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ABSTRACT In this paper, we present an innovative mechanism for image restoration problems in which the
image is corrupted by a mixture of additive white Gaussian noise (AWGN) and impulse noise (IN). Mixed
noise removal is much more challenging problem in contrast to the problems where either only one type of
noise model (either Gaussian or impulse) is involved. Several well-known and efficient algorithms exist to
effectively remove either Gaussian noise or Impulse noise, independently. However, in practice, noise may
occur as a mixture of such noise models. Thus, the existing techniques devised to handle individual types of
noise may not perform well. Moreover, the complexity of the problem hinges on the fact that the removal
of either type of noise from the given image affects the noise statistics in the residual image. Therefore,
a rigorous mechanism is required which not only infers altered noise statistics but also removes the residual
noise in an effective manner. In this regard, an innovative approach is introduced to restore the underlying
image in three key steps. Firstly, the intensity values, affected by impulsive noise, are identified by analyzing
noise statistics with the help of adaptive median filtering. The identified intensity values are then aggregated
by exploiting nonlocal data redundancy prior. Thus the first step enables the remaining noise to follow the
zero mean Gaussian distribution in the median filtered image. Secondly, we estimate Gaussian noise in the
resulting image, which acts as a key parameter in the subsequent singular value thresholding process for
rank minimization. Finally, a reduced rank optimization applied to the pre-processed image obtained in the
first step. The experimental results indicate that the proposed AMNLRA (Adaptive Median based Non-local
LowRankApproximation) approach can effectively tacklemixed noise complexity as compared to numerous
state of the art algorithms.

INDEX TERMS Image denoising, low rank approximation, mixed noise, nuclear norm, rank minimization,
similarity measure, singular value decomposition.

I. INTRODUCTION
Image restoration is a well known inverse problem with the
aim of extracting the underlying true image from the observed
noisy image. Although image restoration, specifically, image
denoising is an extensively studied problem yet it remains a
challenging task since image denoising is an ill-posed inverse
problem in mathematical perspective and does not admit a
unique optimal solution. In addition, the problem becomes
more complicated in case of the noise model which is a
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mixture of two different noise distributions. Mixed noise, for
instance, can be a combination of additive white Gaussian
noise (AWGN) and impulse noise (IN) caused due to multiple
noise sources during image acquisition process

Additive White Gaussian Noise is the most widely used
model of noise, characterized by adding zero-mean Gaussian
distribution to each intensity value of an image. Different
techniques have been proposed in order to remove AWGN.
Conventional linear filters, including mean filtering, effec-
tively remove the noise but simultaneously distort the impor-
tant features of the image like edges and textures. In order
to address this problem nonlinear filtering techniques have
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been proposed. Tomasi and Maduchi [1] proposed Bilat-
eral Filtering (BF) by estimating each pixel using the
weighted average of neighbouring pixels, and considered
both spatial and intensity information to calculate the weight.
Buades et al. [2] extended the idea of BF and proposed
Non-Local mean (NLM) algorithm by taking weighted aver-
age of patches instead of pixels. To further enhance NLM
based denoising approach, several techniques were pro-
posed. Dabov et al. [3], for instance, suggested BM3D
by collecting the related patches in a 3-D tensorial form
and used spectral transforms to shrink these tensors for
noise removal. Recently, sparse representation and dictionary
learning based algorithms gained substantial interest. Cen-
tralized sparse representation (CSR) [4] provided promising
results by joint application of non local information and
sparse representation. Dong et al. [5] generalized Bayesian
based shrinkage by connecting the low-rank approximation
with simultaneous sparse coding (SAIST) in an iterative
fashion. Gu et al. [6] proposed weighted nuclear minimiza-
tion (WNNM) by shrinking the singular values of similar
patch matrices while considering corresponding weights.

Impulse noise (IN), in contrast to Gaussian noise, is char-
acterized by replacing a portion of pixels with random
noise value, and the rest of the pixels remain unchanged.
There are two types of IN, namely, salt-and-pepper impulse
noise (SPIN) and random valued impulse noise (RVIN).
Owing to good denoising property and high computational
performance, nonlinear filters such as the median filter and
its modified versions were mainly used to remove IN noise
[7]–[10].

