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In this paper, we turn our attention to the mathematical model to simulate steady, hydromagnetic, and radiating nanofluid flow
past an exponentially stretching sheet. A numerical modeling technique, simplified finite difference method (SFDM), has been
applied to the flow model that is based on partial differential equations (PDEs) which is converted to nonlinear ordinary
differential equations (ODEs) by using similarity variables. For the resultant algebraic system, the SFDM uses the tridiagonal
matrix algorithm (TDMA) in computing the solution. )e effectiveness of numerical scheme is verified by comparing it with
solution from the literature. However, where reference solution is not available, one can compare its numerical results with the
results of MATLAB built-in package bvp4c. )e velocity, temperature, and concentration profiles are graphed for a variety of
parameters, i.e., Prandtl number, Grashof number, thermal radiation parameter, Darcy number, Eckert number, Lewis number,
and Brownian and thermophoresis parameters. )e significant effects of the associated emerging thermophysical parameters, i.e.,
skin friction coefficient, local Nusselt number, and local Sherwood numbers are analyzed and discussed in detail. Numerical
results are compared from the available literature and found a close agreement with each other. It is found that the Eckert number
upsurges the velocity curve. However, the dimensionless temperature declines with the Grashof number. It is also shown that the
SFDM gives good results when compared with the results obtained from bvp4c and results from the literature.

1. Introduction

)e stretching sheet flow has several interesting engineering
applications such as in a chemical engineering plant’s
polymer handling unit and in metallurgy for the metal
working system. Crane [1] researched the continuous two-
dimensional boundary layer flow induced by stretching the
sheet moving in its own plane at a velocity linearly varying
from a fixed point on the sheet. Immediately after Crane [1],
abundant work in this direction is reported and discussed.

Makinde and Aziz [2] explored the effect of boundary
layer flow over linearly stretching nanofluid while Mustafa
et al. [3] concentrated on boundary layer flow for an ex-
ponentially stretching sheet and solved the issue using the

technique of the homotopy analysis method to calculate
analytical solutions. Realistically, as discussed by Gupta and
Gupta [4], stretching a plastic sheet may not necessarily be
linear.

Since Choi and Eastman’s pioneering research [5],
surveys associated to nanofluid dynamics have risen sig-
nificantly in contemporary times due to the low thermal
conductivity of prevalent heat transfer liquids, which causes
the device to function inefficiently and consume additional
energy. A new method has been introduced to optimize
machine operation by dispersing solid particles with a base
fluid. Nanofluid defines the suspension in standard base
liquids such as water, ethylene glycol, andmotor oil of strong
particles of a nanometer size. References from [2, 3, 5] give a
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thorough overview of the nanofluid literature. Innovative
fluid types are needed in these days to achieve more effective
output. Sheikholeslami and Bhatti [6] studied forced con-
vection of nanofluid considering nanoparticles’ shape im-
pacts. )e Brownian motion impact on nanofluid flow
within a porous cavity was recently regarded by Sheikho-
leslami [7]. He found that convective flow enhances with
increase in Darcy number.

)e research of electrically conductive fluid flow has
many applications in engineering issues such as MHD
generators, plasma research, nuclear reactors, geothermal
energy extraction, and aerodynamic boundary layer control
[8]. Reddy et al. [9] studied the effects of frictional and
irregular temperature on non-Newtonian MHD fluid flows
owing to stretched surface.

Mishra and Singh [10] addressed dual solutions of mixed
convection flow with momentum and heat slip over a
permeable shrinking cylinder. When studying the flow
models in nanoscales or microscales, the interaction of the
fluid surface is mostly controlled by models of slip flow.
)ese models were checked from asymptotic solution using
the Boltzmann technique where the internal kinetic solution
matches the outer (i.e., bulk) Navier–Stokes solution, and
matching is only achieved when the slip/jump coefficient is
regarded at the border or surface (Hadjiconstantinou
[11, 12]).)erefore, the slip coefficients are the result of these
assessments. Due to its simplicity, the slip flow phenomenon
is always preferred to no-slip situations. )e Navier–Stokes
equations are still valid here, and only the boundary con-
ditions change in compliance with the slip flow model. With
the newly suggested second-order slip flowmodel, Fang et al.
[13] evaluated the slip flow over a permeable shrinking
surface. Ullah et al. [14] examined the two-dimensional flow
of Reiner–Philippoff fluid thin films over an unstable
stretching sheet in the variable heat distribution and
radiation.

