
ADAPTIVE PROTOCOLS FOR MOBILE AD HOC NETWORKS

A Dissertation

by

GAVIN DOUGLAS HOLLAND

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2004

Major Subject: Computer Science

© 2005

GAVIN DOUGLAS HOLLAND

ALL RIGHTS RESERVED

ADAPTIVE PROTOCOLS FOR MOBILE AD HOC NETWORKS

A Dissertation

by

GAVIN DOUGLAS HOLLAND

Submitted to Texas A&M University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Approved as to style and content by:

Nitin H. Vaidya

(Chair of Committee)

Riccardo Bettati
(Member)

Udo Pooch
(Member)

A. L. Narasimha Reddy

(Member)

Valerie E. Taylor

(Head of Department)

December 2004

Major Subject: Computer Science

iii

ABSTRACT

Adaptive Protocols for Mobile Ad Hoc Networks. (December 2004)

Gavin Douglas Holland, B.S., Abilene Christian University;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Nitin H. Vaidya

Recent advances in low-power technologies have resulted in the proliferation of

inexpensive handheld mobile computing devices. Soon, just like the Internet empow-

ered a whole new world of applications for personal computers, the development and

deployment of robust ubiquitous wireless networks will enable many new and exciting

futuristic applications. Certain to be an important part of this future is a class of

networks known as “mobile ad hoc networks.” Mobile ad hoc networks (or simply

“ad hoc networks”) are local-area networks formed “on the spot” between collocated

wireless devices. These devices self-organize by sharing information with their neigh-

bors to establish communication pathways whenever and wherever they are. For ad

hoc networks to succeed, however, new protocols must be developed that are capable

of adapting to their dynamic nature.

In this dissertation, we present a number of adaptive protocols that are designed

for this purpose. We investigate new link layer mechanisms that dynamically monitor

and adapt to changes in link quality, including a protocol that uses common control

messages to form a tight feedback control loop for adaptation of the link data rate

to best match the channel conditions perceived by the receiver. We also investigate

routing protocols that adapt route selection according to network characteristics. In

particular, we present two on-demand routing protocols that are designed to take

advantage of the presence of multirate links. We then investigate the performance of

iv

TCP, showing how communication outages caused by link failures and routing delays

can be very detrimental to its performance. In response, we present a solution to this

problem that uses explicit feedback messages from the link layer about link failures to

adapt TCP’s behavior. Finally, we show how link failures in heterogeneous networks

containing links with widely varying bandwidth and delay can cause repeated “modal”

changes in capacity that TCP is slow to detect. We then present a modified version

of TCP that is capable of more rapidly detecting and adapting to these changes.

v

To my wife, Lee Ann.

vi

ACKNOWLEDGMENTS

No man is an island, entire of itself; every man is a piece of the continent,

a part of the main.

– Meditation XVII by John Donne.

When I think on the years that have passed and recall the faces of the people that

have contributed to my small ‘part of the main,’ I am overcome – there have been so

many. I can only hope that those who I could not list here already know that I owe

them my heartfelt gratitude for their help and support.

First, I am extremely grateful to my Ph.D. advisor, Nitin Vaidya, for sharing

his amazing talents and time with me. His ability to instruct, guide, and inspire is

truly remarkable and is only surpassed by his knowledge and passion for his work. I

think I can safely speak for all who have studied under him that his devotion to his

students is genuine and steadfast, a rare and precious quality in the tricky waters of

higher education. Nitin exemplifies what an ideal professor and advisor should be.

I also owe a debt of gratitude to the members of my committee, Professors

Riccardo Bettati, Udo Pooch, and A. L. Narasimha Reddy, for their contribution to

my education through the classes that they taught, as well as through the technical

guidance that they have given me on the work in this dissertation. I feel fortunate to

have studied under such an accomplished group of individuals.

I am especially grateful to those that collaborated with me directly on the re-

search herein: Nitin, Victor Bahl at Microsoft Research, Yongguang Zhang at HRL

Laboratories, and Tom Henderson and Jae Kim at Boeing Phantom Works. I owe a

special thank you to Yeng Lee of UCLA, who collaborated with me on the develop-

ment and simulation of the MM-TCP protocol. It was an honor and a pleasure to

vii

work with them, and I look forward to continued collaboration in the future. Others

that have provided consultative or technical support on the simulations in this work

are K. Narayanan of Texas A&M, who assisted with Jakes’ method, and Timothy

Anderson and Alon Peterson of HRL, who assisted with coding, simulations, and

measurements. I thank them for their invaluable support.

I have been very fortunate to have often received financial support during my

graduate student career. Most notably, the work in this dissertation was supported

in part by grants from the National Science Foundation and the Texas Advanced

Technology Program, a gift from Microsoft Research, and a fellowship from the De-

partment of Education. My gratitude to Nitin, Jennifer Welch, Richard Volz, and

Victor for contributing this support. I also thank Victor for supporting me for six

months as an intern at Microsoft Research – a very rewarding experience.

Willis Marti and Ron Szabo deserve much gratitude for providing me with con-

tinuous work opportunities whenever and however it was needed. I am especially

indebted to Ron and his wife Mari for their support and friendship through the years.

I am now fortunate to be employed by HRL Laboratories LLC, for which I thank

Son Dao and Bo Ryu for the opportunity. I also thank my HRL colleagues for the

many profitable discussions that have led to new and interesting areas of research.

Getting an advanced degree at any institution always involves a large team of

personnel to handle the logistics of the educational process. For their support, I espe-

cially thank Professor Bart Childs, Susan Spears, Sandra Morse, Elena Rodriguez, and

Mashalle Mooring in graduate advising; Professor Don Friesen, Professor Wei Zhao,

Professor Richard Volz, Professor Valerie Taylor, and Sherry Escalante in adminis-

tration; and Mary Jane Allen, Margaret Dunaway, and Glenda Elledge in finance. A

special thanks to Professor William Lively for his advice on all matters of importance.

Most importantly, I would like to thank my family for their undying love and

viii

encouragement. My father and role model, Dr. Redus Holland, has worked very hard

to provide me with whatever I needed, especially when I needed it most, and taught

me the importance of hard work, good humor, and family. I certainly could not have

made it this far without him. My mother, Pat Fair, and her husband, Don, have

always embraced me with love and laughter, providing a comfortable haven for me

when I needed it. My brothers, Brennan and Kiernan, and sister-in-law Kathryn,

whom I admire dearly and look up to always, have been a continuous source of love

and encouragement. Finally, a heartfelt thank you is owed to my father- and mother-

in-law, Joe and Jill Holder, and sister- and brother-in-law, Bonnie and Rick Miller,

and their families for their love and support throughout the years. God bless you all!

Finally, none of this would have been possible without the love and support of

my wonderful wife, Lee Ann, to whom this is dedicated. I thank the Lord each day

for letting me walk the path of my life in the hands of one of His most precious

beings. Her devotion to me and this journey has taken her through some pretty awful

jobs, sad cars, and tiny apartments, and yet, through it all, she has somehow always

managed a smile and a word of encouragement. It is with great pleasure that I present

this to her, closing this chapter in our lives and beginning the next one anew.

ix

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

1. The Challenges of Ad Hoc Networking 1

2. Contributions . 4

3. Thesis Organization 5

II BACKGROUND AND RELATED WORK 7

A. Wireless Channel . 7

1. Signal Quality . 8

2. Path Loss . 9

3. Shadowing . 10

4. Fading . 11

5. Noise and Interference 12

B. Wireless Devices . 13

1. Physical Layer . 14

a. Modulation . 14

b. Diversity . 17

2. Data Link Layer . 18

a. Medium Access Control (MAC) 18

b. IEEE 802.11 . 20

3. Data Rate Adaptation 23

C. Routing . 25

1. Overview . 26

2. Dynamic Source Routing (DSR) 27

D. Transmission Control Protocol (TCP) 29

1. Overview . 30

a. Sequencing and Flow Control 30

b. Congestion Avoidance and Control 31

c. Loss Detection and Recovery 32

2. Wireless Networks . 34

III METHODOLOGY . 37

A. Simulation Environment 37

B. Simulation Enhancements 40

x

CHAPTER Page

IV THE RECEIVER-BASED AUTORATE PROTOCOL 44

A. The Receiver-Based Autorate (RBAR) Protocol 46

B. Incorporation of RBAR into 802.11 49

1. Autorate Fallback Algorithm (ARF) Implementation . 52

2. Receiver-Based AutoRate Protocol (RBAR) Im-

plementation . 54

3. Network Configurations 55

C. Performance Evaluation 57

1. Overhead of the Reservation Subheader 57

2. Slow Changing Channel Conditions 61

3. Fast Changing Channel Conditions 64

4. Impact of Variable Traffic Sources 67

5. Multi-Hop Performance 67

D. Summary . 69

V MULTIRATE AWARE ROUTING 72

A. Impact of Multirate, Multihop (MRMH) Paths on Routing 72

B. Routing Metric for MRMH Networks 76

C. Proposed MRMH Routing Protocols 80

1. Route Selection Algorithm 80

2. Rate Probing Protocol 81

3. Minimum Rate Protocol 84

D. Performance Evaluation 85

1. Random Topology, Single CBR Flow 87

2. Random Topology, Five CBR Flows 90

E. Summary . 96

VI EXPLICIT LINK FAILURE NOTIFICATION 97

A. Simulation Environment and Methodology 97

B. Performance Metric . 98

C. Measurement of TCP-Reno Throughput 101

D. Mobility Induced Behaviors 105

1. Some Mobility Patterns Yield Very Low Throughput . 105

2. Anomaly: Throughput Increases as Speed Increases . . 108

3. Summary and Observations 112

E. TCP Performance Using Explicit Feedback 118

F. Summary . 125

xi

CHAPTER Page

VII MULTI-MODE TCP . 127

A. Performance of TCP-Reno 128

B. Multi-Mode TCP . 129

1. Mode Definition . 130

2. Mode Change Detection 133

a. Bandwidth Estimation 133

b. Delay Estimation 134

3. Mode Change Decision 136

4. Mode Change Adaptation 137

C. Performance Evaluation 138

1. Simulation Model . 138

2. Simulation Results . 140

D. Summary . 142

VIII CONCLUSIONS AND FUTURE DIRECTIONS 145

A. Summary . 145

B. Future Directions . 146

REFERENCES . 148

VITA . 160

xii

LIST OF TABLES

TABLE Page

I Values of SNR thresholds θi (dB) for the modulation schemes that

were used in our QAM-based radio simulation model (BER = 1E-

5). 56

II Mean per-flow throughput for varying reservation subheader loss

probability for the network scenarios shown in Fig. 12 59

III Compensation factor (γ) values. 80

IV Packet trace for a 30 m/s run that experienced zero throughput. . . 106

V State variables cached by MM-TCP for each network mode. 130

xiii

LIST OF FIGURES

FIGURE Page

1 Theoretical Bit Error Rate (BER) as a function of the Signal-

to-Noise Ratio (SNR) for several modulation schemes and data

rates. 15

2 Comparison of throughput versus distance for several modulation

schemes. Data was obtained by the simulation of two nodes at

fixed positions, with one sending a continuous stream of UDP

packets to the other. The propagation model was the log-distance

path loss model, with a path loss exponent typical of an urban

environment. Transmit power was constant. 16

3 Timeline showing the RTS/CTS protocol in the IEEE 802.11 Dis-

tributed Coordination Function (DCF) for transmitting a data

packet. Here, A and B are nodes that are in range of the trans-

mitter and receiver, respectively. DRTS, DCTS, and DDATA are

the lengths of the reservations given in the RTS, CTS and DATA

packets, and L is the duration of the data packet transmission. . . 21

4 An example connection pattern script that creates a single TCP-

Reno connection driven by an FTP data source. 38

5 An example mobility pattern script for two nodes moving in a

500m x 500m area at a mean speed of 2 m/s for 300 seconds. 39

6 Performance of ARF for a single CBR connection between two

nodes in a Rayleigh fading channel. The sender is fixed and the

receiver is moving at a speed of 2 m/s away from the sender. . . . 45

7 Timeline showing changes to the DCF protocol as needed for the

proposed Receiver-Based Autorate Protocol. 47

8 MAC frame formats used in IEEE 802.11 for ad-hoc networks

(IBSS). 49

xiv

FIGURE Page

9 MAC and physical layer frame formats used in the RBAR proto-

col. 50

10 Comparison of the average throughput of ARF for various val-

ues of the timer it uses to indicate when it should attempt to

increase the data rate in lieu of its usual indicator: the receipt of

10 consecutive ACKs. The curves shown are the average through-

puts measured across a single CBR connection in a Rayleigh fad-

ing channel between two nodes oscillating near to far at different

mean speeds. The fixed curve is the mean throughput between

the nodes spaced at various intervals over the range of distance

traveled by the oscillating nodes in the mobility curves. 53

11 Impact of the reservation subheader on performance (relative to

ARF) as a function of the packet size. 58

12 Network scenarios used to analyze the performance impact caused

by the loss of the RSH subheader. 59

13 Performance of ARF for a single CBR connection between two

nodes at fixed distances. 62

14 Performance of RBAR for a single CBR connection between two

nodes at fixed distances. 62

15 Performance of RBAR when a simple heuristic is used by the

sender to try and predict the best data rate for the conditions, in

an effort to reduce the frequency of the necessity for reservation

subheaders. 63

16 Performance for CBR traffic over a single UDP connection in a

Rayleigh fading channel. 63

17 Performance of RBAR for a single CBR connection between two

nodes in a Rayleigh fading channel. The sender is fixed and the

receiver is moving at a speed of 2 m/s away from the sender. . . . 66

18 Performance for FTP traffic over a single TCP connection in a

Rayleigh fading channel. 66

xv

FIGURE Page

19 Protocol efficiency for an ON/OFF Pareto source generating traf-

fic on a single UDP connection in a Rayleigh fading channel. The

mean OFF time = 1s. 68

20 Protocol efficiency for an ON/OFF Pareto source generating traf-

fic on a single UDP connection in a Rayleigh fading channel. The

mean OFF time = 500ms. 68

21 Performance comparison for a single CBR connection in a multi-

hop network. 69

22 Performance comparison across multiple hops. Shown here are

the results for the individual scenarios, sorted according to the

increasing throughput of ARF. 70

23 Performance comparison for a single FTP connection across a mul-

tihop network. 71

24 Throughput as a function of path length in hops for a single CBR

flow across a “chain” network topology with 1Mbps links (802.11).

The packet size is 1460 bytes. Nodes were spaced such that trans-

mission interference did not exceed one hop. 73

25 A scenario demonstrating self-interference across a multihop route.

Here, Node A has packets to send to Node E. After sending pkt1,

A is prevented from sending pkt2 while nodes B and C forward

pkt1 to D because of interference at B. 73

26 Comparison of the measured throughput of a single CBR flow

across a chain network of varying length and link data rate. 74

27 An example MRMH chain network, where transmissions at 8Mbps

can reach one hop along the chain, 4Mbps one and two hops, and

1Mbps one, two, and three hops. 75

28 Throughput as a function of path length in hops for a single CBR

flow across a MRMH chain network. Shown are results for an

“ideal” multirate routing protocol, and two common shortest-path

routing protocols: DSR, and AODV. 75

xvi

FIGURE Page

29 Packet pipelining across a heterogeneous route – a route that tra-

verses links with different data rates. 77

30 Comparison of the estimated throughput to the simulated 802.11

throughput as a function of route length n in hops for a CBR

connection across a homogeneous chain network. Here, r is the

maximum measured throughput across a one hop, 1Mbps link, for

1460 byte packets. 78

31 A five second snapshot of packet transmission events for a CBR

flow across an eight hop chain network. The triangularly shaped

points represent the successful reception of a data packet by a node

along the route. The source of the flow is Node 1 and the sink

is Node 9. The cross shaped points shown for Node 1 represent

each attempt to send a new data packet. 79

32 Performance comparison between Rate Probing (MRPRB), Mini-

mum Rate (MRMR), and DSR routing protocols for a single CBR

flow over a random mobile node topology and non-fading channel:

average throughput. 88

33 Performance comparison between Rate Probing (MRPRB), Mini-

mum Rate (MRMR), and DSR routing protocols for a single CBR

flow over a random mobile node topology and non-fading channel:

percentage of improvement in average throughput over DSR. 88

34 Comparison of routing overhead for Rate Probing (MRPRB),

Minimum Rate (MRMR), and DSR routing protocols over a ran-

dom mobile node topology and non-fading channel: low traffic

load (1 CBR flow). 89

35 Performance comparison between Rate Probing (MRPRB), Mini-

mum Rate (MRMR), and DSR routing protocols for a single CBR

flow over a random mobile node topology and Rayleigh fading

channel: average throughput. 91

xvii

FIGURE Page

36 Performance comparison between Rate Probing (MRPRB), Mini-

mum Rate (MRMR), and DSR routing protocols for a single CBR

flow over a random mobile node topology and Rayleigh fading

channel: percentage of improvement in average throughput over

DSR. 91

37 Comparison of routing overhead for Rate Probing (MRPRB),

Minimum Rate (MRMR), and DSR routing protocols over a ran-

dom mobile node topology and Rayleigh fading channel: low traf-

fic load (1 CBR flow). 92

38 Performance comparison between Rate Probing (MRPRB), Mini-

mum Rate (MRMR), and DSR routing protocols for 5 CBR flows

over a random mobile node topology and non-fading channel: av-

erage throughput. 93

39 Performance comparison between Rate Probing (MRPRB), Mini-

mum Rate (MRMR), and DSR routing protocols for 5 CBR flows

over a random mobile node topology and non-fading channel: per-

centage of improvement in average throughput over DSR. 93

40 Comparison of routing overhead for Rate Probing (MRPRB),

Minimum Rate (MRMR), and DSR routing protocols over a ran-

dom mobile node topology and non-fading channel: moderate

traffic load (5 CBR flows). 94

41 Performance comparison between Rate Probing (MRPRB), Mini-

mum Rate (MRMR), and DSR routing protocols for 5 CBR flows

over a random mobile node topology and Rayleigh fading channel:

average throughput. 94

42 Performance comparison between Rate Probing (MRPRB), Mini-

mum Rate (MRMR), and DSR routing protocols for 5 CBR flows

over a random mobile node topology and Rayleigh fading channel:

percentage of improvement in average throughput over DSR. 95

xviii

FIGURE Page

43 Comparison of routing overhead for Rate Probing (MRPRB),

Minimum Rate (MRMR), and DSR routing protocols over a ran-

dom mobile node topology and Rayleigh fading channel: moderate

traffic load (5 CBR flows). 95

44 TCP-Reno throughput over an 802.11 fixed, linear, multi-hop net-

work of varying length (in hops). 99

45 A simple multi-hop network. 100

46 Throughput for a single TCP-Reno connection over a mobile ad

hoc network. 102

47 Comparison of measured and expected throughput for the 50 mo-

bility patterns . 104

48 TCP-Reno performance for mobility pattern No. 20, demonstrat-

ing that an increase in mean node speed may result in an increase

in mean throughput. The ticks at the top of (a) denote changes

on the minimum path between the TCP sender and receiver. The

curves in (b)− (e) show the measured throughput for the connec-

tion, averaged over 1 second intervals. 109

49 Detailed packet plot showing the beginning moments, around the

50s mark in Fig. 48(c), at which a sequence of path changes,

shown in Fig. 48(a), causes TCP to repeatedly timeout and back-

off. Packet Sent and Packet Recv indicate the time at which a

TCP data packet with the indicated ns-2 sequence number was

sent by the sender and arrived at the receiver, respectively, Ack

Recv indicates the time at which a TCP acknowledgment was

received by the sender with the indicated sequence number, and

Packet Dropped indicates the time at which a data packet with

the indicated sequence number was dropped. 110

50 A comparison of TCP-Reno performance when DSR route replies

from caches are, and are not, allowed. 113

xix

FIGURE Page

51 A comparison of TCP-Reno performance when DSR route replies

from caches are, and are not (NC), allowed, and additional traffic

is in the network: 10 CBR connections, each sending 5, 10, and

20 packets per second. 114

52 A comparison of TCP-Reno performance of five TCP connections

when DSR route replies from cache are, and are not, allowed. 115

53 TCP-Reno performance for mobility pattern No. 46, showing that

an increase in the minimum path length between the TCP sender

and receiver consistently results in the loss of data flow across the

connection. The ticks at the top of (a) denote changes on the

minimum path between the TCP sender and receiver. The curves

in (b) − (e) show the measured throughput for the connection,

averaged over 1 second intervals. 117

54 Per-pattern performance of TCP with ELFN using a 2s probe

interval. 121

55 Performance comparison between basic TCP-Reno and TCP-Reno

with ELFN using varying probe intervals. 122

56 Performance comparison of different window and RTO modifica-

tions in response to the receipt of an ELFN message. 123

57 Performance comparison between basic TCP-Reno and TCP-Reno

with ELFN using different choices for the probe packet. 124

58 Performance comparison of TCP-Reno and TCP-Reno with ELFN

when additional traffic is in the network. The additional traffic

is provided by 10 CBR connections, each sending 5, 10, and 20

packets per second (pps). 126

59 Performance comparison of TCP-Reno and TCP-Reno with ELFN

for five concurrent TCP connections. 126

60 Performance of TCP-Reno across a connection with “modal” changes

in bandwidth-delay. Shown is TCP-Reno’s congestion window

(dotted line) over the connection bandwidth-delay (solid line). . . . 128

xx

FIGURE Page

61 Network topology used in this study. Link rates and transmission

delays correspond to network configuration 1. 139

62 Performance of MM-TCP across a the same “modal” connec-

tion shown in the Introduction. Shown is MM-TCP’s congestion

window (dotted line) over the connection bandwidth-delay (solid

line). 141

63 Comparison of values for the backoff multiplier for MM-TCP and

TCP-Reno. 141

64 Percentage of improvement of MM-TCP over standard TCP-Reno

for each of the three network configurations simulated. The results

are sorted according to increasing improvement for each series of

results. 143

65 Comparison of measured and optimal throughput for the 50 sce-

nario patterns. 144

1

CHAPTER I

INTRODUCTION

Over the past three decades computers have evolved from the room-sized mainframes

of the 70’s to the pocket-sized PC’s we have today. In the future we will see smaller

and more powerful computers in everything from clothing to coffee cups, luggage

to books, and mite-sized sensors to pill-sized implants. Soon, just like the Internet

empowered a whole new world of applications for desktop computers, the development

of robust ubiquitous wireless networks will enable exciting new possibilities for the

computing devices of the future.

A fundamental building block of these futuristic networks will likely include

the class of networks known as mobile ad hoc networks. Mobile ad hoc networks

(or simply “ad hoc networks”) are local-area networks (LANs) formed “on the spot”

between collocated wireless devices. These devices form an ad hoc network by sharing

information with their neighbors to establish a routing fabric, and then cooperating

to relay packets throughout the fabric. Consequently, communication pathways can

be formed between devices whenever and wherever they are. This “infrastructure-

less” self-organizing capability makes ad hoc networks extremely appealing for future

wireless networking systems. However, for ad hoc networks to be realized, many

challenges must be overcome.

1. The Challenges of Ad Hoc Networking

One of the greatest challenges in wireless networking is how to ensure the reliable

transmission of data packets over the inherently unreliable wireless channel. Wire-

The journal model is IEEE Transactions on Automatic Control.

2

less transmissions are subject to a variety of physical phenomena that degrade the

transmission, making it difficult to receive reliably [100]. While modern low-power,

low-noise radios and advanced technologies like OFDM and MIMO can vastly im-

prove efficiency, reliability is still well below that of wired links [101]. Techniques for

improving reliability by adapting to channel conditions, such as dynamic power and

rate adaptation techniques, have been shown to be very effective [10, 46, 48]. How-

ever, most adaptation approaches have been developed for cellular networks, with

base stations acting as centralized coordinators. Thus, they are not well suited to

the decentralized multihop architecture of ad hoc networks. While growing interest

in wireless local-area networking has resulted in the ratification of a number of stan-

dards, including IEEE 802.11 [60], HomeRF [59], and HIPERLAN [35, 36], most do

not provide link layer adaptation mechanisms. Notable among these is IEEE 802.11.

IEEE 802.11 is the most prominent wireless LAN standard in use today, serving as

the blueprint for millions of devices worldwide. The standard includes designs for

infrastructure as well as ad hoc wireless networks for several different physical lay-

ers at a number of frequencies and data rates. Support for ad hoc networks includes

network configuration, creation, and access control, as well as error detection, retrans-

mission, and collision avoidance. However, 802.11 has limited transmission range and

relatively basic link layer recovery mechanisms. Subsequently, as we will show, its

performance can be improved significantly through the application of dynamic adap-

tation mechanisms.

Further challenges exist in higher networking layers. A significant problem is the

routing of packets. In ad hoc networks, the network topology can change rapidly as

nodes move, causing links to dynamically break and form. This continuous change

stresses the routing protocol, which must frequently and rapidly build, tear-down,

and rebuild routes to maintain connectivity. While it is desirable to reuse existing

3

technology where possible, conventional routing protocols were not designed to handle

such dynamism and uncertainty. Instead, most protocol stacks such as the Internet

standard TCP/IP [104] were designed to work best on relatively stable and reliable

networks. Thus, most research in ad hoc networking has focused on routing protocols

(e.g., LAR [77], TORA [88], DSR [19], AODV [92], DSDV [93], OLSR [23], and

ZRP [51]). Many based on work produced by early DARPA packet-radio programs

such as PRNet [71] and SURAN [15]. While comparisons between routing protocols

have been undertaken (e.g., see [19], [102], [69], and [28]), little effort has focused

on the cross-layer interactions between routing protocols and other network layers.

As our research will show, however, link layer design can have a significant effect

on route optimality. For instance, in networks with multirate links the link layer’s

handling of IP broadcast packets may cause the routing protocol to discover routes

that are unusable. Although an IETF (Internet Engineering Task Force) working

group has started to address such interactions (e.g., see [38], [31], [30], and [74]),

many issues, such as impacts on routing, are largely unexplored. However, the group

has recognized the effectiveness of cross-layer adaptability, and has very recently

initiated development of an interface to facilitate link layer feedback [26].

Transport protocols, such as TCP, are also challenged by ad hoc networks. TCP

is a connection-oriented protocol that provides a reliable byte stream service using

built-in flow and congestion control mechanisms. However, when operating over wire-

less links, TCP’s performance can be dramatically poor [56], [17]. The problem is

that TCP assumes all packet losses are caused by congestion, and, subsequently, re-

sponds to any loss by reducing its send rate. In wireless networks, however, losses

can occur frequently and suddenly for reasons other than congestion, such as wire-

less errors. The end result is poor average network utilization due to lower than ideal

TCP send rates. Previous work in this area has focused on, for example, handoffs [20]

4

and wireless errors [12, 9] in cellular systems, bandwidth asymmetry in cable modem

and digital subscriber lines [11], and large round-trip times in satellite networks [34].

While some aspects of these approaches are applicable to ad hoc networks, many are

not simply because of the differences between infrastructure and ad hoc networks.

For instance, the approach in [12] (SNOOP) will only work if the forward and reverse

routes are symmetric and the wireless link is unreliable (i.e., no ARQ). Furthermore,

while performance analyses have been conducted for fixed multihop wireless networks,

such as those in [44] and [41], few have conducted in-depth studies on TCP perfor-

mance in ad hoc networks.

2. Contributions

In response to these challenges, we present a number of cross-layer adaptable protocols

that dynamically adapt their behavior to match changes in network characteristics

based on cross-layer feedback. Our contributions in this area include the following:

In this dissertation, we investigate new link layer mechanisms that dynamically

monitor and adapt to changes in link quality by adjusting packet transmission charac-

teristics according to certain optimization criteria; for example, by increasing trans-

mission power when an increase in the bit error rate is detected. We show that the

use of such techniques in ad hoc networks can significantly improve performance, and

present a novel approach that uses common control messages to form a tight feed-

back control loop for adaptation of link characteristics based on receiver-perceived

link conditions.

We also investigate new routing protocols that adapt to dynamic changes in link

characteristics. Our work on such “link-aware” routing predominantly concentrates

on protocols that take best advantage of the presence of multirate links. In particular,

we present two on-demand routing protocols that consider link data rates in their

5

route selection. In these protocols, we explore a number of different ways in which data

rate information can be learned and disseminated, as well as how such information

can be used to good effect.

Finally, we show, through an in-depth analysis of TCP performance in ad hoc

networks, that communication outages caused by link failures and routing delays can

be very detrimental to TCP performance. Specifically, we show how TCP throughput

can drop dramatically because of consecutive spurious timeouts caused by link break-

age and subsequent routing errors, and present our proposed solution to the problem:

the Explicit Link Failure Notification (ELFN) protocol. ELFN is an adaptation pro-

tocol for TCP that uses explicit feedback messages from the link layer about link

failures to adapt TCP’s congestion control mechanisms to prevent spurious timeouts.

We also demonstrate how link failures in heterogeneous networks containing links

with widely varying bandwidth and/or delay can cause “modal” capacity shifts that

are undetected by TCP, resulting in less-than-ideal throughput, and present our pro-

posed solution, Multi-Mode TCP (MMTCP). MMTCP is an adaptation protocol for

TCP that is capable of recognizing capacity shifts and adapting TCP’s congestion

and flow control mechanisms to respond more rapidly.

3. Thesis Organization

The remainder of this dissertation is organized as follows. In the next chapter, we

present background information for each of the areas we have explored. This includes

a discussion of the characteristics of the wireless LAN channel and the devices de-

signed to operate over this channel. We then survey relevant ad hoc network routing

protocols, with an emphasis on the DSR routing protocol that is referenced through-

out this dissertation. Finally, we present an overview of the operation of TCP, and

the variants that have been devised to manage the problems in wireless networks. In

6

Chapter III, we give a brief overview of the simulation environment and methodology

that we used to analyze and demonstrate the performance of the protocols that we

have developed.

The content of Chapters IV–VII form the technical core of the dissertation. In

Chapter IV we present our work on multirate medium access control (MAC) protocols,

including the Receiver-Based AutoRate (RBAR) protocol, which is capable of rapidly

adapting the data rate to best match channel conditions. Chapter V is concerned

with the how ad hoc networks with multirate links affect routing, and, conversely, how

on-demand routing can be modified to opportunistically adapt route selection based

on information about link data rates on a path. In Chapters VI and VII, we present

novel TCP protocols that are designed to adapt to the dynamic and unpredictable

topology changes prevalent in wireless ad hoc networks. In Chapter VI, we present

an in-depth analysis of the behavior of TCP in the presence of link failures, and

present our solution: the Explicit Link Failure Notification (ELFN) protocol. In

Chapter VII, we look at the problem of how link failures in networks composed of links

with wide variations in bandwidth and delay can cause modal “shifts” in capacity, and

present our Multi-Mode TCP (MMTCP) protocol as a potential solution. Finally, in

Chapter VIII, we conclude the dissertation by summarizing our work and presenting

problems for future study.

