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ABSTRACT 

 
Parameterization of the Size and Shape of Intracranial Saccular Aneurysms Using 

Legendre Polynomials. (December 2004) 

Cory Wayne Farley, B.S., Texas A&M University 

Chair of Advisory Committee: Jay D. Humphrey 
 

 

Currently, size is used as the predetermining factor to judge whether a saccular aneurysm 

is likely to rupture. Recent studies of the nonlinear mechanics of saccular aneurysms 

suggest that it is unlikely that they enlarge or rupture via material (limit point) or 

dynamic (resonance) instabilities. Rather, there is a growing body of evidence from both 

vascular biology and finite element analyses that implicate mechanosensitive growth and 

remodeling processes. There is, therefore, an even greater need to quantify regional 

multiaxial wall stresses, which because of the membrane-like behavior of aneurysms 

implicates the need for better data on regional surface curvatures. By using a convenient 

function, such as a Legendre polynomial, a quick, accurate approximation can be made 

for the size and shape of a saccular aneurysm that allows for stress analysis that surgeons 

can use to determine if the risk of rupture warrants the risk of treatment. 
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INTRODUCTION 

An aneurysm is a “sac formed by the dilatation of the wall of an artery” (Dorland 

Medical Dictionary). More specifically, an intracranial saccular aneurysm (ISA) is an 

“eccentric localized distended sac affecting only a part of the circumference of the artery 

wall” (Dorland Medical Dictionary). That is, an ISA is a balloon-like dilatation 

protruding from the side of an artery. A small percentage (2-5%) of the population 

harbors an ISA, and only 0.1% of  those aneurysms rupture annually. The effects from a 

rupture, however, are devastating with a mortality rate of 50 to 60% (Orz et al., 1997). 

Conversely, treatments for saccular aneurysms have a morbidity or mortality rate as high 

as 17.5% after 30 days (Wiebers, 1998). There exists, therefore, a need to find ways to 

determine the risk of rupture of an aneurysm quickly and correctly in order to treat all 

dangerous lesions while not putting too many patients at risk. 

 Size is the primary parameter currently used to determine whether an aneurysm is 

likely to rupture or not. Studies show that for large aneurysms (>10mm), treatment is 

required and the risk of rupture is quite high. For smaller aneurysms (<4mm), however, 

size alone would suggest that all of these lesions are safe and unlikely to rupture. In 

reality, some of these small lesions do rupture while larger aneurysms remain stable, 

which implies a new predictor is needed. The geometry of saccular aneurysms has had 

little study with only the most basic parameters, such as head-to-neck ratio, being 

explored as predictors for the rupture of a lesion (Parlea et al., 1999). A few groups have 

implied that size is not the predetermining driver to rupture, but instead suggest the 

______________ 
This thesis follows the style of the Journal of Biomechanics. 
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surface of the aneurysm to have properties following membrane mechanics, which leads 

to curvature being the defining factor driving aneurysms to rupture (Elger et al., 1996; 

Sacks et al., 1999; Vorp et al., 1998). Therefore, there is a need to calculate the 

curvatures of a lesion quickly and accurately. 

 Imaging technology has advanced to the point that a 3-D picture of an aneurysm 

is available, but specific analyses are not. The 3-D coordinates representing the surface 

can be used to calculate the curvatures and stresses in the membrane of the lesion via a 

discrete or an analytical method. A true finite element analysis would require an 

undeformed configuration, which would be very difficult to obtain in vivo. Unloading the 

aneurysm would mean stopping flow in the artery, and the metabolic needs of the brain 

would not be met, resulting in stroke or death. Other methods to describe the stresses in 

the membrane would require knowledge of the properties of the material. Constitutive 

models for saccular aneurysms have progressed recently thanks to the work of 

researchers such as Canham et al. (1999) and Mimata et al. (1997); however, such studies 

are far from being complete enough to be able to accurately estimate the stresses in the 

wall of the aneurysm. To bypass the aforementioned complications, we use a membrane 

model for the wall, which seems to hold for idealized axisymmetric aneurysms (Elger et 

al., 1996; Humphrey, 1998).  

 

Overview of Research Project  

 The goal of this research is to explore a possible way to modify Legendre 

spheroids so as to better approximate the size and shape of ISAs. Towards this end, this 
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thesis first provides a catalog of Legendre spheroids that are representative of possible 

lesions and their respective curvatures. Second, for purposes of illustration, best-fit 

Legendre spheroids are determined for five human lesions, and the principal curvatures 

are computed and compared to prior results by Banatwala (2001). These prior results are 

based on both “unmodified” Legendre spheroids and spline fits. In particular, the 

curvatures are displayed by mapping color-coded values to the surface in a three-

dimensional space. In the future, the curvatures can be used in the context of membrane 

theory to calculate regional stresses.  

 Finally, this thesis also contains a concise program that allows one to enter a data 

file containing three-dimensional Cartesian data points that describe the surface of a 

lesion, and returns a modified Legendre spheroid. This code minimizes error via a 

Marquardt-Levenberg regression. 
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LITERATURE REVIEW 

Recall that if an aneurysm ruptures, there is a 50 percent mortality rate, while a 17 

percent mortality and morbidity rate results from surgical treatment. Due to the risk 

involved with treatment, physicians do not want to merely treat every aneurysm they 

find; however, they must operate on every lesion that has a plausible chance of rupturing. 

