.41 
Model 7 22.49 44.55 28.76 40.87 58.38 
Model 8 21.76 44.66 40.98 19.28 49.44 
Model 9 25.42 22.52 30.80 20.01 24.86 
Model 10 33.85 42.23 18.36 29.78 49.58 
Model 11 27.83 29.01 18.30 40.49 54.60 
Model 12 28.18 36.34 23.49 18.34 22.99 
Model 13 21.57 24.32 37.42 31.28 29.99 
Model 14 33.38 20.86 17.52 27.04 23.20 
Model 15 22.34 26.84 14.45 21.62 21.23 
Model 16 28.19 21.15 19.38 20.25 30.64 
Model 17 29.93 23.52 18.31 20.32 18.99 
Model 18 22.38 14.10 14.65 19.52 21.60 
Model 19 22.16 13.96 16.93 17.45 15.16 
Model 20 13.53 16.79 12.33 16.94 17.70 
Model 21 23.01 13.84 16.63 18.54 12.60 
Model 22 14.45 11.06 6.57 18.25 18.44 
Model 23 15.25 10.53 12.12 13.93 9.73 
Model 24 10.33 11.91 7.62 12.16 8.27 
Average 31.77 33.32 33.36 30.03 35.45 
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TABLE B-20 MAPE of ANN Models with Different Training Functions 
(Levenberg-Marquardt Backpropagation) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 10.53 5.14 9.00 12.67 10.33 
Model 2 8.02 3.39 8.79 10.34 6.80 
Model 3 6.43 3.22 5.46 9.41 6.34 
Model 4 5.46 2.95 7.29 7.37 6.14 
Model 5 5.94 2.70 6.91 7.75 4.73 
Model 6 4.62 2.14 5.26 8.27 5.80 
Model 7 1.78 2.11 4.53 3.43 7.06 
Model 8 1.58 2.10 4.50 3.79 5.85 
Model 9 2.00 1.94 4.72 4.85 5.49 
Model 10 1.91 2.07 4.17 3.52 5.23 
Model 11 1.74 1.82 4.04 3.04 5.20 
Model 12 1.72 1.84 3.77 3.27 5.90 
Model 13 1.78 1.50 4.23 3.41 5.20 
Model 14 1.41 1.84 3.18 2.74 4.69 
Model 15 1.44 1.65 4.53 3.53 4.00 
Model 16 1.57 1.49 5.39 2.88 3.87 
Model 17 1.13 1.23 3.60 1.87 4.30 
Model 18 1.12 1.16 3.43 2.00 5.21 
Model 19 1.24 1.38 4.06 2.64 3.59 
Model 20 1.11 0.87 3.36 2.32 3.83 
Model 21 1.06 1.11 3.97 1.89 4.39 
Model 22 0.95 0.75 3.61 1.40 3.10 
Model 23 0.70 0.66 2.36 0.88 2.04 
Model 24 1.33 1.16 2.04 2.10 3.11 
Average 2.77 1.93 4.68 4.39 5.09 
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TABLE B-21 MAPE of ANN Models with Different Training Functions (One Step 
Secant Backpropagations) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 18.99 18.25 16.29 22.00 19.94 
Model 2 13.48 15.63 13.22 19.41 18.99 
Model 3 15.31 15.60 11.47 16.15 16.03 
Model 4 11.31 12.71 10.57 14.08 15.76 
Model 5 10.79 11.30 9.34 14.17 12.05 
Model 6 12.50 10.81 10.26 13.46 13.76 
Model 7 11.69 10.63 8.64 12.20 11.17 
Model 8 8.07 11.43 8.24 11.45 12.05 
Model 9 15.63 11.08 8.99 11.57 12.01 
Model 10 13.22 9.23 7.33 12.38 13.64 
Model 11 12.74 10.00 7.42 12.83 12.14 
Model 12 10.89 10.18 8.71 10.72 10.28 
Model 13 12.45 7.47 8.13 8.55 9.91 
Model 14 11.12 9.19 7.68 9.86 9.43 
Model 15 9.64 9.11 7.84 9.08 12.20 
Model 16 11.82 7.36 7.97 9.27 8.83 
Model 17 9.57 6.38 7.16 8.98 8.85 
Model 18 9.12 6.54 6.95 8.04 8.45 
Model 19 9.85 8.31 5.60 8.66 9.03 
Model 20 8.36 6.93 5.80 8.64 7.26 
Model 21 8.95 8.29 6.28 7.41 7.66 
Model 22 9.00 7.59 6.03 7.68 8.33 
Model 23 7.88 5.58 4.56 7.30 6.61 
Model 24 6.03 5.51 4.41 7.16 4.74 
Average 11.18 9.80 8.29 11.29 11.21 
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TABLE B-22 MAPE of ANN Models with Different Training Functions (Resilient 
Backpropagation) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 14.61 17.50 15.94 16.19 15.05 
Model 2 12.79 15.65 13.29 18.12 16.63 
Model 3 11.48 15.06 9.74 12.29 15.08 
Model 4 10.61 12.94 10.86 13.72 10.22 
Model 5 8.39 12.34 7.07 12.98 9.34 
Model 6 10.17 7.92 6.34 11.00 10.73 
Model 7 7.61 11.09 6.72 8.26 11.04 
Model 8 9.08 6.80 4.89 9.42 10.22 
Model 9 13.04 5.32 5.83 7.12 7.48 
Model 10 6.50 8.19 6.13 7.28 7.66 
Model 11 8.37 5.79 6.04 12.25 7.46 
Model 12 9.84 10.84 5.23 7.68 12.31 
Model 13 5.79 6.98 5.48 7.70 7.20 
Model 14 5.65 8.16 5.38 6.89 9.58 
Model 15 5.41 4.84 6.51 7.07 6.72 
Model 16 5.26 3.55 5.73 6.83 6.43 
Model 17 6.12 4.74 4.19 6.27 9.45 
Model 18 9.81 4.04 5.64 6.17 6.87 
Model 19 6.61 4.45 4.02 6.38 7.33 
Model 20 3.65 4.85 3.82 5.87 3.34 
Model 21 5.45 4.10 5.31 5.66 3.88 
Model 22 4.70 4.85 5.87 5.24 7.39 
Model 23 6.52 6.52 6.63 6.21 5.70 
Model 24 5.61 6.02 10.08 3.54 4.25 
Average 8.05 8.02 6.95 8.76 8.81 
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TABLE B-23 MAPE of ANN Models with Different Training Functions (Sequential 
Order Incremental Update) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 886.79 1280.60 1117.90 740.08 902.45 
Model 2 814.67 544.88 497.73 517.97 542.61 
Model 3 634.86 431.22 438.00 601.41 526.46 
Model 4 431.67 461.66 403.50 437.42 499.23 
Model 5 487.94 418.64 328.58 323.74 415.57 
Model 6 446.86 375.08 312.28 344.30 375.15 
Model 7 294.04 338.98 229.07 433.96 371.89 
Model 8 288.84 292.67 311.20 358.47 362.64 
Model 9 277.57 350.38 313.04 352.61 282.14 
Model 10 270.55 307.14 309.58 301.40 250.54 
Model 11 233.40 302.52 197.04 328.05 261.07 
Model 12 298.73 269.25 242.47 287.75 244.58 
Model 13 246.08 324.43 217.37 272.99 194.21 
Model 14 156.08 257.13 234.34 209.63 217.73 
Model 15 255.75 272.16 221.49 197.75 184.23 
Model 16 253.74 283.67 153.50 257.62 255.30 
Model 17 236.62 197.60 193.29 213.14 235.27 
Model 18 259.75 196.30 223.89 186.22 151.74 
Model 19 133.90 124.68 155.25 244.24 247.00 
Model 20 178.17 156.22 160.43 111.49 168.09 
Model 21 186.70 121.38 133.51 135.13 120.00 
Model 22 148.60 114.67 149.15 146.31 117.25 
Model 23 76.56 60.95 104.23 97.78 99.64 
Model 24 102.63 70.40 96.40 72.91 110.51 
Average 316.69 314.69 280.97 298.85 297.30 
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TABLE B-24 MAPE of ANN Models with Different Training Functions (Scaled 
Conjugate Gradient Backpropagation) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 17.16 13.08 13.20 15.92 15.28 
Model 2 17.29 10.99 12.69 13.00 15.04 
Model 3 11.80 14.76 9.23 14.97 14.24 
Model 4 11.11 13.84 10.47 10.82 11.57 
Model 5 11.17 8.92 10.76 13.78 12.50 
Model 6 9.99 11.71 9.68 11.16 10.69 
Model 7 8.83 6.64 8.07 8.91 14.34 
Model 8 9.27 6.60 7.11 10.13 11.53 
Model 9 14.55 11.21 9.01 10.73 8.62 
Model 10 12.52 9.41 7.46 8.12 8.60 
Model 11 12.25 9.62 6.92 9.82 8.29 
Model 12 11.52 8.30 6.66 7.65 9.67 
Model 13 8.01 10.92 8.68 7.02 8.22 
Model 14 12.10 8.70 7.23 9.38 11.39 
Model 15 7.48 5.99 7.23 9.12 7.80 
Model 16 8.62 8.06 6.72 8.67 9.78 
Model 17 11.19 7.32 7.35 7.47 8.88 
Model 18 8.50 6.98 6.65 8.34 5.61 
Model 19 7.98 6.91 4.47 6.73 8.37 
Model 20 6.61 7.25 4.12 6.78 7.40 
Model 21 7.19 5.72 6.14 6.94 4.78 
Model 22 5.13 5.95 5.37 6.76 6.67 
Model 23 5.88 7.68 5.15 6.23 5.25 
Model 24 5.19 5.26 4.05 5.88 4.90 
Average 10.06 8.83 7.68 9.35 9.56 
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TABLE B-25 MAPE of ANN Models with Different Learning Functions 
(Conscience Bias Learning Function) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 14.39 10.91 9.23 16.72 11.33 
Model 2 5.93 4.01 6.19 7.40 7.80 
Model 3 4.63 3.90 6.45 7.37 11.86 
Model 4 4.59 3.07 6.80 8.57 7.43 
Model 5 3.24 2.95 4.90 6.35 5.15 
Model 6 3.79 2.66 4.43 5.95 6.46 
Model 7 2.69 3.00 4.01 5.91 5.13 
Model 8 2.98 2.65 5.26 6.16 5.37 
Average 5.28 4.14 5.91 8.05 7.57 
 

