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Summary 

This dissertation concerns an exploration of factors that affect the learning 

outcomes of students in higher education mathematics. It is framed within a 

quantitative research paradigm in which the existence of personal factors such as 

prior knowledge, self-efficacy, and approaches to learning are assumed and that 

these factors may be operationalised and measured. The aim of this study is to 

investigate effects of prior mathematics knowledge, approaches to learning and 

self-efficacy on students’ performance in a first-year introductory calculus course 

for students on engineering programmes. Further, the interrelatedness of these 

factors and their combined effects on performance are also investigated. Two well-

established psychological theories are combined to form the conceptual framework 

for justifying appropriateness and usefulness of chosen constructs under 

investigation coupled with hypothesised relationships among the constructs. These 

theories are student approaches to learning theory and self-efficacy theory. A 

cross-sectional survey research design was adopted with a focus on engineering 

students aimed at addressing three research questions. These research questions 

are formulated as follow: 

1. Do approaches to learning mathematics differ with respect to the prevalence 

of deep and surface approaches among first-year engineering students? 

2. Does self-efficacy influence adoption of either deep or surface approach to 

learning mathematics among first-year engineering students?  

3. What are direct and indirect effects of prior mathematics knowledge, 

approaches to learning, and self-efficacy on performance in mathematics 

among first-year engineering students?  

The data used for the present study were collected in two phases (pilot study and 

main study) using questionnaires, a pre-test of students’ basic mathematical 

knowledge and final examination scores in an introductory calculus course. The 

pilot study data were collected in Spring 2019 and used to develop and validate the 

questionnaires. The main study data were collected in Autumn 2019 and used to 

investigate hypothesised structural relationships between prior mathematics 

knowledge, approaches to learning, self-efficacy, and students’ performance in the 

course. Eight research hypotheses were formulated and tested using structural 

equation modelling techniques. The resulting findings were well-documented and 

published in seven peer-reviewed journal papers and one peer-reviewed 

conference paper.  
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Paper I and Paper II present results of validity studies on a measure of approaches 

to learning mathematics. Therein, psychometric properties such as construct 

validity and reliability of two-factor revised study process questionnaire (R-SPQ-

2F, Norwegian version) are reported. Further, the findings reported in Paper I and 

Paper II confirm the prevalence of deep and surface approaches to learning 

mathematics among the first-year engineering students. Thus, the findings address 

the research question one. A measure of self-efficacy of students on calculus tasks 

was developed and validated in Paper III. Therein, self-efficacy was 

conceptualised and operationalised based on postulates of the self-efficacy theory. 

The findings confirm an acceptable construct validity, discriminant validity and 

reliability of the measure. Paper IV and Paper V (conference paper) present results 

of validity studies on a test of prior mathematics knowledge. Therein, item quality 

such as difficulty indices, discrimination indices, and item reliability were studied 

using item response theory. The test was revised based on the findings of the 

studies reported in Paper IV and Paper V. Some items were removed from the test 

before being used in the analyses of the main study data. 

The research question two was addressed in Paper VI. Therein, the results show 

that self-efficacy has a positive causal effect on deep approaches to learning and a 

negative causal effect on surface approaches to learning. Thus, I argue that 

engineering students’ approaches to learning mathematics may be influenced by 

fostering their self-efficacy through interventions. The research question three was 

split into two questions and addressed in Paper VII and Paper VIII. Therein, I 

observed that prior mathematics knowledge test has substantial negative and 

positive effects on surface approaches to learning and self-efficacy, respectively. 

However, its effect on performance was only significant when I screened out self-

efficacy from the structural model. The surface approaches to learning have a 

negative effect on students’ performance in the course. In contrast, there was no 

substantial evidence to justify any considerable effect of the deep approaches to 

learning on students’ performance.  

More so, the results show that self-efficacy has a substantial positive causal effect 

on students’ performance in the calculus course. The findings further reveal that 

both surface approaches to learning and self-efficacy play a mediating role 

between prior mathematics knowledge and performance. Finally, I argue that since 

self-efficacy influences adoption of approaches to learning, it is prudent to develop 
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interventions that foster self-efficacy as proxies to influence both approaches to 

learning and students’ performance, simultaneously. As such, I make some 

recommendations for future studies on possible interventions that foster self-

efficacy.  