Physicians, therefore, rely on diagnostic techniques to determine if a patient requires 

surgical treatment for an aneurysm.  

Currently, the decision on whether or not to perform surgery is based primarily on 

the maximum diameter of the aneurysm even though the ‘critical diameter’ for rupture is 

disputed. While there is general agreement that aneurysms with a maximum dimension 

>10mm should be treated surgically, there is disagreement about aneurysms having a 

maximum dimension <10mm. Zacks et al. (1980) concluded that unruptured aneurysms 

having a maximum diameter <10mm had a very low probability of rupture, as did 

Wiebers (1998). This conclusion is in stark contrast to Crompton (1966), who suggested 

a critical diameter as small as 4mm. Orz et al. (1997) suggested further that the critical 

diameter varied depending on the location of the aneurysm and concluded that lesions 

located on the anterior communicating artery are most likely to rupture; they 

recommended surgery for all of these lesions, regardless of size. In contrast, based on a 

retrospective study, Hademenos et al. (1998) concluded that lesions of the posterior 

intracranial circulation are more prone to rupture.  

The use of size as the best indicator of rupture-potential is due to the fact that it is 

the easiest property of an aneurysm to measure.  The law of Laplace relates the in-plane 
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Cauchy stress σ  to the distension pressure P, current radius a, and current thickness h for 

an inflated, thin-walled, spherical structure, 

 σ =
Pa

h2
. (1) 

Typically, the systolic blood pressure of a patient with an aneurysm would be on 

the order of 120 to 150 mmHg. Although these values are not tremendously different, 

they result in a 25% difference in the computed stress. Wall thickness is less well known, 

but could easily range from 20 to over 200 µm, in turn affecting the computed values of 

stress by an order of magnitude. Given that the maximum dimension of a saccular 

aneurysm can range from 1 to 20 mm, this too could affect the computed stress by an 

order of magnitude. Due to the inability of measuring wall thickness clinically, and the 

much more modest effect of pressure on the stress, most attention has focused on 

correlating rupture-potential with the diameter of the lesion. This emphasis is based, 

however, on a misinterpretation of the law of Laplace. Equation 1 is better interpreted as  

 σ
κ

=
P
h2

, (2) 

 where κ is the curvature; that is,  from equation 1 is actually the radius of curvature, 

not the radius. Only in special geometries (e.g. sphere, cylinder) does 1

a

/κ ≡ radius, thus 

associating the stresses with a value for the maximum diameter applies for special 

geometries. As applied clinically, therefore, the law of Laplace assumes a spherical 

geometry, which approximates aneurysmal geometry only in a small sub-class of lesions. 

In addition, the law of Laplace predicts uniform stress fields, which does not explain the 

propensity of aneurysms to rupture at the fundus. Based on more realistic geometries,  
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Humphrey and Kyriacou (1996) and Shah et al. (1997) demonstrated the importance of 

curvatures in determining stress in particular sub-classes of saccular lesions.  

In the case of axisymmetry, for example, the principal stress resultants, T1 and T2 

can be computed in terms of the maximum and minimum curvatures, κ1 and κ2, 

respectively, 

 T P
1

22
=

κ
 and T P

2
2

1

2

1
2

= −
F
HG

I
KJκ

κ
κ

, (3) 

which not only reveals the importance of the curvatures, but also shows that in special 

cases, stress resultants can indeed be computed independent of the properties of the 

material and knowledge of the undeformed configuration (i.e., the principal curvatures κ1 

and κ2 are defined in the current configuration). The equations for the principal stress 

resultants for an ellipsoidal geometry, for example, are given by: 

  
( )

2

1 1 22 2 2 22 sin cos

PaT
a bφ φ

=
+

, (4) 

and 

  
( )

2 2 2 2

2 1 2 22 2 2 2

sin cos1
2sin cos

Pa a bT
ba b

2φ φ

φ φ

⎡ ⎤ ⎛ +⎢ ⎥= −⎜⎢ ⎥ ⎝ ⎠+⎣ ⎦

⎞
⎟ , (5) 

where  and  are the deformed major and minor dimensions, respectively, and a b

φ π∈ 0,  is the angle between the axis of symmetry and the line connecting the origin 

and the point of interest (Humphrey, 1998). The result for a sphere is recovered when 

. Thus, stress resultants can be calculated easily when one can model the lesion by a 

spherical or ellipsoidal geometry.  

a b=
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Although spherical and ellipsoidal geometries can approximate well certain 

subclasses of lesions, many other lesions are clearly more complex in shape. There is a 

need, therefore, to account for such complexities. In this thesis, Legendre functions of the 

first kind are introduced to provide improved descriptions of aneurysmal geometry while 

still providing an equation that can be analyzed easily. These functions have the added 

benefit that very different shapes can be described via a few parameters. Even in the 

absence of in vivo data, these equations can be used to create idealized sub-classes of 

aneurysms for the purpose of analysis. 

