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Introduction

Nowadays, the importance of spectroscopy in the field of physical chem-
istry is well known. During the XX century, the enormous advancements
in the field of experimental spectroscopy have provided a pletora of power-
ful techniques to investigate features, properties and dynamics of molecular
systems. Molecular systems are inherently complex, and the study of their
interaction with electromagnetic radiation (which is the object of molecular
spectroscopy) is a stimulating and very active field of research.

A classification of the experimental spectroscopies currently at disposal
of the scientific community is not trivial: a useful classification criterium to
identify a spectroscopic technique is the energy of the radiation employed.
Another classification criterium is based on the experimental observables
monitored during the measurement: the measurement of the absorbed ra-
diation provides data which are different from the data obtained with the
measurement of emitted radiation; distinct spectroscopies arise if the differ-
ential absorption, instead of the absorption of electromagnetic radiation, is
measured. A distinction can be done between spectroscopic techniques that
deal with non linear optical effects and spectroscopic techniques employed
for the measurement of linear optical effects.

Many (if not all) of these techniques are sensitive to the nuclear config-
uration and motions of the molecular systems under investigation, although
this sensitivity depends on the spectroscopic technique employed and on the
molecular system studied. Besides the classification criteria employed, the
main object of this work is the role played by nuclear configuration and
motions in the context of molecular spectroscopy.

In this work the pivotal role of numerical calculations must be recognized
and deserves further comments.

First of all, when an analytical solution of a theoretical formulation given
to a scientific problem is not known, the access to a numerical solution allows
the comparison (otherwise impossible) with the experimental data. In other
words, numerical calculations enable to test a theoretical formulation with
real-world results: this fact is one of the causes of the paramount role of
computational science in fundamental research.

The need of numerical solutions for problems of chemical interest has
given rise to the field of computational chemistry , recognizing a central role

i



ii INTRODUCTION

to the development of computational models and their implementation. Ef-
fectiveness and robustness of such computational models must be tested and
evaluated: in other words, a computational model must be validated.

The usefulness of the original results presented and discussed in this
thesis is related also (but not exclusively) to their use for the validation of
computational models. More generally, the results provided in this work (to-
gether with the review of pertinent and interesting results already available
in literature) show the potential benefit of a synergic approach combining
computational and experimental spectroscopy for the physico-chemical char-
acterization of increasingly complex molecular systems.

The Born-Oppenheimer approximation

In molecular spectroscopy, the experimental measurements (due to absorp-
tion, emission or scattering of electromagnetic radiation) are rationalized in
terms of transitions between molecular states. Therefore, the determina-
tion of these molecular states and their relation with nuclear configuration
and nuclear motions must be preliminarily introduced. The starting point
is the formulation (in atomic units) of the molecular hamiltonian in the non
relativistic limit:a

Ĥ =− 1

2

N∑
a=1

1

ma

∂2

∂r2
a

− 1

2

Nel∑
i=1

∂2

∂ξ2
i

+

Nel∑
i=1

Nel∑
j>i

1

|ξi − ξj |
+

+

N∑
a

N∑
b>a

ZaZb
|ra − rb|

−
N∑
a=1

Nel∑
i=1

Za
|ra − ξi|

=

= T̂n(r) + T̂el(ξ) + V̂ee(ξ) + V̂NN (r) + V̂Ne(ξ, r),

(1)

where N is the number of nuclei and Nel the number of electrons in the
molecular system under investigation, ma the mass and ra the position of
the nucleus a, ξi the position of the i-th electron and Za is the (positive)
charge of the nucleus a (equal to the atomic number of the corresponding
atom).

The time evolution of the molecular system is described by the Time-
Dependent Schrödinger equation (TDSE), which reads as follows (in atomic
units):b

i
∂Ψ(ξ, r, t)

∂t
= ĤΨ(ξ, r, t), (3)

aSee, for example, eq. 2.2 in ref. 1. In atomic units, ~ (Planck’s constant divided by
2π), me (the mass of the electron) and −e (the charge of the electron) are set equal to
one and can be omitted in the expression of the molecular hamiltonian (eq. 1).

bFor a clear and general introduction to the employment of the TDSE, see ref. 2. As
already mentioned above, in atomic units ~ = 1. If other units are employed, ~ must be
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where Ψ(ξ, r, t) is the time-dependent molecular wave function. In the
standard interpretation of quantum mechanics, assuming that Ψ(ξ, r, t) is
normalized, i.e.: ∫ +∞

−∞
|Ψ(ξ, r, t)|2drdξ = 1, (4)

|Ψ(ξ, r, t)|2 is the probability density associated to the molecular system
(with nuclear and electron positions specified, respectively, by r and ξ) at
time t. If Ψ(ξ, r, 0) (the time-dependent molecular wave function at t = 0)
is given, a complete solution of eq. 3 is the time-dependent wave function
Ψ(ξ, r, t) at all nuclear and electron positions (r and ξ) and all times.

The molecular hamiltonian provided in eq. 1 is not time-dependent, be-
cause any external stimulus was neglected in eq. 1. Although the absence
of external stimuli is an idealization,a it allows the formulation of a time-
independent version of eq. 3 which can be solved in terms of stationary wave
functions. With a time-independent hamiltonian, a general solution of eq. 3
can be written as follows:b

Ψ(ξ, r, t) = Ψ(ξ, r) · e−iEt. (5)

Eq. 5 provides a solution of eq. 3 if E and Ψ(ξ, r) (the stationary molec-
ular wave function) are solutions of the following eigenvalue problem (the
time-independent Schrödinger equation, TISE):

ĤΨ(ξ, r) = EΨ(ξ, r). (6)

In Eq. 1, the contemporary dependence of V̂Ne from the positions of nu-
clei and electrons does not allow a separation in an electronic term (Ĥel)
and a nuclear term (Ĥn). This means that the solution of the correspond-
ing eigenvalue problem leads to a set of eigenvectors Ψn(ξ, r) (the molecular
wave functions) which cannot be partitioned in an electronic and a nuclear
contribution. The use of the so-called Born-Oppenheimer (BO) approxima-
tion allows the partition of the time independent Schrödinger equation in
the following manner:c

included in the TDSE and eq. 3 is rewritten as follows:

i~∂Ψ(ξ, r, t)

∂t
= ĤΨ(ξ, r, t). (2)

aIn the real world, a molecular system cannot be perfectly isolated: the effects due to
the surrounding environment can be minimized, but they are never absent. However, in
some cases these effects can be safely neglected.

bEq. 5 is written in atomic units. In the general case (i.e. when ~ 6= 1) the exponential
factor on the right hand side (RHS) is e−

iEt
~ .

cAn introduction to the separation of electronic and nuclear motions can be found
in section 3.2 of ref. 3 (more specifically, the BO approximation is introduced in section
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Ĥelφm(ξ; r) =

[T̂el(ξ) + V̂ee(ξ) + V̂NN (r) + V̂Ne(ξ, r)]φm(ξ; r) = Em(r)φm(ξ; r),
(7)

Ĥnχmk(r) = [T̂n(r) + Em(r)]χmk(r) = Ekmχmk(r), (8)

Where the molecular wavefunction is factorized as follows:

Ψmk(ξ, r) = φm(ξ; r)χmk(r). (9)

The dependence of Ĥel from r is only parametric, due to the absence of
a differential operator involving nuclear coordinates in eq. 7. Therefore the
electronic problem (eq. 7) can be solved fixing the positions r of the nuclei
and the eigenvalues Em(r) are obtained solving out eq. 7 (also known as
time independent electronic Schrödinger equation) and used for the solution
of eq. 8 (known as time independent nuclear Schrödinger equation, TINSE).

The original work presented and discussed in this thesis is mainly re-
lated to the solution of the TINSE (eq. 8).a The assumption of the Born-
Oppenheimer approximation allows the definition of a Potential Energy Sur-
face (PES) for each electronic state m, namely the eigenvalues Em(r) of
the electronic Schrödinger equation determines the potential energy which
governs the motion of the nuclei in the electronic state m.

Structure of this thesis

This thesis is organized in three chapters:

• In Chapter 1 a series of methodologies suitable for the optimization of
molecular geometries and for the construction of PESs are presented
and discussed: in other words, changes of the values of the poten-
tial term Em(r) at varying of r are considered; original applications
concerning the study of cyclic molecular systems through curvilinear
Cremer-Pople coordinates are illustrated and discussed (these results
were published in J. Chem. Theory Comput., 2019, 15, 7, 4280-4294);

3.2.3 of ref. 3). It should be noticed that the theoretical assumptions commonly employed
to perform the separation of electronic and nuclear motions leads to subtle conceptual
problems concerning the structure of molecules.4 A detailed discussion of these aspects
is beyond the scope of this thesis: however, attempts to extract (at least) elements of
molecular structure from all-particle (nuclei and electrons) wave functions were carried
out and are available in literature.5,6

aExceptions are section 3.1 (which is devoted to the introduction of the electron prop-
agator theory for the solution of the electronic problem) and sections B.3 and B.4 of
appendix B (in which a formalism suitable for the calculation of VCD intensities is intro-
duced).
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• In Chapter 2, after a brief discussion of the nuclear kinetic energy term
T̂n(r) the solution of the nuclear Schrödinger equation for ground elec-
tronic states is discussed, particularly for what concerns local modes
approximation (LMA) and Vibrational second-order level of perturba-
tion theory (VPT2); Calculations of properties associated to transi-
tions between two vibrational states pertaining to the same electronic
states are discussed; original applications to organic and organometallic
systems (published in J. Phys. Chem. A, 2020, 124, 5, 1011-1024 and
Phys. Chem. Chem. Phys., 2019, 21, 9419-9432) are illustrated and
a systematic comparison between calculated and experimental spectra
is presented;

• In Chapter 3, transitions between two different electronic states are
considered; the time independent approach to the calculation of the
vibrational structure associated to a transition between two different
electronic states is presented and discussed; original applications to
a number of rigid organic molecules (published in J. Chem. Theory
Comput., 2020, 16, 8, 5218-5226) are presented, providing additional
evidences about the importance of a suitable modelization of the vi-
brational fine structure in order to accurately reproduce experimental
Ultraviolet Photoelectron Spectra (UPS).
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Chapter 1

The exploration of the
conformational space of a
molecular system

Assuming the validity of the Born-Oppenheimer approximation, the ground-
state conformational space of a single molecular system can be represented
with a global PES, an hypersurface which contains a set of points providing
the energy of the single molecular system as a function of 3N − 6 non-
redundant internal coordinates (N is the total number of atoms of the sys-
tem; the number of internal coordinates is reduced to 3N − 5 if the object
of the study is a simple biatomic molecule). Several approaches have been
proposed for the construction of global PESs (see, for example, ref. 7), with
the aim of a good compromise between the computational cost and the accu-
racy of the result of a series of calculations. The choice of the most suitable
approach depends on the specific molecular system under consideration and
on the observables of interest. In this chapter various approaches for the
construction of global PESs (and of n-dimensional cuts of global PESs) are
considered and discussed, together with the description of a number of ap-
plications.

The most obvious approach to the problem addressed here is a grid ap-
proach with a discretization along each internal coordinate qi (where i =
1, 2, ..., 3N − 6). If a fixed number of single points k for each coordinate is
used the number of points needed to map out the global PES is equal to:

k3N−6 = e(3N−6)·ln k (1.1)

The number of single points needed to construct the global PES has an
exponential increase with the number of internal coordinates, making this
approach currently unfeasible for more than 6 internal coordinates (i.e. for
the study of molecules with more than 4 atoms). However, the possibility of
exploit a grid approach for a molecular system with more than 4 atoms is still

1
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feasible if a reduced dimensionality approach is adopted (see section 1.2). In
some cases, a good reproduction of the experimental observables could be
obtained with a reconstruction of the potential energy surface around the
energy minimum/a at harmonic or beyond the harmonic (see section 1.1)
level.

1.1 Approximation of PESs through the knowledge
of their minima

When the approach chosen is the expansion of the PES around an energy
minimum, the first task to be performed is an unconstrained optimization
of the molecular structure (see subsection 1.1.1) aiming at obtaining the
molecular structure associated with a minimum of the PES (i.e. an energy
minimum). This essential task can be carried out using a variety of soft-
wares for quantum chemical calculations. The localization of more than one
minimum on the same PES is often required for a complete description of
the molecular system under investigation. When all the relevant minima of
the PES have been located, an approximated expansion around each energy
minimum can be performed (see subsection 1.1.2).

1.1.1 Optimization of molecular structures

For what concerns the optimization of molecular structures several compu-
tational strategies have been devised (see, for example, ref. 8) and are im-
plemented in many of the available suites of programs for quantum chemical
calculations.

A review of the algorithms available to efficiently optimize molecular
structures is beyond the scope of this thesis, but a general discussion of the
factors affecting the efficiency of an optimization task and a brief presentation
of the algorithm employed to perform the calculations reported and discussed
in this thesis must be provided.

With the exception of direct search methods (i.e. energy-only algorithms
which employ only the energy value, obtained as a scalar function of 3N − 6
internal coordinates if the validity of the Born-Oppenheimer approximation
is assumed)9–11, the geometry optimization methods employed in quantum
chemistry calculations require the calculation of the derivatives of the en-
ergy with respect to the nuclear displacements (derivative-based geometry
optimization methods).

The knowledge of g and H allows the construction of a local quadratic
approximation of the PES:

E(x) = E(x0) + gT0 ∆x +
1

2
∆xTH0∆x (1.2)
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where g0 (with elements ∂E
∂xi

)and H0 (with elements ∂2E
∂xi∂xj

)are, respec-
tively, the gradient and the hessian (expressed in cartesian coordinates) at
x0 and ∆x = x − x0. Looking at eq. 1.2 it is clear that g and H can be
used to characterize the point of the PES labeled with the subscript 0. More
specifically, a molecular structure with coordinates x0 is characterized as a
minimum if all the components of the gradient vector g0 are 0 (i.e. ∂E

∂xi
= 0

for i = 1, ..., 3N)a and the 3N − 6 eigenvalues that differ from zerob of the
H0 square matrix are positive.

The local quadratic approximation of the PES is the basis for most non-
linear optimization algorithm. If eq. 1.2 is differentiated with respect to the
coordinates the following approximation of the gradient is obtained:

g = g0 + H0∆x (1.3)

with g = g(x) and g0 = g(x0). At a stationary point g = 0 and eq. 1.3
become:

∆x = −H−1
0 g0 (1.4)

In eq. 1.4, ∆x is the displacement to the minimum known as the Newton
step. The assumption of a quadratic nature for the PES is an approximation:
real PES are rarely quadratic and various Newton steps are required to reach
a stationary point.

Eq. 1.4 is the central equation of two classes of geometry optimization
algorithms: Newton and quasi-Newton methods8. The difference between
the two approaches concerns the hessian calculation: H0 in eq. 1.4 is calcu-
lated each time at the current point when a Newton method is employed,
while in the case of quasi-Newton methods an approximated H0 is used in
eq. 1.4 and this approximated H0 is updated at each step (almost always
exploiting the gradient vector). It should be underlined that the step will be
towards a minimum if and only if the hessian H0 is positive defined (i.e. all
its eigenvalues are positive)c. This means that the method can converge also
to a saddle point or to a maximum of the PES: therefore, the optimization
step can be also directed towards a first order saddle point (i.e. a transition

afor a numerical implementation, this condition means that each of the 3N components
of the g vector must be smaller than a certain small value: when all the components of g
are smaller than this value, the gradient is considered to be numerically equal to 0

bthe 6 values equal to 0 are related to the 3 rotations and the 3 translations of the
molecular system

cthis drawback is not a general feature of derivative-based optimization methods: for
example, the simplest derivative-based optimization method (called steepest descent) fol-
lows the direction of −g0 and, therefore, must converge to a minimum. The drawback of
the steepest descent method is that, near the minimum, the convergence to the desired
solution is extremely slow. Therefore, the efficiency of steepest descent method frequently
turns out to be lower than that of Newton and quasi-Newton methods.
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state), but if and only if the hessian has one and only one negative eigenvalue
(and the corresponding eigenvector is roughly parallel to the reaction path).

In what follows a concise exposition of the default algorithm implemented
in the GAUSSIAN16 suite of programs12 (for quantum chemical methods for
which analytical gradients are available) is provided. Technical details (for-
mulae for the determination of the approximated hessian for quasi-Newton
methods, step-size control exc.) and a description of the others existing
derivative-based optimization algorithms can be found elsewhere (see, for
example, ref. 8 and references therein).

The attempt of exploiting the advantages (in terms of computational
cost and accuracy) and minimizizing the drawbacks of a series of optimiza-
tion methodologies led to a strategy based on the employment of an hybrid
geometry optimization scheme13: the choice of one of the three algorithms
here described is done on the basis of suitable switching criteria optimized
from tests on the set of molecules reported in ref. 14.

At the beginning of the geometry optimization the Rational Function
Optimization (RFO) method is useda. In the RFO method the quadratic
approximation of eq. 1.2 is replaced by a rational function of the following
formb:

E(x)− E(x0) =
gT0 ∆x + 1

2∆xTH0∆x

1 + ∆xTS∆x
(1.5)

It can be easily shown (with ∆E = E(x) − E(x0)) that ∂∆E
∂xi

= gi and
∂2∆E
∂xi∂xj

= Hij at x0. The same results hold for eq. 1.2. Alternatively, a matrix
formulation of eq. 1.5 can be given:

∆E =
1

2

[
∆x 1

] [H g
gT 0

] [
∆x
1

]
[
∆x 1

] [S 0
0 1

] [
∆x
1

] (1.6)

The matrix formulation of the fundamental equation for the RFO method
can be easily obtained minimizing eq. 1.5 with respect to ∆x (i.e. d∆E

d∆x = 0
is required): [

H g
gT 0

] [
∆x
1

]
= ξ

[
S 0
0 1

] [
∆x
1

]
(1.7)

eq. 1.7 is an eigenvalue equation, with S tipically chosen as a diagonal
matrix16 and ξ = 2∆E. If S is chosen as a constant times the identity matrix

aAn early version of this method was first proposed, discussed and clearly illustrated in
ref. 15; to the best of the author’s knowledge, the name Rational Function Optimization
to denote the method was introduced in ref. 16.

bFrom the mathematical point of view, the idea is to replace a Taylor expansion (eq. 1.2)
with a Padé approximant of order [2/2] (eq. 1.5) of the energy.
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the top row of eq. 1.7 can be written in the following form:

∆x = (ξI−H0)−1g0 (1.8)

the eigenvalue ξ of the eq. 1.7 is equal to twice the change of energy
associated to the RFO step ∆x (which is determined from the eigenvector
of eq. 1.7 associated to the eigenvalue). The choice of the eigenvalue and
the eigenvector to be used during the optimization depends on the nature of
the stationary point searched: if the target is a minimum point, the lowest
eigenvalue ξ and the associated eigenvector are used for each step; if the
optimization of a first-order saddle point is attempted (i.e. a transition state
search)a, the second lowest eigenvalue ξ and its associated eigenvector are
used16. It is worth to mention two important feature of the RFO method:
an algorithm based on this method can be shown to converge quadratically16

and can be used to reach and optimize the desired stationary point even if at
the starting point the hessian has not the right number of positive eigenvalue.
For example, if the hessian has one negative eigenvalue the iterative use of
the Newton step can converge only to a transition state, while the RFO step
(with the choice of the lowest eigenvalue and its associated eigenvector as
solutions of the eigenvalue eq. 1.7) can be iteratively employed to reach a
minimum.

The optimization algorithm implemented in the GAUSSIAN16 suite of
programs exploits the RFO method for the first and the subsequent steps
of an optimization until the root-mean-square (RMS) force experimented by
the molecular structure under investigation at a given step is calculated to
be less than 10−2au: when the RMS force decreases below this value, the
optimization algorithm switch to the use of the Geometry Optimization Us-
ing Energy-Represented Direct Inversion in the Iterative Subspace (GEDIIS)
method13.

The family of Direct Inversion in the Iterative Subspace (DIIS) meth-
ods has been introduced in the community of computational chemistry by
Pulayb. The idea is to construct an improved solution to the optimization
problem at hand as a suitable linear combination of the results from prior
iterations. When a DIIS method is employed, the nuclear positions at the
next optimization step can be expressed in the following manner:

aIn order to increase the stability of the RFO method when the search and the optimiza-
tion of a saddle point is attempted a partitioned RFO method has been proposed8,16,17;
using this partitioned RFO method the possibility of follow other modes (different from
the lowest hessian mode) during the search of a first-order saddle point arise: with this
aim, another approach based on the original RFO method with a specific scaling of the
coordinate along the hessian mode of interest has been proposed18.

bAn early version suitable for the solution of the Self-Consistent Field (SCF) problem
in the context of electronic structure theory can be found in ref. 19. An improvement of
the first version (still devoted to the solution of the SCF problem) is reported in ref. 20. To
the best of the author’s knowledge the first application of a DIIS method to the geometry
optimization problem is presented and briefly discussed in ref. 21.
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xn+1 =
n∑
i=1

ci(xi + ei) =

x∗︷ ︸︸ ︷
n∑
i=1

cixi +

∆x︷ ︸︸ ︷
n∑
i=1

ciei with
n∑
i=1

ci = 1 (1.9)

The coefficients ci are obtained through a constrained minimization of a
suitable working function: the specific DIIS method applied to the geome-
try optimization is determined by the working function used. The GEDIIS
methoda employs an energy function as working function and enforces the
coefficients ci to be positive definiteb. To derive an expression for the work-
ing function, a first-order expansion at xi of the energy of the structure at
the next point of the optimization is reported in eq. 1.10.

E(x∗) = E(xi) + (x∗ − xi)gi (1.10)
E(xi) and gi denote, respectively, the energy and the gradient (with

respect to the nuclear displacements) of the structure xi. If both sides of
eq. 1.10 are multiplied by ci and a summation over n points (the n geometries
of the previous optimization steps) is taken, the result is (using x∗ =

∑n
1 cixi,

see eq. 1.9):

E(x∗) =
n∑
i=1

ci

[
E(xi) +

( n∑
j=1

cjxj

)
gi − xigi

]
(1.11)

After further manipulations the GEDIIS working function is obtained:

E(x∗) =
n∑
i=1

ciE(xi)+
n∑

i,j=1

cicjxjgi −
n∑
i=1

cixigi

=

n∑
i=1

ciE(xi) +
1

2

n∑
i,j=1

cicjxjgi +
1

2

n∑
i,j=1

cjcixigj −
n∑

i,j=1

cicjxigi

=

n∑
i=1

ciE(xi) +
1

2

n∑
i,j=1

cicjxjgi +
1

2

n∑
i,j=1

cjcixigj

− 1

2

n∑
i,j=1

cicjxigi −
1

2

n∑
i,j=1

cicjxjgj

=
n∑
i=1

ciE(xi)−
1

2

n∑
i,j=1

cicj(xi − xj)(gi − gj)

(1.12)

aThe application of the algorithm presented and discussed in ref. 13 follows the appli-
cation of the same idea to the electronic problem (SCF-EDIIS for SCF convergence)22.

bIn this manner the optimization step can be viewed as an interpolation. If no con-
straint are imposed on the sign of ci the optimization step is an extrapolation: when the
geometry is far from convergence an extrapolation can led to an erroneus step away from
the optmized geometry.
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The last term of eq. 1.12 can be easily written in matrix form:

E(x∗) = cTE− 1

2
cTAc (1.13)

In eq. 1.13, A is a square matrix of dimensions n × n with elements
Aij = (xi − xj)(gi − gj) and E is a vector with dimension equal to n.
Therefore the following optimization problem must be solved:

inf

{
cTE− 1

2
cTAc, ci > 0,

n∑
i=1

ci = 1

}
(1.14)

The problem can be easily solved employing the method of Lagrange
multipliers. The coefficients ci are obtained solving out the following matrix
problem: [

A 1
1T 0

] [
c
λ

]
=

[
E
1

]
(1.15)

where 1 is a vector of dimension n whose elements are equal to 1 and the
dimensions of the first matrix on the left hand side of eq. 1.15 are (n+ 1)×
(n + 1). The geometry x∗ is associated with the optimal energy only to a
first-order approximation: the second order correction is estimated through
an RFO stepa

xn+1 = x∗ + ∆x =
n∑
i=1

cixi −
n∑
i=1

ci
gi

H− ξ
(1.16)

if the RMS value of the RFO step ∆x ( see eq. 1.8 and eq. 1.16) is below
the threshold of 2.5 · 10−3a.u. for the latest point, the optimization algo-
rithm switch to the use of a modified version of the Geometry Optimization
using Direct Inversion on the Iterative Subspace (GDIIS)23 method until
convergence.

The idea behing the GDIIS method is to minimize the square of the
residuum vector ∆x (see eq. 1.9). The square of the residuum vector can be
written as follows:

|∆x|2 =
( n∑
i=1

ciei

)( n∑
i=1

cjej

)
=

n∑
i,j=1

cicjAij (1.17)

where Aij = eTi ej are elements of the square matrix A of dimensions
n× n. The solution of the following optimization problem:

aNote that the RFO step estimates the distance between x∗ and the minimum structure;
in GAUSSIAN16, the hessian in eq. 1.16 is calculated with the updating method described
in ref. 13 by default.
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inf

{
cTAc,

n∑
i=1

ci = 1

}
(1.18)

can be obtained with the method of Lagrange multipliers. The coeffi-
cients ci are the solutions of the matrix problem given in eq. 1.19.[

A 1
1T 0

] [
c
λ

]
=

[
0
1

]
(1.19)

where 0 is a vector of dimension n whose elements are equal to 0. In the
original version of the GDIIS method21 ei is defined to be equal to the newton
step at the point i (ei = −H−1

i gi), while in the modified version implemented
in GAUSSIAN16 the RFO step is employed (ei = (ξI − Hi)

−1gi)23. A
detailed discussion of the acceptance criteria and of the method chosen for
the hessian updating23 is beyond the scope of this thesis.

The efficiency of a geometry optimization is relevantly affected by the
system of coordinates employed8. An inspection of the hessian matrix can
be used to evaluate if a certain coordinate system is suitable for an efficient
geometry optimization. A relevant decrease of the efficiency can be due to
a strong coupling between coordinates (in this case, the hessian exhibits off-
diagonal elements of magnitude similar to that of diagonal elements), to a
strong anharmonicity (relevant changes of the hessian from one point to the
next one during the optimization) or to a combination of stiff and flexible
coordinates (the eigenvalues of the hessian are a combination of very small
and very large numbers).

A detailed discussion of this topic is beyond the scope of this thesis,
but for the sake of completeness the coordinate systems employed for the
optimization of almost all the geometries of the chemical systems considered
in this thesis have to be specified. By default, optimizations carried out with
GAUSSIAN16 are performed in a system of redundant internal coordinates
(a detailed description is given in ref. 24)a. A different coordinate system to
carry out the geometry optimization can be easily specified in the input file.

The conversion from redundant internal (s) to cartesian coordinates (r)
cannot be trivially accomplished due to the nonlinear relationship between
redundant (and curvilinear) internal and cartesian coordinates (see Eq. A.1).
When an optimization is carried out in redundant internal coordinates, a
reliable protocol to provide the nuclear positions in cartesian coordinates is
needed. This task can be performed iteratively, with a scheme27 based on
the following expression:

aAlthough the usefulness of redundant internal coordinates for geometry optimizations
has been recognized by Schlegel in ref. 25, the possibility of carrying out optimizations
directly in redundant internal coordinates has been opened by the article of Pulay and
Fogarasi26.
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rk+1 = rk + (BT )−1
k(s− sk). (1.20)

Where s is the new geometry in internal coordinates and the expression
is employed iteratively: the first step (k = 1) is carried out with the old
cartesian coordinates (rk=1), the old B matrix ((BT )−1

k=1) and the old
internal coordinates (sk=1); the iteration is stopped when the difference s−
sk (where sk is generated from rk at each k-th iteration) is below a given
threshold value. This iterative protocol requires the construction and the
inversion (through eq. A.8) of the B matrix at each stepa.

The computational cost associated to an optimization calculation de-
pends also on the availability of the analytic gradients for the chosen calcu-
lation methodb. However, even if the analytical gradients are not available
for the chosen calculation method, the use of a gradient-based optimization
method (with a numerical evaluation of the gradient vector) can be compu-
tationally cheaper than a direct search method (whose efficiency decreases
as the number of degree of freedom increases)32.

Another important aspect is the starting point (i.e. the initial molecular
structure) of a geometry optimization. The choice of the initial geometry
affects the result of the optimization (i.e. the specific minimum of the global
PES reached: this is true if and only if the PES of the molecular system
studied has more than one minimum) and the number of steps needed to
reach a minimum. This means that to locate all the relevant minima of the
PES of a system (i.e. all the minima with comparable energies separated by
low energy barriers) without resorting to a grid approach, a clever selection
of the starting points of a series of optimizations is needed. General reviews
on this important topic can be found elsewhere (for an introduction, see
ref. 33) .

1.1.2 PESs approximation around their minima

After the first step discussed in the previous section, various methods can be
employed to approximate the structure of the PES of the molecular system

awhen the geometry optimization is carried out in the context of a quantum chemical
calculation the computational bottleneck is not related to this specific point; otherwise,
with the adoption of eq. 1.20 the transformation from internal to cartesian coordinates can
be rather expensive from the computational point of view due to the repeated calculation
of the inverse of B at each iteration; two possible solutions to this problem are: (i) the
retaining of the original inverse throughout all the iterations (already suggested in ref. 27)
with the consequence of an higher number of iterations needed to reach the convergence28;
(ii) the exploitation of a subset of intermediate primitive internal coordinates adopted
only for the transformation from internal to cartesian coordinates, avoiding the expensive
inversion of a B matrix (proposed and discussed in ref. 28)

bThe importance of this problem was recognized very early by Bratoz ; the first formu-
lations of analytical gradients of the energy with respect to nuclear displacement for the
Hartree-Fock method are given in ref. 29 and ref. 30; for DFT methods see ref. 31 and
references therein.



10 CHAPTER 1. CONFORMATIONAL SPACE

of interest in the neighborhood of an energy minimum: a concise review of
the most popular ones is provided in this section.

A useful method is based on the employment of the energy derivatives
with respect to nuclear coordinates in order to construct an approximation
of the PES through a finite number of elements of a Taylor series expansion
of the potential energy. In this framework, the potential energy term can be
written in the following way:

V̂ (Q) =
1

2!

3N−6∑
k=1

(
∂2V̂

∂Qk
2

)
0

Qk
2+

1

3!

3N−6∑
k=1

3N−6∑
j=1

3N−6∑
i=1

(
∂3V̂

∂Qk∂Qj∂Qi

)
0

QkQjQi+

1

4!

3N−6∑
k=1

3N−6∑
j=1

3N−6∑
i=1

3N−6∑
l=1

(
∂4V̂

∂Qk∂Qj∂Qi∂Ql

)
0

QkQjQiQl.

(1.21)

In Eq. 1.21, the Taylor series has been truncated at the fourth order and
the potential energy is expressed as a function of normal coordinatesa. If
the harmonic approximation is employed, the expression given in Eq. 1.21
is further truncated and only the second order term is retained. Second
order derivatives of the energy with respect to nuclear coordinates can be
routinely obtained employing several commercial softwares. Depending on
the level of theory employed to explore the PES of the molecular system of
interest, analytic second order derivatives of the energy with respect to the
nuclear coordinates can be available or notb: in the case of the Gaussian12

suite of programs, analytic second order derivatives are available for all the
commonly used Density Functional Theory (DFT) methods. Despite some
efforts in this directionc, suitable analytic expression for third and fourth
order derivatives of the energy with respect to the nuclear coordinates are

aA system of normal coordinates is a system of rectilinear internal coordinates de-
fined as Q = L(r − req) (see also section A.1 of appendix A). This coordinate system is
carefully introduced and discussed in ref. 34. However, the convention adopted in ref. 34
to label the physical quantities of interest is different: in particular, L is employed for
the transformation from normal to internal coordinates (see eq. 2 of appendix VIII in
ref. 34), while l is employed for the transformations between normal coordinates and mass
weighted cartesian coordinates. In this thesis, the dependence from the nuclear masses is
left implicit (see appendix A).

bIn some cases the analytic expression of second order derivatives are unknown, or an
expression of the analytic second order derivatives for a given quantum chemical calcula-
tion method can be known and available in literature but not yet implemented in a certain
commercial software.

cthe theoretical formulation and the implementation of third and fourth order deriva-
tives have been proposed for the Restricted Hartree-Fock method35–37 and for DFT meth-
ods38.



1.1. MINIMA AND PES APPROXIMATION 11

currently not available on commercial softwares, and therefore their calcula-
tion is performed numerically: this means that additional single-point cal-
culations are needed in the neighborhood of the minimuma.

The expansion of the potential energy term given in Eq. 1.21 suggests
a computationally feasible protocol (at least for molecular systems up to
medium size) to obtain an anharmonic approximation of the PES39, but
has two relevant drawbacks: first, the expression given in Eq. 1.21 has not
the correct asymptotic behaviour (it diverges while the real potential reach
a constant limiting value); second, when a strongly anharmonic region of
a PES is considered, the higher order terms neglected in Eq. 1.21 are not
negligible if an accurate approximation of the PES in these regions is needed.

To overcome the problems just mentioned, a more flexible expansion of
the potential energy term can be employed:b

V (Q1, ..., Q3N−6) =V0 +
3N−6∑
i=1

Vi(Qi) +
3N−6∑
j=1

∑
i<j

Vij(Qi, Qj)+

+

3N−6∑
k=1

∑
j<k

∑
i<j<k

Vijk(Qi, Qj , Qk) + ...

(1.22)

Where the following relations holds:

Vi(Qi) ≡ V (Qi, Qm = 0) with m 6= i. (1.23)

Vij(Qi, Qj) ≡ V (Qi, Qj , Qm = 0)− Vi − Vj with m 6= i, j. (1.24)

Vijk(Qi, Qj , Qk) ≡V (Qi, Qj , Qk, Qm = 0)− Vij − Vjk−
Vik − Vi − Vj − Vk with m 6= i, j, k.

(1.25)

The expression given in Eq. 1.22 is more flexible than a truncated Taylor
series, but suggests a time-consuming, computationally expensive route. An
example of a currently available implementation of a PES approximation

aMore specifically, the protocol implemented in Gaussian is based on the calculation
of second order derivatives of the energy with respect to the nuclear coordinates (i.e.
harmonic frequency calculations) for 2(3N − 6) + 1 points: the first calculation is carried
out at the optimized geometry of the molecular system; the others are performed for
geometries corresponding to a small displacement along each normal coordinate in both the
directions (i.e. −δQi and +δQi); it is clear that this approach is computationally feasible
only if an analytic expression for the calculation of second order derivatives is implemented
(as it is in the case of the Gaussian suite of programs for DFT-based methods).

bSee, for example, eqs. 2-3 of ref. 40.
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based on Eq. 1.22 can be found in ref. 41a. The relevant computational cost
of a strategy based on Eq. 1.22 has limited its usefulness to applications for
which the availability of an extremely accurate PES representation is needed
(such as the solution of the nuclear schröedinger equation by variational
methods).41,42

1.2 Construction of n-dimensional cuts of PESs through
a grid approach

Although an accurate, local approximation of a PES in the neighborhoods of
the most relevant energy minima is useful and allow (as part of the nuclear
hamiltonian of the molecular system of interest) the calculation of reliable
values of some important experimental observables, a suitable methodology
to take into account the shape and the values of the global PES also in regions
that are far from the minima (often between two of them) is often needed to
reproduce experimental observables in the context of high-resolution molec-
ular spectroscopy (even in the case of stationary, not time-resolved tech-
niques).

Although the sampling of the entire global PES of a molecular system
with more than 4 atoms is computationally challengingb, the sampling of
one (1D-PES) or two (2D-PES) dimensional cuts of a PES is feasible and
useful for the study of larger molecular systems. In this case, the PES
is sampled at fixed values of one (in the case of 1D-PES) or two (in the
case of 2D-PES) internal variables, chosen to give a suitable description of
a physicochemical phenomenon under investigation; all the other variables
describing the nuclear configuration of the molecular system of interest are
optimized: therefore, a constrained optimization with respect to the energy
of the investigated molecular system is performed for each of the chosen
sampling points. An estimation of n-dimensional cuts of a PES at a given
level of theory can be obtained with a fit of the energy values calculated at
each sampling points as a function of the fixed internal variables. Despite
its apparent simplicity, there are some pivotal choices behind this approach
which determine the usefulness and the meaningfulness of the results. More
specifically:

• Choice of the internal coordinates employed for the sampling
of the n-dimensional cut of the PES: this choice depends on the
phenomenon and the molecular system under investigation, and its

athe implementation described in ref. 41 is based on a polynomial fit for each of the
Vi, Vij , Vijk and Vijkl terms; despite the efforts devoted to optimize the entire procedure,
the computational cost limits the usefulness of this approach to small molecular systems
(at least for a full-dimensional calculation).

bThe redundancies of the configuration space can be exploited in order to obtain global
PESs of molecular systems with more than 4 atoms which contains identical atoms.43
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importance for the meaningfulness of the computational analysis here
considered cannot be overestimated. These coordinates are often cho-
sen in order to give a suitable description of a low energy path (and of
its neighborhoods) of particular significance for the phenomenon un-
der investigation. One or two suitable primitive internal coordinates
are often a good choice (for example, the careful choice of a dihedral
angle is often a good choice for the description of a internal rotation
such that of a methyl group), but sometimes the employment of more
complex coordinate systems is needed: this is the case of the ring puck-
ering motion of 5-term ring systems presented and discussed in the next
section.

• Choice of the sampling method: besides the obvious choice of a
uniform, regular sampling there are many other possible choices for the
sampling of the n-dimensional cut of the PES. The aim is to identify
and to sample the nuclear configurations allowing the construction of
an accurate portion of the PES with a number of points as small as
possible. For example, if a greater accuracy in the reproduction of a
low energy region is required, a protocol which increases the number
of sampling points in a low energy region at expense of the number of
sampling points employed for an high energy region would be desirable.

• Choice of the analytical representation of the n-dimensional
cut of the PES: generally speaking, the idea is to adopt an ana-
lytical representation with a small, physically meaningful number of
parameters. Various solutions have been proposed44–46, depending on
the size and the features of the molecular system of interest and the
investigated phenomena.

The next Section (1.3) of this chapter is devoted to a series of applications
and evidences the usefulness of the calculation (in conjunction with a careful
analysis) of 2D-PES for the study of ring-puckering motion in 5-term flexible
ring systems.

1.2.1 Constrained optimization of molecular structures

The need of specific methods to deal with constrained optimizations depends
on the kind of constraintsa introduced and the coordinate system chosen for
the description of the molecular system. In the simplest case of a non-
redundant internal coordinate system with a simple constraint (for example,
a non-redundant choice of 3N − 6 primitive internal coordinates of whom
two are kept constant at their original values) the problem can be easily
solved with the exclusion of the internal coordinate to be kept fixed from the

aIn this chapter, only equality constraints are considered
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optimization protocol employed (see subsection 1.1.1), but this straightfor-
ward solution is often not feasible (e.g. when a cartesian coordinate system
is employed and a constraint on a primitive internal coordinate must be en-
forced47,48); therefore, for the construction of n-dimensional cuts of PESs the
availability of efficient and reliable methods for the constrained optimization
of molecular structures is a relevant technical issue. Although a detailed pre-
sentation of this technical issue and its possible and most widely employed
solutions are beyond the scope of this thesis, a brief illustration of the issue
devoted to highlight its essential features is important.

Three approaches to this technical problem have been proposed and dis-
cussed in literature8,47: the employment of penalty functions, the use of
Lagrange multipliers and the application of projection operators. These ap-
proaches are needed when complex equality constraints are applied to the
system under investigation and/or redundant coordinate systems are em-
ployed.

The approach based on penalty functionsa has been adopted in the past,
but nowadays is considered inefficient with respect to the other two ap-
proaches8,47.

The solution most commonly employed is based on Lagrange multipliers:
Baker (et al.) has proposed and discussed47,48 the implementation of a con-
strained optimization algorithm for a molecular structure given in cartesian
coordinates; another contribution of the same author53 has been devoted
to the presentation of a constrained optimization algorithm for a molecular
structure given in delocalized internal coordinatesb.

An attractive feature of the two approaches just mentioned is the possi-
bility of enforce the desired constraints in the final, optimized structure of
the molecular system studied also when the desired constraints are not ful-
filled in the starting structure. This possibility is absent when a constraint is
enforced through an elimination of the coordinate subject to the constraint
from the space of the variables to be optimized.

The third solution is based on the application of suitable projection op-
erator with the aim to make orthogonal each optimization step to the direc-
tions which violate the constraints to be enforced during the optimization.
An example of a protocol employing this solution for the optimization of
a molecular structure is given in ref. 55. This kind of solution can be em-
ployed also carrying out constrained optimizations with the Gaussian12 suite
of programs (see ref. 24).

ato the best of the author’s knowledge, the employment of this approach has been
proposed for the first time in a chemical context (more specifically in the context of
molecular mechanics calculations) in ref. 49 and ref. 50; see also ref. 51 and a subsequent
contribution by two of the same authors52 in which the advantages of an approach based
on Lagrange multipliers are recognized and the approach employed in their computer
program replaced accordingly.

bthis coordinate system is presented in ref. 54



1.3 The use of Cremer-Pople coordinates for the
computational investigation of ring puckering
motions in 5-term flexible ring systems ∗

In this section, the results obtained in the investigation of ring-puckering mo-
tions in twelve flexible 5-term ring molecules (see Figure 1.1) are reported and
discussed. More specifically: in Section 1.3.1, the Cremer-Pople formalism is
briefly summarized and the possibility of exploiting symmetry considerations
to speed up the construction of the 2D-PES is discussed; in Section 1.3.2, the
employed computational methodology is outlined; in Section 1.3.3, the com-
puted 2D-PES for the twelve considered molecules is discussed and results
are compared with available experimental and computational data; in Sec-
tion 1.3.4, the fitting of the computed 2D-PESs through suitable functional
forms using a limited number of parameters is addressed.
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Figure 1.1: Structures of the 5-term saturated ring systems studied in this
work.

∗The results and the text of this section can be found (with slight modifications) in J.
Chem. Theory Comput., 2019, 15, 7, 4280-4294.
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1.3.1 Theoretical background: Cremer-Pople coordinates and
symmetry considerations

Cremer-Pople coordinates for the study of ring-puckering motions in flexible
cyclic molecules have been described in detail in Refs. 56,57. In order to
provide the reader with useful information for a clearer reading of the forth-
coming sections and graphical representations of the 2D-PESs, we briefly
review here the formalism and add some considerations on symmetry.

Cremer-Pople coordinates for N-term rings

In what follows, mathematical and physical formulations are referred only
to the atoms that are part of the ring structure, and not to all the atoms of
the molecule (e.g. in a cyclopentane molecule, only to carbon atoms). The
aim is to give a formulation of Cremer-Pople coordinates in terms of the
cartesian coordinates of the atoms directly involved in the ring structure.

Let us denote the positions of the atoms directly involved in the ring
structure through a series of position vectors rj(j = 1, ..., N). Given the
structure of the entire molecule in cartesian coordinates, the reference frame
of the cartesian framework must be changed according to the following pre-
scriptions: the origin of the cartesian framework must coincide with the
geometrical center of the atoms involved in the ring structure (Eq. 1.26):

N∑
j=1

rj = 0 , (1.26)

and the z axis (Eq. 1.29) must be perpendicular to a mean-plane chosen to
pass through the origin on which the vectors r′ and r′′ (defined, respectively,
in Eq. 1.27 and Eq. 1.28) lie:

r′ =

N∑
j=1

rj sin
(2π(j − 1)

N

)
(1.27)

r′′ =
N∑
j=1

rj cos
(2π(j − 1)

N

)
(1.28)

ẑ =
r′ × r′′

|r′ × r′′|
. (1.29)

Using Eq. 1.26 and Eq. 1.29, the zj coordinate of each atom involved in the
ring structure can be obtained through the following equation:

zj = rj · ẑ . (1.30)

Within the Cremer-Pople formalism, for the description of ring-puckering
motions in an N -term ring only N − 3 coordinates are necessary (e.g., for
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a 5-term ring only 2 coordinates). Following the original article,56 if N is
odd and N > 3 Cremer-Pople coordinates qm and θm are defined using the
following equations:

qm cos θm =
( 2

N

) 1
2

N∑
j=1

zj cos
[2πm(j − 1)

N

]
(1.31)

qm sin θm = −
( 2

N

) 1
2

N∑
j=1

zj sin
[2πm(j − 1)

N

]
. (1.32)

Eqs. 1.31 and 1.32 apply for m = 2, ..., (N − 1)/2. Amplitudes qm must
be positive and phase angles θm must assume a value in the interval between
0 and 2π. If N is even, Eqs. 1.31 and 1.32 apply for m = 2, ..., (N − 2)/2
and another puckering coordinate (Eq. 1.33) is needed in order to describe
the puckering amplitude of the crown form

qN/2 =
( 1

N

) 1
2

N∑
j=1

zj cos[(j − 1)π] . (1.33)

In Eq. 1.33, qN/2 can have both positive and negative value.
More explicitly, qm and θm can be separated by combining Eqs. 1.31 and

1.32, using pythagorean trigonometric identity (Eq. 1.34) and the inverse
tangent function (Eq. 1.35):

(q2
m cos2 θm + q2

m sin2 θm)
1
2 = [q2

m(cos2 θm + sin2 θm)]
1
2 = qm (1.34)

arctan
( qm sin θm
qm cos θm

)
= arctan

( sin θm
cos θm

)
=

= arctan(tan θm) =

{
θm if cos θm > 0

π + θm if cos θm < 0
.

(1.35)

With Eqs. 1.34 and 1.35, qm and θm can be written as functions of zj :

qm =
( 2

N

) 1
2


[
N∑
j=1

zj cos
(2πm(j − 1)

N

)]2

+

+

[
N∑
j=1

zj sin
(2πm(j − 1)

N

)]2


1
2

(1.36)

θm =


arctan

[
−
∑N
j=1 zj sin

(
2πm(j−1)

N

)
∑N
j=1 zj cos

(
2πm(j−1)

N

)] if cos θm > 0

arctan

[
−
∑N
j=1 zj sin

(
2πm(j−1)

N

)
∑N
j=1 zj cos

(
2πm(j−1)

N

)]+ π if cos θm < 0

. (1.37)
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Other two useful equations giving the displacements zj as functions of
qm, θm and, eventually, qN/2 can be easily worked out. Eqs. 1.38 and 1.39
are sufficient to uniquely fix the mean plane whose orientation is determined
by its normal vector ẑ and can be viewed, together with Eqs. 1.26, 1.31,
1.32 and 1.33, as a set of N linear equations for the N displacements zj :

N∑
j=1

zj sin
(2π(j − 1)

N

)
= 0; (1.38)

N∑
j=1

zj cos
(2π(j − 1)

N

)
= 0 . (1.39)

The solution can be exploited to obtain the displacements zj in terms of the
Cremer-Pople coordinates explicitly defined in Eqs. 1.33, 1.36 and 1.37. If
N is odd, the displacements zj are given by:

zj =
( 2

N

) 1
2


(N−1)/2∑
m=2

qm cos
[
θm +

2πm(j − 1)

N

] ; (1.40)

otherwise, if N is even, they are given by:

zj =
( 1

N

) 1
2
qN/2(−1)j−1+

+
( 2

N

) 1
2


(N−2)/2∑
m=2

qm cos
[
θm +

2πm(j − 1)

N

] .

(1.41)

The case of 5-term rings and symmetry considerations

In the case of 5-term rings, the use of Cremer-Pople coordinates allows for
the complete description of ring-puckering motions using only 2 coordinates:
one puckering amplitude q, and one pseudorotation angle θ. Therefore, this
kind of system can be described using a 2D-PES and plotting the energy as
a function of the two polar coordinates q and θ (with q > 0 and 0 < θ < 2π)
minimized with respect to all remaining coordinates, i.e. performing a so-
called ‘relaxed scan’ in q and θ.

Clearly, in this kind of plots each couple (q, θ) is associated with a specific
conformation. The value of the amplitude q can be thought of as a measure
of the distances (along the direction of ẑ) of the 5 vertices of the ring from
the mean plane defined by Eqs. 1.38 and 1.39. Thus, for example, if q = 0
then the 5 vertices lie on the mean plane, and the conformation of the 5-term
ring is planar. As to the pseudorotation angle θ, the connection between its
value and the conformation of a 5-term ring cannot be described in a simple
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Figure 1.2: Graphical representation of 20 conformations of a 5-term sat-
urated ring system with the corresponding value of pseudorotation angle
θ specified in radiants. For each displayed ring, the puckering amplitude is
fixed at q = 0.55. At the center of the circle, the planar conformation (q = 0)
is also shown.

way. Figure 1.2 gives a graphical representation (firstly proposed by Altona
and Sundaralingam58 and used by other authors59–61 since) that clarifies
the physical meaning of the pseudorotation angle through a representation
of each conformation associated to a particular value of θ: 20 different values
of θ are considered and accordingly 20 different conformations are depicted,
each one corresponding to a particular value of the pseudorotation angle.

In many cases, the use of symmetry can lead to significant savings of com-
putational resources as only the calculation of portions of the 2D-PES may
be required. For the case of 5-term rings, a summary of the simplifications
brought by symmetry is given in Table 1.1. To give an example, say the K
points are necessary to perform a relaxed scan of the 2D-PES in the intervals
0 < q < 1 and 0 < θ < 2π. In the case of 3S-chloro-1,2-dithiolane, in the ab-
sence of symmetry all K calculations are required. Turning to cyclopentane,
on the other hand, symmetry can be exploited to limit the calculations to the
range [0, π10 ]: each point of the relaxed scan calculation performed in such
range can be extended to other points of the 2D-PES in the range [ π10 , 2π]
using the relations E(q, θ) = E(q, θ+ π

5 ) and E(q, θ) = E(q,−θ). Therefore,
the sampling of 2D-PES in the intervals 0 < q < 1 and 0 < θ < 2π on all K
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points can be performed with a relaxed-scan calculation of only K/20 points.
Similarly, in the case of tetrahydrofuran the relaxed-scan calculations shall
be limited to values of the pseudorotation angle in the range [0, π2 ], because
the relations E(q, θ) = E(q, θ+π) and E(q, θ) = E(q,−θ) allow for the con-
struction of the 2D-PES in the range [π2 , 2π] without the need to performing
the related calculations. Thus, the 2D-PES can be sampled on K points in
the range [0, 1] for q and [0, 2π] for θ with a relaxed-scan calculations of only
K/4 points. In Table 1.1 the reader can find the indication of when and how
symmetry can be used (as has been done in this work) for the construction
of the 2D-PESs.