It is relatively less challenging to address either
AWGN or IN where noise statistics follow a single noise
distribution. However, in many practical situations, image
is degraded by a mixture of different types of noise like
SPIN+AWGN or RVIN+AWGN. In such scenario, restora-
tion of underlying image data becomes more involved.
In order to remove mixed noise, several techniques have
been proposed where both noise statistics are dealt simul-
taneously [11], [12]. Despite pioneering contributions of
these techniques, their performance is limited as simul-
taneous treatment of mixed noise distributions of differ-
ent kinds ceases to capture noise complexity effectively.
Later on, more effective techniques based on the combina-
tion of variational and non-local mechanism are proposed
[13]–[16]. The majority of the recent methods relies on
detection based approaches [17]–[20] where the pixels with
impulse noise traces are first detected. Garnett et al. [18],
for instance, suggested a trilateral filtering mechanism
which involves detection of IN by considering rank-order
statistics and gradient information. Furthermore, some of
these techniques also exploited low rank approximation
in this regard [17], [20]. In addition, sparsity based dic-
tionary learning approaches have also been suggested to
address mixed noise removal problems. These approaches
combine certain variants of median filtering [10], [21]
with subsequent dictionary learning process [22]–[25].

As discussed above, the existing two phase methods
require two sequential steps for mixed noise removal. That is,
detection of IN affected pixels followed by AWGN removal.
Such two phase techniques are effective in cases where
mixing ratio of impulse noise is small and added Gaussian
noise has small noise variance. However, in case of higher
mixing ratio of impulse noise and large variance of Gaussian
noise, these techniques yield limited performance as compre-
hensively discussed later in the experimental section. This
limited performance of existing approaches is based on the
argument that the residual noise in the image obtained after
median-type filtering follows Gaussian distribution which is
not the case. In fact, the distribution of the residual noise
is far from Gaussian distribution. However, owing to certain
suitable operations, on filtered images obtained in the first
phase, the residual noise distribution may be transformed
to follow Gaussian distribution. After transforming residual
noise to follow Gaussian distribution, the next challenging
task is to infer the noise distribution of the Gaussian mixture,
namely, the additive Gaussian noise originally added to the
image and the Gaussian distribution obtained by process-
ing median-filtered image. Once the Gaussian mixture is
obtained and estimated, the problems become less compli-
cated and can be addressed by exploiting well-known image
priors like sparsity, non-locality and reduced rank property.

With these key motivations, we propose an innovative
algorithmAdaptiveMedian Nonlocal Low Rank Approxima-
tion (AMNLRA) which consists of three steps: In the first
step, the noise statistics are examined to identify the pixel
locations susceptible to impulse noise. These identified pixels
are further processed using nonlocal means filtering (NLM)
by exploiting data redundancy prior. NLM processing trans-
forms the residual noise into Gaussian noise distribution.
In the second step, the Gaussian noise is estimated in the pre-
processed image which plays a pivotal role in the subsequent
thresholding process. Finally, a rank minimization strategy
is utilized to obtain the final denoised image. Experimental
results show that the suggested mechanism can capture and
handle the complexity of mixed noise effectively as compared
to various most advanced denoising algorithms.
The rest of this paper is organized as follows: In Section. II,
we present various noise models for mixed noise and briefly
discuss existing techniques pertinent to individual noise com-
ponents of mixed noise distribution. The proposed algorithm
is presented in Section. III. Section. IV entails the experimen-
tal results and comparison with the benchmark existing algo-
rithms. Finally, in Section. V conclusions are drawn regarding
the efficacy of the proposed algorithm.

II. PRELIMINARIES
A. NOISE MODEL
Let U be an observed noisy image and u(i, j) be the intensity
at location (i, j). Suppose that V represents the underlying
noise free image. In case of AWGN, the noise model can be
defined as

U = V + N , (1)
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where N represents the additive zero-mean white Gaussian
noise. Impulse noise (IN)which is second ingredient ofmixed
noise model, has two well known variants namely, salt and
pepper impulse noise (SPIN) and random value impulse noise
(RVIN). Let the dynamic range of the noisy image U be
denoted as [dmin, dmax], then AWGN+SPIN mixed noise
model can be described as:

Ui,j =


dmin, with the probability

S
2
;

dmax , with the probability
S
2
;

Vi,j + Ni,j, with probability 1− S .

(2)

Similarly, in case of RVIN the pixel may assume any intensity
value in between the dynamic range with certain probability.
The AWGN+RVIN noise model can be described as:

Ui,j =

{
di,j, with probability S;
Vi,j + Ni,j, with probability 1− S .

(3)

B. MEDIAN FILTER AND ADAPTIVE MEDIAN FILTER
The median filter is a statistical non-linear signal processing
technique suggested by Tukey [26] to remove noise from a
noisy image. In this method, the noisy value of the image is
replaced by the median of the neighbourhood (window). The
mask’s pixels are grouped according to their respective grey
intensity value and the group’s median is stored to replace the
noisy value. Mathematically, this simple filtering process can
be written as:

g(i, j) = med{f (i− x, j− y), (x, y) ∈ W }, (4)