Khan et al. [15] provided thermal radiation and viscous
dissipation impacts on the unstable nanofluid boundary
layer flow over a stretching sheet. In this research, they
accounted for the viscous dissipation impact and discovered
that the heat boundary layer thickness is increased by in-
creasing the values of Eckert number. Ibrahim and Shankar
[16] evaluated the impact of thermophoresis on Brownian
fluid movement owing to stretching sheet.

Several technological systems depend on the impact of
buoyancy. Makinde et al. [17] examined combined impacts
of buoyancy force, convective warming, Brownian move-
ment, thermophoresis, and magnetic field on stagnation
point stream and heat exchange due to nanofluid stream
towards an extending sheet. Ali and Yousef [18] analyzed
laminar mixed convection heat transfer from continuously
stretching vertical surface with energy functional form for
wall temperature by considering the impact of buoyancy.
Mixed convection heat transfer from an exponentially
stretching sheet was explored by Partha et al. [19]. )ey also
analyzed influence of buoyancy along with viscous dissi-
pation, and the flow is governed by the mixed convection
parameter (Gr/Re2). )e effect of viscous dissipation in
natural convection process has been investigated by Gebhart

[20] and Gebhart and Mollendorf [21]. Magyari and Keller
[22] analytically as well as numerically evaluated the con-
tinuous free fluid flow and thermal transfer from an ex-
ponentially stretching vertical surface with an exponential
temperature distribution. Unsteady flow of thermally ra-
diating nanofluid over nonlinearly stretching sheet was
discussed by Seth et al. [23]. )ey noted that the nanofluid’s
velocity curve depends on the unsteadiness, velocity slip, and
stretching velocity nonlinearity. Makinde et al. [24] reported
the two-dimensional unsteady MHD radiating electrically
conducting fluid past a slippery stretching sheet embedded
in a porous medium. Using the explicit finite difference
scheme, they solved the system of higher-order nonlinear
PDEs. Hamid and Khan [25] have discussed the thermo-
physical properties of the flow of Williamson nanofluid and
solved their problem numerically. )ey concluded that the
stronger the magnetic field resulted in decreasing of
boundary layer thickness. Some other references in this
direction can be consulted in [26–28].

Qing et al. [29] researched the entropy generation of
nanofluid owing to a magnetic field over a stretching surface.
Hosseini et al. [30] discussed heat transfer of nanofluid flow in
microchannel heat sink (MCHS) in the presence of a magnetic
field. )e influence of chemical reaction and heat generation/
absorption on mixed convective flow of nanofluid past an
exponentially stretched surface has been examined by Eid [31],
and numerical solutions have been obtained by utilizing the
shooting technique along with the Runge–Kutta–Fehlberg
method. Afify and Elgazery [32] investigated numerically the
boundary layer flow of Maxwell nanofluid with convective
boundary condition and heat absorption. )e result showed
that nanoparticle concentration reduces with higher chemical
reaction parameter whereas a reverse pattern is noted for
temperature. Reviews of viscous fluid flow problems for
nonlinear stretching sheet have been presented by Prasad et al.
[33], Afzal [34], and Nandeppanavar et al. [35]. Nadeem and
Lee [36] studied analytically the problem of steady boundary
layer flow of nanofluid over an exponentially stretching surface
including the effects of Brownian motion and thermophoresis
parameters. )e influence of solar energy radiations in the
time-dependent Hiemenz flow of nanofluid over a wedge was
discussed byMohamad et al. [37]. In [38], Sheikholeslami et al.
discussed natural convection inside a sinusoidal annulus.
Tripathi et al. [39] reported shape effects of nanoparticle on
blood flow in a microvascular flow. Bhatti et al. [40] have
discussed the movement of gyrotactic microorganism in a
magnetized nanofluid over a plate. Ibrahim and Anbessa [41]
discussed Casson nanofluid with Hall and Ion slip effects.
Ibrahim and Negera [42] investigated Williamson nanofluid
over a stretching cylinder with activation energy. For similar
work in this direction, the reader referred to [43].