Based on this literature search, very little work has been done on the calculations 

of curvature from clinical data on aneurysms.  The exception is the work done by Sacks 

et al. (1999) on abdominal aortic aneurysms, which presented a method for calculation of 

curvatures from magnetic resonance angiography (MRA) data.  Marrisa Banatwala, a 

former masters student in our lab, applied this technique to ISA’s. This thesis will 

compare the results of her work to curvatures calculated analytically from the Legendre 

polynomials following the method of Kraus (1967). 
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PRIOR WORK 

 Banatwala (2001) acquired input data in the form of serial cross-sectional MRA 

(magnetic resonance angiography) films from five patients treated at the Malencot 

Institute at Washington University in St. Louis. The MRA films were photographed with 

black and white film and then scanned into a computer (Figure 1).  

 

 

 

Figure 1.  Sample of the MRA images used by Banatwala (2001).  From top left to bottom right one 

sees a sequence of 2-dimensional views in the x-y plane, each separated by 0.9mm in a superior-

inferior direction. 
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The boundaries for these aneurysms were then manually selected and digitized using 

Scion Image (Scion Corporation, MD). These boundary points effectively define the 

surface of the aneurysm and allow for the interpolation of remaining points on the surface 

as well as calculation of specific values for curvature. The digitized surface points were 

smoothed using local biquadric surface patch (Sacks et al., 1999; Breau et al., 1991) and 

then read into IDEAS, a solid-modeling package produced by SDRC (Columbus OH). 

Through the use of splines and a loft procedure within IDEAS, three-dimensional 

reconstructed surfaces were created (Figure 2). 

 

 

 

Figure 2.  Final surface of a human intracranial saccular aneurysm. 

 

 

Banatwala then used the splines to try to estimate the local curvatures (Figure 3). 
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Curvature Range Color Number 
of Points

1κ <-1 N/A 0 

-1< 1κ <-0.75 N/A 0 

-0.75< 1κ <-0.5 N/A 0 

-0.5< 1κ <-0.25 N/A 0 

-0.25< 1κ <-0.125 N/A 0 

-0.125< 1κ <0 Violet 7 

0< 1κ <0.125 Tan 10 

0.125< 1κ <0.25 Dark blue 57 

0.25< 1κ <0.375 Dark green 98 

0.375< 1κ <0.5 Light green 130 

0.5< 1κ <0.75 Light orange 98 

0.75< 1κ <1 Dark orange 21 

1< 1κ  Red 11 

Figure 3. Curvature ( ) values for Aneurysm #3 color-coded by range. 1κ

 

 

With computation times on the order of ten hours, this method for calculating the 

curvatures was very time consuming and has a very low feasibility of being used online 

while the patient is in the MRI machine. In an effort to achieve a reasonable computation 

time while maintaining as much accuracy as possible, Legendre spheroids were used to 

estimate the surface of the lesion.  

LEGENDRE POLYNOMIALS 

 Curvatures can also be calculated given a suitable equation to describe the 

surface.  The often-used assumption is that these lesions can be modeled as truncated 
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spheres or ellipses and thus, associated equations are used when analyzing idealized 

lesions. Legendre functions of the first kind, however, are able to provide more accurate 

descriptions of true aneurysm geometry while still providing an equation that can be 

fairly easily analyzed.  These equations have the added benefit that the shape can be 

dramatically altered by changing a small number of parameter values.  Even in the 

absence of in vivo data, these equations can be used to create idealized versions of several 

classes of aneurysms for analysis purposes. 

Legendre Function 

 
Legendre functions are of the form  

  ( ) ( ) ( ) ( )221 1
mmmm

n m

dP x x P x
dx

= − − n  ( 6) 

where and are integer values, m n ( )nP x  is a Legendre polynomial, and x  is any 

argument (Zhang and Jin, 1996).  For this research, the boundary of the lesion is 

described by (Von Seggern, 1990) 

           r c P mn
m= + ⋅ ⋅β φ1 cos cosb g b gc hθ [ ]0, 2θ π∈ [ ]0,φ π∈  ( 7) 

where  is the radius, r θ  and φ  are angles in spherical coordinates,  is the associated 

Legendre function of the first kind, and 

Pn
m

, , ,c nβ  and  are shape parameters.  Note that φ 

represents the azimuthal angle. If the center point and the preceding equation for the 

radius are known, then the shape can be defined at any value of 

m

θ and φ . 

 To demonstrate the Legendre function, let n = 2 and m = 1, then the solution to 

equation  6 is 
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  ( ) ( )1 21
2 3 1P x x x= − − 2 . ( 8) 

Substituting into equation  7 gives 

  r c m= + − −
F
HG

I
KJ ⋅

F
HG

I
KJβ φ φ1 3 1 2

1
2cos cos cosb gc h b gθ . ( 9) 

 

The Legendre functions were chosen due to their ability to model a wide range of shapes.  

These shapes range from a simple pear-shape, which could easily be imagined as 

representative of a somewhat ideal aneurysm, to more complex shapes that more 

accurately model certain human lesions.  Figure 4 demonstrates some of the shapes that 

can be obtained by varying the values of  and .  The left image has values of =3 

and =0, the middle image has values of =2 and =1, and the right image has values 

of =3 and =1.   

n m n

m n m

n m

 

 

Figure 4.  Variability capable by our chosen function by altering values of  and . n m

 

Varying the value of β  will change the overall size of the figure but not the shape. 