7

CHAPTER II

BACKGROUND AND RELATED WORK

In this chapter we present background information relevant to the work presented in

this thesis. The material is organized according to the order in which it is addressed

in later chapters. We set the stage by giving an overview of wireless communica-

tions technology, starting first with a description of pertinent characteristics of the

wireless channel. Next, we discuss the design of devices commonly used for ad hoc

networking. Included in both sections are formulas used in the simulation analysis

of Chapter IV. We then provide background information on protocols for ad hoc

routing, focusing special attention on the Dynamic Source Routing (DSR) protocol

that we mention often in Chapters V and VI. Next, we present an overview of the

Transmission Control Protocol (TCP) and the performance problems it encounters

when operating over wireless links. Finally, we conclude the chapter by presenting

background information on techniques that have been proposed for making TCP more

robust in ad hoc networks.

A. Wireless Channel

Noisy, error-prone, and subject to frequent outages, conditions on a wireless link

can be, on average, a hundred times worse than on a wired link [100]. The cause

predominantly lies with the less-than-ideal transmission characteristics of the radio

channel. As a signal from a radio propagates through the environment, it is dramati-

cally attenuated and distorted by physical phenomenon such as path loss, shadowing,

and fading. The degree and nature of that depends on many factors, such as the

operating frequency, the characteristics of the terrain, and the mobility of the par-

ticipating radios. Such phenomena are commonly categorized based on the timescale

8

of their fluctuations, where path loss and shadowing are large-scale effects, and mul-

tipath fading is a small-scale effect. When we couple these effects with the inherent

noise from the receiver’s electronics and interference from competing transmissions,

the original signal is often difficult to recover. The result is a potentially unreliable

communication channel. In this section, we give an overview of these phenomena and

their impact on wireless communications. First, however, we present signal quality

measures and notation from communications theory. More thorough treatment of the

subject can be found in [100].

1. Signal Quality

Named after Alexander Graham Bell [83], the bel = log(P1/P2) was originally a

measure used to compare the relative power of one sound P1 to another P2. When it

was discovered that the human hearing was more sensitive to lower sound levels than

was previously thought, the bel was scaled by a factor of 10 and called a “decibel”

(dB). The decibel is now used extensively in communications for comparing signal

powers. While dB is a relative measure, when the absolute power of a signal is desired

it is often handy to represent it in decibel notation in relation to a base power such

as one milliwatt (dBm) or one watt (dBW).

The quality of a received signal is frequently expressed as the signal to noise ratio

(SNR) or signal to interference and noise ratio (SINR), which is exactly as named:

SNR is the signal power over the noise power, and SINR is the signal power over

the sum of interference and noise power. Clearly, the higher the ratio the better the

quality of the received signal.

When discussing transmission quality it is often beneficial to represent the re-

ceived signal in a way that considers the rate at which data is being transmitted.

9

Thus, the bit energy to noise ratio (Eb/No) is frequently used, which is defined as

Eb

No
= SNR

(

Bt

Rb

)

, (2.1)

where Rb is the rate at which data bits are transmitted, and Bt is the bandwidth of

the signal.

2. Path Loss

Path loss is defined as the difference in received signal power to transmitted signal

power. The predominant cause is the dispersion of the radio wave as it propagates

omni-directionally away from the transmitter. As the distance between radios in-

creases, the received power falls because the energy density at a point on the wave

decreases as the wave expands. Theoretically, the received power is inversely propor-

tional to the square of the distance between the radios. This is the basis for the well

known Friis Free Space path loss model

Pr(d) =
PtGtGrλ

2

(4π)2d2L
, (2.2)

where d is the distance between the radios, Pr and Pt are the receive and transmit

powers (in Watts), Gt and Gr are the transmit and receive antenna gains, λ is the

carrier wavelength, and L is a system loss factor.

However, this model is not accurate for many practical environments because

it assumes perfect free space propagation. Instead, measurements show that signal

power does decrease logarithmically but not always with an exponent of two. This is

expressed in the widely used Log-Distance path loss model

Pl(d) = P (d0) + 10n log(
d

d0

) , (2.3)

10

where Pl(d) is the path loss (in dB), n is the path loss exponent, and P (d0) is the

path loss (in dB) at some close-in reference distance d0. Often, P (d0) is found by

measurement, but Equation 2.2 can also be used. Appropriate values of n have been

proposed for a number of different environments. They tend to fall in the range of

2-5, where higher values represent environments with a large number of obstructions,

such as city streets and office buildings.

A related model that is often referred to is the Two Ray path loss model, which

states that power decreases more rapidly (n = 4) after a certain distance. It is based

on the observation that as the distance between the transmitter and receiver increases

the power of the signal along the line-of-sight (ray one) decreases to a point where

the signal’s reflection off of the ground (ray two) becomes a significant part of the

received signal. Unfortunately, the second ray arrives out of phase with the first so

the two interfere destructively at the receiver, causing a more rapid decline in receive

power.

3. Shadowing

Shadowing is defined as the attenuation in power that occurs when a signal passes

through an obstruction in its path, such as a building or a hill. The degree to which

the signal attenuates depends on the composition of the material, its thickness, and its

physical characteristics, such as its reflection, refraction, and absorption coefficients

in the signal’s frequency band. Extensive measurements have been made for many

common materials and building structures. Results show that path loss Pls due to

shadowing is log-normally distributed about the distance-dependent mean given by

Equation 2.3, so

Pls(d) = Pl(d) +Xσ , (2.4)

11

where Xσ is a zero-mean normal random variable with standard deviation σ. At-

tenuation due to environmental obstructions like rain, smog, and foliage can also be

represented using a similar model.

4. Fading

Fading is a term often used interchangeably with attenuation. Here, it is used to

mean small-scale multipath fading, which is the dramatic variation in signal power

that occurs when transmissions from the same radio reflect off surfaces in the envi-

ronment and arrive at the receiver at various times and with different phases, causing

interference. The Two Ray model we described earlier is based on multipath fading,

but considers only the large-scale effects on receive power.

In a multipath environment with no moving objects and a fixed transmitter,

there are regions where the multipath rays combine constructively, resulting in a gain

in power, or destructively, causing a fade in power. A receiver traveling through this

environment will see dramatic variations in power as it moves from region to region,

the rate of which is proportional to its speed. However, another speed-dependent

effect arises which is related to its direction with respect to the arrival angle of each

multipath ray. If the direction of the receiver is toward or away from a multipath

ray, then a shift in frequency occurs, called the Doppler shift. The combination of

the many Doppler-shifted multipath rays creates the rapid time-varying signal that

is characteristic of multipath fading.

The rate at which a fading signal varies is often described in terms of the coher-

ence time of the multipath channel. The coherence time Tc is the period over which

the channel can be assumed to be effectively constant. An approximation for this

12

time is given by [100]

Tc(t) ≈
9λ

16πv(t)
, (2.5)

where v(t) is the speed along the line-of-sight between the sender and receiver at time

t, and λ = c/fc is the wavelength of the carrier frequency fc (c is the speed of light).

Using this formula, we can see that for a radio transmitting at 2.4 GHz to a receiver

moving with a line-of-sight velocity of 20 m/s (about 45 mph), the fading channel

has a coherence time of about 11ms, which is about the time it takes to transmit a

1400 byte packet at 1 Mbps.

The statistical distribution of received power in a fading signal is described by two

well-known distributions. The Rayleigh distribution is used when it is assumed that all

arriving rays are approximately equal in amplitude, whereas the Ricean distribution

is used when it is known that there is a dominant path with much greater amplitude.

5. Noise and Interference

Electronic devices suffer from internal temperature-dependent noise. This thermal

noise is caused by an increase in the excitation of electrons within the component

due to heat. For a single passive component, the noise power is

Nt = kTBt , (2.6)

where k is Boltzmann’s constant (1.38×1023 Joules/Kelvin), T is the temperature (in

Kelvin), and Bt is the component’s bandwidth. The noise of a circuit is often given

as a multiple of Nt, called the noise figure. This is usually provided by the designer

or manufacturer of the circuit, based on exhaustive analysis of the individual devices

or empirical measurement. For example, Intersil, a manufacturer of wireless LAN

chipsets, claims a noise figure of seven for their popular Prism family of devices [116].

13

Interference caused by devices transmitting simultaneously in the same channel

contribute to the degradation in signal quality by increasing the level of unwanted

background energy. The impact on quality is dependent on how the interference

combines with the received signal. For instance, multipath fading is essentially self-

interference, where the result is dramatic variations in the received signal. The same

could occur between two devices if their signals were highly correlated. However,

in the spread spectrum techniques commonly in use today, interference appears as

simple additive white Gaussian noise (AWGN) to the receiver. Thus, the interference

can be modeled as a simple increase in the overall noise power for the duration of the

interfering transmissions.

B. Wireless Devices

The design of efficient wireless communication devices has been a hot topic of research

since before the second world war. However, it wasn’t until after the war (1948) that

Shannon published his well known treatises on the mathematical theory of digital

communication which laid the groundwork for what is now the field of information

theory. Ever since, the design of wireless devices has been spurred on in pursuit of

the goal of achieving the maximum limit on channel capacity C = Bt · log2(1+SNR)

that Shannon first presented fifty years ago [95]. There are a number of wireless LAN

devices in the market today that provide data rates as high as 54 Mbps in a package

small enough to fit in a pocket [63], [36]. In this section, we give a brief overview of

relevant design aspects of these devices. The reader is referred to texts by Proakis [95]

and Gibson [45] for more information.

14

1. Physical Layer

The operation of a conventional narrow-band wireless device is as follows. The in-

coming binary digital data stream is first passed to a channel encoder, which adds

redundancy to the signal to increase its tolerance to transmission errors. A digital

modulator then up-converts the digital signal into an analog signal by modulating

the carrier frequency. This modulated signal is then amplified and transmitted out

the antenna. At the receiver, the sequence is reversed. The received signal is passed

to a digital demodulator which down-converts the analog signal into a binary digital

stream, which is then fed into a channel decoder that uses the added redundancy in

the stream to detect or correct errors. Here we describe in more detail the process of

modulation and its impact on performance.

a. Modulation

Higher data rates are commonly achieved by more efficient modulation schemes. Mod-

ulation is the process of translating an outgoing data stream into a form suitable for

transmission on the physical medium. For digital modulation, this involves translat-

ing the data stream into a sequence of symbols. Each symbol may encode a number

of bits, the number depending on the modulation scheme. The symbol sequence is

then transmitted at a certain rate, the symbol rate. So, for a given symbol rate, the

data rate is determined by the number of encoded bits per symbol.

The performance of a modulation scheme is measured by its ability to preserve

the accuracy of the encoded data. In mobile wireless networks, path loss, fading,

and interference cause variations in the received signal-to-noise ratio (SNR). Such

variations also cause variations in the bit error rate (BER), because the lower the SNR,

the more difficult it is for the modulation scheme to decode the received signal. Since

15

0 10 20 30 40

SNR (dB)

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

B
E

R

QAM256 (8Mbps)
QAM64 (6Mbps)
QAM16 (4Mbps)
QPSK (2Mbps)
BPSK (1Mbps)

Fig. 1. Theoretical Bit Error Rate (BER) as a function of the Signal-to-Noise Ratio

(SNR) for several modulation schemes and data rates.

high rate schemes typically use denser modulation encodings, a tradeoff generally

emerges between data rate and BER: the higher the data rate, the higher the BER.

This tradeoff is illustrated in Fig. 1, which shows the theoretical BER as a func-

tion of the SNR for several different modulation schemes. Notice that for each mod-

ulation scheme the BER decreases with increasing SNR. Also notice that for a given

SNR, an increase in data rate results in an increase in BER. For example, given an

SNR of 10 dB, a packet transmitted at 4 Mbps using QAM16 modulation could ex-

perience a BER of 0.07, in comparison to 4 × 10−6 for the same packet transmitted

at 2 Mbps using QPSK modulation.

To illustrate the impact that this tradeoff can have on performance, Fig. 2 shows

throughput as a function of distance for each of the modulation schemes shown in

Fig. 1. For the sake of this illustration only large-scale path loss was modeled (us-

ing Equations 2.2 and 2.3) with a path loss exponent of 2. Notice that the lower

16

50 100 150 200 250 300

Distance (m)

0

1000

2000

3000

4000

M
ea

n
T

hr
ou

gh
pu

t
(K

bp
s)

QAM256 (8Mbps)
QAM64 (6Mbps)
QAM16 (4Mbps)
QPSK (2Mbps)
BPSK (1Mbps)

Fig. 2. Comparison of throughput versus distance for several modulation schemes.

Data was obtained by the simulation of two nodes at fixed positions, with one

sending a continuous stream of UDP packets to the other. The propagation

model was the log-distance path loss model, with a path loss exponent typical of

an urban environment. Transmit power was constant.

rate schemes have greater transmission ranges than the higher rate schemes. As

the distance increases, the signal attenuates until the received SNR drops below the

threshold required to maintain a tolerable bit error rate. This appears as a sharp

drop in throughput in Fig. 2, corresponding to the steep curve in Fig. 1.

Thus, although many existing wireless LAN devices are designed with the capa-

bility of transmitting at multiple data rates, such as 802.11 [60] compliant devices

like the Lucent WaveLAN II [72] and the Cisco/Aironet 350 (formerly PC4800) [3],

no single data rate is optimal for all channel conditions.

17

b. Diversity

To enhance the resistance of the modulated signal to interference and fading, spread

spectrum diversity is often used. One of the earliest spread spectrum techniques in

use today had its birth in Hollywood around the start of the second world war. In

1942, an actress named Heddy Lamar patented “frequency hopping” as a technique

to secure military radio transmissions. Dubbed frequency hopping spread spectrum

(FHSS), the idea is simple: divide the channel into a number of independent frequency

bands and synchronize the transmitter and receiver such that they periodically hop

between bands during a transmission according to a predetermined hopping sequence.

This has the advantage that interference on one frequency affects only a portion of

the transmission, which can be handled by the decoder. Sequences and codes can

be chosen such that overlap is minimized and manageable, allowing utilization of the

channel by multiple radios. The 802.11 standard includes FHSS as one of a number

of possible physical layers, for data rates up to 2 Mbps.

Another form of diversity that is widely used is direct sequence spread spectrum

(DSSS). In DSSS, the input stream is “spread” by multiplying each data bit by a

pseudo-random (pseudo-noise) bit sequence. The resulting sequence of bits (or chips)

are then transmitted over a broad frequency band. This has the effect of spreading

each data bit out in the frequency domain. At the receiver, the incoming signal is

despread by bitwise multiplication of the chips by the same pseudo-noise sequence to

recover the original data bit. The degree to which interference is reduced is propor-

tional to the length of the pseudo-noise sequence. DSSS is very effective at rejecting

fading and interference, and is more efficient than FHSS because it does not have

the overhead inherent in switching between frequencies. The high-rate 802.11b [61]

standard uses DSSS to achieve data rates as high as 11 Mbps.

18

Recently, a diversity technique called orthogonal frequency division multiplexing

(OFDM) has seen greater use. In OFDM, the data bits are divided into multiple

substreams and transmitted in parallel over multiple frequencies. These frequencies,

or subcarriers, are chosen to be orthogonal, meaning that the interference between

subcarriers is minimal. The result is very good interference rejection and performance.

OFDM is currently used in the high-rate 802.11a [62] and 802.11g [63] standards, and

the HIPERLAN [36] standard. Currently, each supports data rates up to 54 Mbps.

2. Data Link Layer

The wireless communication channel is a shared medium. If two or more wireless

devices transmit simultaneously in the same channel their transmissions may interfere

and prevent delivery of either packet. This is called a packet collision. Preventing

collisions is an important problem in ad hoc networks because most wireless LAN

radios are half-duplex, which means that the radio is designed to support two-way

communication but only over the same radio channel, switching from send to receive

as necessary. This is in contrast to full-duplex systems, which use two channels and

two radios over which they can simultaneously send and receive. Coordination among

half-duplex devices wishing to transmit is part of the responsibility of the data link

layer. Other responsibilities include flow control and error recovery. This section

covers salient features of link protocols for wireless devices.

a. Medium Access Control (MAC)

MAC protocols prevent collisions by coordinating access to the channel among the

devices that wish to transmit. Design goals of MAC protocols are to maximize channel

utilization while maintaining an adequate level of fairness. The protocols that exist

today can be classified as centralized or distributed, depending on whether the access

19

control is the responsibility of a central node or all nodes, and guaranteed access or

random access, depending on whether a node has a pre-allocated share of the channel

or must contend for a share. In ad hoc networks, distributed random access protocols

are most commonly used because of their suitability for dynamically changing network

topologies.

The first distributed random-access protocol to be used in a wireless network was

ALOHA [1]. In ALOHA, a node that is given a packet to send appends a frame check

sequence (FCS) and immediately transmits it. The receiver acknowledges correct re-

ceipt of the packet (as indicated by the FCS) by transmitting an acknowledgment

(ACK). On receipt of the ACK, the sender drops its buffered copy of the packet and

continues to the packet. If no ACK arrives after some time, the sender retransmits

the packet. After so many retransmission attempts, it drops the packet. This retrans-

mission scheme is called a Stop-and-Go Automatic Repeat Request (ARQ) protocol,

which is a commonly used error recovery scheme in wireless MACs.

The performance of ALOHA is poor in even moderately loaded networks because

it has no mechanism to prevent collisions. This led to the development of Carrier

Sensing Multiple Access (CSMA) protocols, where the node first listens to the channel

(carrier sense) to determine if it is in use before it transmits its data packet. If the

channel is busy, it backs off for some time and attempts to retransmit later. While it

doesn’t prevent collisions due to simultaneous transmissions, it significantly reduces

the collision probability. Most MAC protocols in use today employ some form of

carrier sensing.

In ad hoc networks, another problem arises in that a node may not always be

able to sense another node’s transmission. This creates an interesting situation where

nodes that are unable to hear each other cause collisions at a node that can hear

them both. This is the well-known hidden terminal problem, so named because the

20

nodes that are unable to hear each other are essentially hidden from each other.

A solution to the hidden terminal problem was devised and the resultant protocol

was called CSMA/CA, for Collision Avoidance. In CSMA/CA, a node, after sensing

the channel is free, signals its intent to transmit a data packet by transmitting a

small RTS (Ready to Send) control packet to the receiver. If the receiver is capable

of receiving the packet, it replies with a CTS (Clear to Send) control packet. On

receipt of the CTS, the sender transmits the data packet. Nodes that overhear either

the RTS or CTS defer their own transmissions for the duration of the data packet

transmission. The purpose of this protocol is threefold: (1) to coordinate the transfer

of the data packet between sender and receiver, (2) to announce the duration of

the packet transfer to nodes that are in range of the sender and the receiver, and

(3) to reduce the time the channel is unnecessarily in use in the instance that the

first transmission collides. Since nodes maintain some state about the status of the

channel based on receipt of RTS/CTS packets, the protocol is said to provide virtual

carrier sensing to supplement the physical carrier sensing in CSMA. A number of

MAC protocols have been proposed that incorporate the RTS/CTS protocol, such

as SRMA [106], MACA [73], MACAW [16], FAMA [42], and the DCF protocol in

802.11.

b. IEEE 802.11

IEEE 802.11 [60] is the de facto standard for wireless LAN devices. Part of the IEEE

802.x LAN/MAN family of standards, it serves as the blueprint for millions of devices

worldwide. Defining both physical and data link layers, the 802.11 standard includes

designs for infrastructure as well as ad hoc wireless networks for several different

physical layers at a number of frequencies and data rates. Work on the standard is

ongoing, and recent extensions include 54 Mbps OFDM-based physical layers in the

21

DATA
D

CTS
D

1
T

0
T

2
T

4
T

3
T

D
RTS

CTS

Src

Dst

RTS

ACK

A

B

L

Time

DATA

Fig. 3. Timeline showing the RTS/CTS protocol in the IEEE 802.11 Distributed Co-

ordination Function (DCF) for transmitting a data packet. Here, A and B are

nodes that are in range of the transmitter and receiver, respectively. DRTS,

DCTS, and DDATA are the lengths of the reservations given in the RTS, CTS

and DATA packets, and L is the duration of the data packet transmission.

5 GHz [62] and 2.4 GHz [61] ISM (unlicensed access) frequency bands. Support for

ad hoc networks includes network configuration, creation, and access control, as well

as error detection, retransmission, and collision avoidance. Its MAC protocol for ad

hoc networks is called the Distributed Coordination Function (DCF).

Distributed Coordination Function (DCF): The Distributed Coordination

Function (DCF) in 802.11 is an implementation of the RTS/CTS protocol, and is

illustrated in Fig. 3, which is a time-line portraying the sequence of events that occur

for a single packet transfer. Here, the source Src has a data packet to transmit to the

destination Dst with a duration of length L. Node A is in range of Src but not Dst,

and node B is in range of Dst but not Src. The protocol proceeds as follows. When

Src has a packet to send, it calculates the length of time it will take to transmit the

data packet at the current data rate, and then adds to that the transmission time

of the CTS and ACK packets, which forms the duration of the reservation (DRTS).

22

The Src then transmits DRTS in the RTS to Dst, using one of the rates in the basic

rate set. The basic rate set is the set of rates that all nodes are required to support,

which ensures that all nodes that are in transmission range are able to receive and

demodulate the RTS/CTS packets. Since node A is in range of Src, it overhears the

RTS and summarily defers its own transmissions for the duration of the reservation

in the RTS (DRTS), starting from the moment that it received the RTS (T1). If Dst is

capable of receiving the data packet, it responds by transmitting a CTS packet back

to Src containing the time remaining in the reservation (DCTS), which it calculates

by subtracting the transmission time of the CTS from DRTS. Node B, overhearing

the RTS, learns of the requested reservation and, like A, defers for length DCTS. At

this point, transmission of the data packet and subsequent ACK can now proceed

without interference from A or B. However, in the off-chance that A did not receive

the RTS, due to, for example, an RTS collision caused by another node, the data

packet also carries the time remaining in the reservation DDATA to ensure that A

defers during the transmission of the ACK.

Network Allocation Vector (NAV): Since a node may overhear many different

and potentially overlapping reservation requests, it needs a means by which it can

efficiently manage them. This is the purpose for the maintenance of a structure

called the Network Allocation Vector (NAV). The NAV is a data structure that stores

the aggregate duration of time that the medium is presumed to be “busy,” based

on the reservation requests that have been received. Maintenance of the NAV is

straightforward. Nodes that overhear a reservation request are free to update their

NAVs without regard to any further communication, such as if the reservation was

actually granted by the receiver.

23

3. Data Rate Adaptation

Rate adaptation is the process of dynamically switching data rates to match the chan-

nel conditions, with the goal of selecting the rate that will give the optimum through-

put for the given channel conditions. A proven technique for wireline modems [37],

rate adaptation has received attention as a technique also for use in wireless systems

(e.g., [97], [10], [48], [112], [4]). In fact, the Lucent WaveLAN II and Cisco/Aironet

350 each contain proprietary rate adaptation mechanisms.

There are two aspects to rate adaptation: channel quality estimation and rate

selection. Channel quality estimation involves measuring the time-varying state of

the wireless channel for the purpose of generating predictions of future quality. Issues

include: which metrics should be used as indicators of channel quality (e.g., SNR,

signal strength, symbol error rate, BER), which predictors should be used, whether

predictions should be short-term or long-term, etc. [10], [46]. Rate selection involves

using the channel quality predictions to select an appropriate rate. Techniques vary,

but a common technique is threshold selection, where the value of an indicator is

compared against a list of threshold values representing boundaries between the data

rates [108], [10].

Among the factors that influence the effectiveness of rate adaptation, of particular

importance is the accuracy of the channel quality estimates. Clearly, inaccurate

estimates will result in poor rate selection. Thus, it is advantageous to utilize the

best information available when generating an estimate, and since it is the channel

quality seen by the receiver that determines whether a packet can be received, the best

information is available on the receiver. It is equally important that once estimates are

generated they be used before they become outdated. Thus, it is also advantageous

to minimize the delay between the time of the estimate and the time the packet is

24

transmitted.

Few rate adaptation techniques have been designed for wireless LANs. Among

those that are available, the following are most relevant. In [99], the authors present

a protocol for a dual-channel slotted-aloha MAC, in which a separate control channel

is used by the receiver to transmit explicit feedback to the sender, which the sender

uses to adapt the rate. In [72], the authors present the “Auto Rate Fallback (ARF)”

protocol for IEEE 802.11, used in Lucent’s WaveLAN II devices. In ARF, the sender

selects the best rate based on information from previous data packet transmissions,

incrementally increasing or decreasing the rate after a number of consecutive successes

or losses, respectively. Finally, in [43], the authors propose protocol for point-to-point

links, that selects transmission settings (e.g., code rate and power level) based on

cached per-link information. The settings are stored in separate transmit and receive

tables, which are then used by the sender and receiver to transmit and receive data

packets on the link. The tables are maintained, in part, by exchanging settings in

control packets, such as those in the RTS/CTS protocol. The RTS is also used by

the sender to tell the receiver what settings the sender will use to transmit the data

packet (which it gets from its transmit table). The receiver uses the settings in the

RTS to update its receive table. If the receiver chooses, it may use the CTS to suggest

a different power level, but, otherwise, no other changes to the transmit settings are

made during the RTS/CTS exchange. Instead, changes to the sender’s transmit table

are made by information in acknowledgment (ACK) or negative acknowledgment

(NACK) packets sent at the end of the data packet transmission. These changes are

then used for subsequent packet transmissions. Note that, in all three protocols ([99],

[72], and [43]), rate selection is performed by the sender, and, in [72], channel quality

estimation is also performed by the sender. Also note that only [72] is based on a

widely used wireless local area networking standard (IEEE 802.11).

25

Much of the other work on rate adaptation in wireless networks has assumed a

cellular network (e.g., mobile nodes communicating to a base station over a TDMA

link) [10], [97], [108]. We have observed that many of these techniques have the fol-

lowing characteristics: (a) channel quality estimation is performed by the receiver

and periodically fed to the sender either on the same channel or on a separate sub-

channel; (b) rate selection is performed by the sender using the feedback provided

by the receiver; and (c) they often reside at the physical layer, adapting rates on a

symbol-by-symbol or slot-by-slot basis, transparent to upper layers.

Although it may appear that such approaches are also applicable to ad hoc

networks, several important differences exist. For instance, since single channel, half-

duplex radios are generally used, simultaneous subchannel feedback is not possible.

Furthermore, MAC protocols for ad hoc networks rely on accurate estimates of packet

transmission times for efficient operation. Thus, if transparent physical layer rate

adaptation were to be employed, it would be difficult for the MAC layer to estimate

in advance how long a packet transmission will take, resulting in a potential decrease

in efficiency.

C. Routing

One of the most difficult challenges in ad hoc networks has been to develop routing

protocols that can route packets through a network topology that changes frequently

and suddenly. Conventional routing protocols, like RIP [84] and OSPF [86], were

developed for wired networks and, as such, perform poorly in networks with a dynamic

topology. In this section, we survey routing protocols for ad hoc networks, focusing

on the Dynamic Source Routing (DSR) protocol that is often referred to in later

chapters.

26

1. Overview

A number of routing protocols for ad hoc networks have been developed, such as

the DSR protocol [19], the Ad Hoc On-Demand Distance Vector (AODV) proto-

col [92], the Optimized Link State Routing (OLSR) protocol [23], and the Destination-

Sequenced Distance-Vector (DSDV) protocol [93]. Many of these are based on, or

developed as a part of, work produced by early DARPA packet-radio programs such

as PRNet [71], and SURAN [15, 80]. Most are based on the same shortest-path rout-

ing used in wired networks: prioritize routes according to their length (in hops) and

give higher priority to shorter routes. The reasons being that shorter routes generally

have lower end-to-end delay, because fewer routers are traversed, and higher overall

throughput, because traffic is localized.

A number of other protocols consider other routing metrics, such as SSA (Signal-

Strength Adaptive) [33] which selects routes based on the aggregate strength of

its links, ABR (Associativity-Based Routing) [107] which chooses routes that have

links with longevity, and ETX (Expected Transmission Count) [27] which selects

routes with the lowest predicted retransmission probability based on online statisti-

cal monitoring. Others consider the load on a route, such as STARA (System and

Traffic Dependent Adaptive Routing Algorithm) [50], INORA (INSIGNIA [2] and

TORA [88]) [32], DLAR (Dynamic Load-Aware Routing in Ad hoc Networks) [81],

and LWR (Load aWare Routing) [115].

Only a few routing protocols, however, consider the impact of multirate links.

The work in [103] considers link data rates, selecting routes that minimize end-to-

end delay. However, their algorithm is impractical for ad hoc networks because it

assumes that timely and accurate network-wide link state information is available at

each node, including the status of every link’s queuing delay, medium access delay,

27

and near-neighbor reachability. The overhead of disseminating and maintaining such

soft state that this would require was left out of their performance analysis. In [7], the

authors propose the media time metric to account for differences in link data rates

on a route. This metric is built on the assumption that all nodes on a route contend

for the same global channel. In this instance, the route that minimizes the time on

the channel maximizes utilization. However, this metric does not apply to the more

general case where nodes contend only within their local area.

2. Dynamic Source Routing (DSR)

The DSR protocol was developed by researchers at CMU [70] and is one of the pro-

tocols being considered for standardization by the Internet Engineering Task Force

(IETF). In DSR, a routing header is prefixed to each packet entering the network that

specifies the complete sequence of nodes on which the packet should be forwarded.

This route is obtained through route discovery. When a node has a packet to send

for which it does not have a route, it initiates route discovery by broadcasting a route

request packet. In a request packet is stored the sequence of nodes that the request

visits as it is propagated through the network. If a node, say x, receives a request

and has a route to the destination, then it sends a route reply packet to the requester

with the new route formed by concatenating the node sequence in the request to the

route stored by x. To limit how far a request is propagated, a time-to-live (TTL)

field is attached to every request along with a unique request identifier. A node drops

any request that it has either seen before or has lived beyond its TTL.