1.3.2 Methodology

All calculations were performed using the Gaussian 1612 suite of programs.
Each electronic-structure calculation was carried out with Density Functional
Theory (DFT) by employing B2PLYP as exchange-correlation functional62

(the reliability of the results obtained employing this functional has been al-
ready verified in a number of works63–65 for what concerns organic molecules)
combined with Grimme’s D3BJ dispersion66,67 and maug-cc-pVTZ basis set
introduced by Truhlar and coworkers68,69 (proposed after the augmented cor-
relation consistent family of basis sets introduced by Dunning and cowork-
ers70–73). Each point of the twelve relaxed scans was calculated indepen-
dently through a constrained optimization. Each input was constructed us-
ing both cartesian and internal coordinates in the same z-matrix. Cartesian
coordinates in the reference frame defined by Eqs. 1.26, 1.30 of Section 1.3.1
have been used in order to specify the positions of the five atoms involved
in the ring structure, while internal coordinates have been used to specify
the position of all the other atoms (e.g. in the cyclopentane molecule, all
the hydrogen atoms). During the constraint optimization, the zj (Eq. 1.30)
cartesian coordinates of the atoms involved in the ring structure are kept
fixed: in this manner the puckering amplitude q (Eq. 1.36) and the pseu-
dorotation angle θ (Eq. 1.37) are fixed during the optimization.a Input
files (each one corresponding to a specific couple (q, θ)) have been written
automatically with an home-made python script.

The saturated 5-term rings taken into account in this study do not exhibit
a minimum in correspondence of the planar conformation (q = 0). Therefore,
the use of a uniformly spaced polar grid directly employing Cremer-Pople
coordinates q and θ for the sampling of the 2D-PES would be ineffective,
because the density of the sampling would reach a maximum correspondingly
to the origin of the polar grid and would constantly decrease with incresing
puckering amplitude q. Instead, a uniformly-spaced rectangular grid (i.e.

aθ is a dimensionless quantity, but q has the dimension of a length: therefore, a mea-
surement unit for the values of q provided in this section must be specified. All the values
of q are specified in Angström.
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molecule q interval θ interval number of calculated points spacing
cyclopentane 0 ≤ q ≤ 0.65 0 ≤ θ ≤ π

10
500 0.01181818

tetrahydrofuran 0 ≤ q ≤ 0.6 0 ≤ θ ≤ π
2

1295 0.015
tetrahydrothiophene 0 ≤ q ≤ 0.75 0 ≤ θ ≤ π

2
1297 0.01875

1,2-dioxolane 0 ≤ q ≤ 0.75 0 ≤ θ ≤ π
2

1297 0.01875
1,3-dioxolane 0 ≤ q ≤ 0.75 0 ≤ θ ≤ π

2
2012 0.015

1,2-dithiolane 0 ≤ q ≤ 0.75 0 ≤ θ ≤ π
2

1297 0.01875
1,3-dithiolane 0 ≤ q ≤ 0.75 0 ≤ θ ≤ π

2
1297 0.01875

1,2-oxathiolane 0 ≤ q ≤ 0.75 0 ≤ θ ≤ π 1344 3/116 (' 0.026)
1,3-oxathiolane 0 ≤ q ≤ 0.75 0 ≤ θ ≤ π 1255 3/112 (' 0.027)

3R,5S-dichloro-1,2-dithiolane 0 ≤ q ≤ 0.75 0 ≤ θ ≤ π 649 0.0375
3S,5S-dichloro-1,2-dithiolane 0 ≤ q ≤ 0.75 −π

2
≤ θ ≤ π

2
649 0.0375

3S-chloro-1,2-dithiolane 0 ≤ q ≤ 0.8 0 ≤ θ < 2π 1257 0.04

Table 1.2: Details of the 2D-PES samplings for the twelve considered
molecules (see text for discussion).

employing q cos θ and q sin θ instead of q and θ) has been adopted in this
work.

For each of the systems investigated in this study, a maximum value (de-
pending on the specific system) of the puckering amplitude q has been chosen
for the sampling of the related 2D-PES. In Table 1.2 the various intervals em-
ployed to sample 2D-PESs of the molecules studied in this work are reported
(the interval of puckering amplitudes and the interval of pseudorotation an-
gles are reported, respectively, in the second and in the third columns). For
what concerns pseudorotation angles, in Section 1.3.3 computational results
are shown and discussed in the interval 0 < θ ≤ 2π for each molecule: as
already mentioned, the extension of the intervals reported in Table 1.2 to
the complete range of values 0 < θ ≤ 2π can be straightforwardly carried
out exploiting the expressions given in Table 1.1 with a significant reduc-
tion of computational cost. The number of points used (e.g. the number
of constrained optimizations carried out) to sample 2D-PESs is reported in
the fourth column of Table 1.2 for each molecule, while in the fifth column
the spacing adopted between two adjacent points of the uniformly-spaced
rectangular grid employed for the sampling of each 2D-PES is reported. The
origin of the rectangular grid used to perform the sampling is, in all cases
considered in this work, the value q = 0 (which corresponds to a planar con-
formation of the ring and is explicitly sampled for all the molecules treated
in this work).

The 2D-PESs displayed in Section 1.3.3 were extrapolated through cubic
spline interpolations, except for 1,2-oxathiolane and 1,3-oxathiolane molecules
for which linear interpolations were used. Data given in this Section should
allow for a complete reproduction of the results reported and discussed in
Section 1.3.3.
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1.3.3 Computational results: 2D-PES calculations

In this Section, the computed 2D-PESs are reported in the form of contour-
map plots and briefly discussed.

For each of the considered twelve 5-term rings, experimental and com-
putational data already available in the literature are briefly reviewed and
compared with the results of this work. The results are summarized in ta-
ble 1.3 and in each of the following subsections a discussion devoted to each
of the molecule considered in this study is provided. The reader not inter-
ested in a detailed discussion concerning each of the 5 term rings investigated
in this work can skip to the next section without losing the more relevant
computational and theoretical insights of this work. Further information on
the minima of the computed 2D-PES is available in the SI of the original
article.

Cyclopentane

Cyclopentane has been extensively studied by many authors.59,74–78 The
early description of the pseudorotational motion of cyclopentane proposed
by Kilpatrick et al.110 in terms of a ring puckering amplitude and a phase
angle has been recognized56 as a particular case of Eq. 1.40 when N =
5. Nowadays, the description of this molecule as a puckered ring which
exhibits a nearly free pseudorotational motion along the phase angle θ is
confirmed59,74,76,77 by various experiments and computations and, therefore,
is widely accepted.

The computed 2D-PES for cyclopentane is shown in Fig. 1.3.

Figure 1.3: 2D-PES of cyclopentane; energy values (given on the right of the
colorbar) are in cm−1.
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In order to evidence the nearly free pseudorotational path suggested by
the computational results obtained in this work, the 2D-PES is depicted only
in the range 0.37 < q < 0.44.

Along the pseudorotational path, ten minima with exactly the same en-
ergy (associated to a twisted structure) are separated by ten barriers. The
top of each barrier corresponds to a first-order saddle point (associated with
a bent structure) and the difference between the energy of a transition state
and the energy of a minimum is less than 1 cm−1 (Due to the need of taking
into account extremely small energy differences the importance of a careful
choice of the integration grid used for the numerical integration in the DFT
calculations must be pointed out: a discussion of this technical problem is
provided in the SI of the original article).

Although other computational surveys already available in the literature
suggest the existence of a nearly free pseudorotational path, a general agree-
ment on the geometry associated to minima and transition states has not
been reached76,77 (even for what concerns the number of minima and tran-
sition states76). The extremely small energy difference between minima and
first-order saddle points located along the pseudorotational path have not
allowed (at least till now) for an unambiguous experimental determination
of the nature of (and the geometry associated to) each of these station-
ary points: indeed, an energy of the vibrational ground state higher than
the extremely small barrier to the pseudorotation can be easily guessed.77

In this case, the molecule can be considered (with good approximation) a
free-pseudorotor. It must be underlined that the use of DFT methods to
characterize the pseudorotational pathway of the cyclopentane molecule can
be questioned: this molecule is, indeed, small enough to allow the use of
coupled cluster methods,76,77 at least for the characterization of minima and
first-order saddle points. The situation is different for what concerns the
barrier to planarity (the second-order saddle point of the global PES corre-
sponding to the planar conformation of the cyclopentane molecule), which
is estimated to be equal to 1808 cm−1 on the basis of experimental data,75

in good agreement with the value of 1768 cm−1 calculated in this work.
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Tetrahydrofuran

In the case of tetrahydrofuran (THF), as can be expected, both compu-
tational85–91 and experimental79–86 results are available in literature. Sig-
nificant evidences on the existence of a slightly hindered pseudorotational
motion are reported in the literature. Various experimental studies support
the existence of a pseudorotational motion with four minima separated by
four barriers81–84; earlier experimental studies suggest a nearly free pseu-
dorotational motion without definite conclusions about the energetic profile
along the pseudorotational path79,80.

For what concerns ab-initio computational studies, different and some-
times conflicting results have been obtained: some authors have calculated
four minima (two minima with C2 symmetry and enantiomeric structures,
two minima with Cs symmetry and the same structure)85,86,90,91, but the
small energy difference between bent and twisted conformations have pre-
vented an unambiguous determination of the global minimum. In addition,
there are evidences of a strong dependence of the calculated pseudorotational
path from the basis-set employed in the calculation86,90. Results obtained
by Wu and Cremer89 (two minima with the enantiomeric structures and
C2 symmetry, two transition states with the same structure and Cs sym-
metry) are in agreement with other earlier calculations87,88 while in sharp
contrast, even qualitatively, with more recent computational results85,86,90,91

and with the energetic profile of the pseudorotational motion inferred from
experiments of rotational spectroscopy81–84. On the basis of experimental
and computational data the existence of a second-order saddle point corre-
sponding to the planar conformation (q = 0) can be inferred.

The 2D-PES computed in this work is shown in Fig. 1.4. With the aim of
highlighting the main features of the pseudorotational path, computational
results are displayed only in the interval 0.25 < q < 0.5. The results obtained
in this work confirm some earlier findings: two twisted minima with equal
energies and enantiomeric structures belonging to C2 symmetry point group
(with puckering amplitude of 0.378 and pseudorotational angles equal to π

2
and 3π

2 ), two bent minima with the same energy and a structure pertaining
to Cs symmetry point group (with q = 0.376 and pseudorotational angles
of π and 2π) and, finally, four transition states with equal energies and
asymmetric structures (two transition states correspond to a structure with
q = 0.374 and θ equal to 0.794 and π − 0.794 and the other two to the
enantiomeric form of the same structures, with the same puckering amplitude
and pseudorotational angles equal to π+0.794 and 2π−0.794). Furthermore,
the results displayed in Fig. 1.4 support the existence of a pseudorotational
path and a planar form corresponding to a second-order saddle point of
the 2D-PES. A quantitative measurement of the height of each potential
energy barrier can be easily obtained through the computation of energetic
differences (results are reported in table 1.3).
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For this molecule, an extrapolation to the complete basis set (CBS) limit
employing a composite scheme based on coupled-cluster single-point calcu-
lations (CCSD(T) on top of MP2/aug-cc-pVTZ geometry optimizations)90

of the energies associated with the two non equivalent energy minima of the
2D-PES has been published. In the present work, the global minimum is
associated with a twisted (C2) structure, while Ref. 90 has predicted a rela-
tive minimum associated with the twisted structure and the global minimum
in correspondence with a bent (Cs) structure (note that, however, the en-
ergy differences between the two molecular structures are very small in both
cases).

Figure 1.4: 2D-PES of tetrahydrofuran; energy values (given on the right of
the colorbar) are in cm−1.

Tetrahydrothiophene

The pseudorotation of tetrahydrothiophene (THT) has been studied by sev-
eral authors92–96. Experimental results obtained with electron diffraction92,
far-infrared93,94 and rotational95,96 spectroscopy can be found in the litera-
ture.

The 2D-PES computed in this work is displayed in Fig. 1.5. On the
basis of experimental evidences and previous calculations, the existence of
a pseudorotational circuit with two potential energy minima corresponding
to the twisted forms of tetrahydrothiophene (with enantiomeric structures
belonging to the C2 symmetry point group) and two transition states cor-
responding to the bent one (belonging to the Cs symmetry point group)
has been inferred92–96. These conclusions are in agreement with the results
displayed in Fig. 1.5 and reported in table 1.3.
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The height of the barrier to the pseudorotation has been obtained both
through extrapolation from experimental results (with values between 770
and 780 cm−1) and from previous calculations. The best agreement between
experimental and calculated values available in literature has been obtained
with calculations carried out at MP2/6-311+G** level of theory, with a
calculated value of 928 cm−1 96. In this work the calculated barrier height is
799 cm−1, significantly better than the already cited best agreement. The
difference between the energy calculated for the planar structure and the
energy associated to the two potential-energy minima of the PES is 2341
cm−1, a value that is significantly higher that estimated from experimental
results by Wertz et al.93 (nearly equal to the transition state energy and not
coherent with the pseudorotational motion proposed in the same article and
in this work) and lower than the one reported by Smithson et al.94 (4252
cm−1).

Figure 1.5: 2D-PES of tetrahydrothiophene; energy values (given on the
right of the colorbar) are in cm−1.
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1,2-dioxolane

To the best of our knowledge, only few authors have devoted their atten-
tion to the study of 1,2-dioxolane. Results deduced from microwave98 and
photoelectron97 spectra of 1,2-dioxolane have been published, while a com-
putation of the 2D-PES has been carried out by Cremer61 at HF/6-31G*
level of theory.

Figure 1.6: 2D-PES of 1,2-dioxolane; energy values (given on the right of the
colorbar) are in cm−1.

From previous calculations61 and experimental data98, minima of the
PES corresponding to two enantiomeric, twisted structures (belonging to the
C2 symmetry point group) of 1,2-dioxolane molecule have been inferred. Fur-
thermore, two transition states corresponding to a bent structure (belonging
to the Cs symmetry point group) and a second-order saddle point corre-
sponding to the planar structure have been computationally predicted61.
The results illustrated in Fig. 1.6 and reported in table 1.3 confirm these
earlier findings.

The barrier to the pseudorotation has been calculated as difference be-
tween the energy of the transition state (first-order saddle point of the PES)
and the energy of the minimum. The value obtained in this work is equal
to 721 cm−1, not far from the previously reported calculated value of 781
cm−1 61. The puckering amplitude q corresponding to minima of the PES
(see Fig. 1.6) is equal to 0.45 (in agreement with values already available
in literature61,98). The energy difference between the second-order saddle
point of the PES (corresponding to the planar conformation) and minima of
the PES has been calculated: the value is equal to 2380 cm−1 in this work,
higher than the value of 1988 cm−1 previously obtained by Cremer61. An
experimental study explicitly devoted to the study of the pseudorotational
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motion computationally predicted would be desirable.

1,3-dioxolane

The pseudorotation of 1,3-dioxolane has been already studied by some au-
thors. For what concerns experimental studies, results obtained from an elec-
tron diffraction investigation99 and from microwave100–102 and far-infrared103,104

spectra are available in the literature. The calculation of the 2D-PES has
been performed and published by Cremer et al.61,105.

In Fig. 1.7, the computed 2D-PES is shown only in the interval 0.2 < q <
0.45 in order to account for the slightly hindered pseudorotational motion of
1,3-dioxolane molecule. Concerning the results inferred from experimental
data, the disagreement between conclusions attained, on one hand, through
rotational spectroscopy100,102 and, on the other hand, with electron diffrac-
tion99, must be pointed out. In the case of the electron diffraction study,
a description of pseudorotational motion of 1,3-dioxolane molecule qualita-
tively similar to that given for 1,2-dioxolane has been proposed: two minima
corresponding to two enantiomeric structures (pertaining to C2 symmetry
point group) separated by two barriers (with transition states pertaining to
Cs symmetry point group)99. This description is in agreement with pre-
viously reported computations performed at HF/6-31G* level of theory61.
Instead, results obtained with rotational spectroscopy suggest four minima
with equal energies corresponding to asymmetric conformations of the 1,3-
dioxolane molecule and four transition states, two with a structure belonging
to C2 symmetry point group with energies slightly higher than the other two
with a structure belonging to Cs symmetry point group100,102.

Figure 1.7 supports the results suggested by rotational spectroscopy (see
also table 1.3): four minima with equal energies and asymmetric conforma-
tions, more specifically two minima (with pseudorotation angles θ equal to
0.694 and π − 0.694) with the same asymmetric structure that is the non-
superimposable mirror image of a structure corresponding to the other two
minima (with pseudorotation angles equal to π+0.694 and 2π−0.694); four
transition states, two corresponding to two enantiomeric structures belong-
ing to C2 symmetry point group on the top of a potential energy barrier with
a height of 63 cm−1 (value inferred from experimental data: 73.8 cm−1)102

and two corresponding to a structure belonging to Cs symmetry point group
corresponding to a barrier of height of 29 cm−1 (value inferred from experi-
mental data: 41.6 cm−1)102.

1,2-dithiolane

Although 1,2-dithiolane is known111, we are not aware of published studies
concerning conformations or pseudorotation of 1,2-dithiolane ring.
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Figure 1.7: 2D-PES of 1,3-dioxolane; energy values (given on the right of the
colorbar) are in cm−1.

Positions and relative energies of each of the stationary points are re-
ported in table 1.3. The 2D-PES calculated in this work (see Fig. 1.8) is

Figure 1.8: 2D-PES of 1,2-dithiolane; energy values (given on the right of
the colorbar) are in cm−1.

qualitatively similar to the ones calculated for 1,2-dioxolane and tetrahy-
drothiophene (see Fig. 1.6 and 1.5),with two equivalent minima (belong-
ing to C2 symmetry point group) and two transition states with the same
structure (pertaining to Cs symmetry point group). An experimental study
concerning the physico-chemical characterization of 1,2-dithiolane molecule,
particularly the pseudorotational motion envisaged in this work, would be
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desirable.

1,3-dithiolane

The only conformational data available for 1,3-dithiolane are based on mea-
surements carried out with vibrational106 and NMR107 spectroscopy. The
authors are not aware of any previous study concerning the pseudorotation
of the 1,3-dithiolane ring.

The computed 2D-PES for this system is shown in Fig. 1.9 (see table 1.3
for positions and relative energies of the stationary points). Computational
results are displayed in the interval 0.4 < q < 0.6 to the purpose of highlight-
ing the change of energy values along the pseudorotational circuit. Experi-
mental data106,107 suggest a puckered equilibrium structure with a twisted
conformation (with a C2 symmetry) favored on a bent conformation (with
Cs symmetry). However, these suggestions must be taken with caution: ex-
perimental results available in literature could be relevantly affected by the
environment and are not suitable for the study of the pseudorotational mo-
tion suggested in Fig. 1.9 of this work. Along the pseudorotational path,
there are four minima with the same energy, two with the same asymmet-
ric structure (with pseudorotational angles equal to 1.108 and π − 1.108)
that are separated by a transition state with a twisted structure (with C2

symmetry and θ = π
2 ) and two which are mirror images of the asymmetric

structure already mentioned (with pseudorotational angles equal to π+1.108
and 2π−1.108) that are separated by a transition state with a structure that
is the mirror image of the already cited twisted structure (belonging to C2

symmetry point group, θ = 3π
2 ) and are separated from their mirror images

by two transition states with the same bent structure (with Cs symmetry,
pseudorotational angles of π and 2π).

The need of novel experimental data to properly characterize the pseu-
dorotational motion computationally predicted in this work must be pointed
out.

1,2-oxathiolane

The 1,2-oxathiolane compound is known111, but to the best of our knowl-
edge the attention devoted to its physico-chemical characterization has been
scarce. The experimental photoelectron spectrum of 1,2-oxathiolane can be
found in the literature108. In the same article the authors cautiously suggest
a planar conformation of 1,2-oxathiolane ring on the basis of preliminary
calculations.

The computed 2D-PES for this system is shown in Fig. 1.10 and the
results are reported in table 1.3. The disagreement between these results and
the already cited hypothesis available in the literature about the minimum-
energy structure of the 1,2-oxathiolane molecule is evident. More specifically,



1.3. APPLICATIONS 33

Figure 1.9: 2D-PES of 1,3-dithiolane; energy values (given on the right of
the colorbar) are in cm−1.

Figure 1.10: 2D-PES of 1,2-oxathiolane; energy values (given on the right of
the colorbar) are in cm−1.

the computational results shown in Fig. 1.10 suggest the existence of a
pseudorotational motion involving two asymmetric minima which correspond
to enantiomeric structures and two asymmetric transition states.

Furthermore, it would be interesting a comparison with an experimental
study (currently not available in the literature) explicitly devoted to the
characterization of the pseudorotational motion computationally predicted
in this work.
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1,3-oxathiolane

The pseudorotation of the 1,3-oxathiolane ring has been studied with far-
infrared spectroscopy109.

The computed 2D-PES for this system is shown in Fig. 1.11. The ex-
istence of a pseudorotational motion with two minima of equal energy (and
two enantiomeric twisted structures of C2 symmetry point group) corre-
sponding to pseudorotational angles of π

2 and 3π
2 and two transition states

of equal energy (and the same bent structure pertaining to Cs symmetry
point group) corresponding to pseudorotational angles of π and 2π has been
inferred from experimental data109. Results displayed in Fig. 1.11 suggest
the existence of a pseudorotational motion with two minima of equal energy
and two transition states of equal energy, in agreement with previously re-
ported experimental results109. However, an evident discrepancy between
the results shown in Fig. 1.11 and what has been inferred from experimental
data must be pointed out: the minima of Fig. 1.11 correspond to two differ-
ent asymmetric structures which are enantiomeric forms , in sharp contrast
with the already cited conclusions109; the same holds for transition states
(although with different values of puckering amplitude and pseudorotational
angles, see table 1.3).

The barrier to the pseudorotational motion has been calculated carrying
out the difference between energies of, respectively, one of the two first-order
saddle points (transition states) and the global minimum of 2D-PES: the
result is equal to 659 cm−1, slightly higher than the experimental one of 541
cm−1 (which is affected by an error of±20 cm−1)109. The barrier to planarity
(a second-order saddle points of the glodal PES and a maximum of the 2D-
PES shown in Fig. 1.11) has been computed to be equal to 2032 cm−1,
to be compared with a value of 2720 cm−1 extrapolated from experimental
values (and considered an overestimation by the authors of the experimental
study)109.

3S-chloro-1,2-dithiolane

The author is not aware of any previous study devoted to computational or
experimental characterization of 3S-chloro-1,2-dithiolane molecule.

The computed 2D-PES for this system is displayed in Fig. 1.12. Posi-
tions and relative energies of each stationary point are listed in table 1.3.
Computational results obtained in this work suggest the existence of a pseu-
dorotational path, with three different minima (each one corresponding to a
different asymmetric molecular structure and with different energy, see the
SI of the original article) and three different transition states (which are
three first-order saddle points of the global PES, each one corresponding to
a different asymmetric structure). The existence of a second-order saddle
point of the global PES is also predicted, but not in correspondence of the
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Figure 1.11: 2D-PES of 1,3-oxathiolane; energy values (given on the right of
the colorbar) are in cm−1.

Figure 1.12: 2D-PES of 3S-chloro-1,2-dithiolane; energy values (given on the
right of the colorbar) are in cm−1.

planar form (q = 0) of the ring, in contrast with the results in Figs. 1.3 to
1.11 but in line with the results in Figs. 1.13 and 1.14.

An experimental physico-chemical characterization of this system in or-
der to confirm (or to question) the results described in this section and
illustrated in Fig. 1.12 would be desirable.
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3R,5S-dichloro-1,2-dithiolane

To the best of my knowledge, no work has been published on the computa-
tional or experimental characterization of the 3R,5S-dichloro-1,2-dithiolane
molecule.

In Fig. 1.13, the computed 2D-PES for this system is shown. Positions
and relative energies of each stationary point can be found in table 1.3. On
the basis of our results, the existence of a pseudorotational path is envis-
aged. More specifically, along the pseudorotational path four minima and
four transition states are predicted: two of the four minima (with puckering
amplitude of 0.645 and pseudorotational angles equal to 1.997 and -1.997)
have exactly the same energy and correspond to enantiomeric forms, and also
the other two correspond to asymmetric and enantiomeric structures with ex-
actly the same energy (q = 0.529 and pseudorotational angles equal to 0.929
and -0.929, the energy difference with respect to the energy of the other two
minima, which are global minima of 2D-PES, is equal to 238 cm−1).

For what concerns first-order saddle points, two out of four have exactly
the same energy and correspond to enantiomeric structures (θ equal to 1.386
and -1.386) while the other two corresponds to bent structures, one with
θ = 2π and the other with θ = π. The computational prediction of a second-
order saddle point of the PES near (but not in correspondence with) the
planar form of the ring is clearly illustrated by Fig. 1.13.

In order to evaluate the reliability of computational results reported in
this section, a comparison with future data obtained from a physico-chemical
experimental characterization of 3R,5S-dichloro-1,2-dithiolane molecule is in
order.

Figure 1.13: 2D-PES of 3R,5S-dichloro-1,2-dithiolane; energy values (given
on the right of the colorbar) are in cm−1.
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3S,5S-dichloro-1,2-dithiolane

The authors are not aware of any previous results (neither computational
nor experimental) currently available in the literature for what concerns the
3S,5S-dichloro-1,2-dithiolane molecule.

The computed 2D-PES for this system is shown in Fig. 1.14. Compu-

Figure 1.14: 2D-PES of 3S,5S-dichloro-1,2-dithiolane; energy values (given
on the right of the colorbar) are in cm−1.

tational results suggest the existence of a pseudorotational path with two
minima of equal energy and structure and two transition states, one with
θ = π

2 and the other with θ = 3π
2 (puckering amplitudes, pseudorotational

angles and relative energies are reported in table 1.3).
The existence of a second-order saddle point of the global PES is pre-

dicted near, but not in correspondence with, the planar ring conformation.
Also in this last case, a comparison with future experimental data to check
the reliability of these computational results is desirable.
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1.3.4 Computational results: 2D-PES fitting

A visual inspection of the 2D-PESs reported in the previous Section suggests
the possibility of expressing each 2D-PES through an analytical function of
the variables q and θ. In the case of free pseudorotation the value of potential
energy is independent from θ; the existence of a maximum of the 2D-PES (a
second-order saddle point of the global PES) for the value q = 0 suggests the
functional form of Eq. 1.42 (with k1 and k2 assuming, respectively, a negative
and a positive value) to take into account the dependence of potential energy
on q:

V (q) = k1q
2 + k2q

4 (1.42)

In the most general case, the angular dependence of the potential energy
can be described by a Fourier series:

V (θ) =
∞∑
n=0

[
wcn cos(nθ) + wsn sin(nθ)

]
(1.43)

Eq. 1.43 can be greatly simplified if the conformational space of the molec-
ular system exhibits one or more symmetry elements.

A two-dimensional functional form to formulate the dependence on q and
θ of a 2D-PES can be easily obtained (and has been proposed by Cremer
and Pople105) combining eqs. 1.42 and 1.43:

V (q, θ) = a+ (k1q
2 + k2q

4)
∞∑
n=0

[
wcn cos(nθ) + wsn sin(nθ)

]
(1.44)

In this section, Eq. 1.44 is employed to give an analytical expression of
the 2D-PES of each of the systems discussed in Section 1.3.3.

It must be pointed out that, whether some results and discussions of the
application of Eq. 1.44 to 5-term rings whose planar form exhibits a D5h

59

or a C2v
105 symmetry are available in literature, the fitting of the 2D-PES

is here extended for the first time to systems having further symmetries.
The functional form chosen to fit the sampled points of the 2D-PES

of each molecule is reported in Table 1.4 with the numerical value of the
coefficient of determination (R2): the coefficients bxi−n of Table 1.4 are given
by Eq. 1.45 (where ki and wxn are the coefficients of Eqs. 1.42, 1.43 and
1.44). Values of the coefficients are given in the SI of the original article,
where a concise discussion of some technical details can be found.

bxi−n = kiw
x
n (1.45)

Some of the coefficients bxi−n of the Fourier series are equal to zero if the
specific 2D-PES considered exhibits specific symmetry elements (see Table
1.1). More specifically:
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• in the case of cyclopentane (D5h symmetry)59 only the cosine terms of
the Fourier series with order 0 or an order multiple of 10 differ from 0
(i.e. in Eq. 1.44 only values of n equal to 0, 10, 20, 30 ...);

• for what concerns systems in the second column of Table 1.1 (C2v

symmetry)105 only the zero and the pair (i.e. with a pair value of n in
Eq. 1.44) cosine terms of the Fourier series are not 0;

• in the case of 1,2-oxathiolane and 1,3-oxathiolane molecules (third col-
umn of Table 1.1, Cs symmetry and mirror plane parallel to ring plane)
only the sine and the cosine terms of zero and pair order of the Fourier
series differ from 0;

• for what concerns 3R,5S-dichloro-1,2-dithiolane molecule (fourth col-
umn of Table 1.1, Cs symmetry and mirror plane perpendicular to ring
plane) only the cosine terms of the Fourier series differ from 0;

• in the case of 3S,5S-dichloro-1,2-dithiolane molecule (fifth column of
Table 1.1, C2 symmetry) the sine terms of pair order and the cosine
terms of odd order of the Fourier series are 0 by symmetry;

• the 3S-chloro-1,2-dithiolane molecule has no symmetry element with
the exception of the identity (sixth column of Table 1.1, C1 symmetry)
and all the terms of a Fourier series could differ from 0.

The coefficients of Eq. 1.44 are obtained through a linear fit with the ex-
ception of the known argument a which has a transparent physical meaning:
it is the height of the barrier to planarity, which has been obtained through
the computations already discussed in the former section and, therefore, in-
serted before the fit and kept fixed.

The truncation of the Fourier series after a certain order has been decided
on the basis of the following criteria:

• the qualitative reproduction of the main features of the 2D-PES, with
respect to topology and relative energies: this aspect can be assessed by
visual inspection (trough comparison with the contour plots displayed
in Section 1.3.3);

• the variation of R2 when the next relevant term of the Fourier series is
added: if the entity of the variation is small enough (i.e. has no effect
on the first three relevant figures) the expansion is truncated to the
former term;

• the value of R2: if R2 > 0.99 and the first criterion is satisfied no other
terms are added in the expansion.
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It must be pointed out that the assumption of the location of the second-
order saddle point of the global PES in correspondence of the planar con-
formation of the ring, which is one of the assumptions behind Eq. 1.44,
is not always satisfied, as discussed in Section 1.3.3. More specifically, in
the case of 3S-chloro-1,2-dithiolane, 3R,5S-dichloro-1,2-dithiolane and 3S,5S-
dichloro-1,2-dithiolane the coordinates of the second-order saddle point of the
global PES are close to but no exactly q = 0. This means that for these three
molecules the radial part of Eq. 1.44 is a less accurate approximation (this
is clearly reflected in the values of R2 reported in Table 1.4, which are lower
for these molecules), whose adequacy is, in the authors’ opinion, as better as
smaller is the value of the puckering amplitude of the geometry associated
to the second-order saddle point of the global PES.

It is worth noting here that, while for all molecules the fitting was per-
formed using the whole (rather large) set of computed energies, one can
expect that the functional forms reported in Table 1.4 should be effective
also using a much smaller set of energies. Indeed, considering for instance
tetrahydrothiophene, a R2 of 0.994 is obtained if the whole set of 5052 ener-
gies is used (corresponding to a sampling interval of 0.01875, see Table 1.2)
while the same accuracy (R2 = 0.995) is obtained if a reduced set of only 101
energies (corresponding to a larger sampling interval of 0.13125) is used. In
other words, a rather modest number of electronic-structure calculations is
required to obtain an accuarate analytical formulation of the 2D-PES using
the functional forms of Table 1.4. Further details on the stability of R2 with
respect to decreasing number of fitted energies are given in the SI of the
original article.
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Chapter 2

Calculation of energies and
properties: dealing with a
single electronic state

In the previous chapter different strategies for the construction of PESs have
been presented and discussed. However, to provide a satisfying solution of
the nuclear problem for a specific electronic state the knowledge of the PES
is not enough: a suitable approximation of the entire hamiltonian is needed,
and therefore an approximation of the kinetic energy operator is mandatory
(see section 2.1). Approximate rewriting of the nuclear hamiltonian and
affordable methods to solve the TINSE are discussed in section 2.2 with
particular emphasis on VPT2 methods and local mode approximations, while
the computation of properties (IR and VCD intensities) is considered and
discussed in section 2.3. At the end of the chapter (section 2.4) a series of
applications will be considered: reliability and limits of methodologies based
on VPT2 and local mode approximations are discussed through a comparison
of calculated IR and VCD spectra with their experimental counterparts.a

2.1 The kinetic energy operator

Switching from classical kinetic energy to quantum kinetic energy operator
(KEO) is not straightforward: the KEO is a differential operatorb and its
analytical formulation depends on the particular coordinate system chosen.
More specifically, the simplifications brought about by the employment of a

aAn account of the history of Vibrational Optical Activity (VOA) can be found in
ref. 112. The first measurements of VCD spectra are reported and described in refs. 113–
116.

bIn the position basis, the quantum condition imply: p 7−→ −i~∇; this means that the
presence of momenta in the classical kinetic energy term imply a differential operator in
its quantum analogue.

43
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suitable curvilinear coordinate system for the expression of the potential en-
ergy are accompanied by major complications in the expression of the KEO.
Moreover, the problems which arise when the separation between rotations
and vibrations is taken into account should be mentioned.

2.1.1 Classical kinetic energy

In the case of classical kinetic energy (for a system of N points or nuclei in
three spatial dimensions), the expression of the kinetic energy in cartesian
coordinates is the following:

T (ṙ) =
1

2

N∑
i

3∑
α

miṙ
2
iα (2.1)

where ṙiα is the α-th cartesian component of the velocity of the i-th atom
of the molecular system and mi is the mass of the corresponding nucleus
(the position of each nucleus is specified with 3 cartesian components). The
features of the simple expression of eq. 2.1 are not necessarily retained if
the kinetic energy is formulated in terms of generalized internal coordinates.
In presence of constraints, the cartesian coordinates can be replaced with
a suitable system of 3N − R generalized internal coordinates qk (where R
is the number of constraints to which the system is subject). In the most
general case:

r = r(q(t), t) (2.2)

Assuming the absence of the explicit time dependence of eq. 2.2 (i.e. if
the constraints does not depend on time explicitly), the following simplified
transformation holds:

r = r(q(t)) (2.3)

On the basis of eq. 2.3, the total time derivatives of the cartesian coor-
dinates can be written asa:

ṙiα(q, q̇) =
3N−R∑
k=1

∂riα
∂qk

q̇k (2.4)

Therefore, employing eqs. 2.1 and 2.4 the kinetic energy term can be
formulated as follows:

aNote that ∂xi
∂t

= 0 only if eq. 2.3 holds; for the most general case, eq. 2.2 holds and
∂xi
∂t
6= 0: this means that in the most general case the term ∂xi

∂t
must be included in

eq. 2.4.
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T (q, q̇) =
1

2

3N−R∑
j,k

N∑
i=1

3∑
α

mi
∂riα
∂qk

∂riα
∂qj

q̇kq̇j =
1

2

3N−R∑
j,k

gjk(qk, qj)q̇kq̇j . (2.5)

Where gjk(qk, qj) is an element of the square and symmetric matrix g(q).
The expression of eq. 2.5 gives the generalized classical kinetic energy term
for a scleronomous system. Besides the appearance of the number of con-
straints R and the different coordinate system, the expressions of the kinetic
energy given in eqs. 2.1 and 2.5 show other two relevant differences: (i) T
depends only by velocities (components of ṙ) in eq. 2.1, while in eq. 2.5 T
exhibits a dependence from both coordinates (components of q) and veloci-
ties (components of q̇); (ii) In eq. 2.1 mixed terms are absent (i.e. terms of
the type ṙiαṙjβ with i 6= j and/or α 6= β are all equal to 0), while they are
present in eq. 2.5.

The eq. 2.5 provides the expression of T (q, q̇) in lagrangian form, and
can be rearranged in matrix notation:

T (q, q̇) =
1

2
q̇T · g(q) · q̇. (2.6)

Employing Hamilton’s equations, it is possible to write eq. 2.6 in hamil-
tonian forma :

T (q,p) =
1

2
pT ·G(q) · p. (2.7)

G(q) is a square and symmetric matrix (best known as the Wilson’s G
matrix) whose elements are given by the following equation:

Gjk ≡ G(qj , qk) =
N∑
i

3∑
α

1

mi

∂qj
∂riα

∂qk
∂riα

. (2.8)

In this chapter the attention will be focused exclusively on the vibra-
tional degrees of freedom. A rigorous treatment shows that the customary
separation between vibrations and rotations is an approximation if the nuclei
of the molecular system are not rigidly fixed at their equilibrium positionsb,
although a reasonable one in many cases.

A diagonal form of the kinetic energy term can be given employing normal
coordinates:

athe full derivation can be found in chapter 6 of ref. 3.
bA rigorous discussion of this point, together with a complete and clear mathematical

derivation, can be found in chapter 11 of ref. 34 (see also chapter 2 of ref. 117); in the
same references it is shown that a rigorous separation of the three translations (usually
referred to the center of mass) can be achieved for the field-free case.
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T =
1

2

3N∑
k=1

Q̇2
k =

1

2

3N∑
k=1

P 2
k . (2.9)

Qk is related to the set of 3N mass-weighted cartesian coordinates by
a linear transformation34. Assuming approximate separation between rota-
tions and vibrationsa, the kinetic energy of vibrations in normal coordinates
is given by:

T =
1

2

3N−6∑
k=1

Q̇2
k. (2.10)

2.1.2 The quantum operator

The construction of the quantum KEO corresponding to the harmonic ap-
proximation for the kinetic energy of vibrations in normal coordinates is
straightforward. From eqs. 2.9 and 2.10, transforming the momenta Pk in
the corresponding differential operators:

T̂ =
1

2

3N−6∑
k=1

P̂ 2
k = −~2

2

3N−6∑
k=1

∂2

∂Q2
k

. (2.11)

Going beyond the harmonic approximation, the separation between rota-
tions and vibrations cannot be achieved exactly.b The general expression of
the vibration-rotation KEO in normal coordinates for polyatomic molecules
is the followingc:

T̂ =
1

2

3∑
α

3∑
β

µαβ(Ĵα − π̂α)(Ĵβ − π̂β)− ~2

8

3∑
α

µαα +
1

2

3N−6∑
k=1

P̂ 2
k . (2.12)

aIf the quadratic approximation of the potential energy surface held, the approxima-
tion would be exact and six normal modes associated to zero frequencies (and therefore
completely free and barrierless) would be obtained, within the Wigner-Eckart-Sayvetz
conditions.34

bAn introduction to the construction of vibro-rotational hamiltonian suitable to de-
scribe flexible molecules can be found in chapter 9 of ref. 117. In principle, the coupling
between rotations and vibrations must be taken into account and therefore a simple formu-
lation dealing only with vibrations cannot be retained. In practice, the coupling between
rotations and vibrations can be often minimized: in this way, the coupling between rota-
tions and vibrations can be approximately (not exactly) decoupled. However, it should be
mentioned that particularly challenging cases exist, in which low-energy vibrational and
rotational motions cannot be separated even in zeroth-order.118

cThis kind of approach was proposed by Wilson and Howard119, but their hamiltonian
operator was not hermitian; with the modifications proposed by Darling and Dennison120

an hamiltonian operator which is hermitian and similar to the one obtained by Wilson
and Howard can be constructed (the derivation is given in chapter 11 of ref. 34); however,
the formulation of the hamiltonian provided in this thesis (which is due to Watson121) is
a rigorous simplification of the original one.
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In eq. 2.12, µαβ is the inertia tensor, Ĵα the total angular momentum
operator, π̂α the vibrational angular momentum operator and P̂k the mo-
mentum operator (already seen in eq. 2.11); the indices α and β are referred
to the rotational axis, while k is the index for the normal vibrational modes.
In this thesis only the vibrational problem is discussed, therefore eq. 2.12
can be further simplified by omitting the total angular momentum operator:

T̂ =
1

2

3∑
α

3∑
β

µαβπ̂απ̂β −
~2

8

3∑
α

µαα +
1

2

3N−6∑
k=1

P̂ 2
k . (2.13)

Eq. 2.13 is the starting point (together with eq. 1.21) for the construction
of the nuclear hamiltonian presented in eq. 2.18 (see the next section).

Additional complications arise when the construction of a KEO in curvi-
linear coordinates is considered. Two main approaches have been proposed
and employed for the construction of analytical KEOs in curvilinear coordi-
nates122. In the first one the classical kinetic energy in the hamiltonian form
(eq. 2.7) is derived: the quantization of the classical term is then achieved
employing the formalism proposed by Podolsky.123 The other possibility is
to adopt the KEO written in cartesian coordinatesa as a starting point (this
approach is detailed in section 3 of ref. 124): in this case the KEO in curvi-
linear coordinates is achieved with two applications of the chain rule.

Regardless of the specific approach adopted for the derivation, the general
form of the KEO in curvilinear coordinates for rotations and vibrations is
the followingb:

T̂ (c) = −~2

2

(
3N−3∑
i=1

3N−3∑
j=1

f ij2
∂2

∂qi∂qj
+

3N−3∑
i=1

f i1
∂

∂qi

)
. (2.14)

Where f i1 and f ij2 can be identified as follows (see, for example, eqs. 6
and 7 of ref. 125):

f i1 =

3N−3∑
j=1

[(
Gij · 1

2

∂ ln g

∂qj

)
+
∂Gij

∂qj

]
; (2.15)

f ij2 = Gij . (2.16)

Where Gij is defined in eq. 2.8 (essentially, Gij is an element of the
Wilson’s G matrix) and g is the determinant of the matrix g(q) (eqs. 2.5
and 2.6). Many equivalent formulations of the KEO in curvilinear coordi-
nates can be found in literature: a brief discussion of this aspect (mainly

aStarting from the classical term of eq. 2.1, the KEO in cartesian coordinates can be
easily obtained: T̂ = − ~2

2

∑N
i

∑3
α

1
mi

∂2

∂r2iα
.

bthe superscript (c) employed to label the KEO in eq. 2.14 is used to specify the
normalization convention adopted for the wavefunction; see appendix B for more details.
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devoted to a recognition of the available literature3,126 on this topic) is pro-
vided in appendix B for completeness.

The complexity of a complete analytical expression of the KEO in curvi-
linear coordinates is a relevant obstacle to the use of curvilinear coordinates
for the solution of the nuclear Schrödinger equation (i.e. to set up an entire
hamiltonian in curvilinear coordinates, and not only the potential energy
term which is simplified by the employment of suitable curvilinear coordi-
nates). In order to bypass the employment of awkward analytical expressions
f i1 and f ij2 can be computed numerically125. What is needed to set up an
analytical expression of the KEO in curvilinear coordinates is an analyti-
cal expression for the elements of the G matrix, for the determinant g and
for their derivatives for each relevant conformations (and in their neighbor-
hoods) of the molecular system of interest: in other words, the knowledge
of the explicit relation between q and r is needed. The derivation of these
quantities is often laborious and leads to complicated expressionsa: for this
reason the efforts were initially focused to small systems (i.e. three or four
atoms)124. The employment of the symbolic calculus is particularly useful in
this field130, and at least one code specifically devoted to the construction of
analytical expressions of the KEO for general polyatomic systems has been
proposed.b

2.2 Affordable computational methods for the solu-
tion of the time independent nuclear Schrödinger
equation

Various methods have been proposed to achieve an approximate solution
of the TINSE. The need to compromise between computational cost and
accuracy must be taken into account.

If the expression of the potential energy given in eq. 1.21 is truncated
at second order and combined with the expression of the kinetic energy
given in eq. 2.11, a simple approximation of the nuclear hamiltonian for the
vibrational problem is obtained and the TINSE of eq. 8 can be written as
follows:

aSee, for example, the following articles devoted to the derivation of an analytic form of
the vibrational (J = 0) KEO of various systems: ref. 127 (about the vibrational KEO for
sequentially bonded molecules in internal coordinates), ref. 128 (in which the derivation
of the vibrational KEO in primitive internal coordinates for an hexatomic molecule with
A,B—C—D—E,F connectivity is addressed) and ref. 129 (in which a general formulation
of the vibrational KEO in terms of primitive internal coordinates is given).

bSee refs. 131 and 132; in these works, the KEOs are provided in terms of polyspherical
coordinates.
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Ĥnχ(Q) =
(
− ~2

2

3N−6∑
k=1

∂2

∂Q2
k

+
1

2

3N−6∑
i=1

λkQ
2
k

)
χ(Q) = WV χ(Q) (2.17)

Where λk is the force constant of the k-th oscillator, χ(Q) is the vibra-
tional wavefunctiona and WV is the total vibrational energyb. In eq. 2.17,
the vibrational problem of a general polyatomic molecule with N atoms is
reduced to a set of 3N − 6 uncoupled harmonic oscillators. The analytical
solutions of the 1D quantum harmonic oscillator problem are knownc func-
tions of the quadratic force constant; therefore, to solve out the problem for
a general polyatomic molecule the 3N − 6 force constants of the uncoupled
harmonic oscillators and the 3N − 6 vibrational normal coordinates must be
determined: suitable algorithms to deal with this problem are provided by
almost all the commercially available quantum chemical softwaresd.

Although the anharmonic corrections are completely neglected, this kind
of approach is not time consuming and in some cases lead to results which are
(at least qualitatively) in good agreement with the experimental observables.
For more challenging cases (for which the harmonic approximation can lead
to incorrect results even from a qualitative point of view) and for quantita-
tive comparisons the inclusion of anharmonic effects is important. Various
strategies have been devised; however, many of these strategies retain the
solution of the nuclear problem at harmonic level as starting point.

The employment of a zero-order vibrational hamiltonian based on the
harmonic approximation means that the coupling among the various inter-
nal coordinates (internuclear distances, valence and dihedral bond angles) is
already retained in the zero-order model, while cubic and higher order terms

aDue to the separability of the nuclear hamiltonian of eq. 2.17, χ(Q) is the product of
3N − 6 wavefunctions, each one associated with one of the 3N − 6 uncoupled harmonic
oscillators

bWhich is the sum of the energies associated with each one of the 3N − 6 uncoupled
oscillators: WV = W1 +W2 + ...+W3N−6.

cThese solutions are provided in several textbooks; see, for example, section 3-2 of
ref. 34 for the eigenvalues (energies) and section 3-3 and appendix III of ref. 34 for the
eigenvectors (wavefunctions).

dThe essential steps to solve out the TINSE at the harmonic level are: (i) the calcu-
lation of the force constants (i.e. the second derivatives of the energy of the molecular
system with respect to the nuclear displacements ∂E

∂riα∂rjβ
), needed to build the Hessian

matrix H: the availability of the analytical calculation of these constants depends on
the level of theory employed and on the quantum chemical software used (in this thesis,
the calculation of the force constants at harmonic level is always performed analytically);
(ii) the diagonalization of the matrix H̃ which is equal to H if mass-weighted cartesian

coordinates are employed, while its elements are

(
∂E

∂riα∂rjβ

)
√
mi
√
mj

if cartesian coordinates are
not mass-weighted: the resulting eigenvectors are the normal coordinates (given as linear
combinations of the cartesian coordinates) and the eigenvalues are the force constants of
the uncoupled oscillators (each one associated with a specific normal coordinate).
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of the potential energy expansion are neglected and included as perturba-
tions at higher order39. In the case of a variational anharmonic treatment
which employ the potential expansion given in eq. 1.22 the solution of the
harmonic problem is needed to determine the normal mode coordinates along
which the n-mode expansion of eq. 1.22 is performeda.

Other models which are suitable for the inclusion of anharmonic effects
but do not retain the harmonic approximation in the zero-order vibrational
hamiltonian have been devised: the local mode approximation134,135 is an
exampleb. In the case of a treatment based on local mode vibrations, the
zero-order vibrational hamiltonian includes a relevant part of the diagonal
anharmonic correction, while the coupling among the various internal co-
ordinates is taken into account at a higher order, often in a perturbative
fashion.

In this thesis the anharmonic effects have been included through com-
putational protocols based on VPT2 and local mode approximations. The
choice between the VPT2 and the local mode pictures must be made at the
very beginning, and the nature of the molecular vibrations under investi-
gation can suggest the most effective option: for example, the inclusion of
the harmonic coupling among the various internal coordinates at the zero-
order level neglecting diagonal anharmonic effects is advantageous for the
computational reproduction of the fundamental transitions in the mid IR
region (900-1600 cm−1) where vibrations are strongly delocalized. The same
is no longer true if the vibration under investigation is a high overtone of
X—H stretching, whose anharmonicity is not a small perturbation and the
corresponding fundamental frequency is quite different from those of other
modes. Therefore, the inclusion of anharmonic effects at the zero-order level
is highly desirable and the coupling of the other internal coordinates to the
internuclear X—H distances is less important.

2.2.1 VPT2: calculation of energies

The hamiltonian in the framework of the VPT2 theory can be easily con-
structed (see appendix B for the derivation) combining eqs. 1.21 and 2.13,
and is given in the following expression (where normal modes coordinates

aIn this case, second derivatives of the energy with respect to the nuclear displace-
ments has to be obtained only at the beginning of the procedure, and therefore is not
the bottleneck of the computational procedure; further, the second derivatives are not
employed for the numerical calculation of third and fourth derivatives, which are needed
when an anharmonic expansion based on the taylor expansion (eq. 1.21) is adopted, and
therefore their accuracy is less relevant than in an ordinary perturbative treatment: this
considerations imply that the implementation of the analytical calculation of the second
derivatives of the energy is less important in a code which employ this kind of variational
anharmonic treatment (for example, the quantum chemical software MOLPRO133 solve
out the harmonic problem with numerical differentiation of the first derivatives of the
energy with respect to the nuclear displacement even when DFT methods are employed).

bOther examples can be cited: an early one is the flexible model proposed by meyer136.
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and associated momenta are dimensionless as defined in the section B.2 of
appendix B):

Ĥ =hc

{
1

2

3N−6∑
i=1

ωk(p
2
i + q2

i ) +
1

3!

3N−6∑
ijr

φijrqiqjqr+

+
1

4!

3N−6∑
ijrs

φijrsqiqjqrqs +
1

2

3∑
αβ

µαβπ̂απ̂β

}
.

(2.18)

The vibrational energy (relative to the zero-point energy, ZPE, and for
an asymmetric top molecule) of the state |k〉 is given by equation 2.19:

εk = hc

{
3N−6∑
i=1

nki ωi +

3N−6∑
i

3N−6∑
j=i

χij

[
nki n

k
j +

1

2
(nki + nkj )

]}
. (2.19)

In Eq. 2.19, N is the number of nuclei of the molecular system consid-
ered, ωi is the harmonic wavenumber associated to the i-th normal mode
with nki quanta in state |k〉 and χij is an element of the χ matrix collecting
the anharmonic coefficients. The wavenumbers (in cm−1) associated to fun-
damental transitions, first overtones (∆ni = nki −nk

′
i = 2) and combinations

(∆ni = 1, ∆nj = 1) are given, respectively, in equations 2.20, 2.21 and 2.22:

νi = ωi + 2χii +
3N−6∑
r 6=i=1

χir
2

(2.20)

[2νi] = 2ωi + 6χii +

3N−6∑
r 6=i=1

χir (2.21)

[νiνj ] = ωi + ωj + 2χii + 2χjj + 2χij +
1

2

3N−6∑
r 6={i,j}=1

(
χir + χjr

)
(2.22)

Diagonal and off-diagonal elements of the χ are reported in Equations 2.23
and 2.24:

16χii = φiiii −
5φ2

iii

3ωi
−

3N−6∑
j 6=i=1

(8ω2
i − 3ω2

j )φ
2
iij

ωj(4ω2
i − ω2

j )
(2.23)

4χij = φiijj −
2ωiφ

2
iij

(4ω2
i − ω2

j )
−

2ωjφ
2
ijj

(4ω2
j − ω2

i )
− φiiiφijj

ωi
− φjjjφiij

ωj

+

3N−6∑
r 6={i,j}=1

[2ωr(ω
2
i + ω2

j − ω2
r )φ

2
ijr

∆ijr
− φiirφjjr

ωr

]
+

4(ω2
i + ω2

j )

ωiωj

∑
α=a,b,c

Beq
α {ζαij}2

(2.24)
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ζαij and Beq
α are, respectively, the Coriolis constant (coupling normal

modes i and j) and the rotational constant associated to the principal rota-
tion axis α; φijr and φijrs are respectively the cubic and quartic force con-
stants (referred to a potential expanded with non-restrictive summations)
and ∆ijr is given in equation 2.25:

∆ijr = ω4
i + ω4

j + ω4
r − 2(ω2

i ω
2
j + ω2

i ω
2
r + ω2

jω
2
r ). (2.25)

In ref. 137 complete and detailed derivation (starting with the hamilto-
nian provided in eq. 2.18) of eqs. 2.19-2.25 can be found. The derivation of
ref. 137 is based on Van Vleck perturbation theory.