Varying the value of  will alter the shape of the figure still further.  Figure 5 c
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demonstrates four very different shapes that can be obtained by keeping =3 and =0 

(see Figure 4-left) while changing the value of . Clearly a higher value of  gives a 

greater degree of distortion from a spherical geometry. 

n m

c c

 

 

            c = 0.1                       c = 0.2                          c = 0.4                       c = 0.6 

Figure 5.  Effects of varying c  while keeping other parameters constant. ( 3, 0n m= = ) 

 

The Legendre polynomials were converted from spherical (r,θ,φ) to Cartesian (x,y,z) 

coordinates,  

  R i j k= + +x y z , (10)  

where    

  
x r
y r

z r

=
=

=

cos sin
sin sin

cos

θ φ
θ φ

φ
 

and then modified further by multiplying each component by a scalar (αx,γy,δz), 

  R i j k= + +α γ δx y z , (11) 

 effectively stretching the spheroid in the three orthogonal directions. 
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 The objective was to minimize the difference between the actual radius calculated 

from the MRA data at each point and the radius calculated from the Legendre-based 

function. A Marquardt-Levenberg regression code written in MATLAB (see Appendix 3) 

was employed to determine those parameter values that minimized the sum of squares 

error (SSE), namely 

  SSE r rth= −∑b g2 . (12) 

The parameters used to minimize this error were the shape parameters m, n, c, α, γ, δ, the 

size parameter β, the location parameters xo, yo, zo, and the orientation parameters rot1, 

rot2, rot3. Once again, m, n define the Legendre polynomial, c determines the amount of 

perturbation from a sphere, α, γ, δ are the stretches in the x, y, and z directions 

respectively and β merely enlarges the spheroid without affecting the shape. The three 

parameters xo, yo, and zo define the location of the center of the spheroid, and rot1, rot2, 

and rot3 are the Euler angles for the rigid rotation of a 3-D shape. The mean squared 

error (MSE),  

  SSEMSE
N

= , (13) 

was used as the measure of fit by defining the root mean squared error (RMS) as 

  RMS MSE= , (14) 

where N is the number of data points. Note that the values for RMS have the units of 

millimeters (mm). 
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METHODS 

 The input data from the serial cross-sectional MRA films from five patients was 

studied using the MATLAB code and a Legendre spheroid was defined for each of the 

five aneurysms. 

Once a Legendre spheroid fits the data (i.e. models the aneurysm), curvatures can 

be calculated analytically using standard computations. Once again, consider a Legendre 

function Pn
m and a spheroid of radius, r, and β = 1 given by 

   (15) r cP mn
m= +1 cos cosφb g b θg

k

where c is an arbitrary constant. Referring the spherical surface (r, θ, φ) to Cartesian 

coordinates (x, y, z), the surface can be defined to be  

 R i j= + +r r rsin cos sin sin cosφ θ φ θ φ   

d

. (16)  

 An infinitesimal movement on the surface can be described by  

 d dR R R= +, ,θ φθ φ , (17)  

 where R,θ and R,φ are the base vectors defined by 

  R R,θ θ
=

∂
∂

, and R R,φ φ
=

∂
∂

, (18) 

which are easily computed from equations 10 and 11. Hence, 

  
R i

k

, sin cos sin sin sin sin sin cos

cos ,

θ θ
φ θ φ θ

θ
φ θ φ θ

θ
φ

=
∂
∂

− jF
HG

I
KJ +

∂
∂

+F
HG

I
KJ

+
∂
∂

r r r r

r  
 (19)  

and  
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R i

k

, sin cos cos cos sin sin cos sin

cos sin ,

φ φ
φ θ φ θ

φ
φ θ φ θ

φ
φ φ

=
∂
∂

+
F
HG

I
KJ +

∂
∂

+
F
HG

I
KJ

+
∂
∂

−
F
HG

I
KJ

r r r r

r r

j
 (20) 

where 

  
∂
∂

= −
r cP m mn

m

θ
φ θcos sinb g b g , and ∂

∂
=

∂
∂

r c
P

mn
m

φ
φ

φ
θ

cos
cosb g b g

2φ

. (21) 

Next, define dS to be the magnitude of the vector dR. Squaring dS yields the first 

fundamental form 

  , (22) dS d d E d Fd d G d2 2 2= ⋅ = + +R R θ θ φb g b g
where E, F, and G are defined as 

  E F G= ⋅ = ⋅ = ⋅R R R R R R, , , , , , , ,θ θ θ φ φ φand .  (23) 

The unit normal vector to the surface, n, can be found using 

  n
R R

R R

R R
=

×

×
=

×

−

, ,

, ,

, ,θ φ

θ φ

θ φ

EG F 2
. (24) 

The curvature vector k is given by dt/ds where t is the unit tangent vector. Dividing k 

into its components yields 

  k t k k= = +
d
dS n t , (25) 

where kn and kt are the normal and tangential components of the curvature vector, or the 

normal curvature vector and the tangential curvature vector, respectively. For the 

purposes of this paper, only the normal curvature is considered. Since kn is normal to the 

surface, it is proportional to n by 



 17

  kn K nn= − , (26) 

where Kn is called the normal curvature. Since n and t are perpendicular, n⋅t = 0. Taking 

the derivative with respect to S yields 

  
d
dS

d
dS

n t t n⋅ + ⋅ = 0 . (27) 

Combining these yields a definition for Kn, 

  K d d
d dn =

⋅
⋅

R n
R R

. (28) 

Note that dn can be described by dn = n,θdθ + n,φdφ and recall dR = R,θdθ + R,φdφ. 

