
 
 

NEW METHODS FOR ESTIMATION, MODELING AND VALIDATION OF  
 

DYNAMICAL SYSTEMS USING AUTOMATIC DIFFERENTIATION 
 
 
 
 

A Dissertation 
 

by 
 

DANIEL TODD GRIFFITH 
 
 
 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 
 

DOCTOR OF PHILOSOPHY 
 
 
 
 
 
 

December 2004 
 
 
 
 
 
 

Major Subject:  Aerospace Engineering 



NEW METHODS FOR ESTIMATION, MODELING AND VALIDATION OF  
 

DYNAMICAL SYSTEMS USING AUTOMATIC DIFFERENTIATION 
 
 
 
 

A Dissertation 
 

by 
 

DANIEL TODD GRIFFITH 
 
 

Submitted to Texas A&M University 
in partial fulfillment of the requirements 

for the degree of  
 

DOCTOR OF PHILOSOPHY 
 
 

Approved as to style and content by: 
 
 
______________________________   
       John L. Junkins            
  (Chair of Committee)     
 
 
______________________________ ______________________________ 
    Srinivas R. Vadali      John E. Hurtado 
          (Member)           (Member) 
 
 
______________________________ ______________________________ 
   Alan B. Palazzolo     Walter E. Haisler 
          (Member)                  (Head of Department) 
 
  

 
December 2004 

 
 

Major Subject: Aerospace Engineering 



   iii

ABSTRACT 
 
 

New Methods for Estimation, Modeling and Validation of Dynamical 
  

Systems Using Automatic Differentiation.  (December 2004) 
 

Daniel Todd Griffith, B.S., Morehead State University; 
 

B.S., University of Kentucky; 
 

M.S., University of Kentucky 
 

Chair of Advisory Committee:  Dr. John L. Junkins 
 
 

The main objective of this work is to demonstrate some new computational methods 

for estimation, optimization and modeling of dynamical systems that use automatic 

differentiation.  Particular focus will be upon dynamical systems arising in Aerospace 

Engineering.  Automatic differentiation is a recursive computational algorithm, which 

enables computation of analytically rigorous partial derivatives of any user-specified 

function.  All associated computations occur, in the background without user 

intervention, as the name implies.  The computational methods of this dissertation are 

enabled by a new automatic differentiation tool, OCEA (Object oriented Coordinate 

Embedding Method).  OCEA has been recently developed and makes possible efficient 

computation and evaluation of partial derivatives with minimal user coding.  The key 

results in this dissertation details the use of OCEA through a number of computational 

studies in estimation and dynamical modeling. 

Several prototype problems are studied in order to evaluate judicious ways to use 

OCEA.  Additionally, new solution methods are introduced in order to ascertain the 



   iv

extended capability of this new computational tool.  Computational tradeoffs are studied 

in detail by looking at a number of different applications in the areas of estimation, 

dynamical system modeling, and validation of solution accuracy for complex dynamical 

systems.  The results of these computational studies provide new insights and indicate 

the future potential of OCEA in its further development. 

 



   v

 
 
 
 
 
 
 
 

To my parents 
 

Dan and Barbara 
 

and 
 

my brothers and sisters 
 

Christie, Ryan and Andy 
 
 



   vi

ACKNOWLEDGMENTS 
 

 
 Setting upon any of life’s journeys requires the support and guidance of many 

people.  Many people have shared equally the successes and disappointments which 

have arisen while on the path to completing this dissertation.  Of course, there are many 

who have made technical contributions that aided me in meeting my educational 

objectives and, more specifically to completing this work, many have made meaningful 

contributions.  I have benefited greatly, as well, from the support of many people in my 

personal life who have done so much to shape me into who I am today. 

 I am greatly indebted to my graduate advisor, Dr. John Junkins.  I thank him for 

welcoming me to study with him at Texas A&M in August 2000.  I, of course, 

acknowledge the technical contributions he has made toward completing this 

dissertation.  He has been a source of knowledge on many subjects, and has given me a 

glimpse into the fundamental principles which unify many technical areas.  He has been 

a source of inspiration to me whether it be in the classroom, in a research meeting or in 

passing in the hallway, and gave his time freely to me whenever it was needed.  I 

especially appreciate the guidance and words of encouragement he provided during my 

toughest times and most misguided moments.  I appreciate the financial support he 

provided over my first year of study and during the latter months while I completed this 

dissertation.  My earnest hope is that I take a great deal from my experiences with Dr. 

Junkins to my professional life since I feel the impact he has had on me is significant in 

many ways, not only for the technical knowledge and the large-scale perspective I have 



   vii

gained from him, but also for the passion he has for his work and students.  I could not 

be more pleased with the time I spent with him at Texas A&M. 

My parents, Dan and Barbara, have always been my biggest asset in their constant 

support, by the example they set, and for the drive and confidence they have instilled in 

me my entire life.  They have, most importantly, tempered my ambition by 

demonstrating the balance in life that I strive for in order to be truly happy and 

completely successful. 

 My most joyous moments have come since meeting the most special person in my 

life, my fiancé Loraine.  Her support has inspired me to work diligently and focus on the 

completion of this dissertation.  She has sacrificed a great deal by understanding the 

importance of this dissertation to me and has supported me in more ways than I could 

ever expect or deserve.  I could not have completed this without her love and support.   

 I acknowledge the tremendous impact that Dr. James Turner has had on technical 

merit of this dissertation.  I thank him for the countless instances he has given his time to 

share his technical expertise.  I appreciate his sense of humor and the passion he has for 

his work.  It was entirely my pleasure to have the opportunity to work with him. 

 I am very thankful for the insights and valuable time of my committee members Dr 

S. Rao Vadali, Dr. John E. Hurtado, and Dr. Alan Palazzolo.  Dr. Vadali has provided 

me with a fine example in the thoughtfulness of his classroom teaching.  I am thankful 

for the time he devoted to me as I learned much about optimization.  I am indebted to 

Dr. Hurtado for many inspiring lectures and conversations regarding advanced topics in 

dynamics.  I am thankful for his practical, informal style of teaching and mentoring. 



   viii

 I am thankful for the support of the American Society for Engineering Education in 

awarding three years of financial assistance to support my doctoral studies through the 

National Defense Science and Engineering Fellowship Program from 2001-2004. 

 The Aggie campus is unlike any other in this nation.  I appreciate the caring nature, 

togetherness and values of the people of Texas A&M and College Station, Texas.  In my 

time in College Station, I am quite thankful for the community of St. Mary’s Catholic 

Church, especially Father Mike Sis, for providing me with great words of wisdom and 

perspectives on living.  I shared many good times with many new friends and colleagues 

at Texas A&M.  I am thankful to have had two wonderful friends as office mates.  Chad 

Searcy has been and is a friend who has truly enhanced my experience at Texas A&M 

by showing me the ropes when I arrived in College Station.  I appreciate his kindness 

and generosity, and our many discussions on politics.  Rajnish Sharma has been an 

exceptional person to share a workspace with in my last days at Texas A&M.  I 

appreciate his warm personality and have taken a great deal from his relaxed attitude 

regarding life and work. 

 I would like to acknowledge two friends who have made the times away from my 

desk very enjoyable.  Lisa Biggs has been a great friend, and someone who has many 

times given me a good perspective on what is truly important.  I thank her for her 

friendship.  I am also very thankful for the times I have spent with Andy Sinclair.  I had 

the pleasure of enjoying many discussions with him on Southeastern Conference (SEC) 

sports.  Although he leans toward the University of Florida Gators (and I the University 

of Kentucky Wildcats), I am very happy for the sense of home I received from our 



   ix

discussions.  I am also very happy for the significant technical discussions we had, many 

of which led us to hours of research on the dynamics encountered in the game of golf.  

The match play feature of the Tiger Woods golf game executed on the PlayStation II 

game system proved to be an ideal testbed for this study. 

 I would also like to thank Art and Rocio Fano for welcoming me into their family.  

Art and Rocio have made the last year of my studies very enjoyable through their 

warmth and thoughtful attention.   

There are many others who have I have not mentioned here by name who I would 

like to thank.  I sincerely thank them as well.   

 
 
 
 



   x

TABLE OF CONTENTS 
 
 
   Page 
 
ABSTRACT…………………………………………………………………………. iii 
 
DEDICATION………………………………………………………………………. v 
 
ACKNOWLEDGMENTS…………………………………………………………… vi 
 
TABLE OF CONTENTS……………………………………………………………. x 
 
LIST OF TABLES………………………………….……………………………….. xii 
 
LIST OF FIGURES………………………………………………………………….. xiv 
 
CHAPTER 
 

I INTRODUCTION…………………………………………………… 1 
 

II OVERVIEW OF COMPUTERIZED DIFFERENTIATION……….. 5 
 
 2.1 Symbolic Differentiation………………………………… 5 
 2.2 Automatic Differentiation……………………………….. 6 
 2.3 Overview of OCEA……………………………………… 7 
 
 III ESTIMATION AND CONTROL OF DYNAMICAL SYSTEMS…. 14 
 
 3.1 Review of First-order Algorithms……………………….. 15 
 3.2 Higher-order Generalized Sensitivity Calculations……… 22 
 3.3 Higher-order Algorithms………………………………… 38 
 3.4 Numerical Examples…………………………………….. 50 
 3.5 Summary…………………………………………………. 74 
 

IV MODELING OF DYNAMICAL SYSTEMS……………………….. 75 
 
 4.1 Overview………………………………………………… 76 
 4.2 Equations of Motion Formulation……………………….. 77 
 4.3 Formulation via Lagrange’s Equation…………………… 81 
 4.4 Numerical Integration of Equations of Motion………….. 94 
 4.5 Numerical Examples…………………………………….. 96 
 4.6 Comparison with Hard-coding Equations of Motion……. 114 
 4.7 Summary…………………………………………………. 118 



   xi

   Page 
CHAPTER 
 
 V VALIDATION OF SOLUTION ACCURACY FOR  
  DYNAMICAL SYSTEMS…….…………………………………… 119 
 
 5.1 Introduction……………………………………………… 119 
 5.2 Methods for Validating Solution Accuracy…………….. 123 
 5.3 Automatic Generation of Exact Dynamical Models……. 129 
 5.4 Multibody System Examples.…………………………… 133 
 5.5 Accuracy of Solution and Space/Time Derivatives…….. 140 
 5.6 Summary………………………………………………… 165 
 
 VI SUMMARY AND FUTURE WORK………………………………. 168 
 
REFERENCES……………………………………………………………………… 174 
 
APPENDIX A………………………………………………………………………. 179 
 
APPENDIX B………………………………………………………………………. 186 
 
APPENDIX C………………………………………………………………………. 188 
 
APPENDIX D………………………………………………………………………. 190 
 
APPENDIX E……………………………………………………………………….. 193 
 
APPENDIX F……………………………………………………………………….. 194 
 
APPENDIX G………………………………………………………………………. 196 
 
APPENDIX H………………………………………………………………………. 197 
 
APPENDIX I………………………………………………………………………... 198 
 
APPENDIX J……………………………………………………………………….. 200 
 
VITA………………………………………………………………………………... 201 
 



   xii

LIST OF TABLES 
 
 
TABLE    Page 
 
 2.1  List of Overloaded OCEA Functions…………………………………….. 12 
 
 3.1 Residual Error for Ballistic Projectile Identification Problem…………… 52 

 
 3.2 GLSDC Convergence Study for Case I………………………………….. 55 
 
 3.3 Case I First-order Algorithm State History Results……………………… 56 
 
 3.4 Case I Second-order Algorithm State History Results…………………… 56 
 
 3.5 GLSDC Convergence Study for Case II…………………………………. 57 
 
 3.6 Case II First-order State History Results………………………………… 58 
 
 3.7 Case II Second-order State History Results……………………………… 58 
 
 3.8 Low-thrust Mars-Earth Transfer Initial and Final Conditions…………… 61 

 
 3.9 Low-thrust Mars-Earth Transfer First-order Solution Terminal Errors for 

Case I……………………………………………………………………. 62 
 
 3.10 Low-thrust Mars-Earth Transfer First- and Second-order Solution Terminal 

Errors for Case I…………………………………………………………. 62 
 
 3.11 Low-thrust Mars-Earth Transfer First-order Solution Terminal Errors for 

Case II…………………………………………………………………… 64 
 
 3.12 Low-thrust Mars-Earth Transfer First- and Second-order Solution Terminal 

Errors for Case II………………………………………………………... 64 
 
 3.13 Domain of Convergence Comparison for Low-thrust Mars-Earth 

Transfer………………………………………………………………….. 67 
 
 3.14 Differential Inclusions Residual Errors…………………………………. 72 
 

5.1 RMS Errors of Assumed Modes and FEM Solutions for Equal System  
  Order (N=8)……………………………………………………………... 153 

 



   xiii

TABLE    Page 
 
5.2 RMS Errors of Assumed Modes and FEM Solutions for Equal System  

  Order (N=12)…………………………………………………………… 154 
 

5.3 Effect of System Order on Assumed Modes Solution Errors………….. 155 
 

5.4 Effect of System Order on FEM Solution Errors………………………. 155 
 

5.5 Natural Frequencies Comparison for Cubic and Quintic  
 Beam Elements………………………………………………………… 158 

 
5.6 Natural Frequencies Comparison for Reduced System Order Using Quintic 

  Beam Elements………………………………………………………… 159 
 

5.7 Comparison of FEM RMS Solution Errors…………………................. 160 
 

 



   xiv

LIST OF FIGURES 
 
 
FIGURE    Page 
 
 2.1  Example OCEA-FORTRAN Subroutine…………………………………. 11 
 
 3.1  Mars-Earth Optimal Trajectory…………………………………………… 68 
 
 3.2  Velocity Components for Low-thrust Mars-Earth Transfer……………… 69 
 
 3.3  Co-states for Low-thrust Mars-Earth Transfer…………………………… 69 
 
 3.4  Optimal Thrust Angle for Low-thrust Mars-Earth Transfer……………… 70 
 
 3.5  Optimal versus Differential Inclusions Solution…………………………. 73 
 
 4.1 Geometry of Multiple Flexible Link Configuration……………………… 90 
 
 4.2  Spring Pendulum…………………………………………………………. 96 
 
 4.3  Spring Pendulum Position Solution………………………………………. 98 
 
 4.4  Spring Pendulum Velocity Solution……………………………………… 99 
 
 4.5  N-body Open-chain Geometry…………………………………………… 100 
 
 4.6  Deployment Dynamics for Ten Link Model………………………………. 102 
 
 4.7  Five Link Closed-chain Topology………………………………………. 103 
 
 4.8 Payload Motion for Five Link Closed-chain System……………………. 104 
 

4.9  Kinetic Energy for Link One…………………………………………….. 106 
 
 4.10 Kinetic Energy for Link Two……………………………………………. 106 
 
 4.11 Kinetic Energy for Link Three…………………………………………… 107 
 
 4.12 Motion for 5 Link Flexible Closed-chain System……………………….. 108 
 
 4.13 Planar Truss Geometry…………………………………………………… 109 
 
 4.14 Planar Truss Rigid Body Energy………………………………………… 111 



   xv

FIGURE    Page 
 
 4.15 Planar Truss Flexible Energy……………………………………………. 111 
 

4.16 Errors in Position Level Constraint for Planar Truss……………………. 113 
 

4.17 Errors in Velocity Level Constraint for Planar Truss…………………… 113 
 

4.18 Errors in Angular and Angular Rate Coordinates……………………….. 115 
 

4.19 Errors in Flexible Coordinates for Link One……………………………. 116 
 

4.20 Errors in Time Derivatives of Flexible Coordinates for Link One……… 116 
 

4.21 Errors in Flexible Coordinates for Link Two……………………………. 117 
 

4.22 Errors in Time Derivatives of Flexible Coordinates for Link Two……… 117 
 

5.1  Comparison of Hard-coded and OCEA-derived ODEs…………………. 135 
 

5.2  Comparison of Hard-coded and OCEA-derived PDEs………………….. 136 
 

5.3  Clamped-free Beam……………………………………………………… 140 
 

5.4  Assumed Modes Deflection Solution……………………………………. 144 
 

5.5  FEM Deflection Solution………………………………………………… 144 
 

5.6  Assumed Modes Velocity Solution……………………………………… 145 
 

5.7  FEM Velocity Solution………………………………………………….. 145 
 

5.8  Assumed Modes Acceleration Solution…………………………………. 146 
 

5.9  FEM Acceleration Solution……………………………………………… 146 
 

5.10 Assumed Modes Slope Solution…………………………………………. 147 
 

5.11 FEM Slope Solution……………………………………………………… 147 
 

5.12 Assumed Modes Curvature Solution…………………………………….. 148 
 

5.13 FEM Curvature Solution…………………………………………………. 148 
 



   xvi

FIGURE    Page 
 
5.14 Assumed Modes ( , )v x t'''  Solution………………………………………. 149 

 
5.15 FEM ( , )v x t'''  Solution…………………………………………………… 149 

 
5.16 Assumed Modes ( , )v x t''''  Solution……………………………………… 150 

 
5.17 FEM ( , )v x t''''  Solution………………………………………………….. 150 

 
5.18 Error in Exact PDE for Assumed Modes Solution………………………. 151 

 
5.19 Error in Exact PDE for FEM Solution…………………………………… 151 

 
5.20 Quintic FEM Deflection Solution……………………………………….. 161 

 
5.21 Quintic FEM Velocity Solution…………………………………………. 161 

 
5.22 Quintic FEM Acceleration Solution…………………………………….. 162 

 
5.23 Quintic FEM Slope Solution……………………………………………. 162 

 
5.24 Quintic FEM Curvature Solution……………………………………….. 163 

 
5.25 Quintic FEM ( , )v x t'''  Solution…………………………………………. 163 

 
5.26 Quintic FEM ( , )v x t''''  Solution…………………………………………. 164 
 
5.27 Error in Exact PDE for Quintic FEM Solution…………………………. 164 

 
 



  1 

CHAPTER I 

 

INTRODUCTION* 

 

The development of new technology is driven by a number of highly coupled 

factors.  These include development of new theory and ideas, advances in the ability to 

better observe the characteristics of our natural surroundings and our man-made devices, 

and development of new computational algorithms, software, and hardware.  These are 

intimately coupled since advances in one area can impact one or all of the others by 

enabling a solution or providing the stimulus for the development of a new technology 

area.  Certainly, the invention and subsequent development of the computer; for 

example, has given scientists and engineers an incredible range of possibilities for 

testing new ideas on any scale whether it be very small or very large, very simple or very 

complex, while vastly reducing the computational time needed for solving a given 

problem. 

The focus of this work is new solution approaches which are enabled by the 

development of a new computational tool.  New ideas have been implemented through 

the use of automatic differentiation for solving problems pertinent to many disciplines of 

science and engineering, in particular those arising in Aerospace Engineering.  

Automatic differentiation is a computational approach which enables partial derivatives 

of any user-specified function to be computed in the background without user 

                                                           
* The journal model is the Journal of Guidance, Control, and Dynamics. 



  2 

intervention, as the name implies.  A new automatic differentiation tool, OCEA (Object 

oriented Coordinate Embedding Method), has been recently developed which shows 

promise for efficient computation and evaluation of partial derivatives.  For a rather 

arbitrary sequentially substituted set of functions, coded in FORTRAN 90, OCEA 

invokes operator overloading to perform up to fourth-order partial differentiation with 

automatic background computations.  The key results in this work are computational 

approaches for typical problems in modeling, estimation an control of dynamical 

systems enabled by OCEA.  Both the algorithms and computational results are 

presented. 

Several standard problems in the field are studied in order to establish judicious 

ways to use OCEA.  Motivated by the ease of automatic differentiation, several new 

approaches for these problems are developed and evaluated.  Important computational 

issues are studied in detail by looking at a number of different applications in the areas 

of modeling, estimation, control, and validation of solution accuracy for complex 

dynamical systems.  The results of these computational studies provide new insights and 

indicate the potential of OCEA in its further development. 

The need for computing partial derivatives abounds in all areas of dynamical 

systems.  The task of computing partial derivatives is almost never the focus of a 

scientific or engineering study, it is usually considered merely a mathematical exercise 

that must be completed in order to reach the objectives of a particular analysis.  

However, as model complexity and dimensionality increases, obviously the volume of 

algebra, calculus, coding and validation poses a severe practical obstacle.  If we can be 



  3 

freed from concern about deriving, programming and computing partial derivatives, a 

scientist or engineer can focus directly on what is most important – analysis and 

development of new ideas.  The acceleration implicit in not having to worry about the 

partial derivatives is enormous.  These qualitative observations provide part of the 

motivation for this dissertation. 

This dissertation is divided into six chapters.  This first chapter provides an overview 

of the main developments.  In the second chapter, the state of the art in computerized 

differentiation is described along with the key features of the new computational tool 

OCEA. 

In Chapter III, we present new ideas related to estimation, optimization and control 

of dynamical systems.  Several novel algorithms are presented.  A key result is the 

introduction of the higher-order state transition matrix and associated differential 

equations, for a class of nonlinear dynamical systems.  In the area of trajectory 

optimization some new ideas are presented for automating the process of deriving co-

state differential equations.  Additionally, higher-order algorithms for computing 

midcourse corrections are introduced. 

In Chapter IV, some new insights into modeling of dynamical systems are presented.  

Producing dynamical models in the form of coupled nonlinear differential equations is a 

frequent first step for analysis, estimation and control of dynamical systems.  The main 

result of this chapter is a new method for automatically generating and integrating 

differential equations using automatic differentiation and analytical continuation.  The 



  4 

method is applied to linked mechanical systems comprised of rigid or flexible elements.  

An OCEA enabled approach to solving these differential equations is presented. 

In Chapter V, we focus on validating solution accuracy for approximate flexible 

body dynamical system models.  We show that for complex many body systems, exact 

PDE/ODE equations of motion and the corresponding boundary conditions can be 

automatically produced using automatic differentiation.  Furthermore, we show how to 

use the method of manufactured solutions, along with OCEA to construct “exact” 

solutions to the PDE/ODE systems.  These special case exact solutions can be used to 

validate discretized numerical solutions.  This development extends the capability of 

validation efforts by rapidly producing exact representations and special case exact 

solutions for multibody distributed parameter systems with significant complexity. 

Concluding remarks including a description of future work is given in Chapter VI. 



  5 

CHAPTER II 

 

OVERVIEW OF COMPUTERIZED DIFFERENTIATION 

 

Computer implementation of differentiation is typically accomplished by two 

distinct approaches – automatic differentiation (AD) and symbolic differentiation.  The 

primary distinction between these approaches is that automatic differentiation invokes 

the chain rule automatically and partial derivatives are recursively simultaneously 

derived and numerically evaluated in the background.  Whereas, symbolic 

differentiation is performed using symbolic programs in which the derivatives are 

computed and displayed symbolically.  The symbolically derived derivative expressions 

can, of course, be subsequently coded and used for numerical computation. 

 

2.1 SYMBOLIC DIFFERENTIATION 

Most scientists and engineers are very familiar with symbolic differentiation 

programs.  Today’s university students routinely use symbolic manipulation programs 

such as Matlab, Maple, Mathcad, and Macsyma to manipulate equations including 

automated derivation of partial derivatives1-4.  These programs are very useful when 

dealing with complex equations, especially for analytical studies that require viewing the 

equations.  In order to perform a numerical analysis, partial derivatives computed using a 

symbolic differentiation program must be either hand typed in a computer program or 

saved in a file.  While some degree of automation in programming these automatically 



  6 

derived equations has been achieved, the files typically require editing prior to 

compilation.  One advantage of symbolic differentiation is that the derivative 

expressions can be viewed by the analyst; however, the resulting mathematical 

expressions are frequently so large that no physical insight can be gained from the effort. 

 

2.2 AUTOMATIC DIFFERENTIATION 

On the other hand, automatic differentiation, especially using the OCEA approach, 

offers a time and memory optimized differentiation approach where less user 

intervention is required.  In the traditional AD approach, the automatically derived 

partial derivative equations are output in a machine readable code which is then 

compiled along with another code that “uses” the derivatives.  Research on AD methods 

has been active since the 1980’s.  Previously developed AD tools include: 1) ADIFOR, 

2) AD01, 3) ADOL-C, 4) ADMIT-1, 5) AUTODERIVE, and 6) OCEA.  The first five 

AD tools typically require interfacing with other programs5-8, e.g. ADMIT-1 requires 

interfacing with the Matlab environment.  Also, most of these only compute 1st order 

partial derivatives.  A comparison of symbolic and automatic differentiation approaches 

can be found in Reference 9.  The motivation for OCEA was two-fold: (1) How to 

eliminate the cumbersome file manipulations and interfacing between AD programs and 

the codes that use the derivatives, and (2) How to achieve generalization to higher-order 

derivatives. 

 

 



  7 

2.3 OVERVIEW OF OCEA 

OCEA10-15 bypasses the overhead of pre-existing AD approaches and offers 

tremendous potential since the operator-overloading approach makes it possible to 

implement the AD approach simply as an extension of any of the existing popular 

programming languages such as FORTRAN.  Additionally, OCEA currently offers 1st 

through 4th order partial derivative capabilities.  OCEA is currently implemented as a 

FORTRAN90 (F90) extension.  The OCEA package is an object-oriented automatic 

differentiation equation manipulation package.  OCEA defines embedded variables that 

represent abstract data types, where hidden dimensions (background arrays) are used for 

storing and manipulating partial derivative calculations.  The chain rule for 

differentiation has itself been coded using operator-overloading and operates in the 

background of the user’s software.  Given a FORTRAN90 code for evaluating virtually 

any set of differentiable functions, OCEA replaces each scalar variable in the program 

with a differential n-tuple consisting of the following variables (for a second-order 

OCEA implementation): 

 2:f f f f⎡ ⎤= ∇ ∇⎣ ⎦  (2.1) 

where ∇  and 2∇ denote first- and symmetric second-order gradient tensors with respect 

to a user-defined set of independent variables.  The introduction of the abstract 

differential n-tuple allows the computer to continue to manipulate each scalar variable as 

a conventional scalar variable, even though the first- and higher-order partial derivatives 

are attached to the scalar variable in a hidden way.  The chain rule operates recursively 

on the n-tuples in the background.  The individual objects can be extracted, when 



  8 

needed, using OCEA’s adopted notation, as follows: %f f E= , %f f V∇ = , and 

2 %f f T∇ = .  The automatic computation of the partial derivatives is achieved by 

operator-overloading methodologies that redefine the intrinsic mathematical operators ( 

+, -, *, /, = ) and functions using the rules of calculus.  For example, overloaded addition 

and multiplication of the functions ( )a a x=  and ( )b b x=  are redefined as follows.   

 2 2:a b a b a b a b⎡ ⎤+ = + ∇ +∇ ∇ +∇⎣ ⎦  (2.2) 

 ( ) ( )* : * * *i j ia b a b a b a b⎡ ⎤= ∂ ∂ ∂⎣ ⎦  (2.3) 

Thus the “+” and “*” operators are overloaded so that coding the left side 

expressions of Eqs. (2.2) and (2.3) causes all the right side computations to be carried 

out.  The underlying vector x  is defined (see subsequent discussion) in a way that 

OCEA knows x  is the vector of independent variables and a∇  denotes, for example 

1

...
n

a a
x x

⎡ ⎤∂ ∂
⎢ ⎥∂ ∂⎣ ⎦

. More subtly, if 1z a b= +  and 2 *z a b= , then computing 

3 1 2z z z= + causes the results of Eqs. (2.2) and (2.3) to be propagated efficiently in the 

background to compute 3 33 * ( ) ( )i j iz a b a b z z⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

= + + ∂ ∂ ∂  where 3)3(i
i

zz
x
∂

∂ =
∂

 and 

2
3)3(i j

j i

zz
x x
∂

∂ ∂ =
∂ ∂

.   

The chain rule operates recursively in the background.  Given the function ( )g g x= , 

whose partial derivatives are known a priori, OCEA computes the partial derivatives of 



  9 

the function f , which is a function of g , by the following composite function chain 

rule of differentiation.   

 ( ) ( ) ( ) ( )
2

2 2
2: , , : , , Tf f ff g f g g g f g g g g g

g g g
⎡ ⎤∂ ∂ ∂⎡ ⎤= ∇ ∇ = ∇ ∇ ∇ + ∇⎢ ⎥⎣ ⎦ ∂ ∂ ∂⎣ ⎦

 (2.4) 

OCEA utilizes the chain rule of this form to recursively, numerically compute partial 

derivatives.  The function f  and its partial derivatives are computed with the a priori 

known partial derivatives of the function ( )g g x= , and, of course, the partials of f with 

respect to g .  To illustrate the point, consider a special case in which the function g  is 

defined simply as a set of independent variables ( 1 2,  ,   ng x x x= L ) then Eq. (2.4) 

illustrates how to compute the partial derivatives of the function ( )f x .  In this case, the 

gradient of the ith element of g is defined by 

 
1i

i i

ni

g x
δ

δ

⎡ ⎤
⎢ ⎥∇ = ∇ = ⎢ ⎥
⎢ ⎥⎣ ⎦

M  (2.5) 

where ijδ  denotes the standard kronecker delta for i = 1, 2, …n, and, of course, the 

Hessian of the ith element of g  is given by 

 2 2

0 0 0
0 0 0

0 0 0 0

i ig x

⎡ ⎤
⎢ ⎥
⎢ ⎥∇ = ∇ =
⎢ ⎥
⎢ ⎥
⎣ ⎦

L

L

M M O M
 (2.6) 

Of course, when using Eq. (2.4) to generate the partials of any nonlinear function 

then Eqs. (2.5) and (2.6) simply serve to initialize the recursive chain rule operations.  

Additional details on OCEA can be found in Appendix A. 



  10 

We now discuss in more detail some issues related to programming in FORTRAN 

with OCEA.  A FORTRAN subroutine enhanced by the OCEA automatic differentiation 

capability requires that a special statement be typed in the subroutine.  This statement is 

responsible for linking the user subroutine with OCEA, and indicates that the subroutine 

contains functions which are to be differentiated.  Secondly, a new variable type 

declaration must be utilized in order to specify the problem independent and dependent 

variables.  These are the only two considerations that must be made when “promoting” a 

standard FORTRAN subroutine to an OCEA-FORTRAN subroutine.  The elegance of 

the OCEA approach lies in the fact that minimal coding is required to promote the 

standard FORTRAN subroutine.  We demonstrate the two aforementioned 

considerations in the following example.  In Fig. 2.1 we show an OCEA-enhanced 

FORTRAN90 subroutine for computing the function 3F and its partial derivatives, where 

the function is defined as 3 2
1 1 2 2 2 1 3 1 2sin( ),F x x F x x and F F F= + = = + . 

In Fig. 2.1, we note that the USE statement ( “USE EB_HANDLING” ) links the 

subroutine to OCEA at compile time.  The type declaration ( “TYPE(EB)” ) declares X 

and F3 as the problem independent and dependent variables.  By linking this subroutine 

with OCEA, the partial derivatives of the function F3 are computed automatically at 

compile time.  When the subroutine is executed, the enhanced OCEA-FORTRAN 

subroutine evaluates the function F3 and its analytical partial derivatives for a specified 

numerical value of X.  Standard FORTRAN programming, of course, only evaluates the 

function itself.  In this example, we demonstrate that the dependent variables (or 

equivalently functions) F1, F2, and F3 are coded in a standard way.  Additionally, we 



  11 

define double precision (DP) arrays which are used to store the numerically evaluated 

function F3 and its first and second partials (S_F3, JAC_F3, and HES_F3).  This 

demonstrates the operator-overloading which has been performed on the “=” sign, and 

all other operators automatically.  We set each of these double precision arrays equal to 

F3, and OCEA automatically detects the dimension of the array on the left hand side.  

Thus the appropriate function or partial derivative information is easily extracted. 

 
Figure 2.1. Example OCEA-FORTRAN subroutine 

 

Additional operations for the standard mathematical library functions, such as 

trigonometric and exponential functions, are redefined to account for the known rules of 

differentiation.  A list of these functions is given in Table 2.1.  In essence, this approach 

SUBROUTINE NONLINEAR_FUNCTION( X, F3 ) 
USE EB_HANDLING 

 
!..... ARGUMENT LIST VARIABLES  

TYPE(EB), DIMENSION(2), INTENT(IN):: X 
TYPE(EB), DIMENSION(1), INTENT(OUT):: F3 

 
!.....LOCAL VARIABLES 

REAL(DP), DIMENSION(1):: S_F3 
REAL(DP), DIMENSION(2):: JAC_F3  
REAL(DP), DIMENSION(2,2):: HES_F3 

 
F1 = X(1)**3.0D0 + X(2) 
F2 = ( X(2)**2.0D0 )*SIN( X(1) ) 
F3 = F1 + F2 

 
S_F3 = F3            ! Extract function 
JAC_F3 = F3       ! Extract Jacobian (2x1) 
HES_F3 = F3       ! Extract Hessian (2x2) 

 
END SUBROUTINE NONLINEAR_FUNCTION 
 



  12 

pre-codes, once and for all, all of the partial derivatives for the elementary functions 

required for any problem, and the chain rule is implemented automatically in 

background operations that the user neither derives nor codes to complete the 

simultaneous derivation and evaluation of all needed derivatives.  Hidden operator- 

overloading tools completely free the analyst from the time consuming and error prone 

tasks of deriving, coding, and validating analytical partial derivative models.  Thus, an 

arbitrary FORTRAN code, by simply adding data type declarations and compiling linked 

to OCEA, is “promoted” to a generalized code that automatically computes the 

corresponding arrays of partial derivatives. 

 

Table 2.1.  List of overloaded OCEA functions 
Common name FORTRAN function 

Polynomial to the nth power x**n 
Square root Sqrt(x) 
Sine Sin(x) 
Cosine Cos(x) 
Tangent Tan(x) 
Arc sine Asin(x) 
Arc cosine Acos(x) 
Arc tangent Atan(y/x) 
Arc tangent Atan2(y,x) 
Exponential Exp(x) 
Logarithm Log(x) 
Hyperbolic sine Sinh(x) 
Hyperbolic cosine Cosh(x) 
Hyperbolic tangent Tanh(x) 
Absolute value Abs(x) 
Floor Floor(x) 
Ceiling Ceil(x) 

 
 
 



  13 

 The functions listed in Table 2.1 account for all of the standard FORTRAN 

mathematical functions.  This list is shown in order to illustrate that all of these standard 

functions have been redefined, or to put it another way, overloaded in the OCEA 

environment in order to enable the automatic computation of the partial derivatives of 

these elementary functions.  Any function which is composed of these overloaded 

elementary functions can now be coded in OCEA, and the resulting partial derivatives of 

these composite functions are automatically computed and evaluated.  It is worth noting 

that additional high-level operators are also enabled in the OCEA environment including 

special operators such as the matrix transpose (.T.) and dot product (.DOT.).  These 

operators are extremely useful when defining embedded functions which are composed 

of vector/matrix terms since these functions can be coded in a direct vector/matrix 

fashion.  These types of expressions are prevalent in the study of dynamical systems, 

with the additional feature that differentiation of such vector/matrix functions is also 

enabled.  