where f (i, j) and g(i, j) are the input noisy image and median
filtered image, respectively. W is the two dimensional win-
dow of size m × m (m is commonly odd) with center at
location (i, j). Themedian filter works well, but fails when the
probability of the impulse noise occurrence is high. In order
to address this issue, several variants of median filtering
[21], [27]–[31] have been proposed. Among these variants,
adaptive median filter [21] gained much attention owing to
its mask size adaptivity corresponding to noisy data. In this
approach, an adaptive window of odd size 2n + 1, where
n varies from 1 to N , is used to process the center pixel.
The neighboring pixels in the window are assorted according
to their intensity values. Further, these values are used to
determine whether the central pixel location is affected by
impulse noise or not. In case, the central pixel is affected
by impulse noise, it is replaced by the median of assorted
neighborhood pixel values. An alternative adaptive median
filtering is the center weighted median (CWM) filtering tech-
nique [10]. The key concept in this approach is to assign a
weight to the central pixel of the confining window or mask.
The output,m(i, j) of CWM having window of size w and
center weight 2k + 1 can be represented by [10]

m(i, j) = med{u(((w+ 1)/2)− k;w), u(i, j),

u(((w+ 1)/2)+ k;w)}, (5)

where u(n;w) indicates the nth smallest sample among the w
samples within the window and u(i, j) is the input noisy pixel
value at the center of the window.

C. LOW RANK APPROXIMATION
Rank minimization mechanism, generally known as low
rank approximation, is one of the most effective approaches
for Gaussian noise removal [4], [6], [32]–[34] in recent
years. More recently, in addition to Gaussian noise model,
low rank approximation has been successfully applied to
a variety of noise models such as speckle noise and seis-
mic noise models [35]–[37]. Essence of low rank approx-
imation for image denoising lies in construction of a
matrix M using similar patches from the given noisy
image. That is, each column of M is a vectorized ver-
sion of a patch, say pi, similar to the reference image
patch, p, under consideration. Similarity of these stacked
patches leads to essentially a low rank matrix [4]. Prior
to application of low rank techniques to image denoising,
it has been successfully employed to data intensive matrix
completion problem where the matrix is to be recovered
using only a few of its available entries [4], [38]–[43].
In fact, rank minimization or low rank approximation is
known to be a non-convex problem and therefore it lacks
the assurance of global optimal solution through conventional
convex optimization techniques. However, proximal optimal
solution can be obtained by replacing rank minimization
constraint with nuclear normminimization (NNM) which is a
convex regularization of original non-convex problem. Refer-
ence [22] NNMbased algorithms aim to find the best possible
approximation R of given data S subject to the constraint that
R should have reduced rank. Mathematically, NNM can be
described as:

R̂ = argmin
R
‖R− S‖2F + λ‖R‖∗, (6)

where ‖.‖ represents the Frobenius norm, ‖.‖∗ =
∑

i |πn(R)|
is the nuclear norm, πn is nth singular value of R and λ is the
regularization parameter. The closed-form solution of Eq. 6
is given as [22]:

R̂ = PDλ(6)QT , (7)

where S = P6QT denotes the SVD of S and Dλ(6) =
max(6 − λI , 0) is SVD thresholding parameter. Although
NNM based optimization serves as convex regularization
of rank minimization, it has limited performance in image
restoration applications due to the following two major rea-
sons. Firstly, note that in Eq. 6, NNM assigned equal weights
to each singular value. Secondly, it can be observed that
regardless of magnitudes of singular values, each singular
value is shrunk with same penalty λ. However, larger singular
values do have more importance than the smaller ones in
physical settings and therefore such large singular values
should be shrunk with less penalty. As a result of these
limitations, the denoising capabilities of NNM are not so
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FIGURE 1. Visualization of Noise Distributions: Mixed Noise initially added is represented by magenta color. Noise distribution n1 after adaptive median
filtering step is depicted by blue color and Noise distribution n2 after Non-local Means filtering step is represented by red color. Test images used in the
plots are (a) Lena, (b) Barbara, (c) Man and (d) Hill, respectively.

promising. In order to have proportionate shrinking of sin-
gular values, weighted NNM (WNNM) was suggested as
follows [6],

R̂ = argmin
R
‖R− S‖2F + λ‖R‖w,∗, (8)

where ‖R‖w,∗ =
∑

i | wiπn(R)| is the weighted nuclear norm.
Despite being non-convex optimization problem, WNNM
may converge to an optimal solution provided that theweights
wi are in ascending order. The interested readers are referred
to [6] for details of convergence analysis. The closed form
solution of Eq. 8 is:

R̂ = PDwi (6)QT , (9)

where Dwi (6) = max(6 − wi, 0).

III. PROPOSED ALGORITHM
In this section, we present our proposed mechanism which
consists of three key steps namely, identification and replace-
ment of pixels affected by impulse noise followed by noise
estimation strategy to determine the noise characteristics in
the image obtained in first step. Lastly, based on noise esti-
mation, suitable rank minimization approach is utilized to
recover the final denoised image.