Using these relationships, Kn can now be computed as (Kraus, 1967) 

  K
L d Md d N d
E d Fd d G dn =

+ +

+ +

θ θ φ
θ θ φ
b g b g
b g b g

2 2

2

2
2

φ
φ 2 , (29) 

where L, M, and N are second fundamental magnitudes given by 

  L = ⋅ = − ⋅R n R n, , ,θ θ θθ , 

M = ⋅ + ⋅ = −
1
2

R n R n R n, , , , ,θ φ φ θ θφd i ⋅ , (30) 

                                        and N = ⋅ = − ⋅R n R n, , ,φ φ φφ , 

where R,θθ , R,φφ , R,θφ are 

  R R,φφ φ
=

∂
∂

2

2 , R R,θθ θ
=

∂
∂

2

2 , and R R,θφ θ φ
=

∂
∂ ∂

2

. (31) 

The principal curvatures are the maximum or minimum values of Kn. Define the direction 

to be λ=dφ/dθ and Kn becomes 
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  K L M N
E F Gn λ λ λ

λ λ
b g = + +

+ +
2
2

2

2 . (32) 

The normal curvature reaches a maximum or minimum where dKn/dλ = 0 or  

  0 2 . (33) 22= + + + − + + +E F G M N L M N F Gλ λ λ λ λ λc hb g c hb g2

Reducing yields 

  E F M N F G L M+ + = + +λ λ λ λb gb g b gb g , (34) 

or 

  , (35) 0 2= − + − + −MG NF LG NE LF MEb g b g bλ λ g
and using the quadratic equation λ becomes 

  λ λ1 2

2 4
2

,l q b g b g b gb
b g=

− − ± − − − −

−

LG NE LG NE MG NF LF ME
MG NF

g
, (36) 

where λ1 and λ2 are the directions of the principal curvatures. Substituting them into 

Equation 27 yields the principal curvatures 

  κ λ λ
λ λ1 1

1
2

1 1
2

2
2

≡ =
+ +
+ +

K L M N
E F Gnb g 1  and κ λ λ

λ λ2 2
2

2

2 2
2

2
2

≡ =
+ +
+ +

K L M N
E F Gnb g 2 . (37) 
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RESULTS 

 Banatwala (2001) was able to generate an improvement on the MSE of 

approximately 30% over the current standard of the sphere by using an unmodified 

Legendre spheroid. By modifying the Legendre function via scalar multiples in the 

primary coordinate directions, this research was able to generate a further improvement 

of 1 to 11%. This improvement totals from 26 to 170% over the sphere for the five 

lesions modeled. Table 1 shows the parameter values for each of the 5 lesions. The first 

column shows the values obtained by Banatwala’s genetic search algorithm, the second 

column displays the values obtained by the current Marquardt-Levenberg search 

algorithm for an unmodified Legendre spheroid, and the final column displays the values 

obtained by for a modified Legendre spheroid. 

The curvature values for all five lesions are shown in graphical form in the 

appendix. For Aneurysm #3, the modified Legendre spheroids are shown in figures 6 and 

7 with the values for the curvatures mapped onto the surface and delineated by color. 
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Table 1: Tabulated results from the various modeling methods. 

 
Prior Unmodified Modified Prior Unmodified Modified Prior Unmodified Modified

c 0.28 0.29 0.0099 0.22 0.9421 0.0231 0.06 0.1174 0.0116
beta 4.03 4.01 2.1185 6.53 5.79 3.3539 3.99 4 2.19

m 1 1 2 0 0 0 1 1 0
n 2 2 4 2 1 3 2 2 3

alpha x 1 1.71 x 1 2.1948 x 1 1.8
gamma x 1 2.63 x 1 2.4612 x 1 1.48

delta x 1 1.17 x 1 1.7276 x 1 2.13
xo 64.36 0.08 0.03 65.09 -2.41 -0.03 25.97 -0.03 0.065
yo 38.46 0.09 -0.1044 61.79 -3.2 -0.25 31.32 -0.11 -0.074
zo -18.86 0.06 0.0476 5.5 3.45 -0.1133 3.87 -0.04 -0.041

rot1 0.5824 -1.3 0.7055 2.5831 0.83 -0.0063 2.4817 -1.58 -0.78
rot2 3.4477 -1.47 0.025 3.2463 0.1679 -0.0777 0.0466 -1.36 -0.02
rot3 2.2759 -1.15 -1.75 2.1468 -0.8558 -0.0628 3.8094 0.866 -1.53

RMS ( mm ) 0.4083 0.4015 0.3667 0.4821 0.4599 0.4217 0.2764 0.2653 0.2625
improv. over  
unmodified 9.48% 9.07% 1.08%