 



  14 

 

CHAPTER III 

 

ESTIMATION AND CONTROL OF DYNAMICAL SYSTEMS* 

 

In this chapter, new solution approaches are presented for solving problems in 

estimation and control of dynamical systems.  We present new methods for solving 

problems encountered in parameter optimization, orbit determination, trajectory 

optimization, and guidance.   

The major contributions in this chapter include the utilization of automatic 

differentiation in deriving and evaluating the necessary partial derivative calculations, 

and the development of higher-order extensions of the conventional algorithms.  These 

contributions are detailed for implementing the Nonlinear Least Squares and Gaussian 

Least Squares Differential Correction (GLSDC) algorithms, solving Two-point 

Boundary Value Problems (TPBVPs), and computing midcourse corrections. 

The first section of this chapter contains a review of first-order algorithms.  Here we 

review the computation of first-order sensitivities, in general, for the Nonlinear Least 

Squares algorithm, and specifically the computation of sensitivities utilizing state 

transition matrix calculations for solving GLSDC/orbit determination problems and 

TPBVPs.   

In the second section, we detail the calculation of higher-order sensitivities.  The 

concept of higher-order state transition matrix is introduced along with their governing 

                                                           
* Portions of this chapter published in References 16 and 17. 



  15 

 

differential equations.  Advanced optimization algorithms are considered that make use 

of first- through fourth-order generalized state transition matrix algorithms.  We discuss 

the multilinear reversion of series solution which establishes higher-order mappings and 

inverse mappings between the state variables.  This capability provides the means to 

develop the higher-order algorithms.   

In the third section, new algorithms are presented as higher-order extensions of the 

first-order methods.  Two methods for solving TPBVPs encountered in optimal control 

are presented.  These include a state transition matrix approach and a direct optimization 

approach.  Some related topics such as automatic co-state equation generation are also 

presented.  Higher-order laws for computing midcourse corrections are introduced.   

Several examples are presented to demonstrate these methods for each of the 

algorithms in the fourth section.  These examples include a ballistic projectile 

identification problem, an orbit determination problem, and a trajectory optimization 

problem. 

 

3.1 REVIEW OF FIRST-ORDER ALGORITHMS 

3.1.1 Nonlinear Least Squares 

It is a fact of life that most estimation problems are nonlinear.  A description of the 

Nonlinear Least Squares algorithm can be found in many books on estimation18.  In 

summary, given a set of observations or measurements and a model for these 

measurements, the task is to estimate a set of measurement model parameters which best 

fit the observations.  For a nonlinear problem, an iterative solution procedure must be 



  16 

 

employed.  First, a starting guess for the unknown model parameters is supplied, and one 

iteration of the algorithm produces a correction to the starting guess.  This process 

repeats until the estimate for the model parameters has converged.  Of course, the 

algorithm is considered to have failed if the residual errors increase during the iteration 

process or the residual error remains essentially unchanged for many iterations of the 

algorithm. 

Typically, one begins in finding the Least Squares estimate x̂  which minimizes the 

following cost function 

 ( ) ( )1 ˆ ˆ( ) ( )
2

TJ W= − −y h x y h x% %  (3.1) 

where y%  is the vector of measurements, ˆ( )h x  is an algebraic model for the 

measurements, and W is an assumed weighting matrix.  Taking the gradient of Eq. (3.1) 

w.r.t. the unknown state x̂  results in the necessary condition for minimizing the cost 

function, leading to: 

 ( )( )ˆ 0
T

W−∂⎛ ⎞ − =⎜ ⎟∂⎝ ⎠
%

h y h x
x

 (3.2) 

which essentially defines a root-solving problem.  Linearization of the measurement 

model produces 1
ˆ

ˆ ˆ( ) ( )k+
∂

= + ∆
∂

k

k k
x

hh x h x x
x

, which when substituted into the necessary 

condition produces the well known normal equations.  

 1ˆ ( )T T
k kH WH H W−∆ = ∆x y  (3.3) 



  17 

 

where 
ˆ

H ∂
=
∂

kx

h
x

 and ˆ( )k k∆ = −y y h x% ;  solution for ˆ k∆x  based upon local linearization 

of h  thus leads to an iteration algorithm (Gaussian Least Squares Differential 

Correction).  This is the standard method for solution of the nonlinear least squares 

problem. 

The automatic differentiation capability of OCEA is well suited for computing the 

sensitivities for the Nonlinear Least Squares algorithm.  These sensitivities are the partial 

derivatives of the measurement model with respect to the unknown model parameters.  

The benefit for the analyst is quite significant when considering the time saved in 

computing these sensitivities by hand or by symbolic manipulation.  As well, the analyst 

is freed from validating and hard coding these partial derivative expressions.  In essence, 

OCEA simultaneously derives and evaluates the derivative expressions, so they do not 

need to be viewed, coded, or validated.  This capability is particularly advantageous 

when there are a large number of model parameters to be estimated.  For example, given 

a scalar measurement model with n unknown model parameters, n partials are required 

for a first-order correction model.  If m measurement equations depending on n 

variables, the Jacobian of first partials requires the derivation and coding of m*n 

equations (if OCEA is not used).  When going to higher-order, the number of partial 

derivatives to be computed explodes to m*np where p is the order of the correction 

model.  Higher-order extensions are discussed in more detail later in this chapter.  

Changes in the assumed form of the chosen mathematical model (the measurement 

model) do not result in a significant increase in effort beyond merely specifying the new 



  18 

 

model since the necessary revisions of partial derivatives are automatically derived and 

evaluated for each model.  This generality is obviously an additional benefit.  

Furthermore, it motivates the development of general purpose codes for the most 

common nonlinear estimation problems. 

 

3.1.2 Gaussian Least Squares Differential Correction 

The problem of determining the orbits of the heavenly bodies has been studied in 

great detail for many hundreds of years.  Since the 1500's orbital models have been 

conjectured and fit to measurements.  Kepler developed three laws that captured the 

main features consistent with the precision possible during the early 1600's.  Just over 

200 years ago, Gauss devised a method for solving the complete orbit determination 

problem which bears his name, Gaussian Least Squares Differential Correction or 

GLSDC.  This algorithm is of broad utility and is in fact the most commonly applied 

nonlinear estimation method18.  The essence of this method, in the context of Gauss’ 

problem, involves estimating the position and velocity (or six other "elements") at some 

time, usually the initial time in which the first measurement was viewed.  Along with a 

model for the dynamics of the body of interest, the complete best estimate of the orbit 

can be reconstructed from the estimated initial state.  In addition, uncertain model 

parameters can be estimated.  These parameters can include force model parameters such 

as drag, solar radiation pressure, and gravitational perturbation model constants. 

The conventional GLSDC algorithm is reviewed in this section.  The first-order 

GLSDC algorithm is a standard topic in many textbooks on estimation; however, it is 



  19 

 

below presented in order to proceed logically to the second- and higher-order GLSDC 

algorithms presented later. 

In contrast to Nonlinear Least Squares problems, we choose to fit the measurements 

to a dynamical model as opposed to a set of algebraic equations.  The dynamical model 

and measurement models are written in general in Eqs. (3.4) and (3.5), respectively. 

 0 0( ) ( , ( )); ( )t t t t= =x f x x x&  (3.4) 

 ( ) ( ( )) 1, 2,...j jt t j m= =y h x  (3.5) 

Here, we consider the state vector, x , to contain the position and velocity states as well 

as any additional unknown model parameters such as those arising from external forces. 

Arising from the nonlinear nature of the dynamical and measurement models, an 

iterative procedure must be employed in determining the unknown parameters.  In 

solving an algebraic parameter optimization (e.g. Nonlinear Least Squares) problem, the 

unknowns appear explicitly in the sensitivity calculations.  However, with GLSDC this 

is not the case.  Here, the sensitivities are computed at each measurement time as follows 

 

0

0

0

( ( ))
( )

( ( )) ( )
( ) ( )

( ( ))
( , ) 1, 2,...

( )

j
j

j j

j

j
j

j

t
H

t
t t

t t

t
t t j m

t

∂
=

∂
∂ ∂

=
∂ ∂

∂
= Φ =

∂

h x
x

h x x
x x

h x
x

 (3.6) 

and the complete first-order sensitivity matrix is formed by 



  20 

 

 

1

2

m

H
H

H

H

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M
 (3.7) 

where 0( , )t tΦ is the state transition matrix (first-order).  This sensitivity calculation is 

used in Eq. (3.3) to compute the state update.  Now, we discuss how to compute the state 

transition matrix. 

Typically, we compute the state transition matrix by integrating the state transition 

matrix differential equation.  Proceeding toward the classical development for the first-

order state transition matrix, we look at linearizing the dynamical model about some 

reference trajectory 

 ( , ( ))( ) ( )
( )

t tt t
t

δ δ∂
=

∂
&

f xx x
x

 (3.8) 

And we assume that the departure motion is governed by 

 0 0( ) ( , ) ( )t t t tδ δ= Φx x  (3.9) 

We can substitute Eq. (3.9) into Eq. (3.8) in order to derive the following first-order 

state transition matrix differential equation. 

 ( , ( ))( , ) ( , )o o
t tt t t t∂⎡ ⎤Φ = Φ⎢ ⎥∂⎣ ⎦

f x
x

&  (3.10) 

whose initial condition, following from Eq. (3.9), is the identity matrix. 

Alternatively, we can derive this state transition differential equation by beginning 

with the integral form of Eq. (3.4).  We will proceed in this manner in deriving the 



  21 

 

second- and higher-order state transition matrix differential equations later in this 

chapter. 

The utility of automatic differentiation is even more profound for the GLSDC 

algorithm.  Here, in computing the sensitivities the measurement model must be 

differentiated as well as the dynamical equations, which must be done in order to derive 

the state transition matrix differential equations. 

The GLSDC algorithm can be summarized as follows: 

1. Given measurements, y% , and an initial guess for the state, 0ˆ ( )tx . 

2. Integrate the state transition differential equations along with the dynamical 

equations until the next measurement is available (at time jt ):  Eqs. (3.10) and 

(3.4). 

3. Compute the sensitivities for each measurement time:  Eq. (3.6). 

4. Once final measurement time is reached, compute differential correction: ˆ k∆x . 

5. Update state: 1 0 0ˆ ˆ ˆ( ) ( )k k kt t+ = + ∆x x x . 

6. Check convergence. 

7. If not converged, then repeat steps 2-6. 

8. If converged, then done. 

 

 



  22 

 

3.2 HIGHER-ORDER GENERALIZED SENSITIVITY CALCULATIONS 

The sensitivity calculations needed for the first-order algorithms are typically 

computed by hand and hard-coded.  This path of solving these problems is time-

consuming and error-prone.  In this section, we present higher-order sensitivity 

calculations.  Without automated methods for deriving partial derivative expressions, we 

would typically not even consider implementing these solutions due to the sheer number 

of partial derivative calculations required. 

For parameter optimization problems, calculation of sensitivities is 

straightforwardly accomplished by taking partial derivatives of a set of algebraic 

equations.  On the other hand, calculation of sensitivities for problems such as orbit 

determination and trajectory optimization, additionally require state transition matrix 

calculations as was detailed earlier for the first-order GLSDC algorithm.  Therefore, in 

this section we focus on new developments in higher-order generalizations of the first-

order state transition matrix concept for use in computing higher-order sensitivities. 

 

3.2.1 Higher-order State Transition Matrix Concepts 

First, we begin by focusing on the sensitivity calculations.  As was shown earlier, 

the first-order sensitivities are given are computed for each measurement time by 

 

0

0

0

( ( ))
( )

( ( )) ( )
( ) ( )

( ( ))
( , ) 1, 2,...

( )

j
j

j j

j

j
j

j

t
H

t
t t

t t

t
t t j m

t

∂
=

∂
∂ ∂

=
∂ ∂

∂
= Φ =

∂

h x
x

h x x
x x

h x
x

 (3.11) 



  23 

 

Naturally, the second-order sensitivities are computed as follows: 

 

( )

2

2
0

2 2

2 2
0 0 0

2
2

0 0 02

( ( ))
( )

( ( )) ( ) ( ) ( ( )) ( )
( ) ( ) ( ) ( ) ( )

( ( )) ( ( ))
( , ) ( , ) ( , )

( ) ( )

j
j

j j j j j

j

j j
j j j

j

t
H

t

t t t t t
t t t t t

t t
t t t t t t

t t

∂
∇ =

∂

∂ ∂ ∂ ∂ ∂
= ⊗ ⊗ + ⊗

∂ ∂ ∂ ∂ ∂

∂ ∂
= ⊗Φ ⊗Φ + ⊗Φ

∂ ∂

h x
x

h x x x h x x
x x x x x

h x h x
x x

 (3.12) 

where the symbol 0( , )jt tΦ  represents a first-order state transition matrix and 

(2)
0( , )jt tΦ denotes a second-order state transition matrix, which we define below.  As 

can be seen in Eqs. (3.11) and (3.12), in calculating these sensitivities we require 

computing a number of partial derivatives including the first- and second-order partials 

as shown here.  These sensitivities are written here symbolically where the symbol “⊗ ” 

represents a dyadic product.  A more thorough interpretation of how to carry out the 

implied products for the first- through fourth-order sensitivity calculations is given in 

Appendix B in indicial notation. 

Now we develop the necessary state transition matrix differential equations.  For 

first- through fourth-order generalizations16, we must introduce a number of state 

transition matrices, and we adopt the following notation: 

First-order:    0
0

( )( , )
( )

tt t
t

∂
Φ =

∂
x
x

 

Second-order:   ( )
2

2
0 2

0

( )( , )
( )

tt t
t

∂
Φ =

∂
x

x
 

Third-order:   
3

(3)
0 3

0

( )( , )
( )

tt t
t

∂
Φ =

∂
x

x
 



  24 

 

Fourth-order:   
4

(4)
0 4

0

( )( , )
( )

tt t
t

∂
Φ =

∂
x

x
 

kth-order:   ( )
0

0

( )( , )
( )

k
k

k

tt t
t

∂
Φ =

∂
x

x
 

We adopt this notation as a natural extension of the standard first-order notation.  

Furthermore, it should be noted that the second- and higher-order state transition 

matrices, as we are calling them, are actually third- and higher-order tensor arrays.  

Thus, we name them higher-order state transition “matrices” since they are an extension 

of the first-order state transition matrix concept. 

All the higher-order state transition matrices are computed at each instant in time by 

solving differential equations.  As will be evident, these differential equations assume a 

cascade form that facilitates computation.  Previously, we developed the first-order state 

transition matrix differential equation through the linearized equations of motion.  Here 

we proceed in a more general fashion by beginning with the integral form of Eq. (3.4). 

 ( ) ( ) ( , ( ))
o

t

o
t

t t dτ τ τ= + ∫x x f x  (3.13) 

We then differentiate Eq. (3.13) with respect to the initial state to compute 

 ( ) ( , ( )) ( )( , )
( ) ( ) ( )

o

t

o
o ot

tt t I d
t t

τ τ τ τ
τ

⎡ ⎤⎡ ⎤∂ ∂ ∂
Φ = = + ⎢ ⎥⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦

∫
x f x x
x x x

 (3.14) 

The first-order state transition matrix differential equation is obtained upon time 

differentiation of Eq. (3.14). 

 ( , ( ))( , ) ( , )
( )o o

t tt t t t
t

⎡ ⎤∂
Φ = Φ⎢ ⎥∂⎣ ⎦
& f x

x
 (3.15) 



  25 

 

Upon differentiating Eq. (3.14) once again with respect to the initial state, and then time 

differentiating this expression, we arrive at the following second-order state transition 

matrix differential equation 

 
2

(2) (2)( , ( )) ( , ( ))( , ) ( , ) ( , ) ( , )
( ) ( )o o o o

t t t tt t t t t t t t
t t

⎡ ⎤⎡ ⎤∂ ∂
Φ = ⊗Φ + ⊗Φ ⊗Φ⎢ ⎥⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦
&

2

f x f x
x x

 (3.16) 

with zero valued initial conditions.  

Again, it is obvious that the state transition matrix differential equations can be 

extended to any order desired by continuing along this path.  The above equations are 

symbolic shorthand, not matrix expressions.  The actual equations required for 

computation are most easily developed in indicial equations.  These developments are 

given for first- through fourth-order state transition matrix differential equations in 

Appendix C.  It should be noted that in deriving state transition matrix differential 

equations for a particular problem, some number of partial derivatives of the dynamical 

equations are required.  Using automatic differentiation, we can code all state transition 

matrix differential equations once and for all since the required partials are automatically 

derived and evaluated in the background using OCEA.  Additionally, the dimensions of 

the state transition matrices can be arbitrarily declared, thus creating the framework of a 

general algorithm for computing state transition matrix differential equations for an 

arbitrary dimensioned problem.  Any integration scheme can be wrapped around these 

equations in order to solve them. 



  26 

 

Furthermore, we note that with these developments of higher-order state transition 

matrix concepts, that we can look to write the departure motion about some nominal 

state path as follows: 

 

(2)1
0 0 0 0 02

(3)1
0 0 0 06

(4)1
0 0 0 0 024

( ) ( , ) ( ) ( , ) ( ) ( )

( , ) ( ) ( ) ( )

( , ) ( ) ( ) ( ) ( )
H.O.T.

t t t t t t t t

t t t t t

t t t t t t

δ δ δ δ

δ δ δ

δ δ δ δ

= Φ + Φ ⊗ ⊗

+ Φ ⊗ ⊗ ⊗

+ Φ ⊗ ⊗ ⊗ ⊗

+

x x x x

x x x

x x x x
 (3.17) 

Equation (3.17) represents a fourth-order power series of the departure motion in terms 

of the initial departure motion.  Of course, by adding terms to this expression we can 

expect to more accurately predict the true departure motion due to changes in the initial 

state.  We are not limited to first-order methods for studying; for example, the sensitivity 

of differential equations to changes in initial conditions.  Again, the above Eq. (3.17) is a 

symbolic shorthand for the corresponding indicial equation; for example, the second-

order term in Eq. (3.17) can be written in indicial notation as (2)1
2 ist t sx xδ δΦ .  Only the 

first term can be computed by matrix product.   

Here, though, we are primarily focused on higher-order estimation algorithms.  We 

can think of Eq. (3.17) as a fourth-order mapping of small departure motion between the 

initial time and any other time.  However, what we typically require in solving an 

estimation problem is the inverse mapping, i.e., a solution for the initial departure state 

in terms of the departure state at some arbitrary time.  This solution is presented later in 

this section. 

 

 



  27 

 

3.2.2 Properties of Higher-order State Transition Matrices 

The properties of and methods for computing the first-order state transition matrix 

have been studied in great detail.  The first-order state transition matrix can be computed 

by utilizing the group chain rule property which holds in the general case:   

 2 1 2 0 0 1

1
2 0 1 0

( , ) ( , ) ( , )

( , ) ( , )

t t t t t t

t t t t −

Φ = Φ Φ

= Φ Φ
 (3.18) 

Therefore, we can compute 2 1( , )t tΦ  using the forward integrated, stored history of state 

transition matrices described by 0( , )t tΦ  for 0 ft t t≤ ≤ .  This is a well known property of 

the first-order state transition matrix which allows for computing the state transition 

matrix which maps the departure motion between any times.  It follows from the chain 

rule for partial differentiation, because it is easy to prove that ( ) / ( ) ( , )j i j ix t x t t t∂ ∂ ≡ Φ .  

Another special property of the first-order state transition matrix is the symplectic 

property.  This allows for matrix inversion of the first-order state transition matrix to be 

replaced by a transpose operation and pre- and post-multiplication by an orthogonal 

matrix19 for the special case of conservative natural dynamical systems.  Furthermore, 

the inverse mapping of the first-order state transition matrix can be computed via matrix 

inversion and results in the following: 

 1
1 2 2 1( , ) ( , )t t t t −Φ = Φ  (3.19) 

Now we must ask whether these special properties also hold for the second- and 

higher-order state transition matrices.  A simple examination of the second-order state 

transition matrix shows that the group chain rule property does not hold.  This clearly 

follows for the higher-order state transition matrices as well.  Furthermore, the matrix 



  28 

 

inversion property is not valid for the higher-dimension tensor objects.  The inverse 

mapping; however, can at least be computed for the second- and higher-order state 

transition matrices by integrating backward from some time 2t  in order to compute 

(2)
2( , )t tΦ .  However, an alternative structure of augmented differential equations in a 

higher dimensional space allows us to see that analogous group properties do in fact 

exist. 

We can augment the state vector x  by the elements of the first-order state transition 

matrix 0( , )t tΦ .  In order to accomplish this we must perform a “vec” operation on the 

first-order state transition to form the following vector containing the elements of the 

first-order state transition matrix.  

 

11 0

12 0
0

0

( , )
( , )

( ( , ))

( , )nn

t t
t t

column t t

t t

Φ⎧ ⎫
⎪ ⎪Φ⎪ ⎪≡ Φ = ⎨ ⎬
⎪ ⎪
⎪ ⎪Φ⎩ ⎭

M
φ  (3.20) 

where 0( , )ij t tΦ is an element of the first-order state transition matrix.  Thus we can form 

a new state vector by augmenting the state x  with φ : 

 
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

x
y φ  (3.21) 

The differential equations governing y  are formed using Eq. (3.4) and the “vec” 

form of the first-order state transition matrix differential equations given by Eq. 3.15.   



  29 

 

 ( , )t d
dt

⎧ ⎫
⎪ ⎪⎪ ⎪= = ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

&

f
y F y φ  (3.22) 

where d
dt
φ is a function of , ,  and t x φ .  

We can now derive a state transition matrix differential equation for the augmented 

state as given in Eq. (3.23). 

 0 0
( )( , ) ( , )
( )
tt t t t
t

⎡ ⎤∂
Ψ = Ψ⎢ ⎥∂⎣ ⎦
& F

y
 (3.23) 

where 

 

 0
0

( )( , )
( )

tt t
t

⎡ ⎤∂
Ψ = ⎢ ⎥∂⎣ ⎦

y
y

 (3.24) 

We note that 0( , )t tΨ  does satisfy the state transition matrix group chain rule 

property, and is in fact a higher-order state transition matrix which contains all second 

partials.  Equation (3.25) illustrates this point. 

 0 0
0

0

0 0

( ) ( )
( ) ( )( )( , ) ( ) ( )( )
( ) ( )

t t
t ttt t t tt
t t

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂⎡ ⎤∂ ⎢ ⎥Ψ = =⎢ ⎥ ∂ ∂⎢ ⎥∂⎣ ⎦ ⎢ ⎥∂ ∂⎢ ⎥⎣ ⎦

x x
xy

y
x

φ
φ φ

φ

 (3.25) 

We identify the n by n matrix
0

( )
( )

t
t

∂
∂

x
x

as 0( , )t tΦ , which is the first-order state 

transition matrix associated with the state x , and the m by n matrix 
0

( )
( )

t
t

∂
∂x
φ as the “vec” 



  30 

 

form of 
2

(2)
0 2

0

( )( , )
( )

tt t
t

∂
Φ ≡

∂
x

x
, which is the second-order state transition matrix associated 

with the state x , where m = n2.  Thus, by this augmented state formulation, we can 

compute the first- and second-order state transition matrices simultaneously.  We also 

note in Eq. (3.25) that all elements of the n by m matrix
0

( )
( )
t
t

∂
∂

x
φ

are zero.  The 

matrix
0

( )
( )
t
t

∂
∂
φ
φ

 has dimension m by m. 

We now investigate the group chain rule property for the matrix 0( , )t tΨ .  Equation 

(3.18) results in 

 1
2 1 2 0 1 0( , ) ( , ) ( , )t t t t t t −Ψ = Ψ Ψ  (3.26) 

where  

 

1

0
1 0

1 1

0 0

( ) 0
( )

( , ) ( ) ( )
( ) ( )

nxm
t
t

t t t t
t t

∂⎡ ⎤
⎢ ⎥∂⎢ ⎥Ψ =
∂ ∂⎢ ⎥
⎢ ⎥∂ ∂⎢ ⎥⎣ ⎦

x
x

x
φ φ

φ

 (3.27) 

and 

 

2

0
2 0

2 2

0 0

( ) 0
( )

( , ) ( ) ( )
( ) ( )

nxm
t
t

t t t t
t t

∂⎡ ⎤
⎢ ⎥∂⎢ ⎥Ψ =
∂ ∂⎢ ⎥
⎢ ⎥∂ ∂⎢ ⎥⎣ ⎦

x
x

x
φ φ

φ

 (3.28) 

As indicated in Eq. (3.26), we must invert 1 0( , )t tΨ .  In order to accomplish this, we 

turn to a well known relationship20 for inverting block matrices of the form: 



  31 

 

 

1

1

1 1 1 1 1 1

1 1 1

A B
C D

A A B CA A B
CA

−

−

− − − − − −

− − −

⎡ ⎤
Α = ⎢ ⎥

⎣ ⎦
⎡ ⎤+ ∆ − ∆

= ⎢ ⎥−∆ ∆⎢ ⎥⎣ ⎦

 (3.29) 

where 

1D CA B−∆ = −  

In applying Eq. (3.29) to 1
1 0( , )t t −Ψ  we find  

 

1

1

01
1 0 1 1 1

1 1 1 1

0 0 0 0

( ) 0
( )

( , )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

nxm
t
t

t t
t t t t
t t t t

−

−
− − −

⎡ ⎤⎡ ⎤∂⎢ ⎥⎢ ⎥∂⎢ ⎥⎣ ⎦
Ψ = ⎢ ⎥

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂⎢ ⎥
− ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

x
x

x
x x

φ φ φ
φ φ

 (3.30) 

 

Equation (3.26) results in the following equation given Eq. (3.30) 

 

1

2 1

0 0

2 1 1

2 1

0 0 2 1
1 1

0 0
2 1 1 1

0 0 0 0

( ) ( ) 0
( ) ( )

( , )
( ) ( )
( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

nxm
t t
t t

t t
t t
t t t t

t tt t t t
t t t t

−

−

− −

⎡ ⎤ ⎡ ⎤∂ ∂
⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦

Ψ =
⎡ ⎤ ⎡ ⎤∂ ∂
⎢ ⎥ ⎢ ⎥∂ ∂ ⎡ ⎤ ⎡ ⎤∂ ∂⎣ ⎦ ⎣ ⎦

⎢ ⎥ ⎢∂ ∂⎣ ⎦ ⎣⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂
− ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x x
x x

x
x x

xx
x x

φ

φ φ
φφ φ φ

φ φ

1−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎥
⎢ ⎥⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.31) 

where 



  32 

 

 

2

1
2 1

2 2

1 1

( ) 0
( )

( , ) ( ) ( )
( ) ( )

nxm
t
t

t t t t
t t

∂⎡ ⎤
⎢ ⎥∂⎢ ⎥Ψ =
∂ ∂⎢ ⎥
⎢ ⎥∂ ∂⎢ ⎥⎣ ⎦

x
x

x
φ φ

φ

 (3.32) 

We identify by comparing Eqs. (3.31) and (3.32) that 

 
1

2 2 1

1 0 0

( ) ( ) ( )
( ) ( ) ( )
t t t
t t t

−
⎡ ⎤ ⎡ ⎤∂ ∂ ∂

= ⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦

x x x
x x x

 (3.33) 

 
1 1 1

2 2 1 2 1 1 1

1 0 0 0 0 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
t t t t t t t
t t t t t t t

− − −
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂

= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x x
x x x x x
φ φ φ φ φ

φ φ
 (3.34) 

and 

 
1

2 2 1

1 0 0

( ) ( ) ( )
( ) ( ) ( )
t t t
t t t

−
⎡ ⎤ ⎡ ⎤∂ ∂ ∂

= ⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦x
φ φ φ
φ φ

 (3.35) 

Thus, by this augmented state vector approach, we show (once again) that the group 

chain rule property holds for the first-order state transition matrix as shown in Eq. (3.33).  

Most importantly, we show that the second-order state transition matrix has this property 

as well and is computed by Eq. (3.34).  Of course, we must perform an inverse “vec” 

operation to compute  

 (2) 2
2 1

1

( )( , )
( )
tt t
t

∂
Φ ≡

∂x
φ  (3.36) 

By augmenting the state vector with the elements of the first-order state transition 

matrix, we show that the group chain rule property holds for first- and second-order state 

transition matrices.  Of course, we could continue along this path for the third- and 



  33 

 

higher-order state transition matrices.  We now turn our attention to computing the state 

transition matrices. 

Many methods have been developed to solve for the first-order state transition 

matrices.  One summary is given in Reference 21.  The most direct method for solving 

the first-order state transition matrices is integrating the differential equation; however, 

some analytical methods have been developed for the first-order case.  No attempt has 

been made in this work to develop analogous exact analytical methods other than 

explicit numerical integration for solving for the second- and higher-order state 

transition matrices; however, this does not imply that other methods do not exist. 

 

3.2.3 Reversion of Series Solution 

In this section, we summarize the reversion of series solution.  In the most general 

sense, the reversion of series provides the solution for the state update equation for the 

estimation algorithms.  More specifically, it provides the inverse mapping for Eq. (3.17).  

More details on the original formulation can be found in Reference 14.  In the 

subsequent sections, we detail the general form and the state transition matrix specific 

inverse mapping form.   

 

3.2.3.1 General Form 

Here, we show the reversion of series solution in its most general form.  This form 

applies to any iterative estimation process considering very general sensitivity 

calculations.  This solution provides the correction to be applied to the current guess of 



  34 

 

the unknown parameters in the estimation problem, where g(x) = 0 defines the necessary 

condition for the root of the equation. 

In developing the reversion of series solution, Turner redefines the necessary 

condition of the root solving problem in the following parameter embedding problem 

 ( ( ), ) ( ( )) ( ) 0guessG x s s g x s sg x= − =  (3.37) 

where s is a scalar embedding parameter, xguess is the starting guess, and x = x(s). 

 The initial and final states of the embedding function are 0 1s s= =  and 0fs s= = . 

Thus, 
1

( ( ), ) 0
s

G x s s
=
=  because ( 1) guessx s x= =  and 

0
( ( ), ) ( ) 0

s
G x s s g x

=
= =  where the 

original function is returned.  The solution to the original problem is obtained by 

choosing fs  such that the original necessary condition is satisfied.  The value of s is 

varied from 1 to 0 in order to determine how x changes along the curve defined by 

G(x(s),s). 

 Along the homotopy path (i.e. analytical continuation path) defined by Eq. (3.37), 

the solution for x(s) is generated by a Taylor series 

 
2 3

2 3
2 3

1 1( ) ...
2! 3!

f f f

f guess
s s s

dx d x d xx s x s s s
ds ds ds

= + ∆ + ∆ + ∆ +  (3.38) 

where 0 1f fs s s s∆ = − = − .  By setting 0fs =  in Eq. (3.38), the artificial independent 

variable is eliminated from the series solution and the original problem dimension is 

restored, yielding the reversion of series solution given by 

 
2 3

2 3
1 1 1

1 1 ...
2! 3!guess guess

s s s

dx d x d xx x x
ds ds ds

δ
= = =

≈ + = − + − +  (3.39) 



  35 

 

where the differential rates appearing in Eq. (3.39) are obtained repeatedly 

differentiating G(x(s),s) with respect to s.  For example, the first partial derivative of 

G(x(s),s) = 0 leads to 

 

dG G G dx
ds s x ds

G dxG
s ds

∂ ∂
= +
∂ ∂
∂

= +∇
∂

 (3.40) 

which can be solved for the differential rate given in Eq. (3.41).  The developments 

leading to computing the additional rates are presented in Reference 14; however, the 

results clearly follow by continuing to differentiate Eq. (3.40) with respect to s and 

solving for the differential rate.  The first- through fourth-order terms are given by 

 ( ) 1

1

( )guess
s

dx G g x
ds

−

=

= ∇  (3.41) 

 ( )
2

1 2
2

1 11 s ss

d x dx dxG G
ds ds ds

−

= ==

⎛ ⎞
= − ∇ ∇ ⊗ ⊗⎜ ⎟

⎝ ⎠
 (3.42) 

 ( )

3

1 1 1

3 2
1 2

3 2
11 1

2
2

2
1 1

2

s s s

ss s

s s

dx dx dxG
ds ds ds

d x d x dxG G
ds ds ds

dx d xG
ds ds

= = =

−

== =

= =

⎧ ⎫
∇ ⋅ ⊗ ⊗ +⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪= − ∇ ∇ ⊗ ⊗ +⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪∇ ⊗ ⊗
⎪ ⎪⎩ ⎭

 (3.43) 



  36 

 

 ( )

4

1 1 1 1

2
3

2
1 11

4 2
1 3

4 2
1 11 1

2 3
3 2

2 3
1 1 11 1

2 2
2 2

2 2
1 1

3

2

3

3

s s s s

s ss

s ss s

s s ss s

s s

dx dx dx dxG
ds ds ds ds

d x dx dxG
ds ds ds

d x dx d x dxG G
ds ds ds ds

dx dx d x d x dxG G
ds ds ds ds ds

d x d x dxG G
ds ds ds

= = = =

= ==

−

= == =

= = == =

= =

∇ ⊗ ⊗ ⊗ ⊗ +

∇ ⊗ ⊗⋅ ⊗ +

= − ∇ ∇ ⊗ ⊗ ⊗ +

∇ ⋅ ⊗ ⊗ + ∇ ⊗ ⊗ +

∇ ⊗ ⊗ +∇ ⊗
3

3
1 1s s

d x
ds= =

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪

⊗⎪ ⎪
⎪ ⎪⎩ ⎭

(3.44) 

where ( )guessg x is, in a very general sense, the measurement model error.  The symbol 

"⊗ " represents a dyadic product.  For the GLSDC problem, this is the error between the 

observations and the predictions of the measurement model.  In the case of a TPBVP, 

this measurement model error is the error in the terminal boundary states.  

G∇ , 2G∇ , 3G∇ , and 4G∇  are symbolically the first- through fourth-order sensitivities. 

In general, the solution given in Eqs. (3.41-3.44) provides a means for solving 

iterative problems in optimization and estimation.  When only considering the first-order 

term in Eq. (3.39), we have the multilinear version of Newton’s Method.  Equation 

(3.39) can therefore be considered as the higher-order extension of Newton’s Method.  

The gradient terms ( G∇ , 2G∇ , 3G∇ , and 4G∇ ) are understood to be taken with respect 

to the elements of the vector of unknown parameters to be estimated.  The state update in 

Eq. (3.39) can be accomplished once the desired order of terms coming from Eqs. (3.41-

3.44) are computed.   

 



  37 

 

3.2.3.2 State Transition Matrix Form 

We can utilize Eq. (3.97) to compute the inverse mapping of Eq. (3.17) when the 

sensitivity calculations are computed solely by state transition matrix calculations.  That 

is, G∇ , 2G∇ , 3G∇ , and 4G∇  are symbolically the first- through fourth-order state 

transition matrices.   

We simply substitute the state transition matrices into Eq. (3.39) in order to compute 

the state update, including up through second-order terms in this illustration we produce 

the inverse mapping of Eq. (3.17): 

 ( ) ( ){ }
1

0 0

1 (2) 1 11
0 0 0 02

( ) ( , ) ( )

( , ) ( , ) ( , ) ( ) ( , ) ( )

t t t t

t t t t t t t t t t

δ δ

δ δ

−

− − −

= Φ

− Φ Φ ⊗ Φ ⊗ Φ

x x

x x
 (3.45) 

This mapping can be easily extended to include third- and higher-order terms using Eqs. 