In all previous studies, a usual course is followed in one way
or the other and discussion is intended towards linearly or
nonlinearly stretching sheets in the absence of some important
emerging parameters.)e aim of this work is to add numerical
methodology, SFDM, in the literature so that it can be ap-
plicable to many problems containing coupled ODEs. To the
best of our knowledge, the current mathematical model along
with numerical consideration has not been discussed before.
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)e paper is planned in the following order. Section 2
commences by laying out the mathematical model of the
physical problem. Numerical procedure is opted and dis-
cussed in Section 3. In the same section, the detailed de-
scription of the SFDM is given. As a consequence of
numerical calculations, results and discussion are followed
in Section 4. At the end of the paper, the conclusions are
presented in Section 5.

2. Mathematical Formulation

We deliberate a two dimensional, steady, incompressible,
laminar, and MHD flow of an electrically conducting

nanofluid occupied over a slippery stretching sheet sub-
merged in a porous medium. )e geometrical description of
fluid flow over a sheet is shown in Figure 1. In the figure,
x-axis has been chosen along the sheet and y-axis normal to
it.

After making use of these assumptions, the set of con-
tinuity, momentum, energy, and concentration equations
incorporating the Buongiorno model is written as follows
[44]:

zx(u) + zy(v) � 0, (1)
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σB

2
ou
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uTx + vTy �
k
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uCx + vCy � DB Cyy􏼐 􏼑 +
DT

T∞
Tyy􏼐 􏼑, (4)

here the velocity components (u, v) are considered along and
normal of the sheet. μ is the coefficient of viscosity, ρ is the
density of the fluid, σ is the electrical conductivity of the fluid,T
is fluid’s temperature, K is the permeability, β is the thermal
expansion coefficient, k is the thermal conductivity, Cp is the
specific heat capacity at constant pressure, qr is the radioactive
heat flux, Q is the heat source coefficient, C is the concen-
tration, and τ � (ρC)p/(ρC)f, where (ρC)p and (ρC)f are
heat capacities of the nanofluid and base fluid, respectively.
Also, DB and DT are Brownian and thermophoretic diffusion
coefficients, respectively. T∞ is the ambient fluid temperature,
and C∞ is the ambient fluid concentration.

2.1. Boundary Conditions. )e preceding mathematical
model allows the following boundary condition:

u(x, 0) � Uw +
μ
L1

uy,

v(x, 0) � 0,

T(x, 0) � Tw,

C(x, 0) � Cw,

u⟶ 0,

T⟶ T∞,

C⟶ C∞, asy⟶∞,

(5)

where L1 is the slip length. Here, Uw � U0e
x/L is the

stretching velocity, where U0 is the reference velocity. And,
Tw � T∞ + T0e

x/(2L) is the variable temperature at the sheet
with T0 being a reference temperature. Also, Cw � C∞ +

C0e
x/(2L) is the variable concentration at the sheet with C0

being a constant.

2.2. Method of Solution. By introducing similarity variables
η, ψ(η), θ(η), and ϕ(η) as dimensionless independent
variable, stream function, temperature and concentration
for the momentum, energy and concentration equations
(1)–(4), and in the boundary conditions (5),

η �

���
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2]L

􏽲

e
x/(2L)

y,
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������
2U0]L

􏽰
e
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f(η),
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����
U0]
2L

􏽲

e
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f′η + f( 􏼁,
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e
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,

ϕ(η) �
C − C∞

C0
e

− x/(2L)
,

(6)

gives the following nonlinear ordinary differential equations:
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f
‴

+ ff″ − 2 f′( 􏼁
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Nt

Nb
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f(η) � 0,

f′(η) � 1 + λf″(η),

θ(η) � 1,

ϕ(η) � 1, as η⟶ 0,

(10)

f′(η)⟶ 0,

θ(η)⟶ 0,

ϕ(η)⟶ 0, as η⟶∞.