A. PREPROCESSED IMAGE
Suppose that the observed image uwith sizeRM×N and index-
ing set � = i, i = 1, 2, . . . ,MN is affected by mixed noise,
i.e., impulse noise (IN) and additive white Gaussian noise
(AWGN). As a first major step, we analyse the noise statistics
to locate and identify the pixel values affected by IN. For
this purpose, we employ adaptive median filter (AMF) [21].
By examining each pixel similarity with its neighbouring pix-
els (within a window of certain size), AMF classifies pixels
as affected or not affected by impulse noise. The size of the
neighbourhood window and the threshold for the comparison
are adjustable. A pixel that is different from a majority of
its neighbour is marked as impulse noise. Such pixels are
replaced by the median of neighboring pixels in the local
neighborhood window. As a result, we obtain the following

filtered image y,

y = AMF(u). (10)

Based on above identification and replacement process,
the pixels in y can now be classified into two disjoint cate-
gories. The collection1, of pixels corrupted by IN defined as:

1 = {i ∈ �|y(i)− u(i) 6= 0}. (11)

Rest of the pixels, affected by AWGN, are grouped into the
collection, R, defined as

R = � \1, (12)

Before, proceeding further, let us first analyze the noise statis-
tics in the filtered image y. That is, we want to determine
whether the noise in y follows Gaussian distribution or not.
For this purpose, let the noise in y be denoted by n1 = y−V ,
where V represents the original noise free image which is
assumed to be available for the sake of analysis. It turned
out that n1 noise does not follow Gaussian distribution as
shown in Fig. 1. Based on this analysis, a question naturally
arises regarding the source of non Gaussianity in n1 noise
distribution. Obviously, by its construction, R, can not be
identified as possible source. Thus, only possible source for
non-Gaussianity lies in the set 1.

Despite the existence of several effective approaches for
impulse noise filtering, the noise cannot be removed com-
pletely. To worsen the situation, the remnant impulse noise
may affect the Gaussian noise distribution adversely. There-
fore, in order to mitigate the effects of remnant impulse noise
on Gaussian noise, we exploit non-local means filtering [2] as
follows. Note that the noise distribution n1 is not Gaussian,
yet it can be transformed to a Gaussian distribution using
non-local self similarity (NSS) prior [2], [44] to the pixel
values affected by impulse noise (pixel location stored in the
set 1). That is, for a given image patch (rather than indi-
vidual pixel) within an image can be approximated by find-
ing and then aggregating the similar patches in that image.
As shown in Eqs. (11-12), the pixels in y can be divided
into two categories R and 1. Since 1 set is responsible for
non-Gaussianity of n1, therefore it seems justifiable to apply
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non-local means filtering [2] to pixels located in 1, whereas
the pixels in set R should remain unchanged. The NLM, uin,
of pixel y(i) with patch P(yi) (patch centered at location i) in
the set 1 is defined as [2]:

uin =
1
K

∑
j∈wi; j∈1

C(i, j)P(yj), (13)

where C(i, j) = e−
‖P(yi)−P(yj)‖

2

h2 is the similarity weight of
patch centered at y(j) with the reference patch centered at y(i)
and wi is the search window centered at pixel location i ∈ 1.
The denominator, K defined by

K =
∑
i∈1

∑
j∈wi; j∈1

C(i, j), (14)

refers to the normalization constant. Let un be the resultant
image obtained by applying NLM on y. It can be observed
from Fig. 1 that residual noise, n2, in the image un, follows
Gaussian distribution, with zero mean, to a great extent.
Further, using disjoint sets 1 and R, we can construct an
indicator matrix β (with entries either 0 or 1) as follows:

β =

{
0, if i ∈ 1;
1, Otherwise.

(15)

Finally, we are in a position to define our first phase (prepro-
cessed) image, up, in which noise distributions are Gaussian
with zero means. The preprocessed image is mathematically
expressed as:

up = βu+ (I− β)un, (16)

where I is a matrix with all entries 1. Further, it can be
observed that Gaussian noise distributions in up are indepen-
dent since the image components βu and (I−β)un are disjoint
by virtue of indicator matrix β.