When eqs. 2.19-2.25 are employed, a special care must be devoted to the
following points:

• Resonances must be properly treated in order to provide reliable re-
sults. The potential impact of Fermi resonances (FRs)138 on final
results can be easily recognized in the expressions of diagonal and off-
diagonal elements of the χmatrixa. These resonances are related to the
first-order term of the perturbative expansion of the hamiltonian (see
eq. B.13) and therefore often referred to as first-order resonances or 1-2
resonances. A rigorous derivation of these terms is given in subsection
4.2.2 of ref. 137. The effects of Darling-Dennison resonances (DDRs)
should be taken into account as well: originally, this name was given
to the resonant interaction between two overtone states with similar
energies, the fundamental states of which have different simmetries120

(which is related to the second order of the perturbative expansion of
the hamiltonian), but today is used for other types of second-order res-
onances (more specifically, 2-2 resonances between two different com-
binations of two modes, 1-3 and 1-1 resonances). These resonances do
not affect the elements of the χ matrix:b nevertheless, their effects on
the final results can be relevant. Suitable computational protocols to
deal with FRs are briefly summarized and discussed in section B.6 of
appendix B.

aMore specifically, the last term on the right hand side of eq. 2.23 can be decom-

posed as follows:
(8ω2

i−3ω2
j )φ2

iij

ωj(4ω
2
i−ω

2
j )

=
φ2
iij

2

(
1

2ωi+ωj
+ 4

ωj
− 1

2ωi−ωj

)
; if 2ωi ≈ ωj (FR of

type 1) the last term of the previous equation diverge; for what concerns the right hand

side of eq. 2.24, the following equivalence holds:− 2ωr(ω2
i+ω2

j−ω
2
r)φ2

ijr

∆ijr
=

φ2
ijr

4

(
1

ωi+ωj+ωr
+

1
−ωi+ωj+ωr

+ 1
ωi−ωj+ωr

− 1
ωi+ωj−ωr

)
; if ωi + ωj ≈ ωr (FR of type 2) the right hand side

of the previous equation contains a near-singular term; see eqs A8 and A9 of appendix A
in ref. 139.

bA complete derivation of these terms can be found in subsection 4.2.3 of ref. 137,
in which results previously summarized with some typographical errors in ref. 140 are
corrected.
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• Large Amplitude Motions (LAMs) are not properly treated with VPT2
methods. These motions are not only poorly described by VPT2: they
may also contaminate its results, thus leading to large errors on those
vibrations (even at high frequency) which are coupled to LAMs. There-
fore, a reliable computational protocol should include their identifica-
tion and exclusion (together with their contribution to the anharmonic
force field) from the VPT2 treatment. LAMs are usually connected to
internal rotations and inversion motions.

The computational protocol adopted in this thesis for anharmonic cal-
culations based on the VPT2 formulation is known as Generalized VPT2
(GVPT2). Other computational protocols have been devised in the frame-
work of the VPT2 formulation (the main difference among the various proto-
cols is the procedure chosen to deal with resonances). These pivotal aspects
are introduced and commented in section B.6 of appendix B.

2.2.2 Local mode approximation: calculation of energies

In the framework of the local mode approximation, the nuclear hamiltonian
is set up as follows:

Ĥ = Ĥ0
HCAO+

n−1∑
i

n∑
j>i

Ĥij =
∑
i

(
− ~2

2µi

∂2

∂x2
i

+V morse
i

)
+
n−1∑
i

n∑
j>i

Ĥij (2.26)

In eq. 2.26, xi and µi, respectively, designate the coordinate and the
reduced mass associated to the i-th bond stretching, while V morse

i is defined
in the following manner:

V morse
i = De[1− e−a(xi−xei )]2 (2.27)

In eq. 2.27, De is the dissociation energy associated to the bond stretching
coordinate (referred to the equilibrium distance xei , namely De = Exi 7→∞ −
Exei ) and a is a molecular parametera (a and De determine the shape of the
Morse potential function defined in eq. 2.27).

Eq. 2.26 has been employed prevalently for the calculation of solutions of
the vibrational problem associated to the stretching modesb. The complete
form given in eq. 2.26 has been used for the study of the stretching modes of
small molecules of the types XH2, XH3 and XH4 with X labeling an heavy

aDetermining how fast the Morse curve reaches the asymptote for xi 7→ ∞.
bThe decoupling of the bending and the stretching degrees of freedom is a serious

limitation of the model presented in this subsection. Strategies to overcome this limitation
have been proposed (see section III of ref. 141).
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atoma: in these simple cases, µi is the reduced mass of the X—H fragment,
given by:

µi =
mHmX

mH +mX
(2.28)

with mH and mX masses of, respectively, H and X nuclei; the interaction
between the two bond stretches is modeled through the following term:

Ĥij = Cijxixj +Gij
(
− i~ ∂

∂xi

)(
− i~ ∂

∂xj

)
(2.29)

The first term on the right hand side of eq. 2.29 is related to the potential
energy interaction between the two bond stretches labeled with i and jb,
while the second term accounts for the most relevant kinetic interaction (Gij

is an element of the Wilson’s G matrix).
For the investigation of more complex molecular systems, the interac-

tion term
∑n−1

i

∑n
j>i Ĥij of the local mode hamiltonian (eq. 2.26) can be

partially simplifiedc or totally neglectedd. Another approximation can be
adopted for the evaluation of the matrix elements of the interaction terms
of the local mode hamiltonian presented in eq. 2.26. Known as Harmoni-
cally Coupled Anharmonic Oscillators (HCAO) model, this approximation is
useful for didactic purposes (details can be found in section 2.2 of ref. 134),
although its reliability to achieve accurate numerical results has been ques-
tioned134.

In this thesis, the interaction term is totally neglected and therefore the
following expression for the vibrational energy of the state |l〉 associated to
the bond stretches (investigated with the local mode approximation) holds:

εl =
∑
i

{
hc[nliωi + χiin

l
i(n

l
i + 1)]

}
(2.30)

aThree typical examples are H2O for the XH2 type, NH3 for the XH3 and CH4 for the
XH4 type.

bSometimes the first term on RHS of eq. 2.29 is given as function of two Morse variables
yi and yj (where yi = 1− e−a(xi−xei )), see for example eq. 44 of ref. 134; the formulation
given in eq. 2.29 can be easily obtained retaining the first term of the Taylor expansions
of the two Morse variables yi and yj (as explained in section II A of ref. 141, pages 46 and
47).

cFor example, this is the solution adopted in ref. 142 where the stretching modes
associated to the vibrational motions of the six C—H bonds in benzene are investigated by
means of a local mode hamiltonian constructed as follows: the Morse potential is adopted
for the description of each C—H bond, while the C—C bond stretches are treated as
harmonic oscillators and the coupling between the C—C stretches is neglected; the kinetic
interaction between two bonds is taken into account only if these bonds have a C atom in
common.

di.e. the second term on the RHS of eq. 2.26 is completely neglected,
∑n−1
i

∑n
j>i Ĥij =

0; this approximation has been adopted by Abbate and coworkers143–145.
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Eq. 2.30 is similar to eq. 2.19; the main formal differences are: (i) the
absence (in eq. 2.30) of the off-diagonal elements of the anharmonic matrix
χ, which appear in eq. 2.19; (ii) the energies are referred to different basis:
local modes for what concerns eq. 2.30, normal modes in the case of eq. 2.19
(although a normal mode associated to a high frequency bond stretching can
be highly localized and therefore does not involve significant contribution by
other internal degrees of freedom in the case of asymmetric top molecules);
(iii) the energy given in eq. 2.19 takes into account all the (3N−6) vibrational
degrees of freedom (in the framework of the VPT2 approximation), while the
energy of eq. 2.30 is associated only with the bond stretchings investigated
with the local mode approximation (usually only a selection of the X—H
bond stretchings of the molecular system under study).

Surveys focused on the establishment of a connection between local and
normal mode basis for the formulation of the vibrational hamiltonian of X—
H stretching vibrations can be found in literature146,147. With this respect,
two results should be pointed out:

• When the Morse potential is expanded (about the equilibrium bond
length) as a Taylor series and truncated at the fourth order, the second-
order perturbation theory can be easily applied to calculate the vibra-
tional levels (starting from a harmonic vibrational hamiltonian and em-
ploying the perturbation theory to introduce cubic and quartic terms):
it turns out that the energies associated to the bond stretch under in-
vestigation are exactly correct; in other words, the two errors (one due
to the truncation of the Taylor expansion and the other own to the
employment of second-order perturbation theory) cancel out exactly
(see section 2 of ref. 147 for the derivation; this result is mentioned
also in section 2 of ref. 124).

• Bearing in mind the previous statement, the following relations hold:
if an hamiltonian including a morse potential function for each bond
stretch and the quadratic terms of potential and kinetic couplings be-
tween each pair of bond oscillators is set up for small molecules of the
type XHn (with n = 2, 3, 4), the results obtained adopting local mode
basis are identical to the results observed if the normal mode basis
is employed147; moreover, when the vibrational excitation is low the
pattern exhibited by the energy levels is closer to the one predicted
by the normal mode approximation, while the pattern exhibited by
the energy levels associated to overtone signals is closed to the pattern
predicted in the pure local mode limit147.

To avoid confusion, a small ambiguity in the terminology employed until
this point must be explicitly pointed out. Besides its employment in the con-
text of anharmonic calculations, the local mode concept can be a useful tool
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to investigate (in the molecular systems of interest) localized structural fea-
tures of chemical relevance. These features are often hidden (by the coupling
among the various internal coordinates) when vibrational normal modes are
directly employed for the analysis of calculation results. Therefore, some au-
thors have devoted their efforts to the employment of the local mode concept
as a useful analysis tool of results originally given in the normal mode basis
(see, for example, ref. 148). Further discussions of this point are beyond the
scope of this thesis.

2.3 Simulation of IR and VCD intensities

The methods introduced in the previous section are employed for the calcula-
tion of transition frequencies. For a direct comparison with the experimental
observables a reliable protocol for the calculation of the intensity associated
to each transition frequency is needed.

The physical quantities directly obtained from the experimental mea-
surements are the molar extintion coefficient ε (in the case of IR absorption
spectroscopy) and the differential molar extintion coefficient ∆ε (in the case
of VCD spectroscopy). These quantities are functions of the energy of the
incident radiation (in the IR region of the electromagnetic spectrum usually
given in wavenumbers) and can be obtained by means of quantum chemical
calculations through the following formulas149:

ε(ν) =
8π3NAν

3000hc · 4πε0 · ln 10

∑
g

ρg
∑
e

Dgeδ(εe − εg − ν), (2.31)

∆ε(ν) =
32π3NAν

3000hc2 · 4πε0 · ln 10

∑
g

ρg
∑
e

Rgeδ(εe − εg − ν), (2.32)

where NA is the Avogadro constant, the subscripts g and e label initial
(with wavenumber εg) and final (with wavenumber εe) states, δ is the Dirac
function, ρg is the Boltzmann population of the initial state g and ν labels
the wavenumber of the incident radiationa. The dipole strength Dge and the
rotational strength Rge are defined as follows:

Dge = |〈µ〉g,e|2, (2.33)

Rge = Im[〈µ〉g,e · 〈m〉e,g]. (2.34)
aActually, eqs. 2.31 and 2.32 do not take into account the extension of the experimental

signals over a range of frequencies (i.e. the broadening of the spectral lines); for this
reason, computational results are often displayed employing a suitable bandwidth value
and applying it to each spectral line.
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In the case of IR and VCD the intensities are related to the transition
integrals of the electric dipole (〈µ〉g,e) and the magnetic dipole (〈m〉g,e)
moments. Therefore, 〈µ〉g,e and 〈m〉g,e need to be calculated in order to
simulate IR and VCD spectra.

The transition integral 〈P 〉g,e of a property P is149:

〈P 〉g,e =

〈
ψGg

∣∣∣ P̂ ∣∣∣ψGe〉√
〈ψGg |ψGg〉 〈ψGe |ψGe〉

(2.35)

Eq. 2.35 can be simplified if the wavefunction ψ is partitioned between
the electronic (φ) and the nuclear (χ) wavefunctions (this is always possi-
ble in the framework of the Born-Oppenheimer approximation); moreover,
the separation of the vibrational part of the nuclear wavefunction from the
translational and (employing the Eckart conditions) the rotational contribu-
tions can be accomplished; therefore, only the vibrational part of the nuclear
wavefunction is retained:

〈P 〉g,e =

〈
χGg

∣∣∣ P̂ ∣∣∣χGe〉√
〈χGg |χGg〉 〈χGe |χGe〉

. (2.36)

P̂ is defined as follows:

P̂ =
〈
φG

∣∣∣ P̂ ∣∣∣φG〉 =
〈
φG

∣∣∣ (P̂el
+ P̂n

)
∣∣∣φG〉 ; (2.37)

where P̂ is partitioned in two parts: the electric (P̂el
) and the nuclear

(P̂n
) contributions.
For what concerns the calculation of IR and VCD intensities, eq. 2.37

unveils the pivotal importance of the four integrals which follow:

〈φG | µ̂n |φG〉 ; (2.38)

〈φG | µ̂el |φG〉 ; (2.39)

〈φG | m̂n |φG〉 ; (2.40)

〈φG | m̂el |φG〉 . (2.41)

While the calculation of the integrals provided in eqs. 2.38-2.40 can be
performed in the customary framework of the Born-Oppenheimer approxi-
mation, to calculate the integral given in eq. 2.41 a more articulate approach
must be employed (see, for example, chapters 2 and 4 of ref. 150).

To carry out the calculation of the electronic contribution to the magnetic
transition dipole moment, some contribution to the nuclear kinetic energy
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(which are omitted when the Born-Oppenheimer approximation is assumed)
are taken into account trough first order perturbation theory. In this manner
a suitable wavefunction (which is still separable in two components, the
nuclear and the electronic ones) can be constructed (more details are given
in section B.3 of appendix B) and the calculation of 〈φGχGg | m̂el |φGχGe〉
can be performed going beyond the Born-Oppenheimer approximation with
a first-order perturbative correction (see section B.4 of appendix B).

In the next subsections, solutions of eq. 2.36 based on VPT2 and local
mode approximation methods are provided and briefly discussed.

2.3.1 VPT2: calculation of properties

The VPT2 method allowed an extension of the number of molecular systems
for which the calculation of anharmonic transition frequencies is possible
(i.e. accessible at reasonable computational cost). This is due to the good
compromise achieved between computational cost and accuracy. For this
reason, many efforts have been devoted to derive a formulation of IR and
VCD intensities based on VPT2 method and to its implementation. The aim
was the simulation of IR and VCD spectra at anharmonic level avoiding a
considerable increase of the computational costs sustained for the calculation
of anharmonic transition frequencies.

A number of derivations and implementations for the calculation of IRa

and VCDb anharmonic intensities through VPT2 method have been pro-
posed in literature; among these, the formulation provided in ref. 149 has a
number of advantagesc and therefore is briefly presented in this subsection.

Focusing on a single component α of the property P , the explicit formu-
lation of the transition integral for a fundamental band 〈Pα〉0,1i is given in
eq. 2.42,149 while the formulation for first overtones (〈Pα〉0,2i) and combi-
nation bands (〈Pα〉0,1i1j ) is provided in eq. 2.43.d The physical quantities
which correspond to Pαi , P

α
ji, P

α
jki and the values of S, s0, s1 and s2 are

aFor what concerns the employment of contact transformation theory for the calculation
of IR anharmonic intensities trough VPT2 method, the first contribution which provided a
complete account (and a numerical implementation) of the electric dipole matrix elements
needed for the anharmonic correction of the intensities associated to fundamental IR
transitions is due to Handy and coworkers151; however, some earlier attempts152–154 can
be found in literature. Later contributions employing a formulation based on Rayleigh-
Schrödinger perturbation theory are in refs. 155 and 156.

bThe first formulation (based on contact transformation theory and limited to the
anharmonic correction of VCD intensities of fundamental transitions) can be found in
ref. 157; a formulation suitable for two quanta transitions (both combinations and over-
tones) is given in ref. 149.

cThe formulation given in ref. 149 can be exploited for the calculation of both magnetic
and electric vibrational transition dipole moments and is implemented in the Gaussian
suite of programs12.

dThere is an error in the original formulation given in ref. 149; the correct formulation
(reported in this thesis) is provided in eq. 23 of ref. 158.
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functions of the specific property of interest (see table 2.1).

〈Pα〉0,1i =

s0 · S · Pαi +
s2

2

∑
j

[Pαjij + Pαijj + SPαjji]−
s0

8

∑
jk

{
φijkkP

α
j

[
1

ωi + ωj
− S(1− δij)

ωi − ωj

]}

− s1

8

∑
jk

{
φijk(P

α
jk + Pαkj)

( 1

ωi + ωj + ωk
− S

ωi − ωj − ωk

)
+
φjkk
ωj

[2SPαji + (1 + S)Pαij ]

}

+
s0

2

∑
jk

(∑
τ

Bτ
e ζ

τ
ikζ

τ
jk

)
Pαj

{√
ωiωj

ωk

( 1

ωi + ωj
+
S(1− δij)
ωi − ωj

)
− ωk√

ωiωj

( 1

ωi + ωj
− S(1− δij)

ωi − ωj

)}

+
s0

16

∑
jkl

φiklφjklP
α
j

{
(1− δij)(1− δik)(1− δil)

[
1

(ωi + ωj)(ωj + ωk + ωl)
− S

(ωi − ωj)(ωj + ωk + ωl)

+
S

(ωi + ωk + ωl)(ωj + ωk + ωl)
− 1

(ωi − ωk − ωl)(ωj + ωk + ωl)
+

S

(ωi − ωj)(ωi − ωk − ωl)

+
1

(ωi + ωj)(ωi + ωk + ωl)

]

+ δij(1 + δik)(1− δil)

[
1

2ωi(ωi + ωk + ωl)
− 1

2ωi(ωi − ωk − ωl)
+

S

2(ωi + ωk + ωl)2
− S

2(ωi − ωk − ωl)2

]

+ (1− δij)(1− δik)δil

[
1

ωk(ωi + ωj)
+

2

(2ωi + ωk)(ωi + ωj)
+

3

(ωi + ωj)(ωi + ωj + ωk)

+
S

(ωi − ωj)(ωi − ωj − ωk)
− 2S

(ωi − ωj)(ωi + ωj + ωk)
− 3S

ωk(ωi − ωj)

− S

ωk(ωi − ωj − ωk)
+

2S

(2ωi + ωk)(ωi + ωj + ωk)
+

3

ωk(ωi + ωj + ωk)

]}

+ φijkφllkP
α
j

{
δij
ωiωk

(
1 +

δikδil(6− 4S)

9

)
+ (1− δij)(1− δik)(1− δil)

[
1

(ωi + ωj)(ωi + ωj + ωk)
+

1

ωk(ωi + ωj)
− S

ωk(ωi − ωj)

+
S

(ωi − ωj)(ωi − ωj − ωk)
+

1

ωk(ωi + ωj + ωk)
− S

ωk(ωi − ωj − ωk)

]

+ δik(1− δij)

[
(1 + δil)

( 1

(2ωi + ωj)(ωi + ωj)
− S

ωi(ωi − ωj)
+

1

ωi(2ωi + ωj)

)
+ δil

( 1

3ωi(ωi + ωj)
+

S

3ωi(2ωi + ωj)
− S

(ωi − ωj)(2ωi + ωj)

)
+

1

ωi(ωi + ωj)
− S

ωj(ωi − ωj)
+

S

ωiωj

]}
.

(2.42)
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The symbols Π andA (employed in table 2.1) labels the Atomic Polar Tensor
(APT)a and the Atomic Axial Tensor (AAT)b, respectively.

〈Pα〉0,(1+δij)i(1−δij)j = [
√

2 + (1−
√

2)δij ] ·

{
s1 · S

2
(Pαij + Pαji)

+
s0

4

∑
k

[
φijkP

α
k

( S

ωi + ωj − ωk
− 1

ωi + ωj + ωk

)]}
.

(2.43)

P Pi Pji Pjki s0 s1 s2 S

µ ∂µ
∂ri
≡ Πi

∂2µ
∂ri∂rj

≡ ∂Πi
∂rj

∂3µ
∂ri∂rj∂rk

≡ ∂2Πi
∂rj∂rk

1√
2

1
2
√

2
1

6
√

2
+1

m Ai
∂Ai
∂rj

∂2Ai
∂rj∂rk

i~√
2

i~√
2

i~
2
√

2
−1

Table 2.1

Eqs. 2.42 and 2.43 are explicit solutions of eq. 2.36 obtained through
VPT2 method. If P = µ, other equations are not needed; on the other
hand, if P = m eq. 2.36 must be rewritten as follows in order to perform
the calculation of 〈m〉g,e:c,d

〈m〉g,e =
〈χe | m̂ |χg〉√
〈χg |χg〉 〈χe |χe〉

− 〈χg | m̂ |χe〉√
〈χg |χg〉 〈χe |χe〉

. (2.44)

The need of a VPT2 formulation of 〈Pα〉1i,0, 〈Pα〉2i,0 and 〈Pα〉1i1j ,0
(provided in eqs. 2.45 and 2.46) for the calculation of the rotational strength

aPolar tensors were proposed in ref. 159, but the popularity of these physical quantities
is due to the full recognition of their usefulness which took place later.160

bThe customary definition of the AAT (adopted in this thesis) was proposed by
Stephens;161 an alternative convention for the definition of the AAT has been proposed
by Nafie (the simple relationship between the two conventions is explicitly given in eqs.
4.76 and 4.77 of ref. 150).

cFor what concerns the electronic component of the magnetic vibrational transition
dipole moment a treatment beyond the BO approximation is needed: the derivation is
provided in section B.4 of appendix B (see in particular eq. B.46); the nuclear component
is calculated in the framework of the BO approximation (see section II D of ref. 157), but
can be rewritten in order to obtain a formulation similar to the one given for the electronic
component (see eq. 29 of ref. 157).

dThe formulation of 〈m〉g,e given in eq. 2.44 is analogous to the formulation provided
in ref. 157 and differs from the expression provided in eq. 23 of ref. 149; the difference
between the two formulations is related to the convention adopted for magnetic and electric
transition dipoles (if the RHS of eq. 23 of ref. 149 is multiplied for -1 the expression
provided in ref. 157 and in this thesis is obtained), and the results obtained are exactly
the same if the same convention is adopted for both (the essential point is the convention
adopted for the positive direction of an electric dipole moment).
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is evident from the expression of Rge already provided (see eq. 2.34) and
from the formulation of 〈m〉g,e given in eq. 2.44.a

〈Pα〉1i,0 = S · 〈Pα〉0,1i +
s2

2
(1− S)

∑
j

(Pαijj + Pαjij), (2.45)

〈Pα〉(1+δij)i(1−δij)j ,0 = S · 〈Pα〉0,(1+δij)i(1−δij)j . (2.46)

An extension of the formulations provided in this subsection to the inten-
sities of three quanta transitions (namely, to transitions of the type 0→ 3i,
0→ 2i1j and 0→ 1i1j1k) has been published.158,b

For the identification of FRs and DDRs which affect the calculated IR
and VCD intensitiesc the two step procedure introduced in section B.6 of ap-
pendix B has a limited reliability. Another computational protocol (specifi-
cally devised to improve the simulation of IR and VCD intensities at anhar-
monic level) was proposed in ref. 162.

2.3.2 Local mode approximation: calculation of properties

In the framework of local mode approximation, various attempts to calculate
the physical quantities needed for the computation of IR and VCD spectra
have been reported in literature.

The approach proposed in this thesis is based on the formulation pro-
vided in ref. 145, which can be employed for the calculation of IR and VCD
intensities associated to fundamental and first overtone transitions of certain
X—H stretchings. The starting point is the expansion of µ̂ and m̂ around
the equilibrium nuclear positions:d,e

µ̂x(r) = µx0 +
∑
iα

[( ∂µ̂x
∂riα

)
0
riα

]
+

1

2

∑
iα,jβ

[( ∂2µ̂x

∂riα∂rjβ

)
0
riαrjβ

]
+

+
1

6

∑
iα,jβ,kγ

[( ∂3µ̂x

∂riα∂rjβ∂rkγ

)
0
riαrjβrkγ

]
+ ...

(2.47)

aFor the calculation of Rge the calculation of 〈m〉e,g (not 〈m〉g,e) is needed.
bFurther extension (for example to four quanta transitions) would require a higher level

of perturbation theory (VPT4) or a variational approach.158
cFor what concerns 〈Pα〉0,1i , the potential impact of FRs and 1-1 DDRs (ωi ≈ ωj) can

be easily guessed from the denominators of some of the term on the RHS of eq. 2.42.
dµ̂x and m̂x are the x-th cartesian components of µ̂ and m̂, respectively.
eEq. 2.48 of this thesis is equivalent to eq. 11 of ref. 145, except for an error which is

corrected (the expression given in ref. 145 must be multiplied for the imaginary unit i).
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m̂x(r) =
∑
iα

[
~2

mi
A0
iαx

∂

∂riα

]
+
∑
iα,jβ

[
~2

mi

(∂Aiαx
∂rjβ

)
0
rjβ

∂

∂riα

]
+

+
∑

iα,jβ,kγ

[
~2

mi

( ∂2Aiαx
∂rjβ∂rkγ

)
0
rjβrkγ

∂

∂riα

]
+ ...

(2.48)

With the expansions given in eqs. 2.47 and 2.48, the first two terms of
the transition integrals of 〈µ〉g,e and 〈m〉e,g can be written as follows:a

〈µx〉g,e =
∑
iα

[
Π0
iαx 〈χGg | riα |χGe〉

]
+

1

2

∑
iα,jβ

[(∂Πiαx

∂rjβ

)
0
〈χGg | riαrjβ |χGe〉

]
;

(2.49)

〈mx〉e,g =
∑
iα

[
i~
mi
A0
iαx

(〈
χGg

∣∣∣∣ ~i ∂

∂riα

∣∣∣∣χGe〉−〈χGe ∣∣∣∣ ~i ∂

∂riα

∣∣∣∣χGg〉
)]

+

∑
iα,jβ

[
i~
mi

(∂Aiαx
∂rjβ

)
0

(〈
χGg

∣∣∣∣ rjβ ~i ∂

∂riα

∣∣∣∣χGe〉−〈χGe ∣∣∣∣ rjβ ~i ∂

∂riα

∣∣∣∣χGg〉
)]

=

− 2i~
∑
iα

[
A0
iαx

mi

〈
χGe

∣∣∣∣ ~i ∂

∂riα

∣∣∣∣χGg〉
]

− 2i~
∑
iα,jβ

[
1

mi

(∂Aiαx
∂rjβ

)
0

〈
χGe

∣∣∣∣ rjβ ~i ∂

∂riα

∣∣∣∣χGg〉
]
.

(2.50)

Nuclear positions are provided in terms of cartesian coordinates in eqs. 2.47-
2.50. To obtain equations suitable for the local mode approximation, all the
components of Π and A which are not referred to the atoms X and H of
the X—H stretching (the bond stretch treated as a local mode) are assumed
to be zero; this approximation reduces the number of terms included in the
summations of eqs. 2.49 and 2.50. To further simplify eqs. 2.49 and 2.50,
the z axis of the cartesian coordinate system can be oriented along the same
direction of the X—H bond.

If zeq is the equilibrium length of the X—H bond and z the bond length,
the displacements of X and H atoms from their equilibrium positions (zX
and zH , respectively) satisfy the following relationship:

aThe absence of the term µ0 in eq. 2.49 is due to the ortogonality of the wavefunc-
tions; for what concerns the calculation of 〈m〉e,g, the relationship provided in eq. 2.44 is
employed.
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z − zeq = zH − zX (2.51)

zH and zX are defined as follows:

zH =
mX

mH +mX
z = tH(z − zeq); zX = − mH

mH +mX
z = tX(z − zeq).

(2.52)
With the relationships provided in eqs. 2.51 and 2.52, eqs. 2.49 and 2.50

can be rewritten as follows:a,b

〈µx〉g,e =
∑
i=X,H

[
Π0
i3xti 〈χGg | (z − zeq) |χGe〉

]

+
1

2

∑
i=X,H

[(∂Πi3x

∂z

)
0
ti
〈
χGg

∣∣ (z − zeq)2
∣∣χGe〉 ];

(2.53)

〈mx〉e,g = −2i~
∑
i=X,H

[
A0
i3xti

1

µXH

〈
χGe

∣∣∣∣ ~i ∂∂z
∣∣∣∣χGg〉

]

− 2i~
∑
i=X,H

[(∂Ai3x
∂z

)
0
ti

1

µXH

〈
χGe

∣∣∣∣ z~i ∂∂z
∣∣∣∣χGg〉

]
.

(2.54)

µXH labels the reduced mass associated to the X—H bond:

µXH =
mXmH

mX +mH
. (2.55)

The transition integrals involved in eqs. 2.53 and 2.54 are provided in
tables 2.2 and 2.3; the other quantitiesc needed for the calculation of 〈µx〉g,e
and 〈mx〉e,g in the framework of the local mode approximation (harmonic
wavenumber ωl and diagonal anharmonic constant χll, see tables 2.2 and 2.3;
Π, A and their derivatives) can be obtained easily from the output of a
series of harmonic calculationsd (the protocol employed to obtain the results
discussed in this thesis is provided in section B.5 of appendix B). In order

aA complete derivation of the connection between eq. 2.49 and eq. 2.53 and between
eq. 2.50 and eq. 2.54 of this thesis can be found in ref. 145 (eqs. 12-28).

bThe z cartesian component can be labeled with the number 3.
cIt should be underlined that the adoption of an alternative convention for the AAT

allows a more compact formulation of eq. 2.54, because Anaf = −2i~Asteph (see eqs. 4.76
and 4.77 of ref. 150).

dWhich can be performed with a quantum chemical software such as the Gaussian12

suite of programs (employed for the applications presented in the next section).
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to give a more compact formulation of the transition integrals provided in
tables 2.2 and 2.3, the quantity d (with the dimension of a distance) is defined
as follows:

d2 =
h

2cµXH

1

ωl
, (2.56)

and the momentum conjugated to z is written as p = ~
i
∂
∂z . The solu-

tions provided in tables 2.2 and 2.3 for the harmonic case are well known
and can be easily found in many textbooks.a In the anharmonic case, they
were produced in a format useful for the calculation of VCD and IR/NIR
intensities.

quantity harmonic case anharmonic case
〈0 | z | 1〉 d

2π
d

2π (1− 1
2

χll
ωl

)〈
0
∣∣ z2

∣∣ 1〉 0 5d2

4π2 ( |
χll|
ωl

)
1
2 (1− 52

30

χll
ωl

)

〈0 | p | 1〉 −i~πd −i~πd (1 + 3
2

χll
ωl

)

〈0 | zp | 1〉 0 −5i
4 ~( |

χll|
ωl

)
1
2 (1 + 4

15

χll
ωl

)

Table 2.2: Transition Integrals for Fundamental Local Mode Transition

quantity harmonic case anharmonic case
〈0 | z | 2〉 0 − d

2π
√

2
( |
χll|
ωl

)
1
2 [1− 3

2(
χll
ωl

)]〈
0
∣∣ z2

∣∣ 2〉 d2

2π2
√

2
d2

2π2
√

2
(1 + 2

χll
ωl

)

〈0 | p | 2〉 0 i~
√

2π
d ( |

χll|
ωl

)
1
2 [1 + 3

2(
χll
ωl

)]

〈0 | zp | 2〉 −i~
√

2
2 −i~

√
2

2 [1 + 5(
χll
ωl

)]

Table 2.3: Transition Integrals for First Overtone Local Mode Transition

2.4 Applications

In this section, some original applications of the computational methods
presented in this chapter are briefly discussed. For each molecular system
considered, experimental IR and VCD spectra have been measured (in col-
laboration with the group of professor Sergio Abbate, university of Brescia).
The comparison between experimental and calculated IR and VCD spec-
tra can be extremely useful in two different ways: (i) relating statistical

aFor example, the harmonic solutions to the 8 transition integrals reported in tables 2.2
and 2.3 can be found in appendix III of ref. 34; the solutions given in this thesis are
formulated in terms of wavenumbers and the position coordinates are not mass weighted,
while in appendix III of ref. 34 the frequencies are given in hertz and the coordinates are
mass-weighted.
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and quantum mechanical computed data on one side and experimental data
on the other side allows one to discriminate whether the empirical correla-
tions between the experimental spectra can be explained in terms of similar
physical-chemical properties and (ii) the comparison between experimental
and computational spectra is essential to evaluate the reliability of a com-
putational approach.

2.4.1 IR and VCD spectra of organic compounds: the cases
of 2,3-Butanediol and trans-1,2-Cyclohexanediol ∗

In what follows, a comparison between experimental and calculated IR, VCD,
NIR and NIR-VCD spectra of the two enantiomeric forms of 2,3-Butanediola

and trans-1,2-Cyclohexanediol is presented.
The two enantiomeric forms of 2,3-butanediol were characterized by means

of several experimental techniques163–170: IR (in solution164,165,168 and in the
gas phase166), VCD164,165, photoelectron circular dichroism (PECD)169 and
microwave167 spectra have been published. Conformer stabilities and har-
monic spectra in the region of fundamental transitions were already available
in literature when the study presented in this thesis was undertaken.165,167,170

Trans-1,2-cyclohexanediol was previously studied experimentally164,171,172

and computationally:171,172 IR164,172 and VCD164 spectra in the OH stretch-
ing region, nuclear magnetic resonance (NMR) data164, an experimental de-
termination of the crystal structure173,174 and an experimental evaluation of
the gas-phase acidities171 have also been reported. For what concerns com-
putational characterization, data on the equilibrium structures calculated
with DFT methods171,172 and a two dimensional cut of the global potential
energy surface (2D-PES) describing the energetic landscape associated with
the rotation of two dihedral angles which determine the orientation of the
two OH groups172 were published.

Experimental and computational methods All the experimental mea-
surements were performed in the laboratory of prof. Abbate. For the mea-
surements of IR and VCD spectra in the regions of mid-IR, fundamental CH-
and OH-stretching a commercially available apparatus (FVS-6000 JASCO
FTIR) was employed, while the measurements of NIR and NIR-VCD spectra
in the first overtone OH-stretching region were carried out with an home-
built dispersive apparatus (described in ref. 175). More details about instru-
mentation, together with details about samples, experimental conditions and
protocols can be found in the original article.

∗The results provided in this subsection (together with more details concerning exper-
imental and computational methods) can be found in J. Phys. Chem. A, 2020, 124, 5,
1011-1024.

a2,3-Butanediol has two enantiomeric forms, (2R,3R) and (2S,3S), and one meso
(2R,3S) form.
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For what concerns the computational methods, all the calculations were
carried out with a development version of the Gaussian suite of programs.
Geometry optimizations (performed with the following convergence criteria:
1·10−5 hartree/bohr and 4·10−5 bohr on, respectively, root mean square force
and displacements, with maximum values being 1.5 times larger) were carried
out with the algorithm proposed in ref. 13 (and presented in section 1.1.1).
Minima and transition states were confirmed by hessian evaluations.

For the computation of harmonic force fields analytic derivatives of en-
ergya were employed, while for higher order derivatives (cubic and semi-
diagonal quartic terms are needed for anharmonic calculations based on
VPT2 approximation) a numerical differentiation scheme was exploited (a
step of 0.01Å·amu1/2 was adopted). For the calculation of transition mo-
ments an analogous procedure was employed (with the derivatives of electric
ad magnetic dipoles instead of the derivatives of energy). Solvent effects
were included with the Polarizable Continuum Model (PCM).

All the calculations were performed with DFT methods. More specifi-
cally:

• the preliminary analysis of low-lying conformers and LAMs was per-
formed employing B3LYP176–178 as exchange-correlation functional in
conjunction with jul-cc-pVDZ70,179,180 basis set, including empirical
dispersion (D3BJ); for the computational characterization of LAMs,
solvent effects were not taken into account, while for the preliminary
analysis of low-lying conformers solvent effects were taken into account
(with PCM) with a single-point calculation performed on the geometry
of the isolated molecule (optimized in vacuum, without the inclusion
of solvation effects);

• a composite scheme was employed to perform VPT2 calculations: har-
monic frequencies, energies and gradients were calculated employing
B2PLYP62,181 functional with empirical dispersion (D3BJ) combined
with jun-cc-pVTZ basis set and taking into account solvent effects
with the PCM; B3LYP functional with empirical dispersion (D3BJ)
and the jul-cc-pVDZ basis set were employed for the evaluation of the
cubic and quartic terms (needed to set up the anharmonic force field);
moreover, PCM contributions to XH stretchings are not included in
the finite differences leading to cubic and quartic force constants be-
cause motions related to XH stretchings are too fast to allow solvent
equilibration;182,183

• anharmonic calculations based on the local mode approach were per-
formed with Gaussian1612 employing B3LYP functional with TZVP184,185

basis set.
aWith respect to the nuclear displacements



2.4. APPLICATIONS 67

For what concerns the calculation of transition dipole moments, the same
protocol mentioned above for the calculation of the anharmonic force field
at VPT2 level was employed for the calculation of electric dipole transition
moments for the simulation of IR spectra. In the case of VCD spectroscopy,
B2PLYP functional cannot be employed for the calculation of magnetic
dipole transition moment; moreover, the results obtained for the IR spectra
suggest a negligible differences between electric dipole transition moments
computed at B2PLYP and at B3LYP level: therefore, for the simulation of
VCD spectra the transition dipole moments computed at B3LYP level are
employed.

LAMs were identified through a preliminary analysis and excluded from
the VPT2 treatment. The effects of resonances were taken into account for
both energy and property calculations: the two-step procedure implemented
in Gaussian were employed for the identification of FRs and DDRs affecting
transition frequencies, with default Gaussian thresholds;a the identification
of FRs affecting intensities was performed with the two-step procedure pro-
posed in ref. 162. Anharmonic spectra were computed with the GVPT2
approach for both compounds in all the spectral regions, with the exception
of the CH stretching region in trans-1,2-cyclohexanediol.b

The computational protocol employed in this work to perform local mode
calculations was presented elsewhere and briefly recalled in sections 2.2.2, 2.3.2
and in section B.5 of appendix B. The stretching of each of the two OH bonds
for each conformer of the two molecules under investigation were evaluated
with a rigid scan in 50 step, with a step size of 0.017 Å, from −0.33 to
+0.454 Å with respect to the equilibrium OH bond length. The resulting
functions (of the energy given as a function of the length of the OH bond)
were interpolated with 8th-degree polynomials and the first three terms φll,
φlll and φllll were employed for the calculations of ωl and χll.

Preliminary analysis of low-lying conformers and computational
characterization of LAMs For the calculation of IR and VCD spectra,
the identification of low-lying conformers (and of their interconnectionsc) is
of pivotal importance.

The low-lying conformers identified for the 1R,2R-cyclohexanediol molecu-
le are listed in table 2.4.

The label assigned to each conformer is related to its structure. More
specifically: the central six-term ring (of six carbon atoms) can assume two

awith the exception of the identification of 1-1 DDRs: in this case, states with an energy
difference below 50cm−1 and an interaction term larger than 5 cm−1 are considered as
resonant.

bIn this case, the deperturbed VPT2 (DVPT2) approach was employed because the
overestimation of the coupling among those modes in a cartesian-based description can
significantly affect the calculations.

cIn order to exclude LAMs from the VPT2 treatment.
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structure symm ∆E ∆(E + ZPE) ∆G

vacuum vacuum vacuum PCM

eq-CH,HCH,OH (Cd-I) C1 0 0 0 0
eq-CH,HH (Cd-II) C1 26 60 86 39

eq-CH,HCH,H C2 402 331 197 124
ax-CH,OHH C1 1262 1225 1208 1154

ax-CH,HCH,OH C1 1075 1049 1038 1044
ax-CH,OHCH,OH C2 1032 1004 986 1037

ax-HH C2 1540 1477 1445 1255
ax-CH,HH C1 1212 1185 1170 1128

ax-CH,HCH,H C2 1144 1115 1109 1062

Table 2.4: Relative energies associated to each conformer of cyclohexane-
1R,2R-diol; level of theory: B3LYP/jul-cc-pVDZ with Grimme’s empirical
dispersions (with Becke-Johnson damping); the energy differences are given
in cm−1; the implicit solvation was taken into account with Polarizable Con-
tinuum Model (PCM) with a single-point calculation performed on the ge-
ometry of the isolated molecule (optimized in vacuum, without the inclusion
of solvation effects).

different chair conformations, one with both the hydroxyl groups in equato-
rial positions (labeled with ’eq-’) and another with both the hydroxyl groups
in axial positions (labeled with ’ax-’). In addition, the orientation of each
hydroxyl group can be specified through a Newman projection oriented along
the C—O bond: the substituent bounded to the C atom of the bond consid-
ered in the Newman projection which is in anti with respect to the hydrogen
bounded to the O atom is employed to specify the orientation of the hydroxyl
group. For example, if the anti substituent is an hydrogen atom the label
H is introduced in the label of the conformer; on the other hand, if the anti
substituent is a carbon atom which is bounded to two hydrogen atoms the
label CH,H is adopted.a The chair conformation with the hydroxyl groups
in equatorial positions (which can be involved in an intramolecular hydro-
gen bond only in this conformation of the six-term ring) is more stable (see
table 2.4) and only the two most populated conformers are employed in this
work for the computational simulation of IR and VCD spectra. If the geom-
etry optimizations are carried out including implicit solvation through PCM
additional minima can be found: more in detail, one additional minima (a
TS in vacuum) with a conformation labeled with eq-HH (belonging to the
C2 symmetry point group) and an energy higher than 800 cm−1 has been

aThe order employed to list the substituents which specify the orientations of the two
hydroxyl groups is not relevant. For example, labels ’eq-CH,HH’ and ’eq-HCH,H ’ specify
the same structure (see the molecular structures reported in fig. 2.1).
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located.
For what concerns 2R,3R-butanediol, low-lying conformers identified in

this study are listed in table 2.5.

structure symm ∆E ∆(E + ZPE) ∆G

vacuum vacuum vacuum PCM

GgCH,OHCCH3 (Bd-I) C1 0 0 0 0
GgHCCH3 (Bd-II) C1 16 45 67 44

GaHCH,OH (Bd-III) C1 298 254 235 291
GaHCCH3 (Bd-IV) C1 396 362 345 342

GaHH C2 549 455 309 326
GaCCH3CCH3 C2 1188 1008 813 729

AHCCH3 C1 1003 943 901 823
ACH,OHCCH3 C1 915 863 834 799
ACCH3CCH3 C2 951 905 896 823

AHH C2 1218 1140 1077 943
AHCH,OH C1 1044 961 894 834

ACH,OHCH,OH C2 891 822 762 771
GgCH,OHCH,OH C2 1538 1415 1332 1086

GgHCH,OH C1 1598 1445 1304 1035
GgCCH3CCH3 C2 374 307 136 135

Table 2.5: Relative energies associated to each conformer of 2R,3R-
butanediol; level of theory: B3LYP/jul-cc-pVDZ with Grimme’s empirical
dispersions (with Becke-Johnson damping); the energy differences are given
in cm−1; the implicit solvation was taken into account with Polarizable Con-
tinuum Model (PCM) with a single-point calculation performed on the ge-
ometry of the isolated molecule (optimized in vacuum, without the inclusion
of solvation effects).

In the case of 2R,3R-butanediol, the same conventions already presented
for the case of 1R,2R-cyclohexanediol have been employed to specify the
orientation of the two hydroxyl groups. For what concerns the dihedral
angle O—C(2)—C(3)—O, the same method have been employed: a Newman
projection viewed in the direction of the C(2)—C(3) bond gives the relative
positions of the two hydroxyl groups. When the two hydroxyl substituents
are anti with respect to each other, the prefix ’A’ is employed in the label of
the corresponding conformer, otherwise the label ’G’ (standing for gauche)
is employed. The subscript of ’G’ depends on the relative orientation, in
the same Newman projection, of the two methyl groups: if the two methyl
moieties are anti with respect to each other, the subscript ’a’ is employed
(and the prefix ’Ga’ is therefore adopted), otherwise the subscript ’g’ is used
(and the prefix ’Gg’ is adopted).

1R,2R-cyclohexanediol is a cyclic molecule with a six-membered central
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ring of carbon atoms and two adjacent hydroxyl groups in trans relative po-
sitions. The ring-puckering of the central ring can be described with three
coordinates,56 and the rotation of the two hydroxyl groups can be described
with the two associated dihedral angles. This intuitive description of the
conformational flexibility of 1R,2R-cyclohexanediol in terms of 5 degrees of
freedom can be further simplified: an explicit treatment of puckering motion
is not necessary because of the same ring conformation (chair conformation
with both hydroxyl groups in equatorial position) shared by all the lowest
energy structures. Although a series of relative energy minima encompass-
ing chair conformations with both hydroxyl groups in axial positions can
be obtained (their relative energies are reported in table 2.4), they are sig-
nificantly less stable than the previous ones because of the absence of any
hydrogen bond between the two hydroxyl groups. In what concerns the two
OH-dihedral angles, the 2D-PES reported in Figure 1 of ref. 172 is of partic-
ular interest: this figure suggests that the two dihedral rotations are involved
in a single LAM described by a combination of the two dihedral rotations. In
other words, the conformational flexibility of 1R,2R-cyclohexanediol can be
described in terms of 1 (instead of 5) degree of freedom governing the con-
certed rotation of the two dihedral angle associated with the two hydroxyl
groups.

To refine the qualitative description of the LAM given above, we have op-
timized its minima and transition states: energies and corresponding struc-
tures of the relevant stationary points are reported in figure 2.1. One may
see that, roughly speaking, the minima are connected by simple, indepen-
dent HOCC rotations about the CO bonds, with little coupling to other
low-frequency modes.

2R,3R-butanediol is a highly flexible molecule. The conformational flex-
ibility associated with the two hydroxyl groups can be described with two
dihedral rotations. Furthermore, this molecule is characterized by two LAMs
associated with the internal rotations of the two methyl groups and with
another internal rotation involving the O—C—C—O dihedral angle. There-
fore, a complete description of the conformational flexibility of this system
can be achieved with 5 degrees of freedom. In what follows, the assumption
is made that the internal rotation of the two methyl groups can be treated
independently from the other 3 degrees of freedom: this assumption appears
reasonable because a change in the orientations of the two hydroxyl groups
or a rotation of the O—C—C—O dihedral angle does not affect significantly
(at least to a first approximation) the barriers to the internal rotation of the
two methyl groups. A proper description of the concerted rotation of the two
hydroxyl groups needs to take into account its coupling with the rotation of
the O—C—C—O dihedral angle. A simplified description of the LAMs in
terms of the two HOCC LAMs is sketched in figures 2.3 and 2.4. The LAMs
reported in figs. 2.3 and 2.4 can be described as concerted rotations of the
HOCC torsions associated with the two hydroxyl groups (qualitatively, it
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Figure 1: LAM 1R,2R-cicloesandiolo; livello di calcolo: B3LYP/jul-cc-pVDZ
con dispersioni empiriche; effetto del solvente non inclusoFigure 2.1: Structures and relative energies (in cm−1) for low-energy con-

formers (in black) of 1R,2R-cyclohexanediol and for transition states (in
red) governing their interconversion. The broken lines connecting stationary
points do not have any quantitative meaning and are drawn only for a better
visualization. Geometry optimizations were carried out at B3LYP/jul-cc-
pVDZ level of theory, without the inclusion of solvent effects.

is the same kind of motion suggested for the two enantiomers of trans-1,2-
cyclohexanediol, see fig. 2.1); values of the O—C—C—O dihedral angle are
almost constant for all the molecular structures showed in the same figure:
in other words, all the molecular structures showed in fig. 2.3 correspond to
the Newman projection I (see fig. 2.2a) and all the ones showed in fig. 2.4
correspond to the Newman projection II (see fig. 2.2b).

HHO

CH3

OH

H CH3

(a) Newman projection I

H3C

H

OH
OH

H CH3

(b) Newman projection II

Figure 2.2: The two most relevant Newman projection of 2R,3R-butanediol

There is a third Newman projection of 2R,3R-butanediol, not reported
in fig. 2.2, where the two hydroxyl groups are not adjacent. Despite the
existence (already pointed out by other authors) of relative energy minima
with a structure that can be represented with this third Newman projection
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Figure 1: LAM 2R,3R-butandiolo (proiezione di Newman Gg); livello di
calcolo: B3LYP/jul-cc-pVDZ con dispersioni empiriche; effetto del solvente
non incluso

Figure 2.3: Structures and relative energies (in cm−1) for low-energy con-
formers (in black) of 2R,3R-butanediol and for transition states (in red)
governing their interconversion. The computational protocol is provided in
the caption of fig. 2.1. All the structures shown in this figure correspond to
the Newman projection I (see fig. 2.2a).

(with an O—C—C—O dihedral angle of about 180◦), the structures associ-
ated with this projection are not taken into account in the following because
the absence of the intramolecular hydrogen bond between the two hydroxyl
groups leads to quite higher energies (see table 2.5) and, therefore, a negligi-
ble contribution to IR and VCD spectra. Two interconnections between the
LAMs shown in figs. 2.3 and 2.4 (i.e. corresponding to the interconversion
between the Newman projections I and II shown in fig. 2.2) were identified.a

Only the most stable conformers of trans-1R,2R-cyclohexanediol and
2R,3R-butanediol were taken into account for the calculation of IR and
VCD spectra: more specifically, the two most stable conformers of trans-
1R,2R-cyclohexanediol (see table 2.4 and figure 2.5) and the four most stable
conformersb of 2R,3R-butanediol (see table 2.5 and fig. 2.5) were considered.

aThe barrier to the interconversion is between 1500 and 1600 cm−1 in both cases. For
the interested reader, more details are provided in the original article. For a complete
characterization of the PES of 2R,3R-butanediol, the presence of Valley Ridge Inflection
(VRI) points at accessible energies cannot be excluded (actually, the results of the cal-
culations carried out for this study suggest that one VRI point is encountered when the
interconversion between the two Newman projections of fig. 2.2 is taken into account).

bIn the case of 2,3-butanediol the conformer labeled as ’GgCCH3CCH3 ’ were not con-
sidered in the list of the most populated conformers becasue of (i) its symmetry (which
lower its population with respect to conformers which pertain to the C1 symmetry point
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Figure 1: LAM 2R,3R-butandiolo (proiezione di Newman Ga); livello di
calcolo: B3LYP/jul-cc-pVDZ con dispersioni empiriche; effetto del solvente
non incluso

Figure 2.4: Structures and relative energies (in cm−1) for low-energy con-
formers (in black) of 2R,3R-butanediol and for transition states (in red)
governing their interconversion. The computational protocol is provided in
the caption of fig. 2.1. All the structures shown in this figure correspond to
the Newman projection II (see fig. 2.2b).