(11)

In the above equations, various parameters appear which are
M, Pr,Nt,Nb,Gr,Da,Nr, Ec, S, Le, and λ. In order, these are the
magnetic parameter, Prandtl number, thermophoresis param-
eter, Brownian parameter, Grashof number, Darcy’s number,
thermal radiation effect, heat source or sink, Lewis number, and
the slip parameter. )eir expressions are grouped as follows:

Pr �
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k
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(12)

2.3. Physical Quantities. Now that the flow equations are
known, the physical quantities that measures roughness,
heat transfer rate, and concentration rate at the sheet can
be obtained. First, the skin friction coefficient Cf is given
by

Cf �
]

U
2
w

zu

zy
􏼠 􏼡

y�0
. (13)

Second, the local Nusselt number Nux is written as

Nux � − (1 + Nr)
x

Tw − T∞( 􏼁

zT

zy
􏼠 􏼡

y�0
. (14)

)ird, the local Sherwood number Shx is defined as

Shx � −
x

Cw − C∞( 􏼁

zC

zy
􏼠 􏼡

y�0
. (15)

After substituting similarity variables in (13)–(15), this
yields the expressions as follows:

Cf �
1

����
2Rex

􏽰 f″(0),

Nux � − (1 + Nr)

�����
xRex

2L

􏽲

θ′(0),
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�����
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2L

􏽲
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(16)

Here, Rex � Ux/] is a local Reynolds number.

3. Numerical Procedures

In search of solution for the above problem given in
equations (7)–(9), the only plausible way to compute so-
lution is numerically. We find numerical solutions by using

y

v

u T

T∞

B0 (magnetic field)

g

x

U = Uw

T = Tw

Figure 1: Schematic diagram of the problem.
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two numerical techniques. )e first numerical method we
use is the SFDM, and the second one is the famous algorithm
written in MATLAB and commonly known as bvp4c. )us,
due details on the SFDM will be presented first followed by
brief description on bvp4c.

3.1. SFDM. )is work is influenced by Na [45] in which
some numerical results are displayed for linear ODEs. For
coupled nonlinear ODEs, we expand these ideas theoreti-
cally and execute them in MATLAB. )e algorithm with
necessary details for the SFDM is as follows:

(1) Reduce third-order ODEs to a pair of ODEs of the
first and second order

(2) Use Taylor series to linearize the system of nonlinear
ODEs

(3) Substitute finite difference formulas in the
derivatives

(4) Finally, solve the algebraic system by TDMA

)e results are shown for N � 1000 grid points. Gen-
erally, the domain length varies with different parameters.
However, the domain value η � 7 seems enough to show
steady state results. To initiate the SFDM procedure, we
assume f′ � F in equation (7) and we get

d
2
F

dη2
� − f

dF

dη
+ 2F

2
+ M +

1
Da

􏼒 􏼓F − 2Grθ, (17)

Define a new variable as

ξ1 η, F, F′( 􏼁 � − f
dF

dη
+ 2F

2
+ M +

1
Da

􏼒 􏼓F − 2Grθ (18)

and approximate (dF/dη) by forward difference approxi-
mation with constant width h

ξ1 η, F, F′( 􏼁 � − fi

Fi+1 − Fi

h
􏼠 􏼡 + 2F

2
i + M +

1
Da

􏼒 􏼓Fi − 2Grθi.
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)e coefficients are written as

An � −
zf

zF′
� − (− f) � f � fi,
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zf
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1
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h
.

(20)

Simplifying the above, we reach at

aiFi− 1 + biFi + ciFi+1 � ri, i � 1, 2, 3, . . . , N, (21)

where

ai � 2 − hAn,

bi � 2h
2
Bn − 4,

ci � 2 + hAn,

ri � 2h
2
Dn.

(22)

In the matrix-vector form, it is written in compact as

A F � s, (23)

where

A �
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,

s �
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·
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.

(24)

)ematrix A is a tridiagonal matrix and is written in LU
factorization as

A � LU, (25)

where

L �

β1
a2 β2

. . . .

aN− 2 βN− 2

aN− 1 βN− 1
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,

(26)
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where L and U are the lower and upper triangular matrices,
respectively. Here, the unknowns (βi, ci), i � 1, 2, . . . , N − 1
are to be related as

β1 � − 1 −
λ
h

,

c1 �
λ
β1h

,

βi � bi − aici− 1, i � 2, 3, . . . , N − 1,

βici � ci, i � 2, 3, . . . , N − 2.

(27)

After defining these relations, (23) becomes

LUF � s,

UF � z,

Lz � s,

(28)

and we have

β1
a2 β2

. . . .

aN− 2 βN− 2

aN− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

z1

z2

z3

·

·

·

zN− 2
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)e unknown elements of s are written as

z1 �
s1
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. . . .
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1
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.