To reduce the number of route discoveries, each node maintains a cache of routes

that it has learned. A node may learn of a route through route discovery, or through

other means such as snooping routes in route replies and data packets, or eavesdrop-

ping on local broadcasts. This cache is updated through route error messages. A

28

route error message is sent by a node when it discovers that a packet’s source route

is no longer valid.

The route discovery protocol, as implemented by CMU, has two phases: a local

broadcast (a ring-0 search) followed by a propagating search. The ring-0 search is

initiated in the hope that a route can quickly be found in a neighbor’s cache. If a

route is not found within a small amount of time, a propagating search is attempted.

If this fails, the protocol backs-off and tries again, eventually giving up if a route is

not found. This procedure repeats until all of the packets queued for that particular

destination are dropped from the queue, or a route is found.

A packet may be dropped from the queue if a route has not been found within a

pre-specified amount of time (the “Send Buffer Timeout” interval), or if the queue is

full and newly arriving packets force it out. Route discoveries for the same destination

are limited by the back-off and retry procedure, which is initiated per destination

(versus per packet). Thus, regardless of the number of packets that need a route to

the same destination, only one route discovery procedure is initiated.

Once a route is found and a packet is sent, there is the possibility that the route

becomes “stale” while the packet is in flight, because of node mobility (a route is

“stale” if some links on the route are broken). In such an instance, DSR uses a

mechanism called packet salvaging to re-route the packet. When a node x detects

that the next link in a packet’s route is broken, it first sends a route error message to

the node that generated the packet’s route to prevent it from sending more packets

on the broken route. Node x then attempts to salvage the packet by checking its

cache to see if it knows of another route to the packet’s destination. If so, node x

inserts the new source route into the packet and forwards it on that route; if not, the

packet is dropped.

29

D. Transmission Control Protocol (TCP)

Most network applications require that the data they send be delivered reliably and

in order. However, the underlying fabric of many networks, including the Internet,

is “best effort” – meaning that there are no guarantees that data that is sent will be

received. Instead, the task of sequencing, packetizing, and tracking each application’s

data to ensure that it is delivered correctly is the job of end-to-end reliable transport

protocols. Among the many protocols that have been devised (e.g., Delta-t [111],

NETBLT [29], and XTP [113]) the de facto standard and main Internet transport is

TCP [94], [104].

TCP is a connection-oriented protocol that provides applications with an ab-

stract view of the network that resembles a reliable “first-in, first-out (FIFO)” data

pipe. The workhorse of the Internet, TCP is the foundation for important network ap-

plications such as web browsing, e-mail, and file transfer, and carries almost all of the

data exchanged on the Internet. Statistics generated by the Cooperative Association

of Internet Data Analysis (CAIDA) on data from the NASA Ames Internet Exchange

(AIX) showed that TCP accounted for over 80% of all the packets transferred, and

over 90% of all the data [85].

TCP’s success is largely attributable to its proven congestion control algorithms.

These algorithms are based on sound theoretical principles that are designed to reduce

the probability that a network will become over-utilized to the point of congestive

collapse. It was, in fact, a series of congestive collapses in the early years of the

Internet (1986) that gave rise to TCP as it is today. The first version of TCP that

had adequate congestion control was called TCP-Tahoe. Tahoe included the slow-

start, congestion avoidance, and fast retransmit protocols devised by Jacobson [65] in

response to the collapses. This was followed by TCP-Reno, which included Jacobson’s

30

fast recovery protocol [66]. The performance and reliability of Reno has made it the

most widely deployed version of TCP to date. Modifications to the fast recovery

protocol to reduce the number of spurious timeouts as proposed by Hoe [52] was later

added, creating a variant called TCP-NewReno, which is being deployed today. More

details on the evolution of TCP can be found in [39]. In this thesis, all references to

TCP imply TCP-Reno unless otherwise noted.

1. Overview

In this section we present an overview of the internals of the TCP protocol. We start

by first discussing how TCP uses sequence numbers to track and order the data that

it transmits, and the flow control mechanisms it uses to limit the rate at which data

is injected into the network. We then look at the algorithms TCP uses to detect and

react to congestion in the network, followed by a look at how it detects and reacts to

lost data packets.

a. Sequencing and Flow Control

To provide an end-to-end reliable, in-order, byte stream, TCP must keep track of each

byte of data that it receives, until that byte is known to have been delivered to its

destination. Thus, every data byte that TCP is given is assigned a unique sequence

number in the order that it was received. This number stays with the data byte for the

duration of its time in the network. Groups of bytes are arranged into segments for

transmission by the underlying IP protocol (up to a maximum segment size (MSS)).

Prepended to each segment is a header identifying the bytes by the sequence number

of the first byte and the length of the segment. The receiver uses this sequence

number to sort the segments before delivering the bytes to the application. Segments

that arrive in-order are acknowledged to the sender by a cumulative acknowledgment

31

packet. This acknowledgment (ACK) carries the sequence number of the last in-order

byte received plus one (or, the next byte the receiver needs). This implicitly notifies

that sender that all bytes up to, but not including, this sequence number have been

successfully received.

To prevent the transmission of too much data into the network, a sliding window

based flow control algorithm is used. Here, the sender keeps track of the last byte that

was acknowledged and the last byte in the sequence that was transmitted, ensuring

that the difference never exceeds the size of the window. The size of the window

is bounded above by how much the receiver is able to buffer, which is called the

advertised window. However, a second window size is maintained by the sender based

on its estimate of the amount of congestion in the network, called the congestion

window, or cwnd for short. To ensure neither is exceeded, the sender never sends

more than the minimum of both windows.

b. Congestion Avoidance and Control

Management of the congestion window is the responsibility of the congestion avoid-

ance and control algorithms. The goal of these algorithms is to maintain a window

that matches precisely what the network can hold. If the network were a pipe, this

capacity would be the area of its cross-section times its length. In a network, this is

equivalent to the minimum link bandwidth multiplied by the end-to-end propagation

delay, or the bandwidth-delay product as it is often called. However, maintaining this

window precisely is difficult to do as other flows enter and exit the network, creating

variation in the available capacity, which, consequently, approaches randomness as

the network size grows large [18]. Instead, TCP continuously probes the limits of

available capacity, rapidly backing-off if it detects congestion, in hopes of achieving

an average capacity that approaches the available capacity, or at least a fair share of

32

that capacity.

The congestion control algorithms operate in phases throughout the lifetime of

the connection. At startup, the congestion window is set to one MSS since the capacity

of the network is unknown. At this point, the slow start algorithm is in control of

the congestion window. The goal of slow start is to grow the congestion window

at a rapid pace (exponentially) until congestion is detected. Thus, for every ACK

received, the cwnd is increased by two MSS. This continues until either congestion is

detected or a threshold is reached, called the slow start threshold, or ssthresh for short.

Once the threshold is reached, the congestion avoidance algorithm takes control of

the congestion window. The goal of the congestion avoidance algorithm is to probe

the network more slowly by only increasing cwnd by one MSS for every window of

packets delivered.

c. Loss Detection and Recovery

In TCP, congestion in the network is only detected by the loss of a segment, pre-

sumably dropped by the congested router at the bottleneck link on the path. The

detection of a lost segment can happen in one of two ways. When a later segment

arrives at the receiver, it transmits a duplicate acknowledgment, or DUPACK, with

the sequence number of the missing segment and buffers the out-of-order segment.

Since there may not always be a segment in flight to trigger a DUPACK, the sender

also uses a retransmission timer, which it resets once for each window of packets it

transmits. A segment is presumed lost if the timer expires (a timeout). To select an

appropriate value for the timer, TCP measures the round-trip-time, or rtt, for one

segment every window. These measurements are then smoothed using the low-pass

33

filter

srtt = α srtt + (1− α)rtt , (2.7)

where srtt is the smoothed round-trip time, and α is a smoothing factor. The re-

transmission timeout rto is then set to rto = β rtt, with β = 2 (recommended) [104].

The response to the detection of a lost segment is always a retransmission of the

segment (except in the extreme case that the connection is deemed lost). However,

the way in which it is detected determines how TCP adjusts its congestion window.

If a timeout occurs, ssthresh is set to one-half of cwnd and cwnd = MSS. This

puts slow start back in control of the congestion window as if the connection was just

established. The reasoning being that a timeout could be caused by severe congestion

that resulted in the loss of an entire window of segments. Setting ssthresh to half

of the congestion window, however, retains some information about the state of the

network before the loss was detected, such that if it was a transient loss, the window

can be more quickly rediscovered than starting anew.

Conversely, if the loss was signaled by DUPACKs, the fast recovery algorithm

takes control and sets ssthresh = cwnd/2 and cwnd = ssthresh + 3 × MSS, in

that order. Inflating cwnd by three MSS accounts for the fact that the segments

that triggered the DUPACKs arrived and are buffered by the receiver, so there is

room to transmit additional segments. It also provides additional segments to trigger

acknowledgments should they be needed. Any further DUPACKs inflate cwnd by

the segment size. Arrival of an ACK results in cwnd = ssthresh, and the start of

congestion avoidance. The idea is to recover the lost segments as quickly as possible

while remaining within control of the congestion avoidance algorithm.

34

2. Wireless Networks

In the previous section, it was noted that TCP uses packet loss as an indicator of

congestion. In wired networks, this works well because the transmission channel is

so reliable and the topology so stable that the only statistically relevant cause of

loss is congestion. However, in wireless networks packets can be lost by a number of

different causes, such as transmission errors, link failures, and topology changes, for

which TCP’s response of reducing its transmission rate is inappropriate. The result

is less than ideal performance. In this section we survey proposed approaches to this

problem.

Most effort to date has been focused on improving performance of TCP over

“last-hop” wireless networks (e.g., SNOOP [13], HACK [14], EBSN [9], ETEN [78]).

However, these approaches are not appropriate for ad hoc networks because they

assume a base station is present to manage recovery efforts on the wireless link.

However, there has been some work for ad hoc networks as well; most focusing on

mitigating the impact of link failures, which, as we will show, is one of the more serious

problems. The dynamic nature of ad hoc networks creates a high degree of link failure

and long routing delay. During these long delays, TCP can enter a cycle of consecutive

timeouts resulting in very poor performance. This is documented thoroughly in our

work [53], [57], and subsequently in [114]. The predominant approach to this problem

has been to use some form of explicit link failure notification message (e.g., TCP-

F [21], TCP/RCWE [49], TCP-BuS [75], ENIC [105]). For instance, ATCP [82] relies

on the delivery of a “Destination Unreachable” ICMP to signal link failure, whereas

others piggyback the message on routing packets (e.g., TCP-BuS [75]). The response

to this message is generally the same: freeze TCP’s congestion control mechanisms

until the route has been repaired. Areas where the various approaches significantly

35

differ are in how the notifications are delivered, how to discover that the route has

been repaired, and to what state TCP should be restored. Unfortunately, there is

no clear “winner” in these areas. However, what is clear that, like explicit error

notification, there is a problem identifying and forwarding explicit messages to TCP

senders because of the encrypted TCP headers.

One alternative to explicit messaging has been proposed, called TCP-DOOR [110].

TCP-DOOR is unique in that it uses the arrival of out-of-order packets at the end-

points to signify that a route change has occurred, to which it responds by “rolling-

back” TCP to a previous state if it is determined that TCP had a negative reaction

to the route change. While such an approach is attractive, it is not clear how well it

will work in realistic ad hoc networks, since optimal congestion windows are so small

as to reduce the probability of a route change causing out-of-order packets. However,

this is one approach that we will study more thoroughly.

Finally, it should be noted that the problem of long routing delays could, in many

instances, be greatly reduced by enhancing the speed and accuracy of the routing

protocols. The Atra [6] framework is one such attempt. Atra is a set of routing

optimizations for DSR that are designed to eliminate long route repair delays. Three

optimizations are proposed: Symmetric Route Pinning, Proactive Route Errors, and

Route Failure Prediction. Symmetric Route Pinning forces forward and reverse routes

to be symmetric end-to-end, reducing the probability of route failure by minimizing

the number of links (points of failure) on the route. Proactive Route Errors is another

DSR-specific optimization which forces the immediate push of route error notifications

to all nodes that have sent packets across a link over some recent interval of time,

rather than waiting to send notifications when packets are received for the downed

link. Route Failure Prediction uses an approach similar to Signal Stability-Based

Adaptive routing [33] in which signal strength is used as an indicator of impending

36

route failure, subsequently triggering preemptive route discovery. A similar approach

was also used in [47]. It should be noted that long route repair delays are especially

a problem in reactive protocols, like DSR, where route caching is needed to reduce

route discovery overhead. In such protocols, route caching has the tendency to cause

the attempted use of stale (invalid) routes during route repair [53], resulting in longer

than optimal routing delays.

37

CHAPTER III

METHODOLOGY

In this section we present the simulation environment and methodology used for the

performance analysis presented in this dissertation.

A. Simulation Environment

The simulations in this dissertation were generated using an extended version of ns

that was developed by the Monarch Project at Carnegie Mellon University. The

extensions added to ns by the Monarch group provide the mechanisms necessary for

simulating a mobile ad hoc network, including implementations of the 802.11 wireless

MAC protocol, the BSD ARP protocol, several mobile ad hoc routing protocols, and

a radio propagation model. It also provides mechanisms to simulate node mobility

using precomputed files that specify node motion and peer to peer reachability for

the duration of the simulation. Following is a brief overview of the input parameters

and files that are required by the CMU extensions. The reader is referred to [24] for

a more detailed description.

The CMU extensions to the ns simulator include a group of OTcl scripts that are

processed as inputs to the simulator as well as a collection of programs that generate

new input scripts. The main input file is an OTcl script that processes command-

line arguments and initializes and configures the simulation environment. This is

the cmu/scripts/run.tcl1 script. In the process of configuring the simulation, this

script calls several other OTcl scripts, some of which are named in command-line ar-

guments. One of these is the routing protocol configuration script, which configures

1
All paths in this section are relative to the ns-src/ directory in the 2.1b3 distribution of the CMU

extensions.

38

set tcp_(0) [$ns_ create-connection TCP/Reno $node_(1) TCPSink $node_(2) 0]

$tcp_(0) set window_ 32

set ftp_(0) [$tcp_(0) attach-source FTP]

$ns_ at 0 "$ftp_(0) start"

Fig. 4. An example connection pattern script that creates a single TCP-Reno connec-

tion driven by an FTP data source.

the simulated mobile nodes as routers that implement the named protocol (e.g., the

DSR configuration script is cmu/dsr/dsr.tcl). Two other OTcl scripts, the con-

nection pattern script and the mobility pattern script, designate the workload and

network topology and dynamics for a single run of the simulation.

The connection pattern script designates the configuration and behavior of data

connections in the network scenario to be simulated. For instance, it specifies when a

data connection should be created and destroyed, the endpoints of the data connection

(e.g., Node 1 to Node 2), when data flow across the connection should start and

stop, the type of application data source that will send the data (e.g., FTP), and

the transport protocol that the data source will use (e.g., TCP Reno). It may also

specify other characteristics of the connection, such as the amount of data to send,

the maximum TCP window size, and whether tracing should be enabled on variables

related to the connection. An example script is shown in Fig. 4. This script sets up

a single TCP-Reno connection from Node 1 to Node 2 and then sets the maximum

TCP window for that connection to 32 packets. (Note that tcp (0) is an example

of a mirrored object and window is an example of a bound variable, both of which

were described earlier.) The script then attaches an FTP data source to Node 1 and

schedules the data source to start sending at time 0. A program to generate connection

pattern scripts is provided in the CMU distribution (cmu/scripts/cbrgen.tcl).

The mobility pattern script (also called a scenario file in [24]) designates the mo-

39

$node_(1) set X_ 93.909

$node_(1) set Y_ 57.308

$node_(1) set Z_ 0.000

$node_(2) set X_ 325.905

$node_(2) set Y_ 122.463

$node_(2) set Z_ 0.000

$ns_ at 0.000 "$node_(1) setdest 80.985 310.405 1.962"

$ns_ at 0.000 "$node_(2) setdest 174.895 367.713 2.101"

$god_ set-dist 1 2 1

$ns_ at 129.151 "$node_(1) setdest 297.359 448.699 1.853"

$ns_ at 137.049 "$node_(2) setdest 94.547 123.594 1.959"

$ns_ at 230.673 "$god_ set-dist 1 2 16777215"

$ns_ at 267.718 "$node_(1) setdest 217.640 420.953 2.000"

$ns_ at 268.237 "$node_(2) setdest 151.138 15.501 1.901"

Fig. 5. An example mobility pattern script for two nodes moving in a 500m x 500m

area at a mean speed of 2 m/s for 300 seconds.

tion of the nodes in the network and the changes in paths between the nodes over

time. Associated with each node x are a set of coordinates (xl, yl, zl) that designate

x’s location in the area of motion, a set of coordinates (xd, yd, zd) that designate x’s

next destination, and x’s current speed. The initial coordinates of the nodes and

their patterns of destinations and speeds for the duration of the simulation are all

designated in the mobility pattern script. An example script is shown in Fig. 5, which

contains commands designating the motion of two nodes moving at a mean speed of

2 m/s for 300 seconds in a square 500m x 500m area. The first sequence of commands

(i.e., $node (1) set ...) designate the initial placement of the two nodes at the

start of the simulation. The next two commands (i.e., $ns at 0.000 "$node (1)

setdest ...) designate the (xd, yd) coordinates (zd = 0 in this version) for each

node’s next destination, as well as the speed at which they will travel. (The “at

0.000” portion of the entry designates when (in simulated time) the command will

be executed.) The setdest commands that appear later in the script designate new

40

destinations and speeds as dictated by the mobility model that was used to create

the script. In this instance, the nodes are moving in a random-walk. Also included in

the script are commands that indicate changes in the optimal path lengths (in hops)

between nodes in the network (i.e., ...$god set-dist...). These commands are

used to track the efficiency of the routing protocol. Each “set-dist <i> <j> <d>”

command designates the time at which the optimal (shortest) path length between

Node i and Node j becomes d hops. A value of d = 16777215 indicates an infinite

path length, meaning no path exists between the nodes (the network is partitioned).

A program to generate mobility pattern scripts is also provided in the CMU distri-

bution (cmu/setdest/setdest). By default, this program assumes a fixed maximum

transmission of 250m (the length of one hop), which is consistent with the radio that

was simulated (914Mhz WaveLan).

B. Simulation Enhancements

To the standard ns-2, we added more detailed MAC and physical layer models, in-

cluding the addition of the modulation schemes and rate adaptation mechanisms

that are the focus of this study, as well as the addition of a Rayleigh fading sim-

ulator for studying the impact of multipath fading. The Rayleigh fading simulator

we used is based on the well known Jakes [68] simulator, which generates a contin-

uous time-varying Rayleigh fading envelope. Additionally, we enhanced the realism

of the existing network interfaces using the Intersil Prism II chipset and accompa-

nying reference interface designs as our model. The Prism II chipset is an IEEE

802.11, direct-sequence spread-spectrum (DSSS) radio that is used in many commer-

cially available network interfaces, including the Aironet PC4800 [3] (now known as

the Cisco 350). Most of our network interface parameters were drawn directly from

41

the Intersil documentation, including power constraints, receiver noise factors, refer-

ence antenna gains, and sensitivity thresholds. Our interest in these experiments was

only to observe how the individual rate adaptation protocols reacted to the changing

channel conditions, and not to evaluate the exact performance of currently available

network devices. We differed slightly from the reference design of the Prism II chipsets

and did not model the CCK modulation schemes, instead choosing to use the more

widely known and well documented M-ary QAM modulation schemes [100]. However,

similar results can be expected for CCK, MOK, and and other modulation schemes.

Apart from the aforementioned changes, the nodes in our simulations were otherwise

configured similar to those in [19].

Our error model was based on the detailed simulation of a Rayleigh fading chan-

nel, using the well known Jakes method. In this section, we describe, in detail, how

we used this method to model packet errors in our simulations. Jakes method is

a technique for simulating a signal with Rayleigh fading characteristics. The tech-

nique is based on the simulation of a finite number of oscillators with Doppler shifted

frequencies, whose outputs are combined to produce the simulated Rayleigh fading

signal. The resultant signal α(t) = xc(t) + jxs(t), where xc and xs are the signal’s

in-phase (real) and quadrature (imaginary) components, is computed as follows

xc(t) =
1√
N

N
∑

n=1

cos βn cos(ωnt+ kβn) (3.1)

xs(t) =
1√
N

N
∑

n=1

sin βn cos(ωnt+ kβn) (3.2)

where N is the number of oscillators, k = 1, and

ωn =
2πv

λ
cos

(

πn

2N + 1

)

(3.3)

42

βn =
πn

N
(3.4)

In our simulations, N = 8. The instantaneous gain of the channel is then the magni-

tude of the signal

|α(t)| =
√

x2
c(t) + x2

s(t) (3.5)

Given the gain, we computed whether a packet was received with errors using well

known methods for calculating the pre-gain signal to noise ratio (SNR) and resultant

bit error rate for the modulation schemes that were used. To compute the value of

the pre-gain received signal, we used the log-distance path loss model with a path loss

exponent of 2. Noise was modeled as a combination of the noise floor of the interface

and the aggregate energy of neighboring transmissions that were to weak to cause a

collision. For our simulations, we used a noise figure provided by Intersil for their

Prism I chipset.

Finally, the received bit error rates were computed using the following bit error

rate equations for the different modulation scheme that were used. For BPSK and

QPSK [100]

Pe(t) = Q

√

2|α(t)|2Eb

No

 (3.6)

and for M-ary QAM

Pe(t) ≈ 4

(

1− 1√
M

)

Q

√

√

√

√

3|α(t)|2log2(M)Eb

(M − 1)No

 (3.7)

where Eb/No is the bit-energy-to-noise ratio of the received signal and |α(t)| is the

instantaneous gain of the Rayleigh channel (from [68]).

Since portions of a packet may be transmitted at different modulation schemes,

the probability that a packet was in error was based on separate calculations for each

portion. Furthermore, since gain and noise may vary with time, we also accounted

43

for those in our calculations by the following. For the gain, we used an approximation

for the coherence time. For the noise, we accounted for the changing conditions by

tracking the beginning and ending times of each of the neighboring transmissions and

adjusting SNR appropriately.

44

CHAPTER IV

THE RECEIVER-BASED AUTORATE PROTOCOL∗

In this chapter we propose a new approach to rate adaptation for wireless local area

networks. In our approach, the rate selection and channel quality estimation are

located on the receiver, and rate selection is performed on a per-packet basis during

the RTS/CTS exchange, just prior to packet transmission. The motivation for our

approach is based on the following observations:

• Rate selection can be improved by providing more timely and more complete

channel quality information.

• Channel quality information is best acquired at the receiver.

• Transmitting channel quality information to the sender can be costly, both in

terms of the resources consumed in transmitting the quantity of information

needed as well as the potential loss in timeliness of the information due to

transmission delays.

To emphasize the need for better rate adaptation mechanisms, consider Fig. 6,

which illustrates the behavior of the ARF protocol. Shown is the performance of ARF

for a single CBR connection between two nodes in a Rayleigh fading channel. The

sender is fixed and the receiver is moving at a speed of 2 m/s away from the sender.

Fig. 6(b) shows the time at which packets were transmitted, and the modulation

rate chosen by ARF for each packet. The tick marks along the top show the time

at which packets were dropped by the receiver due to errors. Fig. 6(a) shows the

∗
Part of this chapter is reprinted from “A rate-adaptive MAC protocol for multi-hop wireless networks”

by G. D. Holland, N. H. Vaidya, and P. Bahl, 2001, in Proceedings of the ACM International Conference on
Mobile Computing and Networking (MOBICOM), Rome, Italy, pp. 236–250. c© 2001 ACM, Inc.

45

30.0 30.1 30.2 30.3 30.4 30.5

Time (s)

0
5

10
15
20
25
30

SN
R

 (
dB

)

BPSK (1 Mbps)

QPSK (2 Mbps)

QAM16 (4 Mbps)

QAM64 (6 Mbps)

QAM256 (8 Mbps)

(a) SNR at the receiver for the packets shown in (b).

30.0 30.1 30.2 30.3 30.4 30.5

Time (s)

0

2

4

6

8

R
at

e
(M

bp
s)

(b) Time and rate of packet transmission.

Fig. 6. Performance of ARF for a single CBR connection between two nodes in a

Rayleigh fading channel. The sender is fixed and the receiver is moving at a

speed of 2 m/s away from the sender.

SNR at the receiver for the packets in (b). Also shown are thresholds representing

the SNR values above which the next higher modulation rate has a theoretical mean

BER ≤ 10−6. At the start, both nodes were at the same location, so the leftmost

edges represent the point in time at which the two nodes were 60m apart. Studying

these results, it is clear that ARF is slow to adapt to changes in SNR, as indicated by

the relative dissimilarity between the upper and lower graphs. In particular, consider

ARF’s failure to rapidly increase the data rate after the deep fades in (a) at the 30.2s

and 30.35s marks, and the attempt it makes to increase the rate in the middle of a

fade at the 30.13s mark.

46

A. The Receiver-Based Autorate (RBAR) Protocol

The core idea of the proposed Receiver-Based Autorate (RBAR) protocol is to allow

the receiver to select the appropriate rate for the data packet during the RTS/CTS

packet exchange [58]. Advantages to this approach include:

• Both channel quality estimation and rate selection mechanisms are now on

the receiver. This allows the channel quality estimation mechanism to directly

access all of the information made available to it by the receiving hardware (such

as the number of multipath components, the symbol error rate, the received

signal strength, etc.), for more accurate rate selection.

• Since the rate selection is done during the RTS/CTS exchange, the channel

quality estimates are nearer to the actual transmission time of the data packet

than in existing sender-based approaches, such as the protocol in [72] which

attempts to predict channel conditions based on conditions experienced during

previous data packet transmissions.

• It can be implemented into IEEE 802.11 with minor changes, as we will show

in a later section.

In the remainder of this section, we present the RBAR protocol in more detail Note

that although our discussion is in the context of the RTS/CTS protocol in the DCF

of the 802.11 standard, the concepts are equally applicable to other RTS/CTS based

protocols such as those mentioned in Chapter II.

In RBAR, instead of carrying the duration of the reservation, the packets carry

the modulation rate and size of the data packet. This modification serves the dual

purpose of providing a mechanism by which the receiver can communicate the chosen

rate to the sender, while still providing neighboring nodes with enough information

47

CTS
D

1
T

0
T

2
T

4
T

D
RTS

RSH
D

3
T

�
�

CTS

Src

Dst

RTS

ACK

DATA

A

B

Time

RSH

Fig. 7. Timeline showing changes to the DCF protocol as needed for the proposed Re-

ceiver-Based Autorate Protocol.

to calculate the duration of the requested reservation. The protocol is as follows.

Referring to Fig. 7, the sender Src chooses a data rate based on some heuristic

(such as the most recent rate that was successful for transmission to the destination

Dst), and then stores the rate and the size of the data packet into the RTS. Node

A, overhearing the RTS, calculates the duration of the requested reservation DRTS

using the rate and packet size carried in the RTS. This is possible because all of the

information required to calculate DRTS is known to A. A then updates its NAV to

reflect the reservation. While receiving the RTS, the receiver Dst uses information

available to it about the channel conditions to generate an estimate of the conditions

for the impending data packet transmission. Dst then selects the appropriate rate

based on that estimate, and transmits it and the packet size in the CTS back to

the sender. Node B, overhearing the CTS, calculates the duration of the reservation

DCTS similar to the procedure used by A, and then updates ts NAV to reflect the

reservation. Finally, Src responds to the receipt of the CTS by transmitting the data

packet at the rate chosen by Dst.

48

In the instance that the rates chosen by the sender and receiver are different,

then the reservation DRTS calculated by A will no longer be valid. Thus, we refer to

DRTS as a tentative reservation. A tentative reservation serves only to inform neigh-

boring nodes that a reservation has been requested but that the duration of the final

reservation may differ. Any node that receives a tentative reservation is required to

treat it the same as a final reservation with regard to later transmission requests; that

is, if a node overhears a tentative reservation it must update its NAV so that any

later requests it receives that would conflict with the tentative reservation must be

denied. Thus, a tentative reservation effectively serves as a placeholder until either

a new reservation is received or the tentative reservation is confirmed as the final

reservation. Final reservations are confirmed by the presence or absence of a special

subheader, called the Reservation SubHeader (RSH), in the MAC header of the data

packet. The reservation subheader consists of a subset of the header fields that are

already present in the 802.11 data packet frame, plus a check sequence that serves to

protect the subheader. The fields in the reservation subheader consist of only those

fields needed to update the NAV, and essentially amount to the same fields present

in an RTS. Furthermore, the fields (minus the check sequence) still retain the same

functionality that they have in a standard 802.11 header. The reservation subheader

is used as follows. Referring again to Fig. 7, in the instance that the tentative reser-

vation DRTS is incorrect, Src will send the data packet with the special MAC header

containing the RSH subheader. A, overhearing the RSH, will immediately calculate

the final reservation DRSH , and then update its NAV to account for the difference

between DRTS and DRSH . Note that, for A to update its NAV correctly, it must

know what contribution DRTS has made to its NAV. One way this can be done, is

to maintain a list of the end times of each tentative reservation, indexed according

to the < sender, receiver > pair. Thus, when an update is required, a node can use

49

Frame
Control

Duration
Address

Dest
Control

Sequence
Address
Source��� �� �� �� �� �� 		

�
2Octets: 2

MAC Header

6 6 2 0 - 2312 4

BodyBSSID FCS

6

(a) Data packet frame.

Frame
Control

Frame
Control Address

Dest
Address
Source

Address
Dest ��

�
2

Duration

2Octets:

Duration

4

FCS

66 6

FCS

4

CTS Frame

Octets:2 2

RTS Frame

(b) RTS/CTS control packet frames.

Fig. 8. MAC frame formats used in IEEE 802.11 for ad-hoc networks (IBSS).

the list to determine if the difference in the reservations will require a change in the

NAV.

B. Incorporation of RBAR into 802.11

In this section we describe how RBAR may be incorporated into 802.11. We start by

presenting background information on the formats of the relevant 802.11 frames, and

then describe in detail how these frames can be modified to accommodate RBAR.

The IEEE 802.11 frame formats are shown in Fig. 8. Fig. 8(a) shows the format

of the MAC frame used for sending unicast data packets in an ad-hoc network (IBSS).