B. NOISE ESTIMATION
It is worth noticing that up in Eq. (16) is a convex combination
of two noise images namely, the given noisy image u with
Gaussian noise having known standard deviation σ and the
preprocessed noisy image un with Gaussian noise n2 but
with standard deviation which is yet unknown. Thus, prior
to any further denoising operations on up, it is of utmost
importance to find standard deviation of n2 noise distribution.
To estimate noise level of a noisy image various block base
and wavelet based techniques have been suggested [45]–[48].
Basic principle of these filter based techniques is that low
pass filter is applied to the noisy image first and the variance
is subsequently estimated from the difference between the
observed noisy image and the filtered image. Alternatively,
patch based strategies have been envisaged for noise esti-
mation in recent years [49]–[53]. Among these approaches,
we follow the principal component analysis (PCA) based
mechanism adopted in [53].
That is, we estimate standard deviation of noise n2 using
the minimal eigenvalue of the covariance matrix ϒ which is

defined as:

ϒ =
1
k

k∑
i=1

(pi − υ)(pi − υ), (17)

where υ = 1
k

∑
(pi) and k represents the mean and the

number of compared patches, respectively. The standard devi-
ation, σn, of noise distribution, n2, in the image un can then
be calculated as:

σn = min
1≤i≤k

λi, (18)

where λi is the eigenvalue of the low rank covariance matrix,
υ. Finally, the preprocessed image up defined by Eq. (16)
contains the noise which is a mixture of two independent
Gaussian distributions with standard deviations σ and σn,
respectively, and having zero means. The independence of
these distribution is guaranteed due to indicator matrix β
defined in Eq. (15). Thus, the mixture noise in up, being sum
of two independent normal distributions is simply another
normal distribution with mean µp = 0 and variance σ 2

p
defined by

σ 2
p = σ

2
+ σ 2

n . (19)

C. RANK MINIMIZATION STRATEGY
As discussed above, the preprocessed image is now affected
by Gaussian noise only. In order to remove Gaussian
noise, several effective approaches have been suggested as
described briefly in Section. I. However, owing to the superior
performance and simplicity, low rank based approaches are
prevalent [4], [6], [34] as discussed in Section. II. Here,
we employ the rankminimization process adopted in [6], [34]
as follows. The preprocessed noisy image, up can be mod-
eled as:

up = v+N
(
0, σ 2

p

)
, (20)

where v is the desired underlying image to be recovered and
N
(
0, σ 2

p

)
is Gaussian noise distribution given by Eq. (19).

Afterwards, patch based comparison is performed on the
given image up to constitute patch matrices for each pixel
location in up. Mathematically this construction of patch
matrices can be modelled as [6], [34]:

Upi = Vi +Ni, (21)

where Upi is the patch matrix formed by stacking the noisy
patches similar to the reference patch pi centered at pixel
location i in image up. Vi and Ni are corresponding patch

matrices at pixel location i in v and N
(
0, σ 2

p

)
. It can be

noticed that the patch matrix Upi is inherently a low rank
matrix as it consists of similar image patches.

Our main goal is to search for best approximation, V̂i,
for the underlying noise free patch matrix Vi. To serve
the purpose, we solve the following rank minimization
problem [6]:

V̂i = argmin
1

2σ 2
p
‖Upi − Vi‖

2
F + η‖Vi‖w,∗, (22)

6442 VOLUME 9, 2021



D.-G. Kim et al.: Mixed Noise Removal Using Adaptive Median Based Non-Local Rank Minimization

TABLE 1. PSNR(dB) and FSIM comparison of the proposed algorithm (AMNLRA) with other methods for mixed noise (AWGN+SPIN).

where ‖ · ‖F and ‖ · ‖w,∗ are Frobenius and weighted nuclear
matrix norms, respectively.

The above optimization problem can be solved by the
following singular value decomposition:

(X,D,Y) = svd(Upi ), (23)

D̂ = Twi (D), (24)

where Twi is the soft thresholding (shrinking) operator
defined by

Twi (dii) = sgn(dii)max(|dii| − wi, 0), (25)

with dii being ith diagonal element of D. The thresholding
weights, wi, are defined as:

wi =
b
√
m

dii + κ
, (26)

where the constant b > 0 and m is the number of similar
patches. To prevent possible division by zero, κ set as 10−6.
Finally, the approximation, V̂i, for Vi is obtained as:

V̂i = XD̂Y. (27)

The above described minimization problem is solved for
patch at location i in the image. This process is repeated for
all the noisy patches extracted from the given noisy image up.

As a final step, the whole denoised image v can be
obtained by aggregation of overlapping patches for each
pixel location i in the image up. For sake of precise and
succinct depiction, our proposed mechanism is summarized
in Algorithm. 1.

IV. EXPERIMENTAL RESULTS
In order to conduct quantitative and qualitative compari-
son, the proposed algorithm (AMNLRA) is applied to ten
frequently used gray scale test image with various textures
which are shown in Fig. 2. Experiments were conducted to
evaluate the performance of AMNLRA in comparison with
the state-of-the-art mixed noise removal techniques, namely:
Cai et al. [22], l1 − l0 [23], WESNR [17] and SNTP [54].

A. PARAMETER SETTING
The key feature of our proposed algorithm is the indepen-
dent implementation of individual mechanisms, but con-
nected through mediating step of effective noise estimation
strategy. Therefore, in order to have fair comparison and
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FIGURE 2. Benchmark test images used for quantitative and qualitative comparison.