 

TABLE B-26 MAPE of ANN Models with Different Learning Functions (Gradient 
Descent Weight/Bias Learning Function) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 14.97 10.51 6.18 17.08 11.60 
Model 2 5.42 4.26 6.65 9.15 10.64 
Model 3 5.07 3.89 5.78 8.41 8.97 
Model 4 3.67 3.05 4.70 8.33 6.61 
Model 5 3.21 3.28 4.95 6.77 6.95 
Model 6 3.53 2.15 4.04 7.25 5.33 
Model 7 3.26 2.17 5.30 6.63 4.70 
Model 8 2.42 2.91 4.48 5.24 3.87 
Average 5.19 4.03 5.26 8.61 7.33 
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TABLE B-27 MAPE of ANN Models with Different Learning Functions (Gradient 
Descent with Momentum Weight/Bias Learning Function) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 14.09 7.19 7.19 15.37 11.68 
Model 2 6.06 6.02 6.02 8.36 10.39 
Model 3 4.92 5.37 5.37 7.86 12.80 
Model 4 3.54 5.08 5.08 9.22 8.89 
Model 5 3.67 5.46 5.46 6.11 5.23 
Model 6 3.26 5.32 5.32 7.60 6.29 
Model 7 3.02 3.30 3.30 7.08 6.80 
Model 8 2.73 3.87 3.87 5.35 3.83 
Average 5.16 5.20 5.20 8.37 8.24 
 

 