(3.43) and (3.44); however, this is easily shown with only the second-order illustration. 

The developments of this section provide the ingredients required for developing 

estimation and optimization algorithms which utilize higher-order sensitivity 

calculations.  The reversion of series solution provides the means to compute the state 

update, and the development of the higher-order state transition matrix generalizations 

enables the computation of the required sensitivity calculations for many of the methods 

developed in the next section. 

 

 

 

 



  38 

 

3.3 HIGHER-ORDER ALGORITHMS 

The developments of the previous section provide the general framework for the 

new methods detailed in this section.  Here, we provide the essential details for 

implementation of new solutions for Nonlinear Least Squares and GLSDC algorithms.  

Additionally, we present some new ideas for solving trajectory optimization problems 

and computing midcourse corrections.   

Generally, these algorithms fall into two categories:  direct optimization type 

algorithms and state transition matrix type algorithms.  Nonlinear Least Squares 

problems fall into the direct optimization category.  Here, the sensitivities are explicit 

partial derivative calculations.  GLSDC algorithms fall into the state transition matrix 

category due to the definition of the sensitivities.  Simply put, we need the state 

transition matrix calculations for solving this type of problem.  The sensitivity 

calculations are computed as they are in Eqs. (3.11) and (3.12) which require explicit 

partials of the measurement model and the state transition matrices.  Regardless of the 

type of problem, many times we wish to weight the measurements in some fashion.  A 

description of weight matrix issues when considering higher-order generalizations is 

given in the next section. 

 

3.3.1 Weight Matrix Issues 

We note here that some special attention must be given to weighting observations 

for higher-order methods.  For uncorrelated measurements, the optimal choice for 

weighting is 2
i iw σ −=  where 2

iσ  is the variance of the ith measurement.  This weighting 



  39 

 

approach results in a diagonal weight matrix, W , which can be factored by the Cholesky 

Decomposition as TW LL= .  Thus, for the optimal choice, (1/ )T
iL L diag σ= = .  The 

simplest way to implement weighted observations is to pre-multiply the observations and 

the measurement model predictions, which in this work includes the evaluations of the 

measurement model and its first- and higher-order partial derivatives, by TL .  This can 

be easily illustrated by considering direct optimization of the cost function.  Obviously, 

here we include the weight matrix in the formulation of the cost function, and 

subsequent sensitivity calculations automatically include the weighting effect regardless 

of the order of the solution. 

 

3.3.2 Trajectory Optimization Algorithms 

 Applications which require the solution to a Two-Point Boundary-Value Problem 

(TPBVP) occur in many engineering disciplines.  The solution of the TPBVP determines 

states or functions of the states at two points, usually the initial and final times, which 

satisfy the boundary conditions for a given mathematical problem.  For linear problems, 

analytical solutions exist for determining the unknown initial or final conditions; 

however, for nonlinear problems we must resort to iterative methods.  Many methods 

have been developed to solve nonlinear TPBVPs dealing with a wide range of issues, 

including stiffness of differential equations of motion, reduction in sensitivity, and speed 

of convergence.   

Here, we study the automatic generation of sensitivity equations for solving 

nonlinear TPBVPs.  The type of TPBVP we consider is a trajectory optimization 



  40 

 

problem, e.g. orbital transfer.  In this work, we investigate two methods for solving 

TPBVPs including optimal solutions by the method of differential corrections22,23 and 

near-optimal solutions using the method of differential inclusions24. 

One particular solution approach is the method of differential corrections.  Here a 

guess is made for the unknown states, the state differential equations are integrated until 

the final time, and the boundary conditions are checked to see if they are satisfied.  

When the constraint conditions are not satisfied, corrections to the unknown states are 

computed and the process is repeated until convergence criteria are met.  Typically, 

these corrections are computed by using first-order sensitivity calculations or at best, 

second-order calculations using an approximate Hessian.  Direct optimization using 

differential inclusions will be considered as a second approach, demonstrating OCEA’s 

AD capabilities in solving TPBVPs.  First- through fourth-order sensitivity calculations 

will be considered in each case.  A number of results detailing performance will be 

presented. 

 

3.3.2.1 Optimal Control Formulation 

In this section, we overview the formulation of the necessary conditions for the 

Optimal Control problem.  One of the problems we consider is a minimum time 

problem.  Therefore, we also examine converting the minimum time problem to one in 

which the final time is fixed, and the unknown final time becomes a free parameter to be 

optimized. 

Consider the minimization of the following function where ft is the final time 



  41 

 

 
0

( ( ), ( ), )
ft

J L t t t dt= ∫ x u  (3.46) 

subject to the following dynamics 

 ( , ( ))t t&x = f x  (3.47) 

In general, the Hamiltonian for the system is written as 

 ( ( ), ( ), ) ( ( ), ( ), )TH L t t t t t t= +x u λ f x u  (3.48) 

For unconstrained control, the well-known necessary conditions along the trajectory 

required to minimize J are given by Eqs. (3.49-3.51) 

 H∂
=
∂

x
λ

&  (3.49) 

 - H∂
∂

λ =
x

&  (3.50) 

 0H∂
=

∂u
 (3.51) 

Furthermore, we consider the initial and final boundary conditions on the states and 

co-states.  The necessary boundary condition for an unspecified initial state, 0( )ix t , 

are 0( ) 0i tλ = , whereas initial co-states are unknown and must be solved numerically 

when the corresponding initial state is specified.  Also, when the final time is free we 

have ( ) 0fH t = as an additional necessary condition. 

Now, we consider converting the free final time problem into a fixed final time 

problem.  With the fixed final time problem, ft appears in the formulation as a free 

parameter.  A fixed final time problem has the obvious advantage of fixed time limits for 



  42 

 

integrating any differential equations.  The numerical algorithm for solving the TPBVP, 

which is outlined in subsequent sections, benefits since the unknown final time 

parameter appears explicitly in the state and co-state equations and ultimately appears 

explicitly in the sensitivity calculations. 

Consider a new time variable, τ , defined as 

 ; 0 1
f

t
t

τ τ= ≤ ≤  (3.52) 

Differentiation of the states with respect to the new time variable (denoted with a 

prime) can be written as 

 '
f

d d dt t
d dt dτ τ

= = = &
x xx x  (3.53) 

Therefore, in producing the new state equations for the fixed time problem we simply 

multiply Eq. (3.49) by the parameter ft .  Additionally, new co-state equations for the 

fixed time problem are computed in the same manner.   The cost function is rewritten as 

1
0 fJ t dτ= ∫ , and the Hamiltonian is defined as 

 
( ( ), ( ), )

1 ( ( ), ( ), )

T
f f

T
f

H t t

t

τ τ τ

τ τ τ

= +

= +⎡ ⎤⎣ ⎦

λ f x u

λ f x u
 (3.54) 

Equations (3.49-3.51) are applied to the Hamiltonian in Eq. (3.54) to produce the fixed 

time problem necessary conditions along the trajectory.  However, here we must 

consider one additional necessary condition22 on the free parameter ft   

 
1

0
0

f

H d
t

τ∂
=

∂∫  (3.55) 



  43 

 

In the next two sections, we describe the numerical procedures for solving the TPBVP. 

 

3.3.2.2 Differential Corrections 

The method of differential corrections is a shooting type method.  The numerical 

process entails guessing the unknown initial conditions, integrating the state and co-state 

equations along with the state transition matrix differential equations until the final time 

is reached, and then evaluating how well the terminal boundary conditions are met.  If 

the terminal conditions are satisfied to some acceptable error, then we accept the 

estimate for the initial conditions as the solution.  Otherwise, we introduce a local Taylor 

series of the terminal constraints as a function of initial conditions and utilize sensitivity 

calculations (Eqs. 3.41-3.44) to iterate the guess for the unknowns at the initial time and 

repeat the process until the terminal conditions are satisfied.  Of course, implicit in this 

process are difficult issues on the domain of attraction that govern convergence.  We do 

not explicitly consider the conditions for convergence in this study. 

When the objective is to reach a specified set of terminal states, the sensitivity 

matrices required to solve the problem by the method of differential corrections using 

Eq. (3.39) are simply the state transition matrices that relate the initial and terminal 

states.  For illustration we show that, to first order, the relationship is written as 

 0 0 0
0

( )
( ) ( , ) ( ); ( , )

( )
f

f f f

t
t t t t t t

t
δ δ

∂
= Φ Φ =

∂

x
x x

x
 (3.56) 

where 0( )tδ x and ( )ftδ x represent small state departures from the optimal solution at 

the initial and final times and 0( , )ft tΦ is the first-order state transition matrix that relates 



  44 

 

the departure state at the two times.  Considering the procedure outlined above, it can be 

seen that Eq. (3.56) can be solved for 0( )tδ x  in order to update the estimate for the 

initial states.  This solution corresponds to the first-order term given in Eq. (3.39). 

We can easily extend the procedure to include second- and higher-order terms.  For 

example, considering up to second-order terms in Eq. (3.39) we have as an update 

equation: 

 
( ) ( ){ }

1
0 0

1 (2) 1 11
0 0 0 02

( ) ( , ) ( )

( , ) ( , ) ( , ) ( ) ( , ) ( )

f f

f f f f f f

t t t t

t t t t t t t t t t

δ δ

δ δ

−

− − −

= Φ

− Φ Φ ⊗ Φ ⊗ Φ

x x

x x
 (3.57) 

where “⊗ ” represents a dyadic product and the second-order state transition matrix is 

defined as 

 
2

(2)
0

0

( )
( , )

( )
f

f

t
t t

t
∂

Φ =
∂ 2

x
x

 (3.58) 

Again, the first- through fourth-order state transition matrix differential equations 

are shown in Appendix C.  We note once again that automatic differentiation enables the 

analyst to completely avoid the most time-consuming and error prone task involved in 

solving the state transition matrix differential equations since OCEA computes and 

evaluates the partial derivatives of the function ( ( ), )t tf x  automatically.  The benefits 

are readily seen for the first-order case.  Extension to higher-order is easily 

accomplished since the partial derivatives are automatically computed and evaluated. 

 

 

 



  45 

 

3.3.2.3 Differential Inclusions 

The method of differential inclusions is a direct optimization approach for 

generating finite-dimensional approximations to the solutions of optimal control 

problems.  This method is used for rapid trajectory generation, and has the advantage 

that controls can be eliminated from the problem formulation.  The differential equations 

are integrated implicitly resulting in a parameter optimization problem.  There is no need 

to derive co-state and state transition matrix differential equations.  Additionally, this 

method provides a means for approximating unknown parameters which can improve the 

starting guess for another solution effort, such as the method of differential corrections.   

Here we consider solving problems using differential inclusions of the following 

type 

 ( ( ), ) ( )t t t= +x f x u&  (3.59) 

 ( )
0

1
2

ft
T TJ Q u Ru dt= +∫ x x  (3.60) 

where the final time is fixed. 

The procedure entails discretizing the equations of motion.  For the ith equation of 

Eq. (3.59) we have 

 
( ) ( ) ( ) ( )

( )1 1
( ) 2

i i i i
ik k k k

ki

x x x xf u+ +⎛ ⎞− +
− =⎜ ⎟∆ ⎝ ⎠

 (3.61) 

where 0
( )

( )( ) f
i

t ti
N

−∆ = and ( )iN  is the number equally spaced time intervals chosen.  The 

performance index of Eq. (3.60) is also rewritten as 



  46 

 

 ( )
( )

( , ) ( ) ( ) ( , ) ( ) ( )1
2

1 1 1

im m N
i j i j i j i j

k k k k
i j k

J q x x r u u
= = =

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑∑ ∑  (3.62) 

where m is the number of states ( mR∈x ). 

The expression on the left-hand side of Eq. (3.61) can be substituted into the 

performance index of Eq. (3.62) which eliminates the control from the formulation.  

Therefore, the unknowns to be solved for are the discretized state coordinates defined as 

( ) ( ) ( ) ( )( ) ( )i i i i
k kx x t x k= = ∆ .  This can be accomplished by minimization of the nonlinear 

function that results from substituting the control into Eq. (3.62). 

The capability of OCEA to automatically compute the partial derivatives of J  

makes this problem readily solvable by a code that applies to a large class of problems.  

The gradient of J  produces the necessary conditions for a minimum.  The Hessian of J  

provides the required sensitivity matrix used to iteratively solve for the roots of the 

nonlinear equations defined by J∇ = 0 .  These roots are the solution for the unknown 

discretized states.  OCEA also enables higher-order optimization methods to be 

employed here by utilizing higher-order gradients of J . 

Given the solution for the states, we can substitute them into Eq. (3.61) and solve 

for the control.  With the control and state time histories, we can then compute the initial 

co-states from the differential inclusions solution.  These can be used as an improved 

starting guess for another solution method. 

 

 

 



  47 

 

3.3.3 Midcourse Corrections 

An issue that must be addressed in any trajectory design is performing midcourse 

corrections when the vehicle deviates from the reference path.  In many historical 

applications, e.g. the Apollo Saturn V guidance laws, this correction is computed using a 

first-order state transition matrix time history that is stored onboard.  In order to illustrate 

the idea, a departure from the reference path at time *t  will result in a first-order 

correction of the terminal error as given in the following expression: 

 
*

* *
*

( )( )
( ) ( , )

( )( )
f

f
f

tt
t t t

tt
δδ

δ
δδ
⎡ ⎤⎡ ⎤

= = Φ ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

rr
x

vv
 (3.63) 

where 

*

* *

* *

( ) ( )
( ) ( )

) ( )
( ) ( )

( , )f

f f

f f

t t
t t

t t
t t

t t

∂ ∂
∂ ∂

∂ ∂
∂ ∂

⎡ ⎤
⎢ ⎥
⎢ ⎥Φ =
⎢ ⎥
⎢ ⎥⎣ ⎦

r r
r v

v( v
r v

 

 

The procedure is given by Battin in Reference 19.  Suppose we wish to maintain the 

reference path, then we choose ( )ftδ =r 0 and solve Eq. (3.63) for *( )tδ v , the 

instantaneous velocity correction to compensate for the position error, *( )tδ r , at that 

time.  The state transition matrix required in Eq. (3.63) can be computed by utilizing the 

group chain rule property of the first-order state transition matrices which hold in the 

general case   

 3 1 3 2 2 1
1

3 2 1 2

( , ) ( , ) ( , )

( , ) ( , )

t t t t t t

t t t t −

Φ = Φ Φ

= Φ Φ
 (3.64) 



  48 

 

Therefore, we can compute * * 1
0 0( , ) ( , ) ( , )f ft t t t t t −Φ = Φ Φ  using the forward integrated, 

stored history of state transition matrices described by 0( , )t tΦ  for 0 ft t t≤ ≤ and then 

solve Eq. (3.63).  This property of first-order state transition matrix was described in 

section 3.2. 

Now suppose that we desire to perform a second-order midcourse correction.  Thus 

we write 

 * * (2) *1
2( ) ( , ) ( ) ( , ) ( ) ( )f f f f ft t t t t t t tδ δ δ δ= Φ + Φ ⊗ ⊗x x x x  (3.65) 

where (2) *( , )ft tΦ is a second-order state transition matrix and is given symbolically by 

(2) *

2 * 2 *

2 2

2 * 2 *

2 2

( ) ( )
( ) ( )

) ( )
( ) ( )

( , )f

f f

f f

t t
t t

t t
t t

t t

∂ ∂
∂ ∂

∂ ∂
∂ ∂

⎡ ⎤
⎢ ⎥

Φ = ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

r r
r v

v( v
r v

 

Again, choosing ( )ftδ =r 0 , we can solve Eq. (3.65) for ( )ftδ v   

 

1
*

*

1 1 1
* 2 * * *

* *1
2 2

( )( ) ( )
( )

( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )

f
f

f f f f

tt t
t

t t t tt t
t t t t

δ δ

δ δ

−

− − −

⎡ ⎤∂
= ⎢ ⎥

∂⎢ ⎥⎣ ⎦
⎧ ⎫⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎛ ⎞ ⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂⎪ ⎪⎜ ⎟ ⎜ ⎟− ⊗ ⊗⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ ⎪⎣ ⎦ ⎝ ⎠ ⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠⎩ ⎭

rv r
v

r r r rr r
v v v v

 (3.66) 

and eliminate it from expression in order to compute *( )tδ v  

 
* 2 *

* 1
2 2

( ) ( )( ) ( ) ( ) ( )
( ) ( )f f f

f f

t tt t t t
t t

δ δ δ δ∂ ∂
= + ⊗ ⊗
∂ ∂

v vv v v v
v v

 (3.67) 

Equation (3.67) represents the velocity change required to eliminate terminal errors from 

the reference path including up to second-order terms.  Excluding the second-order terms 



  49 

 

in Eq. (3.66), the first term on the right hand side of Eq. (3.67) is identically the well 

known first-order result.  We stop at second-order here only to compact notation, higher-

order terms can easily be included if desired.  The first- through fourth-order generalized 

midcourse corrections are given in Appendix D. 

In the above developments it was shown that the first-order state transition matrix in 

Eq. (3.63) is readily computed from the onboard stored data.  We noted in section 3.2 

that this property also holds for the second- and higher-order state transition matrices as 

well by the state vector augmentation approach.  Thus we can solve for the second-order 

state transition matrix in Eq. (3.65) using the forward stored history of first- and second-

order state transition matrices (due to coupling).  Otherwise, we would need to solve for 

the second-order state transition matrix of Eq. (3.65) by integrating them along with the 

first-order state transition matrices backward from time ft  in order to compute 

(2) *( , )ft tΦ .  Higher-order guidance laws will increase the computational cost to some 

extent; however, the significance of a more accurate dynamical prediction cannot be 

overlooked since there is potential for reducing the magnitude and/or frequency of 

velocity corrections that are required to meet mission objectives.  More to the point for 

this application, we are less concerned with computational cost here than with 

convergence and computational storage requirements.  These are usually pre-mission 

calculations which are computed a priori and stored onboard. 

 

 

 



  50 

 

3.3.4 Automatic Generation of Co-state Equations 

The OCEA automatic differentiation feature enables the automatic generation of co-

state differential equations.  It can be seen from Eq. (3.50) that by simply differentiating 

the Hamiltonian with respect to the states, we can produce the co-state differential 

equations.  Additionally a numerical integration routine can readily solve the 

automatically generated co-state equations.  Although considerable simplification can be 

performed in some optimal control problems (e.g. some co-states may be known to be 

zero for all time if a terminal state is a free unspecified parameter), the impact of 

automatically generated co-state equations results in elapsed time and programming 

savings, especially for systems containing many states and/or complicated equations of 

motion. 

 

3.4 NUMERICAL EXAMPLES 

In this section, numerical results are presented to demonstrate the methods presented 

in the previous sections.  Examples are presented to demonstrate the Nonlinear Least 

Squares Algorithm, the GLSDC algorithm, and the methods for solving trajectory 

optimization problems.  

 

3.4.1 Ballistic Projectile Identification Problem 

As an example, consider the orientation of an aerodynamically and inertially 

symmetric projectile.  Along the trajectory, measurements are taken of the pitch and yaw 



  51 

 

angles.  The following algebraic model is assumed for the pitch and yaw angles, 

respectively 

 
1 2

3

1 1 1 1 2 2 2

3 3 3 4

( , ) ( , ) cos( ) cos( )

cos( )

t t

t

t h t k e t k e t

k e t k

λ λ

λ

θ ω δ ω δ

ω δ

= = + + +

+ + +

x x
 (3.68) 

 
1 2

3

2 1 1 1 2 2 2

3 3 3 5

( , ) ( , ) sin( ) sin( )

sin( )

t t

t

t h t k e t k e t

k e t k

λ λ

λ

ψ ω δ ω δ

ω δ

= = + + +

+ + +

x x
 (3.69) 

where ( )1 2 3 4 5 1 2 3 1 2 3 1 2 3, , , , , , , , , , , , ,k k k k k λ λ λ ω ω ω δ δ δ=x  are the 14 unknown constant 

model parameters.  Therefore, first- through fourth-order sensitivities require 14, 142, 

143, and 144 partial derivatives to be derived, programmed, computed and validated.  

OCEA automates all of this work.   

The Nonlinear Least Squares algorithm described earlier can be coded once and for 

all.  In order to solve the problem at hand, only the measurement model and starting 

guess must be specified.  For this problem, the FORTRAN90 subroutine containing the 

measurement model given in Eqs. (3.68) and (3.69) is shown Appendix E.  An important 

remark to be made about the measurement model subroutine given in Appendix E is that 

the analyst can invoke automatic differentiation by standard FORTRAN programming.  

A USE statement (USE EB_HANDLING) is included in order to invoke the automatic 

differentiation subroutines.  The embedded variables (the model parameters) and 

embedded functions (the measurement model) are defined as embedded objects (Type 

EB) and coded using standard FORTRAN arithmetic operators.  The output of this 

subroutine is a numerical evaluation of the measurement model, its gradient, and higher- 

order partials, evaluated at the current state and time. 



  52 

 

The automatic differentiation capability makes higher-order computational methods 

readily available.  Results for norms of the measurement residuals for first-and second-

order solutions are shown in Table 3.1. 

 

Table 3.1.  Residual error for Ballistic Projectile Identification problem 
Iteration First-order Second-order 

0 0.46453e4 0.46453e4 
1 0.70828e3 0.40676e3 
2 0.15229e3 0.21104e2 
3 0.12652e2 0.39243e-2 
4 0.88894e-1 0.19141e-11 
5 0.78899e-5  
6 0.19504e-11  

 

The results of Table 3.1 show that for an initial guess of more than 50% error, the 

first-order method converges in 6 iterations and as expected the second-order method 

shows rapid convergence in only 4 iterations.  For this problem, only modest 

convergence improvement is achieved by going to second-order. 

In order to benchmark the approach, we also solved this problem using Matlab's 

Quasi-Newton algorithm (fminunc).  In comparison to the results of Table 3.1, we find 

that the Matlab Quasi-Newton algorithm requires 163 iterations with a resulting residual 

error of 1.01781e-6.  Attempts were made to improve the residual error by specifying 

tolerance options in the solution; however, no improvement beyond the residual error 

noted above can be made by the Quasi-Newton algorithm for this problem.  We do note 

that there is a subtle difference in these approaches in that Matlab utilizes finite 

difference approximation for computing the partial derivatives of the cost function 

whereas OCEA utilizes exact analytical partials of the measurement model in the 



  53 

 

solution.  Certainly, finite difference approximation is accompanied by a loss of 

accuracy as compared to methods utilizing exact analytical partials as evidenced by this 

example. 

 

3.4.2 Orbit Determination 

In order to demonstrate the higher-order generalization of the GLSDC algorithm, we 

consider as an example the planar motion of projectile in a constant gravity field.  We 

also consider a quadratic drag model of the form drag p= −f V V  where p  is the drag 

constant, 1 2[ ]x xV = & &  is the velocity vector, and V  is the magnitude of velocity.  The 

equations of motion in first-order form are thus given by 

 

31

42

33

4 4

0

xx
xx

px Vx
x g px V
p

⎧ ⎫⎧ ⎫
⎪ ⎪⎪ ⎪
⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪−= =⎨ ⎬ ⎨ ⎬

⎪ ⎪ ⎪ ⎪− −⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

x

&

&

& &

&

&

 (3.70) 

Range and line of sight measurements are taken along the projectile’s trajectory.  

The measurement model is given by 

 
2 2
1 2

1
2 1tan ( / )

r x x
x xθ −

⎧ ⎫⎧ ⎫ ⎪ ⎪+= =⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎪ ⎪⎩ ⎭

h  (3.71) 

OCEA automatically computes the partial derivatives of Eq. (3.70) which are 

required for automatically deriving the state transition matrix differential equations 

given in Appendix C, and also computes the partial derivatives of Eq. (3.71) required for 

the sensitivity calculations shown in Appendix B.  A generalized GLSDC algorithm has 



  54 

 

been created which has been coded once and for all since partial derivatives need not be 

hand coded for each dynamics model or measurement model.  For a particular problem, 

the analyst can simply change these models, the required sensitivities are automatically 

computed, and the problem can then be readily solved. 

The objective here is to estimate the initial state whose true value is given by 

[ ]0( ) 1000 2500 200 / 100 /t m m m s m s= −x .  It is assumed that the standard 

deviation of the range and the line of sight measurements are 10 meters and 0.01 rad, 

respectively.  For these simulations, the projectile is observed for a total of 60 seconds at 

5 second intervals.  Results are shown for two cases:  I) without drag and II) with drag.  

When drag is present, the equations of motion are nonlinear as seen in Eq. (3.70); 

however, without drag this is a linear system.  It can be observed from Appendix C that 

for a linear system, second- and higher-order state transition matrices are zero for all 

time; however, first-order state transition matrices are not.  Therefore, second- and 

higher-order sensitivities are not zero for a linear system since they are a function of the 

first-order state transition matrices as can be seen in Appendix B. 

In each of the cases, we are primarily interested in evaluating rate of convergence 

and domain of convergence, or put another way, we want to know how fast the 

algorithms converge and from how poor of a guess they will converge. 

For Case I, with zero drag, we remove the drag parameter p  from Eq. (3.70) and 

we estimate only the initial position and velocity.  Since the measurements are a function 

of only position (no velocity dependence), we expect to have a better guess for the initial 

position than the velocity.  For this reason and practical issues dealing with the large 



  55 

 

number of possible guesses, we simulate the first- and second-order algorithms with an 

initial position guess in 10% error of the truth and varied initial velocity guess error.  

The results for the number of iterations required for convergence for the first- and 

second-order GLSDC algorithms are given in Table 3.2.  The stopping criterion used for 

these simulations is 10 digit consistency of the measurement residual error. 

 

Table 3.2.  GLSDC convergence study for Case I 

Initial guess  First-order 
Iteration Count 

Second-order 
Iteration Count 

0.9 truex , 1.0 truex&  3 3 
0.9 truex , 0.9 truex&  3 3 
0.9 truex , 0.8 truex&  4 3 
0.9 truex , 0.7 truex&  4 3 
0.9 truex , 0.6 truex&  4 3 
0.9 truex , 0.5 truex&  4 3 
0.9 truex , 0.4 truex&  5 4 
0.9 truex , 0.3 truex&  5 4 
0.9 truex , 0.2 truex&  6 5 
0.9 truex , 0.1 truex&  7 6 
0.9 truex , 0.0 truex&  11 7 

 

The results of Table 3.2 show that for a large practical range of poor guesses in the 

initial velocity the second-order algorithm converges in fewer iterations.  The state 

convergence history for an initial velocity guess of 0.2 truex&  is given in Table 3.3 for the 

first-order algorithm and in Table 3.4 for the second-order algorithm. 

 

 



  56 

 

Table 3.3.  Case I first-order algorithm state history results 
Iteration 0X  0Z  0X&  0Z&  Cost 

0 
1 
2 
3 
4 
5 
6 

-900      
-2012.5   
-2114.6   
-1067.8   
-995.0    
-996.0    
-996.0    

2250     
2587.4    
2528.8    
2559.5    
2504.3    
2503.7    
2503.7    

40       
127.8     
272.2     
203.7     
199.9     
199.9     
199.9     

20       
-9.0      
68.4      

102.0     
99.6     
99.6      
99.6      

 
883.6         
703.0         
690.1         
22.76         
3.361         
3.315         

 
 
 

Table 3.4.  Case I second-order algorithm state history results 
Iteration 0X  0Z  0X&  0Z&  Cost 

0 
1 
2 
3 
4 
5 

-900      
-2813.4   
-1020.0   
-996.9    
-996.0    
-996.0    

2250     
2516.1    
2601.1    
2503.4    
2503.7    
2503.7    

40       
216.1     
186.5     
199.9     
199.9     
199.9     

20       
15.0      
96.3      
99.6      
99.6      
99.6      

 
883.6         
624.8         
147.5         
3.317         
3.315         

 
 

For Case II, with drag, we look at estimating five states including initial position 

and velocity, and the drag parameter.  The results of Table 3.5 show that the first-order 

algorithm converges faster than the second-order algorithm, although the advantage is 

only one iteration.  

 

 

 

 

 

 



  57 

 

Table 3.5.  GLSDC convergence study for Case II 

Initial guess  
First-order 

Iteration 
Count 

Second-order 
Iteration 

Count 
0.9 truex , 1.0 truex& , p = 1.0*ptrue 4 3 

0.9 truex , 0.9 truex& , p = 0.90*ptrue 4 3 
0.9 truex , 0.8 truex& , p = 0.80*ptrue 4 4 
0.9 truex , 0.7 truex& , p = 0.70*ptrue 5 5 
0.9 truex , 0.6 truex& , p = 0.60*ptrue 5 5 
0.9 truex , 0.5 truex& , p = 0.50*ptrue 6 5 

 

Tables 3.6 and 3.7 show results for one particular initial guess corresponding to the 

last entry in Table 3.5.   

Generally, we expect more rapid convergence of higher-order methods when near 

the answer.  These results confirm this result; however, significant improvement is not 

seen in this example.  There appears to be a reduction in second-order sensitivity near 

the answer.  For a problem in which convergence is slow near the answer using a first-

order method, we would expect that the second-order method would provide more 

significant improvement.  Second-order algorithms are well known to have some 

potential difficulties far from the solution where curvature changes may occur en-route 

to the solution.  Whereas first-order algorithms are typically insensitive to the starting 

guess, second-order algorithms can have a diminished domain of convergence because 

some starting guesses outside the region of convergence have second-order sensitivity 

(or curvature) which has the wrong sign.  Simply put, if the initial guess lies where the 

curvature is wrong, the predicted corrections to the state estimate in the second-order 

term are not necessarily in the correct direction.  Convergence depends upon the ability 



  58 

 

to extrapolate from one state to another state with a reduction in the performance index, 

which does not happen when the curvature has the wrong sign.  As is known in the 

optimization literature, higher-order methods are typically “wonderful” near the solution 

but are “more dangerous” than first-order methods far from the solution.  

 

Table 3.6.  Case II first-order state history results 
Iteration 0X  0Z  0X&  0Z&  p  Cost 

0 
1 
2 
3 
4 
5 
6 

-900 
-1297.5 
-1029.6 
-992.4 
-992.5 
-992.5 
-992.5 

2250 
2496.4 
2507.3 
2498.6 
2499.4 
2499.4 
2499.4 

100 
211.8 
216.1 
195.8 
196.6 
196.6 
196.6 

50 
70.6 
97.1 

100.2 
99.8 
99.8 
99.8 

5.0e-4 
8.3e-4 
9.8e-4 
9.9e-4 
9.9e-4 
9.9e-4 
9.9e-4 

              
420.9         
120.6         
22.30         
3.245         
3.102         
3.102 

 
 
 

Table 3.7.  Case II second-order state history results 
Iteration 0X  0Z  0X&  0Z&  p  Cost 

0 
1 
2 
3 
4 
5 

-900 
-992.0 
-989.1 
-992.6 
-992.5 
-992.5 

2250 
2451.5 
2500.4 
2499.5 
2499.4 
2499.4 

100 
144.5 
183.1 
196.0 
196.6 
196.6 

50 
88.2 
96.4 
99.6 
99.8 
99.8 

5.0e-4 
8.1e-4 
9.7e-4 
9.9e-4 
9.9e-4 
9.9e-4 

 
420.9         
83.98         
12.30         
3.182         
3.102         

 
 
 

3.4.3 Trajectory Optimization 

In this section, we look at the optimization of TPBVPs.  Two examples are 

presented – the solution of a Low-thrust Mars-Earth minimum time transfer by the 

method of differential corrections and the solution of another example using the method 

of differential inclusions. 



  59 

 

3.4.3.1 Differential Corrections 

In this example, we demonstrate two developments enabled by OCEA:  1) the 

automatic generation of co-state equations, and 2) higher-order sensitivity calculations.  

The problem to be considered is a minimum time Low-thrust Mars-Earth transfer.  The 

performance index and the polar heliocentrical equations of motion are given by Eqs. 

(3.72-3.76).  These equations are in the form of a fixed time problem with the final time 

as a free parameter. 

 
1

0 fJ t dτ= ∫  (3.72) 

 fr t u='  (3.73) 

 f
vt
r

θ ='  (3.74) 

 
2

2
0

2 sin
( )f

sp

v Pu t
r r I g m m

µ ε α
τ

⎛ ⎞
⎜ ⎟= − +
⎜ ⎟+⎝ ⎠

'
'  (3.75) 

 
0

2 cos
( )f

sp

uv Pv t
r I g m m

ε α
τ

⎛ ⎞−⎜ ⎟= +
⎜ ⎟+⎝ ⎠

'
'  (3.76) 

where the mass flow rate is given by  

( )2
2

f

sp

Pm t
I g

ε
= −'  

and r is a radial distance from the sun, θ is the angle measured from a reference line, and 

α  is the control angle.  The variables u  and v  are respectively, the velocities in radial 

and tangential directions.  The initial mass is 0m , µ  is the gravitational parameter of the 



  60 

 

sun, g  is the gravitational acceleration at sea level on Earth, P  is the power, ε  is the 

engine efficiency, and spI  is the specific impulse. 

Equation (3.51) results in the following optimal control law 

 1tan u

v

λα
λ

− ⎛ ⎞−
= ⎜ ⎟−⎝ ⎠

 (3.77) 

The Hamiltonian for the system is defined as 

 ( )
2

21 sin cosf r u v
v v uvH t u
r r r rθ

µλ λ λ γ α λ γ α
⎡ ⎤⎛ ⎞ −⎛ ⎞ ⎛ ⎞= + + + − + + +⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦
 (3.78) 

The co-state differential equations are automatically generated using OCEA through 

Eq. (3.50) by differentiating the Hamiltonian given in Eq. (3.78).  The system is 

comprised of 10 total equations including Eqs. (3.73-3.76), the four co-state differential 

equations, and Eqs. (3.79-3.80).  Here, ft is considered as a free parameter; therefore, we 

must satisfy an additional necessary condition as described in Eq. (3.55).  Eq. (3.80) is 

the differential equation representation of this integral boundary condition given by Eq. 

(3.55). 

 ' 0ft =  (3.79) 

 '

f

Hz
t
∂
∂

=  (3.80) 

For these solutions, the initial mass is 842.5 kg, the power is 10 kW, the engine 

efficiency is 0.661, and the specific impulse is 3945 sec which are consistent with 

conceived Mars sample return missions. 



  61 

 

The desired initial and terminal boundary conditions are given in Table 3.8.  For this 

problem we are using astronomical units for distance and non-dimensional time units 

where 1 AU = 1.4959965e11 m and 1 TU = 5.0226757e6 sec. 

 

Table 3.8.  Low-thrust Mars-Earth transfer initial and final conditions 
 Initial Time ( 0τ = ) Final Time ( 1τ = ) 

( )r AU  1.524 1 
θ  0 Free 

( / )u AU TU  0 0 
( / )v AU TU  0.81 1 

z  0 0 
 

We could eliminate θλ  from the Hamiltonian since it is zero for all times as a result 

of (1)θ being a free terminal state.  This would result in lower dimension system; 

however, we retain this variable in the formulation for completeness in these 

developments. 