The resulting findings from the eight papers knitted together in the present 

dissertation make crucial contributions to literature at the local, national, and 

global levels. First, because of the cultural sensitivity of R-SPQ-2F coupled with 

its lack of psychometric study within the Norwegian context, I claim that a 

validation of the measure is a crucial contribution to the literature. Second, through 

the present study, the Norwegian Mathematical Council test was validated for the 

first time, over the past three decades. The findings and recommendations for the 

test improvement were communicated to the Council, which I perceived to be a 

crucial contribution at the national level. Further, the new measure of calculus self-

efficacy that was developed through this study constitutes an original contribution 

to literature. The reason being that extensive search of the literature reveals such a 

specific measure of self-efficacy is unprecedented. Other sets of contributions of 

the present study to the literature emanate from the item-level structural equation 

modelling used in evaluating the hypothesised relationships between the research 

constructs. This modelling technique is a paradigm shift from the multiple linear 

regression studies that are commonly reported in mathematics education literature. 

Thus, I believe that university teachers, researchers, policymakers, and other 

stakeholders involved in teaching first-year undergraduate mathematics courses 

will benefit optimally from the findings reported in the present dissertation. 
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1 Introduction 

1.1 Background  

The poor performance of students in undergraduate mathematics has gained 

increased global attention among education researchers (Eklund, 2019; Eng, Li, & 

Julaihi, 2010) in which Norway  is not an exception. Gynnild, Tyssedal, and 

Lorentzen’s (2005) report of 21.5% to 39.2% failure rates over five years in a first-

year introductory calculus course at a university in Norway is a typical example. 

More so, results of a descriptive analysis on grade distributions in an introductory 

calculus course among first-year engineering students at a Norwegian university 

show that the problem of poor performance in mathematics persists within the 

university. I examined these students’ grades for Autumn 2019 semester and found 

that only six students (2%) got As, 18 students got Bs, 51 students got Cs, 43 

students got Ds, 56 students got Es, and 130 (43%) students failed the course.   

This prevalence of poor performance among engineering students has been 

worrisome to mathematics teachers, education researchers, Centre for Research, 

Innovation and Coordination of Mathematics Teaching (MatRIC), and other 

stakeholders in teaching and learning of mathematics at the university. Thus, the 

rationale behind the conduct of the present study is to find possible solutions to the 

problem of poor performance in mathematics with a focus on first-year 

engineering students. I focus on first-year engineering students because they are 

more susceptible to poor performance in mathematics as exposed in the grade 

distributions that I presented in the previous paragraph. The question is how to find 

these solutions? This question constituted my first puzzle when I accepted PhD 

fellowship at the University of Agder.  

Diverse studies abound in the literature that provides empirical evidence for 

various factors that affect students’ performance in mathematics. These factors are 

from different sources of influence. These sources can be home, e.g., socio-

economic status (Wang, Li, & Li, 2014), school, e.g., leadership of the school (Tan, 

2018), classroom structures, e.g., class size (Konstantopoulos & Shen, 2016), 

curricula, e.g., use of calculators (Mao, White, Sadler, & Sonnert, 2016), students, 

e.g., approaches to learning (Maciejewski & Merchant, 2016), and teachers, e.g., 

teachers’ attributes and teaching methods (Zengin, 2017).  
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The present study (being a pioneering project of its kinds in terms of the adopted 

quantitative research methodology at the university) has a focus on those factors 

that emanate from the students (i.e., student-source factors) and that have a strong 

influence on performance in a first-year mathematics course. An underlying 

assumption governing the decision of focusing on student-source factors is that 

these factors can be influenced and improved upon by providing interventions and 

remedial action while working with the students. Another challenge for me at the 

initial stage of the present study was in the identification of manageable student-

source factors within the timeline of the PhD programme. In order to overcome 

this challenge, I embarked on a literature review which is summarised in the next 

section. A comprehensive exposition of the reviewed literature is available in the 

published papers that are included later in this dissertation. 

1.2 Student-source factors and performance in mathematics 

Researchers across the globe have studied the relationships between factors with 

sources from the students, i.e., students’ personal characteristics, and performance 

in mathematics. It is not my intention to provide an exhaustive review of these 

studies. However, some prominent studies on these factors are worth mentioning 

because of their relevance to the research reported herein. These factors include 

students’ self-concept beliefs in mathematics (e.g., Pajares & Miller, 1994), their 

mathematics motivation (e.g., Tossavainen, Rensaa, & Johansson, 2019), 

mathematics conceptions (e.g., Yang, Leung, & Zhang, 2019), students’ learning 

approaches (e.g., Maciejewski & Merchant, 2016), prior knowledge of 

mathematics (e.g., Rach & Ufer, 2020), self-efficacy (e.g., Williams & Williams, 

2010), attitude towards mathematics  (e.g., Dowker, Cheriton, Horton, & Mark, 

2019), mental ability (e.g., Pajares & Kranzler, 1995), and students’ anxiety about 

mathematics (e.g., Dowker, Sarkar, & Looi, 2016). However, the prior 

mathematics knowledge, self-efficacy and approaches to learning stand out in 

terms of their strong influence on performance in mathematics and their better 

predictions of performance than some other student-source factors as it will be 

highlighted in the forthcoming sections. As such, I focus on these three factors in 

the present study.  
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1.2.1 Approaches to learning  