The next step was to evaluate the relative stabilities of the selected con-
formers at higher level of theory. A reliable description of the relative sta-
bilities is a crucial step that can substantially influence the final results
because the simulated spectrum can be very sensitive to the Boltzmann pop-
ulation. Therefore, the geometries of the most stable conformers obtained
at B3LYP/jul-cc-pVDZ level of theory were re-optimized at B2PLYP/jun-
cc-pVTZ level.a The results are provided in table 2.6. For both molecules,
the conformers taken into account for the simulation of iR and VCD spec-
tra represent more than 95% of the total Boltzmann populations at room
temperature.

IR and VCD spectra: experimental and computational results Ex-
perimental IR and VCD spectra are displayed in figure 2.6 in four spectro-
scopic regions for the two optically active enantiomers of 2,3-butanediol and
the two enantiomers of trans-1,2-cyclohexanediol. Very good-to-excellent

group) and (ii) energy and structure close to two transition states (i.e. the conformer
corresponds to a minimum at B3LYP/jul-cc-pVDZ level of theory, but could be a TS if
the calculation is performed at another level of theory), see table 2.5 and fig. 2.3.

aThere are extremely small differences between the optimized molecular structures
obtained with the two level of theory. Therefore, images of the most stable conformers
(fig. 2.5) and labels can be employed for the results obtained at both the level of theory.
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be described as concerted rotations of the HOCC torsions
associated with the two hydroxyl groups (qualitatively, it is the
same kind of motion suggested for the two enantiomers of
trans-1,2-cyclohexanediol, as represented in Figure 4, vide
infra) for conformers I and II in Figure 2, respectively.

Moreover, LAMs become even more complicated for
conformers of I and II, which are connected by two possible
paths (see the Supporting Information). There is a third
Newman projection of 2R,3R-butanediol, not reported in
Figure 2, where the two hydroxyl groups are not adjacent.
Despite the existence (already pointed out by other
authors22,24) of relative energy minima with a structure that
can be represented with this third Newman projection (with an
O−C−C−O dihedral angle of about 180°), the structures

associated with this projection (see the Supporting Informa-
tion) are not taken into account in the following because the
absence of the intramolecular hydrogen bond between the two
hydroxyl groups leads to quite higher energies and, therefore, a
negligible contribution to IR and VCD spectra.

4.2. 1R,2R-Cyclohexanediol. This is a cyclic molecule
with a six-membered central ring of carbon atoms and two
adjacent hydroxyl groups in trans relative positions. The ring-
puckering of the central ring can be described with three
coordinates,58,59 and, similarly to 2R,3R-butanediol, the
rotation of the two hydroxyl groups can be described with
the two associated dihedral angles. This intuitive description of
the conformational flexibility of 1R,2R-cyclohexanediol in
terms of 5 degrees of freedom can be further simplified
because an explicit treatment of puckering motion is not
necessary because of the same ring conformation (chair
conformation with both hydroxyl groups in equatorial
position) shared by all the lowest energy structures. Although
a series of relative energy minima encompassing chair
conformations with both hydroxyl groups in axial positions
can be obtained (their relative energies are reported in the
Supporting Information), they are significantly less stable than
the previous ones because of the absence of any hydrogen
bond between the two hydroxyl groups. In what concerns the
two OH-dihedral angles, the 2D-PES reported in Figure 1 of
ref 28 is of particular interest: this figure suggests that the two
dihedral rotations are involved in a single LAM described by a
combination of the two dihedral rotations. In other words, the
conformational flexibility of 1R,2R-cyclohexanediol can be
described in terms of 1 (instead of 5) degree of freedom
governing the concerted rotation of the two dihedral angle
associated with the two hydroxyl groups.
To refine the qualitative description of the LAM given

above, we have optimized its minima and transition states:
energies and corresponding structures of the relevant sta-
tionary points are reported in Figure 4. One may see that,
roughly speaking, the minima are connected by simple,
independent HOCC rotations about the CO bonds, with little
coupling to other low-frequency modes.

4.3. Low-Lying Conformers and Evaluation of
Relative Stabilities. In both molecules, exploration of the

Figure 2. Newman projections for the two most relevant structures of
2R,3R-butanediol.

Figure 3. Structures of the four most stable conformers of 2R,3R-
butanediol (left side of the figure) and structures of the two most
stable conformers of 1R,2R-cyclohexanediol (right side of the figure).

Figure 4. B3 structures and relative energies (in cm−1) for low-energy conformers (in black) of 1R,2R-cyclohexanediol and for transition states (in
red) governing their interconversion. The broken lines connecting stationary points do not have any quantitative meaning and are drawn only for a
better visualization.
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Figure 2.5: Structures of the most stable conformers of 2R,3R-butanediol
(left side of the figure) and trans-1R,2R-cyclohexanediol (right side of the
figure).

conformer B3LYP/jul-cc-pVDZ B2PLYP/jun-cc-pVTZ

∆(E + ZPE) ∆Gvac ∆GPCM ∆(E + ZPE) ∆Gvac ∆GPCM pop.

Bd-I 0 0 0 0 0 0 47.1%
Bd-II 0.54 0.80 0.53 0.90 1.14 0.85 33.5%
Bd-III 3.04 2.81 3.48 2.91 2.84 3.51 11.5%
Bd-IV 4.33 4.13 4.09 4.42 4.46 4.42 7.9%
Cd-I 0 0 0 0 0 0 58.0%
Cd-II 0.72 1.03 0.47 1.11 1.36 0.80 42.0%

Table 2.6: Relative energies (in kJmol−1) associated to the most pop-
ulated conformers of 2R,3R-butanediol and trans-1R,2R-cyclohexanediol.
Grimme’s empirical dispersions (with Becke-Johnson damping) were em-
ployed in conjunction with B3LYP and B2PLYP methods. Solvent effects
were taken into account with PCM with a single-point calculation performed
on the geometry of the isolated molecule (optimized in vacuum, without the
inclusion of solvation effects).

mirror image spectra have been obtained in all regions for the enantiomeric
species even employing the rather diluted solutions required to avoid (or
at least to minimize) intermolecular hydrogen bonding. This gives us confi-
dence in testing high-level calculated spectra to compare to the experimental
ones.

Wang and Polavarapu reported the IR and VCD spectra of 2R,3R-butane-
diol in the mid-IR region.165 Both spectra are essentially identical to those
reported in fig. 2.6 for the spectral region under evaluation. IR and VCD
spectra in the region of fundamental OH stretchings can be easily found in
literature, and the previous findings are in substantial agreement with the
results shown in fig. 2.6 for trans-1,2-cyclohexanediol and 2,3-butanediol.
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Figure 2.6: Experimental VCD (left column) and IR (right column) spectra of trans-1,2-
cyclohexanediol (enantiomers 1R,2R and 1S,2S) and 2,3-butanediol (enantiomers 2R,3R
and 2S,3S). From the top, mid-IR (850-1500 cm−1), CH stretchings (2750-3050 cm−1),
fundamental OH stretchings (3300-3800 cm−1), and NIR (6800-7400 cm−1) spectroscopic
regions are reported. The spectra have been recorded in diluted solutions, with CDCl3
(in the case of trans-1,2-cyclohexanediol) and CCl4 (in the case of 2,3-butanediol). For
these data, the collaboration of Giuseppe Mazzeo (university of Brescia) is gratefully
acknowledged.
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To the best of our knowledge, the spectra reported for the fundamental CH
stretching region and for the NIR region in fig. 2.6 are new.

IR and VCD spectra of trans-1,2-cyclohexanediol and 2,3-butanediol
show several similarities in shape and intensity. On the basis of molecu-
lar structures of the two enantiomeric pairs, a relationship between common
structural motifs and similar spectral features can be guessed.

In the mid-IR region both compounds show a strong IR band at ca. 1050
cm−1 and in the same region of the spectrum (between 1000 and 1200 cm−1)
the VCD spectra of both compounds exhibit a similar pattern (going from
higher to lower wavenumbers, a "−,−,+" triplet for the R,R configuration
and a "+,+,−" triplet for the S,S configuration, between 1050 and 1200
cm−1 in the case of trans-1,2-cyclohexanediol and between 1000 and 1150
cm−1 in the case of 2,3-butanediol, see fig. 2.6). Such a spectral region host
normal mode transitions having contributions from CO-stretchings.

For what concerns IR spectra in the region of fundamental OH stretch-
ings, a doublet is observed between 3550 and 3650 cm−1 and a broad IR
band below 3500 cm−1 for both compounds; in ref. 172, the broad IR band
below 3500 cm−1 in the spectrum of trans-1,2-cyclohexanediol is interpreted
as the signature of aggregation of two (or even three) molecules promoted
by the formation of intermolecular hydrogen bonds: it is tempting to ex-
plain analogously the observation of the same feature in the spectrum of
2,3-butanediol, but to confirm this hypothesis more data are needed.a In the
same region, the VCD spectrum of trans-1,2-cyclohexanediol exhibits a dou-
blet (a "−,+" in the case of the R,R configuration, with the negative feature
weaker than the positive one), while the VCD spectrum of 2,3-butanediol
shown a triplet (a "−,−,+" in the case of R,R configuration, again with the
negative features weaker and at higher frequency than the positive one).b

For the first-overtone region (of OH stretchings) a NIR absorption dou-
blet is observed in both cases, while a VCD doublet is observed only for
trans-1,2-cyclohexanediol molecular system (with pattern "−,+" for the R,R
configuration, from higher to lower wavenumbers) and a singlet (negative,
in the case of R,R configuration) is observed for the VCD spectrum of 2,3-
butanediol.

The observed anisotropy ratio (also called g-factor) for the various signals
of the spectra reported in fig. 2.6 is between 10−4 and 10−5 in the mid-IR
region, about 10−5 in the CH stretchings region, between 10−6 and 10−5 for
the fundamental OH stretchings transitions, and about 10−5 for the first OH

aFor example, IR spectra in the region of fundamental OH stretchings at various con-
centrations.

bFor what concerns the VCD spectrum of the enantiomeric pair (R,R) and (S,S) of
2,3-butanediol, the results shown in fig. 2.6 are in agreement with the experimental VCD
spectrum previously observed by Siligardi. The pattern suggested in this study is slightly
different from the pattern suggested in ref. 164 (which is a doublet "−,+" for the R,R
configuration).
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stretchings overtones (the values for trans-1,2-cyclohexanediol and the chiral
forms of 2,3-butanediol are similar).

A more detailed description of the experimental spectra can be found in
the original article.

In what follows, the computational simulation of the IR and VCD spectra
reported in fig. 2.6 is presented and discussed. All the calculated spectra
reported in this paragraph were obtained as average spectra of the two most
populated conformers (corresponding to the two lowest energy minima of the
global PES) for 1R,2R-cyclohexanediol (see fig. 2.1 and tables 2.4 and 2.6)
and of the four most populated conformers for 2R,3R-butanediol (see figs. 2.3
and 2.4 and tables 2.5 and 2.6).

The normal modes related to the LAMs investigated in the previous
paragraph (HOCC torsions associated with the two hydroxyl groups) were
removed from the VPT2 treatment, together with low energy modes involv-
ing methyl rotations or butane torsions (in the case of 2R,3R-butanediol)
or ring deformations (in the case of 1R,2R-cyclohexanediol). The LAMs ex-
cluded from the VPT2 treatment are listed and depicted for each conformer
(in section 5.2 of the SI of the original article).

Despite some discrepancies, the agreement between experimental and
computational results is generally satisfying.
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Figure 2.7: Comparison of experimental spectra of 1R,2R-cyclohexanediol with har-
monic (top images) and anharmonic (bottom images) calculations of IR and VCD spectra
in the mid-IR region. The spectra of each conformer were weighted with their respective
Boltzmann population based on B2PLYP harmonic energy. The spectra were simulated
assigning Gaussian distribution functions of 10 cm−1 half-width at half-maximum.

Harmonic and bare anharmonic results in the mid-IR region are provided
for 1R,2R-cyclohexanediol (fig. 2.7) and 2R,3R-butanediol (fig. 2.8). In this
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Figure 2.8: Comparison of experimental spectra of 2R,3R-butanediol with harmonic
(top images) and anharmonic (bottom images) calculations of IR and VCD spectra in
the mid-IR region. The spectra of each conformer were weighted with their respective
Boltzmann population based on B2PLYP harmonic energy. The spectra were simulated
assigning Gaussian distribution functions of 10 cm−1 half-width at half-maximum.

region, the agreement between experimental and scaled harmonic results is
better than the agreement obtained between experimental and bare anhar-
monic (GVPT2) results (this statement is confirmed by the corresponding
similarity indexes,186–188 given in table 2.7).

In the case of the CH-stretching region, the anharmonic calculations
were performed with DVPT2 and GVPT2 model.a Scaled harmonic and
bare anharmonicb results are in satisfying agreement with the experimental
spectra.

IR and VCD spectra in the region of fundamental OH-stretching are dis-
played in figs. 2.9 and 2.10 together with the results for the CH-stretching
region. In this case, calculations carried out with VPT2 and local mode ap-
proximations are provided (see fig. 2.11). For what concerns the comparison
between experimental and computed IR absorption spectra at anharmonic
level, a satisfying agreement can be observed for both molecular systems
(and with both approximations, VPT2 and local mode models). Substan-
tial discrepancies are observed when the same comparison is extended to

aThe DVPT2 model was employed for trans-1,2-cyclohexanediol (see fig. 2.9), while
the GVPT2 model was adopted for the chiral species of 2,3-butanediol.

bActually, the anharmonic calculations were performed with both anharmonic models
(i.e. GVPT2 and DVPT2), but only the more satisfying results obtained for each species
are shown in this paragraph (a quantitative comparison based on similarity indices is
provided in table 2.7).
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Figure 2.9: Comparison of experimental spectra of 1R,2R-cyclohexanediol with har-
monic (top images) and anharmonic (bottom images) calculations of IR and VCD spectra
in the region of fundamental OH stretching transitions (∆ν = 1) and CH stretching region.
The spectra of each conformer were weighted with their respective Boltzmann population
based on B2PLYP harmonic energy. The spectra were simulated assigning Gaussian dis-
tribution functions of 15 cm−1 half-width at half-maximum.

the VCD spectra, particularly in the case of local mode approximation.
When the GVPT2 approximation is employed, a better reproduction of the
experimental VCD spectrum of trans-1,2-cyclohexanediol is obtained (in the
region of fundamental OH-stretching): the "−, +" experimental VCD dou-
blet of 1R,2R-cyclohexanediol corresponds to the "+,−, +" triplet predicted
by the GVPT2 calculation, taking into account that the first "+" feature of
the triplet is weak with respect to the other two (see figs. 2.9 and 2.11). The
"−,−,+" structure observed in the experimental VCD spectrum of 2R,3R-
butanediol is not correctly predicted by GVPT2 calculationsa. In this region
of the spectrum the transition frequencies are well reproduced with the local
modeb and GVPT2 approximations, while the intensities (especially in the
case of VCD spectra) can be considered satisfactoryc for the calculations per-
formed with the GVPT2 approximation and not entirely satisfactory for the
calculations performed with the local mode approximation. The effects of
intra- and intermolecular hydrogen bonding are fairly evident (in calculated
and experimental spectra) and are similar for trans-1,2-cyclohexanediol and
the chiral forms of 2,3-butanediol: thus, the two observed features, one just

aThe discrepancy is due to the wrong sign predicted for the first feature, at higher
wavenumbers: the pattern obtained in the case of the GVPT2 calculation is "+,−,+".

bAlthough a minor discrepancy can be observed in the spectrum of 2R,3R-butanediol,
see fig. 2.11.

cAlthough future improvements are desirable.
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Figure 2.10: Comparison of experimental spectra of 2R,3R-butanediol with harmonic
(top images) and anharmonic (bottom images) calculations of IR and VCD spectra in the
region of fundamental OH stretching transitions (∆ν = 1) and CH stretching region. The
spectra of each conformer were weighted with their respective Boltzmann population based
on B2PLYP harmonic energy. The spectra were simulated assigning Gaussian distribution
functions of 15 cm−1 half-width at half-maximum.

below and the other just above 3600 cm−1, can be assigned to the stretch-
ing modes of the donor and acceptor OH bonds, respectively, involved in an
intramolecular hydrogen bonding. Aggregation effects are neglected in the
calculations provided in this paragraph, and this choice explain the absence
of the broad band below 3500 cm−1 in the calculated spectra (see figs. 2.9
and 2.10).

The best agreement between anharmonic GVPT2 calculations and ex-
perimental data is obtained in the NIR region (see fig. 2.11).a It must be
underlined that not only frequencies and relative intensities but also abso-
lute intensities are well reproduced by the anharmonic GVPT2 calculations
in this region. In this region, also the results obtained with the local mode
approximation are in good agreement with the experimental results (espe-
cially in the case of trans-1,2-cyclohexanediol).

The evaluation of the agreement between experimental and computa-
tional data is usually based on graphical comparisons. In conjunction with
graphical evaluations (presented in figs. 2.7-2.11), two quantitative indexesb

were adopted in this study: the aim is to complement a qualitative notion
(the agreement between the graphical representations of two sets of data)
with a quantitative measurement which is not subject to the (potentially

aA discrepancy related to the positive band in the NIR-VCD spectra of the 2R,3R-
butanediol must be pointed out.

bOne is the so-called Similarity Index (SI) introduced in ref. 186. The numerical value
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Figure 2.11: Comparison of experimental spectra of 1R,2R-cyclohexanediol (top images)
and 2R,3R-butanediol (bottom images) with anharmonic calculations of IR and VCD
spectra in the regions of fundamental OH stretching transitions (∆ν = 1) in the left side
of the figure and of first overtone OH stretching transitions (∆ν = 2) in the right one. The
spectra of each conformer were weighted with their respective Boltzmann population based
on B2PLYP harmonic energy. The spectra were simulated assigning Gaussian distribution
functions of 15 cm−1 half-width at half- maximum in ∆ν = 1 region and 40 half-width at
half-maximum in ∆ν = 2 region

biased) author’s judgement. The results are provided in table 2.7: compar-
ing scaled harmonic and bare anharmonic results, an improvement between
experimental and calculated data is obtained when the anharmonic calcu-

is obtained from the following overlap integral:

SI =

∫
[f(ν, κ)g(ν)]dν√∫

[f2(ν, κ)]dν
∫

[g2(ν)]dν
. (2.57)

g(ν) and f(ν, κ) are functions associated, respectively, to experimental and calculated
spectral intensities at each frequency ν; κ is the frequency scaling factor. The maximum
value of SI (obtained when the spectra f and g are identical) is equal to 1, and the
minimum tends to 0 for IR spectra and to -1 for VCD spectra (a value of -1 for the SI
is obtained when the spectra are the opposite of each other). Eq. 2.57 can result in a
division by zero (if either f or g is of zero strength). The values of another index (the
so-called spectrum similarity, Sim)187 are proposed in table 2.7. The numerical value of
Sim are computed as follows:

Sim =

∫
[f(ν, κ)g(ν)]dν∫

[f2(ν, κ)]dν +
∫

[g2(ν)]dν − |
∫

[f(ν, κ)g(ν)]dν|
(2.58)

Analogously to to the values of SI, the numerical values can assume values in the range
[0, 1] in the case of IR spectra and [−1, 1] in the case of VCD spectra.
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lations are carried out, with the exception of the mid-IR regions of both
compounds.a

Molecule Region IR VCD

SI Sim SI Sim

2R
,3
R
-b
ut
an

ed
io
l mid-IR harm. (κ = 0.988) 0.91 0.79 0.63 0.33

mid-IR anharm. (GVPT2) 0.79 0.61 0.64 0.33
CH-str. harm. (κ = 0.955) 0.53 0.27 0.46 0.26
CH-str. anharm. (GVPT2) 0.93 0.86 0.71 0.42
OH-str. harm. (κ = 0.955) 0.69 0.51 0.71 0.13
OH-str. anharm. (GVPT2) 0.73 0.58 0.74 0.25

1R
,2
R
-c
yc
lo
he

xa
ne

di
ol mid-IR harm. (κ = 0.988) 0.94 0.89 0.74 0.52

mid-IR anharm. (GVPT2) 0.90 0.79 0.60 0.39
CH-str. harm. (κ = 0.955) 0.96 0.69 0.78 0.32
CH-str. anharm. (GVPT2) 0.90 0.78 0.29 0.02
CH-str. anharm. (DVPT2) 0.92 0.82 0.89 0.41
OH-str. harm. (κ = 0.955) 0.74 0.56 0.30 0.09
OH-str. anharm. (GVPT2) 0.80 0.61 0.67 0.27

Table 2.7: 2R,3R-butanediol and 1R,2R-cyclohexanediol: similarity indices
(see eqs. 2.57 and 2.58) for IR and VCD experimental and calculated spectra.
The spectra of each conformer were weighted with their respective Boltzmann
population based on B2PLYP harmonic energy. In parentheses, we report the
scaling factors (κ) employed in the harmonic approximation in the various
spectroscopic regions. Computational spectra were simulated assigning the
same gaussian distribution functions employed in figs. 2.7-2.11.

Conclusive remarks Besides the interest per se, the results presented
in this subsection show strengths and limits of the different computational
protocols employed for the anharmonic calculations.

The discrepancies between experimental and anharmonic calculations re-
sults raise an issue concerning the improvements of approximations and pro-
tocols employed in this study for the calculation of anharmonic spectra. The
hypothesis proposed in this paragraph underlines the importance of LAMs in
the anharmonic calculations of IR and VCD spectra, but it must be pointed

aAnd remembering that for the CH-stretching region of trans-1,2-cyclohexanediol (see
fig. 2.9) the DVPT2 model was employed (the results obtained with the GVPT2 approach
deteriorate the agreement between experimental and computational data with respect to
the employment of the scaled harmonic results).
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out that in order to give a satisfactory explanation of the discrepancies be-
tween experimental and anharmonic results other data would be extremely
useful.

The exclusion of LAMs from the VPT2 treatment corresponds to the em-
ployment of a reduced dimensionality scheme to solve out the nuclear prob-
lem: the essential idea is to go beyond the harmonic approximation avoiding
the inclusion of contributions which are not properly taken into account at
VPT2 level. In practice, this approach is reliable if (in the real world) the
contributions of the LAMs to the transitionsa of interest is negligible. When
these contributions are not negligible a computational procedure to properly
take them into account is needed: therefore, in these cases the exclusion of
the contributions related to LAMs can lead to discrepancies between experi-
mental and computational results. The procedure chosen to account for the
effects of LAMs relevantly affects the results of anharmonic calculations of
fundamental transitions, while it is less important for what concerns first
overtone transitions of OH-stretchings.b

An explanation of the discrepancies between experimental and anhar-
monic results based on the need of a proper inclusion of the contributions
due to the LAMs can explain the excellent agreement between experimental
and anharmonic results in the region of first overtone OH-stretching and the
discrepancies observed in the other regions, where experimental signals due
to fundamental transitions are measured. Moreover, analogous arguments
can be extended to explain the better agreement of the computational re-
sults obtained with the local mode approximation in the case of first overtone
transitions of OH-stretching modes.c

Although the explanation of the discrepancies between experimental and
computational results proposed in this paragraph seems to be reasonable, it
is only an hypothesis and should be verified with other calculations.

aMore specifically, to transition frequencies, IR and VCD intensities.
bThis statement was verified in the case of 2R,3R-butanediol, see the Supporting in-

formation of the original article.
cAnother important approximation behind the local mode approach is the neglection

of the interaction between the two OH stretchings simultaneously taking place in both the
compounds considered in this study: each OH stretching has been treated assuming a fixed
value (namely the value at the energy minimum) for all the internal degrees of freedoms
(bond lengths, valence angles and dihedral angles) which does not define the position of the
H or the O atoms directly involved in the OH stretching under investigation. To verify
if reliable computational values of IR and VCD intensities can be obtained neglecting
the interaction between the two OH moieties, the dependence of APTs and AATs from
the length of both the OH bonds of the two most populated conformers of trans-1,2-
cyclohexanediol was investigated: the results are provided in the Supporting Information
of the original article, and support (at least partially, i.e. focusing on the more relevant
terms) the reliability of the approximation adopted in this study (interaction between the
local modes neglected).
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2.4.2 IR and VCD spectra of organometallic compounds: the
case of chiral ferrocenes ∗

The usefulness of IR and VCD spectroscopies for the characterization of
organometallic compounds is well known. In this subsection, experimental
and computational results obtained for a series of five chiral ferrocenes are
presented and briefly discussed.

Ferrocene is a metallocene in which an iron divalent cation is sandwiched
between cyclopentadienyl moieties. If one chiral pendant is attached to one
cyclopentadienyl moietya a chiral compound is obtained. The chemical inter-
est of chiral ferrocenes (see, for example, ref. 189) motivates the investigation
proposed in what follows.

An approach which combines the experimental measurements of IR and
VCD spectra with their computational simulation is adopted.b The presence
of a metal cation (Fe2+) and the size of the molecular systems discussed
in this subsection suggest a potentially challenging investigation, especially
for what concerns the computational side. Therefore, special attention was
devoted to the choice of the computational protocol (particularly to the
compromise between computational cost and accuracy).

The molecular systems studied are depicted in figure 2.12. The syn-
thesis of the two enantiomers of (from the left to the right of fig. 2.12) 1-
acetoxyethylferrocene ([±]−1), 1-methoxyethylferrocene ([±]−2), 1-hydroxy-
ethylferrocene ([±]− 3) and 1,1′-bis(1-hydroxyethyl)ferrocene ([±]− 4) was
carried out by Angela Patti and Sonia Pedotti (Institute of Biomolecular
Chemistry - Consiglio Nazionale delle Ricerche, Catania), while the synthe-
sis of 5− Sp and 5−Rp (which are diastereoisomers) was carried out in the
group of prof. Vladimir Dimitrov (Bulgarian academy of sciences).

Experimental and computational methods Details about the syn-
thetic procedures employed for the synthesis of each enantiomers of 1, 2,
3 and 4 can be found in the original article. For what concerns the in-
strumentation employed to carry out VCD and IR measurements, the same
apparatus utilized for the measurements presented in the previous section
was used (FVS-6000 JASCO FTIR) and the spectra were measured in the
regions of mid-IR, fundamental CH- and OH-stretching. In the original ar-

∗Part of the results provided in this section (together with more details about experi-
mental and computational methods) can be found in Phys. Chem. Chem. Phys., 2019,
21, 9419-9432.

aOr two different substituents (chiral or not) are attached to the same cyclopentadienyl
moiety.

bTo the best of the author’s knowledge, the first ab-initio calculation of the VCD spec-
trum of an organometallic molecule was published in ref. 190. Since then, the combination
of experiments and ab-initio calculations (usually at harmonic level) has been employed
for the elucidation and the assignment of VCD spectra of organometallic molecules (see,
for example, refs. 191–193).
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Figure 2.12: Structures of the chiral ferrocenes discussed in this section. The configura-
tion in correspondence of the asymmetric center (the carbon atom directly bonded to the
cyclopentadienyl ring) is not specified in the structures 1, 2, 3 and 4. For what concerns
the molecular system 4 only the two optically active enantiomers (R,R) and (S,S) are
discussed in this work and not the meso-form (R,S). The structures 5 − Rp and 5 − Sp
are diastereoisomers.

ticle more details about instrumentation, samples, experimental conditions
and protocols may be found.

For what concerns the computational protocol, two issues must be ad-
dressed: (i) the lack of widely adopted and validated quantum chemical
methods for the study of organometallic complexes and (ii) the availabil-
ity of a limited (although significant) amount of computational resources.
Some DFT-methods were tested in a previous work,194 suggesting the em-
ployment of B3PW91 as exchange-correlation functional and Def2TZVP195

as basis set. The tests provided in ref. 194 are limited to harmonic and
anharmonic calculations of IR spectra (this is due to the lack of chirality
of the investigated systems) and do not consider the effects of substituents
on one of the two cyclopentadienyl moieties: despite these weak points (at
least for this study), the quality of the results obtained at anharmonic levels
at B3PW91/Def2TZVP level of theory supports the adoption of the same
computational protocol for this work. A number of tests (with different
exchange-correlation functionals and different basis sets) were carried out
in order to verify the sensitivity of the computed VCD spectra to the level
of theory employed, at least at harmonic level. The results of these tests
(not shown in this thesis) make us conclude that the employment of the
B3PW91/Def2TZVP level of theory for the calculations of IR and VCD
spectra of the molecular systems shown in fig. 2.12 is a good choice.

All the calculations were performed with the Gaussian suite of pro-
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grams.12 For what concerns geometry optimizations, force fields and transi-
tion moments the protocols provided in the previous section (for the study
of 2,3-butanediol and trans-1,2-cyclohexanediol) were employed. Solvent ef-
fects were included with the PCM model.

IR and VCD spectra were computed at harmonic level for all the molec-
ular systems showed in fig. 2.12, while the anharmonic calculations were
performed only for the molecular systems labeled with 1, 2 and 3.a

For what concerns anharmonic calculations, LAMs and resonances were
treated with a procedure similar to the one introduced in the previous sec-
tion. LAMs were identified with apreliminar analysis and excluded from
the VPT2 treatement. The effects of resonances were taken into account
for both energy and property calculation: FRs and DDRs affecting transi-
tion frequencies were identified with the two-step procedure implemented in
Gaussian (with default Gaussian thresholds); FRs affecting intensities were
identified by the operator and manually added to the input file of the fi-
nal anharmonic calculation. Anharmonic spectra were computed with the
GVPT2 approach.

Most populated conformers (with their geometries and populations) of
molecular systems 1, 2, 3 and 4 are described and depicted in the original
article. Anharmonic IR and VCD spectra provided in the next paragraph are
calculated weighing with their respective Boltzmann population the spectra
of the most populated conformers.

In the case of 5 − Rp and 5 − Sp, the preliminary conformational anal-
ysis was performed as follows: dihedral angles associated to internal rota-
tions with low-energy barriers b and to the umbrella inversion of the three
groups directly bonded to the nitrogen atom (see fig. 2.12) were employed
to generate a set of reliable guesses for the geometries of the various con-
formers. These initial geometries were optimized at B3LYP/TZVP level of
theoryc: the most stable geometries obtained at the end of this procedure
were re-optimized at B3PW91/Def2TZVP level of theory, with the inclusion
of solvent effects (as already mentioned).

IR and VCD spectra: experimental and computational results Ex-
perimental IR and VCD spectra of the molecular systems labeled with 1, 2,
3 and 4 are reported in fig. 2.13. The experimental spectra obtained in the
regions of mid-IR, fundamental CH- and OH-stretching are reported for both

aThe reason are (i) the high computational cost associated to the calculations of the
anharmonic force-fields in the cases of 5−Rp and 5−Sp and (ii) the experimental evidence
of a dimerization in which the molecules with the structure labeled with 4 in fig. 2.12 are
involved (in other words, the reason is the high computational cost for what concerns the
calculation of the anharmonic force-field of the dimer).

bCCp1&CS—CCp1—C—O, CCp1—C—O—H, CCp1—CCp1&CS—S—N,CCp1&CS—S—
N—C∗ and S—N—C∗—H.

cWithout the inclusion of solvent effects.
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enantiomers of each investigated molecular systems.a Experimental IR and
VCD spectra of 5−Rp and 5−Sp in the mid-IR region are shown in fig. 2.15.

4 are markedly different in all accessible spectroscopic regions,
while IR spectra are more similar.

In order to assign the IR and VCD spectra and to gather
information on the configurational and conformational properties
of the four compounds, DFT calculations at the harmonic and
anharmonic level were run. We chose to run calculations at the
B3PW91/Def2TZVP level of theory with a polarizable continuum
model (IEF-PCM) to simulate solvent effect from CCl4: indeed, this
combination had been tested and validated before9 and found
especially suitable for simulating ferrocene, rutenocene and
osmocene IR spectra. We also tried on compound 3 several
other combinations of functionals and basis sets, but, overall,
we found the choice suggested in ref. 9 fully adequate, so we do
not report the other results here.

A fairly complete set of conformers (9 for each compound)
was generated by assigning three values each (ca. +601, +1801,
and !601) to the two main dihedral angles, the first one, a,
around the CC connecting ferrocene to the substituent group,
and the second one, b, around the CO bond next to it (by rotating
O(COCH3) in 1, O(CH3) in 2, and OH in 3). The structures of such
conformers were then optimized and in Table 1 we compare, for
all the compounds 1–4, the relative abundances of conformers and
their geometrical parameters a, b and g (the last angle defining the

relative position of one cyclopentadienyl ring with respect to
the other, 01 defining the eclipsed conformation and 361 the
staggered one).

From literature data, the eclipsed conformation appears to
be consistently the most stable one at room temperature for
ferrocene in solution,6,7 as well as for mono-substituted ferro-
cenes;7,31 whereas the staggered conformation seems to be
favored by either inter-molecular interactions in the crystalline
state32 or polymer formation.33 According to DFT computations, the
interconversion barrier between equivalent eclipsed conformers
(stable minima), corresponding to staggered conformers (saddle
points), is quite small in ferrocene.10 For 1–4 in monomeric
form the eclipsed conformers are still true minima, whereas
more pronounced distortions have been found for the studied
dimer of 4 (see Table 1).

The three most populated conformers (I, II and III) for (S )-3
and the most populated conformer (I) for (S ,S )-4 in monomeric
form are shown in Fig. 3 together with the dimeric form of (S ,S )-4
with the lowest conformational energy. In conformers I and II of
(S )-3 the alcohol hydrogen is directed towards the unsubstituted
cyclopentadienyl moiety and possibly engaged in an intra-
molecular interaction; besides, the OH" " "Fe distance is signifi-
cantly smaller in conformers I and II than in all other ones,

Fig. 2 Experimental IR and VCD spectra of (S)- and (R)-1-acetoxyethylferrocene, 1, of (S)- and (R)-1-methoxyethylferrocene, 2, of (S)- and (R)-1-
hydroxyethylferrocene, 3, and of (S,S)- and (R,R)-1,10-bis(1-hydroxyethyl)ferrocene, 4, in CCl4 solutions. Spectral features which were found to be
affected by significant experimental errors are omitted.

Paper PCCP

Figure 2.13: Experimental IR and VCD spectra of both the enantiomers of 1, 2, 3 and
4 measured in CCl4 solutions. Spectral features which were found to be affected by signif-
icant experimental errors are omitted. Intensities are reported in units of ε (IR spectra)
and ∆ε (VCD spectra). The figure is taken from the original article. For these data, the
collaboration of Giuseppe Mazzeo (university of Brescia) is gratefully acknowledged.

g-factors of the order of 10−4 in the mid-IR region of 3, 4, 5 − Rp and
5 − Sp (and in the C=O stretching region for the molecular system 1) are
observed (see figs. 2.13 and 2.15). In the regions of fundamental CH- and OH-
stretching a g-factor of the order of 10−5 is observed for all the cases shown
in fig. 2.13. A g-factor of the order of 10−5 is observed in the fingerprint
region of 1 and 2 (see fig. 2.13).

Analysis of the results based exclusively on the experimental data shown
in figs. 2.13 and 2.15 is not straightforward. Despite a common struc-
tural motif (the ferrocene moiety) the molecular systems considered in this
subsection exhibit IR and VCD spectra with different features and patterns.
Nevertheless, useful pieces of information can be inferred from the analysis of

aThe experimental VCD spectra in the region of CH-stretching for the compounds 1
and 3 and in the region of fundamental OH-stretching for the compound 4 are not reported
because the signals were found small and hardly reproducible. The experimental VCD and
IR spectra in the region of fundamental OH-stretching are not reported for the molecular
systems 1 and 2 for obvious reasons (absence of relevant signals due to the absence of
hydroxyl moieties in the molecular structure).
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The OH NMR resonance of 4 was observed as a broad singlet,
substantially de-shielded in comparison with the OH doublet
observed for 3 (d 4.2 vs. 1.9 at 0.09 M), and was upfield shifted
from 4.3 to 3.3 ppm with dilution, corroborating the idea that
intermolecular hydrogen bonds dominate over intramolecular
ones. In the same range of concentration, the OH-resonance in
compound 3 changed by ca. 0.05 ppm (from 1.89 to 1.85 ppm)
indicating a much weaker intermolecular H-bond with respect
to 4. The marked concentration-dependence of OH chemical
shift for compound 4 could be attributed to the presence of self-
associated species and a monomer 2 dimer equilibrium
cannot be ruled out.

The different H-bonding features of 3 and 4 were also sup-
ported by their IR spectra in the OH-stretching region (bottom part
of Fig. 6). For compound 3 two bands with comparable intensities
were observed at 3616 cm!1 and 3577 cm!1 and their absorption
coefficients e were both found independent of concentration. The
spectrum of diol 4 displays a band at 3619 cm!1, whose intensity is
comparable with the 3616 cm!1 band in 3 (see also Fig. 2), and a
broad and intense band at 3327 cm!1, whose e depends on
concentration.

So, we considered as a possible dimeric structure for (S,S)-4
one where each OH bond of one diol entertains a hydrogen
bond with one OH of the other diol. Of course other dimeric
structures cannot be ruled out; but we report here results
only for the C2-symmetric structure presented in Fig. 3. The
latter, which was obtained by optimizing the assembly of

two nearby (S,S)-4 diol monomers in their minimum energy
conformation (Fig. 3), is quite stable and may be obtained
starting optimization also from quite different monomer con-
formations (see also Table 1).

The corresponding calculated IR and VCD spectra at the
harmonic level are given in Fig. 7. In general, the IR and VCD
spectra in the mid-IR calculated for the dimeric structure are in
better agreement with experimental data in the region below
1150 cm!1, and, for VCD, above 1250 cm!1. This does not mean
that only normal modes delocalized over the two diol units are
observed; indeed, the 940 cm!1 localized negative VCD feature
is calculated also for 4 both as a monomer and as a dimer and
is still attributed to the same kind of pentadienyl/CH3 normal
mode with diagnostic value for the absolute configuration. In
the CH stretching region (both in VCD and in IR), the predictions
from the dimer being slightly better. The two models correctly
predict the interesting bisignated band observed at ca. 3100 cm!1,
in correspondence of the absorption band normally assigned to the
CH-stretching of CH bonds of the cyclopentadienyl moieties
(assuming a similar frequency difference between harmonic and
anharmonic oscillator models in the monomer and in the dimer);
this is due to a distortion from the eclipsed conformation (which is
twice as large in the dimer than in the monomer). Finally, the OH
absorption spectrum is satisfactorily interpreted as follows. The
broad band between 3100 and 3500 cm!1 is due to intermolecular
OH stretching modes; the weak feature observed at ca. 3619 cm!1

(which is as intense as the OH stretching observed for alcohol 3,

Fig. 6 Top: Observed NMR OH resonance values dOH, for 1-hydroxyethylferrocene, 3, (left) and of 1,10-bis(1-hydroxyethyl)ferrocene, 4 (right) in
CDCl3 solutions as function of concentration. Bottom: Observed IR spectra, in the OH stretching region of 1-hydroxyethylferrocene, 3, (left) and
of 1,10-bis(1-hydroxyethyl)ferrocene, 4 (right) in CCl4 solutions as function of concentration.
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Figure 2.14: Experimental IR spectra of 3 (left side) and 4 (right side) in the OH-
stretching region. Concentrations of the spectra are provided in the figure, while y values
give the absorbance value. For these data, the collaboration of Giuseppe Mazzeo (univer-
sity of Brescia) is gratefully acknowledged.
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Figure 2.15: Experimental IR and VCD spectra of 5−Rp and 5−Sp in the mid-IR region
measured in CCl4. It must be underlined that 5−Rp and 5−Sp are diastereoisomers, not
enantiomers. For these data, the collaboration of Giuseppe Mazzeo (university of Brescia)
is gratefully acknowledged.

the spectra of 3 and 4 in the region of fundamental OH-stretching. For what
concerns the molecule 3, two signals of comparable intesities were observed
at 3616 cm−1 and 3577 cm−1 in the IR spectrum: this observation suggests
the simultaneous presence of at least two significantly populated conformers
in the CCl4 solution of 3, since only one hydroxyl moiety is involved in the
structure of 3.a Turning to the signals observed in the OH-stretching region
of the IR spectrum of 4 a feature at 3619 cm−1 (whose intensity is compa-
rable to the two signals observed in the same region of the IR spectrum of
3) and a broad and intense signal at 3327 cm−1 are observed. In order to
verify whether or not the signal at 3327 cm−1 observed in the IR spectrum
of 4 can be ascribed to the presence of inter-molecular H-bonds, the de-
pendence of the absorbance value (associated to the signals observed in the
OH-stretching region of the IR spectra of 3 and 4) from the concentration
of the CCl4 solution was studied. The results are showed in figure 2.14. The
band at 3327 cm−1 exhibits a concentration dependence which is ascribed
to a dimeric structure (which is the result of the aggregation between two

aThe structure is confirmed by the assignment of the 1H-NMR spectrum reported in
the SI of the original article (figure SI 47).
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monomers of 4).a

An attempt to relate the VCD signals of 1, 2, 3 and 4 was carried out.
The features enclosed in red dashed squares (1450-1300 cm−1, see fig. 2.13)
exhibit an analogous pattern ("+,−" for the R enantiomers) for the molec-
ular systems 1 and 2, while a different motif ("−,+,−,+" for the R enan-
tiomers with the first signalb at least slightly more intense than the others)
is observed for the molecular systems 3 and 4. Other two regions with some
degree of similarity between the spectra of different molecules are enclosed
in green and yellow dashed squares. The lack of a common spectral pattern
in the fingerprint region of the VCD spectra of the molecular systems con-
sidered in this subsection is not surprising, and is due to the differences in
the substituents attached to the cyclopentadienyl moiety (or moieties, in the
case of 4) which leads to entirely different VCD spectra (despite the presence
of the ferrocene moiety as common structural motif).

For the assignment of the most intense vibrational transitions observed
in IR and VCD spectra of figs. 2.13 and 2.15 a comparison between cal-
culated and experimental spectra is extremely useful. Calculated spectra
(at harmonic and anharmonic levels) are compared with their experimental
counterparts in figs. 2.16, 2.17 and 2.18. Agreement between experimental
and computational data are generally satisfactory for transition frequencies
and relative intensities (in most of the cases considered in this subsection
the absolute intensities are underestimated).

In the case of the molecular system labeled with 1, calculated IR and
VCD spectrac at the harmonic level are in good agreement with their ex-
perimental counterparts (in the mid-IR region and in the C=O stretching
region), although the transition frequencies are systematically higherd than
their experimental counterparts. At the anharmonic level, experimental and
calculated transition frequencies are closer (but in the mid-IR region the
correction to the transition frequencies seems to be slightly overestimated
with the GVPT2 approach), particularly in the C=O stretching region. A
redistribution of relative intensities (switching from the harmonic to the
anharmonic level) is observed, which is not associated to an overall improve-

aThese results are further confirmed by NMR data reported in the original article.
Another possible explanation based on the presence of an intramolecular H-bond is not
convincing due to the dependence from the concentration of the absorbance value of the
band at 3327 cm−1.

bWhich is similar to the signal observed at ca. 1400 cm−1 for the molecule 5−Rp, see
fig. 2.15.

cOnly the averaged calculated spectra are reported in fig. 2.16. For what concerns the
harmonic spectra, the contribution of all the 9 conformers found for the molecular system 1
were included. In the case of the anharmonic spectra (which requires computationally more
demanding calculations), only the contributions of the four most populated conformers
were included.

dSlightly higher in the case of the mid-IR region. The shift to higher frequencies due
to the lack of anharmonic contributions is more pronounced for transitions characterized
by an higher fundamental frequency.
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of the band congestion observed in the region 2800–2900 cm!1,
due to anharmonic resonance phenomena (Fig. 4 and 5).19,34

The OH-stretching region for molecules 3 and 4 suffers from
the neglect of anharmonic contributions to an even larger
extent, since the higher order force constants are particularly
strong: indeed previous approximate local mode treatment
provides diagonal anharmonicity parameters, w, of the order
wCH B !55 cm!1 and wOH B !90 cm!1 for CH stretching and
OH stretching respectively.35,36

The normal mode assignment made for compound 3, provided
in Table 2, allows one to conclude that the isolated IR band
observed at about 3100 cm!1 is due to pure ferrocene cyclopenta-
dienyl CH stretchings. On the other hand, the vibrations responsible
for the intense features at 1000–1100 cm!1 observed in the IR
spectrum of simple ferrocene, get highly mixed with the normal
modes of the external substituent(s). Besides, the substituents’
normal modes are more intense and they somewhat conceal the
pure ferrocene normal mode contributions (vide infra).

Fig. 4 Comparison of experimental and calculated IR and VCD spectra for (S)-1-acetoxyethylferrocene, 1, (left) and for (S)-1-methoxyethylferrocene, 2,
(right): in the CQO stretching and mid-IR regions (for 1) and in the CH stretching and mid-IR region (for 2), at the harmonic level and with the GVPT2
approach of Gaussian16 (ref. 21 and see text). Level of theory: B3PW91/Def2TZVP in PCM approximation. Boltzmann averaging on the separate
conformer spectra, based on free energy, was performed. Assumed bandshapes are Lorentzian for calculated features and bandwidths are 10 cm!1.
Experimental VCD spectra are semi-differences of the VCD spectra in Fig. 2.

Fig. 5 Comparison of experimental and calculated IR and VCD spectra for (S)-1-hydroxyethylferrocene (left), 3, at harmonic and anharmonic level and
for (S,S)-1,10-bis(1-hydroxyethyl)ferrocene, 4, (right): in the OH-stretching, CH-stretching and mid-IR regions (for 3). Level of theory: B3PW91/Def2TZVP
in PCM approximation at the harmonic level and with GVPT2 approach of Gaussian1621 (see text). Boltzmann averaging on the separate conformer
spectra, based on free energy, was performed. Assumed bandshapes are Lorentzian for calculated features and bandwidths are 10 cm!1. Experimental
VCD spectra are semi-differences of the VCD spectra in Fig. 2.
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Figure 2.16: Comparison between experimental and calculated spectra of 1 (left side)
and 2 (right side). IR and VCD spectra calculated at harmonic and anharmonic levels are
reported. Experimental VCD spectra of the S enantiomers are provided as semi-differences
of the VCD spectra provided in fig. 2.13. Lorentzian bandshapes (with bandwidths of 10
cm−1) are assumed for the calculated spectra.

ment in the agreement between experimental and calculated spectra. The
sign of the VCD singlet ("−" for the S enantiomer) experimentally probed
in the C=O stretching region is correctly reproduced already at harmonic
level.a The assignment of the harmonic signals due to the most populated
conformer of 1 was performed and provided in the SI of the original article,b

and suggests the assignment of the most intense IR signal of the mid-IR
region of 1 (between 1200 and 1250 cm−1) to a normal mode which involves
the acetoxyethyl-substituent (particularly the bending of the C∗—H bond)
and the substituted cyclopentadienyl moiety.c

For what concerns 2, the agreement between calculated and experimental
spectra can be considered satisfactory, although some features of the exper-
imental spectra are not well-reproduced.d In the mid-IR region, calculated
IR spectra (at harmonic and anharmonic levels) are in good agreement with
their experimental counterparts (although in the harmonic spectrum tran-
sition frequencies are slightly overestimated), while some discrepancies are
found in the calculated VCD spectra: nevertheless, a comparison of the ex-

aIt should be underlined (see the SI of the original article, particularly figure SI 11)
that the sign of this specific VCD signal is not equal for all the conformers.

bSee table SI 1 of the original article.
cThe relative intensity associated with this normal mode is the highest of the IR spec-

trum in the mid-IR region for the four most populated conformers of 1.
dThe averaged calculated spectra are shown in fig. 2.16. The contributions of all the

conformers (9) found for the molecular system 2 were included for the calculation of the
harmonic spectrum. For what concerns the anharmonic spectra, only the contributions of
the five most populated conformers were included.
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perimentally probed with the calculated VCD spectrum of 2 in the mid-IR
region allows the assignment of the absolute configuration (even if only the
harmonic results are available). In the CH-stretching region, the transition
frequencies are clearly overestimated at the harmonic level: this overestima-
tion disappears when the anharmonic effects are taken into account with the
GVPT2 model, but on the other hand the redistribution of the transition
intensities increases the discrepancies between experimental and calculated
intensities (even in the case of the IR spectrum). The most intense signal
of the IR spectrum in the mid-IR region can be assigned to the stretchings
of the two C—O bonds in which is involved the oxygen atom of the molec-
ular system 2 (this assignment is based on the features of the normal mode
associated to the most intense harmonic transition of the most populated
conformers).a

9424 | Phys. Chem. Chem. Phys., 2019, 21, 9419--9432 This journal is© the Owner Societies 2019

of the band congestion observed in the region 2800–2900 cm!1,
due to anharmonic resonance phenomena (Fig. 4 and 5).19,34

The OH-stretching region for molecules 3 and 4 suffers from
the neglect of anharmonic contributions to an even larger
extent, since the higher order force constants are particularly
strong: indeed previous approximate local mode treatment
provides diagonal anharmonicity parameters, w, of the order
wCH B !55 cm!1 and wOH B !90 cm!1 for CH stretching and
OH stretching respectively.35,36

The normal mode assignment made for compound 3, provided
in Table 2, allows one to conclude that the isolated IR band
observed at about 3100 cm!1 is due to pure ferrocene cyclopenta-
dienyl CH stretchings. On the other hand, the vibrations responsible
for the intense features at 1000–1100 cm!1 observed in the IR
spectrum of simple ferrocene, get highly mixed with the normal
modes of the external substituent(s). Besides, the substituents’
normal modes are more intense and they somewhat conceal the
pure ferrocene normal mode contributions (vide infra).

Fig. 4 Comparison of experimental and calculated IR and VCD spectra for (S)-1-acetoxyethylferrocene, 1, (left) and for (S)-1-methoxyethylferrocene, 2,
(right): in the CQO stretching and mid-IR regions (for 1) and in the CH stretching and mid-IR region (for 2), at the harmonic level and with the GVPT2
approach of Gaussian16 (ref. 21 and see text). Level of theory: B3PW91/Def2TZVP in PCM approximation. Boltzmann averaging on the separate
conformer spectra, based on free energy, was performed. Assumed bandshapes are Lorentzian for calculated features and bandwidths are 10 cm!1.
Experimental VCD spectra are semi-differences of the VCD spectra in Fig. 2.