TABLE B-28 MAPE of ANN Models with Different Learning Functions (Hebb 
Weight Learning Function) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 13.76 12.82 7.83 17.85 10.99 
Model 2 5.84 4.00 6.14 8.59 9.31 
Model 3 4.53 3.90 5.68 8.00 9.47 
Model 4 4.51 3.38 5.95 7.73 6.52 
Model 5 3.80 3.55 4.46 6.43 7.84 
Model 6 3.32 3.64 3.54 8.11 5.40 
Model 7 2.88 2.21 5.46 5.50 5.45 
Model 8 2.70 2.91 4.77 5.89 5.00 
Average 5.17 4.55 5.48 8.51 7.50 
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TABLE B-29 MAPE of ANN Models with Different Learning Functions (Hebb with 
Decay Weight Learning Function) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 12.57 9.53 7.67 18.72 11.96 
Model 2 5.72 4.12 6.56 8.19 9.74 
Model 3 4.43 4.20 5.06 8.69 11.62 
Model 4 3.84 3.47 4.71 7.99 8.07 
Model 5 3.35 3.67 5.23 7.12 5.62 
Model 6 2.60 2.94 4.08 7.52 6.70 
Model 7 2.70 3.16 4.25 6.98 5.04 
Model 8 2.53 2.91 3.64 4.10 5.22 
Average 4.72 4.25 5.15 8.66 8.00 
 

 

TABLE B-30 MAPE of ANN Models with Different Learning Functions (Instar 
Weight Learning Function) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 14.27 10.53 8.31 19.41 13.59 
Model 2 5.38 4.27 6.67 8.94 10.93 
Model 3 5.25 3.55 6.29 8.21 7.11 
Model 4 4.14 3.83 4.92 7.63 7.67 
Model 5 3.95 2.90 5.28 6.57 7.49 
Model 6 3.74 3.35 3.84 7.36 6.52 
Model 7 3.09 3.21 4.63 6.51 3.98 
Model 8 2.84 2.91 5.08 7.17 4.01 
Average 5.33 4.32 5.63 8.97 7.66 
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TABLE B-31 31 MAPE of ANN Models with Different Learning Functions 
(Kohonen Weight Learning Function) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 14.15 9.50 7.99 17.59 13.39 
Model 2 6.31 3.95 5.01 7.60 8.67 
Model 3 4.54 3.90 6.00 8.93 7.77 
Model 4 4.09 2.85 5.22 10.04 10.17 
Model 5 3.66 2.13 5.36 5.36 6.07 
Model 6 3.71 2.21 3.57 7.98 6.11 
Model 7 2.87 3.34 4.01 6.09 6.20 
Model 8 2.80 2.91 4.09 5.04 4.21 
Average 5.27 3.85 5.16 8.58 7.82 
 

 

TABLE B-32 MAPE of ANN Models with Different Learning Functions (LVQ1 
Weight Learning Function) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 13.62 10.88 8.76 18.55 12.50 
Model 2 5.07 4.48 5.47 9.31 7.42 
Model 3 4.71 4.05 6.10 8.55 9.15 
Model 4 4.14 3.84 4.23 7.75 6.91 
Model 5 4.89 2.82 5.29 6.26 6.16 
Model 6 3.89 2.67 4.13 7.13 7.14 
Model 7 3.25 2.57 3.61 6.34 5.03 
Model 8 1.87 2.91 5.03 5.29 3.13 
Average 5.18 4.28 5.33 8.65 7.18 
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TABLE B-33 MAPE of ANN Models with Different Learning Functions (LVQ2 
Weight Learning Function) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 15.55 11.76 9.05 18.94 9.95 
Model 2 5.24 3.81 6.54 8.07 9.79 
Model 3 5.12 3.61 5.38 8.02 11.44 
Model 4 5.01 3.41 5.44 9.69 7.58 
Model 5 2.98 3.70 4.61 5.75 6.31 
Model 6 3.22 3.16 4.92 8.07 6.89 
Model 7 2.45 2.29 3.10 6.26 5.48 
Model 8 2.86 2.91 3.33 5.49 4.77 
Average 5.31 4.33 5.30 8.79 7.77 
 

  

TABLE B-34 MAPE of ANN Models with Different Learning Functions (Outstar 
Weight Learning Function) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 14.65 9.06 6.94 18.25 11.38 
Model 2 5.38 4.49 6.02 8.64 10.54 
Model 3 5.32 4.59 5.59 7.21 11.99 
Model 4 4.05 3.83 5.77 8.08 6.01 
Model 5 3.77 3.47 5.00 6.80 7.32 
Model 6 3.11 2.11 5.01 7.36 6.43 
Model 7 2.51 3.21 3.30 6.92 4.02 
Model 8 2.73 2.91 3.84 5.71 3.11 
Average 5.19 4.21 5.18 8.62 7.60 
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TABLE B- 35 MAPE of ANN Models with Different Learning Functions 
(Perceptron Weight and Bias Learning Function) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 14.76 10.79 7.11 17.96 11.04 
Model 2 5.58 4.11 5.75 7.65 9.92 
Model 3 4.33 4.15 5.79 7.86 8.70 
Model 4 4.36 3.73 5.01 7.07 7.64 
Model 5 2.77 3.05 5.14 6.82 6.30 
Model 6 3.61 2.52 3.70 5.52 4.70 
Model 7 2.60 3.21 3.51 5.58 4.29 
Model 8 3.02 2.91 4.30 4.52 4.74 
Average 5.13 4.31 5.04 7.87 7.17 
 

 