TABLE 2. PSNR and FSIM comparison of the proposed algorithm (AMNLRA) with other methods for mixed noise (AWGN+SPIN), at S = 50%.

TABLE 3. PSNR and FSIM comparison of the proposed algorithm (AMNLRA) with other methods for mixed noise (AWGN+RVIN), at σ = 10.

optimal performance, we set the same parameter values as
set, heuristically, in the literature for the first and third steps of
our proposed algorithm. We experimented by changing these
parameter values but did not find any significant change in
the results. The key parameter which connects independent
components of the proposed algorithm is σp as discussed in
Section. III-B. In the experiments, several parameters were
set in the proposed AMNLRA method such as regularization
parameter ζ , the parameter b, number of iteration L and
patch size. The parameter ζ and b are set to 0.1 and 2

√
2,

respectively. The values of parameter m are set as 70, 90, 120
and 140 for σ ≤ 20, 21 ≤ σ ≤ 40, 41 ≤ σ ≤ 60 and σ > 60,
respectively. The size of search window is set 30 × 30. The
number of iteration and the patch size are set according to the
level of noise because for higher levels we need more number
of patches as well as more number of iterations [6]. For the
noise levels σ ≤ 20, 20 < σ ≤ 40, 40 < σ ≤ 60 and
σ ≥ 60, we set the patch size to 6× 6, 7× 7, 8× 8 and 9× 9,
respectively. For these noise level the number of iteration is
set to 8, 12, 14 and 14, respectively.
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TABLE 4. PSNR and FSIM comparison of the proposed algorithm (AMNLRA) with other methods for mixed noise (AWGN+RVIN), at σ = 50.

Algorithm 1 The Proposed Algorithm (AMNLRA) for
Mixed Noise Removal
Input: Noisy image: u, Number of iterations: L

Mixed noise parameters: AWGN with σ ; IN with S%.
1: Initialize parameters as provided in Section. IV.

STEP-I.
2: Obtain median filtered image y using Eq. (10).
3: Identify IN pixels using1 and R defined in Eqs. (11-12).

4: Obtain NLM filtered image un using Eq. (13).
5: Obtain preprocessed image up using Eq. (16).

STEP-II.
6: Estimate noise level σn in un using Eq. (18).
7: Use σn to estimate noise level σp defined in Eq. (19).

STEP-III.
8: Set k=1, Set u(k)p = up.
9: while k ≤ L do
10: u(k+1)p = u(k)p + ζ

(
up − u

(k)
p

)
.

11: Construct patch matrix Upi using Eq. (21).
12: Compute [X,D,Y] = svd

(
Upi
)
using Eq. (23).

13: Compute threshold weights wi using Eq. (26).
14: Apply thresholding operator Twi to D using Eq. (24).
15: Obtain denoised patch matrix estimate V̂i using

Eq. (27).
16: Aggregate V̂i to obtain image u(k+1)p .
17: k=k+1.
18: end while
Output: Denoised image: v = u(L)p

B. QUALITY MEASURES
In order to demonstrate the quantitative performance of
AMNLRA, we evaluate features similarity index measure
(FSIM) [55] and peak signal to noise ratio (PSNR) [56] values
for the benchmark test images as shown in Fig. (2). PSNR
values can be calculated using:

PSNR = 10log
2552

MSE
, (28)

where MSE is the mean square error and 255 is the maximum
gray level of a 8 bits/pixel monochromatic image. Similarly,

FSIM values can be calculated using:

FSIM =

∑
x∈8 SL(x).PCm(x)∑

x∈8 PCm(x)
, (29)

where 8 is the spatial domain of the whole image, SL(x) =
[Spc(x)]α.[SG(x)]β is the overall similarity between the two
compared images and PCm(x) is

PCm(x) = max{PC1x,PC2(x)}, (30)

where PC1 and PC2 are the maps extracted from the respec-
tive compared images.

C. QUANTITATIVE COMPARISON
The test images are corrupted by two kinds of mixed noise,
namely AWGN+SPIN (AS) and AWGN+RVIN (AR). The
quantitative performance are expressed in terms of PSNR
and FSIM. Our experiments for each of (AS) and (AR)
models include results for small and large values of AWGN
and IN. The corresponding results for these small and large
values are reported in separate tables for comprehensive
analysis.