Prior Unmodified Modified Prior Unmodified Modified
c 0.16 0.1172 0.1582 0.57 2.11 0.1097

beta 10.74 10.38 3.42 2.75 1.84 1.71
m 0 0 0 0 0 0
n 4 4 4 2 1 4

alpha x 1 3.04 x 1 2.6928
gamma x 1 3.39 x 1 2.2223

delta x 1 2.86 x 1 1
xo 15.36 -0.69 0.0867 53.52 -2.96 -0.0366
yo 13.12 1.07 -0.533 39.65 2 -0.1095
zo 30.87 -0.1178 -0.325 36.03 1.21 -0.1564

rot1 2.2864 -2.49 -0.3589 3.3859 -5.04 -0.0143
rot2 5.4978 -5.13 -0.4586 5.5501 -5.76 -0.472
rot3 0.8901 -3.89 1.71 1.1345 -5.7 -0.7619

RMS ( mm ) 0.8727 0.8707 0.8123 0.2975 0.3180 0.2853
improv. over  
unmodified 7.18% 11.45%

Aneurysm #3 Aneurysm #1 

Aneurysm #4 Aneurysm #5

Aneurysm #2
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Figure 6: For Aneurysm 3, the values of the maximum curvature values. κ1, range from 0.2 to 0.46. 

 

 

Figure 7: For Aneurysm 3, the values of the minimum curvature values. κ2, range from 0.14 to 0.32. 
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 For comparison, a histogram of the curvatures found by each of the three methods 

is shown for Aneurysm #3 in figures 8 and 9 below. 
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Figure 8: Aneurysm 3 Kappa 1. 
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Figure 9: Aneurysm 3 Kappa 2. 

 

 

 Finally, Table 2 lists the computation times in seconds for each of the 5 lesions. 

Note that the genetic algorithm used by Banatwala (2001) required ten hours, not 

seconds, of computing time. 

 

 

Table 2: Computation times for modified and unmodified Legendre spheroids. 

  Plot Curvatures Total 
  Unmodified Modified Unmodified Modified Unmodified Modified 
1 1.5 39 2 87 3.5 126 
2 2.2s 7.5 6s 35 8.2s 42.5 
3 1.6 8.4 7.5 50 9.1 58.4 
4 4s 9.6s 24s 1.7 28s 1.9 
5 2.4s 12s 3s 11s 5.4s 23s 



 24

DISCUSSION 

 Saccular aneurysms have long been approximated as spheres for the sake of 

simplicity (Scott et al., 1972; Canham and Ferguson, 1985; Humphrey and Kryiacou 

1996; Chitanvis et al. 1997; Shah and Humphrey 1999). Given this approximation, we 

have obtained some useful information,yet due to the membrane-like character, we know 

that regional curvatures are key (Shah et. al., 1997). Indeed, as early as 1962, geometry 

and location were considered important in discerning the risk of rupture (Crompton, 

1962; Ujiie et. al., 1993). Ujiie et al. (1999) claimed further that aneurysms with a ratio of 

maximum dimension to minimum dimension greater than 1.6 should be treated regardless 

of diameter. In hindsight, the common neglect of shape (curvatures) has resulted, in part, 

in the controversy over a critical size, and its neglect explains in part the finding by the 

international study on unruptured intracranial saccular aneurysms (ISUIA) that size in no 

way predicts risk of rupture in lesions less than 10mm in diameter (Weibers, 1998). 

Consideration of shape and, in particular, curvatures rather than maximum dimension, 

implies the need for a more accurate descriptor than the default spherical shape for an 

aneurysm. By modeling aneurysms with more complicated shapes using Legendre 

spheroids, we are now able to begin to estimate the curvature at specific locations on a 

lesion. The average RMS values were 0.47 mm for the standard Legendre function and 

0.81 mm for the sphere for a 43% improvement. By modifying the Legendre spheroid, 

we were able to further improve the RMS by another 1 to 11%. This percentage may not 

seem drastic, but the curvatures for Aneurysm #3, which showed the 1% improvement, 

changed by as much as 35% for κ1. This 35% change has a significant impact on the 
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stress of the membrane (see equation 3). RMS values for the modified Legendre spheroid 

were still relatively high at 0.26 to 0.8mm when compared to current MR resolution at 

0.2 mm; this suggests that there is still improvement needed for the analytical model to 

fully exploit current technology.  

 Non-conforming surface patches based on splines have a tendency to create 

anomalies that can be misleading for understanding the characteristic shapes of the 

aneurysm. Conversely, the Legendre spheroids smooth the surface, which can result in 

the removal of certain features that may be important in understanding the true nature of 

the aneurysm. A comparison between the Legendre spheroid and splines in Figure 8 

shows the mean value of the maximum curvatures (κ 1 ) correspond well; however, the 

curvature values for the Legendre spheroid have a smaller variance due to the smoothing 

effects. In Figure 9, the mean value of the minimum curvatures (κ 2 ) compare less 

favorably. The Legendre spheroid has positive curvatures throughout, while the spline fit 

has a large number of negative curvatures as well. Viewing the reconstruction of the 

lesion by eye, there are some major features that seem like they should produce some 

negative curvatures, but not on the scale that the spline fit produces. The increased 

number of negative curvatures may be a result of the undulations induced by the spline 

fitting. The function chose to fit the data has a significant impact on the shape and error 

produced. We chose Legendre spheroids because of their simplicity, but more complex 

functions can be used to gain higher degrees of accuracy. In the future, therefore, we 

should seek generalizations of equation 10 or other classes of functions. 
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 Time is another major factor in deciding which model would be most appropriate 

to use for modeling a lesion. The current standard of a sphere would require a search for 

only one parameter, the radius, which would result in basically zero computation time. 