Fig. 5 Comparison of experimental and calculated IR and VCD spectra for (S)-1-hydroxyethylferrocene (left), 3, at harmonic and anharmonic level and
for (S,S)-1,10-bis(1-hydroxyethyl)ferrocene, 4, (right): in the OH-stretching, CH-stretching and mid-IR regions (for 3). Level of theory: B3PW91/Def2TZVP
in PCM approximation at the harmonic level and with GVPT2 approach of Gaussian1621 (see text). Boltzmann averaging on the separate conformer
spectra, based on free energy, was performed. Assumed bandshapes are Lorentzian for calculated features and bandwidths are 10 cm!1. Experimental
VCD spectra are semi-differences of the VCD spectra in Fig. 2.
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as from Fig. 2 and 5) is instead assigned to the ‘‘free’’ OH stretching
in the monomer or in a different-type dimer. In conclusion, we
think that the VCD spectrum of 4 appears as the superposition
of monomer and dimers features, the dimer structure exhibiting
multiple possibilities, and we cannot even exclude that even
longer oligomers are present and are responsible of some
observed IR and VCD features.

(d) ECD spectra: experiments and computations

In the experimental ECD spectra of the four enantiomeric pairs
1–4 (Fig. 8) three regions can be distinguished. In the first
region, for all compounds, a weak and broad feature extends
from 500 to 380 nm, and is positive for the (S)- and negative for
the (R)-enantiomer; the second region contains a very weak
feature centered at 285 nm, which is rather broad and is again
positive for the (S)- and negative for the (R)-enantiomer; finally
in the third region strong bands for 1, 3 and 4, but minor
bisignated bands for 2, at still lower wavelengths are observed.
In this last region, within the accessible range of our experiments,
1 and 3 show a bisignate band, with the positive component for
the (S)-enantiomer (negative for (R)) at longer wavelengths:
whether this band originates from a positive exciton couplet
for (S)-1 and (S)-3 and a negative exciton couplet for the opposite
enantiomers might be established from TD-DFT calculations.
Similar observations were made in ref. 4.

TD-DFT calculations, run at the same theory level as for IR
and VCD spectra (B3PW91/def2TZVP), are presented in Fig. 9
and the Boltzmann-averaged results are compared to experiment
for just compound 3. Calculations show that conformational
dependence is important (computed spectra for the individual
conformers reported in Fig. SI 3.7, ESI†).

Conformational dependence indeed may play a role in
determining the width of the 480 nm band, which originates
from transitions involving the Fe atomic orbitals. In the calculated
spectrum the prediction of the overall sign is correct (positive for
(S)), but some components of opposite signs are present and these
may explain why in molecule 4 one observes negative small
components for (S). We also note that the predicted g-ratio is
too large with respect to experiment. The high energy region
does not have a perfect correspondence between experiment
and calculation even though some resemblance may be noticed
between the two. In any case, we find that here, as well as in the
case of ref. 4, the sign of the 480 nm broad, weak band is
univocally associated to the configuration of the molecule.

However, these calculations should be upgraded since vibronic
effects could be important but this raises several difficulties to
tackle. As multiple electronic states are involved, each one
would need to be optimized and their respective harmonic force
constants calculated. The optimization process could be made
difficult by the presence of state crossing. This problem could be

Fig. 7 Comparison of experimental IR and VCD spectra of (S,S)-1,10-bis(1-hydroxyethyl)ferrocene, (S,S)-4 in the OH stretching, CH stretching and
mid-IR regions with the corresponding calculated IR and VCD spectra for the monomeric form (Boltzmann’s average over all conformers) and for one
dimeric form (just one conformer). Level of theory: B3PW91/Def2TZVP in PCM approximation, harmonic level. For ease of comparison the calculated
spectra in the mid-IR for the monomer were multiplied by 3, while the spectra for dimers were not divided by 2, as they should.
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Figure 2.17: Comparison between experimental and calculated spectra of 3 (left side)
and 4 (right side). IR and VCD spectra calculated at harmonic and anharmonic levels
are reported for 3, while IR and VCD spectra of 4 were calculated only at harmonic level.
Experimental VCD spectra of the S enantiomers are provided as semi-differences of the
VCD spectra provided in fig. 2.13. Lorentzian bandshapes (with bandwidths of 10 cm−1)
are assumed for the calculated spectra.

Good agreement between calculated and experimental spectra is found
also in the case of 3,b at least for transition frequencies and relative intensi-
ties (the absolute intensities are systematically underestimated in the mid-IR
region). As expected, harmonic transition frequencies systematically over-
estimate the experimental results, while the introduction of the anharmonic
contributions with the GVPT2 model leads to calculated values closer to the
experimental ones.c For what concerns relative intensities, despite a gener-

aSee table SI 3 and figure SI 23 in the SI of the original article.
bAs for the molecular systems previously discussed, the contributions of all the 9 con-

formers found for the molecular system 2 were included in the Boltzmann average per-
formed for the calculation of the harmonic spectrum. In the case of the anharmonic
spectra, only the contributions of the six most populated conformers were included.

cThis statement seems to be not valid in the region between 1200 and 1500 cm−1 (see
fig. 2.17), where the introduction of anharmonic corrections leads to a systematic under-
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ally good agreement between experimental and computational results some
discrepancies should be pointed out. In the OH-stretching region the VCD
spectrum exhibit a pattern "+,−" (for the S enantiomer, from higher to
lower wavenumbers) which is correctly reproduced in the calculated spectra
(at harmonic and anharmonic levels), but the ratio of the intensities associ-
ated to the "+" and to the "−" signals in the calculated spectrum is higher
than the ratio found in the experimental one.a In the IR spectrum measured
in the same region two close signals (with the signal at higher wavenumbers
slightly less intense) were detected, while the calculated spectra reveal a dif-
ferent picture, with the signal at higher wavenumbers more than two (in the
anharmonic case more than three) times more intense than the other signal.
In the mid-IR region the VCD spectrum is particularly well-reproduced (at
least with respect to the other cases considered in this section). The two
negative signals experimentally probed between 1200 and 1300 cm−1 (see
the signals enclosed in the dashed green square, spectrum on the top right
of fig. 2.13) are highly diagnostic for the assignment of the absolute configu-
ration and computationally well-reproduced (especially at harmonic level):b

on the basis of the features of the normal modes associated to the two har-
monic transitions, the two negative signals can be assignedc to the bending
of C∗—H (signal at higher wavenumbers) and to a combination of in plane
bendings of the CH of the substituted cyclopentadienyl moiety, OH bending
and C∗—CCp stretchingd (signal at lower wavenumbers).

In the case of 4, the need of taking into account the dimer significantly
complicates the picture. Anharmonic calculations were not performed be-
cause of the size of the dimer. Therefore, for the comparison between cal-
culated and experimental spectra only the harmonic calculations are shown
(see fig. 2.17). The partial agreement between experimental and calculated
spectra can be employed to clarify the nature of the IR signals experimen-
tally probed in the OH-stretching region (see figs. 2.13 and 2.14). First of
all, it must be underlined that the harmonic spectra of the monomer and the
dimer are quite similar (despite some differences) in the mid-IR and in the
CH-stretching regions (see fig. 2.17). The agreement between the harmonic
spectra of the dimer and the experimental values is slightly more satisfactorye

than the agreement of the experimental values with the harmonic spectra of

estimation of the transition frequencies (this is particularly evident in the IR spectrum).
aMoreover, it must be noticed that the intensity associated to the "+" signal in the

calculated spectrum is too high with respect to the experimental one.
bThis feature is due to the harmonic VCD spectrum of the most populated conformer,

see fig. SI 39 in the SI of the original article.
cSee table 2 in the original article.
dIn other words, ferrocene moiety and hydroxyethyl substituent are both involved in

the transition.
eIn light of the concentration of the experimentally probed CCl4 solution of 4, this is

not surprising.
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the monomer.a However, the two hydroxyl groups of the monomers are di-
rectly involved in the two intermolecular H-bonds which allow the formation
of the dimer: therefore, substantial differences are expected (and are ob-
served, see fig. 2.17) between the harmonic spectra of the monomer and the
dimer. The outstanding intensities associated to the two transitions found
in the harmonic IR spectrum of the dimer (one associated to the symmet-
ric stretching of the four OH bonds, the other to the antisymmetric one)
accounts for the band experimentally probed at 3327 cm−1. The signals in
the OH-stretching region of the harmonic IR spectrum of the monomer are
associated, respectively, to the stretching of the donor OH group (i.e. the
stretching of the OH group in which the hydrogen atom is involved in the H-
bond) and to the stretching of the acceptor OH group (i.e. the OH group in
which the oxygen is involved in the H-bond). The higher intensity associated
to the stretching of the donor OH group (with transition frequencies in the
interval between 3630 and 3641 cm−1) is a feature common to the various
conformers of the monomer with an intramolecular H-bond,b while the other
(by far less intense) signals at higher wavenumbers (transition frequencies in
the interval between 3760 and 3815 cm−1) can be assigned to the stretching
of acceptor OH bonds or to OH bonds not involved in an H-bond. On the
basis of the negative frequency shift due to the introduction of anharmonic
corrections, it is possible to put forward an additional hypothesis: also the
transitions due to the stretching of the donor OH groups of the three con-
formers of the monomer with an intramolecular H-bond (and not only the
two transitions associated to the dimer) account for the experimental band
at 3327 cm−1. As a consequence, the small experimental signal at 3619
cm−1 (see fig. 2.14) can be associated or to the stretching of OH groups not
involved in a H-bond or (more probably) to the stretching of acceptor OH
groups involved in an H-bond in the monomer of 4. Moreover, it must be
noticed that (in contrast with the other molecular systems treated in this
paragraph) the dimer and two of the five conformers of the monomer per-
tains to the C2 symmetry point group (and not to the C1): this aspect was
taken into account when the Boltzmann averages were carried out.

The molecular systems 5−Rp and 5−Sp involve 52 atoms each: therefore,
anharmonic calculations are computationally very expensive. For this reason,
the anharmonic analysis is not carried out; moreover, also the conformational
analysis is cumbersome. The number of conformers which are characterized
in this work is 5 for both the diastereoisomers. The analysis provided in this
paragraph is based on a comparison of the experimental IR and VCD spectra
(see fig. 2.15 or fig. 2.18) with computational results obtained at harmonic

aThis is particularly evident for the IR spectra, especially in the CH-stretching region
and in the interval between 950 and 1150 cm−1 of the mid-IR spectra.

bFive conformers of the monomer of 4 were included in the calculation: three of these
five are characterized by an intramolecular H-bond (see figs. SI 51 - SI 55 in the SI of the
original article).
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Figure 2.18: Comparison between experimental and calculated spectra of 5 − Rp and
5− Sp. IR and VCD spectra were calculated at harmonic level. Boltzmann average were
performed on the 5 most populated conformers of each species. Lorentzian bandshapes
(with bandwidths of 10 cm−1) are assumed for the calculated spectra.

level. In contrast with the results provided in this paragraph for the other
substituted chiral ferrocenes, experimental and computational data on 5−Rp
and 5−Rp have not been published yet. Therefore, structures, populations
and harmonic spectra of each of the most populated conformers must be
provided for completeness (these additional data can be found in section B.7
of appendix B). A comparison between experimental and calculated spectra
is provided in figure 2.18. It must be underlined (again) that 5 − Rp and
5 − Sp are diastereoisomers, and not enantiomers. In light of the flexibil-
ity of the substituents attached to one of the cyclopentadienyl moieties, the
remarkably agreement observed between experimental and computational
spectra suggests the reliability of (i) the B3PW91/Def2TZVP level of the-
ory (for the computational characterization of this kind of systems) and of
(ii) the preliminary conformational analysis (for the selection of the most
populated conformers). The structures of the most populated conformers
are characterized by the H-bond between the hydroxyl group of one of the
substituents with one of the oxygen atoms (both bonded to a sulfur atom)
of the other substituent. The harmonic results can be employed to assign
the VCD patterns experimentally probed in the interval 1100-1300 cm−1.
For what concerns the molecular system 5−Rp, the following pattern is ex-
perimentally measured (and computationally reproduced)a: "+,−,−,+,−"b
(from higher to lower wavenumbers, from 1280 to 1150 cm−1). This por-
tion of the calculated VCD spectra is similar to the harmonic spectrum of
the most populated conformers, but the contributions of the harmonic VCD
spectra of other four conformers improve the agreement between experimen-
tal and computed VCD spectra.c Some of the normal modes associated

aTransition frequencies are slightly overestimated at harmonic level.
bSee figs. 2.18 and 2.19. The last negative signal is the most intense of the five. The

other two negative signals are less intense than the two positive signals.
cFor example, the second negative signal in the pattern "+,−,−,+,−" is almost absent

in the harmonic VCD spectrum of the most populated conformer and clearly distinguish-
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to the transitions which determine the pattern experimentally observed for
the VCD spectrum in the interval 1280-1150 cm−1 are highly delocalized,
and therefore their assignment to a specific group of atoms involved in the
structure of the molecular system is not straightforward. However, only
the atoms of the substituted cyclopentadienyl moiety and the atoms of the
two substituents (i.e. the two substituents attached to the ferrocene moi-
ety) are involved in these normal modes. More specifically, the most intense
negative sign (the last signal of the VCD motif here considered, at about
1160 cm−1 in the calculated harmonic spectrum) is mainly due to a normal
mode which involves the symmetric combination of the two S=O stretch-
ing,a the signal between 1190 and 1200 cm−1 (in the calculated harmonic
spectrum) is prevalently due to the in-plane CH bending of the substituted
cyclopentadienyl moiety and the negative signal at about 1205 cm−1 is the
result of the superposition of two transitions prevalently associated to the
in-plane CH bending of the phenyl group (see table B.2). In the case of the
molecular system 5 − Sp, the following experimental pattern is observed in
the VCD spectrum:"−,−,+,−,+"b (from higher to lower wavenumbers, from
1280 to 1150 cm−1). In this region, the pattern exhibited by the calculated
VCD spectra obtained through a Boltzmann average is essentially the same
found for the most abundant conformer (see fig. B.1). Similarly to what was
observed in the case of 5−Rp, only the atoms of the substituted cyclopen-
tadienyl moiety and the atoms of the two substituents are involved in these
normal modes. The positive signal at about 1160 cm−1 (in the calculated
harmonic spectrum) is due to a normal mode which involve the symmetric
combination of the two S=O stretching, and this data can be particularly
useful: for each of the conformers taken into account for the calculation of
the VCD spectra of 5−Rp and 5−Sp, a VCD signal was calculated at about
1160 cm−1, of negative sign in the case of the conformers of 5 − Rp and of
positive sign for the conformers of 5−Sp (see fig. B.1). These results suggest
the possibility of assign the planar chirality (Rp or Sp) on the basis of the
sign of the VCD signal associated to the symmetric combination of the two
S=O stretching for this kind of substituted chiral ferrocenes (see tables B.2
and B.3). To verify the correctness (and the extent) of this hypothesis, more
experimental and computational data would be extremely useful.

The comparison of the VCD patterns found in the experimental (and
reproduced by the calculated) spectra of 5 − Rp (pattern "+,−,−,+,−")
and 5 − Sp (pattern "−,−,+,−,+") are almost, but not exactly opposite:
the second, negative signal is the same in both the patterns (see fig. 2.19).

able in both the experimental and the calculated VCD spectra (which is obtained as
Boltzmann average of the harmonic VCD spectra of the five conformers, see fig. B.1), see
figs. 2.18 and 2.19.

aThis negative signal can be observed in the harmonic spectra of all the conformers
taken into account for the calculation of the VCD spectrum of 5−Rp, see fig. B.1.

bSee figs. 2.18 and 2.19.
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Figure 2.19: Experimental (left side) and calculated (right side) VCD patterns of 5−Rp
(top) and 5− Sp (bottom). Areas enclosed by positive VCD signals are highlighted with
the blue colour, while areas enclosed by negative VCD signals are highlighted with the
red colour. Experimental patterns of 5− Rp ("+,−,−,+,−") and 5− Sp ("−,−,+,−,+")
VCD spectra are correctly reproduced by the calculations.

This is not surprising, because 5−Rp and 5− Sp are diastereoisomers, not
enantiomers. The opposite planar chirality is responsible of many opposite
VCD features (see fig. 2.18), but the small negative signal (at ca. 1225-1230
cm−1) with the same sign for both the compounds is associated to a normal
mode localized on the sulfamidic substituent. This normal mode involves a
C∗—H bending and a C∗—C stretching (see tables B.2 and B.3), i.e. it is
prevalently localized in the neighbourhood of the asymmetric carbon atom
which has exactly the same configuration in both the molecular systems
considered here.

Conclusive remarks The results provided in this section strongly support
the usefulness of a combined approach for the study of IR and VCD spectra
of substituted chiral ferrocenes.

Among the various results, from a chemical point of view one of the most
interesting ones is the existence (in diluted CCl4 solutions) of the dimer of
4. Worth of mention is the reliability of the comparison between calculated
(at harmonic level) and experimental VCD spectra for the assignment of the
absolute configuration of the substituted chiral ferrocene considered in this
study.

For what concerns the usefulness of the anharmonic corrections intro-
duced through the GVPT2 model, the improved agreement of calculated
and experimental transition frequencies after the introduction of the anhar-
monic corrections is evident. An improvement in the agreement between
calculated and experimental transition intensities (relative intensities) is not
always observed after the introduction of the anharmonic corrections. How-
ever, despite some discrepancies the results obtained at anharmonic level
can be considered satisfying. The importance of FRs and DDRs in molecu-
lar systems of this size cannot be overestimated, and a reliable, effective and
automatic computational procedure for the treatment of resonances would
be desirable in order to improve the results of anharmonic calculations per-
formed on these systems.



Chapter 3

Calculation of energies and
properties: dealing with two
electronic states

The computational modeling of the transition between two electronic states
is an issue of pivotal importance. Excitation (A→A∗) or ionization (A→A+)
of a molecular system are examples of processes which involve a transition
between two electronic states, as well as the transitions between two differ-
ent excited states with equal or different (this is the case of an intersystem
crossing ) spin multiplicity. There is ample computational and experimental
evidence of the observable effects due to nuclear motions when a transition
between two electronic states occurs. This chapter is devoted to the com-
putational simulation of UPS spectra: more specifically, in section 3.1 the
computational approach employed for the solution of the electronic problems
associated to the ionization of the investigated molecular systems is intro-
duced; the time-independent approach to the calculation of the vibrational
signatures associated to an electronic transition is described in section 3.2;
in the last section of this chapter (3.3) some original applications of the
computational approaches considered in sections 3.1 and 3.2 of this chap-
ter are provided: the results are discussed through a comparison with the
experimental UPS spectra available in literature.

3.1 Electron propagator theory

The reformulation of differential equations (together with their boundary
conditions) as integral equations by means of Green’s functions is often ad-
vantageous. In the context of quantum chemistry, this reformulation unveils
a physical picture which is transparent and computationally fruitful. In this

97
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section the discussion is limited to one-electron Green’s functions,a which
can be employed to systematically improve the ionization energies obtained
by means of Koopmans’ Theorem (KT).200 When an approach based on one
electron Green’s functions is employed to solve out the electronic problem
associated to a ionization process A→A+ (or to an electron attachment,
A→A−), the following expression gives the elements of the electron propa-
gator matrix:

Gpq(E) = lim
η→+0

[∑
n

〈
φNel0

∣∣∣ a†p ∣∣∣φNel−1
n

〉〈
φNel−1
n

∣∣∣ aq ∣∣∣φNel0

〉
E + ENel−1

n − ENel0 − iη

+
∑
n

〈
φNel0

∣∣∣ aq ∣∣∣φNel+1
n

〉〈
φNel+1
n

∣∣∣ a†p ∣∣∣φNel0

〉
E − ENel+1

n + ENel0 + iη

]
.

(3.1)

In eq. 3.1, p and q are spin orbital indices, a†p and aq are known as,
respectively, creation and destruction operators; φNel0 labels the electronic
ground state of the Nel-electron system (with energy equals to ENel0 ), while
φNel−1
n and φNel+1

n label an electronic state n of, respectively, the (Nel − 1)-
electron system (with an energy value of ENel−1

n ) and the (Nel + 1)-electron
system (with energy equals to ENel+1

n ). Poles of eq. 3.1 are values of E
which correspond to a singularityb, i.e. E = ENel0 −ENel−1

n (when E equals
an ionization energy) or E = ENel+1

n − ENel0 (when E equals an electron
affinity).

Introducing the following abbreviated notation for the matrix elements
given in eq. 3.1:

Gpq(E) = 〈〈a†p; aq〉〉E , (3.2)

aA textbook which provides an introduction to the use of Green’s functions in the
context of quantum chemistry is ref. 196 (for what concerns the aspects introduced in this
section, see in particular the beginning of chapter 4 and chapter 9); a review focused on the
electron propagator theory can be found in ref. 197; a bridge between the pictorial and the
algebraic views of the theory of Green’s functions is provided in ref. 198; an introduction
to the subject which completely omits a discussion about the time-dependent aspects of
the Green’s functions theory is given in the last chapter of ref. 1; for a concise historical
account of the early works concerning the development and the employment of the electron
propagator theory to molecular problems, see ref. 199.

bIn what follows, E can assume only real values and the complex factors of the denomi-
nators in eq. 3.1 are dropped; the infinitesimal positive value η guarantees the convergence
of the Fourier transform for the time-dependent expression: more specifically, the time
dependent expression of the propagator is multiplied for e−η(t2−t1) where η(t2− t1) = 0 if
t2 − t1 (and therefore e−η(t2−t1) = 1) has a finite value and η(t2 − t1) =∞ if t2 − t1 =∞
(and therefore e−η(t2−t1) = 0, assuring the desired convergence; see pages 40 and 41 of
ref. 198 for a more detailed discussion).
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and remembering the following simple relationshipsa:

1

A−B
=

1

A
+

B

A(A−B)
, (3.3)

∑
n

〈
φNel0

∣∣∣ a†p ∣∣∣φNel−1
n

〉〈
φNel−1
n

∣∣∣ aq ∣∣∣φNel0

〉
=
〈
φNel0

∣∣∣ a†paq ∣∣∣φNel0

〉
, (3.4)

∑
n

〈
φNel0

∣∣∣ aq ∣∣∣φNel+1
n

〉〈
φNel+1
n

∣∣∣ a†p ∣∣∣φNel0

〉
=
〈
φNel0

∣∣∣ aqa†p ∣∣∣φNel0

〉
, (3.5)

〈
φNel−1
n

∣∣∣ aq ∣∣∣φNel0

〉(
ENel0 − ENel−1

n

)
=

〈
φNel−1
n

∣∣∣∣ [aq, H]−
∣∣∣∣φNel0

〉
, (3.6)

〈
φNel0

∣∣∣ aq ∣∣∣φNel+1
n

〉(
ENel+1
n − ENel0

)
=

〈
φNel0

∣∣∣∣ [aq, H]−
∣∣∣∣φNel+1

n

〉
, (3.7)

eq. 3.1 can be developedb:

E〈〈a†p; aq〉〉E =
∑
n

[〈
φNel0

∣∣∣ a†p ∣∣∣φNel−1
n

〉〈
φNel−1
n

∣∣∣ aq ∣∣∣φNel0

〉(
1 +

ENel0 − ENel−1
n

E + ENel−1
n − ENel0

)]

+
∑
n

[〈
φNel0

∣∣∣ aq ∣∣∣φNel+1
n

〉〈
φNel+1
n

∣∣∣ a†p ∣∣∣φNel0

〉(
1 +

ENel+1
n − ENel0

E − ENel+1
n + ENel0

)]
=

〈
φNel0

∣∣∣∣ [a†p, aq]+

∣∣∣∣φNel0

〉
+
∑
n

[〈φNel0

∣∣∣ a†p ∣∣∣φNel−1
n

〉〈
φNel−1
n

∣∣∣∣ [aq, H]−
∣∣∣∣φNel0

〉
E + ENel−1

n − ENel0

]

+
∑
n

[〈φNel0

∣∣∣∣ [aq, H]−
∣∣∣∣φNel+1

n

〉〈
φNel+1
n

∣∣∣ a†p ∣∣∣φNel0

〉
E − ENel+1

n + ENel0

]
=〈

φNel0

∣∣∣∣ [a†p, aq]+

∣∣∣∣φNel0

〉
+
〈〈
a†p;
[
aq, H

]
−
〉〉

E
.

(3.8)

The last term provided in eq. 3.8 can be expanded in the same manner:

aThe relationships given in eqs. 3.4 and 3.5 imply that the sums over n are assumed
to be complete.

bSee eq. 14 of ref. 201.
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E〈〈a†p;
[
aq, H

]
−〉〉E =

〈
φNel0

∣∣∣∣ [a†p, [aq, H]−]+

∣∣∣∣φNel0

〉
+
〈〈
a†p;
[[
aq, H

]
−, H

]
−
〉〉

E

(3.9)
Employing eqs. 3.8 and 3.9, the matrix element pq of the electron prop-

agator can be given as a series:

〈〈a†p; aq〉〉E = E−1

〈
φNel0

∣∣∣∣ [a†p, aq]+

∣∣∣∣φNel0

〉
+ E−2

〈
φNel0

∣∣∣∣ [a†p, [aq, H]−]+

∣∣∣∣φNel0

〉
+ E−3

〈
φNel0

∣∣∣∣ [a†p, [[aq, H]−, H]−]+

∣∣∣∣φNel0

〉
+ ... .

(3.10)

The Introduction of the concept of a linear space of field operators and
the definition of suitable superoperators acting on this space202 allow a more
compact formulation of the result obtained in eq. 3.8 and of the approxima-
tion introduced in this section.

For any two operators X and Y in the linear space of field operators
mentioned above a scalar product (X|Y ) is defined as follows:

(X|Y ) =

〈
φNel0

∣∣∣∣ [X†, Y ]+

∣∣∣∣φNel0

〉
(3.11)

and the identity and Hamiltonian superoperators are defined, respec-
tively, by:

IX = X; (3.12)

HX =
[
X,H

]
−. (3.13)

Eq. 3.10 can be rewritten (employing eqs. 3.11, 3.12 and 3.13) in the
following manner:

〈〈a†p; aq〉〉E = E−1(ap|aq) + E−2(ap|Haq) + E−3(ap|H2aq) + ... . (3.14)

The series provided in eq. 3.14 converges;a therefore, a compact formu-
lation of eq. 3.14 can be written as follows:

Gpq(E) = 〈〈a†p; aq〉〉E = (ap|(EI −H)−1aq); (3.15)

amore specifically,
∑∞
i=0 ax

i = a
1−x , for |x| < 1.
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if the simple annihilation operators are gathered in a single vector (a =
[a1a2...aR], where R is the dimension of the employed spin-orbital basis), the
formulation given in eq. 3.15 can be easily extended to the entire electron
propagator matrix:

G(E) = (a|(EI −H)−1a). (3.16)

To provide a formulation of the electron propagator matrix which is suit-
able for actual calculations, a basis of electron field operators can be con-
structed employing the set of field operator products that change the number
of electrons by 1. This set includes products of k creators and k + 1 annihi-
lators (for k ∈ N)a and can be employed to construct a vector h which spans
the full space of ionization operators. Through an inner projection (more
details are provided in section C.1 of appendix C), it is possible to write:

G(E) = (a|h)(h|(EI −H)h)−1(h|a). (3.17)

The manifold of field operator products involved in the inner projection
can be partitioned in two orthogonal sets: the primary space of simple an-
nihilators a and an additional orthogonal space of products of creation and
annihilation operators (f), i.e. triple (a†kalam), quintuple (a†ja

†
kalaman) and

higher products:

G(E) =
[
(a|a) (a|f)

] [(a|(EI −H)a) (a|(EI −H)f)
(f |(EI −H)a) (f |(EI −H)f)

]−1 [
(a|a)
(a|f)

]
.

(3.18)
The following relationship is an immediate consequence of eq. 3.11:b

(a|a) = Ia×a ; (3.19)

The orthogonality between a and f imply the following results:c

(a|f) = 0
a×f ; (3.20)

(f |a) = 0
f×a . (3.21)

aIf k = 0 the set of simple annihilators (arrayed in the vector a) is obtained; k cannot
assume any positive integer value: this limitation is due to the finite dimension of the
spin-orbital basis which determines the maximum value assumed by k to set up the full
space of ionization operators.

bBecause (ap|aq) = δpq.
cThe assumptions behind eqs. 3.20, 3.21 and 3.22 are not trivial: the operator basis f

and the wavefunction φNel0 (see eq. 3.11) must be chosen in order to ensure the validity of
these relationships (see, for example, ref. 203); otherwise, suitable overlap terms Sx,y =
(x|y) are defined: these terms enter in the square matrix given in the RHS of eq. 3.23
(assuming eqs. 3.20, 3.21 and 3.22, Sx,y = δxy and eq. 3.23 is found).
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Another relationship which is assumed in what follows is:

(f |f) = I
f×f ; (3.22)

Eq. 3.18 can be rewritten employing eqs. 3.19-3.22:

G(E) =
[
Ia×a 0

a×f

] [EI− (a|Ha) −(a|Hf)
−(f |Ha) EI− (f |Hf)

]−1 [
Ia×a
0
a×f

]
. (3.23)

To compute the poles of G(E) in eq. 3.23, two different approaches can be
adopted. The first is based on the partitioning technique for the calculation
of an inverse matrix, which lead to the following result:a

G(E) =
{
EI− (a|Ha)− (a|Hf)

[
EI− (f |Hf)

]−1
(f |Ha)

}−1
. (3.26)

Another approach205 is based on the solution of the eigenvalue problem
associated to the superoperator hamiltonian matrix:[

(a|Ha) (a|Hf)
(f |Ha) (f |Hf)

] [
Ua,n

U
f,n

]
=

[
Ua,n

U
f,n

]
Ωn. (3.27)

A pole of the electron propagator occurs when the value of E equals an
eigenvalue Ωn of the superoperator hamiltonian matrix. Eq. 3.27 can be
written in the following, more compact form:

HU = UΩ; (3.28)

with:

U†U = I; (3.29)
aAn heuristic approach to derive eq. 3.26 from eq. 3.23 can be found in ref. 197: the

construction of an extension (gfa) of the electron propagator matrix is employed to write
the following matrix equation:[

EI− (a|Ha) −(a|Hf)
−(f |Ha) EI− (f |Hf)

] [
G(E)
gfa

]
=

[
Ia×a
0a×f

]
. (3.24)

The previous matrix equation can be exploited to write two simultaneous equations: one
is used to obtain an explicit expression for gfa and the other to derive the desired result.

Analogously, eq. 3.26 can be obtained as a particular case of the mathematical result
that follows (see, for example, section 2.8 of ref. 204, particularly page 108): if D and
A−BD−1C are nonsingular, then:[

A B
C D

]−1

=

[
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 + D−1C(A−BD−1C)−1BD−1

]
(3.25)

The upper left block of eq. 3.25 is the desired result.
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employing eqs. 3.28 and 3.29, the electron propagator matrix can be
rewritten as follows:

G(E) =
[
Ia×a 0

a×f

] [
U(EI−Ω)−1U†

] [Ia×a
0
a×f

]
. (3.30)

Previous equations provide the general framework to obtain vertical en-
ergies associated with electron attachment (A → A−) or detachment (A →
A+) processes. The remaining part of this section is devoted to the approxi-
mations which are needed to carry out numerical calculations aiming at the
study of real molecular systems.

The level of approximation adopted is affected by various factors: among
them, the choice of the reference state (or of the reference ensemble), which
enters in the definition of the superoperator metric (see eq. 3.11), is an as-
pect of pivotal importance. The Hartree-Fock (HF) ground state is often
employed as reference state, but other choices are possible, such as Kohn-
Sham (KS) reference states206, grand-canonical HF reference ensembles (al-
lowing fractional occupation numbers of the molecular orbitals)207 or HF
reference states improved employing amplitudes from Coupled Cluster sin-
gles and doubles (CCSD) calculations208. A relevant approximation concerns
the manifold of field operator products: in actual calculations, only a por-
tion of the full space of ionization operators is spanned by the vector h. A
trivial choice is h = a: in this case, only the space of simple field operators
is spanned by h. The choice most frequently employed is to restrict h to the
space of simple field operators and their triple products ({a, f3}).a

3.1.1 The Dyson’s equation

The formulation of the electron propagator matrix provided in eq. 3.26 is
the Dyson’s equation. Eq. 3.26 can be employed to formulate an eigenvalue
problem: in this way, it is possible to give a transparent physical meaning
to the terms on the RHS of eq. 3.26.

A pole of the electron propagator matrix occurs when det[G(E)] diverges.
This condition is fulfilled if det[G−1(E)] = 0, namely a pole of the electron
propagator matrix occurs when an eigenvalue of the inverse of the electron
propagator matrix G−1(E) is equal to zero. Defining the energy dependent
self-energy matrix:

σ(E) = (a|Hf)
[
EI− (f |Hf)

]−1
(f |Ha), (3.31)

and a generalized Fock matrix:

Fgen = (a|Ha), (3.32)
aExtensions of h to the space of more complicated products of field operators have

been proposed in literature.203,209
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the inverse of the electron propagator matrix can be written as follows:

G−1(E) = EI− Fgen − σ(E), (3.33)

and a solution of the eigenvalue problem with an eigenvalue equal to zero
can be formulated in the following manner:

G−1C(Epole) = 0C(Epole), (3.34)

or, by means of eq. 3.33:

[EpoleI− Fgen − σ(Epole)]C(Epole) = 0C(Epole). (3.35)

Eq. 3.35 is equivalent to the following one:

[Fgen + σ(Epole)]C(Epole) = EpoleC(Epole); (3.36)

in other words, a pole of the electron propagator matrix occurs when one
of the eigenvalues (of the operator on the LHS of eq. 3.36) equals the en-
ergy which enters in the energy-dependent self-energy matrix σ(E). There-
fore, the problem can be solved requiring self-consistency between one of the
eigenvalues of the following eigenvalue problem and the value of E which is
employed for the calculation of σ(E):

[Fgen + σ(E)]C = CE. (3.37)

A more explicit formulation of the elements of the generalized Fock ma-
trix Fgen can be provided:a

F genrs = (as|Har) = hrs +
∑
tu

〈rt||su〉ρtu. (3.38)

In eq. 3.38, hrs is a matrix element of the monoelectronic operator of
the many-body hamiltonian, 〈rt||su〉 is a compact notation which is equal to
〈rt|su〉 − 〈rt|us〉 (Coulomb minus exchange contributions) and give the con-
tribution of Coulomb and exchange bielectronic integrals; ρ is the reference
state’s one-electron density matrix, with elements:

ρtu =
〈
φNel0

∣∣∣ a†tau ∣∣∣φNel0

〉
. (3.39)

The relationship between Fgen and F (the customary Fock matrix) can
be easily found if ρ is partitioned as follows:

ρ = ρHF + ρcorr (3.40)

and eq. 3.38 is rewritten in the canonical, HF orbital basis:
aThe derivation of eq. 3.38 requires the evaluation of the elements of the (a|Ha) block

of the superoperator hamiltonian matrix, and is provided in section C.2 of appendix C.
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F genrs = εrδrs +
∑
tu

〈rt||su〉ρcorrtu . (3.41)

Therefore, if ρ = ρHF (which means that ρcorr = 0) the relationship
F genrs = εrδrs = Frs holds. ρcorr is the correlation contribution to the
one-electron density matrix and accounts for non-vanishing contributions
to off-diagonal elements of the Fgen matrix and for corrections to the HF
orbital energies (εr) in the diagonal elements. If the elements of the energy-
independent (or constant) contribution to the total self-energy matrix Σ(∞)
are defined in the following manner:a

Σrs(∞) =
∑
tu

〈rt||su〉ρcorrtu , (3.42)

Defining the total self-energy matrix as the sum of the constant (eq. 3.42)
and the energy-dependent (eq. 3.31) contributions previously defined:

Σ(E) = Σ(∞) + σ(E), (3.43)

eq. 3.37 can be written as a function of the customary Fock matrix F
and of the total self-energy matrix Σ(E):

[F + Σ(E)]C = CE. (3.44)

A possible route to the calculation of the poles of the electron propagator
matrix is immediately suggested by eq. 3.44: the Fock matrix F can be
employed in conjunction with a suitable approximation of the total self-
energy matrix (an approach of this kind is discussed in the next subsection).

It can be noticed from eq. ?? that a value of ρcorr which differs from
zero can be employed to provide orbital energies which takes partially into
account the effects of the electron correlation. In other words, writing eq. ??
in terms of occupation numbers:

F genrs = (ar|Has) = hrs +
∑
t

〈rt||st〉nt, (3.45)

an element of the customary Fock matrix Frs is obtained if 1 and 0 are
the occupation numbers associated, respectively, to occupied and virtual or-
bitals;b another set of occupation numbers correspond to a choice of the
one-electron density matrix which differs from ρHF . To improve the results
obtained from the calculation of the ionization energies of a molecule, the

aThe symbol ∞ is used to label the constant contribution to the self energy matrix
because in the limit of extremely high values of E the contribution of the energy dependent
part to the total self-energy matrix decrease dramatically (see eq. 3.31), i.e. if E → ∞
then σ(E)→ 0; this means that electron attachment poles at very high energies approach
the eigenvalues of Fgen.

bThis choice is equivalent to the assumption ρ = ρHF
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employment of the so-called transition operator method has been suggested:
the set of occupation numbers employed for the customary HF equations is
modified for a single occupied spin-orbital, for which an occupation num-
ber of 0.5 is adopted. Reference density matrices which are suitable to the
description of this kind of "transition spin-orbital" with a fractional occu-
pation number correspond to ensembles, and not to pure states: to carry
out this kind of calculations the grand-canonical HF (GCHF) theory can
be exploited. For each final state, a single GCHF calculation is carried out
employing an occupation number of 0.5 for a single spin-orbital. The energy
of a transition spin-orbital calculated with the transition operator method
provide an initial estimate of the ionization energy which is especially useful
for core electrons: this is due to the inclusion of relaxation and correlation
effects which are not taken into account at zeroth-order when the customary
estimate based on the Koopmans’ theorem (KT) is employed.

3.1.2 Diagonal approximations of the self-energy matrix: the
Outer Valence Green’s Function method

The brief discussion provided in the previous subsection allows the definition
of a zeroth-order electron propagator G(0)(E):

G(0)(E) = (EI− F)−1. (3.46)

The orbital energies of the HF approximation are the poles of G(0)(E)
(because Frs = εrδrs). Employing eqs. 3.41, 3.42, 3.43 and 3.46, it is possible
to rewrite eq. 3.33 as follows:

G−1(E) = [G(0)(E)]−1 −Σ(E). (3.47)

Multiplying from the left G(0)(E) and from the right G(E) with eq. 3.47,
another formulation of the Dyson’s equation is obtained:

G(E) = G(0)(E) + G(0)(E)Σ(E)G(E). (3.48)

Eq. 3.48 is a starting point for a perturbative treatment,a i.e. the total
self-energy can be expanded in a perturbation series. The derivations of sec-
ond and third-order contributionsb to the total self-energy are not provided
in this thesis, but their final expressions are reported for completeness.

aPerturbation series and recursive definitions are provided in ref. 210 (see section II A
of ref. 210, more specifically eqs. 15-23).

bThe zeroth-order contribution to the total self-energy is zero by definition,210 and all
the first-order contribution vanishes (see the beginning of chapter 9 of ref. 196, particularly
eq. 9.18), i.e. Σ

(1)
rs (E) = 0.
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The matrix elements of the second-order contribution to the total self-
energy matrix can be written as follows:a

Σ(2)
rs (E) =

2hp︷ ︸︸ ︷
1

2

∑
a,i,j

[
〈ra||ij〉〈ij||sa〉
E + εa − εi − εj

]
+

2ph︷ ︸︸ ︷
1

2

∑
i,a,b

[
〈ri||ab〉〈ab||si〉
E + εi − εa − εb

]
. (3.49)

In eq. 3.49, r and s denote orbitals with unspecified occupancy, i and
j denote occupied orbitals and a and b denote virtual orbitals; the terms
collected in the first summation (over two occupied and one virtual indices)
on the RHS of eq. 3.49 provide the so-called two holes - one particle (2hp)
contribution, while the terms collected in the second summation (over two
virtual and one occupied indices) provide the two particles - one hole (2ph)
contribution.

In the case of outer-valence binding energies and electron affinities of
closed-shell molecules a diagonal approximation to the total self-energy ma-
trix is often adopted (i.e. the off-diagonal elements of the total self-energy
matrix are neglected). This approximation reduces the pole search to a so-
lution of the following simplified form of eq. 3.47:b

G−1
rr (E) = E − εr − Σrr(E) = 0, (3.50)

or, equivalently:

E = εr + Σrr(E). (3.51)

Eq. 3.51 can be iterated with respect to E in order to calculate a pole.
The results obtained employing eq. 3.51 are affected by the level of ap-

proximation chosen for the diagonal elements of Σ(E). If Σrr(E) ≈ Σ
(2)
rr (E)

in eq. 3.51, the so-called second-order diagonal approximation (D2) is found.
Analogously, when Σrr(E) ≈ Σ

(3)
rr (E) the third-order diagonal approxima-

tion (D3) is adopted. The third-order contribution to the diagonal elements
of the total self-energy matrix can be formulated in the following manner:c

aA derivation of eq. 3.49 based on superoperator algebra can be found at the beginning
of chapter 9 (see in particular eqs. 9.19-9.27) of ref. 196; for the diagrammatic derivation
see section II B of ref. 210: in the same reference210 (see appendix A1) a purely algebraic
(and extensible to any order) derivation is explicitly provided.

bAvoiding the solution of the eigenvalue problem introduced in eqs. 3.37 and 3.44.
cAn attempt to include all the corrections up to the third order for electron affinities

and ionization potentials in the context of the so-called equation of motion method (closely
related to the approaches based on one electron Green’s functions) can be found in ref. 211;
the final expression given in ref. 211 was integrated with other terms in a communication
by Purvis and Öhrn212 in which the complete result is provided for the first time; a general
(and lengthy) expression for Σ

(3)
rs (E) (the matrix element of the third-order contribution

to Σ(E)) is provided (to the best of the author’s knowledge, for the first time) in ref. 213;
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Σ(3)
rr (E) =

2hp︷ ︸︸ ︷∑
aij

[
(Wraij + 1

2Yraij(E))〈ra||ij〉
E + εa − εi − εj

]
+

∑
iab

[
(Wriab + 1

2Yriab(E))〈ri||ab〉
E + εi − εa − εb

]
︸ ︷︷ ︸

2ph

+Σ(3)
rr (∞),

(3.52)

where:

Wraij = 〈ra||ij〉+1

2

∑
bc

[
〈ra||bc〉〈bc||ij〉
εi + εj − εb − εc

]
+(1−P̂ij)

∑
bk

[
〈rk||bi〉〈ba||jk〉
εj + εk − εa − εb

]
,

(3.53)

Yraij(E) = −1

2

∑
kl

[
〈ra||kl〉〈kl||ij〉
E + εa − εk − εl

]
− (1− P̂ij)

∑
bk

[
〈rb||jk〉〈ak||bi〉
E + εb − εj − εk

]
,

(3.54)

Wriab = 〈ri||ab〉+1

2

∑
jk

[
〈ri||jk〉〈jk||ab〉
εj + εk − εa − εb

]
+(1−P̂ab)

∑
jc

[
〈rc||ja〉〈ji||bc〉
εi + εj − εb − εc

]
,

(3.55)

Yriab(E) =
1

2

∑
cd

[
〈ri||cd〉〈cd||ab〉
E + εi − εc − εd

]
+ (1− P̂ab)

∑
jc

[
〈rj||bc〉〈ic||ja〉
E + εj − εb − εc

]
,

(3.56)

Σ(3)
rr (∞) =

∑
tu

〈rt||ru〉ρ(2)
tu ; (3.57)

P̂ab and P̂ij are spin-orbital permutation operators. Eq. 3.52 includes
(through the first term on the RHS of eqs. 3.53 and 3.55) the second-order
contribution to the diagonal elements of the self-energy (Σ(2)

rr (E)) and an
approximation to the diagonal elements of the constant self-energy contribu-
tion (eq. 3.57) which requires the knowledge of the second-order corrections
to the one-electron density matrix (ρ(2)

tu ).

the compact formulation adopted in this thesis to account for the third order corrections
in the diagonal terms of Σ(E) is provided in ref. 214 (see in particular eq. 4.2 of ref. 214).
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The physical meaning of the contributions to Σ
(2)
rr (E) and Σ

(3)
rr (E) can

be recovered in terms of relaxation and correlation contributions to the es-
timation of the ionization energy provided by the KT.

For what concern closed shell molecules, poles calculated by means of
eq. 3.51 generally overestimate corrections to HF orbital energies when the
D2 approximation is employed and underestimate these corrections when
the D3 approximation is chosen. Therefore, computational results obtained
employing D2 and D3 approximations generally bracket the experimental
results: this observation has been employed to devise an improved approxi-
mation of Σrr(E) without requiring a relevant, additional computational ef-
fort. The essential idea behind the Outer Valence Green’s Function (OVGF)
methoda is to scale the third-order corrections to the diagonal terms of Σ(E):
in this way, fourth and higher order contributions to the self-energy can be
approximately recovered.

The A version of the OVGF method approximate Σrr(E) with the RHS
of the following equation:

ΣOV GF (A)
rr (E) = Σ(2)

rr (E) +
1

1 +XA
r

[
Σ(3)
rr (E)− Σ(2)

rr (E)
]
, (3.58)

where the scaling factor XA
r is defined as follows:

XA
r = −2

[ 2hp︷ ︸︸ ︷
1

2

∑
aij

( 〈ra||ij〉Wraij

E + εa − εi − εj

)
+

2ph︷ ︸︸ ︷
1

2

∑
iab

( 〈ri||ab〉Wriab

E + εi − εa − εb

)][
Σ(2)
rr (E)

]−1
.

(3.59)
Despite its usefulness, eq. 3.58 depends on the value assumed by the

scaling factor XA
r : if |XA

r | < 1, the multiplicative factor in the second term
of the RHS of eq. 3.58 is the result of a geometric convergent series; otherwise
eq. 3.58 can lead to unreliable results. Generally the condition |XA

r | < 1 is
fulfilled, because the second-order contribution to the self-energy is greater
than the third-order one. However, when the second-order contribution is
particularly smallb an alternative formulation to eq. 3.58 is needed.

In the B version of the OVGF method two distinct scaling factors (instead
of one) are employed:

aThis method was formulated in ref. 215 and explicit formulas are given in appendix
C of ref. 216; it must be underlined that in the formulas for second- and third-order
corrections to the self-energy provided in appendix C of ref. 216 the summation over the
spins (differently from what has been done in this thesis and in other references) is already
carried out (for a closed shell system, the convention adopted in appendix C of ref. 216 is
often preferred).

bFor example, this is possible when KT provides a result in excellent agreement with
the experimental value.
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ΣOV GF (B)
rr (E) =Σ(2)

rr (E) + Σ(3)
rr (∞)+

Σ
(3−2hp)
rr (E)− Σ

(2−2hp)
rr (E)

1 +X2hp
r

+
Σ

(3−2ph)
rr (E)− Σ

(2−2ph)
rr (E)

1 +X2ph
r

,

(3.60)

where:

X2hp
r = −

[∑
aij

( 〈ra||ij〉Wraij

E + εa − εi − εj

)][
Σ(2−2hp)
rr (E)

]−1
, (3.61)

X2ph
r = −

[∑
iab

( 〈ri||ab〉Wriab

E + εi − εa − εb

)][
Σ(2−2ph)
rr (E)

]−1
. (3.62)

In eq. 3.60, the three components Σ
(3)
rr (∞), 2hp and 2ph of the third-

order contribution to the self-energy are treated separately. 2hp and 2ph
components are scaled (with two different scaling factors), while the energy
independent component is left unscaled.a Despite the partition of the third-
order contribution to the self-energy and the energy independent component
left unaltered, the reliability of eq. 3.60 depends on conditions similar to the
one already encountered in the analysis of eq. 3.58: |X2hp

r | < 1 and |X2ph
r | <

1. If the 2hp and 2ph components of Σ
(2)
rr (E) are (each one individually) too

small, an alternative formulation (the C version of the OVGF method) can
be employed:

ΣOV GF (A)
rr (E) = Σ(2)

rr (E) +
1

1 +XC
r

[
Σ(3)
rr (E)− Σ(2)

rr (E)
]
, (3.63)

where:

XC
r =

X2hp
r

[
Σ

(3−2hp)
rr (E)− Σ

(2−2hp)
rr (E)

]
+X2ph

r

[
Σ

(3−2ph)
rr (E)− Σ

(2−2ph)
rr (E)

][
Σ

(3−2hp)
rr (E)− Σ

(2−2hp)
rr (E)

]
+
[
Σ

(3−2ph)
rr (E)− Σ

(2−2ph)
rr (E)

] .

(3.64)
Eq. 3.63 is formally equivalent to eq. 3.58: the only difference between

the two formulations lies in the definition of the scaling factors.b.

aAn energy independent component is absent in the second-order contribution, i.e.
Σ(2)(E) = σ(2)(E).

bIt must be noticed that the definition of the scaling factor XC
r provided in ref. 197 is

wrong; the formulation provided in this thesis is the correct one (as can be easily verified
from other references, see for example eq. C.30 of ref. 216).
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A selection procedure217 based on a series of numerical criteriaa was
devised with the aim of select the best version of the OVGF method for the
calculation of each pole. This selection procedure was implemented in the
Gaussian12 suite of programs and has been employed for the calculation of
the results provided in section 3.3 of this chapter.

The reliability of the results calculated with the OVGF method are often
evaluated on the basis of the derivative of the corresponding diagonal element
of Σ(E) with respect to the energy; this quantity enters in the definition of
the pole strength which can be written as follows:

Pr =
[
1− dΣrr(E)

dE

]−1
. (3.65)

A value of Pr which is greater than 0.85 has been proposed218 as an
approximate standard of validity for the calculation of ionization energies
(or electron affinities) when the OVGF method is employed.b Pr can be
also employed as an estimate of the relative intensities of the transitions
experimentally probed through the measurement of UPS spectra.

3.1.3 The non-diagonal renormalized second-order approxi-
mation

The limited computational cost of the diagonal approximations introduced in
the previous subsection have boosted their employment for the calculation of
ionization energies and electron affinities, particularly for what concerns the
OVGF method.c Despite the success of this approach, the employment of the
diagonal approximation leads to the assumption of a quasiparticle pictured

which is known to be unable to account for some experimental signals, even
qualitatively.222,223 To deal with the breakdown of the molecular orbital
picture, a non-diagonal approximation must be employed.

When a non-diagonal approximation is employed, poles of the electron
propagator matrix are generally calculated solving the eigenvalue problem
associated to the superoperator hamiltonian matrix H (see eq. 3.28). In
contrast with other non-diagonal approximations such as the ADC(3) (third-
order algebraic diagrammatic construction),216 in the non-diagonal, renor-

aThese criteria involves the magnitude of each scaling factor, the magnitude of the
second-order contribution to the diagonal elements of Σ(E) and the calculated value of
the pole.

bA value of Pr > 0.85 corresponds to an absolute value of dΣrr(E)
dE

which is extremely
small (these values are always negatives ): the essential point is that the self-energy itself
has poles, and the assumptions behind the OVGF method are valid only far from those
poles (as is the case when the absolute value of dΣrr(E)

dE
is small).216

cThese methods are widely employed by many experimentalists for the assignment of
UPS experimental spectra (see, for example, refs. 219–221), due to their implementation
in a popular commercial software.12

dIn other words, the molecular orbital picture is retained.
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malized second-order (NR2)224 approximationa the third-order terms in Σ(E)
are only partially retained. The search of a good compromise between ac-
curacy and efficiency leads to an inclusion of the third-order contribution
which is limited to the corrections needed to provide a reliable estimate of
the observables of interest.