TABLE B- 36 MAPE of ANN Models with Different Learning Functions 
(Normalized Perceptron Weight and Bias Learning Function) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 14.42 12.61 8.55 18.90 11.90 
Model 2 5.35 4.33 6.48 7.81 10.83 
Model 3 5.02 4.14 4.99 8.01 9.65 
Model 4 4.30 3.47 6.13 7.18 8.68 
Model 5 3.10 3.77 5.01 6.40 7.62 
Model 6 2.87 3.20 3.59 7.32 7.78 
Model 7 2.82 3.17 3.07 5.44 7.63 
Model 8 3.14 2.91 3.96 4.24 4.76 
Average 5.13 4.70 5.22 8.16 8.61 
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TABLE B-37 MAPE of ANN Models with Different Learning Functions (Self-
organizing Map Weight Learning Function) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 14.08 11.03 6.81 17.84 11.63 
Model 2 5.67 4.09 6.71 7.65 9.81 
Model 3 4.29 3.71 6.05 8.55 9.88 
Model 4 3.81 3.55 6.83 7.78 7.21 
Model 5 3.56 3.55 5.15 6.62 4.57 
Model 6 2.79 3.09 2.94 5.60 6.45 
Model 7 3.06 2.07 4.41 7.16 4.63 
Model 8 2.57 2.91 3.53 4.90 5.20 
Average 4.98 4.25 5.30 8.26 7.42 
 

 