Modifying the sphere by means of a Legendre polynomial decreases the RMS error by 15 

to 61% and increases the computation time to 2.7 minutes. Further modification by 

multiplying each of the three Cartesian directions by a scalar reduces the RMS error by 

another 1 to 11% for a total improvement of 26 to 170% over the sphere. Computation 

times are increased by an order of magnitude, however, to an average of 45 minutes. The 

surface patch technique, which seems to be the safest estimate, increases computation 

time by another order of magnitude to 10 hours. 



 27

CONCLUSIONS 

 Advances in vascular biology reveal a ubiquitous sensitivity of vascular cells 

(endothelial, smooth muscle, and fibroblasts) to even slight changes in their mechanical 

environment. In response to such changes, cells alter their production of vasoactive 

molecules, growth factors, cytokines, and proteases as well as their synthesis of matrix. 

Such changes likely control the growth and remodeling of saccular aneurysms and 

thereby likely control the rates and extent of enlargement as well as their rupture-

potential (Ryan and Humphrey, 1999). There is a need, therefore, to track better the 

regional multi-axial mechanical stresses. Because of their membrane character, the 

stresses in saccular aneurysms are likely governed in large part by regional curvatures, 

which are potentially measurable by combining surface-fitting techniques with advances 

in clinical imaging such as MRA. We have shown that a modified Legendre polynomial 

representation of lesion shape can be obtained from clinical data and that it yields a 

marked improvement over the status quo, the maximum dimension based on a spherical 

template. There is a need, however, for further research to explore other analytically 

tractable functions to improve further our ability to assess aneurysmal shape in vivo. 
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APPENDIX 1 

 The reconstruction of the other four digitized aneurysms are shown with the 

curvature values mapped on the surface by color. Each aneurysm is shown with the 

maximum (κ1) and minimum (κ2) curvature values. 
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 Aneurysm 1, κ1

  
Aneurysm 1, κ2
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Aneurysm 2, κ1

  
Aneurysm 2, κ2
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Aneurysm 4, κ1

  
Aneurysm 4, κ2
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Aneurysm 5, κ1  

 

Aneurysm 5, κ2
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APPENDIX 2 

 A catalog of unmodified Legendre spheroids is presented giving an idea of the 

variety of shapes that can be created with this method and how each parameter affects the 

spheroid. 
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m=0 n=2 
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m=0 n=4 
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m=1 n=3 
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m=4 n=4 
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APPENDIX 3 

 The Maple and MATLAB code used to obtain the results in this paper. The 

MATLAB code was used to obtain the parameters, while the Maple code was used to 

draw the figures with the curvature color map. The first two codes are written in 

MATLAB and the third code is written in MapleV version 4. 
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%This MATLAB code uses a Levenburg-Marquardt method to find the 13 parameters for the modified 
%Legendre fit. 
%by Cory Farley 
 
%Originally, this code found a set of parameters using a loose tolerance(TolFun) and used them as guesses 
%in a second search. 
%The resulting parameters were not signicifanctly different so the second parameter search has been cut 
%out. 
 
%First, clear the variables in memory 
clear 
 
%Then set your search parameters 
options1=optimset('lsqnonlin'); 
options_mods1=optimset('TolX',1e-12,'MaxIter',1e10,'MaxFunEvals',1e10,'TolFun',1e-
4,'LevenbergMarquardt','on'); 
options1=optimset(options1,options_mods1); 
 
%Load in the data from a txt file kept in the working directory.(The same directory in which this file is kept 
%for my syntax) 
data=load('data4.txt'); 
 
 
%In this loop, every Legendre polynomial from n=1 to 4 and m=0 to n. I couldnt find a way to designate m 
%and n as integers so I was forced to do the parameter search 14 times. It calls the MATLAB file 'errfunct' 
%as the model for the Lev-Mar search. 
b=1; 
for n1 = 1:1:4 
    for m1=0:1:n1 
        for n2 = 1:1:4 
            for m2=0:1:n2         
        m1=m1,n1=n1,m2=m2,n2=n2 
        [coeff] = lsqnonlin('errfunct',[.1,1,m1,n1,.1,1,m2,n2,0,0,0,0,0,0],[0 0 0 0 0 0 0 0],[],options1,data); 
        error=feval('errfunct',coeff,data); 
        error_total(b)=sum(error); 
        coeff_2(b,:)=coeff; 
        b=b+1;           
            end 
        end 
    end 
end 
 
[smallest1,index1] = min(error_total); 
errtot=error_total' 
mse=smallest1/length(error) 
coefficients1 = coeff_2(index1,:)' 
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%Parameter search model (MATLAB) 
%by Cory Farley 
 
function [Err] = errfunct(C,data) 
 
%reads in the datapoints and guess values 
r=data(:,1);,theta=data(:,2);,phi=data(:,3); 
c1=C(1);,beta1=C(2);,m1=round(C(3));,n1=round(C(4));,c2=C(5);,beta2=C(6);,m2=round(C(7)); 
n2=round(C(8));,xo=C(9);,yo=C(10);,zo=C(11);,rot1=C(12);,rot2=C(13);,rot3=C(14); 
 