(30)

We get

Fi− 1 � zi− 1,

Fi � zi − ciFi+1, i � N − 2, N − 3, . . . , 3, 2, 1,
(31)

which is a solution of (17). We can easily find f from f′ � F

which is in the discretization form written as follows:

fi+1 − fi

h
� Fi, (32)

which gives a required solution of (7). A similar procedure
can also be opted for solutions θ and ϕ. For the sake of
brevity, we only present coefficients for these ODEs and
leave the details which follows on the same line as presented
above. For example, we have the energy and concentration
equation as follows:
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d
2θ

dη2
�

1
1 + Nr

Pr θF − f
dθ
dη

􏼠 􏼡 − PrEc
dF

dη
􏼠 􏼡

2

− PrEc M +
1

Da
􏼒 􏼓F

2
− 2PrSθ − PrNb

dϕ
dη

dθ
dη

− PrNt
dθ
dη

􏼠 􏼡

2⎧⎨

⎩

⎫⎬

⎭,

ξ2 η, θ, θ′( 􏼁 �
1

1 + Nr

Pr θiFi − fi

θi − θi− 1

h
􏼠 􏼡 − PrEc

Fi − Fi− 1

dη
􏼠 􏼡

2

− PrEc M +
1

Da
􏼒 􏼓F

2
i − 2PrSθi

⎧⎨

⎩

⎫⎬

⎭

−
1

1 + Nr

PrNb
ϕi − ϕi− 1

h

θi − θi− 1

h
− PrNt

θi − θi− 1

dη
􏼠 􏼡

2⎧⎨

⎩

⎫⎬

⎭,

Ann � −
zf

zθ′
� −

1
1 + Nr

− Prf − PrNb
dϕ
dη

− 2PrNt
dθ
dη

􏼨 􏼩,

Ann � −
zf

zθ′
�

1
1 + Nr

Prfi + PrNb
dϕi − ϕi− 1

h
+ 2PrNt

dθi − θi− 1

h
􏼨 􏼩,

Bnn � −
zf

zθ
�

− 1
1 + Nr

PrF − 2PrS􏼈 􏼉,

Bnn � −
zf

zθ
�

− 1
1 + Nr

PrFi − 2PrS􏼈 􏼉,

d
2ϕ

dη2
�

− Nt

Nb

d
2θ

dη2
− Le f

dϕ
dη

− Fϕ􏼠 􏼡,

ξ3 η,ϕ,ϕ′( 􏼁 �
− Nt

Nb

θi− 1 − 2θi + θi+1

dη2
− Le fi

ϕi − ϕi− 1

h
− Fiϕi􏼠 􏼡.

(33)

Similarly, the coefficients for (9) are written as

Annn � Lefi,

Bnnn � − LeFi.
(34)

Boundary conditions are discretized as

F1 � 1 + λ
F2 − F1

h
􏼠 􏼡. (35)

3.2. bvp4c. )is section presents the second numerical
method of the studied problem given in (7)–(9) which
subject to the boundary conditions (10) and (11). We use
MATLAB built-in function bvp4c for this purpose. For

description and details of this method, one can refer to [46].
Let us define the variables as

y1 � f,

y2 � f′,

y3 � f″,

y4 � θ,

y5 � θ′,

y6 � ϕ,

y7 � ϕ′.

(36)
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)e system of first-order equations is given as follows:

y1′ � f′ � y2,

y2′ � f″ � y3,

y3′ � f
‴

� − y1y3 + 2 y2( 􏼁
2

+ M +
1

Da
􏼒 􏼓y2 − 2Gry4,

y4′ � θ′ � y5,

y5′ � θ″ �
1

1 + Nr
Pry4y2 − Pry1y5 − PrEcy

2
3 − M +

1
Da

􏼒 􏼓EcPry2
2 − 2PrSy4 − PrNby7y5 − NtPry2

5􏼒 􏼓,

y6′ � ϕ′ � y7,

y7′ � ϕ″ � Ley6y2 − Ley1y7 −
Nt

Nb
y5′,

(37)

and boundary conditions are given as follows:

y0(1) � 0,

y0(2) − 1 − λy0(3) � 0,

y0(4) − 1 � 0,

y0(6) − 1 � 0,

yinf(2) � 0,

yinf(4) � 0,

yinf(6) � 0.