TABLE B-38 MAPE of ANN Models with Different Learning Functions (Widrow-
Hoff Weight and Bias Learning Rule) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 14.65 14.04 6.99 18.61 11.03 
Model 2 5.38 4.49 7.04 7.70 12.39 
Model 3 4.82 3.17 5.63 9.39 10.83 
Model 4 3.85 4.24 5.68 7.82 9.71 
Model 5 3.53 2.76 5.95 7.71 5.62 
Model 6 3.39 2.56 5.34 5.80 6.56 
Model 7 2.31 2.21 3.31 7.80 7.31 
Model 8 2.41 2.91 3.89 3.76 5.79 
Average 5.04 4.55 5.48 8.57 8.65 
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TABLE B-39 MAPE of ANN Models with Different Learning Functions 
(Conscience Bias Learning Function) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 12.49 5.01 8.52 12.57 9.37 
Model 2 8.63 3.79 7.54 11.10 7.04 
Model 3 6.28 3.12 4.64 7.99 6.15 
Model 4 5.68 2.94 5.79 7.12 6.31 
Model 5 5.51 2.69 5.18 6.22 5.93 
Model 6 4.94 2.28 4.25 6.59 5.73 
Model 7 1.57 1.91 4.20 4.12 5.90 
Model 8 1.63 2.11 4.10 3.31 5.01 
Model 9 1.94 1.92 3.62 3.30 5.44 
Model 10 1.64 2.17 6.97 4.09 5.71 
Model 11 1.92 2.25 3.95 3.14 5.76 
Model 12 1.58 1.67 4.61 4.20 5.24 
Model 13 1.48 1.60 4.42 3.11 4.54 
Model 14 1.25 1.40 3.05 3.03 4.39 
Model 15 1.48 1.86 4.36 2.72 6.07 
Model 16 1.22 1.51 4.05 3.17 3.36 
Model 17 1.17 1.34 3.42 2.48 5.04 
Model 18 1.24 1.15 3.25 1.43 5.65 
Model 19 1.19 1.04 2.89 0.96 3.72 
Model 20 1.14 1.52 3.45 1.03 3.00 
Model 21 1.03 1.01 4.62 1.89 3.42 
Model 22 1.12 0.98 2.68 1.40 3.59 
Model 23 0.70 0.66 3.12 0.88 2.61 
Model 24 1.37 1.47 3.36 2.66 2.53 
Average 2.84 1.97 4.42 4.10 5.06 
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TABLE B-40 MAPE of ANN Models with Different Learning Functions (Gradient 
Descent Weight/Bias Learning Function) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 11.82 5.30 8.93 12.45 8.43 
Model 2 7.44 4.08 6.60 12.66 7.97 
Model 3 6.47 3.16 6.91 10.39 7.61 
Model 4 5.75 3.15 5.01 6.98 6.52 
Model 5 5.61 2.81 5.34 7.05 7.06 
Model 6 4.99 2.24 4.71 6.21 6.48 
Model 7 1.83 1.92 3.97 4.28 4.98 
Model 8 1.64 2.09 4.31 3.35 6.04 
Model 9 2.13 2.34 3.43 3.52 4.87 
Model 10 1.75 2.14 4.21 4.38 5.01 
Model 11 2.02 1.64 3.19 3.63 4.96 
Model 12 1.82 1.81 3.23 2.37 5.21 
Model 13 1.38 1.72 3.90 3.63 5.09 
Model 14 1.86 1.84 4.20 3.84 5.10 
Model 15 1.24 1.47 4.08 2.48 5.24 
Model 16 1.22 1.68 3.42 2.63 5.20 
Model 17 1.38 1.53 4.10 2.58 3.34 
Model 18 1.46 0.94 2.48 2.61 4.69 
Model 19 1.10 1.09 3.47 2.60 3.51 
Model 20 1.23 1.07 3.11 2.29 4.41 
Model 21 0.97 1.13 3.85 1.89 4.06 
Model 22 0.86 0.53 3.94 1.39 3.72 
Model 23 0.70 0.66 3.28 0.88 2.65 
Model 24 1.20 1.52 2.41 2.02 2.80 
Average 2.83 1.99 4.25 4.42 5.21 
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TABLE B-41 MAPE of ANN Models with Different Learning Functions (Gradient 
Descent with Momentum Weight/Bias Learning Function) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 11.75 5.37 7.94 14.60 8.16 
Model 2 8.37 3.89 7.58 13.73 5.76 
Model 3 6.79 3.10 5.80 10.12 7.14 
Model 4 5.10 2.87 7.37 6.88 7.25 
Model 5 5.18 2.46 4.11 8.70 5.62 
Model 6 4.83 2.46 3.79 8.27 5.86 
Model 7 1.85 2.23 5.75 3.87 5.74 
Model 8 1.72 1.94 4.93 3.93 5.34 
Model 9 1.56 2.04 3.68 3.47 4.12 
Model 10 1.86 1.98 4.82 3.34 4.93 
Model 11 1.73 1.83 4.02 3.54 4.89 
Model 12 1.51 1.95 3.56 2.32 5.91 
Model 13 1.58 1.45 5.34 2.57 5.26 
Model 14 1.06 1.57 3.86 2.88 3.96 
Model 15 1.41 1.50 4.68 3.14 6.95 
Model 16 1.26 1.49 4.30 2.21 4.80 
Model 17 1.09 1.43 3.12 2.62 4.18 
Model 18 1.25 1.14 2.86 2.58 4.14 
Model 19 1.04 1.43 3.44 2.36 4.16 
Model 20 1.12 0.97 3.83 2.28 3.16 
Model 21 0.85 0.93 3.23 1.89 4.00 
Model 22 1.12 0.81 3.67 1.41 4.25 
Model 23 0.70 0.66 3.21 0.88 3.74 
Model 24 1.15 1.70 3.97 2.41 2.18 
Average 2.75 1.97 4.54 4.58 5.06 
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TABLE B-42 MAPE of ANN Models with Different Learning Functions (Hebb 
Weight Learning Function) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 12.23 4.78 8.24 12.89 8.47 
Model 2 7.91 3.87 6.93 12.10 6.77 
Model 3 6.98 3.12 7.49 8.58 8.38 
Model 4 5.48 2.96 5.84 6.94 6.17 
Model 5 5.77 2.54 4.99 6.22 5.63 
Model 6 4.53 2.43 5.32 6.64 8.55 
Model 7 1.88 2.11 4.75 4.56 5.38 
Model 8 1.59 2.07 4.10 2.83 5.91 
Model 9 1.53 1.79 4.19 3.11 5.37 
Model 10 2.10 1.96 5.07 4.73 4.63 
Model 11 1.70 2.08 3.57 3.56 4.97 
Model 12 1.70 1.85 3.72 3.25 4.80 
Model 13 1.42 1.82 4.23 2.71 5.20 
Model 14 1.44 1.83 4.06 3.23 5.32 
Model 15 1.32 1.39 4.08 2.93 4.36 
Model 16 1.42 1.46 3.22 3.20 4.15 
Model 17 1.51 1.43 3.53 1.78 5.31 
Model 18 1.05 1.22 3.44 2.55 4.70 
Model 19 1.38 0.95 2.87 1.22 3.72 
Model 20 1.31 1.07 3.99 2.34 2.69 
Model 21 1.25 0.84 2.32 0.86 3.73 
Model 22 0.75 0.91 3.78 1.40 3.02 
Model 23 0.70 0.66 2.86 0.89 2.49 
Model 24 1.20 1.58 2.79 2.35 1.56 
Average 2.84 1.95 4.39 4.20 5.05 
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TABLE B-43 MAPE of ANN Models with Different Learning Functions (Hebb with 
Decay Weight Learning Function) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 12.49 5.33 8.02 15.57 9.02 
Model 2 7.91 3.96 7.05 13.74 7.27 
Model 3 6.33 2.97 6.59 8.81 6.37 
Model 4 6.06 3.07 5.86 7.02 7.15 
Model 5 6.17 2.72 4.66 6.32 5.98 
Model 6 5.00 2.25 4.93 6.31 5.74 
Model 7 1.79 2.04 6.47 4.16 5.77 
Model 8 1.65 2.20 4.58 3.64 5.92 
Model 9 2.26 1.67 3.90 3.27 4.70 
Model 10 2.01 1.92 3.75 3.50 6.83 
Model 11 1.90 2.11 5.15 3.35 6.34 
Model 12 1.65 1.89 3.94 3.50 5.98 
Model 13 1.35 1.89 3.58 3.41 5.40 
Model 14 1.55 1.47 4.16 2.92 3.74 
Model 15 1.37 1.39 3.96 2.89 4.49 
Model 16 1.30 1.44 3.55 2.30 3.05 
Model 17 1.20 1.51 3.77 1.75 3.31 
Model 18 1.40 1.05 3.23 2.79 5.06 
Model 19 0.89 1.08 3.37 2.64 3.65 
Model 20 0.98 1.03 2.63 2.14 2.76 
Model 21 1.15 1.03 3.67 1.21 3.73 
Model 22 0.83 0.51 3.53 1.38 3.41 
Model 23 0.70 0.66 2.28 0.88 3.73 
Model 24 0.90 1.56 3.72 2.48 2.20 
Average 2.87 1.95 4.43 4.42 5.07 
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TABLE B-44 MAPE of ANN Models with Different Learning Functions (Instar 
Weight Learning Function) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 11.81 5.16 9.17 12.45 10.85 
Model 2 6.68 3.58 7.22 11.75 6.32 