The frame control field carries frame identification information, such as the type of

frame (e.g., management, control, or data), as well as protocol version information

and control flags; the duration field contains the time remaining (in µs) until the

end of the packet transfer (e.g., DDATA in Fig. 3); the BSSID is the unique network

identifier; sequence control is a sequence number used to detect duplicate frames;

and FCS is the frame check sequence. Fig. 8(b) shows the format of the RTS and

50

Frame
Control Address

Source
Address

Dest BSSID
Control

Sequence FCSBody��
��

�� �� �� �� 		

2Octets:

Reservation Subheader

Duration

6 6 6 2 0 - 2308 44

HCS

MAC Header

2

(a) Data packet frame.

Frame
Control

Frame
Control Address

Dest
Address
Source

Address
Dest

LengthRate��
Bits: 4 12

LengthRate��
Bits: 4 12

 �� ���� �� ��
������
������

������
������

����������������������������

��������������������

������
������

������
������

���������������
���������������

22Octets: 4

FCS

66 6

FCS

4

RTS Frame CTS Frame

Rate &
Length

Rate &

Octets:2 2

Length

(b) RTS/CTS control packet frames.

������
���
������
���

���������������
 � � � � � �

!! "" ##
Octets: 2 1 2

Sync SFD Signal Service Length CRC

16 1 2

Bits: 4

Rate Rate

4

RSH Data

(c) Physical layer (PLCP) header.

Fig. 9. MAC and physical layer frame formats used in the RBAR protocol.

CTS control frames. The fields they share in common with the data frame serve the

same purpose, except the duration fields contain the DRTS and DCTS values shown

in Fig. 3. For a more complete description, the reader is referred to [60].

Modifications to the standard 802.11 frames for RBAR are minimal, and are

illustrated in Fig. 9. A description of each modification is given next, followed by the

design rationale.

1. A new MAC data frame is introduced, shown in Fig. 9(a), in which the standard

51

802.11 data frame has been changed to include a 32-bit check sequence posi-

tioned immediately after the source address field. The check sequence is used to

protect the reservation subheader, which consists of the frame control, duration,

destination address, source address and address 2 fields of the header. The new

frame is distinguished by other MAC frames by a unique type/subtype code in

the frame control field (see [60] for more information on frame type codes).

2. The RTS and CTS control frames, shown in Fig. 9(b), have been changed to

encode a 4 bit rate subfield and a 12 bit length subfield, in place of the 16 bit

duration field in the standard IEEE 802.11 frames. The rate subfield uses an

encoding similar to the rate field in the PLCP header for the 802.11a supplement

standard [62], and the length subfield gives the size of the data packet in octets.

3. The signal field in the physical layer header (PLCP), shown in Fig. 9(c), has

been divided into two 4 bit rate subfields, which use the similar rate encodings

as those in 802.11a [62]. The first subfield, if non-empty, indicates the rate at

which the reservation subheader will be transmitted, and the second subfield

indicates the rate at which the remainder of the packet will be transmitted.

The rationale for the modifications shown in Figs. 9(a) and 9(b) was discussed

at length in the previous section. Following, is a discussion of the modifications to

the physical layer (PLCP) header shown in Fig. 9(c).

In standard 802.11, the PLCP header contains an 8 bit signal field that encodes

the rate at which the payload of the physical frame (the MAC packet) should be

transmitted. These fields are used as follows. When the physical layer has a packet

to transmit, it first transmits the PLCP header at a fixed rate that is supported by

all nodes (1Mbps). It then switches to the rate encoded in the signal field for the

transmission of the payload. After verifying that the PLCP header is correct, using

52

the CRC, the receiving physical layer switches to the rate given in the signal field to

receive the packet payload. The end of the transmission is determined by the receiver

from the length field, which stores the duration of the transmission (in µs).

In RBAR, the physical layer may be required to switch rates twice during trans-

mission of the payload: once for the reservation subheader, and again for the re-

mainder of the payload. To enable the use of an additional rate for the reservation

subheader, our protocol requires that two rate changes occur during transmission of

the data packet. Thus, instead of a single 8 bit signal field, we subdivide it into two 4

bit subfields, as shown in Fig. 9(c), where the first rate is used to send the reservation

subheader, and the second for the remainder of the data packet. Thus, the PLCP

transmission protocol is modified as follows. When the MAC passes a packet down

to the physical layer, it specifies two rates: one for the subheader and one for the

remainder of the packet. The physical layer then encodes the rates into the appro-

priate signal subfields shown in Fig. 9 and then transmits the packet. The receiving

physical layer, after verifying that the PLCP header has been received correctly, will

then switch to the first RSH rate for receipt of the subheader, and then to the data

rate for the remainder of the packet. Note that, as specified in the IEEE 802.11 stan-

dard, as each byte is received, it is immediately available to the MAC. Thus, nodes

that rely on the RSH to update their reservations, will be free to do so as soon as the

RSH has been received.

1. Autorate Fallback Algorithm (ARF) Implementation

As a basis for comparison, we implemented Lucent’s Autorate Fallback (ARF) pro-

tocol into the simulator. ARF is the rate adaptation scheme used in Lucent’s 802.11

WaveLAN II networking devices [72]. The protocol, as specified in [72], is summarized

as follows. If ACKs for two consecutive data packets are not received by the sender,

53

0 100 200 300

ARF Timeout (ms)

0

500

1000

1500

2000

M
ea

n
T

hr
ou

gh
pu

t
(K

bp
s)

fixed
2 m/s
10 m/s

Fig. 10. Comparison of the average throughput of ARF for various values of the timer

it uses to indicate when it should attempt to increase the data rate in lieu of

its usual indicator: the receipt of 10 consecutive ACKs. The curves shown

are the average throughputs measured across a single CBR connection in a

Rayleigh fading channel between two nodes oscillating near to far at different

mean speeds. The fixed curve is the mean throughput between the nodes spaced

at various intervals over the range of distance traveled by the oscillating nodes

in the mobility curves.

then the sender drops the transmission rate to the next lower data rate and starts a

timer. If ten consecutive ACKs are received, then the transmission rate is raised to

the next higher data rate and the timer is canceled. However, if the timer expires,

the transmission rate is raised as before, but with the condition that if an ACK is

not received for the very next packet, then the rate is lowered again and the timer

is restarted. In our implementation we attempted to adhere as closely as possible

to the description given in [72]. However, values for the timeout were unspecified.

Therefore, prior to initiating our study, we experimented with several timeout values

to determine a reasonable value for our simulations. The results of these experiments

54

are shown in Fig. 10, which shows the average throughput as a function of the timeout

value for several different mean node speeds. From these results it appears that ARF

is relatively insensitive to the choice of timeout, for the given scenarios. However,

there is a clear threshold region in the 40ms-60ms range, depending on the degree of

mobility, beyond which there is little performance change but below which there is a

noticeable drop. The drop can be attributed to the greater frequency at which packets

are lost due to rate increases triggered by timeouts during times in which the channel

conditions are poor. For the experiments with mobility, the peak in performance is

in the 40ms range, whereas for the experiment without mobility, the performance

rises sharply until the 60ms range and then levels off. The slight differences in peak

values between the mobility experiments most likely represents those regions in which

the timeouts are frequent enough to respond well to the variations in the Rayleigh

channel, but not too frequent that the failed packet attempts significantly impact

performance. Based on these results, we chose a value of 60ms for our simulations,

which appears to be a reasonable compromise for the fixed and mobile simulations

that we have used in our performance analysis.

2. Receiver-Based AutoRate Protocol (RBAR) Implementation

So far in our discussions of RBAR we have deliberately neglected to specify the

channel quality estimation and rate selection protocols. This is because there are

already a number of existing protocols in the literature (e.g., [10], [48], [108]), any of

which may be used in RBAR. However, for our performance analysis we chose the

following.

For the channel quality estimation and prediction algorithm, we used a sample

of the instantaneous received signal strength at the end of the RTS reception. In

practice, of course, much more accurate techniques could be used, such as those in

55

[10], [96], and [46].

For the rate selection algorithm, we used a simple threshold based technique.

Threshold based techniques have been widely studied (e.g., [108], [10], [48]). In a

threshold scheme, the rate is chosen by comparing the channel quality estimate against

a series of thresholds representing the desired performance bounds of the available

modulation schemes. The modulation scheme with the highest data rate that sat-

isfies the performance objective for the channel quality estimate, is the chosen rate.

The protocol we used was the following. Suppose we wish to select the modulation

scheme that has the highest data rate among those with bit error rates ≤ 1E-5 for

the estimated SNR of the next packet. The protocol would then choose the modula-

tion scheme as follows. Let M1, . . . ,MN represent the set of modulation schemes in

increasing order of their data rate, and θi, . . . , θN represent the SNR thresholds (dB)

at which BER(Mi) = 1E-5. Choose modulation scheme

M1 if SNR < θ1

Mi if θi ≤ SNR < θi+1, i = 1, . . . , N − 1

MN otherwise

Notice that this protocol assumes that the values of θ1, . . . , θN are known. In practice,

however, it is difficult to determine the BER characteristics precisely, necessitating

the use of approximations. For our simulations we used the BER equations found

in Chapter III. The values of thetai are shown in Table I for the QAM-based radio

model.

3. Network Configurations

In our analysis, we used two different network configurations.

56

Table I. Values of SNR thresholds θi (dB) for the modulation schemes that were used

in our QAM-based radio simulation model (BER = 1E-5).

Modulation Rate (Mbps) θi (dB)

BPSK 1 < 9.6

QPSK 2 < 17.1

QAM16 4 < 23.3

QAM64 6 < 29.4

QAM256 8 >= 29.4

Configuration 1: The first configuration consisted of two identically configured

nodes communicating on a single channel. One of the nodes was held in a fixed

position, while the other traveled along a direct-line path to and from the fixed node

in a repetitious, oscillatory motion. The length of the path was 300m, which was the

maximum effective transmission range of the modulation schemes as simulated (see

Fig. 2). The purpose of this configuration was to stress the rate adaptation schemes,

but doing so within the bounds of a plausible scenario.

Configuration 2: The second configuration consisted of 20 nodes in continuous

motion within a 1500x300 meter arena. For each experiment, nodes were first placed

at random starting positions in the arena, and then moved during the simulation

according to the random waypoint mobility pattern (as described in [19]). The speeds

at which nodes traveled were also chosen randomly, but were held to within ±10% of

the mean node speed for the trial. For most experiments, we used mean node speeds of

2, 4, 6, 8, and 10 m/s. Unlike in the 2 node configuration, in this configuration we were

interested in observing the performance characteristics of the proposed protocols in a

plausible ad hoc networking environment. Thus, the nodes were configured to use the

DSR routing protocol found in [19] instead of static routing. Unless otherwise stated,

all results were based on the average of 30 runs using 30 precomputed scenarios, or

patterns. Each pattern, generated randomly, designated the placement, heading, and

57

speed of each node over the simulated time. For each pattern, the starting position

and direction of each node was random, as well as its speed and destination. When

a node reached its destination, a different speed was chosen at random, uniformly

distributed in an interval of 0.9v − 1.1v, for some mean speed v. For experiments

in which the mean speed v was varied, we used the same precomputed patterns so

that the same sequence of movements occurred for each experiment. For example,

consider one of the patterns, let’s call it I. A node x in I that takes time t to move

from point A to point B in the 5 m/s run of I will take time t/2 to traverse the same

distance in the 10 m/s run of I. So, x will always execute the exact same sequence

of moves in I, just at a proportionally different rate. The patterns we used had a

duration of 600s at a mean node speed of 2 m/s. To provide a fair comparison, the

exact same set of patterns were used for each protocol tested.

C. Performance Evaluation

In this section we present the results of our performance evaluation.

1. Overhead of the Reservation Subheader

There are several sources of overhead caused by the reservation subheader. The

most obvious is the addition of the four byte check sequence to the MAC header.

Additional overhead is encountered when the data rate used to transmit the RTS

packet is lower than the rate used to transmit the data packet. Recall that the

purpose of the reservation subheader is to update the tentative reservations that were

made by the the RTS packet. If a node succeeds in hearing the RTS but fails to hear

the subheader, then it may defer for an incorrect amount of time. Too short a time,

and its next transmission may collide with the ACK coming back for the data packet.

58

0 500 1000 1500

Packet Size (bytes)

-0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

M
ea

n
T

hr
ou

gh
pu

t
of

 R
B

A
R

 (
R

el
at

iv
e

to
 A

R
F

)

Fig. 11. Impact of the reservation subheader on performance (relative to ARF) as a

function of the packet size.

Too long a time, and the channel may be idle. Thus, the subheader must be sent

at the same or lower rate to reach those nodes that heard the RTS. The per-packet

overhead of the difference in rates is easy to calculate. However, to gauge the impact

that the per-packet overhead has on overall performance, we simulated the network

in Configuration 1 with a single UDP connection for a range of packet sizes: 32, 256,

512, 1024, and 1460 bytes. Data was generated by an 8Mbps CBR source, and the

data rate for the control packets (and, summarily, the reservation subheader), was

fixed at 1Mbps. The results of these experiments are shown in Fig. 11, which presents

the throughput for both protocols as a percentage of ARF’s throughput. Note that,

even for small packet sizes, the overhead of RBAR’s reservation subheader has a

relatively modest performance impact. Even for the smallest packet size (32 bytes),

RBAR maintains an approximate 10% improvement over ARF.

Even when sent at a low rate, a node may still fail to receive the subheader,

59

431 2

Flow2Flow1

RSH

Scenario 2

1 2 43

Flow1 Flow2

RSH

Scenario 1

Fig. 12. Network scenarios used to analyze the performance impact caused by the loss

of the RSH subheader.

Table II. Mean per-flow throughput for varying reservation subheader loss probability

for the network scenarios shown in Fig. 12

Err Scenario 1 Scenario 2
Prob Flow1 Flow2 Total Flow1 Flow2 Total

0.00 727 665 1393 222 1167 1389

0.05 708 690 1398 194 1187 1382

0.10 684 716 1400 187 1192 1380

0.15 676 724 1400 161 1220 1381

0.20 644 758 1402 153 1236 1389

0.25 634 761 1395 134 1260 1395

0.30 552 843 1394 123 1261 1385

0.35 537 855 1393 100 1285 1385

0.40 562 831 1393 93 1300 1393

0.45 498 896 1394 62 1330 1392

0.50 446 954 1400 47 1343 1390

60

such as, for example, when an RTS from a neighboring node collides with it or a

deep fade causes excessive errors. Although such circumstances can also occur in

standard 802.11, use of the reservation subheader may cause them to occur more

frequently, and with more impact on performance, as touched on earlier. Thus, to

gauge the sensitivity of RBAR to the loss of the reservation subheader, we simulated

the networks shown in Fig. 12 for varying loss rates. In Scenario 1, the network

consisted of four nodes with two flows directed away from the center of the network

such that the source nodes were able to hear each other but the sink nodes were out

of range of all but the source of their flow. The distance between the nodes was such

that the optimal rate along each flow was 2Mbps, and the rate announced in the RTS

was always 1Mbps. In Scenario 2, the network was similar except the direction of one

of the flows was reversed. In both scenarios, the reservation subheaders from Node

3’s packets were corrupted with varying probability, so it was expected that Flow 1

would experience a decrease in performance with an increase in the probability of

loss.

The results of both experiments are shown in Table II. Each row represents

the measured throughput (in Kbps) for the probability of loss shown in the leftmost

column. As a basis of comparison, the measured throughput for ARF in Scenario 1

was 576Kbps for Flow 1 and 572Kbps for Flow 2, and in Scenario 2 it was 278Kbps

for Flow 1 and 867Kbps for Flow 2. The difference in the throughputs between the

flows in Scenario 2 is due to problems with fairness in 802.11 [109]. For Scenario 1,

there is only a moderate impact on Flow 1’s performance. For a 5% loss of Node

3’s packets, there is only a 3% decrease in performance, and the decline stays below

10% beyond a loss of 15%. However, in Scenario 2 we see a larger impact on Flow

1, starting at a decline of 14% at a 5% loss, increasing rapidly to 38% at a loss of

15%. Thus, it is evident that situations in which reservation subheaders are lost for

61

nodes that are on the receiving end of a flow are more sensitive to that loss, most

likely because the sender on that flow is subject to repeated backoff when its RTS’s

are ignored with increasing probability.

2. Slow Changing Channel Conditions

To observe the performance of the protocols under conditions when the channel condi-

tions are static or slow changing, we again simulated the network in Configuration 1,

but the mobile node was moved in 5m increments over the range of mobility (0m -

300m), and held fixed for a 60s transmission of CBR data over a single UDP connec-

tion. Here, data was generated at a rate of 8Mbps and sent in 1460 byte packets.

The results of these experiments are shown in Fig. 13 for ARF and Fig. 14

for RBAR. Also shown are the results when the fixed rates are used. Notice that

ARF fails to perform as well as the fixed rates at each distance except beyond that

which is optimal for the highest rate. This is because ARF periodically tries to send

data packets at the next highest rate in an attempt to gauge the channel conditions.

In situations where the conditions are such that those packets are lost with high

probability, then there is repeated packet loss resulting in the consistent performance

degradation shown in the results.

RBAR, on the other hand, generally performs better at all distances except close

in, where ARF excels. This is because of the increased impact of the reservation

subheader. Recall that the reservation subheader has to be sent at one of the basic

rates (in this instance, 1Mbps). Thus, at higher data rates the overhead of the

subheader becomes more significant. One way to reduce this overhead is to employ

a mechanism that predicts the best data rate for the channel conditions. One such

technique is to simply cache the most recent rates as they are discovered. Fig. 15

shows the results when such a technique is employed. Clearly there is a significant

62

50 100 150 200 250 300

Distance (m)

0

1000

2000

3000

4000

M
ea

n
T

hr
ou

gh
pu

t
(K

bp
s)

ARF
QAM256 (8Mbps)
QAM64 (6Mbps)
QAM16 (4Mbps)
QPSK (2Mbps)
BPSK (1Mbps)

Fig. 13. Performance of ARF for a single CBR connection between two nodes at fixed

distances.

50 100 150 200 250 300

Distance (m)

0

1000

2000

3000

4000

M
ea

n
T

hr
ou

gh
pu

t
(K

bp
s)

RBAR
QAM256 (8Mbps)
QAM64 (6Mbps)
QAM16 (4Mbps)
QPSK (2Mbps)
BPSK (1Mbps)

Fig. 14. Performance of RBAR for a single CBR connection between two nodes at fixed

distances.

63

50 100 150 200 250 300

Distance (m)

0

1000

2000

3000

4000

M
ea

n
T

hr
ou

gh
pu

t
(K

bp
s)

RBAR-P
QAM256 (8Mbps)
QAM64 (6Mbps)
QAM16 (4Mbps)
QPSK (2Mbps)
BPSK (1Mbps)

Fig. 15. Performance of RBAR when a simple heuristic is used by the sender to try

and predict the best data rate for the conditions, in an effort to reduce the

frequency of the necessity for reservation subheaders.

0 5 10

Mean Node Speed (m/s)

0

500

1000

M
ea

n
T

hr
ou

gh
pu

t
(K

bp
s)

RBAR
ATA
ARF
QAM256 (8Mbps)
QAM64 (6Mbps)
QAM16 (4Mbps)
QPSK (2Mbps)
BPSK (1Mbps)

Fig. 16. Performance for CBR traffic over a single UDP connection in a Rayleigh

fading channel.

64

improvement in the instance shown here, due to the high predictability of the channel.

However, better techniques such as those proposed in [10] may also work well for

RBAR. This is a topic of future study.

3. Fast Changing Channel Conditions

In a Rayleigh fading channel, variations in the wireless signal are induced at a rate

that depends, in part, on the speed along the line-of-sight between the transmitter

and the receiver. For a conventional local area network with nodes moving at walking

speeds (e.g., node speed ≤ 2 m/s communicating at 2Mbps over a 2.4GHz channel),

changes generally occur slowly enough that the channel is effectively constant for the

duration of a packet exchange (the coherence time). However, as the speed increases,

changes occur much more rapidly, decreasing the predictability of the channel. Thus,

by simulating a fading channel and varying the mean node speed, we can evaluate

the adaptability of the protocols.

To observe this impact, we performed experiments for five different speeds, 2, 4,

6, 8, and 10 m/s, for Configuration 1 (see Fig. 16). Results were generated for a UDP

connection carrying CBR traffic that was generated at a rate of 8Mbps and sent in

1460 byte packets.

• RBAR outperformed ARF for all mean node speeds, with the performance

improvement ranging from 6% (10 m/s) to 20% (2 m/s).

• An increase in mean node speed resulted in a decrease in performance. As

expected, the increase in variability of the signal resulted in a decrease in per-

formance.

Also notice that the performance improvement for RBAR also decreased as the

mean node speed increased. Recall that the simple channel quality prediction

65

mechanism used in RBAR for these results works best when the channel co-

herence time is larger than the time it takes to transmit the CTS packet and

the DATA packet. For 2 m/s, the coherence time was sufficiently large that

this was true for packets transmitted at all data rates. However, as the node

speed increased, the coherence time shortened and the higher data rates were

also affected, resulting in a decline in performance. As mentioned previously,

we expect that this decline can be improved significantly with better channel

quality prediction techniques.

The adaptability of RBAR to the rapidly changing channel conditions can be

more clearly seen in Fig. 17. This figure shows the performance of RBAR for a single

CBR connection between two nodes in a Rayleigh fading channel. Here, the sender is

fixed and the receiver is moving at a speed of 2 m/s away from the sender. Fig. 17(b)

shows the time at which packets were transmitted and the modulation rate chosen

by RBAR for each packet. The tick marks along the top show the time at which

packets were dropped by the receiver due to errors. Fig. 17(a) shows the SNR at the

receiver for the packets shown in Fig. 17(b). Also shown are thresholds representing

the SNR values above which the next higher modulation rate has a theoretical mean

BER ≤ 10−6. At the start, both nodes were at the same location, so the leftmost

edges represent the point in time at which the two nodes were 60m apart. Compared

to the similar figure for ARF, it is clear that RBAR is much better at reacting and

adapting to the channel conditions.

We also simulated a single TCP connection under the same conditions. These

results are shown in Fig. 18. Notice that the performance improvement is more

significant, which can be attributed to TCP’s sensitivity to packet loss due to wireless

errors.

66

30.0 30.1 30.2 30.3 30.4 30.5

Time (s)

0
5

10
15
20
25
30

SN
R

 (
dB

)

BPSK (1 Mbps)

QPSK (2 Mbps)

QAM16 (4 Mbps)

QAM64 (6 Mbps)

QAM256 (8 Mbps)

(a) SNR at the receiver for the packets shown in (b).

30.0 30.1 30.2 30.3 30.4 30.5

Time (s)

0

2

4

6

8

R
at

e
(M

bp
s)

(b) Time and rate of packet transmission.

Fig. 17. Performance of RBAR for a single CBR connection between two nodes in a

Rayleigh fading channel. The sender is fixed and the receiver is moving at a

speed of 2 m/s away from the sender.

0 5 10

Mean Node Speed (m/s)

0

200

400

600

800

M
ea

n
T

hr
ou

gh
pu

t
(K

bp
s)

RBAR
ARF
QAM256 (8Mbps)
QAM64 (6Mbps)
QAM16 (4Mbps)
QPSK (2Mbps)
BPSK (1Mbps)

Fig. 18. Performance for FTP traffic over a single TCP connection in a Rayleigh

fading channel.

67

4. Impact of Variable Traffic Sources

In this section, we study the impact of bursty data sources on the performance of

the RBAR and ARF protocols. For this study, we performed a series of experiments

using an ON/OFF traffic source, with ON (τ̄on) and OFF (τ̄off) times drawn from a

Pareto distribution. During an ON period, data was generated at a rate of 8Mbps

and sent in 1460 byte data packets, resulting in mean packet bursts ranging from

≈ 1 − 2 packets (τ̄on = 1.5ms) to ≈ 20 packets (τ̄on = 30ms). Traffic was generated

for a single UDP connection across a Rayleigh fading channel. The mean node speed

was 2 m/s, and we used Configuration 1.

The results of these experiments are presented in Figs. 19 and 20, for mean OFF

times of 1s and 500ms respectively, which show the average delivery ratios for each

protocol, where the delivery ratio is defined as the number of data packets successfully

received over the total number of data packets sent.

Note that:

• RBAR outperforms ARF in all traffic conditions, with improvements ranging

from 26% to 70%.

• RBAR shows the greatest improvement when the traffic is the lightest, and the

least improvement when the traffic is heavy.

5. Multi-Hop Performance

In this section we present results for Configuration 2: 20 nodes in continuous motion

within a 1500x300 meter arena. Here, we simulated a single CBR source generating

traffic on a single UDP connection between two nodes in the ad-hoc network.

68

0 10 20 30

Burst Length (ms)

0.0

0.2

0.4

0.6

0.8

1.0

D
el

iv
er

y
R

at
io

 (
P

kt
s

R
x

/ P
kt

s
T

x)

RBAR
ARF

Fig. 19. Protocol efficiency for an ON/OFF Pareto source generating traffic on a single

UDP connection in a Rayleigh fading channel. The mean OFF time = 1s.

0 10 20 30

Burst Length (ms)

0.0

0.2

0.4

0.6

0.8

1.0

D
el

iv
er

y
R

at
io

 (
P

kt
s

R
x

/ P
kt

s
T

x)

RBAR
ARF

Fig. 20. Protocol efficiency for an ON/OFF Pareto source generating traffic on a single

UDP connection in a Rayleigh fading channel. The mean OFF time = 500ms.

69

0 5 10

Mean Node Speed (m/s)

0

100

200

300

400

M
ea

n
T

hr
ou

gh
pu

t
(K

bp
s)

RBAR
ARF

Fig. 21. Performance comparison for a single CBR connection in a multihop network.

The results are shown in Fig. 21 and Fig. 22. Notice that RBAR consistently outper-

forms ARF.

Similar results are shown in Fig. 23 for an FTP source generating traffic over a

TCP connection. Clearly, the performance gains observed earlier are also applicable

to a multihop scenario. We believe that ARF’s increase in throughput with increased

speed is due to its poor ability to select the correct rate when nodes are far apart,

resulting in repeated backoff by TCP early in the simulations. However, with in-

creased speed it may occur that the connection is established sooner due to the speed

at which nodes in the sparse starting alignment are brought into range.

D. Summary

In this chapter, we addressed the topic of optimizing performance in wireless local area

networks using rate adaptation. We presented a new approach to rate adaptation,

70

5 10 15 20 25 30

Scenario Number

0

500

1000

1500

2000

M
ea

n
T

pu
t

(K
bp

s)

RBAR
ARF

(a) Mean speed = 2 m/s

5 10 15 20 25 30

Scenario Number

0

500

1000

1500

2000

M
ea

n
T

pu
t

(K
bp

s)

RBAR
ARF

(b) Mean speed = 4 m/s

5 10 15 20 25 30

Scenario Number

0

500

1000

1500

2000

M
ea

n
T

pu
t

(K
bp

s)

RBAR
ARF

(c) Mean speed = 8 m/s

5 10 15 20 25 30

Scenario Number

0

500

1000

1500

2000

M
ea

n
T

pu
t

(K
bp

s)

RBAR
ARF

(d) Mean speed = 10 m/s

Fig. 22. Performance comparison across multiple hops. Shown here are the results

for the individual scenarios, sorted according to the increasing throughput of

ARF.

71

0 5 10

Mean Node Speed (m/s)

0

50

100

150

200

250

M
ea

n
T

hr
ou

gh
pu

t
(K

bp
s)

RBAR
ARF

Fig. 23. Performance comparison for a single FTP connection across a multihop net-

work.

which differs from previous approaches in that it uses the RTS/CTS protocol to enable

receiver-based rate adaptation. Using this approach, a protocol based on the popular

IEEE 802.11 standard was presented, called the Receiver-Based AutoRate (RBAR)

protocol. Simulation results were then presented comparing the performance of the

proposed protocol against the performance of an existing 802.11 protocol for mobile

nodes across Rayleigh fading channels. These results showed that RBAR consistently

performed well.

72

CHAPTER V

MULTIRATE AWARE ROUTING

In this chapter, we analyze the impact that multirate wireless links have on routing in

multihop wireless networks. We then present two routing protocols that are designed

to discover and prioritize routes that maximize throughput, and then show how they

outperform several well-known conventional shortest-path routing protocols.

A. Impact of Multirate, Multihop (MRMH) Paths on Routing

Packet flows that traverse multihop routes in single channel broadcast wireless net-

works experience a decrease in end-to-end throughput with an increase in route length.

This can be seen in the simulation results in Fig. 24, which shows the end-to-end

throughput for a single CBR flow across a chain network topology as a function of

the route length in hops. The data rate is 1Mbps and the packet size is 1460 bytes.

Nodes were spaced equidistantly, at intervals large enough that significant transmis-

sion interference did not exceed one hop. Notice the significant decrease in throughput

as route length increases from one to four hops, and the relatively insignificant de-

crease as the route length increases from four to eight hops. The primary cause for the

decrease is self-interference. Self-interference occurs when packets from the same flow

contend with one another for the channel at different hops along the route. Consider

the scenario shown in Fig. 25. Here, Node A has a queue of packets to send to Node

E. A solid circle represents the transmission range of the sender and a dotted circle

represents the reception range of the receiver. For the purpose of illustration, we

assume the transmission range and interference range are equivalent. The situation

that is shown is the result of the following sequence of events. Node A successfully

reserves the channel and transmits packet pkt1 to B. Node B, in its attempt to

73

0 1 2 3 4 5 6 7 8

Route Length in Hops

0

200

400

600

800

1000

T
hr

ou
gh

pu
t

(K
bp

s)

Hops Throughput
(Kbps)

1 858.986
2 433.106
3 266.541
4 154.359
5 139.732
6 143.212
7 139.743
8 145.65

Fig. 24. Throughput as a function of path length in hops for a single CBR flow across

a “chain” network topology with 1Mbps links (802.11). The packet size is 1460

bytes. Nodes were spaced such that transmission interference did not exceed

one hop.

Fig. 25. A scenario demonstrating self-interference across a multihop route. Here,

Node A has packets to send to Node E. After sending pkt1, A is prevented from

sending pkt2 while nodes B and C forward pkt1 to D because of interference

at B.

forward pkt1 to C, contends with A for the right to transmit. B succeeds, so A now

contends with C because C ′s transmission of pkt1 to Node D will collide with A’s

transmission of pkt2 to B. Referring back to Fig. 24, for a one hop route (A → B),

there is no self-interference so the end-to-end throughput is equivalent to the channel

throughput (about 900 Kbps, in this case). For a two hop route (A → B → C),

the throughput is roughly one-half that of the one hop route because A and B must

share the channel, and, similarly, the throughput for the three hop route is one-third.