In summary, we have four unknowns and four boundary and necessary conditions to 

satisfy in order to solve the problem.  The unknowns are the three initial unknown co-

states and ft .  The conditions to be met at the final time are the four terminal conditions 

listed in Table 3.8.  We begin the solution process by guessing the three unknown co-

states and ft .  We have chosen to solve this problem by first- and second-order 

methods, and for two cases of initial conditions.  For Case I, we start with a relatively 

good initial guess and for Case II we start with a poor initial guess for the unknowns.  

Arising from the form of the optimal control, a good guess essentially implies that the 

ratio of the co-states are suitably scaled.  For each case, we choose as a stopping 



  62 

 

criterion that the largest terminal error condition be less than 1e-12.  This results in 

errors of the order of 10 centimeters and 10 centimeters/sec in the position and velocity 

solutions. 

For Case I, we choose the following good starting guess with optimal solution for 

the unknowns and iteration histories given in Tables 3.9 and 3.10. 

Case I: Initial guess for unknowns: { } { }, , , 1.0,1.0,1.7, 4.4r u v ftλ λ λ =   
 
 

Table 3.9.  Low-thrust Mars-Earth transfer first-order solution 
terminal errors for Case I 

Iteration ( 1)rδ τ =  ( 1)uδ τ =  ( 1)vδ τ =  ( 1)zδ τ =  Tε = δ δ  

0 0.124e-1 -0.412e-1 -0.455e-1 -0.850e0 0.727e0 
1 0.552e-2 -0.454e-1 -0.232e-1 0.668e-2 0.268e-2 
2 -0.102e-1 -0.102e-1 0.458e-2 0.155e-2 0.234e-3 
3 0.551e-3 0.248e-3 -0.464e-3 0.303e-4 0.582e-6 
4 0.243e-6 0.528e-6 -0.263e-6 0.518e-7 0.411e-12 
5 -0.131e-11 -0.239e-12 0.113e-11 0.916e-13 0.306e-23 
6 0.888e-15 0.891e-15 -0.222e-15 -0.393e-15 0.178e-29 

 

First-order solution:

 { } { }, , , 6.822434207,  7.020330890,  10.852450714,  4.591579951  r u v ftλ λ λ =  

 

Table 3.10.  Low-thrust Mars-Earth transfer first- and second-order  
solution terminal errors for Case I 

Iteration ( 1)rδ τ =  ( 1)uδ τ =  ( 1)vδ τ =  ( 1)zδ τ =  Tε = δ δ  

0 0.124e-1 -0.412e-1 -0.455e-1 -0.850e0 0.727e0 
1 0.552e-2 -0.454e-1 -0.232e-1 0.668e-2 0.268e-2 
2 -0.239e-2 -0.177e-2 0.140e-2 0.239e-3 0.109e-4 
3 0.182e-6 0.361e-7 -0.152e-6 0.560e-8 0.577e-13 
4 0.388e-14 0.265e-14 -0.155e-14 -0.101e-14 0.256e-28 

 



  63 

 

First- and second-order solution:

 { } { }, , , 6.822434200, 7.020330887, 10.852450689, 4.591579951  r u v ftλ λ λ =  

Tables 3.9 and 3.10 show the results for the errors in the terminal boundary 

conditions and a norm error measure of these errors for a first-order method and a first- 

and second-order teaming method, respectively.  In Table 3.10, bold indicates a second-

order solution was used.  Rapid convergence is found when utilizing second-order 

sensitivity calculations after two iterations as shown in Table 3.10.  The time required 

for the solutions in Tables 3.9 and 3.10 require 24 second and 1 min 50 seconds, 

respectively.  Both solutions agree to 8 digits.  The time of flight is 267 days. 

We also solved this problem using Matlab’s constrained function minimization 

function (fmincon).  The Matlab solution converges in a number of iterations equal to 

that of the first-order solution given in Table 3.9.  In comparing the elapsed time for the 

solutions, we find that the OCEA first-order solution is minimally faster.  With regard to 

accuracy, we find the Matlab solution is incapable of achieving better than 10-10 

accuracy in the terminal errors.  This result indicates that the solution by Matlab, which 

utilizes finite difference approximations, does not achieve the same accuracy as the 

OCEA approach which utilizes exact analytical partial derivative calculations. 

For Case II, with a relatively poor starting guess the optimal solution for the 

unknowns and iteration histories is given in Tables 3.11 and 3.12.  

Case II: Initial guess for unknowns:  { } { }, , , 1.0,1.0,1.0, 4.0r u v ftλ λ λ =  

 

 



  64 

 

Table 3.11.  Low-thrust Mars-Earth transfer first-order solution  
terminal errors for Case II 

Iteration ( 1)rδ τ =  ( 1)uδ τ =  ( 1)vδ τ =  ( 1)zδ τ =  Tε = δ δ  

0 -0.837e-1 0.180e0 0.106e0 -0.884e0 0.833e0 
1 0.140e0 0.261e0 -0.237e-1 0.212e0 0.134e0 
2 -0.588e-1 0.171e0 0.345e-1 0.219e0 0.825e-1 
3 -0.377e0 -0.228e-1 0.251e0 0.852e-1 0.213e0 
4 -0.111e0 0.579e-1 0.319e-1 0.840e-1 0.239e-1 
5 -0.612e-1 -0.295e-1 0.414e-1 0.173e-2 0.634e-2 
6 0.591e-2 0.533e-2 -0.548e-2 0.350e-3 0.935e-4 
7 0.234e-4 0.153e-3 0.410e-5 0.449e-5 0.242e-7 
8 -0.137e-6 -0.116e-6 0.895e-7 0.244e-8 0.405e-13 
9 0.132e-12 0.121e-12 -0.837e-13 -0.490e-13 0.418e-25 

 

First-order solution:

 { } { }, , , 6.822434207,  7.020330890,  10.852450714,  4.591579951  r u v ftλ λ λ =  

 

Table 3.12.  Low-thrust Mars-Earth transfer first- and second-order 
solution terminal errors for Case II 

Iteration 
( 1)rδ τ =  ( 1)uδ τ =  ( 1)vδ τ =  ( 1)zδ τ =  Tε = δ δ  

0 -0.837e-1  0.180e0 0.106e0 -0.884e0 0.833e0 
1 0.140e0  0.261e0 -0.237e-1 0.212e0 0.134e0 
2 -0.588e-1  0.171e0 0.345e-1 0.219e0 0.825e-1 
3 -0.377e0  -0.228e-1 0.251e0 0.852e-1 0.213e0 
4 -0.111e0  0.579e-1 0.319e-1 0.840e-1 0.239e-1 
5 -0.612e-1  -0.295e-1 0.414e-1 0.173e-2 0.634e-2 
6 0.591e-2  0.533e-2 -0.548e-2 0.350e-3 0.935e-4 
7 -0.623e-5  -0.442e-5 0.425e-5 -0.599e-6 0.768e-10 
8 0.666e-14  0.221e-14 -0.488e-14 0.803e-15 0.737e-28 

 

First- and second-order solution:

 { } { }, , , 6.822434200,  7.020330887,  10.852450689,  4.591579951  r u v ftλ λ λ =  

 



  65 

 

Tables 3.11 and 3.12 show the results for the errors in the terminal boundary 

conditions for a first-order method and a first- and second-order teaming method, 

respectively.  Improved convergence is found when utilizing second-order sensitivity 

calculations after seven iterations as shown in Table 3.12, although by only one iteration.  

The time required for the solutions in Tables 3.11 and 3.12 require 42 second and 1 min 

41 seconds, respectively. 

We provide details from a study of the domain of convergence of the first- and 

second-order algorithms.  Here, we simply vary the initial guess by scaling the known 

optimal solution (a unit scaling corresponds to zero error).  The results are given in 

Table 3.13.  In these results, we choose either the first-order or second-order algorithm 

with no teaming solution as was done in the earlier test cases. 

The results in Table 3.13 show the empirically determined domain of convergence 

for the first- and second-order algorithms.  We have investigated an interval of +/- 50% 

of the optimal solution.  As expected, the second-order algorithm shows significant 

improvement in rate of convergence when near the solution, and the first-order algorithm 

has a larger domain of convergence although it is not significantly larger in this case.  

These results are consistent with those from the teaming solutions in Cases I and II.  

That is, the larger domain of convergence of the first-order algorithms provides a means 

to reach the domain of convergence of the second order algorithm.  Once in this region, 

the second-order algorithm provides a superior rate of convergence. 

In summary, it should be kept in mind when examining these solutions that no 

partial derivatives were derived and coded by hand in producing the co-state differential 



  66 

 

equations and the state transition matrix differential equations.  Obviously, the 

corresponding validation effort was also by-passed.  Extending the method to second-

order increased the computational burden; however, there is still no increase in analyst 

effort in going to higher-order since no hand derivation or additional coding, other than 

the general algorithm itself which is coded once and for all.  The decrease in time for 

hand-derived analytical developments more than offsets the increase in computational 

cost for the second-order algorithm.  The OCEA automatic differentiation environment 

provides a means for focusing solely on new algorithm development – in this case, the 

evaluation of higher-order methods. 

With the method of differential corrections, computation of second-order 

sensitivities results in an increase in the number of equations by a factor equal to the 

number of differential equations to be integrated (10 in this case).  This is a 

computational drawback of the method since higher-order methods require integration of 

a larger number of equations.  Due to coupling, the entire 10x10 first-order state 

transition matrix must be computed although only one 4x4 partition is needed to solve 

by the method of differential corrections.  Significant reductions in computational cost 

related to symmetry and sparsity have not been exploited in this work, and no advanced 

optimization techniques, e.g. incorporating line searching, have been attempted in these 

solutions.  Therefore, they represent a worst case for computational overhead. 

 

 

 



  67 

 

Table 3.13.  Domain of convergence comparison for Low-thrust  
Mars-Earth transfer  

( ): guess optimalα α=x x  First-order iteration  
count 

Second-order iteration 
count 

0.50 Does not converge Does not converge 
0.60 7 Does not converge 
0.70 6 5 
0.80 6 4 
0.85 5 4 
0.90 5 3 
0.95 4 3 
0.98 4 3 
0.99 3 2 

0.995 3 2 
1.0 1 1 

1.005 3 2 
1.01 3 2 
1.02 4 3 
1.05 4 3 
1.10 5 3 
1.15 6 6 
1.20 7 7 
1.30 9 Does not converge 
1.40 Does not converge Does not converge 
1.50 Does not converge Does not converge 

 
 

The results for each converged solution are equivalent to eight digits.  Therefore, we 

show plots for the optimal motion only once.  Figure 3.1 shows the Mars-Earth optimal 

trajectory.  The velocity states and co-states are plotted in Figures 3.2 and 3.3 

respectively.  Figure 3.4 shows the optimal thrust angle control. 



  68 

 

 

Figure 3.1.  Mars-Earth optimal trajectory 
 

0τ =  
1τ =  



  69 

 

 

 Figure 3.2.  Velocity components for low-thrust Mars-Earth transfer 

  
Figure 3.3.  Co-states for low-thrust Mars-Earth transfer 

 



  70 

 

 

Figure 3.4.  Optimal thrust angle for low-thrust Mars-Earth transfer 
 

 

3.4.3.2 Differential Inclusions 

Here we consider a simple nonlinear scalar system in order to illustrate the OCEA 

method in a direct optimization example.  Consider 

 3x x x uε= − + +&  (3.81) 

with performance index to be minimized given by 

 
5 2

0

1
2

J u dt= ∫  (3.82) 

The discretized form of the equations of motion and performance index are then 

given by 



  71 

 

 
3

1 1 1

2 2
k k k k k k

k
x x x x x x uε+ + +− + +⎛ ⎞+ + =⎜ ⎟∆ ⎝ ⎠

 (3.83) 

and 

 
10

2

1

1
2 k

k
J u

=

= ∑  (3.84) 

Here we choose ε =0.01 and, approximate the system by conveniently choosing 10 

time intervals over the 5 second, thus ∆= 0.5 seconds.  We choose as boundary 

conditions 1 3x = and 11 0x = . 

Once the relation for the control given in Eq. (3.83) is substituted into Eq. (3.84) we 

have the cost as a function of the unknown states as  

 ( ); 2,3,...10kJ J x k= =  (3.85) 

Here, we consider using OCEA in an optimization approach in which we directly 

minimize the cost function.  In summary, J∇ = 0  defines a set of nonlinear equations 

( ( )kx = 0g ) which must be solved iteratively for the unknown states.  Thus, the Hessian 

of J, 2J∇ = ∇g , provides the matrix of first-order sensitivities ( 2G J= ∇ ) required for 

the solution.  OCEA’s automatic differentiation capability enables an efficient tool for 

computing and evaluating these partial derivatives, and higher-order partials if desired.  

A first-order correction to the unknown states can be written as 

 1( ) ( )T TG G G−∆ =x g x  (3.86) 

We choose to solve this example using Matlab’s Symbolic Toolbox in order to 

compare the effort in computing partial derivatives required for OCEA and Matlab 

solutions.  Essentially, this is a test of symbolic and automatic differentiation methods.  



  72 

 

The difference comes when we need to compute and evaluate the derivatives of Eq. 

(3.85).  With Matlab, we must type a command for each partial derivative required.  In 

computing first- through third- order partials of the cost function, many ten’s of these 

commands are needed, at best, using Matlab.  OCEA is ideally suited for solution of 

direct optimization problems such as the minimization of the expression given in Eq. 

(3.85).  No coding effort is required beyond specifying the cost function since all 

required partial derivatives are automatically computed and evaluated.  The 

implementation of higher-order solutions for direct optimization problems results in 

relatively small increase in the computational cost and no additional effort to derive or 

code partials for the higher-order terms using OCEA.  Table 3.14 shows a comparison of 

solving the problem by first- and second-order methods.  More rapid convergence is 

found for the second-order method, although only one iteration improvement is found.  

 

Table 3.14.  Differential inclusions residual errors 
Iteration count First-order error Second-order error 

1 1.4313e2 1.4313e02 
2 2.1830e-1 1.8792e-2 
3 2.9154e-7 4.0911e-12 
4 2.6237e-18 8.6737e-30 
5 8.3470e-30  

 

A comparison of the optimal solutions and that by differential inclusions is shown in 

Figure 3.5. 

 



  73 

 

 

Figure 3.5. Optimal versus differential inclusions solution 

 
As expected, the differential inclusions solution provided a starting guess for the 

initial co-state that resulted in convergence to the optimal solution in only two iterations 

using Matlab’s fmincon function.  On the other hand, blind guessing resulted in many 

unsuccessful attempts to choose a suitable starting guess.  A check of the performance 

index of these two solutions shows that the approximate differential inclusions solution 

is sub-optimal as anticipated.  Of course a larger number of time intervals can be chosen 

which would result in a more optimal solution; however, the objective of this exercise is 

to demonstrate the utility of a computational tool which can reduce the time involved 

and coding effort involved in solving a direct optimization problem.  



  74 

 

3.5 SUMMARY 

In this chapter, new methods for solving problems encountered in estimation, 

control and optimization of dynamical systems have been presented.  Standard first-

order algorithms were reviewed.  Higher-order sensitivity calculations were presented 

for developing new algorithms.  One particularly important development is the higher-

order generalization of the state transition matrix.  This development makes it possible to 

implement many of the new methods developed in this chapter including the higher-

order GLSDC algorithms for orbit determination, the method of differential corrections 

for trajectory optimization, and higher-order algorithms for computing midcourse 

corrections.  It is expected that the higher-order generalization of the state transition 

matrix will have an impact on nonlinear filtering applications as well. 

 The procedure for solving the numerical problems in this chapter show in general 

that OCEA significantly reduces the time required in going from the problem statement 

to a solution.  In fact, many of these algorithms can be coded in a general manner once 

and for all.  For example, all orders of the state transition matrix differential equations 

can be coded once and for all in a general code.  In some cases, second-order methods 

provided only minimal improvement in rate of convergence.  However, the added 

computational cost of the second-order methods is more than offset by the decrease in 

effort for analytical derivation and validation of partial derivatives which is bypassed by 

using OCEA.  The results of this chapter indicate that OCEA has significant capability in 

solving problems in estimation and optimization; however, more work remains in 

optimizing the OCEA enabled algorithms. 



  75 

CHAPTER IV 

 

MODELING OF DYNAMICAL SYSTEMS* 

 

In industry, research, and the classroom the study of dynamical systems by the 

derivation and integration of equations of motion is a rite of passage for computational 

scientists and engineers.  For all but the simplest problems, however, this task can be 

laborious and error-prone.  In fact, real-world applications requiring engineering-level 

fidelity models can take man-months to man-years of effort to develop and validate by 

hand.  In this chapter, we consider a new direction in generating equations of motion for 

dynamical systems. 

In the first section, we overview the current computational approaches for solving 

multibody dynamics problems.  We discuss the different choices for equation of motion 

formulation in the second section.  We go into greater detail in the third section in 

discussing the formulation chosen for in this work.  Here we discuss generating 

equations of motion via Lagrange’s Equations in a direct fashion.  Additionally, a special 

form of Lagrange’s Equation is presented when dealing with rigid bodies; and a general 

formulation is presented for flexible multibody systems.  In the fourth section, an OCEA 

enabled approach for integrating the equations of motion is presented.  Finally, several 

numerical examples are detailed in order to demonstrate the method. 

 

                                                 
* Portions of this chapter published in References 25 and 26. 



  76 

4.1 OVERVIEW 

The most common energy-based equation of motion generation method consists of 

Lagrange’s method. There are two approaches for developing computer-based multibody 

dynamics models: (1) Symbolic methods that use computer symbol manipulation 

algorithms, and (2) Numerical codes that build the system kinematic and acceleration 

equations on-the-fly.  

Symbolic manipulation engines such as Maple, Mathematica, or Mathcad are 

commercially available and theoretically capable of implementing Lagrange’s method. 

These computer symbol manipulating systems are tasked for carrying out the required 

differentiations of the scalar Lagrangian function.  The basic algorithm consists of three 

major steps: (1) The symbolic system Lagrangian function is built, (2) symbolic 

computation of the necessary derivatives are evaluated and the resulting equations are 

transformed to FORTRAN, and (3) The partial derivative models are assembled and 

introduced into Lagrange’s equations.  A serious limitation of this approach is that a 

model revision or engineering design change corrupts the assumed model for the system 

Lagrangian and forces extensive derivation and computer code revisions for all of the 

system partial derivatives. A further drawback of symbolic-based methods is that the 

resulting symbolic files can be huge and the resulting software is generally only 

machine-readable.  

Purely numerically-based algorithms implement a generic solution algorithm for 

linking systems of rigid bodies that can undergo large and rapid relative motions.  

Examples of commercially available tools for the automated generation and integration 



  77 

of equations of motion include DADS, DISCOS, and ADAMS.  Though powerful and 

broadly applicable, these tools use rigid algorithms and are generally not amenable for 

introducing approximations, unique coordinate choices, or testing advanced solution 

algorithms.  It is very difficult to generate linearized equations of motion or partial 

derivative models for the purely numerically-based class of algorithms. 

The focus of this chapter is a new method for the automatic generation and 

integration of equations of motion using operator overloading techniques for overcoming 

the limitations of both the symbolic and numerical multibody modeling and simulation 

tools9.  The new method combines the best of the symbolic and numerical equation of 

motion generation methods, while retaining the simplicity and elegance of the 

Lagrangian method.  An added benefit of the operator overloaded approach is that new 

approximation strategies and computational algorithms are easily introduced and 

evaluated. 

 

4.2 EQUATIONS OF MOTION FORMULATION 

For many years, a primary focus of dynamics has been the development of methods 

for generating equations of motion.  The classical formulations include Newton/Euler 

methods, D’Alembert’s equations, the Lagrangian energy approach, and Hamiltonian 

approaches27-28.  More recent approaches have been developed in the past century 

including the Gibbs-Appell equations, the Boltzmann/Hammel equations, and Kane’s 

equations. 



  78 

Each of these methods has specific advantages and shortcomings when it comes to 

implementing them in multibody dynamics codes.  A brief overview of some of these 

issues is given in Reference 29, and is summarized again here.  Newton/Euler methods 

are simple in form; however, algebraic elimination of constraints poses a significant 

drawback.  This shortcoming is alleviated by using Lagrange’s equations, because the 

topology constraints are automatically eliminated from the problem formulation at the 

joint interconnection points used to mechanically link the bodies. Very lengthy 

expressions for the Lagrangian function typically result which must then be 

differentiated with respect to generalized coordinates and generalized velocities.  The 

sheer volume of the number of terms required for modeling the equations of motion, 

their mathematical complexity, coding complexity, storage and computational 

requirements become a shortcoming with this method.  On the other hand, we only need 

to consider velocity-level kinematics at most in the problem formulation.  This becomes 

a significant advantage since it reduces the analytical effort and places more of the task 

in the automated computational process. 

Existing multibody dynamics codes are widely varied in the choice of formulation 

of the equations of motion30.  The most popular choices are Kane’s equations, 

Lagrange’s equation, and Newton/Euler methods.  When confronted with solving a 

typical classroom type dynamics problem, the analyst is faced with the first task of 

choosing which of these formulations is best suited for the analysis.  In fact, for the most 

of the problems that can be solved by hand, the available methods are roughly equivalent 

when assessed from the standpoint of analyst/programmer effort (conservation of 



  79 

misery, although each method has a passionate school of proponents!).  For simple 

problems, the choice of equation of motion formulation method is rendered essentially, a 

matter of personal taste and experience. 

However, the generation of equations of motion for complicated systems cannot be 

done by hand, and in fact many real-world applications can require man-weeks to man-

months or beyond for completing.  The applications force many issues to be addressed, 

including handling a fairly wide number of bodies, many fixed and time-varying 

constraints, complicated geometries, various coordinate choices, and body flexibility.  

The solution approaches via multibody dynamics codes are also fairly wide ranging.  

The choices depend on dominant engineering modeling goals for the simulation.   For 

example, the ADAMS code is well suited for mechanisms studies; DISCOS handles 

light-weight low-frequency flexible bodies typical of satellites; DADS is geared to 

handling heavy high-frequency applications containing many closed-loop topologies 

typical of stiff multibody systems, automotive, construction, and agricultural 

applications.    

One major result of this work is a demonstration of the use of the automatic 

differentiation capability of OCEA to generate equations of motion.  The most obvious 

dynamic formulation to utilize with automatic differentiation is Lagrange’s equations.  

As previously mentioned, one drawback to this approach is forming and evaluating a 

potentially lengthy Lagrangian partial derivative expression. Modified forms of 

Lagrange’s formulation are presented in this work which take advantage of simplified 

special structure for certain classes of systems. 



  80 

The end goal of this work is to model and simulate the behavior of linked 

mechanical systems.  Special emphasis is given to the formulation of the equations of 

motion.  The remainder of the chapter is summarized as follows: (1) automatic 

generation of equations of motion via Lagrange’s Method, (2) calculation of the system 

mass matrix, (3) Solutions for open-loop chains of rigid body systems, (4) a 

generalization of the kinetic energy expression for multiple flexible bodies, and (5) 

solutions for open- and closed-loop chains of flexible body systems. 

In the course of the preparation of this chapter, it was discovered that some work 

had been published regarding the use of automatic differentiation for deriving equations 

of motion in the same time frame as this work31.  In Reference 31 the automatic 

differentiation program ADIFOR 2.0 was used to produce FORTRAN 77 subroutines for 

the computation of the first-order derivatives of the constraint equations.  Since 

ADIFOR 2.0 only computes first-order partials, the automatic differentiation package 

AUTODERIVE was additionally used to produce the code for the second-order 

derivative terms.  Here we make the point that the OCEA approach requires no code 

generation since all partials can be compute within the OCEA-FORTRAN environment.  

Furthermore, first- through fourth-order partials are readily computed, thus OCEA 

solves the problem by itself.  A comparison of the accuracy of this method versus the 

new OCEA enabled method will be presented later in this chapter.  

 

 

 



  81 

4.3 FORMULATION VIA LAGRANGE’S EQUATION 

4.3.1 General Formulation  

In the Lagrangian formulation, partial derivatives of energy functions are utilized to 

produce the equations of motion.  An obvious advantage of the Lagrangian formulation 

over, for example, Newton/Euler methods is that only velocity level kinematic 

expressions need to be developed in order to specify the energy functions, specifically 

kinetic energy.  In this section, the framework for solving a class of problems in which 

formulation of kinetic and potential energy functions are readily formed is presented.  

The main result here is that automatic differentiation tools are perfectly suited for 

directly implementing the Lagrangian formulation in solving this important class of 

engineering problems.   

Equation (4.1) presents the most general form of Lagrange’s equations, including 

generalized forces and constraint forces. 

 Td L L C
dt
⎛ ⎞∂ ∂

− = +⎜ ⎟∂ ∂⎝ ⎠
Q λ

q q&
 (4.1) 

subject to 

C =q b&  

where the Lagrangian is defined as L T V= − , Q  are the generalized forces, C  is the 

constraint matrix, and λ  is the Lagrange multiplier vector.  In the most general form, 

kinetic energy (T ) is written as a function of the generalized coordinates ( q ) and the 

generalized velocities ( q& ), and the potential energy (V ) is a function of the generalized 

coordinates.   



  82 

The implied derivatives with respect to the generalized coordinates and generalized 

velocities in these equations can be readily computed by automatic differentiation by 

simply specifying the Lagrangian function.  Organizing these equations in a manner in 

which they can be integrated; however, requires explicitly solving for the acceleration 

terms, which are buried in the first term of Eq. (4.1).  In order to proceed down this path, 

we can rewrite Eq. (4.1) in the following form since the potential energy has no 

dependence on the generalized velocities.  

 Td T L C
dt
⎛ ⎞∂ ∂

− = +⎜ ⎟∂ ∂⎝ ⎠
Q λ

q q&
 (4.2) 

For the time being, we focus our attention on the first term in Eq. (4.2), and the most 

common case of a natural system, 1( ) ( )
2

T T M= = Tq q q q& & & .  The first term in Eq. (4.2) 

can be rewritten as 

 

2 2

j j
i i j i j

ij j ij j

d T T Tq q
dt q q q q q

m q m q

⎛ ⎞∂ ∂ ∂
= +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

= +

&& &
& & & &

&& & &

 (4.3) 

where 

 
2

ij
i j

TM m
q q
∂

↔ =
∂ ∂& &

 (4.4) 

 
2

ij
i j

TM m
q q
∂

↔ =
∂ ∂

& &
&

 (4.5) 

As is shown in Eq. (4.3), we can compute both the mass matrix and its time derivative 

by second order differentiation of the kinetic expression.  It is well known that the mass 



  83 

matrix can be formulated in this fashion.  However, it is not obviously apparent that the 

time derivative of the mass matrix can be computed in this fashion as well since the time 

derivative of the mass matrix can also be computed by third order differentiation, that is, 

by once differentiating the mass matrix with respect to time.  A proof of this fact is given 

in Appendix F. 

By utilizing automatic differentiation, the constraint matrix can also be formed 

automatically.  Let’s consider a holonomic constraint of the following form. 

 ( , )tφ =q 0  (4.6) 

The Pfaffian form of this constraint is developed by time differentiating Eq. (4.6). 

 
( , )t

t

C
t

φ φφ

φ

∂ ∂
= +
∂ ∂

∂
+
∂

& &

&

q q
q

= q
 (4.7) 

Therefore, the constraint matrix is simply computed by differentiating the holonomic 

constraint with respect to the generalized coordinates, C φ∂
=
∂q

. 

With Eqs. (4.4), (4.5), and (4.7), we arrive at the following form for Lagrange’s 

equations, 

 TLM M C∂
− = +
∂

q + q Q λ
q

&&& &  (4.8) 

which are solved for the accelerations as follows 

 -1 TLM M C
⎛ ⎞∂
− + +⎜ ⎟∂⎝ ⎠

q = q + Q λ
q

&&& &  (4.9) 



  84 

As has been shown above, generating the equations given in Eq. (4.9) can be 

accomplished by simply specifying the Lagrangian function, the constraint relation, and 

the generalized forces.  OCEA accomplishes all required derivative operations leading to 

the right hand side of Eq. (4.9).  The background second partials of T , for example, can 

be assessed to obtain M from Eq. (4.4). 

 

4.3.2 Specialized Formulation for Rigid Bodies 

The need to explicitly form the Lagrangian function in the above formulations can 

be alleviated by looking at a modified form20 of Eq. (4.1).   

 ( )( ) ( , ) TVM C∂
+ + = +

∂
qq q G q q Q λ

q
&& &  (4.10) 

The Coriolis forces (mass matrix time derivatives) are accounted for in the function 

( , )G q q& . 

 (1) ( )( , ) ...T T nH H⎡ ⎤= ⎣ ⎦G q q q q q q& & & & &  (4.11) 

where the elements of the Christoffel operator ( ) ( ) ( )i iH H= q are generated by 

 ( ) 1
2

ij jki ik
jk

k j i

m mmh
q q q

⎛ ⎞∂ ∂∂
= + −⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

 (4.12) 

It is apparent from Eq. (4.10) that accelerations can be computed by identifying the 

mass matrix, computing ( , )G q q& from spatial derivatives of the mass matrix elements, 

and differentiation of the potential energy function.  These accelerations are can be 

obviously written as 



  85 

 -1 TVM C
⎛ ⎞∂
− − +⎜ ⎟∂⎝ ⎠

q = G + Q λ
q

&&  (4.13) 

Now we consider an approach for generating the mass matrix and its derivatives 

using Eq. (4.12) for planar rigid body chain systems. 

Rigid body chain topologies are encountered in many robotics and industrial 

machinery applications.  The assumption here is that the size of the overall motions of 

the bodies is much greater than their deformations.  When this is the case, rigid body 

dynamical formulations provide suitable models.   

The Modified Lagrangian Formulation presented above is well suited for 

automating the process of generating equations of motion for rigid body systems.  It is 

shown here that the mass matrix need not be computed by twice differentiating the 

kinetic energy function.  The advantage gained in the developments of this section is that 

only first-order derivatives of the position vectors locating the mass centers of the bodies 

are required for computing the mass matrix.  In addition, second-order derivatives of 

these position vectors are needed to generate the mass matrix derivatives. 

Let’s consider a system of rigid bodies translating and rotating in planar (2D) 

motion.  The kinetic energy for this system of bodies can be written as 

 ( )
1

1( , )
2

n
T T

i i i i i i
i

T m v v Iω ω
=

= +∑v ω  (4.14) 

where im and iI are the mass and mass moment of inertia about the center of mass for the 

ith body, iv  is the velocity of the center of mass, iω  is the angular velocity of the ith 

body, and n is the total number of bodies. 



  86 

We can rewrite Eq. (4.14) in terms of the generalized coordinates and generalized 

velocities by introducing the following transformations. 

 ( )i iA=v q q&  (4.15) 

 ( )i iB=ω q q&  (4.16) 

In terms of the generalized coordinates and generalized velocities, the kinetic energy 

expression can be rewritten using Eqs. (4.15) and (4.16).  

 

( )

( )

( )

1

1

1

1( , )
2
1
2
1 ( )
2

n
T T T T

i i i i i i i i i i
i
n

T T T
i i i i i i i i

i
n

T
i i

i

T m q A A q I q B B q

q m A A I B B q

q M q

=

=

=

= +

⎡ ⎤= ⎣ ⎦

=

∑

∑

∑

q q

+

q

& & & & &

& &

& &

 (4.17) 

The mass matrix is immediately identified as given in Eq. (4.18).      

 
1

( )
n

T T
i i i i i i

i
M m A A I B B

=

=∑q +  (4.18) 

The procedure for computing the mass matrix now depends on the masses and inertias 

(lengths) of the bodies, and the two transformation matrices for each body. 

 Upon closer inspection of Eqs. (4.15) and (4.16), we can write the following 

 i i
i

∂ ∂
=
∂ ∂

&
& &&

&

r rv q = q
q q

 (4.19) 

 i i
i

θ θ∂ ∂
= =
∂ ∂

&
& &&

&
ω q q

q q
 (4.20) 

It is immediately obvious from comparing Eq. (4.19) with Eq. (4.15) and Eq. (4.20) with 

Eq. (4.16) that 



  87 

 i i
iA ∂ ∂
=
∂ ∂

&

&

r r=
q q

 (4.21) 

and 

 i i
iB θ θ∂ ∂
= =
∂ ∂

&

&q q
 (4.22) 

Therefore the mass matrix can be computed by taking first partials of the position 

vectors locating the mass center of the bodies, thus simplifying the formation of the 

transformation matrices. 

Up to this point, we have not discussed the choice for generalized coordinates which 

is an important matter for an automated process.  Implicit in the above developments is 

the assumption that the chosen generalized coordinates are the angular rotations of the 

bodies.  Fundamental choices for the generalized coordinates include (1) the mass center 

locations (x, y) and angular rotations (θ ) and (2) the angular rotations only.  For a planar 

open chain system (with 1n > ), for choice (1) we have a system that is over-

parameterized while with choice (2) we obtain a minimal coordinate unconstrained 

system is automatically produced.  Within choice (2) there are also two choices of either 

absolute angles (all angles measured with respect to same frame) or relative angles 

(successive bodies angular rotation measured with respect to the orientation of the 

preceding body).  For this formulation, we choose the minimal set of angular coordinates 

described by absolute measurement with respect to an inertial frame.  A further 

description of the choice of coordinates for the multibody formulation can be found in 

References 32, 33, and 34. 



  88 

The next step involves computing ( , )G q q& for Eq. (4.13).  Because this involves 

computing first order partials of the elements of the mass matrix, we can differentiate 

Eq. (4.18) with respect to the generalized coordinates, keeping in mind that the 

transformation matrices are functions of the generalized coordinates. 

 
1

( ) T Tn
T Ti i i i

i i i i i i
i

A A B BM m A A I B B
=

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂∂
= +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
∑q + +

q q q q q
 (4.23) 

These partials are substituted into Eq. (4.12) and we can then compute ( , )G q q& by 

Eq. (4.11).  In addition, conservative forces derived from the potential energy function 

are simply computed by differentiating the potential energy function with respect to the 

generalized coordinates. 

A key point in these developments is that they can be generalized for n-body open-

chain and closed-chain topologies.  In forming the accelerations in Eq. (4.13), a 

generalized code allows the analyst to merely specify the number of bodies in the 

topology, their physical properties (mass and length), and the initial conditions.  The 

method relies upon recursively forming the center of mass position vectors for each body 

in order to compute the transformation matrices and their spatial derivatives. 

 

4.3.3 Formulation for Flexible Body Systems 

When the rigid body assumption is used to model a dynamical system, there is no 

need to consider spatial integrals over the body for computing kinetic and potential 

energy expressions (i.e. the Lagrangian).  However, when flexibility is considered we 

encounter a Lagrangian expression which is computed as an integral over the volume of 



  89 

the body, and, of course, we require additional coordinates to define deformations.  For 

the case of slender beams, we can simplify this to an integral over the length of the body.  

Furthermore, what is often done to simplify the formulation of equations of motion for 

flexible dynamical systems is the introduction of approximations for the flexible motion 

coordinates that aid in producing a Lagrangian with no explicit dependence on the 

spatial coordinates.  Examples of approximation techniques include the well known 

Finite Element Method35,20 and Method of Assumed Modes36.  In essence, these 

techniques make it possible to produce a Lagrangian for the flexible dynamical system 

of the same form as that of a rigid body dynamical system.  Thus, once the spatial 

discretization approximations are utilized, we can proceed to generate equations of 

motion for a flexible dynamical system just as we do for a rigid body dynamical system 

by directly implementing Lagrange’s Equations of the form of Eq. (4.1).   