In the NR2 approximation, for the calculation of ionization energies the
following superoperator metric is adopted:b

(X|Y ) =

〈
φNelHF

∣∣∣∣ [X†, Y ]+
(1 + T

(1)
2 )

∣∣∣∣φNelHF

〉
. (3.66)

In eq. 3.66, T (1)
2 stands for the first-order correction in the Rayleigh-

Schröedinger perturbation theory (RSPT).c Only the portion {a, f3} of the
full space of field operators is employed, i.e. the operator manifold is re-
stricted to h (hole), p (particle), 2hp (shakeup) and 2ph (shakeon) operators.
H can be written as follows (in the canonical, HF basis):

H =


(ah|Hah) (ah|Hap) (ah|Ha2hp) (ah|Ha2ph)
(ap|Hah) (ap|Hap) (ap|Ha2hp) (ap|Ha2ph)

(a2hp|Hah) (a2hp|Hap) (a2hp|Ha2hp) (a2hp|Ha2ph)
(a2ph|Hah) (a2ph|Hap) (a2ph|Ha2hp) (a2ph|Ha2ph)



≈


εδij 0 H(1)

h,2hp H(1)
h,2ph

0 εδab H(1)
p,2hp H(1)

p,2ph

H(2)
2hp,h H(1)

2hp,p H(1)
2hp,2hp 0

H(1)
2ph,h H(1)

2ph,p 0 H(0)
2ph,2ph

 .
(3.67)

When the NR2 approximation is employed, the matrix H is not hermi-
tian. Therefore, the ionization energies are obtained as eigenvalues of the
matrix 1

2(H+H†). The energy-independent contribution Σ(∞) vanishes in
eq. 3.67, because Σ(∞) arises from correlation terms in the primary-primary
block (a|Ha) which are neglected in the NR2 approximation.d More gener-
ally, the final expression provided in eq. 3.67 is complete (and hermitian) for
what concerns the second-order contribution, while the third-order correc-
tions are limited to the terms H(2)

2hp,h and H(1)
2hp,2hp. The elements of eq. 3.67

aThe NR2 approximation is a non-diagonal counterpart of the Partial third-order (P3)
method.225

bFor the calculation of electron affinities, a different superoperator metric is employed
(in order to provide the second-order contribution of the block (a2ph|Hap) and the first-
order contribution of the block (a2hp|Hah), in contrast with the final result provided in
eq. 3.67 and used for the calculation of ionization energies, in which the opposite choice
is done).

cThe subscript stands for the contribution of the double excitations to the first-order
correction.

dThe derivation of the contributions to the block (a|Ha) in the framework of the NR2
approximation is provided in section C.2 of appendix C.
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which pertains to the blocks (a|Hf3), (f3|Ha) and (f3|Hf3) are provided in
ref. 224.a Details about the implementation of non-diagonal approximations
to the calculation of poles of the electron propagator matrix can be found
elsewhere.226

Assessments227 of the results obtained when the NR2 approximation is
employed in conjunction with various basis sets suggest the usefulness of
this approximation for the calculation of valence vertical ionization energy
of closed-shell molecules.b

When a non-diagonal approximation is employed, the knowledge of the
eigenvectors of H allows the calculation of the pole strength Pn associated
to a specific ionization energy. The definition of Pn given in eq. 3.65 can be
generalized as follows:c

Pn =
∑
r

|Unr|2 (3.68)

When a non-diagonal approximation is employed, the calculation of Pn

must be performed with the definition provided in eq. 3.68 (more general than
the simplified one given in eq. 3.65, which is correct if a diagonal approxi-
mation is assumed). Analogously to the case of a diagonal approximation,
Pn can be related to the intensity associated to a specific ionization energy.

3.2 Vibronic transitions: the time-independent ap-
proach

In order to reproduce the band shapes observed when an electronic transi-
tion is experimentally probed, the nuclear motion of the molecular system
under investigation must be taken into account. This means that a suitable
approximation to the following transition integral must be employed:

〈TTT 〉if
IF

=

〈
ψIi

∣∣∣ T̂TT (r)
∣∣∣ψFf〉√

〈ψIi |ψIi〉 〈ψFf |ψFf 〉
. (3.69)

Eq. 3.69 is a generalization of eq. 2.35 to the case I 6= F (when I = F ,
eq. 2.35 is recovered). I and F (i and f) label the electronic (nuclear) states.
Defining TTT e

IF
as follows:

aMore specifically, elements and formulae for all the blocks of eq. 3.67 are given in table
I of ref. 224, where a typographical error should be pointed out: the term H(2)

2hp,p given in
table I of ref. 224 is actually the term H(2)

2hp,h (the contribution of the block (a2hp|Hap)
is included only at first-order in the NR2 approximation).

bImprovements of the original NR2 approximation to treat particularly challenging
systems have been proposed228 (one of this improvements is based on the retainment
of the second-order contribution to the block (a2hp|Ha2hp), i.e. on the substitution of
H(1)

2hp,2hp with H(2)
2hp,2hp in eq. 3.67).

cUnr is a component of the n-th eigenvector of H, see eq. 3.28.
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TTT e
IF

(r) =
〈
φI

∣∣∣ T̂TT (r)
∣∣∣φF〉 , (3.70)

and if the orthonormality of the electronic wavefunctions is assumed,
eq. 3.69 can be rewritten in the following manner:

〈TTT 〉if
IF

=

〈
χIi
∣∣TTT e

IF
(r)
∣∣χFf〉√

〈χIi |χIi〉 〈χFf |χFf 〉
. (3.71)

The nuclear wavefunctions of each electronic state are orthonormal if the
harmonic approximation is assumed; translations and (assuming an Eckart
frame) rotations can be factored out; therefore, at harmonic level eq. 3.71
can be furtherly simplified:

〈TTT 〉if
IF

=
〈
χIi
∣∣TTT e

IF
(r)
∣∣χFf〉 . (3.72)

In what follows, the calculation of 〈TTT 〉if
IF

(the transition probability be-
tween two vibrational levels) is addressed, assuming the availability of a
method to perform the calculation of TTT e

IF
at a specific molecular geometry.

With an efficient method for the calculation of 〈TTT 〉if
IF
, the vibrational sig-

nature of the electronic transition I → F can be easily recovered from the
spectral lineshape L(ν). If a time-independent (TI) approach is adopted,
L(ν) is provided by the following sum-over-states (SOS) expression:

L(ν) =
∑
i

∑
f

ρIi(T )|〈TTT 〉if
IF
|2δ

(
ν −

EfF − EiI
~

)
, (3.73)

where ρIi(T ) is the Boltzmann population of the vibrational state χIi.
In this section, an efficient computational procedure for the calculation of
L(ν) is briefly outlined and discussed.

3.2.1 Calculation of L(ν)

Normal coordinates can be employed for the description of vibrational mo-
tions of a molecular system. If two different electronic states are taken into
account, two different sets of normal coordinates can be adopted (because
the optimized geometry and the corresponding harmonic force field depend
on the electronic state). Nevertheless, two different sets of normal coordi-
nates (pertaining to the same molecule with different minimum geometries
and harmonic force fields) can be related through a linear transformation
(due to Duschinsky):229

Q = JQ + K. (3.74)

In eq. 3.74, J is a square matrix of dimensions (3N − 6)× (3N − 6) (the
Duschinsky matrix), K is a vector with 3N − 6 elements (the shift vector),
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Q and Q are the normal coordinates obtained for, respectively, the initial
and the final (I and F ) electronic states. The vibrational subspace spanned
by a set of 3N − 6 normal modes depends on the optimized geometry of
the molecular system, which in turn depends on the electronic state. As a
consequence, vibrational subspaces spanned by Q and Q are different,a and
therefore the relationship given in eq. 3.74 is an approximation.230,231 In
practice, eq. 3.74 is a good approximation for semi-rigid molecular systemsb

but can be inadequate when applied to the study of flexible ones. Eq. 3.74
is also affected by the choice of the coordinate system.c

Suitable approximations of the PESs of initial and final electronic states
must be chosen in order to define J and K in eq. 3.74. In this chapter, the
harmonic expansion is employed for both the PESs. This assumption pro-
vides reliable results for semi-rigid molecular systems. Four approximations
have been devised:

• Adiabatic hessian (AH) model: in this case, the expansion of both
the PESs is performed about their own minima. Given the following
definitions for the two sets of normal coordinates:d

Q = L(r− req), (3.75)

Q = L(r− req), (3.76)

The following relationship can be easily obtained employing eqs. 3.75
and 3.76:e

Q = LL
T
Q + L(req − req). (3.77)

abecause the two sets of normal coordinates pertain to two different electronic states,
whose minima are associated with different geometries.

bBecause the differences between the optimized geometries of the two electronic states
are expected to be small.

cIn two ways; firstly, because the choice of the reference coordinates affects the coupling
between rotations and vibrations: in the applications given in the next section, the Eckart
frame has been adopted for the equilibrium geometry of the initial electronic state I,
while the equilibrium geometry of the final electronic state F has been oriented in order
to maximize the overlap with the first one; secondly, the coordinate system adopted for
the definition of the two sets of normal coordinates affects the computational results
even at harmonic level in the case of vibronic transitions: in this thesis, cartesian-based
normal coordinates are employed, but the definition of normal coordinates in terms of a
set of curvilinear, internal coordinates has been proposed, implemented and tested and
improves the reliability of the computational results when flexible molecular systems are
investigated.

dThe normal coordinates Q are mass-weighted, therefore in eqs. 3.75 and 3.76 the RHS
contain a multiplication with M1/2 which is left implicit.

eThe following relationship holds: LTL = I; see ref. 34.



116 CHAPTER 3. TWO ELECTRONIC STATES

The definition of J and K in the AH model can be obtained through
comparison of eqs. 3.74 and 3.77:

J = LL
T
, (3.78)

K = L(req − req). (3.79)

The AH model provides a good description of the final state’s PES
in the neighborhood of the minimum, but the most intense transi-
tions are localized in the neighborhood of the initial state’s minimum.
Therefore, a model focused on the description of both the PESs in the
neighborhood of the initial state’s minimum can improve the accuracy
of the computational results if the equilibrium geometries of the initial
and the final electronic states differ significantly.

• Adiabatic Shift (AS) model: in this approximation, the definition of K
is the same provided for the AH model (see eq. 3.79); for what concerns
J, in the AS model the assumption J = I is done: this simplifying as-
sumption is particularly useful when the analytic second derivatives of
the energy with respect to the nuclear coordinates are not available for
the final electronic state; therefore, the additional assumption of the
AS model is the retainment of vibrational energies and normal mode’s
displacements calculated for the initial electronic state as approxima-
tions of vibrational energies and normal mode’s displacements for the
final electronic state.

• Vertical Hessian (VH) model: in this approach, the PES of the final
electronic state is expanded at the equilibrium geometry of the initial
electronic state. To derive the formulations of J and K, the harmonic
expansion of the final state’s PES at its minimum is formulated as
follows:

V (Q) =
1

2
Q
T
ω

2
Q + E0

I−F (3.80)

where E0
I−F is the difference between the minimum energies of the ini-

tial and the final electronic states and ω is a diagonal matrix whose
elements are the harmonic frequencies of the final electronic state.
Eq. 3.80 can be rewritten as a function of Q employing eq. 3.74:a

V (Q) =
1

2
Q
T
Jω

2
JTQ−KTJω

2
JTQ+

1

2
KTJω

2
JTK+E0

I−F (3.81)

aThe Duschinsky matrix J is an orthogonal matrix, therefore JTJ = I and eq. 3.74 can
be written as follows: JTQ− JTK = Q.
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To connect J and K to the energy derivatives of the final state’s PES
at the equilibrium geometry of the initial state, the following expansion
of V with respect to Q is employed:

V (Q) =V (Qeq) +

(
∂V

∂Q

)T
Q +

1

2
Q
T ∂2V

∂Q
2 Q

=V (Qeq) + g
T
Q +

1

2
Q
T
HQ,

(3.82)

where g and H are, respectively, the gradient and the hessian of the
final state’s PES. Comparing eqs. 3.81 and 3.82, the following relation-
ships can be obtained:

g = −KTJω
2
JT =⇒ K = −J

[
ω
]−2

JTg, (3.83)

H = Jω
2
JT =⇒ HJ = Jω

2
. (3.84)

In other words, J can be obtained from the eigenvalue problem as-
sociated to Ha and K can be calculated from H and g.b The main
drawback of the VH model lie in the evaluation of H at an extrapo-
lated minimum of the final electronic state which is not the real one.c

The evaluation of H at a non-stationary point can lead to unreliable
(even negative) values of ω2 and to inaccuracies in the components of
J. For what concerns these aspects, the AH model introduced above
is clearly more reliable.

• Vertical gradient (VG) model: as for the AS model introduced above,
the Duschinsky matrix J is assumed to be equal to the identity matrix
(J = I). The PES of the final electronic state is expanded at the
equilibrium geometry of the initial electronic state, as in the VH model.
For what concerns the shift vector K the definition given in eq. 3.83
is employed, assuming J = I and ω = ω. Despite its limits, this
model can be useful when neither second nor first derivatives of the
energy with respect to the nuclear coordinates are available for the
final electronic state.

aIf the nuclear coordinates are described in terms of the normal modes of the initial
electronic states Q.

bAs for H, if the nuclear coordinates are described in terms of Q.
cThe approximation provided by the quadratic extrapolation employed in the VH

model is exact in the limit of an harmonic final state’s PES, which is not the case in
the real world.



118 CHAPTER 3. TWO ELECTRONIC STATES

The definitions of J and K can be employed to perform the calculation of
the transition probability between two vibrational levels. The starting point
is the Taylor expansion of the transition property TTT e

IF
with respect to a set

of normal coordinates. Expanding TTT e
IF
, the RHS of eq. 3.72 can be written

as follows:

〈
χi

∣∣∣TTT e
IF

∣∣∣χf〉 = TTT e
IF

(Qeq)
〈
χi

∣∣∣χf〉+

3N−6∑
k=1

[(∂TTT e
IF

∂Qk

)
eq

〈
χi

∣∣∣Qk ∣∣∣χf〉
]

+

3N−6∑
k=1

3N−6∑
l=1

[( ∂2TTT e
IF

∂Qk∂Ql

)
eq

〈
χi

∣∣∣QkQl ∣∣∣χf〉
]

+ ... .

(3.85)

In the Franck-Condon (FC) approximation,232,233 the transition proba-
bility between two vibrational states is approximated with the zeroth-order
term of the Taylor expansion provided in the RHS of eq. 3.85.a The FC ap-
proximation usually provides reliable results for calculations performed on
fully-allowed transitions, but when weakly-allowed transitions or chiroptical
transition properties are considered the first-order contributions should be
retained. The sum of the first-order contributions to eq. 3.85b is the so-called
Herzberg-Teller (HT)234 term.

In the applications provided in the next section, the VG model is assumed
for the calculation of J and K and the FC approximation is employed for the
calculation of 〈TTT 〉if

IF
. Therefore, suitable expressions and derivations for the

inclusion of the HT term in the expansion given in eq. 3.85 are considered
beyond the scope of this thesis and are not treated in what follows.

For the calculation of 〈TTT 〉if
IF

at FC level, an effective procedure to com-
pute the FC overlap integrals

〈
χi

∣∣∣χf〉 is needed. If the harmonic approxi-
mation is employed, analytical expressions for the FC overlap integrals are
available in literature.235,236 However, the direct employment of the analyt-
ical expressions to the computation of FC overlap integrals is not practical
for a general implementation, because for each class of integrals a different
expression must be implemented. A more practical route is based on the
employment of recursion formulas:237–239 in this case, only the analytical
expression for the overlap integral of the vibrational ground states of the ini-
tial and the final electronic states

〈
0
∣∣∣0〉 is needed. All the other FC overlap

integrals can be derived with two recursion formulas. In the most general
cases:

ai.e. only the first term on the RHS of eq. 3.85 is retained.
bsecond term on the RHS of eq. 3.85.
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〈
υ
∣∣∣υ + 1i

〉
=
∑
j

[
f1(i, j, υi, υj)

〈
υ − 1j

∣∣υ〉 ]
+
∑
j

[
f2(i, j, υi, υj)

〈
υ
∣∣∣υ − 1j

〉 ]
+ f3(i, υi)

〈
υ
∣∣υ〉 ,

(3.86)

〈
υ + 1i

∣∣υ〉 =
∑
j

[
f4(i, j, υi, υj)

〈
υ
∣∣∣υ − 1j

〉 ]
+
∑
j

[
f5(i, j, υi, υj)

〈
υ − 1j

∣∣υ〉 ]
+ f6(i, υi)

〈
υ
∣∣υ〉 .

(3.87)

In eqs. 3.86 and 3.87, υi and υj label the number of quanta in, respec-
tively, the modes i and j; |υ〉 and

∣∣υ〉 denote products of harmonic functions
in coordinates Q and Q, with quantum numbers given by the vectors υ and
υ. Simplifications of eqs. 3.86 and 3.87 are obtained for the special (and
relevant) case of the ground vibrational wavefunction of the initial electronic
state

∣∣0〉.a Derivations of eqs. 3.86 and 3.87, as well as of an analytical
expression for the

〈
0
∣∣∣0〉 overlap integral can be found elsewhere.b

When the calculation of the lineshape L(ν) is performed in the TI ap-
proach, a double summation over the vibrational states of the electronic
states I and F must be carried out (see eq. 3.73). The number of elements
included in the two summations in a given energy range ∆E = EfF − EiI
is finite: therefore, a simple computational procedure for the calculation of
L(ν) can be based on the selection and calculation of all the FC overlap
integrals in a preselected energy range ∆E. This procedure has been em-
ployed,c but lead to the evaluation of a number of overlap integrals which
rise steeply with the size of the molecular system. Other strategies have
been proposed:241–244 for the applications provided in the next section of
this thesis, the computational protocol implemented in the Gaussian12 suite
of programs has been employed for the selection of the FC overlap integrals.
This protocol is briefly outlined in what follows.243

A partition of the manifold of vibrational states
∣∣υ〉 in different classes is

introduced. Each vibrational state is assigned to a specific class on the basis
of the number of oscillators whose quantum number differ from zero. The

aFor example, in the special case
〈
0
∣∣∣υ + 1i

〉
the first term on the RHS of eq. 3.86

vanishes.
bSee, for example, refs. 237 and 238; particularly clear and easy to follow is the deriva-

tion provided in ref. 239.
cSee, for example, ref. 240.
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class of the states with n excited oscillators among the 3N−6 normal modes
of the molecular system studied is labeled Cn.a If the quantum number of
each oscillator is limited to w,b the total number of states belonging to the
class Cn is equal to N (N,n) · wn, where N (N,n) is the number of distin-
guishable combinations of n oscillators (from an ensemble of 3N − 6). Each
element of the various classes Cn can be associated to a FC overlap integral
of the type 〈0 |υ〉. If temperature effects are not taken into account,c all the
non-vanishing FC overlap integrals are of the type 〈0 |υ〉. The computation
of the overlap integrals associated to the classes C1 and C2 up to a quan-
tum number large enough to discard only the negligible overlap integrals is
computationally cheap (the number of these overlap integrals is limited), but
the number of elements pertaining to a single class increases dramatically
with n: therefore, in order to limit the computational burden an effective
criterium to select the overlap integrals of larger classesd is needed. In prac-
tice, three user-defined pre-screening factors are employed: the maximum
quantum number adopted for the calculation of the overlap integrals of the
class C1, the maximum quantum number reached by both the excited modes
of the overlap integrals of the class C2, an approximate maximum of overlap
integrals to be computed for a class Cn with n>2. The selection of the over-
lap integrals pertaining to a class Cn with n > 2 is performed through an
estimation of their transition probability, computed with an algorithm which
employs the FC overlap integrals already computed for the classes C1 and
C2. A detailed description of the algorithm and of the entire computational
protocol can be found in ref. 243. e

The computational protocol introduced above for the selection of the FC
overlap integrals needed for the calculation of L(ν) is efficient and reliable
for the study of semi-rigid molecular systems, but is somewhat arbitrary: to
evaluate the reliability of the calculation performed a criterium to evaluate
the convergence of the computation is needed. When the FC approximation
is adopted, the convergence can be evaluated trivially on the basis of the
following equation: ∑

i

∑
f

|
〈
χi

∣∣∣χf〉|2 = 1, (3.88)

aIn other words, in the manifold of vibrational states of the final electronic state F
the class C1 collects fundamentals and overtones, the class C2 corresponds to 2-modes
combinations and so on.

bWithout fixing a maximum number of quanta for each oscillator, the number of states
pertaining to a specific class Cn would be infinite.

ci.e. only
∣∣0〉 (the ground vibrational state of the initial electronic state) is populated;

this assumption corresponds to T = 0K.
di.e. associated to classes Cn with n > 2
eMore specifically, the selection of the FC overlap integrals for T = 0K is discussed in

section IV of ref. 243; an extension of the algorithm to the case of finite temperatures is
provided in ref. 244.
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Where |
〈
χi

∣∣∣χf〉|2 is the so-called Franck-Condon Factor (FCF). In other
words, the sum of FCFs must tend to 1. Details and discussions about the
implementation available in the Gaussian suite of programs (and employed
for the calculations presented in the next section) can be found in refs. 245
and 246.

3.2.2 Calculation of relative intensities

The knowledge of the spectral lineshape L(ν) associated to an electronic
transition I → F allows the calculation of the intensitya of the vibronic
transition. For the comparison between experimental and computational
results discussed in the next section, only relative values are needed.b The
following formulation is employed:

I (ν) = ανL(ν) = αν
∑
i

∑
f

ρIi(T )
[
TTT e

IF
(Qeq)

]2|〈χi ∣∣∣χf〉|2δ
(
ν−

EfF − EiI
~

)
(3.89)

In eq. 3.89, for the formulation of L(ν) the TI approach and the FC ap-
proximation are employed. α is a fixed proportionality constant.c The value
of
[
TTT e

IF
(Qeq)

]2 is obtained from the electronic calculations, and depends on
the phenomenon of interest.

It must be underlined that the theoretical framework introduced in this
section is general, i.e. not limited to absorption/emission or photoionization
spectroscopies: with a suitable choice of

[
TTT e

IF
(Qeq)

]2, the vibrational signa-
tures associated to the electronic transition I → F can be computationally
simulated with eq. 3.89.d

3.3 Applications ¶

The computational protocols introduced in the previous sections of this chap-
ter can be employed to reproduce vibrationally resolved UPS spectra of semi-
rigid molecular systems.

aThe word ’intensity’ is employed in the context of absorption/emission spectroscopies.
In the case of photoionization, the word ’cross-section’ is usually employed.

bThe experimental photoionization cross-sections are taken from the literature and are
given in arbitrary units.

cFor what concerns the results provided in the next section, the values of α were
chosen in order to reproduce the experimental results (because only relative experimental
cross-sections are available for the molecular systems shown in figures 3.1-3.6).

dThis does not mean that the validity of eq. 3.89 is completely general : If the assump-
tions behind the formulation proposed for L(ν) are not valid, eq. 3.89 must be replaced
with other, more suitable formulations.
¶The results provided in this section were published in J. Chem. Theory Comput.,

2020, 16, 8, 5218-5226.



122 CHAPTER 3. TWO ELECTRONIC STATES

molecule symmetry point group chiral? structure

tricyclo[3.3.0.03,7]octane-2,6-dione (2,6-STDO) D2 yes fig. 3.1
2,6-dimethylenetricyclo[3.3.01,5.03,7]octane (2,6-STDE) D2 yes fig. 3.2
6-methylenetricyclo[3.3.0.03,7]octan-2-one (2,6-STEO) C2 yes fig. 3.3
2-oxotricyclo[3.3.0.03,7]octane-6-thione (2,6-STOT) C2 yes fig. 3.4
tricyclo[3.3.0.03,7]octane-2,4-dione (2,4-STDO) Cs no fig. 3.5

4-methylenetricyclo[3.3.0.03,7]octan-2-one (2,4-STEO) C1 yes fig. 3.6

Table 3.1: names, symmetry point groups and chirality of the six molecular
systems discussed in section 3.3

In what follows, assignment and computational reproduction of the UPS
spectra of the six molecular systems shown in figures 3.1-3.6 is discussed;
names (and abbreviations), chirality and symmetry point groups of these
molecular systems are given in table 3.1.

A feature shared by the six compounds shown in figures 3.1-3.6 is the
presence of two π-bonds separated by a rigid σ-scaffold. Interactions be-
tween two π-bonds embedded in the same molecular system and separated
by a rigid σ-scaffold (i.e. not conjugated π-bonds, with fixed orientations and
distance) have been investigated to unveil their features in connection with
long-range electron and excitation transfer between chromophores. There-
fore, a full characterization of compounds with the same σ-scaffold which
differ for the orientation of the π-bonds (and for the moieties linked to the
σ-scaffold through the two double bonds) can have an interest.

UPS spectroscopy provides useful experimental data related to the struc-
ture of the neutral molecular system and its ionized counterparts: pieces of
information about the electronic structures of the neutral and ionized forms
of the molecule (as well as about nuclear dynamics and electronic structures)
are intertwined in the experimental data, and the employment of suitable
computational tools is an invaluable support for rationalization and analysis
of experimental results.

Synthesisa and experimental UPS spectra250,251 of the six compounds
considered in this section have been reported in literature. The available
computational results do not take into account the vibrational signatures of
the electronic transitions associated to low-energy ionizations.

The main purposes of this study are (i) the integration of the computa-
tional results already available in literature, particularly for what concerns
the characterization of the vibrational progressions observed in the experi-
mental spectra and (ii) the validation of a computational protocol which has
been devised to combine methods based on one-electron Green’s functions

aThe synthesis of 2,4-STEO was published in ref. 247, while the synthesis of 2,6-STEO
and 2,6-STDO were reported in ref. 248. The synthesis of 2,6-STDE is described in
ref. 249. To the best of the author’s knowledge, the synthesis of 2,4-STDO and 2,6-STOT
were detailed for the first time in ref. 250 (The UPS spectra of the two compounds provided
in this thesis are taken from the same article).
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Figure 3.1: Structure of 2,6-STDO from three different perspectives.
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Figure 3.2: Structure of 2,6-STDE from three different perspectives.

Figure 3.3: Structure of 2,6-STEO from three different perspectives.
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Figure 3.4: Structure of 2,6-STOT from three different perspectives.
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Figure 3.5: Structure of 2,4-STDO from three different perspectives.
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Figure 3.6: Structure of 2,4-STEO from three different perspectives.



124 CHAPTER 3. TWO ELECTRONIC STATES

for the calculation of ionization potentials (IPs) with a characterization of
ground electronic states obtained with DFT-based methods.

3.3.1 Vibrational signatures in UPS spectra: a brief overview

In the framework of the BO approximation, in order to reproduce the vibra-
tional signature associated to an electronic transition reliable approximations
of the PESs of the electronic states involved in the electronic transition are
needed (see section 3.2 and references therein). The usefulness of methods
based on one-electron Green’s functions for what concerns the calculation of
vertical IPs is well recognized (see section 3.1 and references therein), but the
vertical IP corresponds to the energy difference between two PESs at a spe-
cific nuclear configuration (the equilibrium geometry of the neutral molecular
system): therefore, to approximate the PESs of neutral and ionized states
other pieces of information are needed.

In principle, methods based on one-electron Green’s functions can pro-
vide reliable approximations of PESs: indeed, the connection between the
one-electron Green’s function and the ground state energy is well-known.a

Although the exploration of a PES can be carried out with a direct search
method,b a more effective procedure employing derivative-based optimiza-
tion methods in conjunction with analytic gradients of the energies of initial
and final states is desirable (see section 1.1.1). Second-order many body
perturbation theory (MBPT2) can be recovered from a second-order ap-
proximation to the one-electron Green’s function:254 therefore, the MBPT2
expression of the ground state energy can be employed and hence the analytic
gradients of the ground state energy can be obtained from the MBPT2 treat-
ment. For what concerns the analytic gradients of the ionized state energy,
analytic gradients of electron propagator poles are needed: these expressions
are available for the second-order approximation to the self-energy matrixc

and for some higher-order extensions.d Thanks to the advancements just
mentioned, geometry optimizations of neutral and ionized electronic states
with methods based on one-electron Green’s functions are nowadays possible.

The first calculations of the vibrational signatures associated to elec-
tronic transitions computed by means of methods based on electron prop-

aSee, for example, section 6 of ref. 201.
bThese methods are based on energy-only algorithms and do not require the knowledge

of the derivatives of the energy with respect to nuclear coordinates: therefore, knowledge
of a computational procedure which provides the ground state energy and the energy
difference between the ionized electronic states and the neutral one allows the employment
of a direct search method without requiring other pieces of information.

cFor the derivation, see refs. 252 and 253 (the result is the same but is obtained following
two different routes); the expressions of the analytic gradients obtained for the second-
order approximation to the self-energy matrix were implemented and some applications
were provided.254–256

dThis is the case of the NR2 approximation: the analytic gradients are derived in
ref. 253.
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agator theory can be traced back to the works of Cederbaum et al.,257–259

and since then many other contributions can be found.a Other approaches
(i.e. approaches which do not employ the electron propagator theory for the
calculation of electronic transitions) have been proposed and successfully
applied to the calculation of vibrationally resolved UPS spectra.b

In this study, a pragmatic approach has been employed:c the PES of
the neutral form of a molecular system is approximated with DFT-based
methods, while the energy difference between a ionized form and the neutral
form of the same molecular system is computed with methods based on the
electron propagator theory.

3.3.2 Computational details

All the calculations have been performed with a development version of the
Gaussian suite of programs . Geometry optimization and harmonic force
field of the ground (neutral) electronic state have been carried out with
DFT, employing B3LYP176–178 as exchange-correlation functional combined
with maug-cc-pVTZ basis set.68,69 The calculation of vertical IPs has been
performed employing two different approximations of the electron propaga-
tor matrix: the OVGF method215–217 (which is computationally cheap and
retains the quasi-particle picture, see section 3.1.2) and the NR2 method224

(a non-diagonal approximation which is computationally more demanding
than the OVGF method but cheaper than other non-diagonal approaches,
see section 3.1.3) combined with maug-cc-pVTZ basis set.

For what concerns the calculation of the vibrational signatures of the first
two (or three, in the case of the 2,6-STOT molecule) ionized electronic states,
the VG model has been employed in conjunction with the FC approximation
(see section 3.2). In the VG model, the derivatives of the differences of the
final (ionized) and the initial (neutral) state PESs with respect to the normal
coordinates of the initial state (evaluated at the equilibrium geometry of the
initial state) are needed. A formulation of the analytic gradients of the final
(ionized) states in the framework of the NR2 approximation is available in
literature253 but has not been implemented: therefore, in the vibronic cal-
culations the band positions (which are given by the vertical IPs) have been
calculated with the NR2 approximation and the calculation of the gradients
has been performed numerically with the (computationally less demanding)
OVGF method. The numerical calculation of the gradient is performed with
an external python script, employing the following expression:

aSee, for example, ref. 260 (with caution for what concerns the conclusions).
bSee, for example, refs. 261 and 262.
cThis approach has been devised to provide a good compromise between computational

cost and accuracy despite the lack of analytic gradients for the ionized states.
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gIPi =
EIP (+δi)− EIP (−δi)

2δi
, (3.90)

where gIPi is the i-th cartesian component of the gradient gIP expressed
in cartesian coordinates, EIP (+δi) and EIP (−δi) are the vertical IPs cal-
culated with displacements from the equilibrium geometry (of the initial,
neutral electronic state) of, respectively, +δ and −δ along the i-th cartesian
coordinate. In this study, the value of δ has been set equal to 0.001Å. It must
be noticed that g (and not gIP ) is needed for the calculation of the shift vec-
tor K in the VG model (see eq. 3.83).a However, the following relationship
holds:

gx = gx + gIPx . (3.91)

In eq. 3.91, the subscript x indicates a generic coordinate system. The
numerical differentiation is performed at the equilibrium geometry of the
initial (neutral) electronic state, and therefore g = 0: the direct consequence
is that g = gIP and the calculation of the components of g can be carried
out with eq. 3.90.b The prescreening protocol described in section 3.2.1 has
been employed to select the most relevant FC overlap integrals: in this study,
the values Cmax1 = 20, Cmax2 = 13 and Nmax

i = 108 have been adopted (if
not otherwise specified) for the three user-defined prescreening factors.

3.3.3 Results

In what follows, the computational results obtained for the six molecular
systems listed in table 3.1 are presented and discussed. In figure 3.7, ex-
perimental UPS spectra (taken from refs. 251 and 250) are compared with
computational ones (calculated in this study, at NR2/maug-cc-pVTZ and
OVGF/maug-cc-pVTZ level of theory). Intensities are given in arbitrary
units, and therefore the absolute intensity is not meaningful (it is adjusted

aIn the VG model, for the calculation of K the following assumptions are employed in
eq. 3.83: J = I and ω = ω

bThe coordinate system adopted for the nuclear coordinates is important. In eq. 3.90
a cartesian coordinate system is assumed for the nuclear coordinates, while in eqs. 3.83
and 3.84 gradient g and hessian H are provided in terms of normal coordinates of the initial
electronic state Q. The gradient given in one coordinate system can be easily obtained in
another coordinate system, and conversely; useful equations are provided in section A.1 of
appendix A: when normal coordinates are employed as non redundant coordinates, eq. A.2
is exact (and hence all the elements of B′ are zero) and the dependence from the mass is
left implicit. In practice, in this study the gradient is numerically computed in cartesian
coordinates with eq. 3.90; this vector is provided to the Gaussian software, which takes
into account the coordinate system in which the gradient is expressed for the calculation
of the shift vector K: essentially, K is computed with eq. 8.67 of ref. 263 (see eq. 8.62 of
ref. 263 in which the masses are explicitly taken into account in the relationship which is
used to transform the gradient between the two coordinate systems).
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in order to reproduce the experimental results). However, a comparison of
the relative intensities is still possible and meaningful. Each pole of the
electron propagator matrix corresponds to a transition energy and its pole
strength to the intensity of the same transition. Gaussian functions are
employed to reproduce broadening effects in the computational results.

Detailed assignments of the transition energies are provided in tables C.1,
C.3, C.5, C.6, C.8 and C.10 (section C.3 of appendix C). The assignments
proposed in this study can be compared with the assignments reported in
table 1 of ref. 251 and table 1 of ref. 250. For what concerns 2,6-STDO
and 2,6-STDE another computational study is available in literature:264 the
computational results reported in ref. 264 are listed in tables C.1 and C.3
together with the results of the calculations discussed in this section.

Transition energies of an UPS spectrum are usually assigned to the elec-
tron binding energy of a specific Molecular Orbital (MO) i.e. the validity
of the quasiparticle picture is assumed: when the diagonal approximation is
adopted,a this assumption is valid; however, when a non-diagonal approx-
imation is employed this assumption must be verified.b For the molecular
systems investigated in this study, the transition energies obtained with the
OVGF and the NR2 approximations are (at least qualitatively) similar (see
figure 3.7), and in the case of the (non-diagonal) NR2 approximation the
contributions to a single DO are dominated by a single MO. Therefore, in
section C.3 and in what follows each electronic transition energy is associ-
ated with a specific molecular orbital (also in the case of the non-diagonal
NR2 approximation).c

Calculated transition energies assigned to outer valence MOs are in good
agreement with the experimental values, for both the approximations of the
electron propagator matrix employed in this study (see fig. 3.7 and the ta-
bles of section C.3 already mentioned), with the exception of the 2,6-STEO
molecule: in this case, the agreement of the NR2 results with the experi-
mental values is more satisfying than the results obtained when the OVGF
approximation is employed (see figure 3.7c). All the outer valence MOs
(and therefore all the transition energies) are mainly (but not exclusively)
related to the lone pairs of the chalcogens (oxygen and sulfur atoms) or to
the π-bonds of the six compounds investigated. Nevertheless, a partial de-
localization of the outer valence MOs on the central σ-scaffold (which is the
central molecular unit common to each of the molecular systems considered

aThis is the case of the OVGF method and of the values obtained by means of the KT.
bWhen a diagonal approximation is employed, Dyson orbitals (DOs) are proportional

to MOs; in the case of a non-diagonal approximation, DOs are obtained (in general) as
linear combination of MOs: in practice, in most cases (for a closed-shell molecule) the
linear combination is dominated by a single MO, and therefore the transition energies can
be still assigned to a specific MO.

cIn tables C.1, C.3, C.5, C.6, C.8 and C.10, it has been reported whether other contri-
butions (besides the contribution of the dominant MO) to a specific DO are relevant for
a non-diagonal approximation.
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(a) UPS spectra of 2,6-STDO
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(b) UPS spectra of 2,6-STDE
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(c) UPS spectra of 2,6-STEO
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(d) UPS spectra of 2,6-STOT
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(e) UPS spectra of 2,4-STDO
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(f) UPS spectra of 2,4-STEO

Figure 3.7: UPS spectra of the six molecular systems listed in table 3.1;
Intensities are given in arbitrary units and transition energies are provided
in electronvolt (eV); the experimental spectra (dashed green lines) are taken
from the literature (see the text).

in this work) is observed for MOs related to the oxygen lone pairs:a this is
the case for 7b2 and 6b3 MOs of 2,6-STDO, 12b MO of 2,6-STEO, 11b MO

afor what concerns 2,4-STDO and 2,4-STEO, this phenomenon was already recognized
in ref. 250 (see figure 2 of ref. 250).
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of 2,6-STOT, 11a′′ and 15a′ MOs of 2,4-STDO.a

The effects of the orientation of π-bonds on the strength of the coupling
between two lone pairs or two π-bonds were discussed in ref. 250. The
experimental trend250 which suggests a coupling between the lone pairs of
the oxygen atoms in 2,6-STDO stronger (greater difference between the first
two transition energies) than the coupling observed in the case of 2,4-STDO is
confirmed by the calculations performed for this study (both OVGF and NR2
results are in agreement with the experimental trend, see tables C.1 and C.8),
and an agreement between the experimental trend and the calculated values
given in this study is found also if a comparison between the transition
energies associated to the outer valence MOs of 2,6-STEO and 2,4-STEO is
considered (in this case, the coupling experimentally probed is stronger in
the case of 2,4-STEO molecule). All the assignments proposed in refs. 251
and 250 are confirmed: this is not surprising, because only the first, well-
separated experimental bands were assigned in refs. 251 and 250; moreover,
a diagonal approximation to the electron propagator matrix provides results
which are even quantitatively in agreement with the experimental values in
almost all the cases considered in this study. However, it must be noticed
that corrections to the KT results are needed in order to correctly reproduce
(even qualitatively) the experimental results.b

As mentioned above, the discrepancy between the experimental values
and the OVGF results for the transition energies referred to the outer va-
lence MOs (13b and 12b) of the 2,6-STEO molecular system is removed when
the NR2 approximation is adopted (see fig. 3.7c). Since the corresponding
DOs are dominated by the contributions of the MOs 13b and 12b (see ta-
ble C.5) when the NR2 approximation is employed, the importance of the
non-diagonal contribution to the improvement of the calculated results has
been verified as follows: a single point calculation (at the equilibrium geom-
etry) with the diagonal counterpart of the NR2 approximation (the so-called
P3 method)225 has been carried out (employing the basis set maug-cc-pVTZ)
and the difference between the transition energies associated to the MOs 13b
and 12b obtained at P3/maug-cc-pVTZ level of theory are compared with
the same difference obtained at OVGF/maug-cc-pVTZ and NR2/maug-cc-
pVTZ levels. For the P3 method, the difference is equal to 0.51, while for
OVGF and NR2 approximations the results are, respectively, equal to 0.38
and 0.69 eV: these values suggest that the discrepancy (between experimen-
tal and calculated transition energies observed for the 2,6-STEO molecule)
can be removed (at least partially) retaining the diagonal approximation.

aThis phenomenon can be observed also in the case of 2,4-STEO (see table C.10), but
in this specific case the (approximate) identification of the DOs with the MOs seems to
be particularly problematic for what concerns the outer valence MOs.

bFor example, KT do not provides qualitatively reliable results for the first transitions
of 2,6-STEO and 2,6-STOT (see tables C.5 and C.6), as was already recognized in refs. 251
and 250.
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The results showed in fig. 3.7 and reported in tables C.1, C.3, C.5, C.6,
C.8 and C.10 suggest a good agreement between experimental and calculated
results for electron binding energies lower than about 14 eV. For what con-
cerns the six compounds studied, the results calculated with NR2 and OVGF
approximations in most of the cases are similar (in the case of the 2,6-STOT
molecule the OVGF results are even closer to the experimental results than
the NR2 ones). To obtain a better agreement between experimental and
calculated values the vibronic structure must be taken into account.

In this work the vibronic structure has been computed for the lower
electron binding energies, for which well-separated vibronic structures are
available from refs. 251 and 250. The results are shown in fig. 3.8. The res-
olution of the experimental spectra provided in refs. 251 and 250 is limited;
nevertheless, a fairly good agreement between experimental and computa-
tional results can be noticed with the exception of the vibronic structures
computed for the 2,6-STEO molecule.

The assignment of the most intense vibronic transitions can be found
in section C.3 of appendix C. For what concerns the five compounds for
which the experimental spectra are in good agreement with the calculations
presented in this work, the most intense vibronic transition is the |0〉 → |0〉
for each vibronic structure.a

For what concerns 2,6-STDO and 2,6-STDE, vibronic signatures char-
acterized by intense |0〉 → |0〉 vibronic transitions (see tables C.2 and C.4)
and a computational extrapolation of the final state geometry (based on the
VG model) suggest equilibrium geometries (for the ionized states of interest)
which are very similar to the equilibrium geometry calculated for the ground
electronic state of the neutral molecule; moreover, the good agreement be-
tween experimental and calculated results (particularly evident in the case of
2,6-STDO) supports the reliability of the computational approach employed
for this study.

Other intense vibronic transitions for the electronic transitions of inter-
est of the molecules 2,6-STDO and 2,6-STDE are associated to the normal
modes depicted in figures C.1 and C.2. The vibronic transitions associated
to the symmetric stretching of the two double bondsb are of particular inter-
est: despite the limited resolution of the available experimental spectra, the
numerical results provided in this work for the 2,6-STDE molecule suggest
the assignment of the vibronic features at 8.7 eV and at 9.6 eV to the vibronic
transition |0〉 → |47(1)〉 (see fig. 3.8b, table C.4 and fig. C.2e); moreover, the
results listed in table C.4 (and plotted in fig. 3.8b) suggests the possibility of

athis is particularly evident for the second electronic transition of the 2,6-STDO
molecule (and was alerady recognized in ref. 251).

bDouble bonds between a carbon and an oxygen atom in the case of 2,6-STDO and
between two carbon atoms in the case of 2,6-STDE; the corresponding normal modes are
the 40-th normal mode in the case of 2,6-STDO (see fig. C.1e) and the 47-th normal mode
in the case of 2,6-STDE (see fig. C.2e).
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(a) UPS spectra of 2,6-STDO
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(b) UPS spectra of 2,6-STDE
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(c) UPS spectra of 2,6-STEO

8.0 8.5 9.0 9.5 10.0 10.5 11.0

Energy (eV)

0.0

0.2

0.4

0.6

0.8

1.0
In
te

n
s
it
y
(a
.u
.)

EPT calculation + vib. signatures

EPT calculation

exp

(d) UPS spectra of 2,6-STOT
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(e) UPS spectra of 2,4-STDO
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(f) UPS spectra of 2,4-STEO

Figure 3.8: Vibronic structures of the transition energies associated to the
outer valence electron binding energies for the six compounds listed in ta-
ble 3.1; the experimental spectra (continuous green lines) are taken from the
literature (see the text).

a direct observation of the vibronic transitions associated to the first over-
tone (|0〉 → |47(2)〉) of the symmetric stretching of the two double bonds
in the 2,6-STDE molecule: to verify this hypothesis, the measurement of an
high-resolution UPS spectra would be desirable. The other intense vibronic
transitions listed in tables C.2 and C.4 involve one-photon excitation of CH
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bendings (see figs. C.1b-C.1d and C.2b-C.2d) of the central σ-scaffold.a

In the cases of 2,6-STOT, 2,4-STDO and 2,4-STEO, the adoption of the
computational protocol successfully employed for 2,6-STDO and 2,6-STDE
leads to extrapolated equilibrium geometries (obtained in the framework of
the VG model) for the ionized states which differ substantially from the
equilibrium geometry of the neutral ground state.b The relevant changes
in the equilibrium geometries are accompanied (not surprisingly) by exceed-
ingly small FC overlap integrals for the |0〉 → |0〉 vibronic transitions: in the
light of these results, the reliability of the adopted computational protocol
can be questioned. In principle, to solve out the problem a better approxi-
mation of the final PES is needed: for example, other harmonic models for
the description of the final state PES can be employed, or a computational
approach suitable for the description of vibronic transitions in flexible molec-
ular systems.c In practice, another route (computationally less demanding)
can be employed, which is based on the combination of the computational
protocol described in section 3.3.2 with a reduced-dimensionality scheme: in
this case, the vibronic calculation is carried out on a fraction of the normal
modes of the molecular system of interest, while the contributions of the
other normal modes are neglected. In this study, the selection of the normal
modes included in the vibronic calculation is based on the inspection of the
components of the shift vector K: too high values of the low-frequencies
components of K are avoided by neglecting the contributions of the corre-
sponding normal modes in the vibronic calculation. For what concerns the
computational protocol, all the normal modes with a fundamental frequency
below a certain user-defined value are neglected in the vibronic calculation:
when the same user-defined value is chosen for all the electronic transitions
of a specific molecular system, with this protocol the vibronic calculations
are performed on a selection of normal modes which is exactly the same for
all the electronic transitions of the molecular system of interest.d In order
to ensure reproducibility of the computational results, the user-defined val-
ues employed for the calculations presented in this study are provided in
section C.3 of appendix C.

With the employment of the reduced-dimensionality scheme mentioned

aWith two exceptions: the vibronic transition |0〉 → |8(1)〉 for the 2,6-STDO molecule
(a skeletal deformation is involved in the 8-th normal mode, see fig. C.1a) and the vibronic
transition |0〉 → |7(1)〉 for the 2,6-STDE molecule (the CH bendings of the peripheral CH2

units involved in the 7-th normal mode, see fig. C.2a).
bThe conformational changes involve the orientation of the two π-bonds with respect

to the central σ-scaffold and the related distortions of the central σ-scaffold.
cSee, for example, ref. .
dOn the other hand, with this protocol some normal modes which can be safely included

in the vibronic calculation referred to a specific electronic transition can be excluded
because a normal mode with an higher fundamental frequency does not allow a proper
description (in the framework of the VG model) of the vibrational signature of another
electronic transition of the same molecular system.



3.3. APPLICATIONS 133

above, the computational results obtained for 2,6-STOT, 2,4-STDO and 2,4-
STEO molecules are in good agreement with the experimental UPS spectrum
(see figs. 3.8d-3.8f) and the extrapolated equilibrium geometry for the ionized
states are very similar to the equilibrium geometry of the neutral ground
state.a

Although (as mentioned above) the |0〉 → |0〉 vibronic transition is the
most intense one for the three vibronic structures of 2,6-STOT investigated
in this study, the vibronic band associated to the |0〉 → |0〉 vibronic transition
is not necessarily the most intense of the vibronic structure calculated (and
observed) for a certain electronic transition; more specifically, in fig. 3.8d
the vibronic band which corresponds to the transition |0〉 → |0〉 is the most
intense one for the vibronic structures of the first (between 8 and 9 eV) and
the second (between 9 and 10 eV) electronic transitions, but the same is not
true for the vibronic structure of the third electronic transition (between 10
and 11 eV): indeed, a single vibronic band can result from the contributions of
several vibronic transitions.b Besides the |0〉 → |0〉 transition, the other most
relevant contributions (identified in table C.7) involve the bending of CH
bonds of the central σ-scaffold (see figs. C.3a-C.3i) and the stretchings of CO
(fig. C.3k) and CS (fig. C.3j) bonds; moreover, the relative intensity of the
|0〉 → |0〉 transitions and the vibrational progressions for the three vibronic
structures reported in fig. 3.8d and assigned in table C.7 is consistent with
the assigments proposed in table C.6 for the three electronic transitions.c

The two vibronic structures computed for the two outer valence ionization
transitions of 2,4-STDO are similar: the first (and most intense) vibronic
band (assigned to the |0〉 → |0〉 transition) is followed by vibronic bands of
decreasing intensity (the assignment is provided in table C.9); these vibronic
structures are similar to the vibronic structure calculated for the electronic
transition associated with the MO 11b of 2,6-STOT. The contribution (to
the first vibronic structure) of the vibronic transitions associated with the
symmetric (see fig. C.4j) and the antisymmetric (see fig. C.4i) CO stretchings
is worth of mention (see table C.9).d

For what concerns 2,4-STEO molecule, assignment of the vibronic struc-

aIn the case of the 2,4-STEO molecule, the extrapolated equilibirum structures (for the
two ionized states of interest) for the fragment C(sp2)=C(sp2)H2 (which is planar in the
neutral ground state) are slightly bent: this is consistent with the assignment of a partial
πCC character for the outer valence MOs 26a and 25a (proposed in table C.10).

bThis is a consequence of the finite bandwidth of each vibronic transition.
cThe less intense |0〉 → |0〉 transition pertains to the electronic transition assigned to

the removal of one electron from the πCS MO, while the other two vibronic transitions of
interest are assigned to nO and nS MOs; moreover, the MO 11b is partially delocalized
on the σ-scaffold: this is consistent with a vibronic progression which is not dominated
by (and almost reduced to) the |0〉 → |0〉 transition (as in the case of the first electronic
transition, assigned to the nS MO).

dThe other intense vibronic transitions (besides the |0〉 → |0〉) are assigned to the CH
bendings of the central σ-scaffold, see figs. C.4a-C.4h.
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tures are provided in table C.11. Besides the |0〉 → |0〉 transition and
the transitions involving the CH bendings of the central σ-scaffold, a vi-
bronic transition of relevant intensity is associated with the CC stretching
(fig. C.5n).