Model 3 6.36 3.02 5.30 10.61 7.32 
Model 4 5.86 3.11 6.31 9.81 6.38 
Model 5 5.55 2.72 5.59 6.41 5.47 
Model 6 4.89 2.19 3.95 7.58 7.12 
Model 7 1.81 1.78 4.02 4.19 7.30 
Model 8 1.59 2.36 3.81 3.86 5.30 
Model 9 1.73 2.11 4.52 4.21 5.12 
Model 10 1.82 1.82 3.41 2.71 4.56 
Model 11 1.73 1.74 4.18 4.49 6.27 
Model 12 1.28 1.45 4.02 3.50 6.80 
Model 13 1.44 1.51 4.37 3.47 4.66 
Model 14 1.23 1.74 4.03 3.08 5.06 
Model 15 1.55 1.23 5.00 2.79 4.95 
Model 16 1.71 1.56 3.10 2.00 3.87 
Model 17 1.51 1.36 4.98 2.13 3.94 
Model 18 1.30 1.57 3.66 2.84 3.67 
Model 19 1.24 0.91 2.62 2.64 3.90 
Model 20 1.44 0.87 2.54 2.34 2.35 
Model 21 0.94 0.89 4.23 1.05 3.65 
Model 22 0.94 0.91 2.38 1.41 2.78 
Model 23 0.70 0.66 2.77 0.88 1.98 
Model 24 0.76 1.47 3.33 2.48 2.97 
Average 2.75 1.91 4.35 4.53 5.11 
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TABLE B-45 MAPE of ANN Models with Different Learning Functions (Kohonen 
Weight Learning Function) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 11.56 4.93 9.39 14.47 10.01 
Model 2 7.92 3.65 7.74 10.16 7.76 
Model 3 7.35 3.32 5.61 9.87 6.77 
Model 4 5.81 3.00 6.45 9.82 7.08 
Model 5 5.15 2.60 4.91 6.87 5.17 
Model 6 4.91 2.43 4.94 7.73 6.08 
Model 7 1.66 2.23 4.16 3.85 6.73 
Model 8 1.71 1.99 4.38 3.79 7.94 
Model 9 2.06 1.80 5.63 5.06 5.64 
Model 10 1.78 1.86 4.56 3.41 4.89 
Model 11 1.68 2.41 3.68 4.06 4.35 
Model 12 1.48 1.84 5.54 3.07 3.87 
Model 13 1.95 1.74 2.72 2.64 4.97 
Model 14 1.67 1.51 3.96 3.56 5.98 
Model 15 1.54 1.41 3.82 2.82 4.64 
Model 16 1.25 1.49 4.12 2.74 5.34 
Model 17 1.16 1.70 3.12 1.55 3.89 
Model 18 1.24 1.14 3.43 1.89 4.35 
Model 19 1.17 1.49 2.91 1.46 3.74 
Model 20 1.08 1.17 2.62 2.34 3.17 
Model 21 1.19 1.01 4.27 1.88 4.01 
Model 22 0.81 0.62 3.11 1.41 2.98 
Model 23 0.70 0.66 2.08 0.88 3.33 
Model 24 0.92 1.41 2.99 2.96 2.56 
Average 2.82 1.98 4.42 4.51 5.22 
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TABLE B-46 MAPE of ANN Models with Different Learning Functions (LVQ1 
Weight Learning Function) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 12.09 5.33 7.32 14.08 8.65 
Model 2 7.11 3.68 8.58 11.34 8.80 
Model 3 7.20 3.37 6.69 8.12 5.81 
Model 4 5.40 2.92 4.48 7.52 5.43 
Model 5 5.81 2.47 4.47 6.84 5.96 
Model 6 4.81 2.31 5.14 8.06 5.73 
Model 7 1.82 2.09 4.95 4.16 7.59 
Model 8 1.61 2.17 3.41 4.61 5.24 
Model 9 1.93 1.99 5.13 3.48 5.47 
Model 10 1.66 1.84 3.70 5.00 4.42 
Model 11 2.07 2.34 4.60 3.20 5.11 
Model 12 1.78 1.81 3.44 3.17 4.35 
Model 13 1.63 1.51 3.95 3.08 4.46 
Model 14 1.47 1.99 4.27 3.39 5.62 
Model 15 1.57 1.77 4.47 2.30 5.56 
Model 16 1.46 1.17 3.71 3.08 5.32 
Model 17 1.19 1.43 3.65 3.06 5.39 
Model 18 1.35 1.28 2.28 2.14 4.27 
Model 19 1.12 0.95 4.50 2.64 4.43 
Model 20 0.99 0.68 2.68 2.34 2.77 
Model 21 1.10 0.96 2.92 1.89 3.63 
Model 22 1.05 0.95 4.82 1.40 3.98 
Model 23 0.70 0.66 3.94 0.88 3.03 
Model 24 1.18 0.46 3.29 2.45 3.02 
Average 2.84 1.92 4.43 4.51 5.17 
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TABLE B-47 MAPE of ANN Models with Different Learning Functions (LVQ2 
Weight Learning Function) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 12.04 5.28 8.76 12.45 10.97 
Model 2 8.88 3.84 6.26 12.19 7.36 
Model 3 5.94 3.26 5.37 10.74 6.63 
Model 4 5.68 3.09 6.38 7.39 5.98 
Model 5 5.76 2.51 4.83 6.25 5.97 
Model 6 5.49 2.17 4.59 7.59 5.22 
Model 7 1.83 2.36 3.95 3.45 8.34 
Model 8 1.57 1.92 4.86 3.80 4.91 
Model 9 2.09 2.24 4.40 3.48 5.65 
Model 10 1.96 2.15 3.01 2.93 6.22 
Model 11 1.78 1.91 3.96 3.96 4.09 
Model 12 1.30 1.48 3.65 2.84 5.41 
Model 13 1.36 1.68 4.00 3.40 4.13 
Model 14 1.80 1.52 3.62 3.16 4.22 
Model 15 1.86 1.83 3.99 2.68 6.07 
Model 16 1.44 1.42 4.42 2.28 5.21 
Model 17 1.22 1.45 3.93 1.62 6.40 
Model 18 1.18 1.20 4.10 1.85 4.14 
Model 19 1.16 0.99 3.68 2.34 3.30 
Model 20 1.27 0.82 2.26 2.00 3.78 
Model 21 1.18 0.78 3.06 1.89 3.32 
Model 22 0.78 0.64 2.50 1.40 2.65 
Model 23 0.70 0.66 2.65 0.87 3.45 
Model 24 1.27 1.30 4.09 2.58 2.88 
Average 2.90 1.94 4.26 4.30 5.26 
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TABLE B-48 MAPE of ANN Models with Different Learning Functions (Outstar 
Weight Learning Function) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 11.87 5.31 7.73 14.70 7.06 
Model 2 7.69 4.14 6.50 12.63 6.76 
Model 3 5.91 3.10 5.11 10.04 8.20 
Model 4 5.90 2.92 4.79 9.82 5.65 
Model 5 5.41 2.76 4.14 8.70 4.46 
Model 6 4.82 1.96 4.17 6.24 9.48 
Model 7 1.86 2.27 4.50 3.94 6.31 
Model 8 1.68 1.91 3.92 3.79 5.99 
Model 9 2.05 2.33 3.51 3.95 4.44 
Model 10 1.94 2.28 4.49 3.32 6.65 
Model 11 1.60 1.91 3.07 3.02 6.23 
Model 12 1.73 1.58 4.18 3.81 4.85 
Model 13 1.57 1.43 3.87 3.18 4.03 
Model 14 1.54 2.31 5.27 2.93 3.22 
Model 15 1.60 1.74 5.24 2.95 4.77 
Model 16 1.51 1.55 3.48 3.15 4.45 
Model 17 1.24 1.60 4.15 2.32 3.93 
Model 18 1.16 1.14 2.76 1.89 4.04 
Model 19 1.02 1.16 3.11 2.48 3.09 
Model 20 0.97 1.31 5.06 2.35 3.86 
Model 21 0.92 1.29 2.40 1.90 3.30 
Model 22 0.60 0.84 2.95 1.39 3.91 
Model 23 0.70 0.66 2.84 0.89 3.82 
Model 24 1.20 1.78 2.66 1.88 2.80 
Average 2.77 2.05 4.16 4.64 5.05 
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TABLE B-49 MAPE of ANN Models with Different Learning Functions 
(Perceptron Weight and Bias Learning Function) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 11.77 4.93 8.52 14.33 8.09 
Model 2 8.05 3.53 5.89 10.37 8.58 
Model 3 6.69 3.08 6.05 10.15 6.48 
Model 4 5.90 3.11 5.48 8.57 5.72 
Model 5 5.09 2.50 5.05 6.18 5.84 
Model 6 4.80 2.14 5.02 6.08 5.25 
Model 7 1.77 2.22 4.82 4.16 5.21 
Model 8 1.66 1.91 4.28 4.83 6.65 
Model 9 1.74 1.95 4.78 3.49 5.05 
Model 10 1.77 1.98 5.11 3.35 6.50 
Model 11 1.79 1.78 3.33 3.63 4.87 
Model 12 1.38 1.57 3.83 3.09 5.23 
Model 13 1.29 1.78 4.22 2.78 5.12 
Model 14 1.60 1.64 3.85 2.77 4.58 
Model 15 1.51 1.56 6.12 3.17 4.90 
Model 16 1.40 1.58 3.30 2.27 4.83 
Model 17 1.73 1.22 4.22 2.05 5.15 
Model 18 1.17 1.24 2.89 1.74 3.63 
Model 19 1.53 1.35 4.36 2.64 3.72 
Model 20 0.92 1.30 3.18 2.34 4.43 
Model 21 0.93 0.93 3.39 1.89 3.72 
Model 22 1.08 0.70 2.92 1.39 3.07 
Model 23 0.70 0.66 2.44 0.89 4.04 
Model 24 1.36 1.37 2.27 2.53 2.15 
Average 2.82 1.92 4.39 4.36 5.12 