(38)

4. Results and Discussion

In this section, the focus is to analyze the role of embedded
parameters on the velocity, temperature, and concentration.
Results of the current study are displayed in the tabular as
well as graphical form.

For − f″(0), the results are compared with the solutions
published in the literature, and this comparison is listed in
Table 1.)e results demonstrate that the numerical values of
SFDM are accurate and closely agreed with one another.

In Table 2, when the admissible values of the magnetic
parameter increase resultantly, the skin friction coefficient
also increases. However, reduction in both temperature and
concentration gradients is observed. One can also observe
that the magnitude of the local Nusselt and the local
Sherwood numbers increases and the skin friction coefficient
decreases with the rise of values of Darcy’s number. Grashof
number enhances local Nusselt number and local Sherwood
number whereas this reduces the skin friction coefficient.
However, Lewis number Le causes slight change in skin
friction coefficient while concentration gradient and wall
temperature gradient reduce.

It is also evident from Table 2 that local Sherwood
number increases by increasing Nt, but the effect is seen to
be reverse on skin friction coefficient while local Nusselt

number remains constant. )e skin friction coefficient,
local Nusselt number, and local Sherwood number de-
crease with respect to thermophoretic parameter Nb (see
Table 3). From Table 3, one can observe an increase in
local Sherwood number along the range of Ec. )is also
causes a surge in local Sherwood number whereas its effect
on the skin friction coefficient and local Nusselt number is
opposite.

4.1. Effect of Magnetic Parameter M. Figure 2 shows a de-
creasing trend in velocity profiles against M(2≤M≤ 8)to
the point where η ≈ 2.50. After this point, the boundary
layer thickness demonstrates the opposite behaviour. Fig-
ure 3 illustrates an increase in thermal boundary layer
thickness due to an increase in a magnetic parameter.
However, minor increase in concentration profile is pre-
sented in Figure 4. )e reduction of the momentum
boundary layer is strongly influenced by the magnetic pa-
rameter strength which produces Lorentz force and that
offer resistance to the flow.

4.2. Effects of Darcy Number Da. Darcy number Da char-
acterizes the strength of permeability of the porous medium.
Figures 5 and 6 depict increasing values of Darcy number
(0.5≤Da ≤ 15.5) that increase the velocity profile while
concentration profile decreases. However, the temperature
decreases in the boundary layer region. )us, the thickness
of the thermal boundary layer decreases as shown in
Figure 7.

4.3. Effects of Lewis Number Le. Figure 8 displays the vari-
ations of velocity profiles due to the variations in the values
of Lewis number (0.5≤Le≤ 2). It is observed that the ve-
locity profile decreases with an increase in Le. For Le≥ 1, the
mass transport is dominant that resists the flow. One can
also observe that in Figure 9, the temperature profile as well
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as the thickness of the boundary layer initially increases and
then decreases with an increase due to Lewis number. )is
implies that the momentum boundary layer thickness de-
creases when a ratio of thermal diffusivity to a mass dif-
fusivity increases. Figure 10 demonstrates the nanoparticle
volume fraction for several values of Lewis number Le ac-
companying reduction in concentration boundary layer
thickness.

4.4. Effects of Grashof Number Gr. )e Gr approximates the
ratio of buoyancy to viscous forces and represents how domi-
nant is buoyancy force which is responsible for the conviction
comparing to viscous forces. Either convection or viscous forces
are dominant, and the results are displayed in Figures 11–13. It
can be observed that temperature and concentration decrease
with the Grashof number Gr(3≤Gr≤ 6.5), but there is an
abrupt change in a velocity profile.

Table 1: )e comparison of skin friction coefficient to previous data for λ � S � Ec � Nr � Gr � 0 and Da �∞ and for various values Pr,
M, Nb, Nt, and Le.