74

0 1 2 3 4 5 6 7 8

Route Length in Hops

0

1000

2000

3000

4000

5000

T
hr

ou
gh

pu
t

(K
bp

s)

11Mbps
5.5Mbps
2Mbps
1Mbps

Fig. 26. Comparison of the measured throughput of a single CBR flow across a chain

network of varying length and link data rate.

Beyond three hops the end-to-end throughput is relatively unchanged. This is be-

cause spatial reuse of the wireless channel allows the formation of a packet forwarding

pipeline – packets propagating in lockstep along the route at equidistant intervals.

For instance, in Fig. 25, if the chain were longer and A’s destination extended beyond

E, say Node G, then E could forward pkt1 to F while B forwards pkt2 to C, and F

could forward to G while C forwards to D, and so on. If the pipelining is perfectly

synchronized, then additional hops beyond the third will only increase end-to-end

propagation delay because, once the pipe is full, packets will arrive at the destina-

tion in regular intervals (equal to three times the per-link packet transmission time,

assuming transmission interference does not extend beyond one hop). The fact that

there is a drop in throughput between three and four hops suggests that 802.11 is

unable to maintain a perfectly synchronized pipeline, which we will discuss later in

the chapter.

For multirate, multihop (MRMH) networks, this relationship between through-

put and path length has an interesting impact on routing. Usually, the route over

the shortest path is the one that gives the highest throughput and lowest delay, so

75

Fig. 27. An example MRMH chain network, where transmissions at 8Mbps can reach

one hop along the chain, 4Mbps one and two hops, and 1Mbps one, two, and

three hops.

2 3 4 5 6

Path Length in Hops

0

500

1000

1500

2000

2500

T
hr

ou
gh

pu
t

(K
bp

s)

Ideal
DSR
AODV

Fig. 28. Throughput as a function of path length in hops for a single CBR flow across

a MRMH chain network. Shown are results for an “ideal” multirate routing

protocol, and two common shortest-path routing protocols: DSR, and AODV.

most routing protocols give priority to the shortest routes (e.g., DSR [70], AODV [92],

OLSR [23], DSDV [93], TORA [89]). In an MRMH network, however, shortest-path

may not be the best strategy. Consider Fig. 26, which shows simulation results for

the same network scenario as in Fig. 24 but for a number of different link data rates.

Notice, for instance, that a five hop route at 5.5Mbps has higher throughput than a

two hop route at 2Mbps, and an 8 hop route at 11Mbps has higher throughput than

a one hop route at 1Mbps. In such instances, the shortest path may not be the best

choice of route since it may result in less than ideal end-to-end throughput.

76

For example, consider the MRMH chain network in Fig. 27. Because of the

rate/range tradeoff, transmissions at 8Mbps can reach only one hop along the chain,

4Mbps can reach one and two hops, and 1Mbps can reach one, two, and three hops.

Simulation results for a single CBR flow going from Node A to Node C (two hops),

Node D (three hops), and so on, are shown in Fig. 28 for two different shortest-path

routing protocols, AODV and DSR, versus the known best routes. Notice that both

routing protocols fail to select the best routes for the three and six hop paths. In the

case of the three hop path, both protocols select the shortest 1Mbps route from Node

A to Node D, even though the longer 4Mbps route A→ C → D has higher capacity.

Similarly, in the case of the six hop path, both protocols fail to select the 4Mbps route

A→ C → E → G in favor of the shorter, lower capacity 1Mbps route A→ D → G.

In the case of the two, four, and five hop paths, the protocols succeed in selecting the

best routes because, in all cases, the best route is also in the set of shortest paths,

and since it has the highest capacity it also has the lowest delay and, therefore, is

discovered and used first. However, there is no guarantee that this will always be the

case. In the two hop case, both protocols might have selected the 1Mbps one hop

route to C instead of the 4Mbps one hop route.

B. Routing Metric for MRMH Networks

Based on the observations in the previous section, it is easy to see that a simple

upper-bound on the throughput across a route of length n and rate r for a flow of

same-size packets is

r
n

, for 1 ≤ n ≤ 3;

r
3
, for n > 3.

(5.1)

77

Fig. 29. Packet pipelining across a heterogeneous route – a route that traverses links

with different data rates.

assuming transmission interference does not extend beyond one hop, and all link

rates are homogeneous (identical across the path). If the rates are heterogeneous,

then a more accurate bound could be derived as follows. Consider Fig. 29, which

shows a route across six hops with link data rates r1, . . . , r6. Crossing the route

is a flow going from Node A to Node G. Under ideal circumstances (e.g., optimal

scheduling, transmission interference range of one hop, same size packets), the packets

will traverse the route in lockstep at intervals of three hops. We refer to these intervals

as stages. The sequence of stages starts at the source node of the flow. The route in

Fig. 29 has two stages: {AB,BC,CD} and {DE,EF, FG} (as defined by their link

sets). Every link in a stage is also a member of a link activation set, which is a set of

links that can transmit (activate) simultaneously without interfering [8, 22]. In this

example, the members of each link’s activation set are those links that have the same

relative position within their stage on the route. For example, links AB and DE are

co-members of a set since they are the first links in their stages. In Fig. 29 there are

three activation sets: X1 = {AB,DE}, X2 = {BC,EF}, and X3 = {CD,FG}. It

is easy to see that these sets are optimal for the route shown: they are the minimum

number of activation sets whose union contains all the links on the route. These

sets, when activated in order, are said to advance the pipeline one cycle. Intuitively,

78

0 1 2 3 4 5 6 7 8

Route Length in Hops

0

200

400

600

800

1000

T
hr

ou
gh

pu
t

(K
bp

s)

Ideal
Simulated

Fig. 30. Comparison of the estimated throughput to the simulated 802.11 throughput

as a function of route length n in hops for a CBR connection across a homo-

geneous chain network. Here, r is the maximum measured throughput across

a one hop, 1Mbps link, for 1460 byte packets.

network utilization is maximized in this example if every link in an activation set

transmits for the same duration within a cycle. Such is the case for a flow of same-

sized packets traversing a homogeneous route. However, in multirate networks, routes

may be heterogeneous such that links in the same activation set may not transmit at

the same data rate during a cycle. In this case, the duration of the cycle is determined

by the link in the set with the lowest data rate, so a more accurate bound on the

route throughput is

1
∑n

i=1

1

ri

, for 1 ≤ n ≤ 3;

1
∑

3

k=1

1

ρk

, for n > 3.
(5.2)

where ri is the data rate of link i, and

ρk = min
i∈Xk

ri ,

is the minimum link data rate for activation set Xk.

A comparison between the throughput estimate from (5.2) and the measured

throughput for a homogeneous 802.11 chain network is shown in Fig. 30. The link data

79

100.00 101.00 102.00 103.00 104.00 105.00

Time (secs)

0
1
2
3
4
5
6
7
8
9

N
od

e

Fig. 31. A five second snapshot of packet transmission events for a CBR flow across

an eight hop chain network. The triangularly shaped points represent the

successful reception of a data packet by a node along the route. The source of

the flow is Node 1 and the sink is Node 9. The cross shaped points shown for

Node 1 represent each attempt to send a new data packet.

rate r in (5.2) is set to the maximum measured throughput across a one hop, 1Mbps

link for 1460 byte packets. Clearly (5.2) overestimates throughput for routes longer

than three hops. This discrepancy appears to be caused by the MAC’s inability to

maintain a synchronized packet-forwarding pipeline. For example, Fig. 31 shows a five

second snapshot of packet transmission events for the flow in Fig. 30. The triangularly

shaped points represent the successful reception of a data packet by a node along the

route. The cross shaped points shown for Node 1 represent each attempt to send

a new data packet. There are several interesting things to note about this figure.

There is no consistent transmission pattern on the first three hops, demonstrating

that the 802.11 MAC does not maintain a synchronized pipeline. Instead, Nodes 1,

2, and 3 are able to capture the channel for relatively long periods of time. However,

beyond the first four hops the packets are forwarded in a relatively stable pipeline.

This is presumably the result of buffering along the route, which absorbs the large

jitter in packet inter-arrival times that occur on the first three hops. To account for

this discrepancy, we introduce a per-rate compensation factor γri in our throughput

80

Table III. Compensation factor (γ) values.

1 Mbps 2 Mbps 5.5 Mbps 11 Mbps

0.50 0.53 0.64 0.69

estimate as follows

1
∑n

i=1

1

ri

, for 1 ≤ n ≤ 3;

γri
∑

3

k=1

1

ρk

, for n > 3.
(5.3)

where γri is based on the simulation results in Fig. 26. The values for γ in our

simulation studies are shown in Table III. In the next section, we present two routing

protocols that use (5.3) to optimize route performance in MRMH networks.

C. Proposed MRMH Routing Protocols

In this section we introduce two routing protocols, Rate Probing and Minimum Rate,

based on DSR, that discover and prioritize routes according to the estimated through-

put given by (5.3).

1. Route Selection Algorithm

Our proposed protocols use the following route selection algorithm.

1. Given a set of routes S = {x1, x2, . . . , xn} select the subset of routes M ⊆ S

that have the highest maximum throughput according to Equations (5.3).

2. If |M | > 1 then select the subset of routes P ⊆M that have the shortest length.

3. If |P | > 1 then select any route x ∈ P at random.

81

This algorithm gives priority first to routes with the highest maximum throughput,

and then to routes of shortest length. If multiple routes remain, one is chosen at

random.

Both protocols also assume the availability of cross-layer communication. In par-

ticular, the Rate Probing protocol assumes that the link layer provides the means for

upper layers to designate the data rate at which an individual packet is transmitted.

It also assumes that the rate at which a packet was transmitted, or failed transmis-

sion, is also provided to upper layers. The Minimum Rate protocol assumes that

the network layer is capable of providing the large-scale SNR for a received packet

to upper layers. This can be done, say, by tracking the strength of beacons or Hello

packets from each neighbor. Finally, both protocols assume that the set of data rates

supported by the link layer are made known to upper layers.

2. Rate Probing Protocol

Our first protocol, Multi-Rate Rate Probing (MRPRB) discovers and maintains ho-

mogeneous routes between source destination pairs using rate probing during route

discovery. The general idea behind this algorithm is to broadcast multiple route re-

quests at different data rates, limiting propagation of each request to only those links

that support the data rate. An advantage of this approach is that it does not require

explicit estimation of link quality by the link layer – successful receipt of a request is

an implicit indicator. A drawback is the added overhead of multiple route requests

per discovery.

We now describe the route discovery procedure.

1. The source node broadcasts multiple DSR route requests, one for each rate sup-

ported by the network, starting with the lowest rate. Each request is assigned

82

a unique sequence number. Contained within each route request is the rate at

which the request is to be broadcasted by the link layer. Random delays are

injected between requests to reduce the instantaneous load on the network.

2. Intermediate nodes (i.e., neither source nor destination) that receive a route

request forward the request according to the standard DSR forwarding policies,

but at the link data rate designated in the request. They also store the reverse

route with its rate in their cache.

3. The destination responds to each route request with a standard DSR route

reply over the reversed source route in the request. The reply carries the rate at

which the request was sent. Link layers that forward the reply are not required

to transmit the reply at the designated rate.

4. The source immediately transmits packets on receipt of any route reply, caching

each route received along with its data rate.

5. Packets are not required to be transmitted at the data rate in the cached route.

Instead, it is assumed that each link will transmit the data packet at the opti-

mum rate.

Several items to note about this procedure are the following.

Route requests are initiated at the lowest rate to minimize the delay in finding

a usable route. As mentioned previously, lower data rates have a larger effective

transmission range, so starting with the lowest rate increases the probability that

a valid route is found quickly. The search for better routes by subsequent route

requests may then proceed in parallel with data transmissions. Minimizing route

discovery delay is of special importance to delay-sensitive protocols like TCP.

83

Link layers are not required to forward route replies at the designated rate be-

cause it is assumed that link characteristics are bi-directional. Thus, reverse routes

stored by each intermediate node and the destination are considered usable at the

rate in the request at the time the request is received. An alternative is to require

bi-directional confirmation by forcing the link layers to transmit the reply at the des-

ignated rate, and limiting the routes discovered by intermediate nodes to only those

destinations from which they receive and forward a reply.

During route selection, it is implicitly assumed that a route in the cache is avail-

able at all rates equal to and below the rate at which the route was discovered. This

enhances the effectiveness of the protocol by increasing the number of available routes

from which to select. This is important for protocols that do not guarantee discovery

of multiple, possibly overlapping, routes. Note that this assumption is generally valid

as long as all links in the network support the same set of data rates. If this is not

true, then route selection can be modified such that only routes that are discovered

explicitly may be chosen.

The route maintenance procedure is as follows.

1. Discovery of an invalid route is triggered by the standard DSR mechanisms. In

DSR, detection of a downed link on a packet’s source route triggers transmission

of a route error to the packet’s sender. We modify the route error to also carry

the rate at which the packet failed transmission.

2. Upon receipt of a route error with rate r, a node purges or truncates all routes

in its cache that contain the link and have rate ≥ r.

3. Management of the route cache is identical to that in DSR, except that routes

at different data rates are maintained separately.

84

4. No attempt is made to track and update the changing rates of cached routes

over time.

Notice that it is assumed that the link layer provides the rate at which a packet

failed transmission. If this information is not available, an alternative is to simply

purge all routes that contain the link.

Since no attempt is made to track changes in route rates, performance could

degrade if differences in cached rates and actual rates becomes significant. An alter-

native is to maintain route information by periodic transmission of redundant route

requests, with higher rate requests occurring more frequently than lower rate requests

to account for the higher probability of link failure for higher rate routes.

3. Minimum Rate Protocol

Our second protocol, the Multi-Rate Minimum Rate (MRMR) protocol, gathers,

during route discovery, explicit information from the link layer about the optimal

data rate on each link. In this algorithm, the standard DSR route request is modified

to carry the minimum rate observed over all links on the route. This rate ultimately

determines the maximum end-to-end throughput that the route can provide. An

advantage of this approach is that it does not incur the overhead of multiple route

requests. One drawback is that it requires link quality estimates from the link layer.

This can be done, say, by tracking the strength of beacons or Hello packets from each

neighbor.

We now describe the route discovery procedure.

1. The DSR route request is modified to carry a small minimum data rate field.

The source node, prior to broadcasting the DSR route request, initializes this

field to the maximum supported link rate.

85

2. Each node that receives a route request compares the value of this field to the

optimal data rate for the link on which the request was received, and updates

it if the link rate is smaller. The optimal data rate is calculated based on link

quality estimates from the link layer.

3. Intermediate nodes cache the reverse route in the request with the minimum

rate prior to forwarding the request. The request is forwarded according to

DSR’s standard route request procedure.

4. The destination, on receipt of the request, caches the route and its minimum

rate prior to preparing a route reply. The route reply, like the route request, is

modified to carry a minimum rate field. The destination updates this field with

the minimum rate received in the request prior to sending the reply according

to the standard DSR route reply procedure.

5. The source node transmits packets immediately upon receipt of a valid route,

caching the route with its minimum rate.

In this procedure it is assumed that the link quality is an estimate of the large-

scale fading characteristics of the channel. This could be provided, say, by low-pass

filtering of channel samples or by hardware capable of recognizing multipath fading

characteristics of the channel.

The route maintenance procedure is identical to the Rate Probing protocol.

D. Performance Evaluation

In this section we analyze the performance of the proposed routing protocols.

To evaluate our protocols, we performed simulations using the ns-2 simulation

tool, described in Chapter III. The nodes were configured as follows. Each node

86

had a network stack consisting of TCP and UDP transport protocols, an IP network

protocol with BSD’s ARP protocol (used to resolve IP addresses to MAC addresses),

and an 802.11 link layer. Transmission power was fixed at 20mW, antennas were

omni-directional with a gain of 1dBi, and the transmission frequency was 2.412 GHz.

Packet sizes were 1460 bytes. The MAC layer in all simulations was the common

WaveLAN AutoRate Fallback (ARF) protocol described in Chapter IV. Additionally,

the physical layer used in this chapter differs from the modified 802.11 device as

described in Chapter III, in that we have modeled the standard 802.11b 5.5Mbps and

11Mbps CCK rates, instead of the the 4, 6, and 8 Mbps QAM rates. BER models

for the CCK rates are based on those in [116]. The 1 and 2 Mbps rates were used as

before. For comparison, we also simulated DSR (see Chapter VI for detail on DSR).

We used 50 random topologies of 50 mobile nodes in a 300x300 meter flat region.

Nodes were initially placed randomly and uniformly over the entire region. During

the simulation nodes moved according to the random waypoint mobility model In the

random waypoint model, each node x picks a random set of coordinates as its next

destination and then travels in a straight line to those coordinates at some randomly

chosen speed. Once x arrives at this destination, it pauses before picking another set

of coordinates and continuing onward. The randomly chosen speeds were uniformly

distributed in an interval of 0.9µ − 1.1µ for some mean speed µ. We generated

results for five different mean speeds: 2, 4, 6, 8, and 10 m/s. For traffic patterns,

we simulated a single CBR connection sending at maximum link speed (11Mbps)

was used to guage the routing protocol’s ability to discover and maintain a high

throughput route, and 5 CBR connections sending at a rate of one packet every 10ms

to guage the amount of control packet overhead a protocol generates when faced with

multiple flows. Unless otherwise stated, all results are based on the average of 50

simulation runs of randomly generated scenarios for each mean speed. The same sets

87

of scenarios were used for all routing protocols to provide a fair comparison: for a

given mean node speed, each routing protocol experienced identical node positions,

movements, and topology changes for each scenario.

The performance metrics we used are the following:

• Mean Throughput: The throughput for a flow was measured by counting the

number of packets successfully received by the sink over the duration of a sim-

ulation run. The mean throughput is the average throughput over all flows.

• Routing Overhead: The ratio of the number of routing packets transmitted to

the number of data packets successfully received at the sinks of all flows in the

network.

1. Random Topology, Single CBR Flow

In this section we present simulation results a lightly loaded network: a single CBR

flow. As mentioned previously, the network is a random topology of 50 mobile nodes

in a 300x300m area. The mean speed of the nodes is varied to stress the routing

protocols. We also simulated fading (Rayleigh) and non-fading channels, to see what

impact channel characteristics had on the relative performance between the proposed

routing protocols. We first present results for a non-fading channel.

The mean throughput as a function of node speed is shown in Fig. 32. As

mentioned previously, this is calculated as the number of data packets received by

the flow’s sink over the duration of the simulation run. Each point in the graph

depicts the average over all 50 simulation scenarios. Fig. 33 is based on the same

data, just shown as the percentage in improvement of the proposed MRPRB and

MRMR routing protocols relative to DSR.

Fig. 32 shows that both MRPRB and MRMR are able to consistently provide

88

2 4 6 8 10

Mean Node Speed (m/s)

0

1000

2000

3000
M

ea
n

T
hr

ou
gh

pu
t

(K
bp

s)

MRPRB
MRMR
DSR

Fig. 32. Performance comparison between Rate Probing (MRPRB), Minimum Rate

(MRMR), and DSR routing protocols for a single CBR flow over a random

mobile node topology and non-fading channel: average throughput.

2 4 6 8 10

Mean Node Speed (m/s)

0

10

20

30

40

50

P
er

ce
nt

ag
e

of
 I

m
pr

ov
em

en
t

MRPRB
MRMR

Fig. 33. Performance comparison between Rate Probing (MRPRB), Minimum Rate

(MRMR), and DSR routing protocols for a single CBR flow over a random

mobile node topology and non-fading channel: percentage of improvement in

average throughput over DSR.

89

2 4 6 8 10

Mean Node Speed (m/s)

0

5

10

15

20

R
ou

ti
ng

 O
ve

rh
ea

d
(p

ps
)

MRPRB
MRMR
DSR

Fig. 34. Comparison of routing overhead for Rate Probing (MRPRB), Minimum Rate

(MRMR), and DSR routing protocols over a random mobile node topology and

non-fading channel: low traffic load (1 CBR flow).

higher throughput for the flow, with MRMR showing slightly better performance over

all speeds. As the mean node speed increases, the rate at which links fail and the

topology changes also increases so it is more difficult for MRPRB and MRMR to

maintain routes. As a result, performance degrades with an increase in mean node

speed. However, as seen in Fig. 33, both routing protocols are capable of providing

consistent performance improvement over the full range of node speeds. Improvement

was best at slower speeds, roughly 40% at 2 m/s for both protocols, but even at 10

m/s MRMR was able to maintain 15% improvement. MRPRB, on the other hand,

drops below 10%. One explanation for MRPRB’s poorer showing is it’s relatively

slow route discovery algorithm. Recall that MRPRB requires the transmission of

one propagating route request at each supported data rate to discover one route.

At higher speeds, links break more rapidly so this additional route discovery delay

impacts its ability to provide quality routes.

Fig. 34 shows the routing overhead as the number of routing packets generated

90

per second across the entire network. Notice that MRPRB generates much more

routing traffic in the network. Nearly 3 times as much as MRMR, and 12 times

as much as DSR. However, the overhead is relatively constant for both MRMR and

MRPRB with speed. This is because both protocols are more proactive (than DSR)

about purging routes from their route cache to prevent the build-up of “stale” routes

(i.e., routes with broken links, or links with data rates that no longer match the

cached route).

Figs. 35 and 36 show performance in a Rayleigh fading channel. In a fading

channel, it is more difficult to guage the quality of a link because of the rapid and

unpredictable changes in the signal strength. The impact of a fading channel on both

protocols is significant, with MRMR dropping down from 40% to 10% improvement

at 2 m/s. However, it is still able to provide improvement over the range of speeds.

The impact on MRPRB is much more dramatic. Clearly, MRPRB is not well suited

for use across fading channels, most likely because of its long route discovery delay.

As seen in Fig. 37, all protocols generate more routing traffic than in a non-fading

channel, and the traffic increases with speed. Interestingly, however, MRMR produces

less traffic than DSR, which is a switch from the results for the non-fading channel.

The cause is uncertain, but it may be due to the fact that MRMR favors routes with

high-rate links, which naturally require higher SINR. Thus, while fading degrades the

link quality (lowering the rate), it is less likely to cause a link failure than, say, a

low-rate link with a much smaller SINR.

2. Random Topology, Five CBR Flows

In this section, we increase the number of traffic flows in the network to study how well

the proposed routing protocols handle the additional routing load. As in the previous

section, we start by discussing the simulation results for a non-fading channel.

91

2 4 6 8 10

Mean Node Speed (m/s)

0

500

1000

1500

M
ea

n
T

hr
ou

gh
pu

t
(K

bp
s)

MRPRB
MRMR
DSR

Fig. 35. Performance comparison between Rate Probing (MRPRB), Minimum Rate

(MRMR), and DSR routing protocols for a single CBR flow over a random

mobile node topology and Rayleigh fading channel: average throughput.

2 4 6 8 10

Mean Node Speed (m/s)

-20

-10

0

10

P
er

ce
nt

ag
e

of
 I

m
pr

ov
em

en
t

MRPRB
MRMR

Fig. 36. Performance comparison between Rate Probing (MRPRB), Minimum Rate

(MRMR), and DSR routing protocols for a single CBR flow over a random

mobile node topology and Rayleigh fading channel: percentage of improvement

in average throughput over DSR.

92

2 4 6 8 10

Mean Node Speed (m/s)

0

5

10

15

20

R
ou

ti
ng

 O
ve

rh
ea

d
(p

ps
)

MRPRB
MRMR
DSR

Fig. 37. Comparison of routing overhead for Rate Probing (MRPRB), Minimum Rate

(MRMR), and DSR routing protocols over a random mobile node topology and

Rayleigh fading channel: low traffic load (1 CBR flow).

Figs. 38 and 39 show the average aggregate throughput across all five CBR flows.

As in the case for a single flow, both MRPRB and MRMR are able to show respectable

performance improvement for the lower speeds, although not as high percentage-wise

as for a single flow. The performance of MRPRB, however, is poor at higher speeds,

most likely because of the increase in routing traffic, as seen in Fig. 40. MRMR, on

the other hand, performs almost identically as for one flow.

Finally, we again look at performance in a Rayleigh fading channel, as shown in

Figs. 41, 42, and 43. Interestingly, the performance is very similar to that of a single

flow, although there is much higher routing traffic.

93

2 4 6 8 10

Mean Node Speed (m/s)

0

1000

2000

3000

M
ea

n
T

hr
ou

gh
pu

t
(K

bp
s)

MRPRB
MRMR
DSR

Fig. 38. Performance comparison between Rate Probing (MRPRB), Minimum Rate

(MRMR), and DSR routing protocols for 5 CBR flows over a random mobile

node topology and non-fading channel: average throughput.

2 4 6 8 10

Mean Node Speed (m/s)

0

10

20

30

P
er

ce
nt

ag
e

of
 I

m
pr

ov
em

en
t

MRPRB
MRMR

Fig. 39. Performance comparison between Rate Probing (MRPRB), Minimum Rate

(MRMR), and DSR routing protocols for 5 CBR flows over a random mobile

node topology and non-fading channel: percentage of improvement in average

throughput over DSR.

94

2 4 6 8 10

Mean Node Speed (m/s)

0

20

40

60

R
ou

ti
ng

 O
ve

rh
ea

d
(p

ps
)

MRPRB
MRMR
DSR

Fig. 40. Comparison of routing overhead for Rate Probing (MRPRB), Minimum Rate

(MRMR), and DSR routing protocols over a random mobile node topology and

non-fading channel: moderate traffic load (5 CBR flows).

2 4 6 8 10

Mean Node Speed (m/s)

0

500

1000

1500

M
ea

n
T

hr
ou

gh
pu

t
(K

bp
s)

MRPRB
MRMR
DSR

Fig. 41. Performance comparison between Rate Probing (MRPRB), Minimum Rate

(MRMR), and DSR routing protocols for 5 CBR flows over a random mobile

node topology and Rayleigh fading channel: average throughput.

95

2 4 6 8 10

Mean Node Speed (m/s)

-20

-10

0

10

P
er

ce
nt

ag
e

of
 I

m
pr

ov
em

en
t

MRPRB
MRMR

Fig. 42. Performance comparison between Rate Probing (MRPRB), Minimum Rate

(MRMR), and DSR routing protocols for 5 CBR flows over a random mobile

node topology and Rayleigh fading channel: percentage of improvement in

average throughput over DSR.

2 4 6 8 10

Mean Node Speed (m/s)

0

20

40

60

R
ou

ti
ng

 O
ve

rh
ea

d
(p

ps
)

MRPRB
MRMR
DSR

Fig. 43. Comparison of routing overhead for Rate Probing (MRPRB), Minimum Rate

(MRMR), and DSR routing protocols over a random mobile node topology and

Rayleigh fading channel: moderate traffic load (5 CBR flows).

96

E. Summary

In this chapter, we analyzed the impact that multirate wireless links have on routing in

multihop wireless networks. We then presented two routing protocols, Rate Probing

(MRPRB) and Minimum Rate (MRMR), that are designed to discover and prioritize

routes that maximize throughput. Through simulation analysis, we then showed that

these two protocols can outperform a well-known conventional shortest-path routing

protocol, DSR, in certain environments. Note that greater performance improvement

may be possible than shown here for networks with a wider range of data rates such

as those based on the 802.11g and 802.11a standards (6, 9, 12, 18, 24, 36, 48, and 54

Mbps). In the future, it is likely that advances in wireless technology will continue

to increase the range of available data rates, making the proposed approaches even

more attractive.

97

CHAPTER VI

EXPLICIT LINK FAILURE NOTIFICATION∗

In this chapter, we address the problem of poor performance of TCP in mobile ad

hoc networks. Specifically, we look at the impact of link failures due to mobility. We

first present a performance analysis of standard TCP over mobile ad hoc networks,

and then present an analysis of the use of explicit notification techniques to counter

the affects of link failures.

A. Simulation Environment and Methodology

The results in this chapter are based on simulations using the ns-2, as described in

Chapter III.

All results are based on a network configuration consisting of TCP-Reno over IP

on an 802.11 wireless network, with routing provided by the Dynamic Source Routing

(DSR) protocol and BSD’s ARP protocol (used to resolve IP addresses to MAC

addresses). These are widely used and studied protocols, and are likely candidates

for implementation in commercial ad hoc networks. Hence, understanding how they

work together, and with TCP, can lead to modifications that improve performance.

Our network model consists of 30 nodes in a 1500x300 meter flat, rectangular

area. The nodes move according to the random waypoint mobility model. In the

random waypoint model, each node x picks a random destination and speed in the

rectangular area and then travels to the destination in a straight line. Once node x

arrives at its destination, it pauses, picks another destination, and continues onward.

∗
Part of this chapter is reprinted from ”Analysis of TCP performance over mobile ad hoc networks”

by G. D. Holland and N. H. Vaidya, 1999, in Proceedings of the ACM International Conference on Mobile
Computing and Networking (MOBICOM), Seattle, WA, pp. 219–230. c© 1999 ACM, Inc.

98

We used a pause time of 0 so that each node is in constant motion throughout the

simulation. All nodes communicate with identical, half-duplex wireless radios that

are modeled after the commercially available 802.11-based WaveLan wireless radios,

which have a bandwidth of 2Mbps and a nominal transmission radius of 250m. TCP

packet size was 1460 bytes, and the maximum window was eight packets.

Unless otherwise noted, all of our simulation results are based on the average

throughput of 50 scenarios, or patterns. Each pattern, generated randomly, designates

the initial placement and heading of each of the nodes over the simulated time. We

use the same pattern for different mean speeds. Thus, for a given pattern at different

speeds, the same sequence of movements (and link failures) occur. The speed of each

node is uniformly distributed in an interval of 0.9v−1.1v for some mean speed v. For

example, consider one of the patterns, let’s call it I. A node x in I that takes time t

to move from point A to point B in the 10 m/s run of I will take time t/2 to traverse

the same distance in the 20 m/s run of I. So, x will always execute the exact same

sequence of moves in I, just at a proportionally different rate. See [54] and [55] for

more details on the mobility patterns.

B. Performance Metric

In this performance study, we set up a single TCP-Reno connection between a chosen

pair of sender and receiver nodes and measured the throughput over the lifetime of

the connection. We use throughput as the performance metric in this chapter.