In this section, we demonstrate the use of OCEA in generating equations of motion 

for systems comprised of flexible elements. Toward this end, we develop recursive 

expressions for kinetic and potential energy functions for a series of linked flexible 

beams.  Since we are not considering rapid angular motions of the beams, we model the 

beams using Euler-Bernoulli assumptions.   

We now consider generating equations of motion for a chain of linked flexible 

bodies.  The aim of this section is to generalize the formulation for multiple flexible 

bodies.  It is assumed that the first link is pinned without translation, and successive 

links are joined with pins as shown in Figure 4.1.  Up to this point, we have not 

discussed the choice for generalized coordinates which is an important matter for 



  90 

1θ

2θ
pθ1x

2x
px

1y

2y py

X

Y

automating the process.  Make note in Figure 4.1 that we choose absolute angular 

coordinates, which are measured with respect to a common frame, in this case the 

horizontal.  Note the ix  axis connects the tips of the flexible members; thus the elastic 

deformation of each domain vanishes at the ends of that domain. 

 

 

 

 

 

 

 

 

Figure 4.1.  Geometry of multiple flexible link configuration 

 

The main development of this section is a recursion for the kinetic energy of the 

(p+1)th link of the form: 

 1

1 1 1 1 1 1 1 10

1 ( ) ( , ) ( , )
2

pL

p p p p p p p pT x x t x t dxρ+

+ + + + + + + += ⋅∫ r r  & &  (4.24) 

where 1 1( )p pxρ + +  is the mass density distribution and 1 1( , )p px t+ +r&  is the velocity 

expression for the (p+1)th link. 



  91 

We begin the development of the velocity expression by looking at the first beam in 

the chain.  The position and velocity of any point along the first beam are written as 

follows 

 ˆ ˆ( , ) ( , )x t x v x t= +1 1 1 1 1 1 1r i j  (4.25) 

 ( )ˆ ˆ( , ) ( , ) ( , )x t v x t v x t xθ θ= − + +1 1 1 1 1 1 1 1 1 1 1r i j& && &  (4.26) 

where ( , )v x t1 1  is the transverse beam deformation, θ1
&  is angular velocity, and x1  is the 

coordinate measurement along the beam frame of reference. 

The velocity of any point along the second beam in the chain can be written as 

 ( )ˆ ˆ( , ) ( , ) ( , ) ( , )x t L t v x t v x t xθ θ= − + +2 2 1 1 2 2 2 2 2 2 2 2 2r r i j& && & &  (4.27) 

and, in general, the velocity expression for the (p+1)th link can be written as 

 
( )

ˆ( , ) ( , ) ( , )
ˆ( , )

x t L t v x t

v x t x

θ

θ

= −

+ +

p+1 p+1 p p p+1 p+1 p+1 p+1

p+1 p+1 p+1 p+1 p+1

r r i

j

&& &

&&
 (4.28) 

where the velocity of the tip of the pth link, ( , )L tp pr& , is written as 

 1 1 2 2
1

ˆ ˆ ˆ ˆ( , ) ...
p

p p i i
i

L t L L L Lθ θ θ θ
=

= + + + =∑p p 1 2 p ir j j j j& & & &&  (4.29) 

Here, we have enforced the zero tip deformation constraint by choosing admissible 

functions with zero deflection at the endpoints (i.e. 1
1,

1
sin( )p

p i
p

i x
L
π

φ +
+

+

= )37.  In this way, 

the beams satisfy pinned-pinned boundary conditions.  Additionally, the expression for 

beam tip velocity in Eq. (4.29) has been greatly simplified since 

1 1 1 1( , ) ( , ) 0p p p pv L t v L t+ + + += =& .  Equation (4.28) can be written as 



  92 

 
( )

1

ˆ ˆ( , ) ( , )

ˆ( , )

p

i i
i

x t L v x t

v x t x

θ θ

θ
=

= −

+ +

∑p+1 p+1 i p+1 p+1 p+1 p+1

p+1 p+1 p+1 p+1 p+1

r j i

j

& &&

&&

 (4.30) 

Now, we can rewrite the kinetic energy expression of Eq. (4.24) as 

 
( ){ }

1

1 1 1 1 1 1 10

1 1

1
1

2
1 1 1 1

1 ( , ) ( , )
2

ˆ ˆ

1 ˆ ˆ ˆ2
2

2

pL

p p p p p p p

p p

i i j j
i j

p

p i i
i

p p p p

T x t x t dx

L L

L v v x

v v x v x

ρ

θ θ

ρ θ θ θ

θ θ θ

+

+ + + + + + +

= =

+
=

+ + + +

= ⋅

⎛ ⎞⎛ ⎞
⋅⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞

= + ⋅ − + +⎜ ⎟
⎝ ⎠

+ + + +

∫

∑ ∑

∑

& &

& &

& & &&

& & && &

i j

i p+1 p+1 p+1 p+1 p+1 p+1 p+1

2 2 2
p+1 p+1 p+1 p+

 r r  

j j

j i j1

10

pL

pdx+

+

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

∫
2

1

 
(4.31) 

We can proceed further in simplifying (4.31) by carrying out the remaining dot products.  

If we consider absolute angular coordinates which are measured from a common 

reference frame, then we can write the following expressions that relate the two frames 

attached to any two links, here frames i  and j  ( i j< ). 

 
ˆˆ cos( ) sin( )
ˆˆ sin( ) cos( )

j i j i

j i j i

θ θ θ θ
θ θ θ θ

⎛ ⎞⎛ ⎞ − − −⎡ ⎤
⎜ ⎟=⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎜ ⎟− −⎣ ⎦⎝ ⎠ ⎝ ⎠

ji

ji

ii

jj
 (4.32) 

At this point, we can introduce approximations in order to facilitate automatic 

generation of ODE’s in terms of the time dependent variables by the assumed modes 

method.  In Eq. (4.33) we introduce an expression for 1 1( , )p pv x t+ + : 

 1 1 1, 1, 1 1 11
( , ) ( ) ( ) ( ) ( )T

p p p i p i p p pp
v x t q t x t xφ+ + + + + + ++

= = q φ  (4.33) 



  93 

We note here that the first index before the comma denotes the body (p+1), and the 

indices after the comma indicate the index of the element of the array (i) in the typical 

mathematical notation. 

Now with the relation given by Eq. (4.32) and the approximation given by Eq. 

(4.33), we can write Eq. (4.31) as 

 
( ) ( )

( ) ( )

1 1

1
1 1 1 1 12

1 1 1

1
1 1 1 1 1 1 12

1 1

21 1
1 1 1 1 1 1 12 2

( , , , )

cos sin

cos cos

p P

p p p
T

p i i j j j i p p p i i p i
i j i

p p
T
p p i i p i p p p i i p i

i i

T T
p p p p p p p

T T

m L L L

L m L L

M M

θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ

θ θ

+ +

+ + + + +
= = =

+ + + + + + +
= =

+ + + + + + +

=

= − − −

+ − + −

+ + +

∑∑ ∑

∑ ∑

q q θ θ

q b

q b

q q q q

&&

& & & &

& & &&

& && & 2 21
1 1 1 1 1 16

T
p p p p p pm L θ+ + + + + ++q a &&

 (4.34) 

where q , q& , θ , and θ&  are the vectors containing all of the time dependent quantities for 

the flexible coordinates and the angular coordinates.  The elemental mass matrix, 1pM + , 

and the vectors, p+1a and p+1b  are given in Eqs. (4.35-4.37), respectively. 

 1 1
1, 1 1, 1, 10 2

pL p
p ij p p i p j p ij

m
M dxρ φ φ δ+ +

+ + + + += =∫  (4.35) 

 1 1 1
1 1 1, 10 cos( )pL p p

p+1,i p p p i p

m L
a x dx i

i
ρ φ π

π
+ + +

+ + + += = −∫  (4.36) 

 ( )1 1
1 1, 10 1 cos( )L p p

p+1,i p p i p

m L
b dx i

i
ρ φ π

π
+ +

+ + += = −∫  (4.37) 

Equation (4.34) is used to produce the kinetic energy for the second beam and so on for 

1p ≥ . The potential energy due to bending is given as 

 
1
2

1
2

'' ''
1 1 1, 1, 1 1 1, 1, 10

1 1

( ) ( )  L
p p p i p j p p p i p j p

T
p p

V q q EI x dx

K

φ φ+ + + + + + + + +

+ +

= ∫

= p+1

q

q q
 (4.38) 



  94 

where 1pK +  is an elemental stiffness matrix. 

The kinetic and potential energy of the first link are to be specified individually as 

given in Eqs. (4.39) and (4.40), respectively. 

 1 1 1
2 2 6

2 2 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1

T T TT M M m Lθ θ θ= + + +q q q q q a& & && & &  (4.39) 

 1
1 1 1 12

TV K= q q  (4.40) 

With Eqs. (4.34) and (4.38-4.40) we can form the system level Lagrangian function 

explicitly in terms of the time dependent coordinates ( , , ,q q θ θ&& ) for an arbitrary number 

of links and implement Lagrange’s Equations of the standard form given in Eq. (4.1) in 

order to produce the equations of motion. 

 

4.4 NUMERICAL INTEGRATION OF EQUATIONS OF MOTION 

Along with the many choices for equation of motion formulation are also many 

choices for numerically integrating differential equations also exist38.  The standard 

method for integrating nonlinear differential equations, such as those in Eq. (4.41), is the 

fourth-order Runge-Kutta algorithm.   

 ( ( ), )t t=x f x&  (4.41) 

The essence of this method begins with first formulating first-order equations from the 

second-order equations of motion.  These first-order equations provide a means to 

exactly compute the first-order derivatives of the states to be integrated (position and 

velocity).  These first-order derivatives are then utilized to approximate the derivatives 



  95 

of position and velocity up through fourth-order.  One form of the well known fourth-

order Runge-Kutta algorithm is given by: 

 [ ]1 0 1 2 32 2
6k k
h

+ = + + + +x x k k k k  (4.42) 

where  

 
0

1

0

2 21

2 22

3 2

( , )
( , )
( , )
( , )

k k

h
k k

h
k k

k k

t
t
t
t h

=

= + +

= + +
= + +

k

k

k f x
k f x
k f x
k f x k

 (4.43) 

With the capability of OCEA to exactly compute up through fourth-order 

derivatives, it is possible to construct an integrator in which time derivatives of the state 

can be computed exactly through fifth-order.  This type of integration, sometimes 

referred to as Taylor integration (or analytical continuation) for obvious reasons, is 

shown here. 

 

2

3 4

5

1( ) ( ) ( ( ), ) ( ( ), )
2!

1 1( ( ), ) ( ( ), )
3! 4!
1 ( ( ), )
5!

t t t t t t t t t

t t t t t t

t t t

+ ∆ = + ∆ + ∆

+ ∆ + ∆

+ ∆

x x f x f x

f x f x

f x

&

&& &&&

&&&&

 (4.44) 

The first through fourth-order time derivatives of the function ( ( ), )t tf x  are given in 

Appendix G. 

Additionally, it should be noted that a fourth-order method can be constructed with 

fifth-order exact step size control because the fifth-order term can be computed exactly.  



  96 

This capability is highly advantageous in that the integrator can be optimally tuned to the 

correct step size at each instant of time for a user specified accuracy! 

 In the examples in the next section, the integration scheme proposed in this section 

was not used for the simulations.  It should be noted that when equations of motion are 

automatically generated, two orders of differentiations are consumed in this process.  

Thus we would require four additional orders of differentiation to implement this 

approach together with the equation of motion generation. 

 

4.5 NUMERICAL EXAMPLES 

4.5.1 Spring Pendulum 

Here, we present an example in which the equations of motion are automatically 

generated and integrated by explicitly forming the Lagrangian function.  The spring 

pendulum, as shown in Figure 4.2, is a simple two degree of freedom example which can 

be readily solved by hand.  However, we present it here in order to demonstrate the 

method, which can be applied generally to solving additional problems. 

 

 

 

 

 

 

 

r

θ  

Figure 4.2.  Spring pendulum 



  97 

As was mentioned previously, in order to solve this type of problem we need to 

simply specify the Lagrangian function, the constraint relations (if they exist), and the 

generalized forces, and as well, the system physical parameters and initial conditions. 

The Lagrangian function is L T V= − , where 

 2 2 21
2 ( )T m r r θ= + &&  (4.45) 

and 

 
21

0 02 ( ) ( cos )
spring gravV V V

k r r mg r r θ

= +

= − + −
 (4.46) 

The values for m , k , and 0r  are 1 kg, 75 N/m, and 0.5 m, respectively.  The initial 

conditions are chosen to be { } { }0.55 0 0.01 2.5r rθ θ =&& .  For this problem, 

no constraints need be specified and no additional forces need to be accounted for.  

However, it would be a simple matter to include force law expressions for damping 

elements or drag, or to modify the spring force model to account for effects such as 

nonlinearity.  In addition to the integration parameters, these are the only parameters to 

be specified in order to compute the solution.     

The subroutine containing the above specified problem data for the equations of 

motion for the spring pendulum is given in Appendix H.  Here, it should be noted that 

the subroutine begins by including the EB_Handling routine (USE EB_HANDLING) 

which specifies that this subroutine contains data objects which are to be differentiated.  

Embedded variables and embedded functions are declared as TYPE(EB) which is an 

OCEA defined variable type.  The specification of the kinetic and potential energy 

functions are highlighted in order to show that embedded functions are typed in a 



  98 

standard user-friendly manner.  The structure of OCEA is such that by invoking 

EB_Handling, derivatives are automatically computed in the background without user 

intervention.  Extraction of partial derivative information is also highlighted to show the 

ease with which this information can be accessed.  Here, the analyst simply needs to 

define the dimension of the partial derivatives to be extracted.  By setting this variable 

equal to the embedded function variable, for example, HES_L = L, we can readily 

extract the Hessian of the Lagrangian in order to get access to the mass matrix and its 

time derivative. 

The overhead associated with deriving, coding, and validating the equations of 

motion has been avoided in computing the solutions for position and velocity which are 

shown in Figures 4.3 and 4.4.   

 
 

Figure 4.3.  Spring pendulum position solution 
 



  99 

 
 

Figure 4.4.  Spring pendulum velocity solution 
 
 

 
4.5.2 Rigid Body Systems 

4.5.2.1 Open Link Chain 

In this section, the generalized n-body code based on the Modified Lagrangian 

Formulation is utilized to produce the solution for an open-chain topology of rigid 

bodies as shown in Figure 4.5.  The mass matrix and its time derivatives are computed 

(See Eqs. 4.18 and 4.23) by specifying the position of the mass centers of the bodies, 

which are computed recursively.  That is, the position of the mass center of body (i+1) 

can be computed from the mass center of the ith body. 

The example application is the deployment of an inflated beam aerospace structure. 

Inflated structures have been proposed as a means of creating large space structures on-



  100 

orbit.  Their primary advantages are low launch weight and low stowage volume.  One 

proposed stowage method is folding the structure like an accordion.  In this example, the  

 

 

 

 

 

 

 

 

 

inflated structure is modeled as a series of ten rigid links with an initial stowed accordion 

configuration.  To simulate pressurization at the base of the first body, an initial angular 

velocity of -0.05 rad/sec is given to the body one.  All additional initial angular 

velocities are chosen to be zero.  Each of the ten bodies has mass of 0.01 kg and length 

of 0.5 m. 

In order to simulate laboratory conditions, the effect of gravity is included in the 

potential energy description.  Generalized forces due to damping at the hinge points is 

included in the simulation to account for any dampers, such as velcro, used to control the 

deployment.  These generalized forces are of the form 

 1( )i i i iQ c q q−= −& &  (4.47) 

 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 4.5.  N-body open-chain geometry 

1

2

N



  101 

where ic  is a positive constant.  Computation of these generalized forces merely relies 

upon specifying the damping coefficients.  

The deployment dynamics are plotted in Figure 4.6.  At time zero, the structure is 

released and slowly begins to unfold.  The force due to joint damping aids in controlling 

the deployment in the initial couple of seconds.  The structure is nearly fully deployed at 

5 seconds and comes to rest in the fully deployed configuration after about 10 seconds. 

Model changes can be easily accommodated by this method.  The advantage of 

having the ability to change the number of bodies in the model to quickly produce a new 

solution for the motion cannot be overstated.  In addition, changes in models for 

generalized forces and key parameters such as mass, length, and damping can be easily 

accomplished. 

 



  102 

 

 

 
Figure 4.6.  Deployment dynamics for ten link model 

 



  103 

4.5.2.2 Closed Link Chain 

We now consider the closed-chain system shown in Figure 4.7.  Here we consider a 

five link example choosing to describe the system by the five absolute angles shown in 

the figure.  The generalized n-body code, which was used to solve the previous 

deployment example, is again used here.  As in the case of the previous example, all 

angles are measured with respect to a fixed reference, in this case the horizontal, and are 

chosen such that the positions of the mass centers can easily be computed recursively.  

Additionally, two holonomic constraints must be specified for this system.  These 

constraints are used to automatically compute the constraint matrix as shown in Eq. 

(4.7).   

 

θ4

θ5

θ3

θ2

θ1

(x3,y3)

 

Figure 4.7. Five link closed-chain topology 

 

Previous studies on this system include an analytical effort to generate a model for 

the system shown in Figure 4.7 for the purpose of studies in adaptive control39-40.  The 



  104 

effort in generating the equations of motion in these papers should be compared to the 

present effort. 

The 5 link system is solved for 10 seconds of the motion from rest with each link 

having mass of 2 kg and length of 1 m.  The torques acting on the system are those due 

to gravity, a sinusoidal driving control specified on the first link, and damping at the 

joints.  The Lagrange multipliers are solved using the so called Range-Space method 

(See Appendix I) in this example.  The angular motion of the payload (link 3) is shown 

in Figure 4.8. 

 

 
 

Figure 4.8.  Payload motion for five link closed-chain system 
 

Certainly, we can present any number of results.  The main point here is an 

illustration of the rapid model generation capability of the generalized n-body code. 

 



  105 

4.5.3 Flexible Body Systems 

4.5.3.1 Open Link Chain 

In this section, we present simulated results for multiple flexible beams in an open-

chain topology.  Here, we define the kinetic and potential energy for the first link with 

Eqs. (4.39) and (4.40), respectively.  For the second link and so on (p=1 and so on) we 

define the kinetic and potential energy by Eqs. (4.34) and (4.38). 

The system is comprised of three beams, each with mass of 12 kg, length of 10 m, 

and stiffness (EI) of 14e3 Nm2.  The beams are initially oriented with angles 

{ } { }1 2 3
3 3 3, , , ,2 2 2
π π πθ θ θ = as shown in Figure 4.1.  All initial deflections are zero with the 

exception of the midpoint deflection of the third beam, which is 3,1 0.01q = m. All initial 

velocities are zero with the exception of the angular velocity of the third beam 

( 3 0.5 sec
radθ =& ).   

With the ability to quickly generate models and solutions for the motion, a 

considerable number of analyses are readily available.  Here, we show results for the 

rigid body and flexible contributions to the kinetic energy of the individual links as 

shown in Figures (4.9-4.11).  Here we see that for this quite flexible system, the 

magnitudes of the kinetic energy due to flexibility (dotted lines) are of significant 

amplitude.  The integration step size was chosen to satisfy constancy of total energy, 

which in this case was found (for the case of zero damping, of course) to be constant to 9 

significant digits. 

 



  106 

 

Figure 4.9.  Kinetic energy for link one 
 

 

Figure 4.10.  Kinetic energy for link two 
 



  107 

 

Figure 4.11.  Kinetic energy for link three 
 
 

 
4.5.3.2 Closed Link Chain 

In this section, we present simulated results for multiple flexible beams in a closed-

chain constrained topology.  Here, we define the kinetic and potential energy for the 

links as we did before; however, in this case, we must simply compute the constraint 

forces in order to satisfy the geometric constraints, which are of the holonomic form: 

 
cos( )

1

sin( )
1

n
L Di ii
n

Li ii

θ

θ

⎛ ⎞−∑⎜ ⎟=⎜ ⎟ =
⎜ ⎟∑⎜ ⎟=⎝ ⎠

= 0φ  (4.48) 

where n = 5 links and 10D = m.  Constraint forces are computed by solving for the 

Lagrange multipliers using the Range-Space Method (Appendix I).  Additionally, we 



  108 

include potential due to gravity from rest with initial angles for the links of 

{ } { }1 2 3 4 5
5 7 3, , , , , ,0, ,4 4 4 4
π π π πθ θ θ θ θ = .  Initially, there is no flexible energy in the system.  

Damping is included at all joints with the exception of the base joint at 

{ } { }, 10,0X Y = . The properties of the links is identical to the previous example with the 

exception that EI = 14e4 Nm.  Again, conservation of total energy for the undamped 

case was used to determine the integration step size and to help validate the model. 

Figure 4.12 shows a few snap shots of the motion history for the 10 second 

simulation. 

 

 
Figure 4.12:  Motion for 5 link flexible closed-chain system 

 



  109 

4.5.3.3 Planar Truss 

Here we consider a four flexible link system containing flexible elements.  We now 

consider an example which includes general translational motion.  In forming the system 

Lagrangian, we must include a number of terms arising from translation in the kinetic 

energy expression.  These additional terms are given in Appendix J. 

We now focus on the simulation of this system as shown in Figure 4.13.  The lines 

crossing the diagonal represent linear spring elements.  The four links are pinned, and 

the vector A
A

A

x
y
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

r  locates the basepoint of the first link. 

 

1

2

3

4

 
 

Figure 4.13.  Planar truss geometry 

X 

Y 

rA 



  110 

We conveniently choose masses of the links to be 1 kg and lengths to be 1 m.  The 

bending stiffness is 14e4 Nm for this simulation.  The spring constant is 15 N/m for each 

spring.  The constraints are given by 

 

4

1
4

1

cos( )

sin( )

i i
i

i i
i

L

L

θ

θ

=

=

⎛ ⎞∑⎜ ⎟
=⎜ ⎟

⎜ ⎟∑
⎝ ⎠

= 0φ  (4.49) 

Again, the Range Space method is used to solve for the multipliers.  We assume that 

the links are initially undeformed with the following nonzero initial conditions: 

{ }1 2 3 4
3, , , , , 1.0, 1.0, 0.1, 0.1, 0.1, 0.1

2 2A Ax y π πθ θ θ θ π⎧ ⎫= − + −⎨ ⎬
⎩ ⎭

 

{ } { }1 2 3 4, , , , , 0.5, 0.5, 0.1, 0.1, 0.1, 0.1A Ax y θ θ θ θ =& & & && &  

The substructure rigid body and flexible components of energy are given in Figures 

4.14 and 4.15, respectively. 



  111 

 

Figure 4.14.  Planar truss rigid body energy 

 

Figure 4.15.  Planar truss flexible energy 



  112 

It should be apparent from Figures 4.14 and 4.15 that from comparing the 

magnitudes of the rigid body and flexible components of energy that this system is 

appropriately modeled as a flexible system. 

We now address the issue of the accuracy of the position and velocity level 

constraints for this system.  In Figure 4.16 we show the error in the position level 

constraints.  In Figure 4.17 we show the error in the velocity level constraint.  As the 

figures show, these errors are quite small.  Errors of size 10-5 and 10-2 were reported in 

Reference 31 for the position and velocity constraints.  With the OCEA approach we 

find significant improvement: 9 orders of magnitude improvement in the position level 

constraint satisfaction and 12 orders of magnitude improvement in the satisfaction of the 

velocity level constraint.  We do note that the system studied in Reference 31 is a three 

link closed chain system with only one link modeled with flexibility, and is not the same 

as that studied here.  However, we draw comparison of the ability of each approach to 

produce the expected result of zero error in satisfying the position and velocity level 

constraints. 



  113 

 

Figure 4.16.  Errors in position level constraint for planar truss 

 

Figure 4.17.  Errors in velocity level constraint for planar truss 



  114 

4.6 COMPARISON WITH HARD-CODING EQUATIONS OF MOTION 

We now focus on the accuracy of solutions for the system response from 

automatically generated and integrated equations of motion as compared to hand-

derived, hard-coded equations of motion.  Due to the complexity involved in hand-

deriving equations of motion for many bodies, we consider a system comprised of only 

two flexible links.  This system is commonly referred to as a double flexible pendulum.  

Additionally, we choose to model the system using five assumed modes per link. 

Starting at a point in the derivation with the kinetic and potential energy expressions, 

which were developed in this chapter, in hand, we find that the time required to develop 

the equations of motion by hand is about one hour.  The process of coding and verifying 

the accuracy of the equations of motion adds an additional hour to the process.  This 

exercise demonstrates the efficiency of the method developed in this chapter even for a 

system containing only two bodies since the number of bodies in the model is merely an 

input to the code. 

In Figure 4.18 we show the errors in the angular and angular rate coordinates.  

Figures 4.19-4.20 show the errors in the flexible coordinates and their time derivatives 

for the first link.  Figures 4.21-4.22 show the errors in the flexible coordinates and their 

time derivatives for the second link.  Each of the figures show that the errors between the 

solution using automatic differentiation and that from the hard-coded solution agree to 

high accuracy on the order of the machine error.  Errors of size 10-7 were reported in 

Reference 31 for the angular and flexible coordinates and their time derivatives.  With 



  115 

the OCEA approach we see 10 orders of magnitude improvement over the results of 

Reference 31, as regards validating the two models were in fact numerically consistent. 

 

 

Figure 4.18.  Errors in angular and angular rate coordinates 



  116 

 

Figure 4.19.  Errors in flexible coordinates for link one 

 

Figure 4.20. Errors in time derivatives of flexible coordinates for link one 



  117 

 

Figure 4.21.  Errors in flexible coordinates for link two 

 

Figure 4.22. Errors in time derivatives of flexible coordinates for link two 



  118 

4.7 SUMMARY 

In this chapter, a new method for modeling and simulating dynamical systems was 

presented.  The key development is a demonstration of the capability of automatic 

differentiation in automatically generating and integrating the equations of motion by 

simply specifying the system Lagrangian and the system constraints.  No further work 

need be done by the analyst in order to produce the system response.  Several examples 

were presented for rigid and flexible linked mechanical systems in open- and closed-

chain topologies.  It is remarkable that a single approach can produce such a variety of 

dynamical models, including simulations, with minimal coding. 

The results presented in this chapter show that the OCEA approach for modeling 

dynamical systems is superior to other AD approaches for deriving equations of motion 

vis-à-vis user derivation and coding effort.  With respect to coding effort, we find that 

with OCEA no code needs to be generated offline.  This is not the case when using other 

programs such as ADIFOR or AUTODERIVE.  All required first- and second-order 

partial derivatives are computed within the OCEA-FORTRAN environment.  

Furthermore, the accuracy of the OCEA solutions regarding the satisfaction of position 

and velocity level constraints, or when evaluating the errors between the OCEA solution 

and that from hand-derived equations of motion is profoundly better.  While the results 

are indeed promising, it is not claimed that these initial developments are the final word 

on this subject.  For example, only one dimensional elastic bodies (rods and beams) are 

considered.  Therefore, further extensions of the well-established approach are required.  



  119 

CHAPTER V 

 

VALIDATION OF SOLUTION ACCURACY FOR DYNAMICAL SYSTEMS 

 

5.1 INTRODUCTION 

We now turn to a different subject – namely validation of model accuracy for a class 

of distributed parameter systems.  What is often done to simplify the formulation of 

equations of motion for flexible dynamical systems is to introduce spatial 

approximations to represent the flexible body motion as an affine combination of shape 

functions.  Examples of such approximation techniques include the well known Finite 

Element Method and Method of Assumed Modes (Ritz Method).  However, the question 

that must be asked is: How accurately does a given approximate model describe the 

actual system?   

The validation of approximate models for flexible body systems has typically been 

accomplished by comparing the approximate solution from a general code, specialized 

for a very simple system, with an exact analytical solution.  This is known as the method 

of exact solutions.  Since exact solutions typically do not exist for practical engineering 

level models, other methods must be employed to determine if the approximate model is 

valid or under what conditions it is valid.  Two such methods are the method of 

manufactured solutions41-44 and the method of nearby problems45-48.  At first glance, 

these two methods appear to be quite similar; however, the “benchmark solution” is 

determined in a different manner for each method.  With the method of manufactured 



  120 

solutions, we choose an analytical “benchmark solution” a priori.  With the method of 

nearby problems, we first solve the problem for a fine discretization resolution and then 

proceed to determine a “benchmark solution” (in fact, a manufactured solution) by curve 

fitting the solution variable.  For each method we desire to use this “benchmark 

solution” to compute analytical source terms by inverse dynamics.  When the analytical 

source terms are added to the approximate equations of motion, a new set of equations of 

motion is formed which have as an exact solution the “benchmark solution”.  Thus, with 

the method of manufactured solutions, we produce the analytical source terms from a 

“benchmark solution” which may or may not have physical meaning, although it does 

satisfy the new set of equations of motion which include these analytical source terms.  

On the other hand, with the method of nearby problems, the “benchmark solution” does 

have physical meaning since it is a solution of the approximate dynamical equations of 

motion.  An “exact” solution has been manufactured for the system of differential 

equations with no exact analytical solution.  Therefore, we proceed as we do for the 

method of exact solutions.  Solutions of the benchmark problem are compared to the 

manufactured solution in order to evaluate the solution accuracy.  These methods are 

discussed in greater detail in the next section.  

The analytical source terms must be computed using the exact dynamical equations 

of motion for both methods discussed above.  The majority of the early literature on the 

method of manufactured solutions41-44 and the method of nearby problems48 deals with 

solving problems in computational fluid dynamics where the exact dynamical equations 

of motion (Navier-Stokes Equations) are well established for most problems.  When 



  121 

dealing with the study of dynamical systems, we encounter a different situation since the 

equations of motion change significantly from problem to problem depending on; for 

example, the number of bodies in the system.  Developing exact dynamical relationships 

for systems comprised of rigid bodies is rather straightforward; however, the problem is 

rather complex when the system is comprised of elastic elements.  Thus, one necessary 

development which is presented in this chapter is the derivation of the exact governing 

equations of motion and boundary conditions for systems comprised of elastic elements.  

Given previous generalizations of Hamilton’s Principle for discrete-parameter 

systems20,47, these exact partial differential equations can be computed by differentiation 

as opposed to integration by parts, which was the only method until new developments 

were made in the past decade.  In this chapter, it is demonstrated that equations of 

motion for discrete-parameter systems – systems containing discrete and flexible 

coordinates - can be generated by using automatic differentiation.  The intention is to 

develop an advanced method for validating multibody dynamics codes.  Previous work 

on validation has been done by using equations of motion which are developed by hand 

or using symbolic manipulation programs.  The potential impact of this work is to have 

the capability to validate solutions from multibody dynamics codes for not only the most 

simple case example, but for more complicated systems by automating the process of 

generating exact dynamical representations. 

OCEA is a promising tool for generation of equations of motion for discrete-

parameter systems, as they are referred to in the literature.  While such capability offers 

the possibility of new solution approaches, an alternative use of this capability, for 



  122 

flexible body systems, lies in validation of solutions for these systems.  Typically, the 

solution process for hybrid discrete coordinate flexible body systems require both time 

and spatial discretization of the equations of motion.  A choice for the integration time 

step and the number of elements are usually based on experience.  One particular 

approach involves increasing the number of time steps and elements until the solution no 

longer changes by further discretizing the system.  While this approach renders an 

adequate method for systems with a few flexible elements, it does not offer a practical 

means for properly choosing a discretization resolution for systems with many flexible 

elements. Furthermore, this type of approach does not guarantee the accuracy of the 

solution.  It merely shows that no further changes are found in the solution.  The 

methods for validating solution accuracy described in this work results in rigourous 

quantification of the error in the solution since the exact PDE/ODE relationships are 

used to evaluate the accuracy of the approximate solution.  An approach is envisioned 

whereby the exact partial differential equation models are used to form an acceleration 

error at any point in space and time.  These errors can be fed back to tune the 

discretization process and validate the solution. 

It should be apparent that one method for validating the accuracy of solutions is to 

simply evaluate the exact dynamical representation using the approximate solution.  The 

errors in satisfying the exact PDE/ODEs and boundary conditions, for various 

discretization resolution, can be considered as one simple method to quantify solution 

error.  We address this issue later in the chapter.  We discuss the method of nearby 



  123 

problems and we propose some alternatives to the traditional steps taken with this 

method. 

Additionally, we investigate some of the more fundamental issues when 

approximating the dynamics of a flexible dynamical system by examining a simple 

system.  Since the method of manufactured solutions and the method of nearby problems 

require computing higher-order space/time derivatives of the flexible coordinates 

(deflection variables), we study the accuracy of the solution for these higher-order 

space/time derivatives and the impact of their accuracy on computing analytical source 

terms for the purpose of validating solution accuracy. 

 

5.2 METHODS FOR VALIDATING SOLUTION ACCURACY 

There are several paths we can take to validate a solution derived from an assumed 

modes or FEM approach.  We list some of these methods here: 

1) The method of exact solutions 

2) Evaluation of the error in satisfying the exact dynamical relationship 

3) The method of manufactured solutions  

4) The method of nearby problems 

For the method of exact solutions, we compare the approximate solution from a 

general code, specialized for a very simple system, with the exact analytical solution.  Of 

course this is preferred method; however, an exact solution is not available for practical 

engineering level models.  We can however, with a significant amount of work by some 

methods, produce exact dynamical relationships including ordinary differential equations 



  124 

(ODEs)/integro-ODEs, partial differential equations (PDEs), and boundary conditions.  

Although we typically do not have an exact analytical solution for these equations, we 

can consider method #2 as a means of evaluating the accuracy of a solution.  Given a 

solution from an approximate model, we can then evaluate the system ODE/PDEs and 

boundary conditions to ascertain the accuracy of that solution with respect to satisfying 

the exact governing equations of motion and boundary conditions.  We address this issue 

specifically for a clamped-free beam later in this chapter.  We now focus on several 

methods (namely methods #3 and #4) that utilize the exact dynamical relationship to 

“manufacture” an “exact” solution. 

As was previously mentioned, with the method of manufactured solutions we 

choose an analytical “benchmark solution” a priori and use the “benchmark solution” to 

compute analytical source terms.  When added to the approximate equations of motion, a 

new set of equations of motion are formed by adding the analytical source terms which 

have as an exact solution the “benchmark solution”.  Thus, with the method of 

manufactured solutions, we produce the analytical source terms from a “benchmark 

solution” which may or may not have physical meaning, although it does satisfy the new 

set of equations of motion which include these analytical source terms.  To illustrate the 

idea of the method of manufactured solutions, we consider the following example for 

validating the accuracy for an ODE. 

Suppose we wish to evaluate the accuracy of solving the following differential 

equation for different time step sizes. 

 2 sinx x x=&  (5.1) 



  125 

Now, without solving this equation, we choose for no particular reason the following 

benchmark solution, ( )bx t . 