Table. 1 depicts PSNR and FSIM values for (AS) noise
where the standard deviation of AWGN varies as σ = 10,
20 and 25 and SPIN ratio varies from S = 30% to 50%
with step size of 10%. In this case, it can be observed that
the proposed algorithm yields equivalent results for smaller
values of either of the noise parameters σ and S. The equiva-
lent performance may be justified in the sense that smaller S
ratios may slight affect AWGN noise in the initial given
image. Therefore, the preprocessed image, up, obtained in the
first step of our proposed algorithm may not have significant
contribution. However, as σ and/or S values increase beyond
these smaller values, as shown in Table. 2, the proposed
algorithm convincingly produces much better results than the
compared methods in terms of both quality measures. In this
case, AWGN distribution may be much affected by higher
S ratio. Therefore, the first step of getting a preprocessed
image, up, may have non-trivial contribution in producing
significantly better results.

In case of (AR) noise comparison for lower values, Table 3
shows PSNR and FSIM results with σ = 10 whereas RVIN

VOLUME 9, 2021 6445



D.-G. Kim et al.: Mixed Noise Removal Using Adaptive Median Based Non-Local Rank Minimization

FIGURE 3. Graphical representation of average PSNR and FSIM values tabulated in Table 1. The graphs from left to right
indicate average PSNR and average FSIM values, respectively, for (AWGN) parameter, σ = 25.

FIGURE 4. Graphical representation of average PSNR and FSIM values tabulated in Table 3. The graphs from left to right
indicate average PSNR and average FSIM values, respectively, for (AWGN) parameter, σ = 10.

ratio varies from r = 5% to r = 15% with an incremen-
tal step of 5%. The proposed method achieves substantially
better values of PSNR and FSIM than rest of the compared
algorithms.

Lastly, the comparison of the proposed algorithm for
higher σ and r% values are reported in Table. 4. Here,
we set noise parameter σ = 50 and allow RVIN ratio
r% to vary from 20% to 50%. Again, the proposed algo-
rithm significantly outperforms the compared algorithms.
For more precise visualisation of the tabulated comparison,
average PSNR and FSIM values at σ = 25 are shown
for (AS) and (AR) noise models in Fig. 3 and Fig. 4,
respectively.

D. QUALITATIVE COMPARISON
In addition to quantitative comparison, we conducted the
visual comparison of AMNLRA with Cai et al. [22] and
WESNR [17] for sake of qualitative analysis. In this respect,
Fig.5 represents the denoising results of the Cameraman test
image effected by AWGN+SPIN(σ = 25, S = 40%)
noise model. The visual result clearly reflect the supe-
rior performance of the proposed algorithm than compared

state-of-the-art algorithms. It can be observed in the mag-
nified sub-images that Cai et al. [22] caused some extra
structures and diffused the edges of the camera with the sky
background as well. Similarly, WESNR has converted the
light gray region near the lens of camera into completely
black region. However, the proposed algorithm preserve the
edges in a much better way. In Fig.6, we used the high
values of σ = 50 and SPIN ratio S = 50%. In this case,
the performance of WESNR has worsened as it produced
lots of artifacts. Cai et al. [22] comparatively performs better
than WESNR, yet the image structure has been significantly
diffused as shown in the magnified sub-image. On the other
hand, the proposed method performs much better in recov-
ering the image structure without producing any significant
artifact.

In Figs. 7 and 8, visual comparisons are presented for house
and Barbara test images, respectively, which are affected by
AWGN+RVIN noise. The noise parameters are, respectively,
set as σ = 20 and 50 for AWGN, while r = 30% and
50% for RVIN. The denoising results are similar to those for
AWGN+SPIN noise, discussed earlier. Particularly, in case
of Barbara image shown in Fig. 8, the texture pattern of table
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FIGURE 5. Denoising results. (a) Original noise free image, (b) Image corrupted by mixed noise AWGN+SPIN(σ = 25, S = 40%), (c) Cai et al. [22],
(d) WESNR [17], (e) AMNLRA algorithm. Bottom row from left to right shows magnified version of the selected red colored region of the of the above
images.

FIGURE 6. Denoising results. (a) Original noise free image, (b) Image corrupted by mixed noise AWGN+SPIN(σ = 50, S = 50%), (c) Cai et al. [22],
(d) WESNR [17], (e) AMNLRA algorithm. Bottom row from left to right shows magnified version of the selected red colored region of the of the above
images.

cover has been completely buried in noise. Cai et al. [22]
and WESNR can only recover a fraction of that textured
region along with lots of artifacts whereas the proposed
algorithm, somehow, succeeded in preserving more details.
Furthermore, the proposed algorithm performs well in order
to retain edge structure. It can be observed from the house
image shown in Fig. 7 (c)-(d) that edge structure has been
diffused and smeared by Cai et al. [22] and WESNR while
producing lots of artifacts at the same time region between

the edges. Whereas, the proposed algorithm has retained the
details of edge structure without inducing artifacts. In addi-
tion, Fig. 9 and Fig. 10 show the denoising comparison for
camera and house test image by varying AWGN parameter σ ,
SPIN parameter s% and RVIN parameter r%, respectively. It
can therefore be noticed from the visual comparison that the
above qualitative comparison is compatible with our quanti-
tative analysis as well, confirming the better performance of
the proposed algorithm.
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FIGURE 7. Denoising results. (a) Original noise free image, (b) Image corrupted by mixed noise AWGN+RVIN(σ = 20, r = 30%), (c) Cai et al. [22],
(d) WESNR [17], (e) AMNLRA algorithm. Bottom row from left to right shows magnified version of the selected red colored region of the of the above
images.