Present result
Pr M Nb Nt Le Sharif et al. [47] bvp4c SFDM
0.7 0 0.5 0.5 1 1.28183 1.2818089 1.2646694
— 0.1 — — — 1.32104 1.3210148 1.3030810
— 0.2 — — — 1.35895 1.3589575 1.3402296
— 0.3 — — — 1.39581 1.3957745 1.3762525

Table 2: Results for − f″(0), − θ′(0), and − ϕ′(0) obtained by fixing values of parameters Pr � 6.2, Nt � 2, Ec � 0.2, Nb � 8, S � 0.1, Nr � 5,
and λ � 3.

bvp4c SFDM
M Da Gr Le − f″(0) − θ′(0) − ϕ′(0) − f″(0) − θ′(0) − ϕ′(0)

1 4 0.3 8 0.1945 0.0100 2.2070 0.1945175 0.0099219 2.196740
1.1 — — — 0.1977 0.0094 2.1769 0.1977045 0.0093481 2.1669909
1.2 — — — 0.2008 0.0088 2.1477 0.2007573 0.0087879 2.1380916
1.3 — — — 0.2037 0.0083 2.1193 0.2036818 0.0082440 2.1100172
1 5 0.3 8 0.1929 0.0103 2.2223 0.1928713 0.0102230 2.2119414
— 6 — — 0.1918 0.0105 2.2327 0.1917538 0.010423 2.2221985
— 7 — — 0.1910 0.0106 2.2401 0.1909458 0.0105674 2.2295847
— 8 — — 0.1903 0.0107 2.2458 0.1903340 0.0106763 2.2351598
1 5 0.4 8 0.1754 0.0121 2.3805 0.1753267 0.0121091 2.3689312
− 2 — 0.5 — 0.1592 0.0136 2.5161 0.1591568 0.0136077 2.5033457
— — 0.6 — 0.1441 0.0149 2.6354 0.1440571 0.0148417 2.6216478
— — 0.7 — 0.1299 0.0159 2.7426 0.1298239 0.0158828 2.7277798
1 5 0.7 9 0.1302 0.0159 2.9079 0.1301768 0.0149605 2.8912397
— — — 13 0.1313 0.0124 3.4900 0.1312932 0.0124113 3.4660959
— — — 17 0.1321 0.0108 3.9863 0.1321069 0.0108305 3.9552333
— — — 21 0.1328 0.0097 4.4263 0.1327388 0.0097292 4.3880280

Table 3: Results for − f″(0), − θ′(0), and − ϕ′(0) obtained by various values of parameters Pr � 6.2, M � 2, Da � 5, Gr � 0.7, Nr � 5,
Le � 8, and λ � 3.

bvp4c Simplified FDM
Nb Nt Ec − f″(0) − θ′(0) − ϕ′(0) − f″(0) − θ′(0) − ϕ′(0)

2 2 0.2 0.1660 0.0270 2.4876 0.1682158 0.0746442 2.4973830
6 — — 0.1648 0.0148 2.4800 0.1647564 0.0148202 2.4679691
8 — — 0.1641 0.0104 2.4777 0.1640238 0.0104038 2.4656461
10 — — 0.1636 0.0081 2.4774 0.1635227 0.0081378 2.4652570
10 0.5 0.1 0.1656 0.0106 2.4477 0.1655962 0.0105904 2.4350691
— 1 — 0.1650 0.0106 2.4580 0.1649419 0.0106063 2.4455417
— 1.5 — 0.1644 0.0106 2.4668 0.1643695 0.0106205 2.4546071
— 2 — 0.1639 0.0106 2.4745 0.163872 0.0106326 2.4624605
15 2 0 0.1634 0.0086 2.4739 0.1632997 0.0086251 2.4618319
— — 0.1 0.1631 0.0070 2.4763 0.1630272 0.0069807 2.4641318
— — 0.2 0.1628 0.0053 2.4787 0.1627443 0.0053296 2.4665070
— — 0.3 0.1625 0.0037 2.4812 0.1624500 0.0036714 2.4689664
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4.5. Effects of Nt. Figure 14 shows that the velocity profile
increases with Nt in the range (0.5≤Nt≤ 2). Figure 15 il-
lustrates the variations of thermophoretic parameter on
temperature profile. It validated the fact that thermophoretic
parameter enhances the temperature profile. Since the

thermophoretic phenomenon transferred nanoparticles
from hot surface to the cold region, it resulted in increasing
the temperature of the fluid. Figure 16 suggests that a
stronger thermophoretic parameter produces minor change
in nanoparticle volume fraction.

Pr = 6.2, Da = 5, Gr = 2, Nr = 5, Nb = 2, Nt = 0.5,
Ec = 0.1, Le = 5, λ = 0.5, S = 0.1
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Figure 2: Velocity profiles for different M.