 ( ) cosbx t t t=  (5.2) 

where the time derivative of the benchmark solution is given by 

 ( ) cos sinbx t t t t= −&  (5.3) 

Now, we compute the analytical source term by inverse dynamics 

 
2

2

( ) sin

cos sin ( cos ) sin( cos )
b b be t x x x

t t t t t t t

= −

= − −

&
 (5.4) 

We add the analytical source term to Eq. (5.1) to produce the benchmark problem 

 2 sin ( )x x x e t= +&  (5.5) 

Equation (5.5) has as an exact solution the benchmark solution given by Eq. (5.2).  

Thus, the benchmark problem can be solved for various time step sizes in producing a 

solution for the motion.  The accuracy of the solution is obtained by comparison with the 

benchmark solution.  Of course, this is only a simple illustration.  The more complicated 

problem when dealing with flexible dynamical systems is presented later in the chapter. 

On the other hand, with the method of nearby problems, the “benchmark solution” 

does have physical meaning since it is a solution of the approximate dynamical 

equations of motion.  We first solve the problem for some choice of resolution for the 

time step size (and spatial discretization for a flexible dynamical system).  Subsequently, 

we begin the process of determining an exact benchmark solution.  Firstly, we 

approximate this solution by fitting a curve through the solution.  For a distributed-

parameter, multibody system we fit curves through the discrete coordinates ( )tq and the 



  126 

flexible coordinates ( , )x tv  to produce the nearby solution given by ( )tq% and ( , )x tv% .  

Thus we have an analytical (symbolic) relationship for the solution variables as a 

function of space and time in which we can readily compute space/time derivatives since 

we know the chosen mathematical model for these coordinates.  Now, we can evaluate 

the exact dynamical relationships at this nearby solution and its space/time derivatives to 

produce the analytical source terms.  These analytical source terms are then used to 

compute fictitious forcing terms, which when included in the approximate dynamical 

equations, represent the forces needed in order for the nearby solution to be an exact 

solution for the new set of equations (the benchmark problem).  Subsequently, we can 

discretize the system as we choose for various numbers of assumed modes or number of 

finite elements, and solve the benchmark problem.  Then, we can evaluate the accuracy 

of solutions by comparing the solution from the benchmark problem with the nearby 

solution. 

The entire procedure for the method of nearby solutions is quite tedious.  Careful 

attention must be given to handling the creation of an exact benchmark solution.  This 

process firstly requires choosing a set of basis functions which are capable of accurately 

approximating the solution variables.  Typically, this is done using high-order 

polynomials46,47.  Secondly, we require an exact dynamical relationship for the system.  

Typically, this is accomplished by symbolic manipulation 46,47.  Thirdly, careful attention 

must be given to computing the analytical source terms.  Symbolic manipulation must be 

utilized once again in order to create a mapping for the errors in the dynamical 

relationships (analytical source terms).  These analytical source terms are then used to 



  127 

compute the fictitious forcing functions.  For example, the error in a PDE governing the 

flexible dynamics, given by ( , )e x t , is required to compute the fictitious forcing 

functions (generalized forces) as follows 

 
0

ˆ ( ) ( , ) ( )
L

i if t e x t x dxφ= ∫  (5.6) 

The computation of these generalized forces, and any other generalized forces associated 

with the errors in the ODEs or the boundary conditions is thus the key result of the 

method of nearby problems, as demonstrated in parallel with Eq. (5.5), since these 

generalized forces produce the benchmark problem with an “exact” solution.  These are 

the only terms we directly require in evaluating the solution accuracy of our approximate 

dynamical model. 

We now consider alternatives for executing this process known as the method of 

nearby problems.  One alternative is the method by which the exact dynamical equations 

are developed.  We propose here that we develop these equations using automatic 

differentiation as opposed to symbolic differentiation.  The method by which this can be 

accomplished is given in the next section.  We now focus on the qualitative ideas 

associated with this choice.  Firstly, we note that by using automatic differentiation, we 

are limited to numerically evaluating the exact dynamical equations.  Thus, we cannot 

produce analytical source terms (or ultimately, generalized forces) in an 

analytical/symbolic fashion.  For example, when evaluating the error in the exact PDE 

we process a numerical map of the error over space and time, which results from 

evaluating the solution variables (deflection, and its time and spatial derivatives) 

numerically at the approximate solution for each time and spatial value.  Considering 



  128 

this issue, we consider as one option approximating the error in the exact equations 

*( , )e x t  as *( , )e x t%  (curve fit in space and time), then proceed to compute the fictitious 

forcing functions analytically as follows 

 *

0
ˆ ( ) ( , ) ( )

L

i if t e x t x dxφ= ∫ %  (5.7) 

We now consider an additional option for computing the fictitious forcing functions 

using OCEA.  As opposed to approximating the error functions, we can simply proceed 

directly to computing the forcing functions by numerically integrating the error functions 

and their product with the appropriate basis functions over space.  Thus, we are forming 

a fictitious forcing function value for each point in time.  For, example 

 *

0
ˆ ( ) ( , ) ( )

L

i if t e x t x dxφ= ∫  (5.8) 

where *( , )e x t  is computed numerically at each point in space and time as 

 
2

2

ˆ ˆ ˆ ˆ ˆ
' ''

* Td L L L Le (x,t) -
dt v v x xv v

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
− + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟

∂ ∂ ∂ ∂∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠&
= f  (5.9) 

The numerical values for the fictitious forcing functions given in Eq. (5.9) can be 

approximated by an analytical function, if desired.  Otherwise, a simple lookup table 

could be formed in order to implement these fictitious forcing functions in the 

benchmark problem.   

Thus far, we have considered global approximation methods.  On the other hand, we 

can consider a different manner in which we create the nearby solution at the deflection 

level.  Instead of using high-order polynomials we can utilize the basis functions which 

we have chosen to characterize the solution.  These basis functions are the assumed 



  129 

mode shape functions and the FEM shape functions.  Thus, the approximation process 

requires only approximating a function in time which modulates the assumed mode 

shape functions.  This would be the most straightforward method by which we tend in 

the direction of a local fitting approach.  Otherwise, we can chose to compute the nearby 

solution by using locally defined low-order functions.  However, here careful attention 

must be given to the issue of continuity of the locally defined functions. 

 

5.3 AUTOMATIC GENERATION OF EXACT DYNAMICAL MODELS 

In this section, we discuss generating exact PDE/ODE dynamical models and the 

corresponding boundary conditions using OCEA.  As was mentioned earlier, the primary 

challenge involved in the validation effort for flexible dynamical systems is the 

generation of the exact dynamical representation. 

Here we consider as the path the hybrid coordinate generalizations of Hamilton’s 

Principle for generating these dynamical relationships20,47.  In general, we can write the 

system Lagrangian to be composed of discrete terms ( DL ), spatial terms ( ˆ
iL ), and 

boundary terms ( BL ).  Considering a general system composed of multiple elastic 

domains, we write the Lagrangian as follows 

 
0

1

ˆi
n l

D i i B
i

L L L dx L
=

⎡ ⎤= + +⎢ ⎥⎣ ⎦∑ ∫  (5.10) 

The ordinary differential equations of motion are derived from 

 Td L L
dt
⎛ ⎞∂ ∂

− =⎜ ⎟∂ ∂⎝ ⎠
Q

q q&
 (5.11) 



  130 

whereas the partial differential equations of motion are derived from 

 
2

2

ˆ ˆ ˆ ˆ ˆ
' ''

Ti i i i
i

i i i ii i

L L L Ld f
dt v v x xv v

⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂∂ ∂⎜ ⎟ ⎜ ⎟− + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠&
 (5.12) 

and the boundary conditions are generated from 

 

1

0

2

0

ˆ ˆ ˆ( ) ( ) 0' '' ( ) ( )

ˆ ' ' 'ˆ( ) ( ) 0'' ' '( ) ( )

i

i

l

Ti i B B
i i i i i i

i i i i ii i

l

Ti B B
i i i i i i

i i i i i

L L dv v l v l
x v l dt v lv v

L dv v l v l
dtv v l v l

δ δ δ

δ δ δ

⎧ ⎫⎛ ⎞ ⎧ ⎫⎛ ⎞∂ ∂ ∂ ∂∂⎪ ⎪ ⎪ ⎪⎜ ⎟− + − + =⎨ ⎬ ⎨ ⎬⎜ ⎟⎜ ⎟∂ ∂ ∂⎪ ⎪∂ ∂ ⎝ ⎠⎩ ⎭⎪ ⎪⎝ ⎠⎩ ⎭

⎧ ⎫⎛ ⎞∂ ∂ ∂⎪ ⎪⎜ ⎟+ − + =⎨ ⎬⎜ ⎟∂ ∂ ∂⎪ ⎪⎝ ⎠⎩ ⎭

&

&

f

f

L L

L L

 (5.13) 

where BL  is defined as 

 
0

1

ˆi
n l

B i i B
i

L dx L
=

⎡ ⎤= +⎢ ⎥⎣ ⎦∑ ∫L  (5.14) 

Whereas we would derive the governing equations of motion and boundary 

conditions starting with Hamilton’s Principle via integration by parts; here we see that 

these equations can be derived by differentiation. 

We now discuss in detail how to automatically generate these equations by using 

OCEA.  First we consider automatically generating the governing ODE.  Considering 

the first term in Eq. (5.11) we write 

 
0

1

ˆ
i

n l iD B
i

i

LL Ld L d dx
dt dt =

⎛ ⎞⎡ ⎤⎛ ⎞ ∂∂ ∂∂
= + +⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎣ ⎦⎝ ⎠

∑ ∫& & & &q q q q
 (5.15) 

We can rewrite the first term on the RHS of Eq. (5.15) as 

 
2

D DL Ld d
dt dt
⎛ ⎞∂ ∂

=⎜ ⎟∂ ∂ ∂⎝ ⎠

X
q q X& &

 (5.16) 



  131 

where X is a vector containing all of the coordinates in which the system Lagrangian 

consists 

, (t), (t), (x,t), (x,t), (x,t), (x,t), (l), (l), (l), (l)⎡ ⎤⎣ ⎦
' '' ' 'X = x q q w w w w w w w w& & & &  

We can rewrite the second term on the RHS of Eq. (5.15) as 

 
2

0 0
1 1

ˆ ˆ
i i

n nl li i
i i

i i

L Ld ddx dx
dt dt= =

⎛ ⎞⎡ ⎤ ⎡ ⎤∂ ∂
=⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟∂ ∂ ∂⎣ ⎦ ⎣ ⎦⎝ ⎠

∑ ∑∫ ∫& &

X
q q X

 (5.17) 

We can rewrite the third term on the RHS of Eq. (5.15) as 

 
2

B BL Ld d
dt dt
⎛ ⎞∂ ∂

=⎜ ⎟∂ ∂ ∂⎝ ⎠

X
q q X& &

 (5.18) 

We write the second term in Eq. (5.11) as 

 
0

1

ˆ
i

n l iD B
i

i

LL LL dx
=

⎡ ⎤∂∂ ∂∂
= + +⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

∑ ∫ &q q q q
 (5.19) 

In summary, we can compute the ODEs based on Eq. (5.11) by 

 
22 2

0
1

ˆ ˆ
i

n l Ti iD B D B
i

i

L LL L L Ld d ddx
dt dt dt=

⎡ ⎤⎛ ⎞∂ ∂∂ ∂ ∂ ∂
+ − + − − =⎢ ⎥⎜ ⎟

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∫& & &

X X X Q
q X q X q q X q q

 (5.20) 

For obvious reasons, we must specify the individual terms that form the system 

Lagrangian separately in order to accomplish the spatial integrals. 

We now turn our attention to generating the PDEs.  Considering the first term in Eq. 

(5.12) we write 

 
2ˆ ˆ

i i

i i

L Ld d
dt w w dt
⎛ ⎞∂ ∂

=⎜ ⎟
∂ ∂ ∂⎝ ⎠

X
X& &

 (5.21) 



  132 

The second term in Eq. (5.12) can be computed straightforwardly.  The third and 

fourth terms must be computed offline since the partials of L̂ with respect to w'  and 

w'' are implicit functions of the spatial variable x  and cannot be accomplished by 

explicit differentiation means such as automatic differentiation.  On the other hand, we 

can define L̂ in such a way that it is an explicit function of x with no explicit dependence 

on to w'  and w''  if we utilize the assumed form for these expressions based on the 

chosen modeling approach (FEM or Assumed Modes).  In this way, the third and fourth 

terms in Eq. (5.12) can be computed using OCEA. 

Regarding the boundary conditions in Eq. (5.13), we see that we need to compute 

partials with respect to the Lagrangian density functions ( ˆ
iL ) and BL .  We’ve discussed 

computing partials of the Lagrangian density functions in the previous paragraph.  We 

focus on four terms in the two boundary conditions given in Eq. (5.13), namely 

,  ,  ,  and ' '( ) ( )( ) ( )
B B B B

i i i ii i i i

d d
v l dt v l dtv l v l

⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂
⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂∂ ∂⎝ ⎠ ⎝ ⎠& &

L L L L  

The first two terms are straightforwardly computed as 

 
0

1

ˆ

( ) ( ) ( )
i

n l iB B
i

ii i i i i i

L Ldx
v l v l v l=

⎡ ⎤∂∂ ∂
= +⎢ ⎥∂ ∂ ∂⎣ ⎦
∑ ∫

L  (5.22) 

 
0

1
' ' '

ˆ

( ) ( ) ( )
i

n l iB B
i

ii i i i i i

L Ldx
v l v l v l=

⎡ ⎤∂∂ ∂
= +⎢ ⎥

∂ ∂ ∂⎢ ⎥⎣ ⎦
∑ ∫

L  (5.23) 

The second and third terms are computed as  

 
2 2

0
1

ˆ

( ) ( ) ( )
i

n l iB B
i

ii i i i i i

L Ld d ddx
dt v l v l dt v l dt=

⎡ ⎤⎛ ⎞ ∂∂ ∂
= +⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎣ ⎦
∑ ∫& & &

X X
X X

L  (5.24) 



  133 

 
2 2

0
1

' ' '
ˆ

( ) ( ) ( )
i

n l iB B
i

ii i i i i i

L Ld d ddx
dt dt dtv l v l v l=

⎛ ⎞ ⎡ ⎤∂∂ ∂
= +⎜ ⎟ ⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎣ ⎦
∑ ∫& & &

X X
X X

L  (5.25) 

Thus the complete dynamical representation including ODEs, PDEs, and boundary 

conditions can be generated, for a class of dynamical systems, in the fashion described in 

this section using OCEA.  The errors in satisfying these exact governing equations of 

motion and boundary conditions can be evaluated numerically to produce the analytical 

source terms as described in the previous section.  We now present some numerical 

examples to demonstrate the accuracy of this method in generating the exact dynamical 

representation. 

 

5.4 MULTIBODY SYSTEM EXAMPLES  

In this section we investigate the accuracy of the method presented in the previous 

section for automatically deriving the exact dynamical relationships for a distributed-

parameter system.  We present one numerical example, and generalize the formulation to 

the multibody case 

5.4.1 Double Pendulum 

We consider as an example a two link pendulum comprised of flexible elements.  

The discrete part of the Lagrangian is given by 

 2 2 2 21 1
1 1 1 2 2 26 6DL m L m Lθ θ= +& &  (5.26) 

The boundary part of the Lagrangian is given by 

 2 21 1
2 1 1 2 1 2 1 2 2 12 2 cos( )BL m L m L Lθ θ θ θ θ= + −& & &  (5.27) 

and the Lagrangian density functions for the first and second links are given by 



  134 

 { } ( )2
2 2 21 1

1 1 1 1 1 1 1 1 1 12 2
''ˆ 2L v v x v EI vρ θ θ= + + −& && &  (5.28) 

 ( )
2 2 2 22 2 2 2 2 2 1 1 2 2 2 11 1

2 2 2 22 2
1 1 2 2 1

''2 2 sin( )ˆ
2 cos( )

v v x v L v
L EI v

L v

θ θ θ θ θ θ
ρ

θ θ θ

⎧ ⎫+ + − −⎪ ⎪= −⎨ ⎬
+ −⎪ ⎪⎩ ⎭

& & & && &

& &
 (5.29) 

Thus, we can form the system Lagrangian of Eq. (5.10) by Eqs. (5.26-5.29).  The 

ODEs and PDEs are derived by hand using Eq. (5.11) and (5.12), respectively.  The 

resulting exact ODEs derived by hand are given in Eqs. (5.30-5.31). 

 

( )
{ }

( ) ( ){ }

1

2

2 2 21 1 1
1 1 2 1 1 2 1 2 2 2 1 2 1 2 2 2 13 2 2

2
1 1 1 1 1 1 1 1 10

2
2 1 2 2 1 2 2 2 1 1 2 2 1 2 2 1 20

cos( ) sin( )

2

2 sin( ) cos( )

0

L

L

m L m L m L L m L L

v v v x v dx

L v L v L v L v dx

θ θ θ θ θ θ θ

ρ θ θ

ρ θ θ θ θ θ θ θ

+ + − − −

+ + +

+ − − − + − + −

=

∫
∫

&& && &

&& && &&

&& & && &&

 (5.30) 

 { }2

2 21 1 1
2 2 2 2 1 2 1 2 1 2 1 2 1 2 13 2 2

2 2
2 2 2 2 2 2 2 2 1 1 2 2 1 1 2 1 2 1 20

cos( ) sin( )

2 sin( ) cos( )

0

L

m L m L L m L L

v v v x v L v L v dx

θ θ θ θ θ θ θ

ρ θ θ θ θ θ θ θ θ

+ − + −

+ + + − − + −

=
∫

&& && &

&& & && && &&  (5.31) 

The resulting exact PDEs derived by hand are given in Eqs. (5.32-5.33). 

 ( ) 2
1 1 1 1 1 1 1 1 1

'''' 0v x v EI vρ θ ρ θ+ − + =&& &&&  (5.32) 

 ( ) 2 2
2 2 2 2 1 1 2 1 2 2 2 2 1 1 2 1 2 2

''''cos( ) sin( ) 0v x L v L EI vρ θ θ θ θ ρ θ ρ θ θ θ+ + − − + − + =&& && & &&&  (5.33) 

We code the functions given in Eqs. (5.26-5.29) in an OCEA-FORTRAN subroutine 

in order to compute the exact ODE/PDEs for this system.  We evaluate these OCEA-

generated equations using a solution for the motion of the double pendulum by methods 

described in Chapter IV.  We also hand code and subsequently evaluate the ODE/PDEs 

given by Eqs. (5.30-5.33).  Figure 5.1 shows the numerical difference between the hand-

derived ODEs and the OCEA-derived ODEs for the double flexible pendulum.  We note 



  135 

that a Gaussian Quadrature formula was used to compute the spatial integrals in Eqs. 

(5.30) and (5.31). Figure 5.2 shows the numerical difference between the hand-derived 

PDEs and the OCEA-derived PDEs.  In each plot, the upper portion shows the 

discrepancy for link one and the lower plot shows the discrepancy for link two. 

 

Figure 5.1. Comparison of hard-coded and OCEA-derived ODEs 



  136 

 

Figure 5.2. Comparison of hard-coded and OCEA-derived PDEs 

 

As can be seen in Figures 5.1 and 5.2, the numerical difference between the hand-

derived ODE/PDEs and the OCEA-derived ODE/PDEs is on the order of machine error.  

This demonstrates that the method introduced in the previous section to automatically 

generate the exact dynamical representation is very accurate and is suitable for use in 

computing analytical source terms for the purpose of validating solution accuracy.  In 

the next section, we generalize the approach in order to generate exact dynamical 

representations for multibody systems. 

 

 

 



  137 

5.4.2 General Multibody System 

We now consider generalizing the formulation of the system Lagrangian for a 

general multibody system containing an arbitrary number of bodies, in an open- or 

closed-chain configuration, including general planar translational motion.  We provide 

this generalization to fully demonstrate the capability of the method described in the 

previous section for generating the exact dynamical representation for complicated 

dynamical systems.  The planar truss, as described in Chapter IV, falls into this category.   

We now present the exact energy expressions for a general multibody system.  Here 

we show results which follow the general formulation for flexible multibody systems 

described in Chapter IV.  Here, though, we do not introduce approximation for the 

flexible coordinates in presenting the Lagrangian expression. 

The kinetic energy of the first link is given by 

 

( )

1

2 2 2 21 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 12 6 2 2

2 2 2
1 1 1 1 1 1

1
1 1 1 1 1 1 120

1 1 1 1 1

sin cos

2

2 cos 2 sin

2 sin 2 cos

A A A A

L

A A

A A

T m x y m L m L x m L y

v v x v

x v x v dx

y v y v

θ θ θ θ θ

θ θ

ρ θ θ θ

θ θ θ

= + + − +

⎧ ⎫+ +
⎪ ⎪

+ − −⎨ ⎬
⎪ ⎪− +⎩ ⎭

∫

& & && & & &

& && &

&& & &

&& & &

 (5.34) 

and the potential energy for the first link is given by 

 ( )1 2
1

1 1 1 120

''L
V EI v dx= ∫  (5.35) 

Thus, the discrete part of the Lagrangian for link one is given by 

 ( )(1) 2 2 2 21 1
1 1 1 12 6D A AL m x y m Lθ= + + && &  (5.36) 

and the boundary part of the Lagrangian for link one is given by 

 (1) 1 1
1 1 1 1 1 1 1 12 2sin cosB A AL m L x m L yθ θ θ θ= − +& && &  (5.37) 



  138 

and, of course, the Lagrangian density function for the first link is given by 

 

2 2 2
1 1 1 1 1 1

1
1 1 1 1 1 1 12

1 1 1 1 1

2
ˆ 2 cos 2 sin

2 sin 2 cos
A A

A A

v v x v

L x v x v

y v y v

θ θ

ρ θ θ θ

θ θ θ

⎧ ⎫+ +
⎪ ⎪

= − −⎨ ⎬
⎪ ⎪− +⎩ ⎭

& && &

&& & &

&& & &

 (5.38) 

We now look at a generalization for link (p+1), where p>1.  The kinetic energy for 

link (p+1) is given by 

 

( )2 2 2 21 1 1
1 1 1 1 1 12 6 2

1 1

1
1 1 1 1 12

1

1
1 1 1 1 12

1

1
1 1 12

cos( )

sin sin

cos cos

cos(

p p

p p A A p p p p i i j j j i
i j

p

p A i i i p p A p p
i

p

p A i i i p p A p p
i

p p p i i p

T m x y m L m L L

m x L m L x

m y L m L y

m L L

θ θ θ θ θ

θ θ θ θ

θ θ θ θ

θ θ θ

+ + + + + +
= =

+ + + + +
=

+ + + + +
=

+ + +

= + + + −

− −

+ +

+

∑∑

∑

∑

& & && &

& && &

& && &

& &
1

1

2 2 2
1 1 1 1 1 1

1 1 1 1 1

1
1 1 1 1 1 12

1 1 1
1

1 1
1

)

2

2 cos 2 sin

2 sin 2 cos

2 sin( )

2 cos( )

p

i
i

p p p p p p

A p p p A p p

p A p p p A p p

p

p p i i p i
i

p

p i i p i
i

v v x v

x v x v

y v y v

v L

v L

θ

θ θ

θ θ θ

ρ θ θ θ

θ θ θ θ

θ θ θ

+
=

+ + + + + +

+ + + + +

+ + + + + +

+ + +
=

+ +
=

−

⎧
⎪
⎪ + +⎪
⎪− −
⎪⎪+ − +⎨
⎪
− −

+ −
⎩

∑

∑

∑

& && &

&& & &

&& & &

& &

&&

1

10

pL

pdx+

+

⎫
⎪
⎪
⎪
⎪
⎪⎪
⎬
⎪

⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎭

∫
 (5.39) 

and the potential energy for link (p+1) is given by 

 ( )1 2
1

1 1 1 120

''pL

p p p pV EI v dx+

+ + + += ∫  (5.40) 

Thus we can write the discrete, boundary and Lagrangian density portions of the 

Lagrangian for the second link and so on as 



  139 

 ( )( 1) 2 2 2 21 1
1 1 1 12 6

p
D p A A p p pL m x y m L θ+

+ + + += + + && &  (5.41) 

 

( 1) 1
12

1 1

1
1 1 1 1 12

1

1
1 1 1 1 12

1

1
1 1 1 12

1

cos( )

sin sin

cos cos

cos( )

p p
p

B p i i j j j i
i j

p

p A i i i p p A p p
i

p

p A i i i p p A p p
i

p

p p p i i p i
i

L m L L

m x L m L x

m y L m L y

m L L

θ θ θ θ

θ θ θ θ

θ θ θ θ

θ θ θ θ

+
+

= =

+ + + + +
=

+ + + + +
=

+ + + +
=

= −

− −

+ +

+ −

∑∑

∑

∑

∑

& &

& && &

& && &

& &

 (5.42) 

 

2 2 2
1 1 1 1 1 1

1 1 1 1 1

1
1 1 1 1 1 1 12

1 1 1
1

1 1
1

2

2 cos 2 sin
ˆ 2 sin 2 cos

2 sin( )

2 cos( )

p p p p p p

A p p p A p p

p p A p p p A p p

p

p p i i p i
i

p

p i i p i
i

v v x v

x v x v

L y v y v

v L

v L

θ θ

θ θ θ

ρ θ θ θ

θ θ θ θ

θ θ θ

+ + + + + +

+ + + + +

+ + + + + + +

+ + +
=

+ +
=

⎧ ⎫
⎪
⎪ + +⎪
⎪− −
⎪⎪= − +⎨ ⎬
⎪
⎪− −
⎪
⎪
⎪+ −⎪⎩

∑

∑

&& &

&& & &

&& & &

& &

&&

⎪
⎪
⎪
⎪
⎪⎪

⎪
⎪
⎪
⎪
⎪
⎪⎭

 (5.43) 

Given the expressions in Eqs. (5.36-5.38) and Eqs. (5.41-5.43), we can define the 

exact system Lagrangian as given in Eq. (5.10) and proceed to generate the exact 

dynamical representation for this system using the approach described in section 5.3.  

We note here that in forming the system Lagrangian, the discrete and boundary portions 

as described by Eq. (5.10) are formed by summing the individual components for each 

link. 

 

 

 



  140 

5.5 ACCURACY OF SOLUTION AND SPACE/TIME DERIVATIVES 

5.5.1 Standard Approaches: Assumed Modes and FEM 

We now make some observations about the accuracy of space/time derivatives 

computed from solutions based on the method of assumed modes or FEM.  We note here  

 

that the primary objective of this section is to make observations on the impact of 

modeling assumptions, particularly the chosen spatial resolution of the model, on the 

error in satisfying the exact governing equations of motion.  Again, we bring about the 

point that these errors are the analytical source terms used to create a benchmark 

problem for validating solution accuracy.  Toward this end we consider, as an example, a 

clamped-free Euler-Bernoulli beam, as shown in Figure 5.3, whose exact dynamical 

representation is given by Eq. (5.44). 

 
4

4

( , )( , ) 0v x tv x t EI
x

ρ ∂
+ =

∂
&&  (5.44) 

where ( , )v x t  is the transverse beam deformation, ρ  is the beam mass per unit length 

and EI  is the beam bending stiffness constant. 

 
 
 
 
 
 
 
 
 
 
 

Figure 5.3.  Clamped-free beam 

( , )v x t  

x  



  141 

Although an exact analytical solution exists for this problem, we look at solving this 

problem by approximate methods - the assumed modes method and the Finite Element 

method.  First we consider solving this problem by the assumed modes method. 

Equation (5.45) gives the form of the assumed modes model for the clamped-free 

beam. 

 0A A A AM K+ =&&η η  (5.45) 

where AM  is the mass matrix, AK  is the stiffness matrix, and Aη  is a vector of time 

dependent flexible coordinates defined by 

 ( , ) ( ) ( )T
Av x t x t= φ η  (5.46) 

where ( )xφ is a vector of assumed mode shape functions given by 

 ( )211
2( ) 1 cos( ) ( 1)ii x i x

i L Lx π πφ +− + −=  (5.47) 

Of course, this is only one of many choices for these mode shape functions.  This 

particular choice is motivated by previous studies20. 

Thus we solve Eq. (5.45) for the time dependent coordinates, which we call ( )A tη , 

in order to compute the solution for ( , ) ( ) ( )T
Av x t x t= φ η at all points along the beam and 

for all time. 

One method to evaluate the accuracy of this solution is to compare with the exact 

analytical solution for the clamped-free beam which is given by 

 
1

( , ) ( ) cos(2 )
N

true i i i i
i

v x t A y x f tπ α
=

+∑=  (5.48) 

where ( )iy x is the exact eigenfunction associated with the ith mode and is given by 



  142 

 ( ) cosh cos sinh sini i i i
i i

x x x xy x L L L L
λ λ λ λσ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

=  (5.49) 

The parameters iλ  and iσ are constants associated with the ith mode.  iA  is an amplitude 

constant and iα  a phase angle.  They are determined from the initial conditions.  if  is 

the natural freqency in hertz associated with the ith mode. 

Thus the error in the solution is given by 

 ( , ) ( , ) ( , )truev x t v x t v x tδ = −  (5.50) 

for some chosen time and spatial discretization. 

Additionally, we can compute the higher-order space/time derivatives of Eq. (5.46) 

and (5.48) and compute the error in each in the way as we do in Eq. (5.50) (e.g. 

' ' '( , ) ( , ) ( , )truev x t v x t v x tδ = −  ).  These include the time derivatives ( , )v x t& and ( , )v x t&& , 

and the spatial derivatives '( , )v x t , '' ( , )v x t , ''' ( , )v x t , and '''' ( , )v x t . 

Alternatively, we can develop a model for the clamped-free beam based on the 

Finite Element method, which will have a form identical to Eq. (5.45).  However, the 

mass and stiffness matrices are formed in a different manner, primarily due to the chosen 

form of the mode shape functions.  We proceed without reproducing these developments 

since they can be found in many books35,20.  We do make note that the standard cubic 

shape functions are utilized in these solutions.  The procedure involves producing the 

Finite Element solution and then evaluating the error in a similar manner to that given in 

Eq. (5.50). 

Figures 5.4 and 5.5 each show three plots including the analytical solution for the 

clamped-free beam, the approximate solution, and the error in the deflection solution for 



  143 

the assumed modes solution and FEM solution, respectively.  Figures 5.6-5.9 show the 

analytical solution, approximate solution, and corresponding error in the solutions for the 

higher-order time derivatives, for the assumed modes solution and FEM solution, 

respectively.  Figures 5.10-5.17 show the results for the higher-order spatial derivatives, 

for the assumed modes solution and FEM solution. In these solutions, all parameters are 

set to unity including ρ , E , I , and L .  The motion is solved for 4 seconds.  The initial 

conditions are set with an initial deflection corresponding to the first mode with a tip 

deflection equaling 2% of the beam length from rest.  Eight assumed modes are chosen 

to model the system.  Four elements are chosen in order for the FEM model and assumed 

modes models to have an equal system order. 

Now we consider the next test of the solution.  That is, we substitute the solution 

into the exact equation of motion in order to produce an acceleration level error term as 

given in Eq. (5.51). 

 
4

4

( , )( , ) ( , ) v x te x t v x t EI
x

ρ ∂
= +

∂
&&  (5.51) 

Obviously, the exact solution has error which is identically zero for all space and time in 

Eq. (5.51).  However, this is not the case for the solutions of approximate models.  These 

acceleration level errors are shown in Figures 5.18 and 5.19 for the assumed modes 

solution and FEM solution respectively. 

  



  144 

 

Figure 5.4.  Assumed modes deflection solution 

 

 

Figure 5.5.  FEM deflection solution 



  145 

 

Figure 5.6. Assumed modes velocity solution 

 

 

Figure 5.7. FEM velocity solution 



  146 

 

Figure 5.8. Assumed modes acceleration solution  

 

 

Figure 5.9. FEM acceleration solution 



  147 

 

Figure 5.10. Assumed modes slope solution  

 

 

Figure 5.11. FEM slope solution 



  148 

 

Figure 5.12. Assumed modes curvature solution  

 

 

Figure 5.13. FEM curvature solution 



  149 

 

Figure 5.14. Assumed modes '''v (x,t)solution  

 

 

Figure 5.15. FEM '''v (x,t)  solution



  150 

 

Figure 5.16. Assumed modes ''''v (x,t)  solution 

  

 

Figure 5.17. FEM ''''v (x,t)  solution 



  151 

 

Figure 5.18.  Error in exact PDE for assumed modes solution 

 

 

Figure 5.19.  Error in exact PDE for FEM solution 



  152 

We now make qualitative remarks regarding the solutions from the assumed modes 

method and the Finite Element Method by considering the solutions for equal system 

order (N=8) as seen in Figures 5.4-5.19 which compare the assumed modes solution and 

the FEM solution.  We see that the error in the solutions for the transverse deflection is 

small and nearly identical for each solution.  Generally, the solutions for the lowest order 

derivatives are best.  Once we reach second-order derivatives with respect to time and 

third-order derivatives with respect to the spatial variable the results tend to become less 

accurate.  In fact, the FEM solution is incapable of producing a nonzero fourth-order 

spatial derivative since the shape functions are cubic polynomials.  Furthermore, the 

assumed modes method produces a solution which is poor near the clamped end; 

however, the solution is better near the free end.  We find an opposite trend in the case 

of the FEM solution. 

Clearly, when we are concerned with solutions for the time and spatial derivatives 

of the transverse deflection, neither the assumed modes method nor the FEM using cubic 

shape functions provides an acceptable result for all solution variables. 

We make the point that, for complicated dynamical systems in which no analytical 

solutions exist, evaluating the error of the solution by Eq. (5.50) is not possible.  

However, evaluating the error in the solution by Eq. (5.51) is possible as long as an exact 

dynamical representation of the system can be produced.  We addressed the issue of 

generating the exact dynamical representation previously in this chapter.  The principle 

point we make in this section is that although the method of assumed modes and the 



  153 

FEM are generally accepted to provide good solutions for the problem at hand, they do 

not satisfy the exact governing equations.   

We now quantify the RMS errors for the assumed modes and FEM solutions for 

each variable for comparison.  We adopt the following measure to compute the RMS 

error. 

 
0 0

( , )ft L
RMS e x t dxdt= ∫ ∫  (5.52) 

Table 5.1 shows the RMS errors for each variable for both solutions for an equal 

system order of eight.  These results correspond to the figures previously presented.  In 

Table 5.2, we present the RMS errors, for a system order of N=12.  In both tables, the 

more accurate result is bolded. 