FIGURE 8. Denoising results. (a) Original noise free image, (b) Image corrupted by mixed noise AWGN+RVIN (σ = 50, r = 50%), (c) Cai et al. [22],
(d) WESNR [17], (e) AMNLRA algorithm. Bottom row from left to right shows magnified version of the selected red colored region of the of the above
images.

E. TIME COMPLEXITY
Time complexity of the proposed algorithm has three major
factors corresponding to computation of adaptive median
filtering (AMF), non-local means filtering (NLM) and low
rank approximation (LRA), respectively. The basic operation
during AMF is to order the pixels within the neighborhood
of referenced pixel location. In case of image with size
n × n, the sorting complexity is O(n log2 n) [57]. In case
of NLM step, time complexity is O(n2wp) where w and p

denote the size of search window and patch size, respectively
[44]. Lastly, the time complexity of LRA step consists of
two major sources namely, patch comparison (block match-
ing) and singular value thresholding. The corresponding time
complexities of these dominant components are O (pqrs) and
O (psr min(p, s)), respectively, where r represents number of
reference patches selected for LRA, s represents number of
similar patches for a given reference patch and q is the number
of patches within the search window [33]. Thus the time

6448 VOLUME 9, 2021



D.-G. Kim et al.: Mixed Noise Removal Using Adaptive Median Based Non-Local Rank Minimization

FIGURE 9. Images from left to right represent the original noise free image, image corrupted by mixed noise AWGN+RVIN, denoising results of Cai et al.
[22], WESNR [17] and AMNLRA algorithm respectively. Images from top to bottom represent the denoising results for mixed noise (σ = 30,S = 30%),
(σ = 30,S = 40%), (σ = 20, r = 30%) and (σ = 40,S = 30%), respectively.

TABLE 5. Running time comparison (in seconds) for mixed noise (AWGN+SPIN), at S = 30%.

complexity of the proposed algorithm is sum of the above
mentioned individual time complexities. It can be noticed
that time complexities of AMF and NLM steps are negligible
as compared to that of LRA step due to block matching

and singular value thresholding mechanism. The computa-
tional time comparison of the proposed algorithm is depicted
in Table. 5. It can be observed that on average WESNR has
the lowest time complexity. It is due to the fact that WESNR
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FIGURE 10. Image from left to right represent the original noise free image, image corrupted by mixed noise AWGN+RVIN, denoising results of Cai et al.
[22], WESNR [17] and AMNLRA algorithm respectively. Images from top to bottom represent the denoising results for mixed noise (σ = 30, r = 30%),
(σ = 30, r = 40%), (σ = 25, r = 30%) and (σ = 40, r = 30%), respectively.

employs off-line dictionary learning technique. The compu-
tational cost of the proposed algorithm is significantly higher
than rest of the algorithms. As explained earlier, the increased
time complexity originates from computationally intensive
block matching and singular value thresholding processes.
However, the cost can be reduced by parallel implementation
of blockmatching as carried out in [3].

V. CONCLUSION
In this paper, we provided a novel mechanism for the removal
of mixed noise which consists of three important steps.
We tried to explain how a complex problem of mixed noise

removal, with different noise statistics, can be first trans-
formed in to a simpler problem of mixed noise statistics of
same type (Gaussian noise). This step has enabled the pro-
posed algorithm achieve much better results in the presence
of severe noise levels. However, it turned out that above
mentioned transformation step has less significance in case of
smaller values of impulse noise. We justified these outcomes
with the argument that smaller values of impulse noise did
not have significant effect on Gaussianity of AWGN noise
in the given image. Therefore, the results with or with-
out preprocessed image are almost equivalent. Furthermore,
it is worth noticing that getting a preprocessed image is not
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sufficient for subsequent denoising process until and unless
noise variance is not estimated. To this end, we utilized
an effective patch based noise estimation approach which
constitutes a special type of covariance matrix depending
upon weak texture patches. The smallest eigenvalue of this
covariance matrix reflected the estimated noise variance.
Once the involved problem had been reduced to a relatively
simpler one, wewere able to employwell known image priors
like non-local self similarity and low rank approximation
to finally recover the underlying true image. Experimen-
tal results, in terms of quantitative and qualitative compar-
isons, have provided convincing evidence of better denoising
capability of the propose algorithm as compared to various
outstanding algorithms.
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