M = 2
M = 4

M = 6
M = 8

Pr = 6.2, Da = 5, Gr = 2, Nr = 5, Nb = 2, Nt = 0.5,
Ec = 0.1, Le = 5, λ = 3, S = 0.1
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Figure 3: Temperature profiles for different M.
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Figure 4: Concentration profiles for different M.
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Figure 5: Velocity profiles for different Da.
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4.6. Effects of Nb. Incremental Brownian parameter
Nb(5≤Nb≤ 20) causes slight change in nanoparticles
volume fraction which increases the velocity profile as
presented in Figures 17 and 18. Figure 19 suggests that a
stronger Brownian motion is responsible for an increase in
thermal boundary layer thickness.

4.7. Effects of Eckert Number Ec. Eckert number plays an
important role in high speed flows for which viscous dissi-
pation is significant. It gives relative importance of the kinetic
energy in heat transfer flows. For Ec≪ 1, the energy equation
gives the balance between conduction and convection. From
Figures 20–22, the effects of this dissipation on velocity,

Pr = 6.2, M = 2, Gr = 2, Nr = 5, Nb = 2, Nt = 0.5,
Ec = 0.1, Le = 5, λ = 3, S = 0.1
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Figure 6: Concentration profiles for different Da.
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Figure 8: Velocity profiles for different Le.
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Figure 9: Temperature profiles for different Le.
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temperature, and concentration profile have been shown. It
depicts that, in the absence of Ec, the dimensionless velocity is
lowest at the surface and then increases with increasing Ec.)e

dimensionless temperature is lowest inside the thermal
boundary layer and increases with Ec while the effect of a
viscous dissipation is insignificant on concentration profile.
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Figure 13: Concentration profiles for different Gr.
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Figure 14: Velocity profiles for different Nt.
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Figure 15: Temperature profiles for different Nt.
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Figure 16: Concentration profiles for different Nt.
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Figure 17: Velocity profiles for different Nb.
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Figure 18: Concentration profiles for different Nb.
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Figure 19: Temperature profiles for different Nb.
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Figure 20: Velocity profiles for different Ec.
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Figure 21: Temperature profiles for different Ec.
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5. Conclusions

)is study focuses on two objectives as follows: (1) to
produce a mathematical model for nanofluid flow consid-
ering MHD, radiation, porosity, and slippery exponentially
stretching sheet which is immersed in a porous medium and
(2) to develop a new numerical scheme for the solution of a
general nonlinear ODEs which is applicable not only for the
current problem but many others. )e key observations of
present work are as follows:

(i) )e skin friction coefficient grows with a rise of the
values of magnetic parameter but local Nusselt and
Sherwood numbers reduces )e rise of magnetic
parameter causes decrease in velocity initially after
that the reverse effects can be seen. It enhances
temperature and nanoparticle concentration of the
boundary layer regime.

(ii) )e Darcy number causes the thermal boundary
layer and solute concentration to reduce whereas it
enhances the momentum boundary layer. )e skin
friction coefficient decreases yet the wall temper-
ature gradient and nanoparticle concentration
increase with an increase in Darcy number.

(iii) )e Grashof number enhances local Nusselt
number and local Sherwood number whereas this
reduces the skin friction coefficient.

(iv) )e Lewis number increases momentum and
concentration boundary layers. Although it causes
a slight change in the skin friction coefficient, wall
temperature gradient and boosts nanoparticle
concentration are reduced.

(v) )e thermophoresis parameter causes both the
thermal and momentum boundary layer to in-
crease while its effect on nanoparticle volume
fraction is insignificant. )e skin friction coeffi-
cient and local Sherwood number increase while
local Nusselt number remains unaltered.

(vi) )e Brownian parameter increases thickness of the
thermal boundary layer and momentum boundary
layer while there is a slight change in the con-
centration boundary layer. It causes a reduction in
wall temperature gradient, the skin friction coef-
ficient, the local Nusselt number, and the local
Sherwood number.

(vii) )e Eckert number Ec reduces the skin friction
coefficient, local Nusselt number, and concentra-
tion boundary layer while momentum boundary
layer, thermal boundary layer, and local Sherwood
number increase.

(viii) )e SFDM has been successfully developed and
applied in the current problem. One can show that
the SFDM is easy to implement and converges
quickly.

(ix) To validate, one compares the SFDM results with
bvp4c and those with the literature which gives a
good account of agreement with each other.
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