The TCP throughput is usually less than “optimal” due to the TCP sender’s

inability to accurately determine the cause of a packet loss. The TCP sender assumes

that all packet losses are caused by congestion. Thus, when a link on a TCP route

breaks, the TCP sender reacts as if congestion was the cause, reducing its congestion

99

0 2 4 6 8 10

Number of Hops

0

500

1000

1500

T
C

P
 T

hr
ou

gh
pu

t
(K

bp
s)

Hops Throughput
(Kbps)

1 1463.0
2 729.0
3 484.4
4 339.9
5 246.4
6 205.2
7 198.1
8 191.8
9 185.3

10 182.4

Fig. 44. TCP-Reno throughput over an 802.11 fixed, linear, multi-hop network of vary-

ing length (in hops).

window and, in the instance of a timeout, backing-off its retransmission timeout

(RTO). Therefore, route changes due to host mobility can have a detrimental impact

on TCP performance.

To gauge the impact of route changes on TCP performance, we derived an upper

bound on TCP throughput, called the expected throughput. The TCP throughput

measure obtained by simulation is then compared with the expected throughput.

We obtained the expected throughput as follows. We first simulated a static

(fixed) network of n nodes that formed a linear chain containing n− 1 wireless hops

(similar to the “string” topology in [44]). The nodes used the 802.11 MAC protocol

for medium access. Then, a one-way TCP data transfer was performed between the

two nodes at the ends of the linear chain, and the TCP throughput was measured

between these nodes. This set of TCP throughput measurements is analogous to that

performed by Gerla et al. [44], using similar (but not identical) MAC protocols.

Fig. 44 presents the measured TCP throughput as a function of the number of

hops, averaged over ten runs. Observe that the throughput decreases rapidly when

the number of hops is increased from 1, and then stabilizes once the number of hops

100

21 3 4 5

Fig. 45. A simple multi-hop network.

becomes large. The primary reason for this trend is due to the characteristics of

802.11. Consider the simple four hop network shown in Fig. 45. In 802.11, when link

1–2 is active only link 4–5 may also be active. Link 2–3 cannot be active because

node 2 cannot transmit and receive simultaneously, and link 3–4 may not be active

because communication by node 3 may interfere with node 2. Thus, throughput on

an i hop 802.11 network with link capacity C is bounded by C/i for 1 ≤ i ≤ 3, and

C/3 otherwise. The decline in Fig. 44 for i ≥ 4 is due to contention caused by the

backward flow of TCP ACKs. For further explanation of this trend, we refer the

reader to [44]. Our objective here is only to use these measurements to determine the

expected throughput.

The expected throughput is a function of the mobility pattern. For instance, if

two nodes are always adjacent and move together (similar to two passengers in a car),

the expected throughput for the TCP connection between them would be identical to

that for 1 hop in Fig. 44. On the other hand, if the two nodes are always in different

partitions of the network, the expected throughput is 0. In general, to calculate

the expected throughput, let ti be the duration for which the shortest path from

the sender to receiver contains i hops (1 ≤ i ≤ ∞). Let Ti denote the throughput

obtained over a linear chain using i hops. When the two nodes are partitioned, we

consider that the number of hops i is ∞ and T∞ = 0. The expected throughput is

then calculated as

expected throughput =

∑∞
i=1 ti ∗ Ti
∑∞

i=1 ti
(6.1)

101

Of course,
∑∞

i=1 ti is equal to the duration for which the TCP connection is in exis-

tence. The measured throughput may never become equal to the expected through-

put, for a number of reasons. For instance, the underlying routing protocol may not

use the shortest path between the sender and receiver. Also, Equation 6.1 does not

take into account the performance overhead of determining new routes after a route

failure. Despite these limitations, the expected throughput serves as a reasonable

upper bound with which the measured performance may be compared. Such a com-

parison provides an estimate of the performance degradation caused by host mobility

in ad hoc networks.

C. Measurement of TCP-Reno Throughput

Fig. 46(a) reports the measured TCP-Reno throughput and the expected throughput

as a function of the mean speed of movement.

Note that the expected throughput is independent of the speed of movement. In

Equation 6.1, when the speed is increased, the values of ti for all i becomes smaller, but

the ratio ti/tj for any i and j remains the same. Therefore, the expected throughput

for a given mobility pattern, calculated using Equation 6.1, is independent of the

speed.

Intuition suggests that when the speed is increased then route failures happen

more quickly, resulting in packet losses, and frequent route discoveries. Thus, in-

tuitively, TCP throughput should monotonically degrade as the speed is increased.

In Fig. 46(a), the throughput drops sharply as the mean speed is increased from 2

m/s to 10 m/s. However, when the mean speed is increased from 10 m/s to 20 m/s

and 30 m/s, the throughput averaged over the 50 runs decreases only slightly. This

is a counter-intuitive result. The reason can be attributed, in part, to the network

102

0 10 20 30

Mean Speed (m/s)

0

200

400

600

800

1000

T
C

P
 T

hr
ou

gh
pu

t
(K

bp
s)

Expected
Measured

(a) Measured and expected throughput, averaged over 50 mobility patterns.

0 10 20 30 40 50

Pattern Number

0

500

1000

T
C

P
 T

hr
ou

gh
pu

t
(K

bp
s)

20 m/s
30 m/s

(b) Per-pattern measured throughput for the 20 m/s and 30 m/s points in (a).

Fig. 46. Throughput for a single TCP-Reno connection over a mobile ad hoc network.

103

layer’s problems maintaining routes for paths longer than a few hops at the higher

node speeds. Thus, beyond a certain speed, throughput was commonly achieved

only in the situation where the sender and receiver were within a few hops of each

other. Another contributing factor to this result is that, under certain circumstances,

throughput could potentially increase with speed. Consider, for example, Fig. 46(b),

which plots the throughput for each of the 50 mobility patterns for the 20 m/s and

30 m/s mean speeds used in our simulations (the patterns are sorted, in this figure,

in the order of their throughputs at 20 m/s). Observe that, for certain mobility pat-

terns, the throughput increases when the speed is increased. This can happen, for

instance, when fortuitous timing of TCP and MAC retransmissions, with regard to

the state of the network (e.g., the position of the nodes in the network), results in the

re-establishment of the packet flow at the higher speed but not at the slower speed.

Section D discusses this anomaly in more detail.

Fig. 47 provides a different view of the TCP throughput measurements. In this

figure, we plot the measured throughput versus expected throughput for each of the

50 mobility patterns. The four graphs correspond to each of the four different mean

speeds of movement. Because the expected throughput is an upper bound, all the

points plotted in these graphs are below the diagonal line (of slope 1). When the

measured throughput is closer to the expected throughput, the corresponding point

in the graph is closer to the diagonal line, and vice versa. The following observations

can be made from Fig. 47:

• Although, for any given speed, the points may be located near or far from the

diagonal line, when the speed is increased the points tend to move away from

the diagonal, signifying a degradation in throughput. Later in this chapter, we

show that, using a TCP optimization, the cluster of points in this figure can be

104

0 500 1000

Expected Throughput (Kbps)

0

500

1000

M
ea

su
re

d
T

hr
ou

gh
pu

t
(K

bp
s)

(a) Speed = 2 m/s

0 500 1000

Expected Throughput (Kbps)

0

500

1000

M
ea

su
re

d
T

hr
ou

gh
pu

t
(K

bp
s)

(b) Speed = 10 m/s

0 500 1000

Expected Throughput (Kbps)

0

500

1000

M
ea

su
re

d
T

hr
ou

gh
pu

t
(K

bp
s)

(c) Speed = 20 m/s

0 500 1000

Expected Throughput (Kbps)

0

500

1000

M
ea

su
re

d
T

hr
ou

gh
pu

t
(K

bp
s)

(d) Speed = 30 m/s

Fig. 47. Comparison of measured and expected throughput for the 50 mobility patterns

105

brought closer to the diagonal.

• On the other hand, for a given speed, certain mobility patterns achieve through-

put close to 0, although other mobility patterns (with the same mean speed)

are able to achieve a higher throughput.

• Even at high speeds, some mobility patterns result in high throughput that

is close to the expected throughput (for instance, see the points close to the

diagonal line in Figs. 47(c) and (d)). This occurs for mobility patterns in which,

despite moving fast, the rate of link failures is low (as discussed earlier, if two

nodes move together, the link between them will not break, regardless of their

speed).

Section D provides explanations for some observations made based on the data

presented in Figs. 46 and 47.

D. Mobility Induced Behaviors

In this section, we look at examples of mobility induced behaviors that result in

unexpected performance. The measured throughput of the TCP connection is a

function of the interaction between the 802.11 MAC protocol, the ARP protocol, the

DSR routing protocol, and TCP’s congestion control mechanisms. As such, there are

likely to be several plausible explanations for any given observation. Here, for each

observation, we give one such explanation that we have been able to confirm using

the measured data.

1. Some Mobility Patterns Yield Very Low Throughput

We present one observed scenario wherein loss of some TCP data and acknowledgment

packets (due to route failures) results in zero throughput. Note that we measure

106

Table IV. Packet trace for a 30 m/s run that experienced zero throughput.

Evnt Time (secs) Node SeqNo Pkt Resn
s 0.000 1 1 tcp
D 0.191 5 1 tcp NRTE
s 6.000 1 1 tcp
r 6.045 2 1 tcp
s 6.145 2 1 ack
D 6.216 21 1 ack NRTE
s 18.000 1 1 tcp
s 42.000 1 1 tcp
s 90.000 1 1 tcp
D 120.000 15 1 tcp END
D 120.000 16 1 tcp END
D 120.000 25 1 tcp END

throughput as a function of the amount of data that has been acknowledged to the

sender. In the example scenario discussed here, no acknowledgments are received by

the sender during the 120 second lifetime of the TCP connection (the average speed

for this case is 30 m/s). However, the expected throughput for the mobility pattern in

this run is 694Kbps. A path exists between the TCP sender and receiver nearly the

entire time.

A condensed version of the simulation packet trace is shown in Table IV. This

trace was obtained with node 1 as the TCP sender and node 2 as the TCP receiver.

In the table, the Evnt column lists the event type – s denotes that a packet is sent,

r denotes that a packet is received, and D denotes that a packet is dropped. The

Resn column lists the reason why a packet is dropped – NRTE means that the

routing protocol could not find a route and END means the simulation finished. The

Node, SeqNo, and Pkt columns report the node at which the event occurred, the

TCP sequence number1 of the packet depicted in the event, and the type of packet,

1
These are sequence numbers assigned by ns-2 to TCP packets. ns-2 does not number each octet

individually; instead, the packets are numbered sequentially as 1, 2, etc. All references to TCP sequence

107

respectively.

In this scenario, the sender and the receiver nodes are initially six hops apart and

stay within six hops of each other for all but 6 seconds of the 120 second simulation.

For 6 seconds, the network is partitioned, with the sender and receiver nodes being

in different partitions.

Soon after the first packet is sent by node 1, a link break occurs along the

route that causes a partition in the network. The partition causes the first packet

to be dropped (at time 0.191 seconds) by the routing protocol on node 5, which was

the forwarding node that detected the link failure. Eventually, the TCP sender on

node 1 times-out and retransmits the packet (at time 6.000). On the second attempt,

the packet reaches the receiver, node 2, who sends a delayed acknowledgment (at

time 6.145). However, the acknowledgment is sent on a route from node 2’s cache

that is stale (i.e., some links on the route are broken), so the acknowledgment is later

dropped (at time 6.216). The remaining attempts to retransmit the packet also fail

because of stale cached routes. In each instance, the packet is held by the ARP layer

of a forwarding node until the end of the simulation (see the rows with Evnt = D

and Resn = END in Table IV). Each ARP layer is left holding a packet because its

attempts to resolve the IP address of the next node in the route to a MAC address

fail because of mobility.

Therefore, the TCP sender is unable to receive any acknowledgment from the

receiver.

numbers in this chapter are the ns-2 assigned sequence numbers.

108

2. Anomaly: Throughput Increases as Speed Increases

In the example discussed in this section, TCP throughput improves by a factor of

1.5 when the speed is increased from 10 m/s to 20 m/s. In the scenario under

consideration, the TCP sender and receiver were able to reach each other 100% of

the time, and spent 74% of the time at most two hops away. The nodes were never

more than three hops away.

The characteristics of the connection between the TCP sender and receiver can

be seen in the mobility pattern profile shown in Fig. 48(a) (see [54] for similar details

on all of the patterns). The ticks shown at the top of the profile mark the points in the

pattern at which the minimum path between the TCP sender and receiver changed.

The curve shows the minimum path length (distance) in hops between the sender

and receiver for the duration of the pattern. Notice that a change in the minimum

path is not always accompanied by a change in path length (e.g., at the 0.28 mark in

Fig. 48(a)), because the nodes on the path may change even though the total number

of hops stays the same.

The other curves in Fig. 48 show the mean throughput over the TCP connection

(averaged over 1 second) for each of the four mean node speeds. Note that, as

mentioned in Section A, the sequence of moves that each node makes is identical,

regardless of the mean speed.

The only difference is that a distance covered by a node, say x, over time t, such

as in figure (b), takes x a time of t/2 to cover in figure (c). This is analogous to a

movie in which the time taken to show the same number of frames at rate r takes

half the time to show at rate 2r. Thus, the mobility pattern profile shown in (a) can

be used as a reference point for the other curves in Fig. 48. Note that the variations

in the throughput for curves (b)− (e) are correlated to the path length in (a) because

109

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Time (Normalized)

0.0
2.0
4.0
6.0
8.0

M
in

 P
at

h
(H

op
s)

(a) Mobility pattern profile.

0 500 1000 1500

Time (Seconds)

0.0
0.5
1.0
1.5
2.0

T
pu

t
(M

bp
s)

(b) Mean speed = 2 m/s

0 100 200 300

Time (Seconds)

0.0
0.5
1.0
1.5
2.0

T
pu

t
(M

bp
s)

(c) Mean speed = 10 m/s

0 50 100 150

Time (Seconds)

0.0
0.5
1.0
1.5
2.0

T
pu

t
(M

bp
s)

(d) Mean speed = 20 m/s

0 50 100

Time (Seconds)

0.0
0.5
1.0
1.5
2.0

T
pu

t
(M

bp
s)

(e) Mean speed = 30 m/s

Fig. 48. TCP-Reno performance for mobility pattern No. 20, demonstrating that an

increase in mean node speed may result in an increase in mean throughput.

The ticks at the top of (a) denote changes on the minimum path between

the TCP sender and receiver. The curves in (b) − (e) show the measured

throughput for the connection, averaged over 1 second intervals.

110

50.38 50.48 50.58 50.68 50.78 50.88 50.98 51.08

Time (seconds)

3110

3115

3120

3125

3130

3135
Se

qu
en

ce
 N

um
be

r
(p

ac
ke

t)

Packet Sent
Packet Recv
Ack Recv
Packet Dropped

Fig. 49. Detailed packet plot showing the beginning moments, around the 50s mark

in Fig. 48(c), at which a sequence of path changes, shown in Fig. 48(a),

causes TCP to repeatedly timeout and back-off. Packet Sent and Packet Recv

indicate the time at which a TCP data packet with the indicated ns-2 sequence

number was sent by the sender and arrived at the receiver, respectively, Ack

Recv indicates the time at which a TCP acknowledgment was received by the

sender with the indicated sequence number, and Packet Dropped indicates the

time at which a data packet with the indicated sequence number was dropped.

of the effect shown in Fig. 44, which we discussed earlier.

Discussion of Fig. 48(c): In the 10 m/s run, the routing protocol uses symmetric

forward and reverse routes (of optimal length) between the TCP sender and receiver

for the first 50s of the simulation, resulting in good initial throughput. However, the

sequence of path changes around the 50s mark causes the TCP sender to back-off,

from which it fails to recover, until the final 30s of the simulation. The details of

the packet activity around the moment at which the initial back-off occurs is shown

in Fig. 49. Leading up to the failure, the forward and reverse routes are symmetric

and optimal in length (two hops). Around the 50.4s mark, the route breaks (because

of mobility) at the link between the intermediate node and the TCP receiver. This

results in the queuing of nearly a full window of packets at the intermediate node.

The intermediate node salvages the queued packets, then successfully delivers them

to the receiver on a new forward route (seen around the 50.58s mark). After detecting

the failed link, the receiver chooses a new reverse route for sending acknowledgments,

111

which is different than the forward route. However, the reverse route that it chooses

is also stale, so several acknowledgments are lost before salvaging results in the arrival

of two of the acknowledgments at the TCP sender around the 50.72s mark. These

acknowledgments trigger a burst of packets from the sender, which are immediately

queued by the forwarding node at the next hop in the path, because, although the

reverse route is good, the forward route is now broken by mobility. Another acknowl-

edgment arrives later (around the 50.87s mark), resulting in the queuing of another

packet. Meanwhile, the forwarding node, which now has the full window queued,

repeatedly tries to salvage the packets. This finally results in the loss of half of the

packets (around the 50.98s mark) by ARP, which fails to determine the MAC address

of the node over the next hop in the salvaged route because the node has moved away.

However, half of the packets are successfully salvaged on an alternate route and de-

livered (seen between the 51.0s and 51.08s marks), generating a sequence of duplicate

acknowledgments (dupacks) from the receiver signifying the packet loss. After the

third and fourth dupacks arrive, the TCP sender enters fast recovery and retransmits

the lost packet (at the 51.08s mark), but the lost packets cause the sender to timeout.

The retransmission of the lost packet by the sender results in a brief burst of packets

(seen as a small bump at the 51s mark), but the routes break quickly thereafter, as

the path changes from two to three hops, resulting in lost packets that cause the

sender to timeout again.

For all subsequent timeouts, except one, stale routes result in packet losses even

though the TCP sender and receiver are never more than three hops distance from

each other. The one exception occurs around the 333s mark, at which time a retrans-

mitted packet results in the re-establishment of packet flow when the nodes are one

hop away.

112

Discussion of Fig. 48(d): The 20 m/s run shares many of the characteristics of

the slower 10 m/s run, but results in higher throughput because a retransmission late

in the pattern (around the 90s mark) succeeds in briefly re-establishing the flow of

packets. Initially, the data flow is quickly stalled (around the 25s mark) because of

the loss of a full window of packets, which is caused by the same sequence of link

changes in the pattern that affected the 10 m/s run. The throughput, again, degrades

when repeated route failures induce packet losses, causing the TCP sender to timeout

and back-off. However, unlike the 10 m/s run, the packet flow is re-established later

in the pattern (at the 88s mark) when a retransmitted packet results in the discovery

of a good route when the nodes are only two hops apart. This success is why the 20

m/s run is able to transfer data at 1.5 times the rate of the 10 m/s run, for the same

mobility pattern.

3. Summary and Observations

In this section, we present a summary of the effects of mobility on TCP performance

that we observed in the previous examples and in our other experiments.

From the previous examples, it is clear that the characteristics of the routing

protocol have a very significant impact on TCP performance. Most notable were the

problems caused by the caching and propagation of stale routes. Even in relatively

slowly changing topologies, the inability of the TCP sender’s routing protocol to

quickly recognize and purge stale routes from its cache resulted in repeated routing

failures. Allowing intermediate nodes to reply to route requests with routes from their

caches complicated this problem, because they often responded with stale routes. This

was further amplified by the fact that other nodes could overhear or snoop the stale

routes in the replies as they were propagated, spreading the bad information to caches

in other nodes. We saw the effects of this problem in our simulations. For instance,

113

0 10 20 30

Mean Mobility Rate (m/s)

0.0

0.2

0.4

0.6

0.8

1.0

T
hr

ou
gh

pu
t

(P
er

ce
nt

ag
e

of
 E

xp
ec

te
d)

Cache
No Cache

Fig. 50. A comparison of TCP-Reno performance when DSR route replies from caches

are, and are not, allowed.

in the simulation run presented in our first example (Section 1), the TCP sender

tried to use the same stale route three times because it received the route repeatedly

from other nodes. In the latter two tries, the stale route came to the TCP sender by

way of salvaging. The stale route that was used was a two hop route between the

TCP sender and receiver. In each of the two instances, a neighboring node salvaged

a packet from the TCP sender using the stale route, which the node had stored in

its route cache. The neighboring node then sent the packet on the next hop in the

salvaged route, back to the TCP sender. The result was that the TCP sender ended

up trying to forward its own packet on a route that it had earlier determined was

stale. However, we believe that these problems can potentially be solved using more

effective cache maintenance strategies, including simple techniques like dynamically

adjusting the route cache timeout mechanism depending on the observed route failure

rate, the use of negative route information (mentioned in [70]), or the use of signal

strength information.

Alternatively, replying from caches can be turned off altogether. This has a

114

0 10 20 30

Mean Speed (m/s)

0

100

200

300

400

500

M
ea

n
T

hr
ou

gh
pu

t
(K

bp
s)

5pps
5pps NC
10pps
10pps NC
20pps
20pps NC

Fig. 51. A comparison of TCP-Reno performance when DSR route replies from caches

are, and are not (NC), allowed, and additional traffic is in the network: 10

CBR connections, each sending 5, 10, and 20 packets per second.

startling improvement in performance, as shown in Fig. 50. However, these results

are for a single TCP connection in a network with no other data traffic. In a network

with multiple data sources, the additional routing traffic introduced when replies from

caches are not used could degrade performance. Therefore, we simulated the same

TCP connection in a network containing multiple CBR data sources to gauge the

impact of the additional routing overhead when replies from caches are not allowed.

The results for TCP throughput are shown in Fig. 51. We looked at three different

levels of network traffic using ten CBR connections across eight nodes (not including

the TCP sender or receiver), each sending 512 byte packets at mean rates of 5, 10,

and 20 packets per second (pps). Start times were staggered. For low mobility in

the presence of CBR traffic, disallowing route replies from caches results in slightly

lower TCP performance than when route replies from caches are allowed. This is

due, in part, to the impact of the additional routing overhead. For moderate to

high mobility, however, we see a consistent improvement in performance, which is

115

0 10 20 30

Mean Speed (m/s)

0

100

200

300

M
ea

n
P

er
-C

on
ne

ct
io

n
T

hr
ou

gh
pu

t
(K

bp
s)

No Cache
Cache

Fig. 52. A comparison of TCP-Reno performance of five TCP connections when DSR

route replies from cache are, and are not, allowed.

clearly evident in the 5 pps and 10 pps curves. We observed that this improvement

occurred because the steady traffic provided by the CBR connections increased the

accuracy of cached routes by steadily exercising routes in the network, facilitating

quick detection of broken links and, summarily, the purging of stale routes. However,

for increasing levels of traffic the performance improvement decreases due to the

additional routing traffic, until, for the 20 pps curve, disallowing route replies results

in worse performance at 5 and 10 m/s, and only slight improvement at 20 and 30

m/s.

We also looked at a scenario where multiple TCP connections share the network.

This data is presented in Fig. 52, which shows the mean throughput over five TCP

connections (each between separate pairs of nodes) for 30 patterns. Here, also, we

see the same trend as in the previous figure.

Another interesting effect of a routing protocol’s behavior with respect to mo-

bility was observed in our second example (Section 2). The fact that the TCP data

flow was lost at the same point in the mobility pattern for both runs raised questions

116

about what characteristic of the pattern was causing the failure. From Fig. 48(a),

it is clear that the rapid sequence of path changes at the 0.13 mark caused all four

runs to fail. Upon further inspection, we observed that the routing protocol regularly

failed when the minimum path increased in length. This is apparent in the results

shown in Fig. 53.

In the first few moments of the mobility pattern, shown in Fig. 53(a), the TCP

sender and receiver move closer to each other, shortening the path between them from

two hops to one (around mark 0.01). A few moments later (around mark 0.07), they

slowly diverge to a distance of five hops. In the TCP throughput measurements shown

in (b)− (e), it is evident that the data flow across the TCP connection is maintained

when the path is shortened, but is lost when the path is lengthened. This happens

several times in the pattern, independent of the mean speed of the nodes. Most

notably, (b) shows that even while traveling at a slow speed of 2 m/s, a path change

from one hop to two (around the 1500s mark) can stall the data flow. This behavior

can be attributed, in part, to the routing protocol. As the TCP sender and receiver

move closer to each other, DSR can often maintain a valid route by shortening the

existing route, and often does so before a failure occurs. However, as the TCP sender

and receiver diverge, the increase in path length eventually causes a route failure

because DSR does not attempt to lengthen a route until a failure occurs. The route

failure and subsequent route discovery process often result in the restoration of the

route only after the TCP sender has repeatedly timed-out and backed-off, stalling the

data flow. This is further magnified by the caching and propagation of stale routes, as

mentioned previously. However, intuition suggests that this is not a problem that is

unique to DSR, but will most likely be a problem for other reactive protocols as well.

Thus, perhaps a metric of routing protocol performance should not only measure the

protocol’s ability to recognize optimal routes, but also to quickly adjust an existing

117

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Time (Normalized)

0.0
2.0
4.0
6.0
8.0

M
in

 P
at

h
(H

op
s)

(a) Mobility pattern profile.

0 500 1000 1500

Time (Seconds)

0.0
0.5
1.0
1.5
2.0

T
pu

t
(M

bp
s)

(b) Mean speed = 2 m/s

0 100 200 300

Time (Seconds)

0.0
0.5
1.0
1.5
2.0

T
pu

t
(M

bp
s)

(c) Mean speed = 10 m/s

0 50 100 150

Time (Seconds)

0.0
0.5
1.0
1.5
2.0

T
pu

t
(M

bp
s)

(d) Mean speed = 20 m/s

0 50 100

Time (Seconds)

0.0
0.5
1.0
1.5
2.0

T
pu

t
(M

bp
s)

(e) Mean speed = 30 m/s

Fig. 53. TCP-Reno performance for mobility pattern No. 46, showing that an increase

in the minimum path length between the TCP sender and receiver consistently

results in the loss of data flow across the connection. The ticks at the top of (a)

denote changes on the minimum path between the TCP sender and receiver.

The curves in (b) − (e) show the measured throughput for the connection,

averaged over 1 second intervals.

118

route, albeit non-optimally.

Another characteristic of DSR that we observed affecting TCP performance was

the route request retransmission back-off algorithm. In DSR, if a route request does

not generate a timely reply, the requester times-out and retransmits the request. Each

timeout results in exponential back-off, which is limited to some fixed maximum value.

If this value is too large, then route requests may occur too infrequently to recognize

available routes in time to prevent TCP’s retransmission timer from backing-off to a

large value, but if it is too small, then the frequent route requests may cause network

congestion. The maximum value suggested in [70] may not be suitable for good TCP

performance.

Based on these observations, it might be suggested that instead of augmenting

TCP/IP, it would be better to improve the routing protocols so that mobility is more

effectively masked. Clearly, extensive modifications to upper layer protocols is less

desirable than a routing protocol that can react quickly and efficiently such that TCP

is not disturbed. However, regardless of the efficiency and accuracy of the routing

protocol, network partitioning and delays will still occur because of mobility, which

cannot be hidden. Thus, in the next section, we analyze some simple modifications to

TCP/IP to provide TCP with a mechanism by which it can recognize when mobility

induced delays and losses occur, so that it can take appropriate actions to prevent

the invocation of congestion control.

E. TCP Performance Using Explicit Feedback

In this section, we present an analysis of the use of explicit feedback on the perfor-

mance of TCP in dynamic networks. The use of explicit feedback is not new, and has

been proposed as a technique for signaling congestion (e.g., ECN [40], FECN/BECN [87],

119

DECBit [98]), corruption due to wireless transmission errors (e.g., EBSN [9], ELN [12]),

and link failures due to mobility (e.g., [20], SCPS-TP [25, 34], TCP-F [21]). Our in-

terest in this section is analyzing the performance of an explicit signaling mechanism,

which we refer to as Explicit Link Failure Notification (ELFN) [57], [53]. Although

the TCP-F paper studies a similar idea, the evaluation is not based on an ad hoc

network. Instead, they use a black-box, that does not include the evaluation of the

routing protocol.

The objective of ELFN is to provide the TCP sender with information about

link and route failures so that it can avoid responding to the failures as if congestion

occurred.

There are several different ways in which the ELFN message can be implemented.

A simple method would be to use a “host unreachable” ICMP message as a notice to

the TCP sender. Alternatively, if the routing protocol already sends a route failure

message to the sender, then the notice can be piggy-backed on it. This is the approach

we took in this analysis. We modified DSR’s route failure message to carry a payload

similar to the “host unreachable” ICMP message. In particular, it carries pertinent

fields from the TCP/IP headers of the packet that instigated the notice, including

the sender and receiver addresses and ports, and the TCP sequence number. The

addresses are used to identify the connection to which the packet belongs, and the

sequence number is provided as a courtesy.

TCP’s response to this notice is to disable congestion control mechanisms until

the route has been restored. This involves two different issues: what specific actions

TCP takes in response to the ELFN notice, and how it determines when the route

has been restored.

We used the following simple protocol. When a TCP sender receives an ELFN, it

disables its retransmission timers and enters a “stand-by” mode. While on stand-by,

120

a packet is sent at periodic intervals to probe the network to see if a route has been

established. If an acknowledgment is received, then it leaves stand-by mode, restores

its retransmission timers, and continues as normal. For this study, we elected to

use packet probing instead of an explicit notice to signal that a route has been re-

established.

To see what could be achieved with this protocol, we studied variations in the

parameters and actions and measured their effects on performance. In particular, we

looked at the following:

• Variations in the length of the interval between probe packets.

• Modifications to the retransmission timeout value (RTO) and congestion win-

dow upon restoration of the route.

• Different choices of what packet to send as a probe.

The results of these studies are presented below. Each curve is based on the mean

throughput for the 50 different mobility patterns we used earlier.

Fig. 54 is analogous to Fig. 47, except that the results in Fig. 54 are based on

simulations in which TCP-Reno was modified to use ELFN (with a 2s probe inter-

val). Clearly, the use of ELFN has improved the mean throughput for each of the

speeds, as evidenced by the closer proximity of the measured pattern throughputs

to the expected throughput line. The tighter clustering of the points also suggests

that the use of ELFN techniques improves throughput across all patterns, rather than

dramatically increasing just a few. However, notice that for one pattern performance

was worse when ELFN was used. In Fig. 47(c) there is a pattern which has a mea-

sured throughput very near to its expected throughput (i.e., it is very close to the

line), which is not present in Fig. 54(c). In this instance, the unusually good perfor-

mance of TCP was a consequence of fortuitous timing of packet retransmissions, with

121

0 500 1000

Expected Throughput (Kbps)

0

500

1000

M
ea

su
re

d
T

hr
ou

gh
pu

t
(K

bp
s)

(a) Speed = 2 m/s

0 500 1000

Expected Throughput (Kbps)

0

500

1000

M
ea

su
re

d
T

hr
ou

gh
pu

t
(K

bp
s)

(b) Speed = 10 m/s

0 500 1000

Expected Throughput (Kbps)

0

500

1000

M
ea

su
re

d
T

hr
ou

gh
pu

t
(K

bp
s)

(c) Speed = 20 m/s

0 500 1000

Expected Throughput (Kbps)

0

500

1000

M
ea

su
re

d
T

hr
ou

gh
pu

t
(K

bp
s)

(d) Speed = 30 m/s

Fig. 54. Per-pattern performance of TCP with ELFN using a 2s probe interval.