An attempt to explain the disagreement between experimental and com-
putational results in the case of 2,6-STEO (see fig. 3.8c) is provided in what
follows. At first glance, the VG model seems to work well (the extrapolated
equilibrium geometries for the ionized states are very similar to the equilib-
rium geometry of the ground state of the neutral molecular system), while
the absolute intensities of the vibronic bands are significantly lower than
their counterparts in the other computed spectra discussed in this work.a

Therefore, a first attempt to go beyond the FC approximation retaining
the first order contributions to the transition properties (so-called HT term,
see section 3.2.1, particularly eq. 3.85) has been done, without significant
improvements in the computational results. Probably the agreement be-
tween computational and experimental results can be improved employing
other harmonic models (for example, the AH model) and avoiding the ap-
proximation J = I: an attempt in this direction would benefit from the
implementation of an analytical formulation of the gradient for the ionized
states, in order to limit the required computational effort. Serious concerns
about the anharmonicity of the ionized states PESs or about the reliability
of cartesian-based normal coordinates seems to be unmotivated (in the light
of the semi-rigid nature of the molecular system), but cannot be excluded.
On the basis of the low agreement between computational and experimental
results for what concerns purely electronic calculations at OVGF/maug-cc-
pVTZ level of theory (see fig. 3.7c and table C.5) the reliability of the OVGF
method for the numerical calculation of the gradient can be questioned. As
mentioned above, the discrepancy between experimental and computational
results turned out at OVGF/maug-cc-pVTZ level of theory does not imply
(at least not necessarily) the failure of the diagonal approximation to the
electron propagator matrix. In order to verify whether the partial inclu-
sion of the third order corrections is (at least partially) responsible for the
observed discrepanciesb, an attempt to compute the numerical gradients at
D2/maug-cc-pVTZ level of theoryc has been done: again, the disagreement
between computational and experimental results remains evident. Another
issue is the adequacy of the basis set: despite the good results obtained in
this work for the other molecular systems studied, an improvement of the

aThis is not clear from the spectra displayed in fig. 3.8 because the intensities are
reported in arbitrary units (i.e. only the relative intensities in the same spectrum can be
compared).

bThe OVGF method is based on a partial inclusion of the third-order corrections to the
diagonal elements of the electron propagator matrix; for more details, see section 3.1.2.

cI.e. only the second-order correction to the diagonal elements of the electron propa-
gator matrix are retained; for more details, see section 3.1.2.
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results with the employment of other basis (for example, the aug-cc-pVTZ
basis set) cannot be excluded. Other calculations are left for future studies,
for which the availability of an implementation of the analytic gradients for
the ionized states and a more resolved experimental UPS spectrum would
be extremely useful.
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Conclusions and perspectives

In the light of the results provided in this thesis, the usefulness of the compu-
tational approaches introduced and discussed in the previous chapters should
be recognized. However, the comparison between computational results and
experimental observables shows limitations that should be explicitly men-
tioned.

The computational protocols introduced in chapter 1 for the construction
of PESs (in other words, for the approximation of the potential energy term
in the nuclear hamiltonian) can be regarded as an essential instrument in the
toolkit of quantum chemists. The limitations of these protocols are mainly
due to the growth of the computational cost associated to (i) the lack of an-
alytical gradients and hessians for certain electronic calculation method and
(ii) to the increase of the global PES dimensions with the number of atoms of
the molecular system investigated. The applications discussed in section 1.3
support the usefulness of carefully devised curvilinear coordinate systems for
the dimensionality reduction of global PESs. The results provided in sec-
tion 1.3 can be employed to construct a nuclear hamiltonian: in this manner,
a direct comparison between the energy levels (which are the solutions of the
associated TINSE) and the experimental transitions (probed by high resolu-
tion spectroscopies, e.g. microwave or far infrared spectroscopies) could be
carried out. For the construction of such a nuclear hamiltonian, a formula-
tion of the kinetic energy operator in curvilinear coordinates is needed (see
section 2.1).

Solutions of the TINSE were calculated and discussed in the previous
chapters (see sections 2.4 and 3.3): a good agreement between experimental
and calculated transition energies was obtained for almost all the molecular
systems investigated. In order to reproduce an experimental spectrum, the
computational reproduction of transition energies must be combined with a
reliable simulation of the intensities. For what concerns intensities, in certain
cases the agreement between the computational results and the experimental
data is poor. Some of the possible reasons of these discrepancies were al-
ready pointed out. In particular, the computational approaches introduced
in chapters 2 and 3 (see sections 2.2, 2.3 and 3.2) are not suitable to take into
account the contributions of flexible motions to the overall spectra. In the
group of prof. Barone, some efforts are devoted to overcome this limitation
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(see, for example, ref. 265).
Limits and discrepancies briefly summarized above should not be under-

estimated. However, some interesting achievements should be mentioned.
More specifically, the accurate calculation of VCD spectra of organometal-
lic molecules is not a trivial task, especially at anharmonic level. The very
good agreement between experimental and calculated VCD spectra of 5−Rp
and 5 − Sp (see subsection 2.4.2) is an outstanding achievement. Another
relevant achievement is the validation (for semi-rigid molecular systems) of
a computational protocol for the calculation of vibrationally resolved UPS
spectra (see section 3.3).

In conclusion, in this thesis a series of computational approaches to
the simulation of vibrational signatures in molecular spectroscopy were dis-
cussed. Strength and limitations were outlined and verified through a com-
parison of a number of calculated data with their experimental counterparts.
The results provided in this thesis definitely support the need of taken into
account the effects of nuclear motions for an accurate reproduction of high
resolution molecular spectra.



Appendix A

A.1 Specify nuclear positions: the choice of the co-
ordinate system

The choice of the coordinate system employed to deal with the positions of
nuclei is a technical aspect of pivotal importance. A concise discussion of
this aspect is provided due to its relevance for a number of topics treated in
this thesis (e.g. optimization procedures and PESs representations, see chap-
ter 1). The nuclei of a molecular system are treated as a system of points with
masses (specified by the corresponding atom type), and in principle several
coordinate systems can be employed to specify their positions. In practice,
the choice of the coordinate system affects computational procedures (such
as the number of single point calculations needed for the convergence of an
optimization algorithm, see Sections 1.1.1 and 1.2.1) and their mathematical
formulations.

• If a cartesian coordinate system is chosen, the positions of the nuclei
are specified with a number of 3N coordinates (3 for each nucleus, N
is the total number of atoms). Despite its simplicity, this coordinate
system has a number of relevant drawbacks: it is not the natural choice
for the description of molecular motions and contains redundant infor-
mation about an isolated molecular system (the position of the origin,
fixed with 3 coordinates, and the orientation of the molecular system,
fixed with other 3 coordinates). However, many useful mathematical
and physical quantities obtained with electronic structure calculations
are almost always given in terms of cartesian coordinate system. Fur-
thermore, the employment of a cartesian coordinate system can be still
useful in the context of molecular structure optimizations (an example
is the optimization of complex polycyclic molecular systems), although
the employment of carefully devised redundant internal coordinate sys-
tems can further increase the efficiency of commonly used optimization
algorithms;

• The employment of an internal coordinate system is advantageous in
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many cases. Several types of internal coordinate systems have been
devised, and here only a brief account of the most popular and common
ones is given. The relation between internal and cartesian coordinates
can be written as a Taylor series:

si =
N∑
j=1

3∑
α=1

∂si
∂rjα

(rjα − reqjα)

+

N∑
j,k=1

3∑
α,β

∂2si
∂rjα∂rkβ

(rjα − reqjα)(rkβ − reqkβ) +O[(r− req)2]

(A.1)

In eq. A.1, the second-order expansion is reported. The internal co-
ordinates are set to 0 in correspondence of the equilibrium structure
of the molecular system. In literature the first derivatives ∂si

∂rjα
are

gathered into a matrix B called the Wilson’s B matrix34.

The specific internal coordinate system chosen determines the dimen-
sions of the B matrix and the number of elements si employed to
specify the structure of the molecular system (and gathered in a vec-
tor s). The minimum number of elements needed to completely specify
the structure of the molecular system is equal to 3N − 6. A set of lin-
early independent internal coordinates s with 3N − 6 elements is a
non-redundant internal coordinate system: example of non-redundant
internal coordinates are the normal coordinates Qa and the so-called
Z-matrix type coordinates , constructed by means of a limited num-
ber of bond lengths, valence angles and dihedral angles (the so-called
primitive internal coordinates). When a set of internal coordinates s
with more than 3N − 6 elements is employed, a certain degree of re-
dundancy is introduced and the set constitutes a redundant internal
coordinate system (for example, the set of all the primitive internal
coordinates for a polyatomic molecule is intrinsically redundant). The
normal coordinate system is an example of internal coordinate system
that is related to the cartesian coordinate system by a simple linear
transformation (i.e. the relation between cartesian and internal coor-
dinates is defined with a truncation to the first-order of the series given
in equation A.1). This kind of coordinate systems are called rectilinear
internal coordinate systems, with s given in matrix notation by:b

s = B(r− req). (A.2)

aThis coordinate system is introduced and extensively discussed in ref. 34
bIn the case of the normal coordinate system, the coordinates r are mass-weighted (see

ref. 34).
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The internal coordinate systems which cannot be related exactly to
a cartesian framework with a simple linear transformation are called
curvilinear internal coordinate systems (eq. A.2 is adopted also for
curvilinear internal coordinate systems, but should be considered an
approximation which is rigorously valid only for small displacementsa).
Z-matrix type coordinates or the Cremer-Pople ring puckering coordi-
nates employed in this thesis (see Chapter 1) are examples of curvilin-
ear internal coordinates.

Direct and inverse transformation of the set of nuclear positions r, of the
gradient gb and of the hessian Hc between two coordinate systems deserves
some comments.

Gradients and hessians in cartesian coordinates (gr and Hr) can be ob-
tained in a straightforward manner (if the B matrix and its derivatives with
respect to the cartesian coordinates B′d are known):

gr = BTgs (A.3)

Hr = BTHsB + B′
T
gs (A.4)

Where gs and Hs are, respectively, gradient and hessian expressed in in-
ternal coordinates; eqs. A.3 and A.4 can be easily derived from the definitions
of g and H and from eq. A.1e.

For what concerns the inverse transformations the mathematical formu-
lation is more complicated. For a transformation of g and H from cartesian
to internal non redundant coordinates the mathematical problem is the in-
version of the BT matrix, which is rectangular and therefore not invertible:f

the solution30 lies in the existence of a set of matrices labeled with (BT )−1

which satisfy the following relation:

aThis approximation is employed and discussed for primitive internal coordinates in
ref. 34; see ref. 266 for the first article (to the best of the author’s knowledge) in which
this approximation is presented and exploited.

bthis quantity is a vectorial function of the coordinates of the nuclei, the elements of
which are defined (in cartesian coordinates) as giα = ∂Em

∂riα
.

cH can be represented as a square matrix (its dimensions depend on the coordinate
system adopted) with elements defined (in cartesian coordinates) as Hiα,jβ = ∂2Em

∂riα∂rjβ
.

dThe elements of B′ are the factors ∂2si
∂rjα∂rkβ

of eq. A.1.
eFor the derivation of eq. A.4, see also eq. 5 of ref. 24 and its explanation; another clear

presentation of eqs. A.3 and A.4 can be found at the beginning of Section II of ref. 267,
where B and B′ are recognized and labeled as, respectively, a jacobian matrix and its
derivatives.

fFrom the physical point of view, the problem is a consequence of the lack of uniqueness
of the transformation from internal, non-redundant coordinates to cartesian, redundant
coordinates. An interesting discussion about the inversion of this kind of rectangular
matrices can be found in ref. 268.
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(BT )−1BT = I (A.5)

where I is the square, unit matrix. A matrix satisfying eq. A.5 can be
used in the following relations, which provides gs(nr) and Hs(nr) i.e. the
gradient and the hessian in internal, non redundant coordinatesa:

gs(nr) = (BT )−1gr (A.6)

Hs(nr) = (BT )−1(Hr − gTs(nr)B
′)[(BT )−1]T (A.7)

The matrix (BT )−1 can be obtained calculating the Moore-Penrose in-
verse30, which is the pseudoinverse computed with the following expression:

(BT )−1 = (BuBT )−1Bu = G−1Bu (A.8)

Where u must be a square matrix of suitable dimensions (various choices
are possible24,26,30: it can be set equal to the unit matrix24,26). If the matrix
u is chosen to be a diagonal matrix with triplets of the inverse mass of each of
the nuclei pertaining to the molecular system under investigation the square
matrix G is equal to the spectroscopic G matrix34.

In the case of the transformation of g and H from cartesian to internal
redundant coordinates an additional problem arise; in this case, the diago-
nalization of the G matrix introduced in eq. A.8 can be easily accomplished:

G
[
U R

]
=
[
U R

] [λ 0
0 0

]
. (A.9)

Eq. A.9 is an eigenvalue equation: U (which is a matrix of dimensions
(n+ r)× n) is the set of n nonredundant eigenvectors (where in the general
polyatomic case n = 3N − 6) corresponding to nonzero eigenvalues (λ > 0),
while R (with dimensions (n+ r)× r) is the set of r redundant eigenvectors
corresponding to zero eigenvalues (λ = 0). In this case (i.e. when a diagonal
matrix has elements of the diagonal equal to zero), the G has no inverse.
The devised solution is the definition of a generalized inverse 26, often labeled
as G− and obtained in the following manner24,26:[

UT

RT

]
G
[
U R

]
=

[
λ 0
0 0

]
(A.10)

G− =
[
U R

] [λ−1 0
0 0

] [
UT

RT

]
(A.11)

asee, for example, eqs. 5a and 5b of ref. 54
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In eq. A.10, the diagonalization of G is accomplisheda: the generalized
inverse G− is obtained inverting the diagonal elements of the diagonalized
G matrix and transforming it back (eq. A.11). This solution has opened
the possibility of performing a geometry optimization directly in redundant
internal coordinates: gs(r) and Hs(r), which label, respectively, the gradient
and the hessian in internal, redundant coordinates are given in the following
two equations:

gs(r) = G−Bugr (A.12)

Hs(r) = G−Bu(Hr − gTs(r)B
′)uTBTG−. (A.13)

Another relevant point is the transformation of the nuclear positions of a
molecular system given in internal coordinates s in a set of nuclear positions
r given in cartesian coordinates: a brief account of this problem is provided
at the end of Section 1.1.1 (see in particular eq. 1.20) due to its importance
for geometry optimization procedures.

aIt is worthwhile to remember the validity of the following relation, which is a conse-
quence of the spectral theorem: G = P−1DP = PTDP, where G is a symmetric matrix
(i.e. a matrix which is equal to its transpose matrix, G = GT ), D is a diagonal matrix
and P is an orthogonal matrix (i.e. with a transpose matrix which is equal to the inverse,
PT = P−1).
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Appendix B

B.1 Additional remarks on the formulation of ki-
netic energy operators in curvilinear coordi-
nates

Various implicit formulations (i.e. formulations which do not specify ex-
plicitly the relation between generalized internal and cartesian coordinates)
of the KEO in curvilinear coordinates are available in literature. A short
account of these formulations is provided here for the interested reader.

As starting point, it can be useful the overview given in ref. 126, in
which the equivalence of the different formulations and their dependence on
a series of arbitrary choices (i.e. normalization convention adopted for the
wavefunction and the choices related to the momentum operators) are shown
and discussed.

The derivation of the formulation provided in chapter 2 (see eqs. 2.14, 2.15
and 2.16) of this thesis can be found in chapter 6 of ref. 3 where the existence
of two refuses must be pointed out. In the right hand side of eqs. 6.73 and
6.76 of ref. 3 the following term:

3N∑
i=1

Gij(q)
(∂ ln J(q)

∂qi
+
∂Gij(q)

∂qi

)
(B.1)

must be replaced with:

3N∑
i=1

[
Gij(q)

(∂ ln J(q)

∂qi

)
+
∂Gij(q)

∂qi

]
(B.2)

Adopting B.2 instead of B.1 the formulation given in eqs. 6.74, 6.75 and
6.76 of ref. 3 is perfectly equivalent to the formulation given in eqs. 5, 6 and
7 of ref. 125 and in this thesisa. Moreover, the reorganization of T̂ presented

ain this thesis g(q) is employed in place of the jacobian J(q); between the two quantities
the following relation exists: J =

√
g; therefore ln J = 1

2
ln g; it should be noticed that

in ref. 126 a different convention is adopted: in that case g = J−2 instead of the most
popular g = J2 adopted in almost all the other references.
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in eq. 6.72 of ref. 3 is perfectly equivalenta to eq. 2.33 of ref. 126.
All the formulations of the KEO in curvilinear coordinates cited and pro-

vided until now (eqs. 2.14, 2.15 and 2.16 in chapter 2 of this thesis, ref. 125,
subsection 6.2.1 of ref. 3 and section 2 of ref. 126) are constructed to act on
a wavefunction normalized with the help of the euclidean volume element
dτ (c) = dr11dr12dr13dr21...drN3.

In another formulation of the KEO in curvilinear coordinates (due to
Meyer and Günthard)269 a different normalization convention is adopted,
with the volume element dτ (i) = dq1dq2dq3...dq3N adopted for the normal-
ization of the wavefunctionb. The vibrational part of the KEO in curvilinear
coordinates can be written, according to Meyer and Günthard, as followsc:

T̂ (i) = −1

2
~2

3N−6∑
i=1

3N−6∑
j=1

[( ∂

∂qi
+

1

4

∂ ln g

∂qi

)
Gij
( ∂

∂qj
− 1

4

∂ ln g

∂qj

)]
(B.3)

Where all the terms have been already defined (see section 2.1). Eq. B.3
can be developed in the following manner:

T̂ (i) =− 1

2
~2

3N−6∑
i=1

3N−6∑
j=1

[
∂

∂qi

(
Gij

∂

∂qj

)
− 1

4

∂

∂qi

(
Gij

∂ ln g

∂qj

)
+

+
1

4

(∂ ln g

∂qi

)
Gij

∂

∂qj
− 1

16

(∂ ln g

∂qi

)
Gij
(∂ ln g

∂qj

)]
=

=− 1

2
~2

3N−6∑
i=1

3N−6∑
j=1

[
∂

∂qi

(
Gij

∂

∂qj

)
− 1

4

(∂Gij
∂qi

)(∂ ln g

∂qj

)
+

− 1

4
Gij

∂2 ln g

∂qi∂qj
− 1

4

(∂ ln g

∂qj

)
Gij

∂

∂qi
+

1

4

(∂ ln g

∂qi

)
Gij

∂

∂qj
+

− 1

16

(∂ ln g

∂qi

)
Gij
(∂ ln g

∂qj

)]
= −1

2
~2

3N−6∑
i=1

3N−6∑
j=1

[
∂

∂qi

(
Gij

∂

∂qj

)
+

− 1

4

(∂Gij
∂qi

)(∂ ln g

∂qj

)
− 1

4
Gij

∂2 ln g

∂qi∂qj
− 1

16

(∂ ln g

∂qi

)
Gij
(∂ ln g

∂qj

)]
.

(B.4)

ataking into account a slight rearrangement and avoiding an evident refuse (two plus
signs instead of one), in eq. 6.72 of ref. 3.

bIn other words, the coordinate dependence of the jacobian is included in the wave-
function; indeed, the euclidean volume element can be written in the following manner:
dτ (c) = dr11dr12dr13dr21...drN3 = J(q)dq1dq2dq3...dq3N

cThere is a wrong index in the last equation (3.29) of the original article269: the term(
∂

∂Sk′
− 1

4
∂ ln g
∂Sk

)
should be replaced with

(
∂

∂Sk′
− 1

4
∂ ln g
∂Sk′

)
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When the normalization convention based on the volume element dτ (i)

is employed, a pseudo-potential term (which does not depend on momenta)
can be defined:

V̂ ′(q) =
1

8
~2

3N−6∑
i=1

3N−6∑
j=1

[(∂Gij
∂qi

)(∂ ln g

∂qj

)
+Gij

∂2 ln g

∂qi∂qj
+

1

4

(∂ ln g

∂qi

)
Gij
(∂ ln g

∂qj

)]
.

(B.5)
Employing the pseudopotential defined in eq. B.5, the result of eq. B.4

can be written as follows:

T̂ (i) = −1

2
~2

3N−6∑
i=1

3N−6∑
j=1

[
∂

∂qi

(
Gij

∂

∂qj

)]
+ V̂ ′. (B.6)

Eqs. B.6 and B.5 are the same provided, respectively, in eqs. 15 and 20
of ref. 270.

The first formulation of the KEO for generalized coordinate systems (due
to Podolski)123 can be easily recovered employing the following relations:

∂

∂qi
+

1

4

∂ ln g

∂qi
= g−

1
4
∂

∂qi
g

1
4 (B.7)

∂

∂qi
− 1

4

∂ ln g

∂qi
= g

1
4
∂

∂qi
g−

1
4 (B.8)

With eqs. B.7 and B.8, the right hand side of eq. B.3 can be rearranged
as follows:

T̂ (i) = −1

2
~2

3N−6∑
i=1

3N−6∑
j=1

g−
1
4

[
∂

∂qi
g

1
2Gij

( ∂

∂qj
g−

1
4

)]
. (B.9)

Eq. B.9 is exactly the formulation suggested by Podolski123 when the
volume element dτ (i) is adopted for the normalization of the wavefunction.
This formulation can be easily partitioned: eq. B.6 is obtained, exactly as
in the case of the formulation of Meyer and Günthard. The pseudopotential
given in eq. B.5 can be further manipulated:
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V̂ ′(q) =
1

8
~2

3N−6∑
i=1

3N−6∑
j=1

[(∂Gij
∂qi

)(∂ ln g

∂qj

)
+Gij

∂2 ln g

∂qi∂qj
+

1

4

(∂ ln g

∂qi

)
Gij
(∂ ln g

∂qj

)]

=
1

8
~2

3N−6∑
i=1

3N−6∑
j=1

[
1

g

(∂Gij
∂qi

∂g

∂qj

)
+Gij

∂

∂qi

(1

g

∂g

∂qj

)
+
Gij

4g2

( ∂g
∂qi

)( ∂g
∂qj

)]

=
1

8
~2

3N−6∑
i=1

3N−6∑
j=1

[
1

g

(∂Gij
∂qi

∂g

∂qj

)
+
Gij

g

( ∂2g

∂qi∂qj

)
− Gij

g2

( ∂g
∂qi

)( ∂g
∂qj

)
+

+
Gij

4g2

( ∂g
∂qi

)( ∂g
∂qj

)]
=

1

8
~2

3N−6∑
i=1

3N−6∑
j=1

[
1

g

(∂Gij
∂qi

∂g

∂qj

)
+
Gij

g

( ∂2g

∂qi∂qj

)
+

− 3Gij

4g2

( ∂g
∂qi

)( ∂g
∂qj

)]
.

(B.10)

Some authors (see, for example, eq. 3.6 of ref. 129) provide the pseu-
dopotential V̂ ′(q) with the formulation given in the last term of eq. B.10.
A simple prescription can be employed to modify the KEO in curvilinear
coordinates when the normalization convention is changeda:

T̂ (i) = g
1
4 T̂ (c)g−

1
4 (B.11)

For example, applying the prescription to eq. B.9, the following expres-
sion of the KEO in curvilinear coordinates for a wavefunction normalized
with the euclidean volume element will be obtained123,129:

T̂ (c) = −1

2
~2

3N−6∑
i=1

3N−6∑
j=1

g−
1
2

( ∂

∂qi
g

1
2Gij

∂

∂qj

)
. (B.12)

With simple manipulations, the vibrational part of the formulation given
in eq. 2.14 can be easily recovered from eq. B.12.

B.2 The perturbative formulation of the nuclear
hamiltonian

In a formulation based on perturbative theory, the terms involved in the
hamiltonian matrix are expanded in order of importance with the help of an
arbitrary ordering parameter:

aSee, for example, ref. 123, subsection 6.2.2 of ref. 3 and section 4 of ref. 126; instead
of applying the prescription to the KEO, it is possible to obtain the same results applying
the same prescription to the single momentum operators appearing in the expression of
the kinetic energy.
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Ĥ = Ĥ0 + λĤ ′ + λĤ ′′ + ... (B.13)

If the parameter λ is set equal to 1 and the expansion is truncated at
second order, eq. B.13 can be written as follows:

Ĥ = Ĥ0 + Ĥ ′ + Ĥ ′′ (B.14)

In eqs. B.13 and B.14, Ĥ0 is the harmonic hamiltonian given in eq. 2.17:

Ĥ0 =
1

2

(
3N−6∑
k=1

P̂k +
3N−6∑
i=1

λkQ̂
2
k

)
(B.15)

The expression given in eq. B.15 can be formulated in terms of dimen-
sionless operators employing the following transformations and remembering
that λk = (2πcωk)

2:

qk =

(
λk
~2

) 1
4

Q̂k; (B.16)

pk =

(
1

λk~2

) 1
4

P̂k; (B.17)

Where Q̂k is mass-weighted (with dimensions [M ]
1
2 [L]) and P̂k is defined

according to eq. 2.9 (and therefore with dimensions [M ]
1
2 [L][T ]−1). Employ-

ing eqs. B.16 and B.17, Ĥ0 can be written as follows:

Ĥ0 =
1

2
hc

{
3N−6∑
k=1

ωk(p
2
k + q2

k)

}
(B.18)

Again, exploiting eq. B.16 the Taylor expansion of the potential energy
given in eq. 1.21 can be written in the following manner:

V̂ = hc

{
1

2

3N−6∑
i=1

ωiq
2
i +

1

3!

3N−6∑
ijr

φijrqiqjqr +
1

4!

3N−6∑
ijrs

φijrsqiqjqrqs

}
. (B.19)

φijr and φijrs are respectively the cubic and quartic force constants (re-
ferred to a potential expanded with non-restrictive summations, see Section
2 of ref. 137 and appendix 1 of ref. 271 for more details). The term Ĥ ′ on
the right hand side of eq. B.14 is constructed with the cubic contributions
to the potential energy of eq. B.19:

Ĥ ′ = hc

{
1

3!

3N−6∑
ijr

φijrqiqjqr

}
. (B.20)
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For what concerns the term Ĥ ′′, it is important to remember that vi-
brational and rotational wavefunctions are not completely separable. If the
vibro-rotational coupling is taken into account, it turns out (see ref. 137 for
the derivation) that an additional contribution to the quartic contributions
to the potential energy must be included in the expression of Ĥ ′′, which is
the vibrational angular momentum term. Therefore, Ĥ ′′ can be written as
follows:

Ĥ ′′ = hc

{
1

4!

3N−6∑
ijrs

φijrsqiqjqrqs +
1

2

3∑
αβ

µαβπ̂απ̂β

}
. (B.21)

Equation 2.18 is obtained inserting eqs. B.18, B.20 and B.21 in eq. B.14.

B.3 Separability of the wavefunction beyond the
Born-Oppenheimer approximation

In what follows, a generalization of the Born-Oppenheimer (BO) hamiltonian
is presenteda. A brief derivation is provided, and the separability of the
first order expansion of its solutions is demonstrated. The eigenfunctions
of the hamiltonian adopted in this section are suitable for the calculation
of the electronic contribution to the magnetic transition dipole moment,
which is equal to zero in the framework of the BO approximation (because〈
φG
∣∣ m̂el

∣∣φG〉 = 0 if the BO approximation is employed).

The hamiltonian and the eigenvalue problem The BO approximation
can be briefly summarized with eqs. 7-9. The pivotal assumption behind the
BO approximation is the commutative property between T̂n and φe, namely
the equality T̂nφe = φeT̂n. In other words, the terms of the typeb −1

2
∂2φe
∂r2
a

and −(∂φe∂ra
) ∂
∂ra

are omitted in the BO approximation,272 and the molecular
hamiltonian can be written as follows:

ĤBOφe(ξ; r)χev(r) = [Ĥel(r) + T̂n]φe(ξ; r)χev(r) ≈
≈ φe(ξ; r)[Ee(r) + Tn]χev(r) = Eveφe(ξ; r)χev(r).

(B.22)

A correction of the first order to the BO approximation can be easily
obtained retaining the terms of T̂n which contain the first order derivatives
of φe (which are omitted in eq. B.22)c:

aIn essence, the derivation proposed in this subsection is based on the material provided
in sections 4.1.2 and 4.1.3 of ref. 150.

bThe following relation holds: T̂nφe = − 1
2
∂2φe
∂r2a
− ( ∂φe

∂ra
) ∂
∂ra
− φe 1

2
∂2

∂r2a
.

chereafter in this section, the Planck constant is explicitly written (in atomic units,
~ = 1 and therefore can be omitted).
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ĤNBO = ĤBO −
N∑
j

3∑
α

[ ~2

mj

( ∂

∂rjα

)
el

( ∂

∂rjα

)
nucl

]
. (B.23)

In general, the solution of eq. B.23 is a wavefunction which cannot be
partitioned to give the product of nuclear and electronic wavefunctions. If
the last derivative of eq. B.23 is converted and treated as a classical nu-
clear velocity coordinate (and not as a quantum mechanical operator), a
new parametric dependence is added to the electronic wavefunction and the
separability of the solution in a product of nuclear and electronic wavefunc-
tions is retained273. Employing the relationship ( ∂

∂rjα
)nucl = imj

ṙjα
~ the

molecular hamiltonian can be written in the following manner:

ĤCA = ĤBO − i~
N∑
j

3∑
α

[( ∂

∂rjα

)
el
ṙjα

]
. (B.24)

The hamiltonian given in eq. B.24 is often called Complete Adiabatic
(CA) Hamiltonian. The electronic part of the CA hamiltonian is the follow-
ing:

ĤCA
el (r, ṙ) = ĤBO

el (r)− i~ ∂
∂r
ṙ. (B.25)

The CA electronic wavefunctions are solutions of the eigenvalue problem
associated to the hamiltonian operator given in eq. B.25:

ĤCA
el (r, ṙ)φCAe (ξ; r, ṙ) = ECAe (r, ṙ)φCAe (ξ; r, ṙ). (B.26)

The dependence of the CA electronic wavefunctions on both nuclear po-
sitions and velocities is parametric (the parametric variable ṙ of eq. B.26 can
be converted into the corresponding quantum operator when an integration
over the nuclear coordinates is performed, after the determination of the CA
electronic wavefunction).

The CA eigenfunctions To show the separability of the CA eigenfunc-
tions, the first order expansion of the CA wavefunctions can be written
combining the lowest order of the nonadiabatic BO correction termsa and
an Herzberg-Teller (HT) expansion . Through the HT expansion the nuclear
positions dependence of the electronic wavefunction is taken into accountb:

aActually, to show the separability of the first order expansion of the CA eigenfunctions
only the development of the nonadiabatic BO correction terms is needed (eqs. B.31-B.35).

bThe superscript 0 for electronic wavefunctions and energies (and the subscript 0 for
derivatives) is referred to the nuclear positions
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φe(ξ; r) ≈ φ0
e(ξ)−

N∑
j

3∑
α

∑
s 6=e

[〈φ0
s

∣∣∣∣ (∂ĤBO
el (r)
∂rjα

)
0

∣∣∣∣φ0
e

〉
E0
s − E0

e

φ0
s(ξ)rjα

]
. (B.27)

Eq. B.27 can be rewritten in the following manner:

φe(ξ; r) ≈ φ0
e(ξ) +

N∑
j

3∑
α

[(∂φe(ξ)

∂rjα

)
0
rjα

]
. (B.28)

To derive eq. B.28 starting from eq. B.27, the following relationship has
been exploited (see, for example, eq. 6 of ref. 274):

(∂φe(ξ)

∂rjα

)
0

= −
∑
s 6=e

[〈φ0
s

∣∣∣∣ (∂ĤBO
el (r)
∂rjα

)
0

∣∣∣∣φ0
e

〉
E0
s − E0

e

φ0
s(ξ)

]
. (B.29)

Another expression of the HT expansion (equivalent to eqs. B.27 and B.28)
is the followinga:

φe(ξ; r) ≈ φ0
e(ξ) +

∑
s 6=e

N∑
j

3∑
α

[〈
φ0
s

∣∣∣∣ (∂φe(ξ)

∂rjα

)
0

〉
rjαφ

0
s(ξ)

]
. (B.30)

To take into account the nonadiabatic BO correction terms, the term
−
∑N

j

∑3
α

[
~2

mj

(
∂

∂rjα

)
el

(
∂

∂rjα

)
nucl

]
(part of the nuclear kinetic energy terms

omitted in the BO approximation) is used as perturbation operator:

ψNBOev (ξ, r) ≈ φe(ξ, r)χev(r)+

+
∑
su 6=ev

N∑
j

3∑
α

[
~2

mj

〈
φs

∣∣∣ ∂
∂rjα

∣∣∣φe〉〈χsu ∣∣∣ ∂
∂rjα

∣∣∣χev〉
Eus − Eve

φs(ξ, r)χsu(r)

]
(B.31)

Although ψNBOev (ξ, r) is a non-separable wavefunction, the RHS of eq. B.31
can be written in the following mannerb:

aTo derive eq. B.30 from eqs. B.27-B.29, the relationships
∑
e

∣∣φ0
e

〉 〈
φ0
e

∣∣ = 1 and〈
φ0
e

∣∣∣ ( ∂φe(ξ)
∂rjα

)
0

〉
= 0 have been employed (see eq. 2.83 of ref. 150).

bthe relationship ( ∂
∂rjα

)nucl = imj
ṙjα
~ is used to convert the quantum operator

( ∂
∂rjα

)nucl into its classical analogue.



B.3. VIBRONIC COUPLING THEORY 153

φe(ξ, r)χev(r)+

+i~
∑
su 6=ev

N∑
j

3∑
α

[〈
φs

∣∣∣ ∂
∂rjα

∣∣∣φe〉 〈χsu |χev〉 ṙjα
Eus − Eve

φs(ξ, r)χsu(r)

]
(B.32)

The energy denominator can be decomposed and approximateda as fol-
lows272,273:

1

Eus − Eve
=

1

E0
s − E0

e

− Eus − Eve − (E0
s − E0

e )

(Eus − Eve )(E0
s − E0

e )
≈ 1

E0
s − E0

e

. (B.33)

Adopting the approximation provided in eq. B.33, the vibronic details of
the excited states are neglected and therefore the summation over the excited
vibrational states can be carried out with the relationship

∑
u |χsu〉 〈χsu| = 1.

The expression of eq. B.32 can be rewritten in the following manner:

φe(ξ, r)χev(r)+

+i~
∑
s 6=e

N∑
j

3∑
α

[〈
φs

∣∣∣ ∂φe∂rjα

〉
ṙjα

E0
s − E0

e

φs(ξ, r)

]
χev(r).

(B.34)

Taking into account eqs. B.31-B.34, the first order expansion of the CA
wavefunction (with respect to the nuclear velocities) can be easily written:

ψCAev (ξ, r, ṙ) ≈

{
φe(ξ, r)+i~

∑
s 6=e

N∑
j

3∑
α

[〈
φ0
s

∣∣∣ ( ∂φe
∂rjα

)
0

〉
ṙjα

E0
s − E0

e

φ0
s(ξ)

]}
χev(r).

(B.35)
If the first term of the RHS of eq. B.35 is expanded (employing the HT

expansion, eq. B.30), the first order expansion of the CA wavefunction with
respect to nuclear velocities and positions is obtained:

ψCAev (ξ, r, ṙ) ≈

{
φ0
e(ξ)+

+
∑
s 6=e

N∑
j

3∑
α

[〈
φ0
s

∣∣∣∣ ( ∂φe∂rjα

)
0

〉
φ0
s(ξ)

(
rjα +

iṙjα
E0
s − E0

e

)]}
χev(r).

(B.36)
aThe approximation provided in eq. B.33 is not valid if a molecular system with low-

lying electronic states is considered. An extension valid for molecular systems with low-
lying electronic states can be found in ref. 275 (and is summarized in appendix C of
ref. 150).
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In eqs. B.35 and B.36 the separability of the first order expansion of
the CA wavefunction in a product of nuclear and elecronic wavefunctions is
evident.

The CA eigenvalues The calculation of the CA electronic eigenvalues
can be performed employing eq. B.26:

ECAe (r, ṙ) =
〈
φCAe (ξ; r, ṙ)

∣∣∣ ĤCA
el (r, ṙ)

∣∣∣φCAe (ξ; r, ṙ)
〉
. (B.37)

The influence of the velocity perturbation on ECAe (r, ṙ) can be estimated
through first order in perturbation theorya:

ECAe (r, ṙ) ≈
〈
φe(ξ; r)

∣∣∣∣ (ĤBO
el (r)− i~ ∂

∂r
ṙ)

∣∣∣∣φe(ξ; r)

〉
=〈

φe(ξ; r)
∣∣∣ ĤBO

el (r)
∣∣∣φe(ξ; r)

〉
− i~

〈
φe(ξ; r)

∣∣∣∣ ∂φe∂r

〉
ṙ =〈

φe(ξ; r)
∣∣∣ ĤBO

el (r)
∣∣∣φe(ξ; r)

〉
= Ee(r).

(B.38)

In eq. B.38, the relationship
〈
φe

∣∣∣ ∂φe∂rjα

〉
= 0 has been employed. There-

fore, ECAe (r, ṙ) = Ee(r) through first order in ṙ: as a consequence, at this
level of approximation the CA description does not affect the equilibrium
conformational structure, nor the electronic or vibrational energy levels.

B.4 Application of the Magnetic Field Perturba-
tion Theory to the calculation of the electronic
contribution to the magnetic transition dipole
moment

In what follows the first order approximation of the CA wavefunction derived
in the previous section (B.3) is employed to evaluate the transition integral
which involves the operator m̂el. The Magnetic Field Perturbation Theory
(MFPT) proposed by Stephens276 is exploited in order to avoid the explicit
sum over the excited electronic states introduced in the CA wavefunction
(see eqs. B.35 and B.36).

Taking into account eq. B.35, the following first order expansions can be
written:

ψCAGg ≈
[
φG +

∑
i 6=G

CG,iφi

]
χGg; (B.39)

aSee eqs. 10 and 11 of ref. 273.
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ψCAGe ≈
[
φG +

∑
i 6=G

CG,iφi

]
χGe; (B.40)

where:

CG,i = i~
N∑
j

3∑
α

[〈
φi

∣∣∣ ( ∂φG∂rjα

)〉
ṙjα

E0
i − E0

G

]
=

N∑
j

3∑
α

[
~2

mj

〈
φi

∣∣∣ ( ∂φG∂rjα

)〉
E0
i − E0

G

∂

∂rjα

]
.

(B.41)
Employing the CA wavefunction for the evaluation of the transition inte-

gral involving the operator m̂el and expanding the CA wavefunction through
first order perturbation theory (eqs. B.39-B.41), the transition integral can
be developed as follows:

〈
ψCAGg

∣∣∣ m̂el
∣∣∣ψCAGe 〉 ≈ 〈φGχGg ∣∣∣ m̂el

∣∣∣φGχGe〉+
∑
i 6=G

[
CG,i

〈
φGχGg

∣∣∣ m̂el
∣∣∣φiχGe〉 ]

+
∑
i 6=G

[
C∗G,i

〈
φiχGg

∣∣∣ m̂el
∣∣∣φGχGe〉 ]+

∑
i 6=G

∑
j 6=G

[
C∗G,iCG,j

〈
φiχGg

∣∣∣ m̂el
∣∣∣φjχGe〉 ] =

∑
i 6=G

[
CG,i

〈
φGχGg

∣∣∣ m̂el
∣∣∣φiχGe〉 ]+

∑
i 6=G

[
C∗G,i

〈
φiχGg

∣∣∣ m̂el
∣∣∣φGχGe〉 ] =

∑
i 6=G

[
CG,i

〈
φGχGg

∣∣∣ m̂el
∣∣∣φiχGe〉 ]−∑

i 6=G

[
C∗G,i

〈
φGχGe

∣∣∣ m̂el
∣∣∣φiχGg〉 ]

(B.42)

In eq. B.42, the term which involves the double summation has been
omitted (it is a second order term, while the first order terms only are needed
for the purposes here considered) and the BO term vanishesa. The results
of eq. B.42 are the starting point of a treatment based on the MFPT276

(the approximation provided in eq. B.33 is often introduced in a later stage,
while in the derivation given in this thesis has been already introduced for
the construction of the CA wavefunction).

The essential step of the MFPT is the recognition276 in the results of
eq. B.42 (more specifically, in the summation over the excited states) of
a first order perturbative term due to a magnetic field B. Employing the
interaction operator −m̂el · B the following result can be easily obtained
through first order perturbation theory:

∂φG
∂B =

∑
i 6=G

〈
φi
∣∣ m̂el

∣∣φG〉
E0
i − E0

G

φi. (B.43)

athe operator m̂el is hermitian and purely imaginary; therefore, if the electronic and
nuclear wavefunctions are real, the following properties hold (both employed in eq. B.42):〈
φGχGg

∣∣ m̂el
∣∣φGχGe〉 = 0 and

〈
φiχGg

∣∣ m̂el
∣∣φGχGe〉 = −

〈
φGχGe

∣∣ m̂el
∣∣φiχGg〉.
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The derivation provided in what follows is close to the one given in sec-
tion II D of ref. 157. The aim is to provide a formulation suitable for the
calculation of anharmonic VCD intensities. The first term after the last
equality of eq. B.42 can be rewritten in the following manner:

∑
i 6=G

[
CG,i

〈
φGχGg

∣∣∣ m̂el
∣∣∣φiχGe〉 ] =

〈
χGg

∣∣∣∣∣∣
∑
i 6=G

[
CG,i

〈
φG

∣∣∣ m̂el
∣∣∣φi〉 ]

∣∣∣∣∣∣χGe
〉

=

〈
χGg

∣∣∣∣∣∣
N∑
j

3∑
α

[
~2

mj

∑
i 6=G

〈
φG
∣∣ m̂el

∣∣φi〉 〈φi ∣∣∣ ( ∂φG∂rjα

)〉
E0
i − E0

G

∂

∂rjα

] ∣∣∣∣∣∣χGe
〉

=

−

〈
χGg

∣∣∣∣∣∣
N∑
j

3∑
α

[
~2

mj

∑
i 6=G

〈(
∂φG
∂rjα

) ∣∣∣φi〉 〈φi ∣∣ m̂el
∣∣φG〉

E0
i − E0

G

∂

∂rjα

] ∣∣∣∣∣∣χGe
〉

=

−

〈
χGg

∣∣∣∣∣∣
N∑
j

3∑
α

[
~2

mj

〈
∂φG
∂rjα

∣∣∣∣ ∂φG∂B

〉
∂

∂rjα

] ∣∣∣∣∣∣χGe
〉

=

−

〈
χGg

∣∣∣∣∣∣
N∑
j

3∑
α

[
~2

mj
Ajα

∂

∂rjα

] ∣∣∣∣∣∣χGe
〉
.

(B.44)

A is the symbol of the electronic part of the AAT, which is defined as
Ajαβ =

〈
∂φG
∂rjα

∣∣∣ ∂φG∂Bβ

〉
. In eq. B.44, the nature of m̂el (purely imaginary

and hermitian) and of φ (the electronic wavefunctions are assumed to be
real)a have been employed together with the relationship given in eq. B.43.
An analogous procedure can be employed for the development of the second
term after the last equality of eq. B.42:b

∑
i 6=G

[
C∗G,i

〈
φGχGe

∣∣∣ m̂el
∣∣∣φiχGg〉 ] = −

〈
χGe

∣∣∣∣∣∣
N∑
j

3∑
α

[
~2

mj
Ajα

∂

∂rjα

] ∣∣∣∣∣∣χGg
〉
.

(B.45)
If the results given in eqs. B.44 and B.45 are inserted in eq. B.42, the

following expression is obtained:

aThe following relations are consequences of these properties:
〈
φiχGg

∣∣ m̂el
∣∣φGχGe〉 =

−
〈
φGχGe

∣∣ m̂el
∣∣φiχGg〉 and 〈φi ∣∣∣ ( ∂φG∂rjα

)〉
=
〈(

∂φG
∂rjα

) ∣∣∣φi〉.
bThe purely quantum mechanical form of CG,i is real (see eq. B.41) and therefore

C∗G,i = CG,i.
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〈
ψCAGg

∣∣∣ m̂el
∣∣∣ψCAGe 〉 ≈ N∑

j

3∑
α

[
~2

mj

(〈
χGe

∣∣∣∣Ajα
∂

∂rjα

∣∣∣∣χGg〉−〈
χGg

∣∣∣∣Ajα
∂

∂rjα

∣∣∣∣χGe〉
)]

.

(B.46)

In the formulation of the electronic contribution to the vibrational mag-
netic transition dipole moment provided in eq. B.46 (and derived employing
first order perturbation theory)a the AAT depends on the nuclear positions.
In the original formulation based on MFPT the elements of the AATAjαβ(r)
are approximated by their values at the equilibrium geometry of the molec-
ular system investigated (A0

jαβ). With this approximation, the original for-
mulation can be easily recoveredb as showed in section II F of ref. 157:

N∑
j

3∑
α

[
~2

mj

(〈
χGe

∣∣∣∣Ajα(r)
∂

∂rjα

∣∣∣∣χGg〉−〈χGg ∣∣∣∣Ajα(r)
∂

∂rjα

∣∣∣∣χGe〉
)]
≈

N∑
j

3∑
α

[
~2A0

jα

mj

(〈
χGe

∣∣∣∣ ∂

∂rjα

∣∣∣∣χGg〉−〈χGg ∣∣∣∣ ∂

∂rjα

∣∣∣∣χGe〉
)]

=

−
N∑
j

3∑
α

[
2~2A0

jα

mj

〈
χGg

∣∣∣∣ ∂

∂rjα

∣∣∣∣χGe〉
]
.

(B.47)

The result of eq. B.47 is equal to the electronic part of eq. 40 of ref. 157.

B.5 More details on the local mode approximation

In what follows the protocols employed to calculate the quantities involved
in the expressions of energies (eq. 2.30) and intensities (IR, eq. 2.53, and
VCD, eq. 2.54) are briefly summarized.

aTo the best of the authors’ knowledge, the first derivation of a general formulation
explicitly taking into account the dependence of the AAT values from the nuclear positions
is given in ref. 157; the formulation given in ref. 157 (and in this thesis) was employed
in ref. 145 for what concerns local mode approximation and in ref. 149 to provide a
formulation of VCD intensities based on VPT2 method (and extended to two quanta
vibrational transitions, in contrast with the formulation given in ref. 157 which is suitable
only for fundamental vibrational transitions).

bBearing in mind that the operator ∂
∂rjα

(which is not hermitian) is antysimmetric for
what concerns the exchange of wavefunctions (see section II of ref. 272 or section II of
ref. 273), i.e.

〈
χGe

∣∣∣ ∂
∂rjα

∣∣∣χGg〉 = −
〈
χGg

∣∣∣ ∂
∂rjα

∣∣∣χGe〉.
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The evaluation of ωl and χll is performed numerically. A series of calcu-
lations is performed, each one corresponding to a different value of the X—H
internuclear distance z: quadratic (∂

2V
∂z2 , labeled as φll), cubic (∂

3V
∂z3 , labeled

as φlll) and quartic (∂
4V
∂z4 , labeled as φllll) force constants are evaluated by a

polynomial fitting of the energy associated to the different value of z. The
key assumption is the description of the energy dependence on the internu-
clear distance z through a Morse potential; with this assumption, ωl can be
easily obtained from φll

a:

ωl =
1

2πc

√
φll
µXH

, (B.48)

while χll is calculated employing φll, φlll and φllll:b

χll = − h

64π2µXH c

(5

3

φ2
lll

φ2
ll

− φllll
φll

)
(B.49)

For what concerns the intensities, Π0 andA0 can be easily extracted from
the output of an harmonic frequency calculationc, while the first derivatives
(the so-called electrical and magnetic anharmonicities) of their xz, yz and
zz components (for atoms X and H) can be easily obtained from the first-
order terms of a polynomial interpolation of these components versus the
internuclear distance z.

B.6 Identification and treatment of resonances

The reliability of calculations based on VPT2 approximation depend on the
availability of a computational protocol to identify and treat resonances.
Effects of resonances can be particularly relevant: this is the case of the an-
harmonic corrections for molecular systems with an high number of atoms.d

In what follows, a brief account of this topic is provided for the interested
reader.

Identification of resonances The following account is focused on FRs.
The simplest protocol which can be employed to identify two resonant states
is based on the numerical value of ∆ (with ∆ = |2ωi − ωj | for FRs of type
1 and ∆ = |ωi + ωk − ωj | for FRs of type 2). If ∆ is smaller than a cer-
tain threshold (chosen by the operator) the states are classified as resonant,

asee eq. 14 of ref. 147 and eq. 6 of ref. 277.
bSee eq. 7 of ref. 277; see also section 2 of ref. 147.
cthe implicit assumption is the employment of a quantum chemical software which

provides the numerical values needed to set up Π and A (this is the case of the Gaussian12

suite of programs).
dAnd therefore with an high number of internal degrees of freedom.
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otherwise not. This simple criterium provides a numerical estimation of
potentially divergent terms of diagonal and off-diagonal anharmonicity con-
stants (see eqs. 2.23 and 2.24). However, this estimation is based uniquely on
the magnitude of the denominator. An additional test to identify resonant
states was proposed by Martin and coworkers.139 In this section, an account
of the Martin’s test for FRs of type 1 is provided.a

Given a potential FR of type 1 (2ωi ≈ ωj), the first step is the calculation
of the numerical difference between full (χii and χij) and deperturbed (χ∗ii
and χ∗ij) anharmonicity constants:b

aThe conceptual framework of the Martin’s test can be employed also for the identifi-
cation of FRs of type 2 (see appendix A of ref. 139).

bTo write the expression of χ∗ii and χ∗ij , eqs. 2.23 and 2.24 can be employed. In the
case of χii, eq. 2.23 can be easily rewritten as follows:139

χii =
φiiii
16
−

3N−6∑
j=1

(8ω2
i − 3ω2

j )φ2
iij

16ωj(4ω2
i − ω2

j )
; (B.50)

where the second term on the RHS side of eq. 2.23 is included in the summation of
the last term on the RHS of eq. B.50 (which is not restricted to j 6= i, in contrast with
eq. 2.23). The term involved in the summation (RHS of eq. B.50) can be factored in the
following manner:

(8ω2
i − 3ω2

j )φ2
iij

16ωj(4ω2
i − ω2

j )
=
φ2
iij

32

( 1

2ωi + ωj
+

4

ωj
− 1

2ωi − ωj

)
; (B.51)

where the last term on the RHS of eq. B.51 is the potentially divergent term (the
denominator approaches zero when 2ωi ≈ ωj). The expression of χ∗ii is equal to the
expression of χii, except for the last term on the RHS of eq. B.51 (the potentially divergent
term), which is removed from the expression of χ∗ii.
χij can be rewritten in the following manner:

χij =
φiijj

4
−

3N−6∑
r=1

φiirφjjr
4ωr

+

3N−6∑
r=1

[ωr(ω2
i + ω2

j − ω2
r)φ2

ijr

2∆ijr

]
+

(ω2
i + ω2

j )

ωiωj

∑
α=a,b,c

Beqα {ζαij}2;

(B.52)

where second and third terms on the RHS of eq. 2.24 are collected in the sum of the
third term on the RHS of eq. B.52; similarly, fourth and fifth terms on the RHS of eq. 2.24
are collected in the sum of the second term on the RHS of eq. B.52 (in eq. A2 of ref. 139
the sign of the third term on the RHS is different, because ∆ijr = −Ωijr). The terms
involved in the summation (third term on the RHS of eq. B.52) can be factored as follows:

−
2ωr(ω

2
i + ω2

j − ω2
r)φ2

ijr

2∆ijr
=
φ2
ijr

8

( 1

ωi + ωj + ωr
+

1

−ωi + ωj + ωr

+
1

ωi − ωj + ωr
− 1

ωi + ωj − ωr

)
;

(B.53)

where the potentially divergent term is explicitly provided. As for the diagonal anhar-
monicity constants, χ∗ij is equal to χij except for the absence of the potentially divergent
term (the third one on the RHS of eq. B.53).
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χii − χ∗ii =
φ2
iij

32

( 1

2ωi − ωj

)
=

φ2
iij

32∆
; (B.54)

χij − χ∗ij = −
φ2
iji

8

( 1

ωi − ωj + ωi

)
= −

φ2
iij

8∆
. (B.55)

Eqs. B.54 and B.55 can be employed to calculate the following differences
between standard and deperturbed anharmonic transition frequencies:

[2νi]− [2νi]
∗ = 6(χii − χ∗ii) + (χij − χ∗ij) =

φ2
iij

16∆
; (B.56)

νj − ν∗j =
1

2
(χij − χ∗ij) = −

φ2
iij

16∆
. (B.57)

With eqs. B.56 and B.57, the numerical contribution of the potentially
divergent terms in the framework of second order perturbation theory (∆PT2)
can be written as follows (for FRs of type 1):a

2∆PT2 =
(

[2νi]− νj
)
−
(

[2νi]
∗ − ν∗j

)
=
φ2
iij

8∆
. (B.58)

The essential idea behind the Martin’s test is to compare the numerical
contribution of potentially divergent terms in the perturbative framework
(∆PT2) with the numerical contribution ∆var obtained with a variational
treatment. To obtain ∆var, a simple hamiltonian is constructed:b[

[2νi]
∗ Kij

Kij ν∗j

]
=

[
ν∗ + ∆∗ Kij

Kij ν∗ −∆∗

]
; (B.59)

where ν∗ is the average frequency of the deperturbed states [2νi]
∗ and

ν∗j , ∆∗ is their separation from the average value (∆∗ =
|[2νi]∗−ν∗j |

2 ). The
eigenvalues of the matrix B.59 can be easily written:

ν± = ν∗ ±∆∗

√
1 +

K2
ij

∆∗2
. (B.60)

Eq. B.60 can be easily developed with a Taylor series:

ν∗ ±∆∗

√
1 +

K2
ij

∆∗2
≈ ν∗ ±∆∗ ±

K2
ij

2∆∗
∓

K4
ij

8∆∗3
+ . . . . (B.61)

With the following two assumptions:
aActually, in eq. B.58 the numerical contribution of the potentially divergent terms is

referred to two different states ([2νi] and νj). Therefore, the result is equal to 2∆PT2.
bIn eq. B.59, [2νi]

∗ and ν∗j states interact between them but not with other states.
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2∆∗ ≈ ∆; (B.62)

Kij =

√
φ2
iij

16
=
φiij
4

; (B.63)

eq. B.60 can be rewritten and developed as follows:

ν± = ν∗ ±∆∗

√
1 +

K2
ij

∆∗2
= ν∗ ± ∆

2

√
1 +

φ2
iij

4∆2
≈

ν∗ ± ∆

2
±
φ2
iij

16∆
∓

φ4
iij

256∆3
+ . . . .