 

 

 



 251

TABLE B-50 MAPE of ANN Models with Different Learning Functions 
(Normalized Perceptron Weight and Bias Learning Function) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 12.32 4.97 8.87 13.21 8.26 
Model 2 8.82 3.63 6.69 10.09 6.84 
Model 3 6.02 3.16 6.69 8.05 7.42 
Model 4 5.42 2.42 5.62 9.82 7.87 
Model 5 5.37 2.58 4.77 6.15 8.06 
Model 6 4.66 2.25 3.52 6.13 7.97 
Model 7 1.76 2.06 4.38 4.16 4.46 
Model 8 1.62 1.93 4.56 3.93 6.13 
Model 9 1.91 1.95 3.58 3.47 4.71 
Model 10 1.64 1.81 4.55 3.17 6.05 
Model 11 1.95 2.06 3.62 3.41 4.56 
Model 12 1.74 1.98 4.21 2.98 4.85 
Model 13 1.60 1.57 4.48 3.82 5.34 
Model 14 1.60 1.49 4.10 2.86 5.12 
Model 15 1.46 1.80 4.76 3.08 6.21 
Model 16 1.54 1.57 3.75 2.06 3.62 
Model 17 1.10 1.28 4.36 1.84 5.12 
Model 18 1.31 1.69 3.86 2.84 3.75 
Model 19 1.20 1.65 3.42 2.30 3.15 
Model 20 1.22 1.20 3.56 2.34 3.48 
Model 21 1.15 0.88 3.45 1.55 4.04 
Model 22 0.63 0.75 4.38 1.41 2.70 
Model 23 0.70 0.66 3.08 0.87 3.51 
Model 24 1.19 1.75 3.24 2.08 3.44 
Average 2.83 1.96 4.48 4.24 5.28 
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TABLE B-51 MAPE of ANN Models with Different Learning Functions (Self-
organizing Map Weight Learning Function) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 12.56 4.89 9.41 14.11 9.53 
Model 2 8.15 3.87 6.27 12.52 7.32 
Model 3 6.75 3.22 5.96 9.04 6.47 
Model 4 5.60 2.94 6.38 6.94 5.41 
Model 5 5.58 2.49 4.89 6.32 5.77 
Model 6 5.43 2.21 5.67 6.15 6.43 
Model 7 1.83 1.99 6.20 4.17 5.63 
Model 8 1.58 2.23 5.66 4.88 5.42 
Model 9 1.92 2.15 3.71 3.43 6.37 
Model 10 1.78 1.87 4.95 4.33 5.22 
Model 11 2.07 1.98 4.48 3.86 4.89 
Model 12 1.67 1.70 3.65 2.97 5.43 
Model 13 1.62 1.54 3.88 2.80 5.57 
Model 14 1.44 1.34 5.05 2.65 4.68 
Model 15 1.26 1.64 4.61 3.07 4.50 
Model 16 1.57 1.49 3.71 3.20 4.37 
Model 17 1.23 1.44 3.30 2.39 3.98 
Model 18 1.16 1.16 3.49 2.24 4.06 
Model 19 1.06 0.99 3.02 2.38 3.43 
Model 20 1.42 1.00 2.69 1.67 4.10 
Model 21 1.18 1.14 2.71 1.89 3.61 
Model 22 0.83 0.76 2.48 1.39 4.44 
Model 23 0.70 0.66 2.85 0.89 2.50 
Model 24 1.02 1.73 3.04 2.23 4.13 
Average 2.89 1.93 4.50 4.40 5.14 
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TABLE B-52 MAPE of ANN Models with Different Learning Functions (Widrow-
Hoff Weight and Bias Learning Rule) 