 

 

Table 5.1. RMS errors of assumed modes and FEM solutions for equal  
system order (N=8) 

Variable ASM RMS FEM RMS 
( , )v x tδ  3.9391e-4 2.4448e-4 
( , )v x tδ &  7.8210e-3   8.2523e-3 
( , )v x tδ &&  4.3221 7.6366   
' ( , )v x tδ  1.3736e-3 1.0980e-3 
'' ( , )v x tδ  4.4623e-2   2.7247e-2 
''' ( , )v x tδ  1.9413 7.9135e-1 
'''' ( , )v x tδ  4.6966e1   1.0822e1   
( , )e x t  4.6771e1 1.3245e1 

 

 

 



  154 

Table 5.2. RMS errors of assumed modes and FEM solutions for equal  
system order (N=12) 

Variable ASM RMS FEM RMS 
( , )v x tδ  1.2365e-4   5.9574e-5   
( , )v x tδ &  9.4236e-3 9.3979e-3 
( , )v x tδ &&  1.2432e1 2.0194e1 
'( , )v x tδ  5.3948e-4 4.3413e-4   
'' ( , )v x tδ  2.8571e-2   1.6516e-2 
''' ( , )v x tδ  1.7401 6.5761e-1   
'''' ( , )v x tδ  5.9795e1 1.3135e1 
( , )e x t  5.8524e1 2.4090e1 

 

 

Although not a focus of this chapter, we note a comparison of the accuracy of these 

two modeling approaches for computing the deflection, its space/time derivatives, and 

the resulting error in satisfying the exact governing PDE.  These results show that the 

FEM method is generally more accurate with the exception of the accuracy of the 

acceleration solution.  A most important point to be made is that although the deflection 

solution is quite accurate, there is a significant loss in accuracy as the results are viewed 

in the direction of increasing order of space/time differentiation.  Of course, the highest 

order space and time derivatives (least accurate solutions) are those which show up in 

the governing PDE.  Thus we make the point that these methods, which are geared 

toward accurate deflection solutions, do not accurately satisfy the exact governing 

equation of motion.   

In Tables 5.3 and 5.4, we rearrange the results from Tables 5.1 and 5.2 in order to 

study the effect of system order on solution accuracy for each method.   

 



  155 

Table 5.3. Effect of system order on assumed modes solution errors 
Variable ASM RMS (N=8) ASM RMS (N=12) 

( , )v x tδ  3.9391e-4 1.2365e-4   
( , )v x tδ &  7.8210e-3   9.4236e-3 
( , )v x tδ &&  4.3221 1.2432e1 
'( , )v x tδ  1.3736e-3 5.3948e-4 
'' ( , )v x tδ  4.4623e-2   2.8571e-2   
''' ( , )v x tδ  1.9413 1.7401 
'''' ( , )v x tδ  4.6966e1   5.9795e1 
( , )e x t  4.6771e1 5.8524e1 

 
 
 

Table 5.4. Effect of system order on FEM solution errors 
Variable FEM RMS (N=8) FEM RMS (N=12) 

( , )v x tδ  2.4448e-4 5.9574e-5   
( , )v x tδ &  8.2523e-3 9.3979e-3 
( , )v x tδ &&  7.6366   2.0194e1 
'( , )v x tδ  1.0980e-3 4.3413e-4   
'' ( , )v x tδ  2.7247e-2 1.6516e-2 
''' ( , )v x tδ  7.9135e-1 6.5761e-1   
'''' ( , )v x tδ  1.0822e1   1.3135e1 
( , )e x t  1.3245e1 2.4090e1 

 

 

The results of Tables 5.l and 5.2 detail the effect of modeling approach on solution 

accuracy, whereas Tables 5.3 and 5.4 show the effect of increasing the system order on 

solution accuracy for each method.  Interestingly, for each method we see an 

improvement in accuracy for the deflection solution and the first three spatial 

derivatives.  We see the opposite trend for the velocity, acceleration, and fourth-order 

spatial derivative.  Furthermore, we find less accuracy in satisfying the exact governing 



  156 

PDE.  We conclude by noting that regardless of system order, neither approach provides 

an accurate result in satisfying the exact PDE.  We arrive at an interesting paradox in 

that the accuracy in satisfying the exact PDE follows an opposite trend to that of the 

deflection solution for increasing system order! 

In the next section we study an alternative choice for shape or interpolation 

functions for the FEM beam element in an attempt to not only improve the accuracy of 

satisfying the exact PDE, but also to shed more light on the divergent trends in error in 

the deflection solution and error in satisfying the exact PDE. 

 

5.5.2 Quintic Shape Functions 

A limitation of cubic shape (interpolation) functions for the beam element is the fact 

that fourth-order spatial derivatives are zero, thus these shape functions are “not 

admissible”35.  Cubic elements arise from an element containing four boundary 

coordinates (two at each boundary or node corresponding to deflection and slope).  If we 

consider adding additional coordinates to the element boundary, then we can develop an 

element which requires a higher than cubic order shape function.  In order to develop a 

quintic beam  element, we add a single curvature coordinate to each boundary such that 

a total of six coordinates are required on the boundary of each element.  Thus, the 

deflection over a single element is given by the following 

 
6

1
( , ) ( ) ( )i i

i
v x t x tφ η

=

=∑  (5.53) 

where 



  157 

 2 3 4 5
1 2 3 4 5 6( )i i i i i i ix c c x c x c x c x c xφ = + + + + +   

The boundary conditions for a single element are given by 

 1 2 3

4 5 6

' ''

' ''
(0, ) ( ); (0, ) ( ); (0, ) ( )

( , ) ( ); ( , ) ( ); ( , ) ( )

v t t v t t v t t

v h t t v h t t v h t t

η η η

η η η

= = =

= = =
 (5.54) 

Thus the following conditions on the shape functions must hold 

 

1 2 3 4 5 6

2 1 3 4 5 6

3 1 2 4 5 6

4 1 2 3 5 6

5 1 2 3

' ' ' ' ' '

'' '' '' '' '' ''

' ' ' '

(0) 1; (0) (0) (0) (0) (0) 0

(0) 1; (0) (0) (0) (0) (0) 0

(0) 1; (0) (0) (0) (0) (0) 0
( ) 1; ( ) ( ) ( ) ( ) ( ) 0

( ) 1; ( ) ( )

h h h h h h

h h h

φ φ φ φ φ φ

φ φ φ φ φ φ

φ φ φ φ φ φ
φ φ φ φ φ φ

φ φ φ φ

= = = = = =

= = = = = =

= = = = = =
= = = = = =

= = = 4 6

6 1 2 3 4 5

' '

'' '' '' '' '' ''
( ) ( ) ( ) 0

( ) 1; ( ) ( ) ( ) ( ) ( ) 0

h h h

h h h h h h

φ φ

φ φ φ φ φ φ

= = =

= = = = = =

 (5.55) 

Using the 36 conditions given in Eq. (5.55) we can compute the 36 unknown 

coefficients of the 6 quintic shape functions.  The resulting quintic shape functions are 

given by Eq. (5.56). 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

3 4 53 4 51 1 1
1

2 3 43 4 51 1 1
2

2 32 3 4 53 31 1 1 1 1
3 2 2 2 2

3 4 53 4 51 1 1
4

2 3 43 4 51 1 1
5

2 33 4 51 1 1 1 1
6 2 2

( ) 1 10 15 6

( ) 6 8 3

( )

( ) 10 15 6

( ) 4 7 3

( )

h h h

h h h

h h h

h h h

h h h

h h h

x x x x

x x x x x

x x x x x

x x x x

x x x x

x x x x

φ

φ

φ

φ

φ

φ

= − + −

= − + −

= − + −

= − +

= − + −

= − +

 (5.56) 

We can utilize these quintic shape functions to compute the 6x6 elemental mass and 

stiffness matrices for the kth element as shown in Eqs. (5.57) and (5.58). 

 
0

( ) ( )
khk k k k

ij i jM x x dxρ φ φ= ∫  (5.57) 



  158 

 
0

'' ''( ) ( )
hk k k k k

ij jiK EI x x dxφ φ= ∫  (5.58) 

A distributed load over the kth beam element will result in the following generalized 

forces.  

 
0

ˆ ( , ) ( )
hk k k k k

i if p x t x dxφ= ∫  (5.59) 

One method for evaluating the accuracy of an approximation technique is to 

compare the natural frequencies from the approximate solution with the exact analytical 

solution.  Table 5.5 shows a comparison of the natural frequencies for the standard cubic 

and quintic shape functions with the exact analytical solution for the first eight modes.  

The relative error is computed as ( ) /true trueω ω ω− .  The system order equals 24 for each 

case, i.e. we use 12 cubic elements and 8 quintic elements.  

 

Table 5.5.  Natural frequencies comparison for cubic and quintic  
beam elements 

Exact Solution Cubic Quintic 

ω  n=12 (N=24) Relative Error n=8 (N=24) Relative Error
3.5160 3.5160 0.0000 3.5160 0.0000 

22.0345 22.0348 0.0000 22.0345 0.0000 
61.6972 61.7049 0.0001 61.6972 0.0000 

120.9019 120.9586 0.0005 120.9020 0.0000 
199.8595 200.1100 0.0013 199.8600 0.0000 
298.5555 299.3686 0.0027 298.5596 0.0000 
416.9908 419.1355 0.0051 417.0120 0.0001 
555.1652 560.0272 0.0088 555.2072 0.0001 

  

As can be seen from Table 5.5, the higher-order quintic shape functions show an 

improvement in computing natural frequencies.  It is well known (and was shown in the 

previous section) that the accuracy of the FEM typically improves by increasing the 



  159 

number of elements (n), or put it another way by increasing the system order (N).  The 

results here show that by utilizing higher-order shape functions the effect is more 

dramatic.  In fact, we can reduce the system order and compute solutions with higher 

accuracy than those derived from cubic shape functions as shown in Table 5.6. 

 

Table 5.6.  Natural frequencies comparison for reduced system order using  
quintic beam elements  

Exact Solution Cubic Quintic 

ω  n=12 (N=24) Relative Error n=5 (N=15) Relative Error
3.5160 3.5160 0.0000 3.5160 0.0000 

22.0345 22.0348 0.0000 22.0345 0.0000 
61.6972 61.7049 0.0001 61.6973 0.0000 

120.9019 120.9586 0.0005 120.9036 0.0000 
199.8595 200.1100 0.0013 199.8699 0.0001 
298.5555 299.3686 0.0027 298.9066 0.0012 
416.9908 419.1355 0.0051 418.1411 0.0028 
555.1652 560.0272 0.0088 558.5964 0.0062 
 

 

 Furthermore, we present a set of results for the RMS errors for the deflection, 

space/time derivatives and error in satisfying the governing PDE for a FEM approach 

using quintic elements as we did for the cubic element in the previous section.  Table 5.7 

shows a comparison of the RMS errors for cubic versus quintic beam elements for each 

solution variable.  The system order is equal for each model, i.e. 6 cubic elements versus 

4 quintic elements to represent the clamped-free beam. 

 

 

 



  160 

Table 5.7. Comparison of FEM RMS solution errors  
Variable Cubic FEM RMS 

(n=6/N=12) 
Quintic FEM RMS 

(n=4/N=12) 
( , )v x tδ  5.9574e-5 1.1573e-7   
( , )v x tδ &  9.3979e-3 1.6224e-4 
( , )v x tδ &&  2.0194e1 2.3349e-1   
' ( , )v x tδ  4.3413e-4 4.2982e-6   
'' ( , )v x tδ  1.6516e-2 1.9170e-4 
''' ( , )v x tδ  6.5761e-1 9.5304e-3 
'''' ( , )v x tδ  1.3135e1 2.8523e-1 
( , )e x t  2.4090e1 3.8064e-1 

  

 

Table 5.7 shows an improvement in accuracy for each solution variable, including a 

more accurate satisfaction of the exact PDE.  The plots for the exact solution, FEM 

solution, and error are given for each variable listed in Table 5.7 are given in Figures 

5.20-5.27.  As can be see the errors are significantly reduced, especially for the solutions 

for transverse deflection and the low-order derivatives.  Significant improvement is 

found for the acceleration and fourth-order spatial derivative solutions as well, which 

very importantly with regard to this study, improves the satisfaction of the exact PDE 

governing equation of motion.  Thus, when we desire that the solution locally satisfy the 

exact governing equations of motion, we must increase the order of the locally defined 

shape functions.  Quintic shape functions represent a step in that direction; however, 

they do not completely solve the issue of simultaneously providing a good deflection 

level solution while accurately satisfying the exact PDE.  Of course, we could add even 

more boundary coordinates on the elements in order to extent this idea to higher-order. 

 



  161 

 

Figure 5.20.  Quintic FEM deflection solution  

 

 

Figure 5.21.  Quintic FEM velocity solution  



  162 

 

Figure 5.22.  Quintic FEM acceleration solution  

 

 

Figure 5.23.  Quintic FEM slope solution  



  163 

 

Figure 5.24.  Quintic FEM curvature solution  

 

Figure 5.25.  Quintic FEM '''v (x,t)  solution  



  164 

 

Figure 5.26.  Quintic FEM ''''v (x,t)  solution 

 

Figure 5.27.  Error in exact PDE for quintic FEM solution 

 



  165 

5.6 SUMMARY 

In this chapter, we presented some ideas used in the validation of solution accuracy 

of dynamical systems.  We reviewed several approaches including the method of exact 

solutions, the method of manufactured solutions, and the method of nearby problems. 

The method of manufactured solutions and the method of nearby problems, which are 

popular methods for rigorously validating solution accuracy for complicated dynamical 

systems, depend upon computing an acceleration level error, which is a departure from 

the exact dynamical equations.  This acceleration level is used to compute fictitious 

forcing functions which provide a means of creating a benchmark problem which has an 

“exact” solution.  This is the most important part of the analysis and must be performed 

with careful, expert attention.  Therefore, in this chapter we investigated two issues 

related to this problem.  Firstly, we presented a method for generating the exact 

ODE/PDEs and corresponding boundary conditions.  Secondly, we looked at a simple 

clamped-free cantilever beam to illustrate in detail the individual sources of solution 

error that contribute the errors in the exact ODE/PDEs and boundary conditions that 

result from standard modeling approaches –an assumed modes approach (Ritz Method) 

or a FEM approach. 

The method described in this chapter to automatically generate the exact ODE/PDEs 

and corresponding boundary conditions for a general multibody distributed parameter 

system is a significant development.  As is the case when dealing with dynamical 

systems, the process of validating the accuracy of solutions is complicated by the fact 

that the dynamical model changes greatly from one system to another.  Therefore, 



  166 

generating the exact dynamical representation is an issue that must be addressed.  The 

method presented here provides a means to easily generate an exact dynamical 

representation for a class of distributed parameter systems.  The examples show that this 

method is quite accurate and is suitable for validating solution accuracy.   

The results for the clamped-free beam example demonstrated that, first and 

foremost, although the solution for the transverse deflection and first-order space/time 

derivatives are computed quite accurately the higher-order space/time derivatives are 

not.  In fact, if we increase the system order of the approximate model by either 

choosing a larger number of assumed modes or a larger number of elements, we find an 

opposite trend for the solutions for the acceleration and fourth-order spatial derivatives.  

The principle point we make is that although the method of assumed modes and the 

FEM are generally accepted as providing accurate solutions for deflection, they do not 

satisfy the exact governing equations.  This is an important issue to keep in mind when 

validating solution accuracy. 

A limitation of the beam finite element which utilizes cubic polynomial 

interpolation functions is that fourth-order spatial derivatives are identically zero, thus 

not being admissible in the sense that the FEM solution does not satisfy the exact 

governing PDE.  Therefore, we studied the use of quintic polynomial interpolation 

functions which provide nonzero fourth-order spatial derivatives.  We found that the 

accuracy of the solution for the transverse deflection and all of its space/time derivatives 

are improved with the quintic interpolation functions over the standard cubic 

interpolation functions.  Furthermore, we find that the computed natural frequencies 



  167 

associated with the quintic interpolation functions are more accurate than those from 

cubic interpolation functions even when the system order is reduced.  Considering the 

improved accuracy in all quantities studied and the ability to reduce system order and 

maintain accuracy, we find no reason to choose cubic shape functions over quintic shape 

functions.  However, quintic shape functions do not improve, in a significant way, the 

error in satisfying the exact governing PDE. 

The apparent theoretical disconnect where, as we have shown by example, accurate 

solutions for deflection do not result in accurate satisfaction of the exact dynamical 

governing equations of motion is an issue that should be kept in mind when validating 

solution accuracy, and poses an interesting research question. 



  168 

CHAPTER VI 

 

SUMMARY AND FUTURE WORK 

 

This dissertation presented new results in estimation, modeling, and validation of 

dynamical systems using automatic differentiation.  In the second chapter, an overview 

of computerized differentiation was presented.  Computerized differentiation by 

symbolic methods were compared with automatic differentiation.  The basic difference 

in these approaches is that automatic differentiation by OCEA is a highly optimized 

approach, which frees the analyst from onscreen type programming and porting of 

subroutines which is typical of the symbolic approach.  For simple problems, especially 

those which require viewing the differentiated expressions, symbolic differentiation is 

the preferred method.  When developing a high-level code automatic differentiation by 

OCEA is preferred.  The types of applications developed in this dissertation are of this 

type. 

In Chapter III, we presented some new results in estimation, control and 

optimization of dynamical systems.  Standard first-order algorithms were reviewed.  

Higher-order sensitivity calculations were presented for developing new algorithms.  

One particularly important development is the higher-order generalization of the state 

transition matrix.  This development makes it possible to implement many of the new 

methods developed in this chapter including the GLSDC algorithm for orbit 

determination, the method of differential corrections for trajectory optimization, and 



  169 

higher-order laws for computing midcourse corrections.  Furthermore, the properties of 

the first- and higher-order state transition matrices were discussed.  We showed that the 

well-known and valuable group chain-rule property of the first-order state transition 

matrix also holds for the second- and higher-order state transition matrices as well.  It is 

expected that the higher-order generalization of the state transition matrix will have an 

impact on filtering applications as well. 

Future research can dramatically reduce the number of higher-order partial 

derivatives required, by exploiting the symmetry and sparsity of the gradient tensor 

operators.  For example, with the method of differential corrections, significant 

reductions in computational cost related to symmetry and sparsity have not yet been 

exploited, and no advanced optimization techniques were attempted.  Future 

development of these algorithms should include the incorporation of advanced 

optimization features such as constrained optimization capability and line searching.  

Line searching for the second-and higher-order methods should be viewed as a future 

research problem.  The effect of higher-order algorithms for computing midcourse 

corrections should be studied with respect to initial condition errors (inaccurate 

execution of midcourse correction) and poorly modeled dynamics, e.g. inaccurate force 

models. 

It is well known that the first-order state transition matrix provides a means of 

mapping uncertainties throughout time.  This concept is usually referred to as 

propagation of uncertainty.  Propagation of uncertainty is, in fact, a key feature of 

filtering algorithms such as the Kalman filter.  The other key feature of filtering 



  170 

algorithms is the state propagation method.  Many approaches have been investigated to 

propagate the state and covariance in a linear fashion.  Currently, much attention has 

been given to nonlinear filtering methods which attempt to propagate the state or 

uncertainty49 in a way that retains some of the nonlinear information in the problem.  We 

expect that the higher-order generalizations of the state transition matrix will have an 

impact in these areas. 

In Chapter IV, a new method for modeling dynamical systems was presented.  The 

key development is a demonstration of the capability of automatic differentiation in 

automatically generating and integrating the equations of motion by simply specifying 

the system Lagrangian and the system constraints.  No further work need be done by the 

analyst in order to produce the system response.  Several examples were presented for 

rigid and flexible linked mechanical systems in open- and closed-chain topologies.  It is 

remarkable that a single approach can produce such a variety of dynamical models, 

including simulations, with minimal coding. 

The results of Chapter IV show that the OCEA approach is superior to other AD 

approaches for deriving equations of motion.  With respect to coding effort, we find that 

with OCEA no code needs to be generated offline.  This is not the case when using other 

programs such as ADIFOR or AUTODERIVE.  All required first- and second-order 

partial derivatives are computed within the OCEA-FORTRAN environment.  

Furthermore, the accuracy of the OCEA solutions when evaluating the satisfaction of 

position and velocity level constraints, or when evaluating the errors between the 



  171 

OCEA-enabled solution and that from hand-derived equations of motion is profoundly 

better. 

Future work in modeling of dynamical systems should include extending the 

method for general 3D motion, and developing a framework in which arbitrary 

selections for joint interconnections can be made.  In the interest of improved 

performance, measures should be considered for optimizing the process of deriving the 

equations of motion.  Furthermore, approaches for solving constrained systems which 

minimize the problem dimension should be considered, especially for highly constrained 

systems containing many bodies. 

In Chapter V, we presented some ideas used in the validation of solution accuracy 

for dynamical systems.  We reviewed several approaches including the method of exact 

solutions, the method of manufactured solutions, and the method of nearby problems.  

The latter two methods rely upon producing an exact dynamical relationship for the 

system whose response is being validated.  Therefore, a method was introduced and 

demonstrated by which the exact PDE/ODEs and boundary conditions for a distributed-

parameter system can be automatically generated using automatic differentiation. 

The method of manufactured solutions and the method of nearby problems upon 

computing an acceleration level error, which is a departure from the exact dynamical 

equations.  This acceleration level is used to compute analytical source terms by inverse 

dynamics, which are used to create a benchmark problem which has an “exact” 

analytical solution.  Computing these analytical source terms is the most important part 

of the analysis and must be performed with careful, expert attention.  Therefore, we 



  172 

described some alternative ideas for creating the benchmark problem when using OCEA 

to generate the exact dynamical representation.  Additionally, we looked at a simple 

clamped-free cantilever beam to illuminate some of the more fundamental aspects of 

solving problems for flexible systems that result from taking either and assumed modes 

approach or a FEM approach. 

The results for the clamped-free beam example demonstrated that, first and 

foremost, although the solution for the transverse deflection and first-order space/time 

derivatives are computed quite accurately, the higher-order space/time derivatives are 

not for an assumed modes or FEM approach.  We make the point that these methods, 

which are generally accepted to be “good”, do not satisfy the exact governing equation.  

This is an issue that an analyst conducting a validation study on any dynamical system 

must keep in mind since “good” solutions can result in large errors in satisfying the exact 

governing equations of motion.   

A limitation of the beam finite element which utilizes cubic polynomial 

interpolation functions is that fourth-order spatial derivatives are identically zero, thus 

not being admissible in the sense that the FEM solution does not satisfy the exact 

governing PDE.  Therefore, we studied the use of quintic polynomial interpolation 

functions which provide nonzero fourth-order spatial derivatives.  We found that the 

accuracy of the solution for the transverse deflection and all of its space/time derivatives 

are improved with the quintic interpolation functions over the standard cubic 

interpolation functions.  Furthermore, we find that the computed natural frequencies 

associated with the quintic interpolation functions are more accurate.  Considering the 



  173 

improved accuracy in all quantities studied and the ability to reduce system order and 

maintain accuracy, we find no reason to choose cubic shape functions over quintic shape 

functions.  However, an increase in the order of the locally defined interpolation 

functions does not completely resolve the issue of the disparity in accuracy between the 

deflection solution and satisfaction of the exact governing equations of motion.  This 

issue should be considered as a future research question. 

The results of this dissertation have provided insights regarding the use of the 

automatic differentiation tool OCEA in solving a variety of problems in estimation, 

modeling and validation of dynamical systems.  The usefulness of OCEA is profound 

since there are many applications in science and engineering which require computing 

partial derivatives.  A few of these applications have been studied in this dissertation.  

With regard to ease of use, it should be noted that this work, which covers three distinct 

areas of the study of dynamics and control, was completed over the course of 14 months 

beginning with an average knowledge of FORTRAN programming. 



  174 

REFERENCES 
 
1. Hunt, B.R., Lipsman, R.L., and Rosenberg, J.M., A Guide to MATLAB: for 

Beginners and Experienced Users, Cambridge University Press, New York, 2001. 
 
2. Richards, D., Advanced Mathematical Methods With Maple, Cambridge University 

Press, Cambridge, 2001. 
 
3. Larsen, R.W., Introduction to Mathcad 11, Prentice Hall, Englewood Cliffs, New 

Jersey, 2004. 
 
4. Macsyma Users Guide, Macsyma, Inc., Boston, 1998. 
 
5. Griewank, A., “On Automatic Differentiation” in Mathematical Programming: 

Recent Developments and Applications, edited by M. Iri and K. Tanabe, Kluwer 
Academic Publishers, Amsterdam, 1989, pp. 83-108. 

 
6. Bischof, C., A. Carle, G. Corliss, A. Griewank, and P. Hovland, “ADIFOR: 

Generating Derivative Codes from Fortran Programs,” Scientific Programming, Vol. 
1, 1992, pp. 1-29. 

 
7. Bischof, C., A. Carle, P. Khademi, A. Mauer, and P. Hovland, ADIFOR 2.0 User’s 

Guide", Technical Report ANL/MCS-TM-192, Mathematics and Computer Science 
Division, Argonne National Laboratory, Argonne, IL, 1995.  

 
8. Eberhard, P. and C. Bischof, Automatic Differentiation of Numerical Integration 

Algorithms, Technical Report ANL/MCS-P621-1196, Mathematics and Computer 
Science Division, Argonne National Laboratory, Argonne, IL, 1996. 

 
9. Durrbaum, A., Klier, W., and Hahn, H., “Comparison of Automatic and Symbolic 

Differentiation in Mathematical Modeling and Computer Simulation of Rigid Body 
Systems”, Multibody System Dynamics, Vol. 7, 2002, pp. 331-355. 

 
10. Turner, J.D., "Quaternion-Based Partial Derivative and State Transition Matrix 

Calculations for Design Optimization," 40th AIAA Aerospace Sciences Meeting And 
Exhibit, Reno, Nevada, January 14-17 2002. 

 
11. Turner, J.D., "Object Oriented Coordinate Embedding Algorithm for Automatically 

Generating the Jacobian and Hessian Partials of Nonlinear Vector Functions," 
Invention Disclosure, University Of Iowa, Iowa City, IA, May 2002. 

 
12. Turner, J.D., "The Application of Clifford Algebras for Computing the Sensitivity 

Partial Derivatives of Linked Mechanical Systems, USNCTAM14: Fourteenth U.S. 



  175 

National Congress of Theoretical and Applied Mechanics, Blacksburg, Virginia, 
June 23-28, 2002 (invited paper). 

 
13. Turner, J.D., "Automated Generation of High-Order Partial Derivative Models,” 

AIAA Journal, Vol. 51, No. 8, August 2003, pp. 1590-1598. 
 
14. Turner, J.D., "Generalized Gradient Search and Newton's Methods for Multilinear 

Algebra Root-Solving and Optimization Applications," John L. Junkins 
Astrodynamics Symposium, George Bush Conference Center, College Station, Texas, 
May 23-24, 2003, AAS 03-261 (invited paper). 

 
15. Turner, J.D., "Generalized Gradient Search and Newton's Methods for Multilinear 

Algebra Root-Solving and Optimization Applications," Journal Of The Astronautical 
Sciences, (to appear in a special issue commemorating the John L. Junkins 
Astrodynamics Symposium). 

 
16. Griffith, D.T., Turner, J.D., and Junkins, J.L., “An Embedded Function Tool for 

Modeling and Simulating Estimation Problems in Aerospace Engineering,” 
AAS/AIAA Spaceflight Mechanics Meeting, Maui, HI, USA, February 8-12, 2004, 
Paper AAS 04-148. 

 
17. Griffith, D.T., Turner, J.D., Vadali, S.R., and Junkins, J.L., “Higher Order 

Sensitivities for Solving Nonlinear Two-Point Boundary Value Problems,” 
AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Providence, RI, August 
16-19, 2004, AIAA-2004-5404. 

 
18. Crassidis, J.L., and Junkins, J.L., Optimal Estimation of Dynamic Systems, CRC 

Press, Boca Raton, FL, 2004. 
 
19. Battin, Richard H., An Introduction to the Mathematics and Methods of 

Astrodynamics, AIAA Education Series, Reston, VA, 1987. 
 
20. Junkins, J.L. and Kim, Y., Introduction to Dynamics and Control of Flexible 

Structures, AIAA Education Series, Washington, DC, 1993. 
 
21. Moler, C. and van Loan, C., “Nineteen Dubious Ways to Compute the Exponential 

of a Matrix,” SIAM Review, Vol. 20, No. 4, 1978, pp. 801-836. 
 
22. Bryson, A.E., and Ho, Y., Applied Optimal Control, Taylor and Francis, Levittown, 

PA, 1975. 
 
23. Junkins, J.L., and Turner, J.D., Optimal Spacecraft Rotational Maneuvers: Studies in 

Astronautics, Vol. 3, Elsevier Science Publishers, Amsterdam, The Netherlands, 
1986. 



  176 

24. Seywald, H., “Trajectory Optimization Based on Differential Inclusions,” Journal of 
Guidance, Control, and Dynamics, Vol. 17, No. 3, May-June 1994, pp. 480-487. 

25. Griffith, D.T., Sinclair, A.J., Turner, J.D., Hurtado, J.E., and Junkins, J.L., 
“Automatic Generation and Integration of Equations of Motion by Operator-
Overloading Techniques,” AAS/AIAA Spaceflight Mechanics Meeting, Maui, HI, 
February 8-12, 2004, Paper AAS 04-242. 

 
26. Griffith, D.T., Junkins, J.L., and Turner, J.D., “Automatic Generation and Integration 

of Equations of Motion for Linked Mechanical Systems,” 6th International 
Conference on Dynamics and Control of Systems and Structures in Space, July 18-
22, 2004, Riomaggiore, Cinque Terre, Liguria, Italy. 

 
27. Baruh, H., Analytical Dynamics, McGraw Hill, New York, 1998. 
 
28. Schaub, H., and Junkins, J.L., Analytical Mechanics of Space Systems, AIAA, 

Reston, VA, 2003. 
 
29. Banerjee, A. K., “Contributions of Multibody Dynamics to Space Flight: A Brief 

Review”, Journal of Guidance, Control, and Dynamics, Vol. 26, No. 3, May-June 
2003, pp. 385-394. 

 
30. Schiehlen, W. (editor), Multibody Systems Handbook, Springer-Verlag, New York, 

1990.  
 
31. Lee, M.G., “Application of Automatic Differentiation in Numerical Solution of a 

Flexible Mechanism,” Proceedings of the International Conference on 
Computational Methods in Science and Engineering, Kastoria, Greece, September 
12-16, 2003, pp. 350-359. 

 
32. Shabana, A. A., Computational Dynamics, Second Edition, John Wiley and Sons, 

New York, 2001. 
 
33. Garcia de Jalon, J. and Bayo, E., Kinematic and Dynamic Simulation of Multibody 

Systems: The Real-Time Challenge, Springer-Verlag, New York, 1994.   
 
34. Huston, Ronald L., Multibody Dynamics, Butterworth-Heinemann, New York, 1990. 
 
35. Reddy, J.N., An Introduction to the Finite Element Method, McGraw-Hill, New 

York, 1993. 
 
36. Thomson, W.T., and Dahleh, M.D., Theory of Vibration with Applications, Prentice 

Hall, New Jersey, 1998. 
 



  177 

37. Baruh, H. and Radisavljevic, V., "Modeling of Flexible Mechanisms by Constrained 
Coordinates," Journal of the Chinese Society of Mechanical Engineers, Vol. 21, No. 
1, 2000, pp. 1-14. 

38. Schwerin, R., MultiBody System SIMulation: Numerical Methods, Algorithms, and 
Software, Springer-Verlag, Berlin, 1994. 

 
39. Junkins, J.L., Akella, M.R., and Kurdilla, A.J., “Adaptive realization of desired 

constraint stabilization dynamics in the control of multibody systems,” Proceedings 
of the Royal Society of London Series A: Mathematical, Physical and Engineering 
Sciences, Vol. 259, 2001, pp. 2231-2249. 

 
40. Sanyal, A.K., Verma A., and Junkins, J.L., “Adaptation and Cooperation in Control 

of Multiple Robot Manipulators,” Richard H. Battin Astrodynamics Conference, 
College Station, Texas, March 20-21, 2000, Paper No. AAS 00-263. 

 
41. Roache, P.J., Verification and Validation in Computational Science and 

Engineering, Hermosa Publishers, New Mexico, First Edition, 1998. 
 
42. Roache, P.J., “Code Verification by the Method of Manufactured Solutions,” ASME 

Journal of Fluids Engineering, Vol. 124, March 2002, pp. 4-10. 
 
43. Salari, K., and Knupp, P., “Code Verification by the Method of Manufactured 

Solutions,” SAND 2000-1444, Sandia National Laboraties, Albuquerque, NM, June 
2000. 

 
44. Roy, C.J., Smith, T.M., and Ober, C.C., “Verification of a Compressible CFD Code 

using the Method of Manufactured Solutions,” 32nd AIAA Fluid Dynamics 
Conference and Exhibit, St. Louis, Missouri, June 24-26, 2002, AIAA Paper 2002-
3110.  

 
45. Lee, S., and Junkins, J.L., “Construction of Benchmark Problems for Solution of 

Ordinary Differential Equations,” Journal of Shock and Vibration, Vol. 1, No. 5, 
1994, pp. 403-414. 

 
46. Junkins, J.L., and Lee. S., “Validation of Finite-Dimensional Approximate Solutions 

for Dynamics of Distributed-Parameter Systems,” Journal of Guidance, Control, and 
Dynamics, Vol. 18, No. 1, 1995, pp. 87-95. 

 
47. Lee, Sangchul, “Formulation and Validation of Mathematical Models for Hybrid 

Coordinate Dynamical Systems,” Ph.D. dissertation, Texas A&M University, 
Department of Aerospace Engineering, 1994. 

 



  178 

48. Roy, C.J., and Hopkins, M.M., “Discretization Error Estimates Using Exact 
Solutions to Nearby Problems,” 41st Aerospace Sciences Meeting and Exhibit, 
January 6-9, 2003, Reno, Nevada, AIAA Paper 2003-629 (invited paper). 

 
49. Crassidis, J.L., and Markley, F.L., “Unscented Filtering for Spacecraft Attitude 

Estimation,” Journal of Guidance, Control, and Dynamics, Vol. 26, No. 4, 2003, pp. 
536-542. 

 



  179 

APPENDIX A* 
 

ADDITIONAL NOTES ON OCEA  
 

 The following text provides some additional information about OCEA.  This 

information can also be found in Reference 14 pages 12-16 and is reprinted here with 

permission: 

 
 

OCEA Algorithm 

OCEA methodology is a transformational process that changes functional and 

partial derivative data into new forms during calculations. A single OCEA function 

evaluation generates exact numerical values for the function as well as hidden values for 

the Jacobian, and higher-order partial derivatives. All of the mathematical library 

functions require generalized composite function transformations for linking current 

calculations with all previous sensitivity calculations. Module functions support a mixed 

object/data type computational environment, where integer, real, double precision, 

complex, and OCEA data types can co-exist. The partial derivatives are extracted by 

utility routines as a post-processing step.  Fortran 90 (F90) and Macsyma 2.4 OCEA 

prototype codes have been developed.  

 

 

                                                           
* Reprinted with permission from "Generalized Gradient Search And Newton's Methods 
For Multilinear Algebra Root-Solving And Optimization Applications" by James D. 
Turner, The John L. Junkins Astrodynamics Symposium, George Bush Conference 
Center, College Station, Texas, May 23-24, 2003, AAS 03-261.  2003 by James D. 
Turner. 



  180 

The development of an OCEA toolbox for engineering and scientific applications is 

addressing the following seven software issues: Defining how independent variables are 

transformed to OCEA form; Developing derived data types for vectors, tensors, and 

embedded variables; Defining interface operators for supporting generalized operations; 

Using Module functions to hide OCEA computational resources; Defining OCEA-

enhanced library routines that encode chain rule models; Providing utility routines to 

access the OCEA partial derivative calculations; and Developing application suites of 

software for solving broad classes of mathematical programming problems.  Second-

order OCEA models are presented for discussing each of these issues. 