122

0 10 20 30

Mean Speed (m/s)

0.0

0.2

0.4

0.6

0.8

1.0

T
hr

ou
gh

pu
t

(P
er

ce
nt

ag
e

of
 E

xp
ec

te
d)

2s/ELFN
4s/ELFN
6s/ELFN
15s/ELFN
30s/ELFN
Base TCP

Fig. 55. Performance comparison between basic TCP-Reno and TCP-Reno with ELFN

using varying probe intervals.

regard to the state of the network, that did not occur when ELFN was used. This is

further evidence of the complex nature of TCP. The general trend, however, shows a

performance improvement when ELFN is used.

Fig. 55 shows the measured throughput as a percentage of the expected through-

put for various probe intervals. Based on these results, it is apparent that the through-

put is critically dependent on the time between probe packets. This dependency exists

because increasing the time between probes delays the discovery of new routes by the

length of the interval. Thus, it is no surprise that if the probe interval is too large,

then the throughput will degrade below that of standard TCP, as shown by the re-

sults for probe intervals of 30s. Intuitively, if the probe interval is too small, then the

rapid injection of probes into the network will cause congestion and lower throughput.

Thus, instead of a fixed interval, perhaps choosing an interval that is a function of

the RTT could be a more judicious choice. However, based on the sensitivity of the

throughput to the interval size, the function must be chosen very carefully.

In addition to varying the probe intervals, we also looked at the performance

123

0 10 20 30

Mean Speed (m/s)

0.0

0.2

0.4

0.6

0.8

1.0

T
hr

ou
gh

pu
t

(P
er

ce
nt

ag
e

of
 E

xp
ec

te
d)

ELFN
W/ELFN
RTO/W/ELFN
Base TCP

Fig. 56. Performance comparison of different window and RTO modifications in re-

sponse to the receipt of an ELFN message.

advantages of adjusting the congestion window and/or retransmission timeout (RTO)

after the failed route had been restored. These results are shown in Fig. 56. In the

figure, ELFN represents the case where no changes are made to TCP’s state because

of ELFN. Thus, TCP’s state (congestion window, RTO, etc.) are the same after the

route is restored, as it was when the ELFN was first received. W/ELFN represents

the case where the congestion window is set to one packet after the route has been

restored, and RTO/W/ELFN represents the case where the RTO is set to the default

initial value (6s in these simulations) and the window is set to one after the route

is restored. Adjusting the window seemed to have little impact on the results. This

is believed to be due to the fact that the optimal window (the bandwidth/delay

product) of the simulated network is a relatively small number of packets, so it takes

only a few round trips to ramp up to the optimal window after a failure. However,

altering the RTO had a more significant impact on throughput. We suspect that this

is due to a combination of factors, but is most probably caused by the frequency at

which routes break, coupled with ARP’s proclivity, as implemented, to silently drop

124

0 10 20 30

Mean Speed (m/s)

0.0

0.2

0.4

0.6

0.8

1.0

T
hr

ou
gh

pu
t

(P
er

ce
nt

ag
e

of
 E

xp
ec

te
d)

First/ELFN
Lowest Rcvd/ELFN
Base TCP

Fig. 57. Performance comparison between basic TCP-Reno and TCP-Reno with ELFN

using different choices for the probe packet.

packets. Thus, if a restored route immediately breaks again and results in a failed

ARP lookup, then the sender will likely timeout. Given the length of the timeout, it

does not take many such occurrences to dramatically affect performance.

We also took a brief look at the impact that the choice of probe packet had on

performance, which is shown in Fig. 57. We considered two possibilities: always send

the first packet in the congestion window (First/ELFN in the figure), or retransmit

the packet with the lowest sequence number among those signaled as lost in the

ELFNs that were received (Lowest Rcvd/ELFN). The first approach is intuitive, the

second approach was chosen with the optimistic thinking that perhaps some packets

in the window did get through, and, if the route is restored quickly, then the next

packet in sequence will be in flight. However, as shown by the results, this had almost

no impact whatsoever. We suspect that this has to do with the fact that routes, once

broken, were rarely restored quickly. In addition, as shown in Section D, the presence

of different forward and reverse routes equalizes the two approaches when only the

forward link breaks, since those packets that did get through before the break are

acknowledged via the reverse channel. Thus, the lowest sequence number of the

125

packets lost would also happen to be the first in the window.

Finally, we looked at how well the ELFN protocol performs in networks that

contain multiple data sources by repeating the set simulations that were used for the

throughput curves with cache replies enabled in Fig. 51 and Fig. 52, only now using

ELFN as well. The results with CBR traffic are shown in Fig. 58, and the results

for multiple TCP connections are shown in Fig. 59. Each curve is the average over

30 patterns. The ELFN protocol used 4s probes. Based on these results, it appears

that similar performance benefits can be expected in congested networks, as in the

uncongested network.

F. Summary

In this chapter, we investigated the effects of mobility on TCP performance in mobile

ad hoc networks and observed that TCP throughput drops significantly with node

movement. The cause was identified as TCP’s inability to recognize the difference

between link failure and congestion, resulting in unnecessary delays. We then showed

several specific examples of TCP behavior, one of which resulted in zero throughput,

the other, in an unexpected rise in throughput with an increase in speed. We also

introduced a new performance metric, expected throughput, that accounts for the

differences in throughput when the number of hops varies. Based on this analysis,

we then presented the Explicit Link Failure Notification (ELFN) protocol for TCP.

The objective of ELFN is to provide the TCP sender with information about link and

route failures so that it can avoid responding to the failures as if congestion occurred.

Through simulation analysis, we showed that ELFN can significantly increase the

expected throughput of a TCP connection in ad hoc networks.

126

0 10 20 30

Mean Speed (m/s)

0

100

200

300

400

500

M
ea

n
T

hr
ou

gh
pu

t
(K

bp
s)

5pps
5pps w/ELFN
10pps
10pps w/ELFN
20pps
20pps w/ELFN

Fig. 58. Performance comparison of TCP-Reno and TCP-Reno with ELFN when ad-

ditional traffic is in the network. The additional traffic is provided by 10 CBR

connections, each sending 5, 10, and 20 packets per second (pps).

0 10 20 30

Mean Speed (m/s)

0

100

200

300

M
ea

n
P

er
-C

on
ne

ct
io

n
T

hr
ou

gh
pu

t
(K

bp
s)

ELFN
Base TCP

Fig. 59. Performance comparison of TCP-Reno and TCP-Reno with ELFN for five

concurrent TCP connections.

127

CHAPTER VII

MULTI-MODE TCP

In this chapter, we address problems with TCP that arise when used over wireless

networks that contain a mixture of broadband and legacy links. The large differences

in bandwidth and delay between, for example, a 100 Mbps satellite link and a 64

Kbps dialup can result in end-to-end connection behavior that cause TCP to perform

poorly. The cause is that, to the end-user, connections across these networks could

exhibit a “modal” behavior as periodic link breakages result in repeated oscillations in

the end-to-end bandwidth and delay. For example, a connection between two legacy

nodes may periodically be routed across a broadband satellite link when they lose

direct communication with each other. For TCP connections, these wide and sudden

variations in capacity result in an under-utilization of the network because TCP’s

rate control mechanism is not designed to react quickly to rapid changes in capacity.

Since TCP is the most widely used transport protocol, it is worthwhile to devise

end-to-end solutions that maximize its performance for future wireless broadband

networks. In this chapter, we present a modified version of TCP, called Multi-Mode

TCP that is designed to capitalize on the “modal” behavior of broadband wireless

networks. MM-TCP does this by recognizing these modes and saving the state of

the congestion control mechanisms for rapid recall if the mode is revisited later. This

chapter is organized as follows. We first present a performance analysis of standard

TCP-Reno over multi-modal broadband networks, and then present and evaluate

MM-TCP.

128

0 200 400 600

Time (s)

0

100

200

300

B
W

 x
 D

el
ay

 (
pk

ts
)

Fig. 60. Performance of TCP-Reno across a connection with “modal” changes in band-

width-delay. Shown is TCP-Reno’s congestion window (dotted line) over the

connection bandwidth-delay (solid line).

A. Performance of TCP-Reno

Fig. 60 illustrates the reaction of TCP-Reno to “modal” oscillations in available capac-

ity. Available capacity for a connection is frequently expressed as the bandwidth-delay

product, which is the capacity of the network as seen by the connection endpoints,

and is calculated as bw × rtt, where bw is the available capacity on the bottleneck

link on the path and rtt is the round-trip time (delay). Here, a single TCP-Reno con-

nection is spread across a network that experiences modal shifts in bandwidth-delay

between 1, 83, and 333 packets, which is represented by the solid line in the figure.

The dotted line represents the sender’s congestion window, which is the maximum

number of unacknowledged packets the sender is allowed to have outstanding in the

network (assuming the receiver allows that many).

Notice that when there is a sharp increase in capacity, the sender does not in-

crease its congestion window to take advantage of it. This is because TCP-Reno’s

sending rate is governed by an additive-increase, multiplicative-decrease (AIMD) con-

gestion avoidance algorithm. This is a conservative algorithm, designed to prevent

congestive collapse, that limits rate increases to one packet per rtt. The result, in

129

this instance, is that TCP-Reno’s throughput is less than “optimal” for the network

conditions.

Also notice that when there is a sharp decrease in capacity, TCP-Reno does not

always lower its sending rate as quickly. This is fine, as long as the sender does not

try to inject more packets into the network until the window is lowered below the

available capacity, since the network is now in a congested state. However, in some

circumstances the sudden decrease in capacity results in a dramatic increase in the rtt,

which can cause TCP-Reno’s congestion control mechanism to assume that packets

are lost (as triggered by a retransmission timeout RTO) and retransmit them. These

are called “spurious” retransmissions, and as many as an entire congestion window of

packets may be needlessly retransmitted, again resulting in under-utilization of the

network.

Finally, notice that even though the capacity changes are repetitive, TCP-Reno’s

response is the same for each.

In the next section, we present the a modified version of TCP-Reno, called Multi-

Mode TCP, that is designed to take greater advantage of sharp increases in capacity,

while limiting spurious retransmissions as much as possible when there are share

decreases in available capacity, by caching information about recent modes for later

recall and rapid response.

B. Multi-Mode TCP

The purpose of MM-TCP is to capitalize on the “modal” behavior that occurs on

connections over heterogeneous links that have widely varying bandwidth and delay

characteristics. MM-TCP does this by identifying modes and caching state variables

that can be reused later when the mode is revisited. The variables cached (see Ta-

130

Table V. State variables cached by MM-TCP for each network mode.

Variable Description
cwnd Congestion window size
ssthresh Slow-start threshold
srtt Smoothed round-trip time average
rttvar Mean deviation of round-trip time samples
rto Retransmission timeout
backoff Retransmission timer backoff multiplier

ble V) are those that are used to determine the sending rate and congestion detection.

In the next section, we describe how these variables are used and managed.

1. Mode Definition

As discussed in the previous section, it is the widely varying bandwidth and delay

characteristics that cause the “modal” behavior seen in Fig. 60. In this section, we

present how a mode is characterized and detected.

TCP is designed to continuously probe for the maximum available capacity by

increasing its transmission rate until it detects congestion, then cutting its rate down

and starting again. This behavior results in the characteristic sawtooth pattern, seen

in Fig. 60 (around the 500s mark), that oscillates around the available capacity. To

identify the network mode that the connection is in, we filter the bandwidth bw and

delay d estimates to remove as much of the oscillation as possible. We then track

the smoothed estimates over time to see if they stay within a given range of values

that define the boundaries, or window, of a mode. If the estimates consistently stay

within a fixed window for some number of samples k, then that window is declared

as a new mode. More specifically, for a given window size of wbw for the bandwidth

131

and wd for the delay, and sample size k, a new mode is declared if

(bw0 − wbw

2
) < bwi < (bw0 +

wbw

2
), 0 < i ≤ k (7.1)

(d0 − wd

2
) < di < (d0 +

wd

2
), 0 < i ≤ k (7.2)

are true. Once the mode has been declared, the window is centered around the mean

of the most recent k samples. We then save bw0 and d0 for later retrieval when

searching modes.

Determining the correct window size is important because if too large a window

is chosen the protocol may not recognize all of the modes (i.e., the window may

span across multiple modes), but if too small a window is chosen the protocol may

frequently and unnecessarily identify false modes. So the granularity of the window is

very important. Finding the correct window, though, is challenging because the range

of variation in the samples is dependent on the size of the bandwidth-delay. Thus,

we define wbw and wd on separate log scales with bases B and D, so Equations (7.1)

and (7.2) become

(logB[bw0]− wbw

2
) < logB[bwi] < (logB[bw0] +

wbw

2
), 0 < i ≤ k (7.3)

(logD[d0]− wd

2
) < logD[di] < (logD[d0] +

wd

2
), 0 < i ≤ k (7.4)

Therefore, the granularity of the bandwidth window is controlled by the log base B

and the granularity of the delay window by log base D. In practice, it is difficult

to find fixed values for B, D, wbw, and wd that give optimal boundaries between all

modes for all network conditions, so for the purpose of the analysis in this report we

define the boundaries dynamically as follows. We used a very simple algorithm where

the size of wbw and wd were fixed at 0.6, and the default base for both B and D was

2. If the estimated delay drops below 500 ms, then D was changed to 3. Similarly, if

132

the estimated bandwidth dropped below 800 Kbps, then B was changed to 3. This

algorithm is based on our experience, which showed that performance increased if

we used coarser granularity at lower bandwidth-delay because of the higher relative

variability in the (bw, d) estimates. Investigation of techniques to vary both window

size and granularity automatically according to the variance of the estimates is a topic

of future work.

To obtain stable estimates of (bw, d) for a mode, we use exponentially weighted

moving average (EWMA) filters, similar to the approach in [76]. These filters take

the form:

E(t) = gain ∗ E(t− 1) + (1− gain) ∗O(t) (7.5)

where E(t) is the newly generated estimate, E(t− 1) is the prior estimate (initially,

E is equal to the observed value when we decide to create a new mode), and O(t) is

the observation where ssthresh is reset. For stable bandwidth and delay estimations,

gain is set to 0.9.

A sender takes the following approach when creating a new mode, or updating

an existing mode.

1. Verify if this is a “known” mode. That is, check to see if the current (bw, d)

estimate maps to a mode that was visited earlier. If so, use the stored TCP

variables. If no modes satisfy this condition, use the standard TCP algorithms

to obtain the values for the TCP variables.

2. Wait for R (say R = 2) round trip times and save the set of TCP variables.

Save a new set of TCP variables every rtt from then on, and keep track of the

last S (say S = 5) samples.

3. If the current cwnd is greater than twice ssthresh, change ssthresh to cwnd/2

133

instantly. This results in a quick update of the TCP variables to more efficiently

represent the current network conditions.

4. Upon a mode change, average the values for each individual TCP variables from

the past S sample sets and save those values in a candidate TCP variables set.

If the visits to this mode lasted less than R rtts, or ssthresh has never been

changed/updated, ignore the visit to this mode.

5. If a candidate TCP variable set was obtained, compare that with the previous

C−1 (say C = 3) candidate sets obtained from the previous visits to this mode

and save the one that has the smallest value for ssthresh. If this mode has

not been visited before, save the candidate set as the TCP variable set for the

current mode. If the maximum number of modes is exceeded, throw out the

least recently visited mode.

2. Mode Change Detection

In order to detect a mode change, the sender must constantly monitor a set of pa-

rameters that give some indication of the current network condition. As discussed

in the previous section, these parameters are the round trip delay (d) and the band-

width (bw) of the bottleneck link in the forward path. In our work, we have limited

our modifications to the TCP sender. The challenge is to find reliable mechanisms to

obtain accurate estimates of both parameters. To do this, we estimate the bandwidth

first, and then use the bandwidth estimate to determine the delay.

a. Bandwidth Estimation

To estimate the bottleneck bandwidth, we use the Round-Trip Time Measurement

(RTTM) technique described in [64]. In RTTM, the sender and receiver exchange

134

timestamps reflecting when the packet and ACK were sent. At the receiver, the

sender’s timestamp is also echoed back so that the sender can use the difference

between the receive times to estimate the bandwidth on the forward link. The idea

is that when packets cross the bottleneck link they will be spread out in time by the

transmission time of the first packet. Assuming this spacing is maintained through

the remainder of the path, the timestamp given them by the receiver can then be

used by the sender to compute the bandwidth using the calculated delay and the size

of the packets. In our implementation, this is done for every two packets transmitted

back-to-back by the sender. Although this approach has been shown to overestimate

the bandwidth [91], alternative forms of estimation such as Packet Bunch Modes [5],

Tailgaiting [79], and SLoPS [67] were deemed to be too inefficient and/or complex for

use as estimators of TCP connection state, since they were generally designed for use

as network management tools.

As a topic of future work, we intend to investigate heuristics that attempt to

diminish the impact of the overestimation of the RTTM approach, such as that given

in [90], and/or develop alternative methods for online bandwidth estimation based

on ideas from the aforementioned network management tools.

b. Delay Estimation

Standard TCP implementations that rely on one rtt measurement on one segment

per window lead to unacceptably slow estimation in networks with a high bandwidth-

delay product (pipe size). Therefore, we use the timestamp TCP option to allow an

rtt measurement for every segment transmitted, and then employ the stable filter in

Equation 7.5 again to smooth the estimate (referred to as my rtt), where the current

observation is obtained on every received segment. However, the my rtt estimator

includes packet-propagation delays, packet-queuing delays, packet-processing delays,

135

and transmission delay, which causes variations in a wide range since the queuing

delay, unlike the other three delays, can alter from packet to packet. So, we propose

a queuing delay estimation method, and apply this method to gain a flat end-to-end

delay that attempts to exclude the unwanted queuing delay.

To estimate the queuing delay, we use a simple fluid–flow model to represent the

end-to-end path between sender and receiver. In this model, the sequence of hops

from sender to receiver can be represented as a single service queue with queuing

delay E Dq and available bandwidth E BW . E BW , which is the transmission rate,

is also the rate at which bits are pushed out the queue. The ratio buffer/E BW

often plays an important role in estimating the extent of the queuing delay. To

estimate the queuing delay, we assume that the queue is empty when the number of

unacknowledged packets (no notacked packet) is equal to ssthresh, and bits increase

as the number of not acked packets increases. Note that, by design, ssthresh is

intended to be a good estimator of the available bandwidth. To stabilize the estimate,

we use a simple Flip− Flop filter (similar to that in [76]), consisting of two EWMA

filters. One of the filters is agile, with a gain of 0.09, which is used to quickly detect

transient shifts in network conditions (i.e., a mode shift), and the other is stable, with

a gain of 0.91, to smooth out noise when the network is in a stable mode. The stable

filter is the default, and the agile filter is selected when observations are unusually

noisy (like at the beginning of the TCP session and between mode shifts).

E Dq(t) = gain ∗ E Dq(t− 1) + (1− gain) ∗Dq (7.6)

In Equation 7.6, the current observation Dq is defined as:

Dq = (no notacked packet− e ssthresh)

∗packet size/E BW

136

if no notacked packet > e ssthresh (7.7)

Dq = 0;

if no notacked packet <= e ssthresh (7.8)

where e ssthresh is equal to max(ssthresh, cwnd/2).

Note that, in situations where we overestimate or underestimate the queuing

delay, estimate works for our purposes since the outgoing rate is always equal to the

transmission rate, and our aim is only to find a flat end-to-end delay.

Finally, the flat end-to-end delay estimation is calculated using the stable EWMA

filter in Equation 7.5 where the current observation is equal to my rtt− E Dq.

3. Mode Change Decision

Based on the discussion in the previous section, we have (bw, d) estimates describing

the current network conditions. Using these, the sender can make decisions to change

or not change modes, and, summarily, use or not use the TCP variable set associated

with the modes.

In order to make sure a mode change has occurred, the sender may need to

observe a sequence of estimates that consistently indicate such a change. Only then

it will be able to make a safe decision that, in fact, the network conditions have

changed to the extent that a new mode is required. This will reduce the probability

of a “miss” and/or “false detect”. The recommended approach is to have the sender

verify an estimate pair (bw, d) and check whether or not it maps to a mode different

from the current mode. If it maps to a different mode, a counter is increased by 1 and

compared to a threshold k (say k = 3). If the counter is equal to k, the sender has

enough evidence to switch to a new mode. In case it maps to more than one mode,

due to modes overlapping, the most recently visited mode has higher priority to be

137

selected. Otherwise it waits for the next estimate pair and repeats the procedure. If

at any time an estimate pair maps to the current mode or another existing mode, the

counter is set to 0.

4. Mode Change Adaptation

If the network conditions present path characteristics (bw, d) that the TCP sender

has seen before and identified as a mode, the TCP sender declares one RTT as a

switching period and quickly adapts the mode’s TCP variables to those previously

stored for the new mode.

The adaptation algorithm is implemented as follows.

1. If the current ssthresh is less than the new mode’s ssthresh,

(a) Set ssthresh to the mode’s ssthresh.

(b) If the current cwnd is less than the new ssthresh (i.e., the sender will be

in slow start), then to avoid sending a burst of data packets that might

cause congestion, we temporarily change the rate at which the slow start

algorithm increases cwnd. Typically, the slow start algorithm increases

cwnd at a rate of 1 segment for every ACK received (exponential growth).

Here, if the new mode’s cwnd is larger than the current ssthresh by some

threshold t, we temporarily change the rate of growth to some lower value

r < 1 segment per ACK. A challenge is selecting values of r and t that

achieve rapid growth (hence, good performance), but don’t overload the

network. In our simulations, we set r = 0.1 and t = 50pkts, which gave

reasonably good performance. In the future, we will investigate how to

determine these values dynamically and store them as part of the state of

the mode. Of course, once cwnd is equal to ssthresh, the slow start rate

138

is reset to 1 for normal TCP operation.

2. If the current ssthresh is greater than the new mode’s ssthresh

(a) Set ssthresh to the new mode’s ssthresh.

(b) If the cwnd is greater than the new mode’s cwnd, set cwnd to the new

mode’s cwnd.

3. If srtt is less than the new mode’s srtt, set srtt, rttvar, backoff and rto to the

new mode’s values.

4. During the switching period, each time another duplicate ACK arrives, the TCP

sender retransmits the next missing packet (since each duplicate ACK means

that a packet has left the network and changing link condition causes a lot of

missing packets in the forward path).

C. Performance Evaluation

In this section we present simulation results of the performance of MM-TCP, and

compare it to the performance of TCP-Reno. In the next section we describe the

simulation model used to evaluate the protocols, which is followed by the simulation

results.

1. Simulation Model

The results in this chapter are based on simulations using the ns-2 simulator, described

in Chapter III.

Here, the network was built using simple duplex links. For single-hop experi-

ments, dynamic bandwidth and delay changes were scripted on the duplex link. For

multi-hop experiments, we used a fixed topology and induced path changes through

139

Fig. 61. Network topology used in this study. Link rates and transmission delays cor-

respond to network configuration 1.

random link failures. TCP-Reno is used as a basis for comparison for all results.

Traffic was generated using a continuously backlogged FTP application. Routing was

“omniscient”, manually and instantaneously reconfigured after every link change, and

were calculated using an all-pairs shortest path algorithm. Although route changes

were instantaneous, packets in queues of downed links were lost, reflecting, to some

extent, the kind of packet losses that might be expected when using an “actual”

routing protocol.

In our analysis, we used three different network configurations. Each configu-

ration consisted of six nodes arranged in the topology shown in Fig. 61. Link data

rates were fixed, but delay and failure characteristics were varied, resulting in end-

to-end bandwidth-delay products ranging from 1 to 166 packets for Network 3, 1 to

333 packets for Network 2, and 1 to 500 packets for Network 1. Also, time intervals

between modes were compressed by 1/2 for Network 2 and Network 3, as compared

140

to Network 1. A simple link impairment algorithm was used to simulate random

link failures. The algorithm behaved as follows. For some random time interval with

mean T , a link would toss a coin and flip its state (up or down), with the constraint

that a link cannot go down if doing so would disconnect the network. All results are

for a single FTP connection from Node 3 to Node 4. The packet size was 1500 bytes.

Each network configuration was simulated for 50 runs. Specific details of the network

configurations are as follows.

• Network 1: Link data rates and transmission delays were set as shown in

Fig. 61. T = 600s for links (0, 1) and (0, 2), and T = 300s for all other links.

• Network 2: Identical to Network 1, but delays on links (1, 3) and (2, 4) were

changed to 50ms. T = 300s for links (0, 1) and (0, 2), and T = 150s for all

other links.

• Network 3: Identical to Network 1, but the delays on links (1, 3) and (2, 4)

were 25ms, and the delay on link (1, 2) was 50ms. T was the same as in Network

2.

2. Simulation Results

Fig. 62 illustrates the reaction of MM-TCP to the same “modal” oscillations in avail-

able capacity that were shown in Fig. 60. Notice that each time a higher mode is

revisited, MM-TCP adapts more quickly to the increase in capacity. Fig. 63 shows the

values of backoff for both TCP-Reno and MM-TCP to the same “modal” oscillations

in available capacity that were shown in Fig. 62. Note that backoff is the value that

is multiplied by the retransmissiontimeout(RTO) estimate to determine the value

for the next timeout interval. Its value is doubled for every consecutive timeout that

occurs, up to a maximum of 64. Notice that although MM-TCP suffers a timeout

141

0 200 400 600

Time (s)

0

100

200

300

B
W

 x
 D

el
ay

 (
pk

ts
)

Fig. 62. Performance of MM-TCP across a the same “modal” connection shown in the

Introduction. Shown is MM-TCP’s congestion window (dotted line) over the

connection bandwidth-delay (solid line).

0 200 400 600

Time (s)

0

2

4

6

8

B
ac

ko
ff

tcp
mmtcp

Fig. 63. Comparison of values for the backoff multiplier for MM-TCP and

TCP-Reno.

142

after the first decrease in capacity, later decreases in capacity are detected and time-

outs are avoided, whereas TCP-Reno suffers consecutive timeouts at the large drop

around time 650s.

Fig. 64 shows the percentage improvement for each simulation scenario for the

three multi-hop network configurations. Note that in almost all cases MM-TCP

improves performance over standard TCP-Reno. Also notice that in some cases the

performance improvement is dramatic.

Fig. 65 shows a comparison of the “optimal” throughput for the scenarios simu-

lated. Here, the optimal throughput is defined to be the sum of the total bandwidth-

delay product over the lifetime of the connection. Notice that in general MM-TCP

is closer to optimal than TCP-Reno, and that even in cases such as for Network 3,

where TCP-Reno performs very close to optimal, MM-TCP still shows better overall

performance (as signified by the tighter “grouping” of measurements.

D. Summary

In this chapter, we presented a modified version of TCP, called Multi-Mode TCP that

is designed to capitalize on the “modal” behavior of wireless networks. MM-TCP does

this by recognizing these modes and saving the state of the congestion control mecha-

nisms for rapid recall if the mode is revisited later. We gave a performance analysis of

standard TCP-Reno over multi-modal wireless networks, and then presented results

that showed the efficacy of MM-TCP for long-fat pipes in modal networks.

143

10 20 30 40 50

Simulation Scenario

0

20

40

60

P
er

ce
nt

ag
e

Im
pr

ov
em

en
t

net-3
net-2
net-1

Fig. 64. Percentage of improvement of MM-TCP over standard TCP-Reno for each of

the three network configurations simulated. The results are sorted according

to increasing improvement for each series of results.

144

0 1 2 3 4 5
Optimal Throughput (Mbps)

0

1

2

3

4

5

M
ea

su
re

d
T

hr
ou

gh
pu

t
(M

bp
s)

tcp
mmtcp

(a) Network 1

0 1 2 3 4 5
Optimal Throughput (Mbps)

0

1

2

3

4

5

M
ea

su
re

d
T

hr
ou

gh
pu

t
(M

bp
s)

tcp
mmtcp

(b) Network 2

0 1 2 3 4 5
Optimal Throughput (Mbps)

0

1

2

3

4

5

M
ea

su
re

d
T

hr
ou

gh
pu

t
(M

bp
s)

tcp
mmtcp

(c) Network 3

Fig. 65. Comparison of measured and optimal throughput for the 50 scenario patterns.

145

CHAPTER VIII

CONCLUSIONS AND FUTURE DIRECTIONS

In this chapter, we conclude this dissertation by summarizing the contributions of

our work and suggested directions for future work.

A. Summary

In this dissertation, we presented a number of cross-layer adaptive protocols that

dynamically adapt their behavior to match changes in network characteristics based

on cross-layer feedback.

• We investigated new link layer mechanisms that dynamically monitor and adapt

to changes in link quality by adjusting packet transmission rates according to

certain optimization criteria. We showed that the use of such techniques in

ad hoc networks can significantly improve performance, and presented a new

approach, the Receiver-Based AutoRate (RBAR) protocol, that uses common

control messages to form a tight feedback control loop to adapt link character-

istics based on receiver-perceived link conditions.

• We showed how conventional shortest-path routing protocols may not perform

well in multirate, multihop networks because they fail to consider the data rates

of the links on a route. We then present two on-demand routing protocols, Rate

Probing (MRPRB) and Minimum Rate (MRMR), that discover, prioritize, and

select routes based on their estimated end-to-end throughput according to the

data rates on the route.

• We then presented a thorough analysis of TCP performance in ad hoc networks,

showing that communication outages caused by link failures and routing delays

146

can be very detrimental to TCP performance. Specifically, we showed how TCP

throughput can drop dramatically because of consecutive spurious timeouts

caused by link breakage and subsequent routing errors, and presented a proposed

solution to the problem, the Explicit Link Failure Notification (ELFN) protocol,

which uses explicit feedback messages from the link layer about link failures to

adapt TCP’s congestion control mechanisms to prevent spurious timeouts.

• Finally, we demonstrated how link failures in heterogeneous networks containing

links with widely varying bandwidth and/or delay can cause “modal” capacity

shifts that are undetected by TCP, resulting in less-than-ideal throughput, and

present our proposed solution, Multi-Mode TCP (MMTCP), which is capable

of recognizing capacity shifts and adapting TCP’s congestion and flow control

mechanisms to respond more rapidly.