 Non-
Clustering 

Weekend Weekday 
Peak 

Weekday 
Non-Peak 

Weekday 
Evening 

Model 1 10.81 5.14 9.00 12.10 9.07 
Model 2 8.57 3.62 6.38 10.48 7.50 
Model 3 6.39 3.16 6.05 7.92 7.41 
Model 4 5.83 2.82 6.19 7.22 7.40 
Model 5 5.02 2.59 5.58 6.21 5.67 
Model 6 4.86 2.03 7.40 7.62 5.54 
Model 7 1.82 2.09 3.89 4.17 5.88 
Model 8 1.67 2.35 3.32 2.85 5.28 
Model 9 1.73 2.26 4.95 3.09 4.55 
Model 10 1.81 1.99 3.74 3.22 5.55 
Model 11 1.67 1.77 3.72 2.98 4.00 
Model 12 1.50 1.77 3.82 3.14 6.14 
Model 13 1.52 1.74 3.85 3.07 4.80 
Model 14 1.69 1.71 3.55 3.06 5.17 
Model 15 1.44 1.76 3.41 2.72 5.59 
Model 16 1.28 1.57 2.77 3.02 3.73 
Model 17 1.58 1.58 4.15 2.15 3.28 
Model 18 1.20 1.24 2.67 1.89 6.31 
Model 19 1.34 0.93 2.96 2.15 3.25 
Model 20 1.01 1.05 3.02 1.92 3.56 
Model 21 1.30 1.10 3.30 1.89 3.25 
Model 22 0.83 0.78 2.54 1.40 3.89 
Model 23 0.70 0.66 3.12 0.90 3.17 
Model 24 0.92 1.31 3.03 2.77 2.76 
Average 2.77 1.96 4.27 4.08 5.11 
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APPENDIX C 

 

SCHEDULE ADHERENCE BY TIME PERIOD AND BUS STOP 
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FIGURE C- 1 Schedule Adherence of Non-Clustering (stop 1) 
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FIGURE C- 2 Schedule Adherence of Non-Clustering (stop 2) 
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FIGURE C- 3 Schedule Adherence of Non-Clustering (stop 3) 
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FIGURE C- 4 Schedule Adherence of Non-Clustering (stop 4) 
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FIGURE C- 5 Schedule Adherence of Non-Clustering (stop 5) 
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FIGURE C- 6 Schedule Adherence of Non-Clustering (stop 6) 
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FIGURE C- 7 Schedule Adherence of Non-Clustering (stop 7) 
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FIGURE C- 8 Schedule Adherence of Non-Clustering (stop 8) 
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FIGURE C- 9 Schedule Adherence of Non-Clustering (stop 9) 
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FIGURE C- 10 Schedule Adherence of Weekend (stop 1) 
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FIGURE C- 11 Schedule Adherence of Weekend (stop 2) 
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FIGURE C- 12 Schedule Adherence of Weekend (stop 3) 
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FIGURE C- 13 Schedule Adherence of Weekend (stop 4) 
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FIGURE C- 14 Schedule Adherence of Weekend (stop 5) 
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FIGURE C- 15 Schedule Adherence of Weekend (stop 6) 
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FIGURE C- 16 Schedule Adherence of Weekend (stop 7) 
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FIGURE C- 17 Schedule Adherence of Weekend (stop 8) 
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FIGURE C- 18 Schedule Adherence of Weekend (stop 9) 
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FIGURE C- 19 Schedule Adherence of Weekday Peak (stop 1) 
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FIGURE C- 20 Schedule Adherence of Weekday Peak (stop 2) 
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FIGURE C- 21 Schedule Adherence of Weekday Peak (stop 3) 
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FIGURE C- 22 Schedule Adherence of Weekday Peak (stop 4) 
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FIGURE C- 23 Schedule Adherence of Weekday Peak (stop 5) 
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FIGURE C- 24 Schedule Adherence of Weekday Peak (stop 6) 
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FIGURE C- 25 Schedule Adherence of Weekday Peak (stop 7) 
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FIGURE C- 26 Schedule Adherence of Weekday Peak (stop 8) 
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FIGURE C- 27 Schedule Adherence of Weekday Peak (stop 9) 
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FIGURE C- 28 Schedule Adherence of Weekday Non-Peak (stop 1) 
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FIGURE C- 29 Schedule Adherence of Weekday Non-Peak (stop 2) 
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FIGURE C- 30 Schedule Adherence of Weekday Non-Peak (stop 3) 



 270

0

5

10

15

20

25

-800 -600 -400 -200 0 200 400 600 800

schedule adherence (sec)

nu
m

be
r o

f d
at

a

stop 4

FIGURE C- 31 Schedule Adherence of Weekday Non-Peak (stop 4) 
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FIGURE C- 32 Schedule Adherence of Weekday Non-Peak (stop 5) 
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FIGURE C- 33 Schedule Adherence of Weekday Non-Peak (stop 6) 
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FIGURE C- 34 Schedule Adherence of Weekday Non-Peak (stop 7) 
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FIGURE C- 35 Schedule Adherence of Weekday Non-Peak (stop 8) 
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FIGURE C- 36 Schedule Adherence of Weekday Non-Peak (stop 9) 
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FIGURE C- 37 Schedule Adherence of Weekday Evening (stop 1) 
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FIGURE C- 38 Schedule Adherence of Weekday Evening (stop 2) 
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FIGURE C- 39 Schedule Adherence of Weekday Evening (stop 3) 
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FIGURE C- 40 Schedule Adherence of Weekday Evening (stop 4) 
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FIGURE C- 41 Schedule Adherence of Weekday Evening (stop 5) 
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FIGURE C- 42 Schedule Adherence of Weekday Evening (stop 6) 
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FIGURE C- 43 Schedule Adherence of Weekday Evening (stop 7) 
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FIGURE C- 44 Schedule Adherence of Weekday Evening (stop 8) 
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FIGURE C- 45 Schedule Adherence of Weekday Evening (stop 9) 
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