 

Data Structures.  Each scalar variable is modeled as a compound data object consisting 

of a concatenation of the original scalar variable and its first and higher order partial 

derivatives. Compound data objects are created using Derived data types.  The partial 

derivative models are not visible to the user during calculations, and can be thought of as 

hidden artificial dimensions for the transformed scalar variables. A significant benefit of 

employing hidden artificial dimensions is that the structure and computational 

sequencing of standard algorithms is not impacted.   

For example, in the OCEA algorithm, the 1x1 scalar g has the following 

transformed data structure1-3: 

( ) } } }

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=++

∇∇ gggg

mxmmxxmmx

2

111:11 2
4484476

 



  181 

where the transformed version of g has dimension 1x(1+m+m2).   The new object 

consists of a concatenation of the variable and two orders of partial derivatives. 

Generalizations for higher dimensional versions of OCEA are obvious.  Future 

enhancements will embed additional computational information for handling data sub-

structuring information, sparse structure data, symmetry, and parallel computations. 

Operator Overloading.  OCEA-based AD capabilities require four mathematical 

elements: 1) Generalized intrinsic binary operators { +, -, *, **, / }, 2) Generalized 

unary functions  { cos(x), sin(x), tan(x), log(x),….}, 3) Encoded multi-level chain rule 

implementations for all new operators and functions, and 4) Generalized composite 

function operators. Derived data types and interface operators1-3 manage the OCEA 

binary operators and unary functions. Expressing these requirements in F90, leads to 

50+ Module-hidden routines for redefining the intrinsic and mathematical library 

functions.  Operator overloading facilities manage the definitions for interface operators 

that allow the compiler to recognize 1) The mathematical operators or functions, and 2) 

The argument list data types (including user-defined data types) for automatically 

building links to the hidden routines at compile time.  

Four factors impact the efficiency of OCEA partial derivative calculations: 1) partial 

derivative order, 2) exploitation of sparse structure, 3) exploitation of symmetry, and 4) 

level of optimization for the OCEA generalized intrinsic and mathematical functions.  

These topics remain active areas of continuing research.  A full exploitation of all of 

these factors is anticipated to impact the performance of OCEA-based tools by 10-100 

fold. 



  182 

Initializing OCEA Independent Variables. Independent variables are identified for each 

application and transformed to OCEA form.  For example, given the following set of 

independent variables nxxx ,,, 21 L , the OCEA form of xi is given by 

( )
{ {

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

+++
43421

L

MOM

L

321

M

nxnnx

ni

i

x
i

nn

i xx
00

00
,,:

1

1

1111 2 δ

δ
 

where ijδ  denotes the standard kronecker delta function and i = 1,…,n.  The vector part 

represents the Jacobian and the matrix part represents the Hessian for xi. The non-

vanishing part of the Jacobian is the essential element for enabling the numerical partial 

derivative calculations.  During calculations, the partial derivatives operations are 

accumulated, and a general OCEA variable is defined by: 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

γβ

βα

L

MOM

L

M ,,:
y

x
vv  

where x, y, α, β, γ denote general filling elements. 

 

Accessing Data Stored In The Artificial Dimensions. Structure constructor variables1-3 

(SCV) are used to access the artificial dimensions of an OCEA compound data object.  

Assuming that a scalar is defined as [ ]ffff 2,,: ∇∇=  the individual objects are 

extracted as 

TffVffEff %,%,% 2 =∇=∇=  



  183 

where %E denotes the scalar SCV , %V denotes the vector SCV , and %T denotes the 

tensor SCV .  At a finer level of detail, the individual components are extracted by 

defining 

( ) ( ) ( ) ( )jiTPARTTffiVPARTVffEff iji ,%%,%%,% =∇=∇=  

where (*)i denotes the ith component, (*)ij denotes the i-jth component, VPART(i) denotes 

a vector SCV, and TPART(i,j) denotes a tensor SCV .  The computational advantage of 

this approach is that high-level variable assignments are made for updating vector, 

matrix, and tensor computations in the intrinsic and mathematical library functions. 

 

Intrinsic Operators and Functions.     Module-based operator-overloading 

methodologies are used to redefine the computers operational rules for processing 

numerical calculations. Advanced partial derivative capabilities are enabled because 

multiple levels of the chain rule are encoded in each operator and function.  Two fourth-

order OCEA variables are used to define the math models, as follows 

[ ]
[ ]bbbbbb

aaaaaa
432

432

,,,,:
,,,,:

∇∇∇∇=

∇∇∇∇=
 

Generalizations for the intrinsic mathematical operators and functions are presented for 

addition, subtraction, multiplication, division, and composite functions.   

 

1.        Addition: Adding two variables yields 

[ ]babababababa 443322 ,,,,: ∇+∇∇+∇∇+∇∇+∇+=+  

2.        Subtraction: Subtracting two variables yields 



  184 

[ ]babababababa 443322 ,,,,: ∇−∇∇−∇∇−∇∇−∇−=−  

3.        Product Rule: Multiplying two variables yields 

[ ])*()*()*()*(*:* babababababa ijkrijkiji ∂∂∂∂∂∂∂∂∂∂=  

where 

rkjirkjirkijrkij

rjikrjikrikjrikj

kjirkjirkirjkirj

jirkjirkirkjirkjijkr

kjikjikijkij

jikjikikjikjijk

jijiijijij

iii

baababba

abbaabba

abbaabba

abbaabbaba

baababba

abbaabbaba

baababbaba
baabba

,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,

,,,,,,,,,,,,

,,,,,,,,,,,,

,,,,,,,,

,,

)*(

)*(

)*(
)*(

+++

++++

++++

++++=∂∂∂∂

+++

++++=∂∂∂

+++=∂∂

+=∂

 

i∂ denotes the partial derivative w.r.t. the ith variable, i,j,k,r = 1,…,m , and m denotes the 

number of independent variables.  The use of index notation allows the order of the 

operations to be preserved for the implied tensor contraction operations. 

 

4.       Composite Function Rule: The composite function transformation evaluates 

( )abb = , where { }.sin,tanh,sinh,cosh,ln,exp,tan,cos,sin, etcab∈ . For example, if  b = ln(a), 

then the primed b quantities are defined by  

[ ] ⎥⎦

⎤
⎢⎣

⎡ −−
= 432

24,6,2,1'''',''','','
aaaa

bbbb . 

The structure of the a-tensors, however, is independent of the library function being 

processed and will be exploited in advanced software implementations.  The index form 

of the transformation is given by [ ]bbbbbb ijkrijkiji ∂∂∂∂∂∂∂∂∂∂=: , where 



  185 

( )
( )

( )
( )

rkjirkji

rkjirkjirjkikrjikjrijrki

rkjikrjikjri

rkjikjijkirkjiijkr

kjikjikjijkikjiijk

jijiij

ii

abaab

aaaaaaaaaaaab

aaaaaaaaab

aaaaaaabaaaabb

abaaaaaabaaabb

abaabb

abb

,,,,
'

,,,,
''

,,,,,,,,,,,,,,,,,,,,,,,,
''

,,,,,,,,,,,,
'''

,,,,,,,,,,
'''

,,,,
''''

,,,
'

,,,,,,,,,
''

,,,
'''

,,
'

,,
''

,
'

+

++++++

+++

++++=∂∂∂∂

++++=∂∂∂

+=∂∂

=∂

 

[ ]
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= 4

4

3

3

2

2
,,,'''',''','','

da
bd

da
bd

da
bd

da
dbbbbb  

  

5. Division Rule:  A two-step strategy is presented for developing the division rule.  

The goal is to replace the operation b/a with b*h, where h = a-1. Numerical experiments 

have demonstrated that the two-stage approach is ~30% faster than using a direct OCEA 

division operator. The first step uses the composite function transformation to generate 

the reciprocal h-variable, where 

[ ] ⎥⎦

⎤
⎢⎣

⎡ −−
= 5432

120,24,6,2'''',''','','
aaaa

hhhh  

The second step forms the product b*h using the product operator, which completes the 

definition of the division rule.  

References 

1. L. R. Nyhoff, Introduction to FORTRAN 90 for Engineers and Scientists, Prentice 
Hall, ISBN 0135052157, 1996. 

 
2. W. H. Press, and W.T. Vetterling, Numerical Recipes in FORTRAN 90, Vol.2, 

Cambridge, ISBN 0521574390, 1996. 
 
3. L. P. Meissner, FORTRAN 90, PWS Publishers, ISBN 0534933726, 95. 



  186 

APPENDIX B 
 

GENERALIZED FIRST- THROUGH FOURTH-ORDER  
SENSITIVITY CALCULATIONS 

 
 
First order: 
 , ,i j i s sjh h= Φ  (B.1) 

 ,
0

( )
( )

i
i j

j

th
t

∂
=
∂

h
x

 (B.2) 

Second order: 
 (2)

, , ,i jk i s sjk i st tk sjh h h= Φ + Φ Φ  (B.3) 

 
2

,
0 0

( )
( ) ( )

i
i jk

j k

th
t t
∂

=
∂ ∂

h
x x

 (B.4) 

 
Third order: 

 
(3) (2) (2)

, , , ,

(2)
, ,

i jkl i s sjkl i su ul sjk i st tk sjl

i st tkl sj i stu ul tk sj

h h h h

h h

= Φ + Φ Φ + Φ Φ

+ Φ Φ + Φ Φ Φ
 (B.5) 

 
3

,
0 0 0

( )
( ) ( ) ( )

i
i jkl

j k l

th
t t t
∂

=
∂ ∂ ∂

h
x x x

 (B.6) 

 
Fourth order: 

 

(4) (3)
, , ,

(3) (2) (2) (2)
, , ,

(3) (2) (2) (2)
, , ,

(2) (2) (3)
, , ,

i jklm i s sjklm i sv vm sjkl

i su ul sjkm i su ulm sjk i suv vm ul sjk

i st tk sjlm i st tkm sjl i stv vm tk sjl

i st tkl sjm i st tklm sj i stv vm

h h h

h h h

h h h

h h h

= Φ + Φ Φ

+ Φ Φ + Φ Φ + Φ Φ Φ

+ Φ Φ + Φ Φ + Φ Φ Φ

+ Φ Φ + Φ Φ + Φ Φ(2)

(2) (2) (2)
, , ,

,

tkl sj

i stu ul tk sjm i stu ul tkm sj i stu ulm tk sj

i stuv vm ul tk sj

h h h

h

Φ

+ Φ Φ Φ + Φ Φ Φ + Φ Φ Φ

+ Φ Φ Φ Φ

 (B.7) 



  187 

 
4

,
0 0 0 0

( )
( ) ( ) ( ) ( )

i
i jklm

j k l m

th
t t t t

∂
=
∂ ∂ ∂ ∂

h
x x x x

 (B.8) 

1, 2,...,
, , , , , , , 1, 2,...,

number of measurements
number of states

m

s

m

s

i n
j k l m s t u v n
n
n

=

=

=

=

 

 



  188 

APPENDIX C 
 

STATE TRANSITION MATRIX DIFFERENTIAL EQUATIONS 
 

 
The state transition differential equations are here written in indicial notation.  Note:  

All indices run from 1 to ns
 where ns is the number of states.  Initial conditions are the 

identity matrix for the first order state transition matrix differential equations, and zeros 

for second and higher order state transition matrix differential equations. 

 
First order: 
 ,ij i s sjfΦ = Φ&  (C.1) 

 ( )( , )
( )

i
ij ij o

j o

tt t
t

∂
Φ = Φ =

∂
x
x

 (C.2) 

 
Second order: 
 (2) (2)

, ,iijjkk i s sjk i st tk sjf fΦ = Φ + Φ Φ&  (C.3) 

 ( )
2

(2) (2) ( ),
( ) ( )

i
ijk ijk o

j o k o

tt t
t t
∂

Φ = Φ =
∂ ∂

x
x x

 (C.4) 

 
Third order: 

 
(3) (3) (2) (2)

, , ,

(2)
, ,

ijkl i s sjkl i su ul sjk i st tk sjl

i st tkl sj i stu ul tk sj

f f f

f f

Φ = Φ + Φ Φ + Φ Φ

+ Φ Φ + Φ Φ Φ

&
 (C.5) 

 ( )
3

(3) (3) ( ),
( ) ( ) ( )

i
ijkl ijkl o

j o k o l o

tt t
t t t
∂

Φ = Φ =
∂ ∂ ∂

x
x x x

 (C.6) 

 
 
 
 
 



  189 

Fourth order: 

 

(4) (4) (3)
, ,

(3) (2) (2) (2)
, , ,

(3) (2) (2) (2)
, , ,

(2) (2) (3)
, , ,

ijklm i s sjklm i sv vm sjkl

i su ul sjkm i su ulm sjk i suv vm ul sjk

i st tk sjlm i st tkm sjl i stv vm tk sjl

i st tkl sjm i st tklm sj i stv

f f

f f f

f f f

f f f

Φ = Φ + Φ Φ

+ Φ Φ + Φ Φ + Φ Φ Φ

+ Φ Φ + Φ Φ + Φ Φ Φ

+ Φ Φ + Φ Φ + Φ

&

(2)

(2) (2) (2)
, , ,

,

vm tkl sj

i stu ul tk sjm i stu ul tkm sj i stu ulm tk sj

i stuv vm ul tk sj

f f f

f

Φ Φ

+ Φ Φ Φ + Φ Φ Φ + Φ Φ Φ

+ Φ Φ Φ Φ

 (C.7) 

 ( )
4

(4) (4) ( ),
( ) ( ) ( ) ( )

i
ijklm ijklm o

j o k o l o m o

tt t
t t t t

∂
Φ = Φ =

∂ ∂ ∂ ∂
x

x x x x
 (C.8) 

 
 



  190 

APPENDIX D 
 

ALGORITHMS FOR MIDCOURSE CORRECTIONS 
 

 
The first- through fourth-order algorithms for computing midcourse corrections are 

given here. 

 
First order: 

 
*

* ( )( ) ( )
( ) f

f

tt t
t

δ δ
⎡ ⎤∂

= ⎢ ⎥
∂⎢ ⎥⎣ ⎦

vv v
v

 (D.1) 

where 

 
1

*
*( )( ) ( )

( )f
f

tt t
t

δ δ
−

⎡ ⎤∂
= ⎢ ⎥

∂⎢ ⎥⎣ ⎦

rv r
v

 (D.2) 

 
Second order: 

 
* 2 *

* 1
2 2

( ) ( )( ) ( ) ( ) ( )
( ) ( )f f f

f f

t tt t t t
t t

δ δ δ δ
⎡ ⎤ ⎛ ⎞∂ ∂

= + ⊗ ⊗⎜ ⎟⎢ ⎥ ⎜ ⎟∂ ∂⎢ ⎥⎣ ⎦ ⎝ ⎠

v vv v v v
v v

 (D.3) 

where 

 

1
*

*

1 1 1
* 2 * * *

* *1
2 2

( )( ) ( )
( )

( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )

f
f

f f f f

tt t
t

t t t tt t
t t t t

δ δ

δ δ

−

− − −

⎡ ⎤∂
= ⎢ ⎥

∂⎢ ⎥⎣ ⎦
⎧ ⎫⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎛ ⎞ ⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂⎪ ⎪⎜ ⎟ ⎜ ⎟− ⊗ ⊗⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ ⎪⎣ ⎦ ⎝ ⎠ ⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠⎩ ⎭

rv r
v

r r r rr r
v v v v

 (D.4) 

 
The third- and fourth-order expressions can be computed from Eqs. (D.5) and (D.6), 

respectively. 

 



  191 

 

* 2 *
* 1

2 2

3 *
1
6 3

( ) ( )( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( )

f f f
f f

f f f
f

t tt t t t
t t

t t t t
t

δ δ δ δ

δ δ δ

⎡ ⎤ ⎛ ⎞∂ ∂
= + ⊗ ⊗⎜ ⎟⎢ ⎥ ⎜ ⎟∂ ∂⎢ ⎥⎣ ⎦ ⎝ ⎠

⎛ ⎞∂
+ ⊗ ⊗ ⊗⎜ ⎟⎜ ⎟∂⎝ ⎠

v vv v v v
v v

v v v v
v

 (D.5) 

 

* 2 *
* 1

2 2

3 *
1
6 3

4 *
1
24 4

( ) ( )( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )
( )

f f f
f f

f f f
f

f f f f
f

t tt t t t
t t

t t t t
t

t t t t t
t

δ δ δ δ

δ δ δ

δ δ δ δ

⎡ ⎤ ⎛ ⎞∂ ∂
= + ⊗ ⊗⎜ ⎟⎢ ⎥ ⎜ ⎟∂ ∂⎢ ⎥⎣ ⎦ ⎝ ⎠

⎛ ⎞∂
+ ⊗ ⊗ ⊗⎜ ⎟⎜ ⎟∂⎝ ⎠

⎛ ⎞∂
+ ⊗ ⊗ ⊗ ⊗⎜ ⎟⎜ ⎟∂⎝ ⎠

v vv v v v
v v

v v v v
v

v v v v v
v

 (D.6) 

where ( )ftδ v is computed by Eq. (D.7) for the third-order expression in Eq. (D.5) and is 

computed by Eq. (D.8) for the fourth-order expression in Eq. (D.6). 

 
2 3

2 3
1 1 1

1 1( )
2! 3!f

s s s

dx d x d xt
ds ds ds

δ
= = =

= − + −v  (D.7) 

 
2 3 4

2 3 4
1 1 1 1

1 1 1( )
2! 3! 4!f

s s s s

dx d x d x d xt
ds ds ds ds

δ
= = = =

= − + − +v  (D.8) 

where 

 
1

*
*( ) ( )

( )g f

dx t t
ds t

δ
−

⎡ ⎤∂
= − ⎢ ⎥

∂⎢ ⎥⎣ ⎦

r r
v

 (D.9) 

 
1

2 * 2 *

2 2
1 11

( ) ( )
( ) ( ) s sf fs

d x t t dx dx
ds t t ds ds

−

= ==

⎧ ⎫⎡ ⎤ ⎛ ⎞∂ ∂⎪ ⎪= − ⊗ ⊗⎜ ⎟⎢ ⎥ ⎨ ⎬⎜ ⎟∂ ∂⎢ ⎥ ⎪ ⎪⎣ ⎦ ⎝ ⎠⎩ ⎭

r r
v v

 (D.10) 



  192 

 

3 *

3
1 1 1

1
3 * 2 * 2

3 2 2
11 1

2 * 2

2 2
1 1

( )
( )

( ) ( )2
( ) ( )

( )
( )

s s sf

sf fs s

sf s

t dx dx dx
t ds ds ds

d x t t d x dx
ds t t ds ds

t dx d x
t ds ds

= = =

−

== =

= =

⎧ ⎫⎛ ⎞∂
⊗ ⊗ ⊗⎪ ⎪⎜ ⎟⎜ ⎟∂⎪ ⎪⎝ ⎠

⎪ ⎪
⎡ ⎤ ⎛ ⎞∂ ∂⎪ ⎪= − + ⊗ ⊗⎜ ⎟⎢ ⎥ ⎨ ⎬⎜ ⎟∂ ∂⎢ ⎥ ⎪ ⎪⎣ ⎦ ⎝ ⎠

⎪ ⎪⎛ ⎞∂⎪ ⎪+ ⊗ ⊗⎜ ⎟⎪ ⎪⎜ ⎟∂⎝ ⎠⎩ ⎭

r
v

r r
v v

r
v

 (D.11) 

 

4 *

4
1 1 1 1

3 * 2

3 2
1 11

3 * 2

3 2
1 11

1
4 * 3 *

4
1

( )
( )

( )3
( )

( )2
( )

( ) ( )
( ) (

s s s sf

s sf s

s sf s

f fs

t dx dx dx dx
t ds ds ds ds

t d x dx dx
t ds ds ds

t dx d x dx
t ds ds ds

d x t t
ds t t

= = = =

= ==

= ==
−

=

⎛ ⎞∂
⊗ ⊗ ⊗ ⊗ +⎜ ⎟⎜ ⎟∂⎝ ⎠

⎛ ⎞∂
⊗ ⊗ ⊗ +⎜ ⎟⎜ ⎟∂⎝ ⎠

⎛ ⎞∂
⊗ ⊗ ⊗ +⎜ ⎟⎜ ⎟∂⎝ ⎠

⎡ ⎤∂ ∂
= − ⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦

r
v

r
v

r
v

r r
v v

2

3 2
1 1 1

2 * 3

2 3
11

2 * 2 2

2 2 2
1 1

2 * 3

2 3
1 1

)

( )3
( )

( )3
( )

( )
( )

s s s

sf s

f s s

sf s

dx dx d x
ds ds ds

t d x dx
t ds ds

t d x d x
t ds ds

t dx d x
t ds ds

= = =

==

= =

= =

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪
⎪
⎪⎛ ⎞⎪ ⊗ ⊗ ⊗⎜ ⎟⎨ ⎬⎜ ⎟⎪⎝ ⎠
⎪ ⎛ ⎞∂⎪+ ⊗ ⊗ +⎜ ⎟⎪ ⎜ ⎟∂⎝ ⎠⎪
⎪ ⎛ ⎞∂⎪ ⊗ ⊗⎜ ⎟⎜ ⎟∂⎪ ⎝ ⎠
⎪

⎛ ⎞⎪ ∂
+ ⊗ ⊗⎜ ⎟⎪ ⎜ ⎟∂⎪ ⎝ ⎠⎩

r
v

r
v

r
v

⎪
⎪
⎪⎪

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎭

 (D.12) 



  193 

APPENDIX E 
 

FORTRAN90 NONLINEAR LEAST SQUARES MEASUREMENT MODEL 
 

 
 
 

 
 
 
 

 
SUBROUTINE NONLINEAR_FX( T, EB_VAR, EB_FCTN ) 
! THIS PROGRAM EVALUATES A VECTOR FUNCTION USING EMBEDDED  
!        PROCESSING. 
! THE USER INPUTS A VECTOR OF OCEA-INITIALIZED INDEPENDENT 
VARIABLES 
! AND EVALUATES A VECTOR FUNCTION. 
! 
! INPUT: 
!EB_VAR: NVx1 VECTOR OF OCEA-INITIALIZED INDEPENDENT VARIABLES 
! OUTPUT: 
!EB_FCTN: NFx1 VECTOR OF OCEA-EVALUATED NONLINEAR FUNCTIONS 
! = [ F, DEL(F), DEL^2(F) ] = [function, gradient, hessian] 
 
 
 USE EB_HANDLING 
 IMPLICIT NONE 
! ARGUMENT LIST VARIABLES 
 REAL(DP)::T 
 TYPE(EB),       DIMENSION(NV), INTENT(IN   ):: EB_VAR 
 TYPE(EB),       DIMENSION(NF), INTENT(INOUT):: EB_FCTN 
! DEFINE LOCAL + EMBEDDED VARIABLES 
 REAL(DP),       DIMENSION(NF):: FX, DELX 
 REAL(DP),     DIMENSION(NF,NV):: JAC 
 REAL(DP),  DIMENSION(NF,NV,NV):: HES 
 REAL(DP),     DIMENSION(NV,NV):: A 
 TYPE(EB)::  K1, K2, K3, K4, K5, LAM1, LAM2, LAM3 
 TYPE(EB)::  OMEG1, OMEG2, OMEG3, DEL1, DEL2, DEL3 
 
! ASSIGN LOCAL VARIABLES 
 K1=EB_VAR(1);K2=EB_VAR(2);K3=EB_VAR(3);K4=EB_VAR(4);K5=EB_VAR(5) 
 LAM1=EB_VAR(6);LAM2=EB_VAR(7);LAM3=EB_VAR(8) 
 OMEG1=EB_VAR(9);OMEG2=EB_VAR(10);OMEG3=EB_VAR(11) 
 DEL1=EB_VAR(12);DEL2=EB_VAR(13);DEL3=EB_VAR(14) 
 
! COMPUTE NONLINEAR FUNCTION USING EMBEDDED ALGEBRA 
 
 EB_FCTN(1) = K1*EXP(LAM1*T)*COS(OMEG1*T+DEL1) + K2*EXP(LAM2*T)*& 
 COS(OMEG2*T+DEL2) + K3*EXP(LAM3*T)*COS(OMEG3*T+DEL3) + K4 
  
 EB_FCTN(2) = K1*EXP(LAM1*T)*SIN(OMEG1*T+DEL1) + K2*EXP(LAM2*T)*& 
 SIN(OMEG2*T+DEL2) + K3*EXP(LAM3*T)*SIN(OMEG3*T+DEL3) + K5 
 
END SUBROUTINE NONLINEAR_FX 

 



  194 

APPENDIX F 
 

MASS MATRIX TIME DERIVATIVE PROOF 
 

  
Here, the following identity is proved, which allows for computation of the mass 

matrix time derivative by second order differentiation. 

 

 
2 3

ij k
i j i j k

T Tm q
q q q q q
∂ ∂

= =
∂ ∂ ∂ ∂ ∂

& &
& & &

 (F.1) 

 
We know that 

 ij j
i

T m q
q
∂

=
∂

&
&

 (F.2) 

where 
2

ij
i j

Tm
q q
∂

=
∂ ∂& &

 

 
therefore from (F.2) we have  
 

 

3

ij j ij j
i

ij
ij j k j

k

ij j k j
i j k

d T m q m q
dt q

m
m q q q

q

Tm q q q
q q q

⎛ ⎞∂
= +⎜ ⎟∂⎝ ⎠

∂
= +

∂

∂
= +

∂ ∂ ∂

&& & &
&

&& & &

&& & &
& &

 (F.3) 

 
However, from a purely mathematical point of view considering ( , )T T= q q&  we have 
 

 

2 2

2

j k
i i j i k

ij j k
i k

d T T Tq q
dt q q q q q

Tm q q
q q

⎛ ⎞∂ ∂ ∂
= +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

∂
= +

∂ ∂

&& &
& & & &

&& &
&

 (F.4) 



  195 

 
By equating (F.3) and (F.4) we have (F.5) where the expression in parentheses must be 

zero thus showing (F.1) is true. 

 
2 3 2 3

0k k j j k
i k i j k i k i j k

T T T Tq q q q q
q q q q q q q q q q

⎛ ⎞∂ ∂ ∂ ∂
= ⇒ − =⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

& & & & &
& & & & & &

 (F.5) 

 



  196 

APPENDIX G 
 

TIME DERIVATIVES OF EQUATIONS OF MOTION 
 

 
Equations of motion: 
 ( ( ), )i ix f t t= x&  (G.1) 

 
First order: 
 ,i i s sf f x=& &  (G.2) 

 
Second order: 
 , ,i i st t s i s sf f x x f x= +&& & & &&  (G.3) 

  
Third order: 
 , , , ,2i i stu u t s i st t s i st t s i s sf f x x x f x x f x x f x= + + +&&& & & & && & & && &&&  (G.4) 

 
Fourth order: 

 

, , , ,

, , ,

, , ,

, ,

2( )

i i stuv v u t s i stu u t s i stu u t s i stu u t s

i stu u t s i st t s i st t s

i stu u t s i st t s i st t s

i st t s i s s

f f x x x x f x x x f x x x f x x x
f x x x f x x f x x

f x x x f x x f x x
f x x f x

= + + +

+ + +

+ + +

+ +

&&&& & & & & && & & & && & & & &&

& && & &&& & && &&

& & && && && & &&&

& &&& &&&&

 (G.5) 

 
    
 
 
Note:  All partials taken with respect to x.  Overdot indicates time derivative. 



  197 

APPENDIX H 
 

FORTRAN 90 SUBROUTINE FOR SPRING PENDULUM EQUATIONS  
OF MOTION 

 
Note:  0(1) ; 0(2) ; 0(3) ; 0(4)X r X X r Xθ θ= = = = &&  

SUBROUTINE SPRING_PEND_EQNS( PASS, TIME, X0, DXDT, FLAG ) 
 USE EB_HANDLING 
 IMPLICIT NONE 
!.....ARGUMENT LIST VARIABLES  

********** 
 REAL(DP),              INTENT(IN)::   TIME 
 TYPE(EB),DIMENSION(NV),INTENT(IN   ):: X0 
 TYPE(EB),DIMENSION(NV), INTENT(INOUT):: DXDT 
 
!.....LOCAL VARIABLES 
 TYPE(EB)::L, T, V  ! LAGRANGIAN, KINETIC, POTENTIAL 
 REAL(DP):: M, K  ! MASS AND STIFFNESS VALUES 
 REAL(DP), DIMENSION(NV):: JAC_L 
 REAL(DP), DIMENSION(NV,NV):: HES_L 
 REAL(DP), DIMENSION(NV/2,NV/2):: MASS, MASS_INVERSE, MASSDOT 
 REAL(DP), DIMENSION(NV/2)::  JAC_L_Q, QDOTDOT, QDOT 
 TYPE(EB):: R0 ! UNSTRETCHED SPRING LENGTH 
 REAL(DP):: GRAV 
 
 M  = 1.0D0;  K  = 75.0D0 ! MASS AND STIFFNESS 
 *********** 
 T = 0.5D0*M*(X0(3)**2 + X0(1)**2*X0(4)**2)   ! DEFINE KE 
 V = 0.5D0*K*(X0(1)-R0)**2 + M*GRAV*(R0-X0(1)*COS(X0(2))) ! DEFINE PE 
 L = T – V ! DEFINE LAGRANGIAN FUNCTION 
  
 JAC_L = L ! EXTRACT JACOBIAN OF LAGRANGIAN 
 JAC_L_Q = JAC_L(1:NV/2) ! EXTRACT PARTIALS W.R.T. GEN. COORDS. 
  
 HES_L = L ! EXTRACT SECOND ORDER  PARTIALS OF LAGRANGIAN 
 
 MASS = HES_L(NV/2+1:NV,NV/2+1:NV) ! COMPUTE MASS MATRIX 
 MASSDOT = HES_L(NV/2+1:NV,1:NV/2)  !COMPUTE MDOT 
  **********   
 
 QDOTDOT = MATMUL(MASS_INVERSE,(JAC_L_Q - (MATMUL(MASSDOT,QDOT)))) 
 
 DXDT(1)%E = X0(3)%E     ! RDOT 
 DXDT(2)%E = X0(4)%E     ! THETADOT 
 DXDT(3)%E = QDOTDOT(1)    ! RDOTDOT 
 DXDT(4)%E = QDOTDOT(2)    ! THETADOTDOT 
       
END SUBROUTINE SPRING_PEND_EQNS 
 



  198 

APPENDIX I 
 

RANGE SPACE FORMULATION 
 

 
Here, we derive the solution for the Lagrange multiplier.  As is shown, the Range 

Space method, as it is frequently called, goes about the constraint “elimination” process 

by explicitly solving for the multipliers and ultimately the constraint force. 

 
Consider a holonomic constraint of the form (assuming no explicit time dependence 

for simplicity): 

 
 ( )φ =q 0  (I.1) 

where the Pfaffian form of this constraint is developed by time differentiating Eq. (I.1). 

 
( ) 0

0C

φφ ∂
= =
∂

=

q q
q

= q

& &

&

 (I.2) 

we now time differentiate Eq. (I.2) to obtain 
 
 ( ) 0C Cφ q = q + q =&& &&& &  (I.3) 

We now look at equations of motion of the following form: 
 

 -1 TLM M C
⎛ ⎞∂
− + +⎜ ⎟∂⎝ ⎠

q = q + Q λ
q

&&& &  (I.4) 

and multiply Eq. (I.4) through by C  and then equate with Eq. (I.3) to obtain: 
 

 
-1 TLC CM M C

C

⎛ ⎞∂
− + +⎜ ⎟∂⎝ ⎠

= −

q = q + Q λ
q

q

&&& &

& &

 (I.5) 



  199 

After equating the terms on the right hand side of Eq. (I.5), we can solve for the 

multipliers: 

 

 ( ) 1-1 -1T LCM C CM Q M C
− ⎧ ⎫⎛ ⎞∂

− + − −⎨ ⎬⎜ ⎟∂⎝ ⎠⎩ ⎭
λ = q q

q
&& & &  (I.6) 

The constraint force is computed by TC λ  at each time step in order to integrate Eq. (I.4). 



  200 

APPENDIX J 
 

TRANSLATIONAL TERMS IN KINETIC ENERGY EXPRESSIONS FOR 
FLEXIBLE MULTIBODY SYSTEMS 

 
 

We add the following term to kinetic energy expression in Eq. (4.39) in order to 

generalize the approach for translational motion.  For the first link of the assumed modes 

model for a flexible link system we add 

 

 

( )2 21 1 1
1 1 1 1 1 1 1 1 1 12 2 2

1 1 1 1 1 1 1

1 1 1 1 1 1 1

sin cos

cos sin

sin cos

translation
A A A A

T T
A A

T T
A A

T m x y m L x m L y

x x

y y

θ θ θ θ

θ θ θ

θ θ θ

= + − +

− −

− +

& && & & &

& && &

& && &

q b q b

q b q b

 (J.1) 

For successive links, we add the following term: 
 

 

( )2 21 1 1
1 1 1 1 1 1 1 1 1 12 2 2

1 1
1 1

1 1 1 1 1 1 1

1 1 1 1

sin cos

sin cos

cos sin

sin

translation
p p A A p p A p p p p A p p

p p

p A i i i p A i i i
i i

T T
A p p p p A p p p

T
A p p p p

T m x y m L x m L y

m x L m y L

x x

y

θ θ θ θ

θ θ θ θ

θ θ θ

θ θ

+ + + + + + + + + +

+ +
= =

+ + + + + + +

+ + + +

= + − +

− +

− −

−

∑ ∑

& && & & &

& && &

& && &

&&

q b q b

q b 1 1 1cos T
A p p py θ + + ++ && q b

 (J.2) 

 



  201 

VITA 
 

 Daniel Todd Griffith was born on September 8, 1974 in Hazard, Kentucky to the 

proud parents Dan and Barbara Griffith.  He is oldest child of four.  Todd attended high 

school at Breathitt County High School in Jackson, Kentucky and graduated with 

valedictorian honors in 1993.  He completed undergraduate degrees in Physics and 

Mechanical Engineering from Morehead State University in Morehead, Kentucky and 

from the University of Kentucky in Lexington, Kentucky with honors in 1998.  He 

promptly began graduate studies in Mechanical Engineering at the University of 

Kentucky where he completed his Master's work in May 2000.  In the spirit of the great 

frontiersmen from years past, Todd then decided to go west to do his doctoral work in 

Aerospace Engineering at Texas A&M University in College Station, Texas with one of 

the nation’s most respected “gunslingers”, Dr. John Junkins.  There he learned to operate 

many weapons in the arsenal of dynamics and controls en route to graduating in 

December 2004. 

 In the summer of 2003, Todd met his true love Loraine Marie Fano while on a 

pilgrimage trip to Rome, Florence, and Assisi, Italy.  Todd and Loraine will begin their 

life together as husband and wife the day after he graduates with his doctoral degree, 

December 18, 2004.  Todd and Loraine will reside together at a location which is to be 

determined.  They can be reached in the meantime at the address of his parents: 297 

Hurricane Branch Road; Jackson, KY 41339. 