B. Future Directions

There are a number of interesting areas of future work that were identified as a result

of the work in this dissertation.

More research is needed to better understand the complex interactions between

TCP and lower layer protocols when used over mobile ad hoc networks, and to find

solutions to the problems caused by these interactions.

• One such problem that we identified was the interaction between TCP and ARP.

The ARP in the extensions is based on a BSD implementation, with a one-packet

queue and no request timeout mechanism. Thus, packets were regularly dropped

or held indefinitely while awaiting resolution. A more advanced ARP needs to

be employed, such as one that will provide for the queuing of multiple packets

awaiting resolution, with a timeout mechanism to promptly signal failure.

147

• Another problem we identified was the significant impact that route cache man-

agement has on TCP performance. The results suggest that more aggressive

cache management protocols are needed to counter the effects of mobility, such

as the use of adaptive route cache timeouts, negative information, or signal

strength information.

• Interest in the deployment of long-haul high bandwidth terrestrial, orbital, and

inter-planetary wireless networks suggests that research on MM-TCP and sim-

ilar protocols should be continued. In particular, improvements to the mode

adaptation algorithm, as well as analysis of performance in congested networks.

Also, moving MM-TCP’s modal monitoring capability into an external mod-

ule that can be used to monitor routes for short-lived connections, like HTTP

traffic, would be advantageous.

The development of “intelligent” adaptive network protocols is also an interesting

area of future research. In particular, the coordinated interaction of distributed learn-

ing and reasoning algorithms with adaptive network protocols shows great promise

towards providing networks that can autonomously configure and adapt to harsh and

challenging environments.

148

REFERENCES

[1] N. Abramson, “The ALOHA system – another alternative for computer commu-

nications,” in Fall Joint Computer Conference, vol. 37, Montvale, NJ, pp. 281–

285, American Federation of Information Processing Societies (AFIPS), 1970.

[2] G.-S. Ahn, A. T. Campbell, S.-B. Lee, and X. Zhang, “INSIGNIA,” draft-

ietf-manet-insignia-01, Internet Engineering Task Force (IETF), Reston, VA,

October 1999.

[3] Aironet, PC4800 User Guide, 1998. accessed: August 2001,

http://www.aironet.com/support/ftp/.

[4] S. M. Alamouti and S. Kallel, “Adaptive trellis-coded multiple-phase-shift key-

ing for rayleigh fading channels,” IEEE Transactions on Communications,

vol. 42, no. 6, pp. 2305–2314, June 1994.

[5] M. Allman and V. Paxson, “On estimating end-to-end network path proper-

ties,” in Proceedings of the ACM Conference on Communications Architectures

and Protocols (SIGCOMM), Cambridge, MA, pp. 263–274, August 1999.

[6] V. Anantharaman and R. Sivakumar, “A microscopic analysis

of TCP performance over wireless ad-hoc networks,” poster pa-

per, Marina Del Rey, CA, June 2002. accessed: November 2004,

http://portal.acm.org/citation.cfm?id=511375.

[7] B. Awerbuch, D. Holmer, and H. Rubens, “High throughput route selection

in multi-rate ad hoc wireless networks,” Tech. Rep., Computer Science, Johns

Hopkins University, Baltimore, MD, March 2003. Version 2.

[8] D. J. Baker, J. E. Wieselthier, and A. Ephremides, “A distributed algorithm for

scheduling the activation of links in a self-organizing, mobile, radio network,” in

Proceedings of the IEEE International Conference on Communications (ICC),

Philadelphia, PA, pp. 2F.6.1–2F.6.5, June 1982.

[9] B. S. Bakshi, P. Krishna, D. K. Pradhan, and N. H. Vaidya, “Improving per-

formance of TCP over wireless networks,” in Proceedings of the IEEE Inter-

national Conference on Distributed Computing Systems (ICDCS), Baltimore,

MD, pp. 365–373, May 1997.

149

[10] K. Balachandran, S. R. Kadaba, and S. Nanda, “Channel quality estimation

and rate adaption for cellular mobile radio,” IEEE Journal on Selected Areas

in Communications, vol. 17, no. 7, pp. 1244–1256, July 1999.

[11] H. Balakrishnan, V. N. Padmanabhan, and R. H. Katz, “The effects of asym-

metry on TCP performance,” in Proceedings of the ACM International Confer-

ence on Mobile Computing and Networking (MOBICOM), Budapest, Hungary,

pp. 77–89, September 1997.

[12] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. H. Katz, “A com-

parison of mechanisms for improving TCP performance over wireless links,”

in Proceedings of the ACM Conference on Communications Architectures and

Protocols (SIGCOMM), Stanford, CA, pp. 256–269, August 1996.

[13] H. Balakrishnan, S. Seshan, E. Amir, and R. H. Katz, “Improving TCP/IP

performance over wireless networks,” in Proceedings of the ACM International

Conference on Mobile Computing and Networking (MOBICOM), Berkeley, CA,

pp. 2–11, November 1995.

[14] R. K. Balan, B. P. Lee, K. R. R. Kumar, L. Jacob, W. K. G. Seah, and A. L.

Ananda, “TCP HACK: TCP header checksum option to improve performance

over lossy links,” in Proceedings of IEEE INFOCOM, vol. 1, Anchorage, AL,

pp. 309–318, April 2001.

[15] D. A. Beyer, “Accomplishments of the DARPA survivable adaptive networks

SURAN program,” in Proceedings of the IEEE Military Communications Con-

ference (MILCOM), Monterey, CA, pp. 855–862, October 1990.

[16] V. Bharghavan, A. Demers, S. Shenker, and L. Zhang, “MACAW: A media

access protocol for wireless LAN’s,” in Proceedings of the ACM Conference

on Communications Architectures and Protocols (SIGCOMM), London, UK,

pp. 212–225, August 1994.

[17] S. Biaz, G. D. Holland, Y.-B. Ko, and N. H. Vaidya, “Evaluation of protocols

for wireless networks,” in Parallel and Distributed Processing Techniques and

Applications, vol. 4, Las Vegas, NV, pp. 2150–2156, July 1999.

[18] S. Biaz and N. H. Vaidya, “Is the round-trip time correlated with the number of

packets in flight?,” Tech. Rep. 99-006, Department of Computer Science, Texas

A&M University, College Station, TX, March 1999.

150

[19] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. Jetcheva, “A perfor-

mance comparision of multi-hop wireless ad hoc network routing protocols,” in

Proceedings of the ACM International Conference on Mobile Computing and

Networking (MOBICOM), Dallas, TX, pp. 85–97, August 1998.

[20] R. Caceres and L. Iftode, “Improving the performance of reliable transport

protocols in mobile computing environments,” IEEE Journal on Selected Areas

in Communications, vol. 13, no. 5, pp. 850–857, June 1995.

[21] K. Chandran, S. Raghunathan, S. Venkatesan, and R. Prakash, “A feedback

based scheme for improving TCP performance in ad-hoc wireless networks,”

in Proceedings of the IEEE International Conference on Distributed Computing

Systems (ICDCS), Amsterdam, The Netherlands, pp. 472–479, May 1998.

[22] I. Chlamtac and A. Lerner, “Fair algorithms for maximal link activation in

multihop radio networks,” IEEE Transactions on Communications, vol. COM-

35, no. 7, pp. 739–746, July 1987.

[23] T. Clausen and P. Jacquet, “Optimized link state routing protocol,” draft-ietf-

manet-olsr-11, Internet Engineering Task Force (IETF), Reston, VA, July 2003.

[24] CMU Monarch Project, Extension to the ns simulator, November 1998. ac-

cessed: November 2004, http://www.monarch.cs.cmu.edu.

[25] Consultative Committee for Space Data Systems (CCSDS), Space Communica-

tions Protocol Specifications - Transport Protocol (SCPS-TP), September 1997.

accessed: November 2004, http://www.scps.org/scps/.

[26] M. S. Corson, “A triggered interface,” draft-corson-triggered-00, Internet Engi-

neering Task Force (IETF), Reston, VA, May 2002.

[27] D. S. J. D. Couto, D. Aguayo, J. Bicket, and R. Morris, “A high-throughput

path metric for multi-hop wireless routing,” in Proceedings of the ACM Inter-

national Conference on Mobile Computing and Networking (MOBICOM), San

Diego, CA, pp. 134–146, September 2003.

[28] S. Das, C. E. Perkins, and E. M. Royer, “Performance comparison of two on-

demand routing protocols for ad hoc networks,” in Proceedings of IEEE INFO-

COM, vol. 1, Tel-Aviv, Israel, pp. 3–12, March 2000.

151

[29] L. Z. David Clark, Mark Lambert, “NETBLT: A bulk data transfer protocol,”

RFC 998, Internet Engineering Task Force (IETF), Reston, VA, March 1987.

[30] S. Dawkins, G. Montenegro, M. Kojo, and V. Magret, “End-to-end performance

implications of slow links,” RFC 3150, Internet Engineering Task Force (IETF),

Reston, VA, July 2001.

[31] S. Dawkins, G. Montenegro, M. Kojo, V. Magret, and N. H. Vaidya, “End-to-

end performance implications of links with errors,” RFC 3155, Internet Engi-

neering Task Force (IETF), Reston, VA, August 2001.

[32] D. Dharmaraju, A. Roy-Chowdhury, P. Hovareshti, and J. S. Baras, “IN-

ORA: a unified signaling and routing mechanism for QoS support in mobile

ad hoc networks,” in International Conference on Parallel Processing Work-

shops (ICPPW), Vancouver, B.C., Canada, pp. 86–93, August 2002.

[33] R. Dube, C. D. Rais, K.-Y. Wan, and S. K. Tripathi, “Signal stability-based

adaptive routing (SSA) for ad hoc mobile networks,” IEEE Personal Commu-

nications, vol. 4, no. 1, pp. 36–45, February 1997.

[34] R. C. Durst, G. J. Miller, and E. J. Travis, “TCP extensions for space com-

munications,” in Proceedings of the ACM International Conference on Mobile

Computing and Networking (MOBICOM), Rye, NY, pp. 15–26, November 1996.

[35] European Telecommunications Standards Institute (ETSI), Sophia Antipolis,

France, Broadband Radio Access Networks (BRAN); High Performance Radio

Local Area Network (HIPERLAN) Type 1; Functional Specification, July 1998.

accessed: November 2004, http://www.palowireless.com/hiperlan2/.

[36] European Telecommunications Standards Institute (ETSI), Sophia Antipolis,

France, Broadband Radio Access Networks (BRAN); High Performance Radio

Local Area Network (HIPERLAN) Type 2; System Overview, February 2000.

accessed: November 2004, http://www.palowireless.com/hiperlan2/.

[37] M. V. Eyuboglu, G. D. Forney, P. Dong, and G. Long, “Advanced modulation

techniques for V.Fast,” European Transactions on Telecommunications, vol. 4,

no. 3, pp. 9–22, May 1993.

152

[38] G. Fairhurst and L. Wood, “Advice to link designers on link automatic repeat

request (ARQ),” draft-ietf-pilc-link-arq-issues-02, Internet Engineering Task

Force (IETF), Reston, VA, August 2002.

[39] K. Fall and S. Floyd, “Simulation-based comparisons of Tahoe, Reno and SACK

TCP,” Computer Communication Review, vol. 26, no. 3, pp. 5–21, July 1996.

[40] S. Floyd, “Tcp and explicit congestion notification,” ACM Computer Commu-

nication Review, vol. 24, no. 5, pp. 10–23, October 1994.

[41] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, and M. Gerla, “The impact of

multihop wireless channel on TCP throughput and loss,” in Proceedings of IEEE

INFOCOM, vol. 3, San Francisco, CA, pp. 1744–1753, March 2003.

[42] C. L. Fullmer and J. J. Garcia-Luna-Aceves, “Solutions to hidden terminal prob-

lems in wireless networks,” in Proceedings of the ACM Conference on Commu-

nications Architectures and Protocols (SIGCOMM), Cannes, France, pp. 14–18,

September 1997.

[43] J. H. Gass, M. B. Pursley, H. B. Russell, R. J. Saulitis, C. S. Wilkins, and

J. S. Wysocarski, “Adaptive transmission protocols for frequency-hop radio

networks,” in Proceedings of the IEEE Military Communications Conference

(MILCOM), vol. 2, Boston, MA, pp. 282–286, October 1998.

[44] M. Gerla, K. Tang, and R. Bagrodia, “TCP performance in wireless multi-hop

networks,” in Proceedings of the IEEE Workshop on Mobile Computing Systems

and Applications (WMCSA), New Orleans, LA, pp. 41–50, February 1999.

[45] J. D. Gibson, Ed., The Mobile Communications Handbook, 2nd ed. Piscataway,

NJ: IEEE/CRC Press, 1999.

[46] D. L. Goeckel, “Adaptive coding for time-varying channels using outdated fad-

ing estimates,” IEEE Transactions on Communications, vol. 47, no. 6, pp. 844–

855, June 1999.

[47] T. Goff, N. B. Abu-Ghazaleh, and D. S. Phatak, “Analysis of TCP performance

on ad hoc networks using preemptive maintenance routing,” in Proceedings of

the IEEE International Conference on Parallel Processing (ICPP), Valencia,

Spain, pp. 232–239, September 2001.

153

[48] A. Goldsmith and S. G. Chua, “Adaptive coded modulation for fading chan-

nels,” IEEE Transactions on Communications, vol. 46, no. 5, pp. 595–602, May

1998.

[49] M. Günes and D. Vlahovic, “The performance of the TCP/RCWE enhance-

ment for ad-hoc networks,” in Proceedings of the IEEE International Sympo-

sium on Computers and Communications (ISCC), Taormina-Giardini Naxos,

Italy, pp. 43–48, July 2002.

[50] P. Gupta and P. R. Kumar, “A system and traffic dependent adaptive routing

algorithm for ad hoc networks,” in IEEE Conference on Decision and Control,

San Diego, CA, pp. 2375–2380, December 1997.

[51] Z. J. Haas and M. R. Pearlman, “The zone routing protocol (ZRP) for ad hoc

networks,” draft-ietf-manet-zrp-01, Internet Engineering Task Force (IETF),

Reston, VA, August 1998.

[52] J. Hoe, “Improving the start-up behavior of a congestion control scheme for

TCP,” in Proceedings of the ACM Conference on Communications Architectures

and Protocols (SIGCOMM), Palo Alto, CA, pp. 270–280, August 1996.

[53] G. D. Holland and N. H. Vaidya, “Analysis of TCP performance over mobile ad

hoc networks,” in Proceedings of the ACM International Conference on Mobile

Computing and Networking (MOBICOM), Seattle, WA, pp. 219–230, August

1999.

[54] G. D. Holland and N. H. Vaidya, “Analysis of TCP performance over mobile ad

hoc networks : Part I : Problem discussion and analysis of results,” Tech. Rep.

TR99-004, Department of Computer Science, Texas A&M University, College

Station, TX, February 1999.

[55] G. D. Holland and N. H. Vaidya, “Analysis of TCP performance over mobile ad

hoc networks : Part II : Simulation details and results,” Tech. Rep. TR99-005,

Department of Computer Science, Texas A&M University, College Station, TX,

February 1999.

[56] G. D. Holland and N. H. Vaidya, “Impact of routing and link layers on TCP

performance in mobile ad hoc networks,” in Proceedings of the IEEE Wireless

Communications and Networking Conference (WCNC), New Orleans, pp. 1323–

1327, September 1999.

154

[57] G. D. Holland and N. H. Vaidya, “Analysis of TCP performance over mobile

ad hoc networks,” ACM/Baltzer Wireless Networks, vol. 8, no. 2, pp. 275–288,

March 2002.

[58] G. D. Holland, N. H. Vaidya, and P. Bahl, “A rate-adaptive MAC protocol for

multi-hop wireless networks,” in Proceedings of the ACM International Confer-

ence on Mobile Computing and Networking (MOBICOM), Rome, Italy, pp. 236–

251, August 2001.

[59] HomeRF Working Group, HomeRF Specification, July 2002. accessed: Novem-

ber 2004, http://www.palowireless.com/homerf.

[60] IEEE, Std 802.11 Information Technology Telecommunications And Informa-

tion Exchange Between Systems, Local and Metropolitan Area Networks, Spe-

cific Requirements, Part 11: Wireless LAN Medium Access Control (MAC) and

Physical Layer (PHY) Specifications. New York, NY: IEEE Press, November

1997.

[61] IEEE, “High-speed physical layer in the 2.4 GHz band,” in Std 802.11 In-

formation Technology Telecommunications And Information Exchange Between

Systems, Local and Metropolitan Area Networks, Specific Requirements, Part

11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)

Specifications, New York, NY: IEEE Press, September 1999.

[62] IEEE, “High-speed physical layer in the 5 GHz band,” in Std 802.11 Infor-

mation Technology Telecommunications And Information Exchange Between

Systems, Local and Metropolitan Area Networks, Specific Requirements, Part

11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)

Specifications, New York, NY: IEEE Press, September 1999.

[63] IEEE, “Further higher data rate extension in the 2.4 GHz band,” in Std 802.11

Information Technology Telecommunications And Information Exchange Be-

tween Systems, Local and Metropolitan Area Networks, Specific Requirements,

Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer

(PHY) Specifications, New York, NY: IEEE Press, June 2003.

[64] V. Jacobson, R. Braden, and D. Borman, “TCP extensions for high perfor-

mance,” RFC 1323, Internet Engineering Task Force (IETF), Reston, VA, May

1992.

155

[65] V. Jacobson, “Congestion avoidance and control,” in Proceedings of the ACM

Conference on Communications Architectures and Protocols (SIGCOMM),

Stanford, CA, pp. 314–329, August 1988.

[66] V. Jacobson, “Modified TCP congestion avoidance algorithm,” email

to end2end-interest@isi.edu, April 1990. accessed: November 2004,

ftp://ftp.ee.lbl.gov/email/vanj.90apr30.txt.

[67] M. Jain and C. Dovrolis, “End-to-end available bandwidth: Measurement

methodology, dynamics, and relation with TCP throughput,” in Proceedings

of the ACM Conference on Communications Architectures and Protocols (SIG-

COMM), Pittsburgh, PA, pp. 295–308, August 2002.

[68] W. C. Jakes, Ed., Microwave Mobile Communications. Piscataway, NJ: IEEE

Press, 1994.

[69] P. Johanson, T. Larsson, N. Hedman, B. Mielczarek, and M. Degermark,

“Scenario-based performance analysis of routing protocols for mobile ad-hoc

networks,” in Proceedings of the ACM International Conference on Mobile Com-

puting and Networking (MOBICOM), Seattle, WA, pp. 195–206, August 1999.

[70] D. B. Johnson, D. A. Maltz, and Y.-C. Hu, “The dynamic source routing proto-

col for mobile ad hoc networks,” draft-ietf-manet-dsr-08, Internet Engineering

Task Force (IETF), Reston, VA, April 2003.

[71] J. Jubin and J. D. Tornow, “The DARPA packet radio network protocols,”

Proceedings of the IEEE: Special Issue on Packet Radio Networks, vol. 75, no. 1,

pp. 21–33, January 1987.

[72] A. Kamerman and L. Monteban, “WaveLAN-II: A high-performance wireless

LAN for the unlicensed band,” Bell Labs Technical Journal, pp. 118–133, Sum-

mer 1997.

[73] P. Karn, “MACA – a new channel access method for packet radio,” in

ARRL/CRRL Amateur Radio Computer Networking Conference, vol. 1, Lon-

don, Ontario, Canada, pp. 134–140, ARRL, September 1990.

[74] P. Karn, “Advice for internet subnetwork designers,” draft-ietf-pilc-link-design-

15, Internet Engineering Task Force (IETF), Reston, VA, July 2002.

156

[75] D. Kim, C.-K. Toh, and Y. Choi, “TCP-BuS: Improving TCP performance in

wireless ad hoc networks,” in Proceedings of the IEEE International Conference

on Communications (ICC), New Orleans, LA, pp. 1707–1713, June 2000.

[76] M. Kim and B. Noble, “Mobile network estimation,” in Proceedings of the ACM

International Conference on Mobile Computing and Networking (MOBICOM),

Rome, Italy, pp. 298–309, June 2001.

[77] Y.-B. Ko and N. H. Vaidya, “Location-aided routing (LAR) in mobile ad hoc

networks,” in Proceedings of the ACM International Conference on Mobile Com-

puting and Networking (MOBICOM), Dallas, TX, pp. 66–75, October 1998.

[78] R. Krishnan, M. Allman, C. Partridge, and J. P. G. Sterbenz, “Explicit trans-

port error notification (ETEN) for error-prone wireless and satellite networks,”

Tech. Rep. 8333, BBN Technologies, Cambridge, MA, February 2002.

[79] K. Lai and M. Baker, “Measuring bandwidth,” in Proceedings of IEEE INFO-

COM, vol. 1, New York, NY, pp. 235–245, March 1999.

[80] G. S. Lauer, “Packet-radio routing,” in Routing in Communications Networks,

M. E. Steenstrup, Ed., ch. 11, pp. 351–396, Upper Saddle River, NJ: Prentice-

Hall, 1995.

[81] S.-J. Lee and M. Gerla, “Dynamic load-aware routing in ad hoc networks,” in

Proceedings of the IEEE International Conference on Communications (ICC),

vol. 10, Helsinki, Finland, pp. 3206–3210, June 2001.

[82] J. Liu and S. Singh, “ATCP: TCP for mobile ad hoc networks,” IEEE Journal

on Selected Areas in Communications, vol. 19, no. 7, pp. 1300–1315, July 2001.

[83] R. G. Lyons, Understanding Digital Signal Processing. Boston, MA: Addison-

Wesley, 1997.

[84] G. Malkin, “RIP version 2: Carrying additional information,” RFC 1723, In-

ternet Engineering Task Force (IETF), Reston, VA, November 1994.

[85] S. McCreary and K. C. Claffy, “Trends in wide area IP traffic patterns,” 2000.

accessed: November 2004, http://www.caida.org/outreach/papers/2000/.

[86] J. Moy, “OSPF version 2,” RFC 2328, Internet Engineering Task Force (IETF),

Reston, VA, April 1998.

157

[87] P. Newman, “Traffic management for ATM local area networks,” IEEE Com-

munications Magazine, pp. 44–50, August 1994.

[88] V. D. Park and M. S. Corson, “A highly adaptive distributed routing algorithm

for mobile wireless networks,” in Proceedings of IEEE INFOCOM, vol. 3, Kobe,

Japan, pp. 1405–1413, April 1997.

[89] V. D. Park and M. S. Corson, “Temporally-ordered routing algorithm (TORA)

version 1: Functional specification,” draft-ietf-manet-tora-spec-00, Internet En-

gineering Task Force (IETF), Reston, VA, November 1997.

[90] C. Partridge, D. Rockwell, M. Allman, R. Krishnan, and J. Sterbenz, “A swifter

start for TCP,” Tech. Rep. 8339, BBN Technologies, Cambridge, MA, March

2002.

[91] V. Paxson, “End-to-end internet packet dynamics,” IEEE/ACM Transactions

on Networking, vol. 7, no. 3, pp. 277–292, June 1999.

[92] C. E. Perkins, E. Belding-Royer, and S. Das, “Ad Hoc On-Demand Distance

Vector (AODV) routing,” RFC 3561, Internet Engineering Task Force (IETF),

Reston, VA, July 2003.

[93] C. E. Perkins and P. Bhagwat, “Highly dynamic destination-sequenced

distance-vector routing (DSDV) for mobile computers,” in Proceedings of

the ACM Conference on Communications Architectures and Protocols (SIG-

COMM), London, UK, pp. 234–244, August 1994.

[94] J. Postel, “Transmission control protocol,” RFC 793, Internet Engineering Task

Force (IETF), Reston, VA, September 1988.

[95] J. G. Proakis, Digital Communications, 4th ed. New York, NY: McGraw-Hill,

2000.

[96] M. B. Pursley and C. S. Wilkins, “Adaptive transmission for direct-sequence

spread-spectrum communications over multipath channels,” ACM/Baltzer

Wireless Networks, vol. 7, no. 2, pp. 69–77, April 2000.

[97] X. Qiu and K. Chawla, “On the performance of adaptive modulation in cellular

systems,” IEEE Transactions on Communications, vol. 47, no. 6, pp. 884–895,

June 1999.

158

[98] K. Ramakrishnan and R. Jain, “Congestion avoidance in computer networks

with a connecitonless network layer: Part IV: A selective binary feedback

scheme for general topologies,” Tech. Rep. DEC-TR-510, DEC, August 1987.

[99] R. Ramanathan and M. Steenstrup, “Hierarchically-organized, multihop mo-

bile wireless networks for quality-of-service support,” ACM/Baltzer Mobile Net-

works and Applications, vol. 3, no. 1, pp. 101–119, June 1998.

[100] T. S. Rappaport, Wireless Communications: Principles and Practice. Upper

Saddle River, NJ: Prentice Hall, 1996.

[101] T. S. Rappaport, A. Annamalai, R. M. Buehrer, and W. H. Tranter, “Wireless

communications: Past events and a future perspective,” IEEE Communications

Magazine, vol. 40, no. 5, pp. 148–161, May 2002.

[102] E. M. Royer and C.-K. Toh, “A review of current routing protocols for ad-

hoc mobile wireless networks,” IEEE Personal Communications, vol. 6, no. 2,

pp. 46–55, April 1999.

[103] S.-T. Sheu, Y. Tsai, and J. Chen, “MR2RP: the multi-rate and multi-range rout-

ing protocol for IEEE 802.11 ad hoc wireless networks,” ACM/Baltzer Wireless

Networks, vol. 9, no. 2, pp. 165–177, March 2003.

[104] W. R. Stevens, TCP/IP Illustrated, Volume 1: The Protocols. Boston, MA:

Addison-Wesley, 1998.

[105] D. Sun and H. Man, “ENIC - an improved reliable transport scheme for mo-

bile ad hoc networks,” in Proceedings of the IEEE Global Telecommunications

Conference (GLOBECOM), vol. 5, San Antonio, TX, pp. 2852–2856, November

2001.

[106] F. A. Tobagi and L. Kleinrock, “Packet switching in radio channels: Part ii - the

hidden terminal problem in carrier sense multiple-access modes and the busy-

tone solution,” IEEE Transactions on Communications, vol. COM-23, no. 12,

pp. 1417–1433, December 1975.

[107] C.-K. Toh, “Associativity based routing for ad hoc mobile networks,” Wireless

Personal Communications Journal, vol. 4, no. 2, pp. 103–139, March 1997.

159

[108] T. Ue, S. Sampei, N. Morinaga, and K. Hamaguchi, “Symbol rate and modu-

lation level-controlled adaptive modulation/TDMA/TDD system for high-bit-

rate wireless data transmission,” IEEE Transactions on Vehicular Technology,

vol. 47, no. 4, pp. 1134–1147, November 1998.

[109] N. H. Vaidya, P. Bahl, and S. Gupta, “Distributed fair scheduling in a wireless

LAN,” in Proceedings of the ACM International Conference on Mobile Com-

puting and Networking (MOBICOM), Boston, MA, pp. 167–178, August 2000.

[110] F. Wang and Y. G. Zhang, “Improving TCP performance over mobile ad-hoc

networks with out-of-order detection and response,” in Proceedings of the ACM

International Conference on Mobile Ad Hoc Networking and Computing (MO-

BIHOC), Lausanne, Switzerland, pp. 217–225, June 2002.

[111] R. W. Watson, “The Delta-t transport protocol: Features and experience,”

in Proceedings of the IEEE Conference on Local Computer Networks (LCN),

Mineapolis, MN, pp. 399–407, October 1989.

[112] W. T. Webb and R. Steele, “Variable rate QAM for mobile radio,” IEEE Trans-

actions on Communications, vol. 43, no. 7, pp. 2223–2230, July 1995.

[113] XTP Forum, Xpress Transport Protocol Specification: XTP Revision 4, March

1995. accessed: November 2004, http://www.ca.sandia.gov/xtp.

[114] S. Xu and T. Saadawi, “Revealing and solving the TCP instability problem in

802.11 based multi-hop mobile ad hoc networks,” in Proceedings of the IEEE

Vehicular Technology Conference (VTC) – Fall, Atlantic City, NJ, pp. 257–261,

October 2001.

[115] Y. Yi, T. J. Kwon, and M. Gerla, “A load aware routing (LWR) based on local

information,” in Proceedings of the IEEE International Symposium on Personal,

Indoor, and Mobile Radio Communications (PIMRC), vol. 2, San Diego, CA,

pp. G–65–G–69, September 2001.

[116] J. Zyren and A. Patrick, “Tutorial on basic link budget analysis,” Tech. Rep.

AN9804.1, Intersil, Milpitas, CA, June 1998.

160

VITA

Gavin Douglas Holland

HRL Laboratories, LLC

3011 Malibu Canyon Road

Malibu, CA 90265

Education

Ph.D., Computer Science, Texas A&M University.

M.S., Computer Science, Texas A&M University.

B.S., Computer Science, Abilene Christian University.

Recent Publications

Gavin D. Holland and Nitin H. Vaidya, “Analysis of TCP performance over mobile

ad hoc networks,” ACM/Baltzer Wireless Networks, vol. 8, no. 2, pp. 275–288, March

2002.

Gavin D. Holland, Nitin H. Vaidya, and Paramvir Bahl, “A rate-adaptive MAC proto-

col for multi-hop wireless networks,” in Proceedings of the ACM International Confer-

ence on Mobile Computing and Networking (MOBICOM), Rome, Italy, pp. 236–251,

August 2001.

Gavin D. Holland and Nitin H. Vaidya, “Analysis of TCP performance over mobile

ad hoc networks,” in Proceedings of the ACM International Conference on Mobile

Computing and Networking (MOBICOM), Seattle, WA, pp. 219–230, August 1999.

Saad Biaz, Gavin D. Holland, Young-Bae Ko, and Nitin H. Vaidya, “Evaluation of

protocols for wireless networks,” in Parallel and Distributed Processing Techniques

and Applications, vol. 4, Las Vegas, NV, pp. 2150–2156, July 1999.

Gavin D. Holland and Nitin H. Vaidya, “Impact of routing and link layers on TCP per-

formance in mobile ad hoc networks,” in Proceedings of the IEEE Wireless Communi-

cations and Networking Conference (WCNC), New Orleans, pp. 1323–1327, Septem-

ber 1999.