%sets the legendre values 
leg1=legendre(n1,cos(phi));leg2=legendre(n2,cos(phi)); 
r_temp = beta1*(1+c1*leg1(m1+1,:)'.*cos(theta*m1))+beta2*(1+c2*leg2(m2+1,:)'.*cos(theta*m2)); 
 
%switches to cartesians 
x_temp = r_temp .* cos(theta) .* sin(phi); 
y_temp = r_temp .* sin(theta) .* sin(phi); 
z_temp = r_temp .* cos(phi); 
 
%applies an euler angle rigid body rotation 
x=(x_temp*(cos(rot2)*cos(rot1)*cos(rot3)-
sin(rot2)*sin(rot3))+y_temp*(sin(rot2)*cos(rot1)*cos(rot3)+cos(rot2)*sin(rot3))-
z_temp*(sin(rot1)*cos(rot3))); 
y=(x_temp*(-cos(rot2)*cos(rot1)*sin(rot3)-sin(rot2)*cos(rot3))+y_temp*(-
sin(rot2)*cos(rot1)*sin(rot3)+cos(rot2)*cos(rot3))+z_temp*(sin(rot1)*sin(rot3))); 
z=(x_temp*(cos(rot2)*sin(rot1))+y_temp*(sin(rot2)*sin(rot1))+z_temp*cos(rot1)); 
 
%applies a rigid body translation and finds a value for the radus from the model 
r_th = sqrt((x-xo).^2+(y-yo).^2+(z-zo).^2); 
 
%compares the radius form the model to the radius from the data points 
Err = (r-r_th).^2; 
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#This code plots the curvature maps in Maple. 
 
restart;with(orthopoly):with(linalg):with(plots): 
c := 0.0099; 
beta := 2.1185; 
m := 2; 
n := 4; 
alpha := 1.7104; 
gama := 2.6317; 
delta := 1.1725; 
rot1 := 0.7055; 
rot2 := 0.025; 
rot3 := -1.7527; 
 
legpoly[m][n]:=(-1)^m*(1-x^2)^(m/2)*diff(P(n,x),x$m); 
x:=cos(phi); 
r:=beta*(1+c*legpoly[m][n]*cos((theta+3*Pi/2)*m)); 
r_temp := subs(1-cos(phi)^2=sin(phi)^2,r); 
x_temp := r_temp * cos(theta) * sin(phi): 
y_temp := r_temp * sin(theta) * sin(phi): 
z_temp := r_temp * cos(phi): 
 
x:=alpha*(x_temp*(cos(rot2)*cos(rot1)*cos(rot3)-
sin(rot2)*sin(rot3))+y_temp*(sin(rot2)*cos(rot1)*cos(rot3)+cos(rot2)*sin(rot3))- 
 
z_temp*(sin(rot1)*cos(rot3))): 
 
y:=gama*(x_temp*(-cos(rot2)*cos(rot1)*sin(rot3)-sin(rot2)*cos(rot3))+y_temp*(-
sin(rot2)*cos(rot1)*sin(rot3)+cos(rot2)*cos(rot3))+z_temp*(sin(rot1)*sin(rot3))): 
 
z:=delta*(x_temp*(cos(rot2)*sin(rot1))+y_temp*(sin(rot2)*sin(rot1))+z_temp*cos(rot1)): 
PP:=[x,y,z]; 
plot3d(PP,theta=0..2*Pi, phi=0..Pi, scaling=constrained, style=patch); 
PP1:=diff(PP,theta): 
PP2:=diff(PP,phi): 
PP11:=diff(PP1,theta): 
PP22:=diff(PP2,phi): 
PP12:=diff(PP1,phi): 
E:=dotprod(PP1,PP1): 
F:=dotprod(PP1,PP2): 
GG:=dotprod(PP2,PP2): 
n:=normalize(crossprod(PP1,PP2)): 
LL:=dotprod(PP11,n): 
M:=simplify(dotprod(PP12,n)): 
N:=dotprod(PP22,n): 
 
lambda1:=1/2/(-N*F+M*GG)*(-LL*GG+N*E+(LL^2*GG^2-2*LL*GG*N*E+N^2*E^2-
4*N*F*M*E+4*N*F^2*LL+4*M^2*GG*E-4*M*GG*LL*F)^(1/2)): 
 
lambda2:=1/2/(-N*F+M*GG)*(-LL*GG+N*E-(LL^2*GG^2-2*LL*GG*N*E+N^2*E^2-
4*N*F*M*E+4*N*F^2*LL+4*M^2*GG*E-4*M*GG*LL*F)^(1/2)): 
 
kappa1:=(LL+2*M*lambda1+N*(lambda1)^2)/(E+2*F*lambda1+GG*(lambda1)^2): 
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kappa2:=(LL+2*M*lambda2+N*(lambda2)^2)/(E+2*F*lambda2+GG*(lambda2)^2): 
plot3d(kappa1,theta=0..2*Pi,phi=0..3, color=kappa1+1); 
plot3d(PP,theta=0..2*Pi,phi=0..3,color=kappa1+1); 
plot3d(kappa2,theta=0..2*Pi,phi=0..3,color=kappa2+1); 
plot3d(PP,theta=0..2*Pi,phi=0..3,color=kappa2+1); 
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