(B.64)

∆var can be defined in the following manner:

ν± = ν∗ ± ∆

2
±∆var ≈ ν∗ ±

∆

2
±
φ2
iij

16∆
∓

φ4
iij

256∆3
+ . . . . (B.65)

To estimate the magnitude of the resonance, eqs. B.58 and B.65 can be
employed. More specifically, the Martin’s test evaluate the magnitude of the
following difference:

|∆var −∆PT2| ≈
φ4
iij

256∆3
. (B.66)

In other words, to evaluate whether or not a resonance should be explic-
itly included in a subsequent variational procedurea the following conditions
can be employed:

∆ < t1; (B.67)

|∆var −∆PT2| > t2; (B.68)

where t1 and t2 are parameters chosen by the operator. In the Gaussian
suite of programs, this computational protocol is the default one for the
identification of resonances.

Despite its usefulness, the computational protocol based on inequali-
ties B.67 and B.68 have two important limitations. The first is the need
of two parameters (t1 and t2) which are somewhat arbitrary. To overcome
this limitation, another computational protocol (proposed by Truhlar and
coworkers)278 can be employed.b The second limitation is the limited relia-
bility of eq. B.68 to estimate the impact of FRs on IR and VCD intensities: a

aAnd therefore excluded from the perturbative treatment.
bFar from resonances, the reliability of the computational protocol proposed in ref. 278

is limited.
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FR which has a little impact on transition frequencies (and therefore do not
satisfy the inequality B.68) can have a relevant effect on IR and VCD intensi-
ties. In order to address this problem, a computational protocol to estimate
the impact of resonances on dipole and rotational strengths was proposed in
ref. 162 (and employed for the simulation of IR and VCD spectra provided
in section 2.4.1 of this thesis).

Treatment of identified resonances An explicit treatment of resonances
can be performed in different ways. For simplicity, in this paragraph only the
correction of anharmonic transition frequencies is addressed. A possible solu-
tion is the removal of the resonant terms from the anharmonicity constants:
this simple procedure is known as Deperturbed VPT2 (DVPT2).279 An alter-
native is the systematic replacement of all potentially resonant terms with a
correction devised to assure the non-resonant formulation of χ.278 This pro-
tocol is known as Degeneracy-corrected PT2 (DCPT2). Another approach
was proposed in ref. 280: the idea is to combine the best of DCPT2 and
VPT2 approaches. More specifically, the VPT2 protocol is employed far
from resonances, while the DCPT2 approach is employed for the correction
of resonant terms. This approach is known as Hybrid DCPT2 (HDCPT2).

The approach employed for almost all the anharmonic calculations pre-
sented in this thesis (see section 2.4) is known as Generalized VPT2 (GVPT2).
The idea behind this approach is simple. Resonant terms are identified
through a suitable computational protocola and removed from the pertur-
bative treatment: therefore, the first step is a DVPT2 calculation. After
this first step, the DVPT2 results and the contributions due to the reso-
nant terms are employed to build a matrix. This matrix has the following
structure: DVPT2 energies are included in the diagonal positions and the
interaction terms (due to resonances) are inserted in the off-diagonal posi-
tions.b The diagonalization of this matrix (i.e. a variational step) lead to
the GVPT2 energies.c

aFor example, the Martin’s test introduced in the previous paragraph.
bFor the sake of clearness, the following one is an example:



. . .
...

...
...

...
...

... . .
.

. . . εDV PT2
νi 0 . . . 0 . . . Ki,m . . .

. . . 0 εDV PT2
νj . . . Kj,kl . . . 0 . . .

. . .
...

...
. . . . . . . . . . . . . . .

. . . 0 Kj,kl

... εDV PT2
[νkνl]

. . . 0 . . .

. . .
...

...
...

...
. . . . . . . . .

. . . Ki,m 0
... 0

... εDV PT2
[2νm] . . .

. .
. ...

...
...

...
...

...
. . .



; (B.69)

where a FR of type 1 (2ωm ≈ ωi) and a FR of type 2 (ωk + ωl ≈ ωj) were previously
identified.

cFor an early example of this approach, see ref. 281.



B.7. 5−RP AND 5− SP : ADDITIONAL DETAILS 163

B.7 More details on the computational characteri-
zation of 5−Rp and 5− Sp

For what concerns molecular systems 1, 2, 3 and 4 additional data (not
given in this thesis) can be easily found in the original article. This is not
the case of 5 − Rp and 5 − Sp, because experimental and computational
data concerning IR and VCD spectra of these compounds have not been
published yet. Therefore, in what follows structures (figs. B.2-B.11), pop-
ulations (table B.1), IR and VCD spectra (fig. B.1, see tables B.2 and B.3
for their assignment) of the five most populated conformers of 5 − Rp and
5− Sp are provided.

conformer population conformer population

IRp 35.67% ISp 35.14%
IIRp 32.43% IISp 23.74%
IIIRp 14.90% IIISp 23.07%
IVRp 12.35% IVSp 11.30%
VRp 4.65% VSp 6.74%

Table B.1: populations of the relevant conformers calculated through Boltzmann
distribution (employing free energies and assuming a temperature of 298 K); struc-
tures optimized at B3PW91/Def2TZVP level of theory; frequencies calculated at
B3PW91/Def2TZVP level of theory; solvent effects taken into account with PCM.
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Figure B.1: IR and VCD spectra of the five most populated conformers of 5− Rp and
5 − Sp, calculated at harmonic level with Lorentzian bandshapes (with bandwidths of
10 cm−1). Level of theory: B3PW91/Def2TZVP. Solvent effects taken into account with
PCM.



164 APPENDIX B.
nor.

m
o.

conf.
I
R
p
(pop.

35.67%
)

nor.
m
o.

conf.
I
I
R
p
(pop.

32.43%
)

E
(cm

−
1)

D
1

R
2

description
E
(cm

−
1)

D
1

R
2

description

88
1151.11

44.5
5.6

m
ainly

O
H

bending
(IprO

H
3)

89
1163.73

315.9
-46.7

m
ainly

sym
m
etric

SO
stretchings

89
1161.65

355.5
-198.6

m
ainly

sym
m
etric

SO
stretchings

90
1169.23

225.3
-21.8

skeletaldeform
ations

and
C
H

bendings
(sC

p
4,IprO

H
3)

90
1175.06

14.0
-4.0

skeletaldeform
ations

and
C
H

bendings
(sC

p
4,IprO

H
3)

91
1177.51

0.2
0.1

in
plane

C
H

bendings
(ph

5)
91

1178.25
0.2

-0.3
in

plane
C
H

bendings
(ph

5)
92

1201.24
1.3

-0.4
in

plane
C
H

bendings
(ph

5)
92

1197.97
195.3

168.5
skeletaldeform

ations
and

C
H

bendings
(sC

p
4,IprO

H
3)

93
1203.14

193.2
0.2

skeletaldeform
ations

and
C
H

bendings
(sC

p
4,IprO

H
3)

93
1203.80

95.8
-98.2

m
ainly

in
plane

C
H

bendings
(ph

5)
94

1216.36
110.3

5.9
skeletaldeform

ations
and

C
H

bendings
(sC

p
4,IprO

H
3)

94
1204.59

98.9
-86.7

m
ainly

in
plane

C
H

bendings
(ph

5)
95

1230.65
123.2

-77.5
C
*H

bending,C
*C

stretching
and

in
plane

C
H

bendings
(ph

5)
95

1224.86
51.5

-16.1
C
*H

bending
and

C
*C

stretching
96

1279.31
203.7

89.4
skeletaldeform

ations
and

C
H

bendings
(sC

p
4,IprO

H
3)

96
1271.60

158.3
108.6

skeletaldeform
ations

and
C
H

bendings
(sC

p
4,IprO

H
3)

97
1279.73

1.8
5.8

in
plane

C
H

bendings
(uC

p
6)

97
1281.88

0.3
0.9

in
plane

C
H

bendings
(uC

p
6)

98
1299.89

23.0
12.5

C
*H

bending,N
H

bending
and

in
plane

C
H

bendings
(ph

5)

T
able

B
.2:

T
ransition

frequencies,dipole
strengths

and
rotationalstrengths

of
the

m
ost

populated
conform

ers
of

5
−
R
p .

nor.
m
o.

conf.
I
S
p
(pop.

35.14%
)

nor.
m
o.

conf.
I
I
S
p
(pop.

23.75%
)

E
(cm

−
1)

D
1

R
2

description
E
(cm

−
1)

D
1

R
2

description

88
1152.50

7.2
7.6

m
ainly

O
H

bending
and

sym
m
etric

SO
stretchings

89
1165.09

438.4
190.8

m
ainly

O
H

bending
and

sym
m
etric

SO
stretchings

89
1159.15

359.9
198.4

m
ainly

O
H

bending
and

sym
m
etric

SO
stretchings

90
1174.76

12.6
0.9

skeletaldeform
ations,C

H
and

O
H

bendings
(sC

p
4,IprO

H
3)

90
1176.48

0.6
0.8

in
plane

C
H

bendings
(ph

5)
91

1178.58
0.1

0.2
in

plane
C
H

bendings
(ph

5)
91

1176.60
16.0

11.7
skeletaldeform

ations,C
H

and
O
H

bendings
(sC

p
4,IprO

H
3)

92
1198.69

229.2
-190.8

skeletaldeform
ations

and
C
H

bendings
(sC

p
4,IprO

H
3)

92
1195.69

5.0
3.6

in
plane

C
H

bendings
(ph

5)
93

1200.40
3.1

1.5
in

plane
C
H

bendings
(ph

5)
93

1198.97
231.4

-181.4
skeletaldeform

ations
and

C
H

bendings
(sC

p
4,IprO

H
3)

94
1204.02

181.4
179.4

skeletaldeform
ations,C

H
and

O
H

bendings
(sC

p
4,IprO

H
3)

94
1205.94

144.6
189.2

skeletaldeform
ations

and
C
H

bendings
(sC

p
4,IprO

H
3)

95
1228.28

7.5
-11

C
*H

bending,C
*C

stretching,in
plane

C
H

bendings
(ph

5)
95

1235.67
96.3

-72.3
C
*H

bending,C
*C

stretching,in
plane

C
H

bendings
(ph

5)
96

1270.71
166.1

-90.6
skeletaldeform

ations
and

C
H

bendings
(sC

p
4,IprO

H
3)

96
1273.17

155.8
-102.1

skeletaldeform
ations

and
C
H

bendings
(sC

p
4,IprO

H
3)

97
1282.01

0.4
-1.1

in
plane

C
H

bendings
(uC

p
6)

97
1281.76

0.2
-1.6

in
plane

C
H

bendings
(uC

p
6)

98
1296.32

18.1
-4.6

C
*H

bending,N
H

bending
and

in
plane

C
H

bendings
(ph

5)

T
able

B
.3:

T
ransition

frequencies,dipole
strengths

and
rotationalstrengths

of
the

m
ost

populated
conform

ers
of

5
−
S
p .

1
D

ipole
strength

in
electrostatic

units
(10
−
4
0·esu

2·cm
2).

2
R

otationalstrength
in

electrostatic
units

(1
0
−
4
4·esu

2·cm
2

respectively).
3
’IprO

H
’stands

for
isopropanolgroup.

4
’sC

p’stands
for

substituted
cyclopentadienylm

oiety.
5
’ph’stands

for
phenylgroup.

6
’uC

p’stands
for

unsubstituted
cyclopentadienylm

oiety.



B.7. 5−RP AND 5− SP : ADDITIONAL DETAILS 165

defaults used                           
                                        
single point                            
                                        
                                        
                                        

M O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E N

defaults used                           
                                        
single point                            
                                        
                                        
                                        

M O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E N
defaults used                           
                                        
single point                            
                                        
                                        
                                        

M O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E N

Figure B.2: structure of conformer IRp from different perspectives

defaults used                           
                                        
single point                            
                                        
                                        
                                        

M O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E N

defaults used                           
                                        
single point                            
                                        
                                        
                                        

M O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E N
defaults used                           
                                        
single point                            
                                        
                                        
                                        

M O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E N

Figure B.3: structure of conformer IIRp from different perspectives
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Figure B.4: structure of conformer IIIRp from different perspectives
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Figure B.5: structure of conformer IVRp from different perspectives
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Figure B.6: structure of conformer VRp from different perspectives
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Figure B.7: structure of conformer ISp from different perspectives
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Figure B.8: structure of conformer IISp from different perspectives
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Figure B.9: structure of conformer IIISp from different perspectives
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Figure B.10: structure of conformer IVSp from different perspectives
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Figure B.11: structure of conformer VSp from different perspectives



Appendix C

C.1 Some remarks on projection operators

In quantum chemistry, the pivotal importance of projection operators is well
known. In this appendix, the distinction between outer and inner projections
is briefly introduced. This distinction allows a full understanding of the
method employed to construct eq. 3.17. The following treatment is based on
the classic article of Löwdin.282

Given a projection operator Ô which is idempotent (Ô2 = Ô) and self-
adjoint (Ô† = Ô) and a self-adjoint operator Â,a the outer projection Â′ of
the operator Â can be written as follows:

Â′ = ÔÂÔ. (C.1)

In order to provide a general definition of the projection operator Ô
associated with a manifold Xn, a set of n linearly independent vectors
o ≡ {o1, o2, ..., on} spanning the manifold Xn is employed to define a metric
matrix ∆ (with elements ∆ij = 〈oi | oj〉). In this manner, the projection
operator is defined as follows:b

aA rigorous mathematical treatment of projection operators is beyond the scope of this
appendix, which is devoted to a concise introduction of the distinction between outer and
inner projections. However, it must be underlined the importance of the mathematical
features of the operators Ô and Â: these features determine validity and limits of the
formulations provided in what follows. In this treatment the mathematical hypothesis
implicitly and explicitly assumed in ref. 282 are employed. Therefore, for the construction
of the outer projection of the operator Â we assume (analogously to ref. 282) that Â is
bounded from below.

bThere is an important mathematical consequence which follows from the rules of
vector product. To clarify this aspect, two finite column vectors a and b are employed
(for simplicity the n elements of these vectors are assumed to be real, i.e. a† = aT ). If
the inner product is performed, the result is the following one:

〈a |b〉 = aTb =
[
a1 . . . an

]
·

b1...
bn

 = [. . . ]1×1 ; (C.2)

i.e. the result is a number ; on the other hand, if the outer product is performed the
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Ô = o∆−1o† =
∑
ij

|oi〉 (∆−1)ij 〈oj | . (C.4)

If the set o is infinite and complete, then Ô ≡ Î. The expression of the
projection operator can be simplified if an orthonormal basis is chosen, for
example x ≡ {x1, x2, ..., xn} with 〈xi |xj〉 = δij . In this case, eq. C.4 can be
rewritten in the following manner:

Ô = xx† =
∑
i

|xi〉 〈xi| . (C.5)

In the context of quantum chemistry, the expression provided in eq. C.5
for the projection operator is probably the best known. Employing eq. C.5
the outer projection Â′ can be written as the n-order matrix with elements
Aij =

〈
xi

∣∣∣ Â ∣∣∣xj〉, i.e. the outer projection is the result of the truncation

of the infinite-order matrix associated to Â.
An alternative projection can be defined for the self-adjoint operator Âa,

which is called an inner projection. The inner projection Â′′ of the operator
Â is defined by the following relationship:

Â′′ = Â
1
2 ÔÂ

1
2 ; (C.6)

where the inequality 0 < Â′′ < Â holds.b More explicitly, the inner
projection on a linear manifold Xn can be written as follows (employing
eq. C.4):

Â′′ = Â
1
2 o∆−1o†Â

1
2 . (C.7)

Another form of eq. C.7 can be obtained if the substitution o = Â
− 1

2 h is
employed;283 with this substitution, eq. C.7 can be rewritten in the following
manner:

Â′′ = h∆−1h† = |h〉
〈
h
∣∣∣ Â−1

∣∣∣h〉−1
〈h| ; (C.8)

application of the same rules leads to the following result:

|a〉 〈b| = abT =

a1

...
an

 · [b1 . . . bn
]

=

a1b1 . . . anb1
...

. . .
...

a1bn . . . anbn


n×n

; (C.3)

i.e. the result is a matrix : the result of an outer product is an operator which can act
on other vectors. The results provided in eqs. C.2 and C.3 are straightforward, but are
worth of mention in this appendix due to their importance.

aAn additional requirement is the positive definiteness of Â, see ref. 282.
bThe inequality is easily proved in ref. 282.
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where ∆ = h†Â−1h =
〈
h
∣∣∣ Â−1

∣∣∣h〉. The expression introduced in
eq. C.8 can be used to construct eq. 3.17.

C.2 Derivation of the primary-primary block of the
superoperator hamiltonian

In order to provide an explicit derivation of the elements (ai|Haj) of the
superoperator hamiltonian matrix, the electronic hamiltonian is written with
the second quantization formalism:a

H =

Hmono︷ ︸︸ ︷∑
r,s

hrsa
†
ras +

Hint︷ ︸︸ ︷
1

4

∑
r,s,t,u

〈rs||tu〉a†ra
†
tauas (C.9)

In what follows, the derivation is carried out employing the fundamental
relationships of creation and annihilation operators. The superoperator met-
ric is not completely specified in the first part of the derivation.b However,
the choice of the superoperator metric affects the final result. Therefore, in
the last part of the derivation the results corresponding to different choices
of the superoperator metric are provided.

The starting point is the development of an element (ai|Haj) of the
superoperator hamiltonian matrix:

(ai|Haj) =

〈 ∣∣∣∣ [a†i , [aj , H]−]+

∣∣∣∣ 〉 =

〈 ∣∣∣∣ a†i[aj , H]−
∣∣∣∣ 〉+

〈 ∣∣∣∣ [aj , H]−a†i
∣∣∣∣ 〉 =〈 ∣∣∣ a†iajH ∣∣∣ 〉− 〈 ∣∣∣ a†iHaj ∣∣∣ 〉+

〈 ∣∣∣ ajHa†i ∣∣∣ 〉− 〈 ∣∣∣Haja†i ∣∣∣ 〉 .
(C.10)

The contribution due to the componentHmono of the full electronic hamil-
tonian can be easily derived from the last term of eq. C.10:

aThe formulation of H in eq. C.9 depends on the convention adopted. In this appendix,
the same convention adopted in ref. 207 are employed, i.e. 〈rs||tu〉 = 〈rs|tu〉−〈ru|ts〉 and
Hint = 1

4

∑
r,s,t,u〈rs||tu〉a

†
ra
†
tauas with a superoperator metric defined by eqs. 3.11, 3.12

and 3.13. In section 3.1.1 of this thesis a different convention is employed (〈rt||su〉 =
〈rt|su〉 − 〈rt|us〉 and H ′int = 1

4

∑
r,s,t,u〈rt||su〉a

†
ra
†
tauas), which is the convention adopted

in ref. 197 and specified at the beginning of chapter 4 of ref. 196.
bThe notation 〈 | ... | 〉 is employed. The reference state is specified later in this section.
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〈 ∣∣∣ a†iajHmono

∣∣∣ 〉− 〈 ∣∣∣ a†iHmonoaj

∣∣∣ 〉+
〈 ∣∣∣ ajHmonoa

†
i

∣∣∣ 〉− 〈 ∣∣∣Hmonoaja
†
i

∣∣∣ 〉 =〈∣∣∣∣∣ a†iaj∑
r,s

hrsa
†
ras

∣∣∣∣∣
〉
−

〈∣∣∣∣∣ a†i∑
r,s

hrsa
†
rasaj

∣∣∣∣∣
〉

+〈∣∣∣∣∣ aj∑
r,s

hrsa
†
rasa

†
i

∣∣∣∣∣
〉
−

〈∣∣∣∣∣∑
r,s

hrsa
†
rasaja

†
i

∣∣∣∣∣
〉

=

∑
r,s

hrs

〈 ∣∣∣ a†iaja†ras − a†ia†rasaj + aja
†
rasa

†
i − a

†
rasaja

†
i

∣∣∣ 〉 = a

∑
r,s

hrs

〈 ∣∣∣ a†ia†rasaj + δrja
†
ias − a

†
ia
†
rasaj + aja

†
rasa

†
i − a

†
rasaja

†
i

∣∣∣ 〉 =

∑
r,s

hrs

〈 ∣∣∣ δrja†ias + aja
†
rasa

†
i − a

†
rasaja

†
i

∣∣∣ 〉 = b

∑
r,s

hrs

〈 ∣∣∣ δrja†ias + a†rasaja
†
i + δrjasa

†
i − a

†
rasaja

†
i

∣∣∣ 〉 =

∑
r,s

hrs

〈 ∣∣∣ δrj(a†ias + asa
†
i )
∣∣∣ 〉 =

∑
r,s

hrs 〈 | δrjδsi | 〉 = hji.

(C.11)

The contribution of the component Hint can be derived in analogous
manner:

〈 ∣∣∣ a†iajHint

∣∣∣ 〉− 〈 ∣∣∣ a†iHintaj

∣∣∣ 〉+
〈 ∣∣∣ ajHinta

†
i

∣∣∣ 〉− 〈 ∣∣∣Hintaja
†
i

∣∣∣ 〉 =〈∣∣∣∣∣ a†iaj 1

4

∑
r,s,t,u

〈rs||tu〉a†ra
†
tauas

∣∣∣∣∣
〉
−

〈∣∣∣∣∣ a†i 1

4

∑
r,s,t,u

〈rs||tu〉a†ra
†
tauasaj

∣∣∣∣∣
〉

+〈∣∣∣∣∣ aj 1

4

∑
r,s,t,u

〈rs||tu〉a†ra
†
tauasa

†
i

∣∣∣∣∣
〉
−

〈∣∣∣∣∣ 1

4

∑
r,s,t,u

〈rs||tu〉a†ra
†
tauasaja

†
i

∣∣∣∣∣
〉
.

(C.12)

The terms written in the previous equation can be collected and devel-
oped as follows:

aThe following relationship holds:
a†iaja

†
ras = −a†ia

†
rajas + a†i δrjas = a†ia

†
rasaj + δrja

†
ias.

bThe following relationship holds:
aja
†
rasa

†
i = −a†rajasa†i + δrjasa

†
i = a†rasaja

†
i + δrjasa

†
i .
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1

4

∑
r,s,t,u

〈rs||tu〉
〈 ∣∣∣ a†iaja†ra†tauas − a†ia†ra†tauasaj + aja

†
ra
†
tauasa

†
i − a

†
ra
†
tauasaja

†
i

∣∣∣ 〉
= a 1

4

∑
r,s,t,u

〈rs||tu〉
〈 ∣∣∣ δjra†ia†tauas − δtja†ia†rauas + aja

†
ra
†
tauasa

†
i − a

†
ra
†
tauasaja

†
i

∣∣∣ 〉
= b 1

4

∑
r,s,t,u

〈rs||tu〉
〈 ∣∣∣ δjra†ia†tauas − δtja†ia†rauas + δjra

†
tauasa

†
i − δtja

†
rauasa

†
i

∣∣∣ 〉
= c 1

4

∑
r,s,t,u

〈rs||tu〉
〈 ∣∣∣ δjrδisa†tau − δjrδiua†tas + δtjδiua

†
ras − δtjδisa†rau

∣∣∣ 〉
=

1

4

∑
t,u

〈ji||tu〉
〈 ∣∣∣ a†tau ∣∣∣ 〉− 1

4

∑
s,t

〈js||ti〉
〈 ∣∣∣ a†tas ∣∣∣ 〉+

1

4

∑
r,s

〈rs||ji〉
〈 ∣∣∣ a†ras ∣∣∣ 〉− 1

4

∑
r,u

〈ri||ju〉
〈 ∣∣∣ a†rau ∣∣∣ 〉 =

=
1

4

∑
r,s

〈ji||rs〉
〈 ∣∣∣ a†ras ∣∣∣ 〉− 1

4

∑
r,s

〈js||ri〉
〈 ∣∣∣ a†ras ∣∣∣ 〉+

1

4

∑
r,s

〈rs||ji〉
〈 ∣∣∣ a†ras ∣∣∣ 〉− 1

4

∑
r,s

〈ri||js〉
〈 ∣∣∣ a†ras ∣∣∣ 〉 = d

∑
r,s

〈ji||rs〉
〈 ∣∣∣ a†ras ∣∣∣ 〉 =

∑
r,s

〈ji||rs〉ρrs

(C.13)

Combining the results of eqs. C.11 and C.13, the expression of an element
of the generalized Fock matrix (already provided in eq. 3.38) can be written:e

F genji = (ai|Haj) = hji +
∑
r,s

〈ji||rs〉ρrs. (C.14)

To further specify the elements of the primary-primary block of the super-
operator Hamiltonian, the superoperator metric must be completely speci-

aThe following relationship holds:
a†iaja

†
ra
†
tauas = −a†ia

†
raja

†
tauas + δjra

†
ia
†
tauas = a†ia

†
ra
†
tajauas + δjra

†
ia
†
tauas −

δtja
†
ia
†
rauas = a†ia

†
ra
†
tauasaj + δjra

†
ia
†
tauas − δtja

†
ia
†
rauas.

bThe following relationship holds:
aja
†
ra
†
tauasa

†
i = −a†raja†tauasa

†
i + δjra

†
tauasa

†
i = a†ra

†
tajauasa

†
i + δjra

†
tauasa

†
i −

δtja
†
rauasa

†
i = a†ra

†
tauasaja

†
i + δjra

†
tauasa

†
i − δtja

†
rauasa

†
i .

cThe following relationships hold:
a†ia
†
tauas = −a†ta

†
iauas = a†taua

†
ias − δiua

†
tas = −a†tauasa

†
i − δiua

†
tas + δisa

†
tau;

a†ia
†
rauas = −a†ra†iauas = a†raua

†
ias − δiua

†
ras = −a†rauasa†i + δisa

†
rau − δiua†ras.

dIt must be pointed out that 〈ji||rs〉 = 〈rs||ji〉 and 〈ji||rs〉 = −〈js||ri〉 (see, for
example, eq. 4 of ref. 207).

eDifferences between eqs. 3.38 and C.14 are due to the different notation adopted to
label bielectronic integrals.
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fied. In what follows, three examples are provided. In the first one, the
Hartree-Fock ground state is employed as reference state:

F genji =(ai|Haj) = hji

〈
φNelHF

∣∣∣φNelHF

〉
+
∑
r,s

〈ji||rs〉
〈
φNelHF

∣∣∣ a†ras ∣∣∣φNelHF

〉
= a

hji +
∑
r

〈ji||rr〉ρHFrr = δjiεj = Fji

(C.15)

The result of eq. C.15 is equal to the RHS of eq. 3.41 when ρcorr = 0.
In the second example, the primary-primary block for the NR2 approx-

imation is derived. In this case, the superoperator metric is specified in
eq. 3.66; in the framework of RSPT, first-order corrections involve only dou-
ble excitations:284,b

T
(1)
2

∣∣∣φNelHF

〉
=
∑
a,b,x,y

Kab
xya
†
aaxa

†
bay

∣∣∣φNelHF

〉
=
∑
a,b,x,y

Kab
xy

∣∣∣φNelxy→ab

〉
. (C.16)

Values of Kab
xy are specified in ref. 284.c Employing the notation of

eq. C.16 and the superoperator metric specified in eq. 3.66, and taking into
account that

〈
φNelHF

∣∣∣φNelxy→ab

〉
= 0 and

〈
φNelHF

∣∣∣ a†ras ∣∣∣φNelxy→ab

〉
= 0:

F genji =(ai|Haj) = hji

(〈
φNelHF

∣∣∣φNelHF

〉
+
∑
a,b,x,y

Kab
xy

〈
φNelHF

∣∣∣φNelxy→ab

〉)
+

∑
r,s

〈ji||rs〉
(〈

φNelHF

∣∣∣ a†ras ∣∣∣φNelHF

〉
+
∑
a,b,x,y

Kab
xy

〈
φNelHF

∣∣∣ a†ras ∣∣∣φNelxy→ab

〉)
= hji +

∑
r

〈ji||rr〉ρHFrr = δjiεj = Fji

(C.17)

The result of eq. C.17 (which is equal to the result of eq. C.15) provides
the primary-primary block of the superoperator hamiltonian matrix in the
NR2 approximation (see subsection 3.1.3).

In the third example, the reference state of the transition operator method
is employed. The following ensemble:207,d

aRemember that
〈
φ
Nel
HF

∣∣∣ a†ras ∣∣∣φNelHF

〉
= 0 if r 6= s.

bIn the notation employed in eq. C.16 x and y are occupied orbitals and a and b are
unoccupied orbitals in the HF ground state.

cThe values of Kab
xy are not needed for the derivation and therefore in this thesis are

not specified.
dThe notation

∣∣∣φNel−1(x)
HF

〉
employed for the ionized state specify the orbital x from

which the electron is removed.
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∣∣∣∣φNel− 1
2

GCHF

〉
=

1√
2

∣∣∣φNelHF

〉
+

1√
2

∣∣∣φNel−1(x)
HF

〉
, (C.18)

is employed in the superoperator metric:

(X|Y ) =

〈
φ
Nel− 1

2
GCHF

∣∣∣∣ [X†, Y ]+

∣∣∣∣φNel− 1
2

GCHF

〉
(C.19)

Taking into account eqs. C.18 and C.19, the generalized Fock matrix can
be derived as follows:

F genji =(ai|Haj) =
1

2
hji

(〈
φNelHF

∣∣∣φNelHF

〉
+
〈
φNelHF

∣∣∣φNel−1(x)
HF

〉
+〈

φ
Nel−1(x)
HF

∣∣∣φNelHF

〉
+
〈
φ
Nel−1(x)
HF

∣∣∣φNel−1(x)
HF

〉)
+∑

r,s

〈ji||rs〉1
2

(〈
φNelHF

∣∣∣ a†ras ∣∣∣φNelHF

〉
+
〈
φNelHF

∣∣∣ a†ras ∣∣∣φNel−1(x)
HF

〉
+
〈
φ
Nel−1(x)
HF

∣∣∣ a†ras ∣∣∣φNelHF

〉
+
〈
φ
Nel−1(x)
HF

∣∣∣ a†ras ∣∣∣φNel−1(x)
HF

〉)
=

1

2
hji

(〈
φNelHF

∣∣∣φNelHF

〉
+
〈
φ
Nel−1(x)
HF

∣∣∣φNel−1(x)
HF

〉)
+∑

r,s

〈ji||rs〉1
2

(〈
φNelHF

∣∣∣ a†ras ∣∣∣φNelHF

〉
+
〈
φ
Nel−1(x)
HF

∣∣∣ a†ras ∣∣∣φNel−1(x)
HF

〉)
=

hji +
∑
r

〈ji||rr〉ρTOM(ref)
rr .

(C.20)

In the case of the result of eq. C.20, ρcorr 6= 0. To clarify the physical
meaning of ρTOM(ref)

rr , the result of eq. C.20 can be written in terms of
occupation numbers:a

F genji = hji +
∑
r

〈ji||rr〉nr. (C.21)

In eq. C.21, nr is equal to 1
2 if r = x, otherwise nr is equal to 0 for

unoccupied orbitals and to 1 for occupied orbitals. The reference ensemble
provided in eq. C.18 can be a useful starting point for the study of the
ionization process associated to the orbital x.285

aEq. C.21 is equivalent to eq. 3.45; the formal difference is due to the different notation
adopted for the bielectronic integrals.
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C.3 Assignment of UPS spectra

In what follows, computational and experimental values of transition energies
for the six UPS spectra showed and discussed in section 3.3 are provided. For
what concerns the assignment of the purely electronic transition energies, the
quasiparticle picture is retained. The numeration of MOs do not take into
account the core levels. The pole strength are provided in parenthesis. Values
of the transition energies calculated by means of the OVGF method are
provided for transition energies below 20 eV, while values calculated with the
NR2 approximation are given only for transitions assigned to outer valence
MOs. In the cases of 2,6-STDO (table C.1) and 2,6-STDE (table C.3), the
computational results provided in ref. 264 are also reported.

The assignment of the vibronic transitions is carried out for five of the
six compounds studied in this work. The analysis is not carried out for the
2,6-STEO molecule due to the distance between experimental and calculated
values; in other words, in this case the analysis of the computed values do
not have a counterpart in the real world and therefore is left out. Normal
modes associated with the most intense vibronic transitions are depicted.

Only the most intense vibronic transitions are listed, although in most
of the cases many other vibronic transitions should be taken into account in
order to completely reproduce the vibronic signature of a specific electronic
transition.

A reduced-dimensionality scheme has been employed for the calculation
of vibronic transitions of 2,6-STOT, 2,4-STDO and 2,4-STEO. The protocol
is based on the exclusion (from the vibronic calculation) of all the normal
modes with a fundamental frequency below a user-defined threshold. These
thresholds are 800 cm−1 in the case of 2,4-STDO and 850 cm−1 in the cases
of 2,6-STOT and 2,4-STEO.
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transition main contributions energy (eV) intensity (a. u.)

7b2 [n (+σ)]

|0〉 → |0〉 8.737 0.769 · 10−3

|0〉 → |12(1)〉 8.834 0.518 · 10−3

|0〉 → |24(1)〉 8.874 0.181 · 10−3

|0〉 → |33(1)〉 8.893 0.188 · 10−3

|0〉 → |40(1)〉 8.967 0.262 · 10−3

|0〉 → |12(1), 40(1)〉 9.064 0.177 · 10−3

6b3 [n (+σ)]

|0〉 → |0〉 9.839 0.205 · 10−2

|0〉 → |8(1)〉 9.915 0.250 · 10−3

|0〉 → |33(1)〉 9.995 0.425 · 10−3

|0〉 → |40(1)〉 10.069 0.402 · 10−3

Table C.2: energies, intensities and assignment of the main vibronic tran-
sitions for the first and the second bands of the spectrum of 2,6-STDO
molecule.

(a) 8-th normal mode (b) 12-th normal mode (c) 24-th normal mode

(d) 33-th normal mode (e) 40-th normal mode

Figure C.1: Graphical representation of the normal modes of 2,6-STDO,
numbered with respect to the associated fundamental frequency in ascending
order; only the normal modes involved in the most intense vibronic transi-
tions are reported (see table C.2).
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transition main contributions energy (eV) intensity (a. u.)

7b2 [π]

|0〉 → |0〉 8.588 0.148 · 10−1

|0〉 → |16(1)〉 8.688 0.367 · 10−2

|0〉 → |31(1)〉 8.728 0.189 · 10−2

|0〉 → |47(1)〉 8.803 0.698 · 10−2

|0〉 → |16(1), 47(1)〉 8.903 0.173 · 10−2

|0〉 → |47(2)〉 9.019 0.164 · 10−2

6b3 [π]

|0〉 → |0〉 9.445 0.168 · 10−1

|0〉 → |7(1)〉 9.503 0.178 · 10−2

|0〉 → |23(1)〉 9.559 0.257 · 10−2

|0〉 → |47(1)〉 9.660 0.879 · 10−2

|0〉 → |23(1), 47(1)〉 9.774 0.134 · 10−2

|0〉 → |47(2)〉 9.876 0.229 · 10−2

Table C.4: energies, intensities and assignment of the main vibronic tran-
sitions for the first and the second bands of the spectrum of 2,6-STDE
molecule.

(a) 7-th normal mode (b) 16-th normal mode (c) 23-th normal mode

(d) 31-th normal mode (e) 47-th normal mode

Figure C.2: Graphical representation of the normal modes of 2,6-STDE,
numbered with respect to the associated fundamental frequency in ascending
order; only the normal modes involved in the most intense vibronic transi-
tions are reported (see table C.4).
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transition method experimental (UPS)1
KT (HF/maug-cc-pVTZ) OVGF/maug-cc-pVTZ NR2/maug-cc-pVTZ

13b [π] 9.85 9.44 (0.900) 9.57 (0.878) 9.403

12b [n(+σ)] 10.33 9.06 (0.895) 8.88 (0.868) 8.853

13a [σ] 12.48 11.25 (0.901) 11.43 (0.880) }
10.95311b [σ(+n)] 12.55 11.27 (0.899) 11.32 (0.876)2

10b [n(+σ)] 13.14 12.07 (0.893) 12.04 (0.861) }
12-13.54

12a [σ] 13.29 12.02 (0.900) 12.13 (0.879)
9b [π(+σ)] 14.02 13.00 (0.888) 12.72 (0.858)
11a [σ] 14.05 12.42 (0.894) 12.56 (0.870)
8b [σ] 14.23 12.78 (0.900) 12.81 (0.867)2

10a [σ] 14.79 13.47 (0.901) 13.36 (0.878)
7b [π(+σ)] 15.73 14.10 (0.882) -
6b [σ(+n)] 16.17 14.83 (0.877) -
5b [σ(+n)] 16.75 15.14 (0.890) - 15.14

9a [σ] 17.48 15.61 (0.885) -
4b [σ] 18.28 16.48 (0.880) -
8a [σ] 18.96 16.99 (0.878) -
7a [σ] 19.64 17.59 (0.879) -
6a [σ] 20.05 17.97 (0.878) -

Table C.5: values and assignment of each electronic transition for 2,6-STEO
molecule.
1 taken from ref. 251
2 slight contributions from other MOs
3 assignemnt proposed in ref. 251
4 our assignment

transition method experimental (UPS)1
KT (HF/maug-cc-pVTZ) OVGF/maug-cc-pVTZ NR2/maug-cc-pVTZ

13b[nS ] 9.17 8.52 (0.892) 8.29 (0.87) 8.493

12b[πCS ] 10.72 10.47 (0.894) 10.44 (0.859) 10.503

11b[nO(+σ)] 11.00 9.60 (0.891) 9.46 (0.861)2 9.453

12a[σ] 13.04 11.62 (0.899) 11.96 (0.875) 11.403

11a[σ] 13.58 12.21 (0.895) 12.40 (0.868)2 }
12-13410b[πCO(+σ)] 13.61 12.44 (0.889) 12.49 (0.818)2

10a[σ] 13.93 12.45 (0.896) 12.68 (0.872)2

9b[σ(+nO)] 14.22 12.78 (0.89) -
8b[πCO(+σ)] 14.67 13.32 (0.887) - }

13-14.547b[σ(+nO)] 14.96 13.26 (0.888) -
9a[σ] 15.29 13.80 (0.900) -

6b[πCO(+σ)] 16.22 14.45 (0.88) -
8a[σ] 16.82 15.05 (0.874) - 154

5b[σ(+nO)] 17.23 15.52 (0.889) -
4b[σ] 18.75 16.85 (0.874) -
7a[σ] 19.01 16.87 (0.868) -
6a[σ] 20.08 17.91 (0.876) -
5a[σ] 20.51 18.33 (0.875) -

Table C.6: values and assignment of each electronic transition for 2,6-STOT
molecule.
1 taken from ref. 250
2 slight contributions from other MOs
3 assignment proposed in ref. 250
4 our assignment
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transition main contributions energy (eV) intensity (a. u.)

13b[nS ]

|0〉 → |0〉 8.253 0.269 · 10−3

|0〉 → |16(1)〉 8.362 0.133 · 10−4

|0〉 → |21(1)〉 8.374 0.116 · 10−4

|0〉 → |23(1)〉 8.387 0.138 · 10−4

|0〉 → |27(1)〉 8.395 0.107 · 10−4

12b[πCS ]

|0〉 → |0〉 10.146 0.502 · 10−4

|0〉 → |19(1)〉 10.259 0.125 · 10−4

|0〉 → |27(1)〉 10.288 0.182 · 10−4

|0〉 → |28(1)〉 10.289 0.111 · 10−4

|0〉 → |37(1)〉 10.316 0.115 · 10−4

11b[nO(+σ)]

|0〉 → |0〉 9.321 0.154 · 10−3

|0〉 → |21(1)〉 9.441 0.232 · 10−4

|0〉 → |24(1)〉 9.458 0.351 · 10−4

|0〉 → |29(1)〉 9.470 0.142 · 10−4

|0〉 → |35(1)〉 9.481 0.136 · 10−4

|0〉 → |40(1)〉 9.550 0.127 · 10−4

Table C.7: energies, intensities and assignment of the main vibronic transi-
tions for the first, the second and the third bands of the spectrum of 2,6-
STOT molecule.

(a) 16-th normal mode (b) 19-th normal mode (c) 21-th normal mode

(d) 23-th normal mode (e) 24-th normal mode (f) 27-th normal mode

(g) 28-th normal mode (h) 29-th normal mode (i) 35-th normal mode

(j) 37-th normal mode (k) 40-th normal mode

Figure C.3: Graphical representation of the normal modes of 2,6-STOT,
numbered with respect to the associated fundamental frequency in ascending
order; only the normal modes involved in the most intense vibronic transi-
tions are reported (see table C.7).
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transition method experimental (UPS)2
KT (HF/maug-cc-pVTZ) OVGF/maug-cc-pVTZ NR2/maug-cc-pVTZ

11a′′[n(+σ)] 10.51 9.16 (0.896) 9.13 (0.870) 9.043

15a′[n(+σ)] 11.47 10.06 (0.895) 9.89 (0.864) 9.883

10a′′[σ(+n)] 13.28 12.03 (0.900) 12.14 (0.874)

}
12-144

14a′[σ(+n)] 13.44 12.19 (0.901) 12.41 (0.872)1

13a′[σ] 13.64 12.28 (0.902) 12.52 (0.879)1

9a′′[σ(+n)] 14.01 12.54 (0.900) 12.73 (0.877)
8a′′[π] 14.43 13.38 (0.885) 13.17 (0.836)

12a′[n(+σ)] 14.55 13.28 (0.893) 13.16 (0.820)1

11a′[σ(+n)] 14.80 13.45 (0.899) 13.49 (0.850)1

7a′′[σ] 15.00 13.69 (0.902) 13.62 (0.863)1

10a′[π(+σ)] 16.18 14.47 (0.884) -
6a′′[π(+σ)] 16.83 14.95 (0.876) -

9a′[σ] 17.76 15.91 (0.887) -
5a′′[σ] 17.96 15.98 (0.884) -
8a′[σ] 18.76 16.94 (0.885) -
7a′[σ] 19.62 17.61 (0.883) -
4a′′[σ] 20.48 18.18 (0.874) -
6a′[σ] 20.51 18.35 (0.880) -

Table C.8: values and assignment of each electronic transition for 2,4-STDO
molecule.
1 slight contributions from other MOs
2 taken from ref. 250
3 assignment proposed in ref. 250
4 our assignment

transition main contributions energy (eV) intensity (a. u.)

11a′′[n(+σ)]

|0〉 → |0〉 8.966 0.201 · 10−1

|0〉 → |16(1)〉 9.076 0.597 · 10−2

|0〉 → |20(1)〉 9.084 0.129 · 10−2

|0〉 → |22(1)〉 9.095 0.160 · 10−2

|0〉 → |25(1)〉 9.105 0.411 · 10−2

|0〉 → |29(1)〉 9.113 0.133 · 10−2

|0〉 → |33(1)〉 9.124 0.113 · 10−2

|0〉 → |39(1)〉 9.192 0.105 · 10−2

|0〉 → |40(1)〉 9.197 0.175 · 10−2

|0〉 → |16(1); 25(1)〉 9.215 0.122 · 10−2

15a′[n(+σ)]

|0〉 → |0〉 9.793 0.297 · 10−1

|0〉 → |15(1)〉 9.902 0.711 · 10−2

|0〉 → |22(1)〉 9.922 0.109 · 10−2

|0〉 → |25(1)〉 9.932 0.631 · 10−2

|0〉 → |27(1)〉 9.934 0.359 · 10−2

|0〉 → |15(1); 25(1)〉 10.041 0.151 · 10−2

Table C.9: energies, intensities and assignment of the main vibronic tran-
sitions for the first and the second bands of the spectrum of 2,4-STDO
molecule.
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(a) 15-th normal mode (b) 16-th normal mode (c) 20-th normal mode

(d) 22-th normal mode (e) 25-th normal mode (f) 27-th normal mode

(g) 29-th normal mode (h) 33-th normal mode

(i) 39-th normal mode (j) 40-th normal mode

Figure C.4: Graphical representation of the normal modes of 2,4-STDO,
numbered with respect to the associated fundamental frequency in ascending
order; only the normal modes involved in the most intense vibronic transi-
tions are reported (see table C.9).
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transition method experimental (UPS)4
KT (HF/maug-cc-pVTZ) OVGF/maug-cc-pVTZ NR2/maug-cc-pVTZ

26a[πCC(+n+ σ)] 9.52 8.86 (0.899) 8.67 (0.870)1 8.655

25a[n(+πCC + σ)] 10.94 9.84 (0.892) 9.97 (0.862)2 9.775

24a[σ(+n)] 12.22 11.07 (0.897) 11.11 (0.873)3 10.905

23a[σ] 12.85 11.56 (0.899) 11.75 (0.878) }
11.5-12.5622a[σ] 13.08 11.83 (0.900) 11.91 (0.878)3

21a[σ] 13.20 12.01 (0.898) 12.03 (0.872)3

20a[σ] 13.41 11.98 (0.897) 12.09 (0.874)
19a[πCO(+σ)] 14.09 13.04 (0.885) 12.70 (0.829)3 }

12.5-13.5618a[σ] 14.20 12.82 (0.900) 12.82 (0.838)3

17a[σ] 14.47 13.21 (0.902) -
16a[πCO(+σ)] 15.84 14.26 (0.880) -
15a[σ(+n)] 16.42 14.91 (0.873) -

14a[σ] 16.95 15.28 (0.889) -
13a[σ] 17.33 15.44 (0.884) -
12a[σ] 18.18 16.41 (0.883) -
11a[σ] 19.10 17.18 (0.880) -
10a[σ] 19.86 17.67 (0.869) -
9a[σ] 19.98 17.90 (0.877) -

Table C.10: values and assignment of each electronic transition for 2,4-STEO
molecule.
1 relevant contribution from MO 25a
2 relevant contribution from MO 26a
3 slight contributions from other MOs
4 taken from ref. 250
5 assignment proposed in ref. 250
6 our assignment

transition main contributions energy (eV) intensity (a. u.)

26a[πCC(+n+ σ)]

|0〉 → |0〉 8.491 0.372 · 10−1

|0〉 → |18(1)〉 8.602 0.193 · 10−2

|0〉 → |21(1)〉 8.605 0.426 · 10−2

|0〉 → |24(1)〉 8.612 0.244 · 10−2

|0〉 → |25(1)〉 8.620 0.570 · 10−2

|0〉 → |26(1)〉 8.626 0.394 · 10−2

|0〉 → |27(1)〉 8.628 0.410 · 10−2

|0〉 → |28(1)〉 8.631 0.710 · 10−2

|0〉 → |29(1)〉 8.634 0.362 · 10−2

|0〉 → |34(1)〉 8.643 0.309 · 10−2

|0〉 → |37(1)〉 8.651 0.154 · 10−2

|0〉 → |39(1)〉 8.654 0.247 · 10−2

25a[n(+πCC + σ)]

|0〉 → |0〉 9.805 0.390 · 10−1

|0〉 → |17(1)〉 9.914 0.153 · 10−2

|0〉 → |21(1)〉 9.919 0.142 · 10−1

|0〉 → |23(1)〉 9.924 0.449 · 10−2

|0〉 → |24(1)〉 9.926 0.106 · 10−1

|0〉 → |27(1)〉 9.942 0.287 · 10−2

|0〉 → |34(1)〉 9.957 0.227 · 10−2

|0〉 → |43(1)〉 10.019 0.526 · 10−2

|0〉 → |21(2)〉 10.033 0.260 · 10−2

|0〉 → |21(1); 23(1)〉 10.038 0.164 · 10−2

|0〉 → |21(1); 24(1)〉 10.040 0.389 · 10−2

|0〉 → |24(2)〉 10.047 0.145 · 10−2

|0〉 → |21(1); 43(1)〉 10.133 0.192 · 10−2

|0〉 → |24(1); 43(1)〉 10.140 0.144 · 10−2

Table C.11: energies, intensities and assignments of the main vibronic tran-
sitions for the first and the second bands of the spectrum of 2,4-STEO
molecule.
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(a) 17-th normal mode (b) 18-th normal mode (c) 21-th normal mode

(d) 23-th normal mode (e) 24-th normal mode (f) 25-th normal mode

(g) 26-th normal mode (h) 27-th normal mode (i) 28-th normal mode

(j) 29-th normal mode (k) 34-th normal mode (l) 37-th normal mode

(m) 39-th normal mode (n) 43-th normal mode

Figure C.5: Graphical representation of the normal modes of 2,4-STEO,
numbered with respect to the associated fundamental frequency in ascending
order; only the normal modes involved in the most intense vibronic transi-
tions are reported (see table C.11).
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