Approaches to learning have been conceptualised to encapsulate predispositions 

of an individual when presented with learning materials and the strategies used to 

process the learning contents (Biggs & Tang, 2007). Students adopt various 

approaches when presented with learning tasks. However, it has been theoretically 

established that these various approaches may be sufficiently characterised as deep 

and surface approaches (Marton & Booth, 1997). Deep approaches to learning 

connote the processes of high cognitive activity in which students concentrate on 

developing a proper understanding of learning materials. In contrast, surface 

approaches to learning are processes of low cognitive activity in which students 

focus on passing the course while doing minimal work as possible (Biggs, Kember, 

& Leung, 2001; Entwistle, 2005). As such, students who adopt surface approaches 

to learning usually resort to memorisation of key concepts and techniques in the 

learning materials (Marton & Säljö, 2005). Social-psychological theorists (e.g., 

Marton & Säljö, 2005) have argued and shown empirically that approaches to 

learning are context-specific and grossly influenced by students’ intention. 

Therefore, approaches to learning in the present study are adopted processes by or 

predispositions of engineering students toward learning a first-year introductory 

mathematics course.   

Education researchers have established strong relationships between approaches 

to learning and the nature of presented mathematics tasks, mathematics 

conceptions, and attitude towards mathematics (Alkhateeb & Hammoudi, 2006; 

Maciejewski & Merchant, 2016; Mji, 2000). It has also been shown empirically 

that approaches to learning are better predictors of students’ performance in 

mathematics than their level of mathematics anxiety, gender, mathematics 

motivation, the utility of mathematics, and the enjoyment of mathematics (García, 

Rodríguez, Betts, Areces, & González-Castro, 2016). As a result, I presume that it 

is prudent to focus on approaches to learning in the present study instead of the 

mathematics anxiety, gender, mathematics motivation, the utility of mathematics, 

and the enjoyment of mathematics.  

However, the findings concerning the specific influence of either deep or surface 

approaches to learning on performance in mathematics are inconsistent. In some 

studies (e.g., Cano, Martin, Ginns, & Berbén, 2018), deep approaches to learning 

predict students’ performance in mathematics while surface approaches do not. 
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Some researchers (e.g., Nguyen, 2016) reported the opposite, i.e., surface 

approaches to learning predict performance in mathematics while deep approaches 

to learning do not. At the other extreme, Mundia and Metussin (2019) found that 

both deep and surface approaches have no substantial influence on students’ 

performance in mathematics. These contrasting findings expose a gap in 

mathematics education literature in which the present study intends to address.   

1.2.2 Self-efficacy  

Studies on learning experience in higher education are not limited to the students’ 

adopted approaches to learning. A good number of psychologists and sociologists 

have dug deep into students’ reflections of themselves as they learn (Bandura, 

1986; Hackett & Betz, 1989; Pajares, 1996). An outcome of this deep insight into 

students’ learning is the identification of perceived self-efficacy as a strong 

influencer of desirable learning outcomes (Bandura, 1993). Perceived self-efficacy 

is conceptualised as the “beliefs in one’s capabilities to organize and execute the 

courses of action required to produce given attainments” (Bandura, 1997, p. 3). It 

has been demonstrated to be a crucial student personal factor that enhances 

perseverance when encountering difficult learning tasks and a drive towards the 

attainment of high achievement during the learning activity. Decades of both 

theoretical and analytical studies on perceived self-efficacy have confirmed its 

task-specificity as it concerns mathematics learning (e.g., Pajares & Miller, 1995). 

As such, a working definition of perceived self-efficacy in the present study 

encompasses students’ convictions about their competence to solve first-year 

mathematics tasks successfully.  

Previous studies have confirmed that students with a high sense of perceived self-

efficacy are highly motivated to learn, develop positive attitudes toward 

mathematics, are highly interested in mathematics, and have low mathematics 

anxiety (Bandura, 1997). Perceived self-efficacy predicts students’ performance 

on mathematics problem-solving activities better than the mental ability, 

mathematics anxiety, self-concept, the utility of mathematics and prior 

mathematics knowledge (Pajares & Kranzler, 1995; Pajares & Miller, 1994). As 

such, I presume that it is prudent to focus on perceived self-efficacy in the present 

study instead of the mental ability, and mathematics self-concept.  
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Despite the advantage of perceived self-efficacy over other student-source factors, 

in terms of its better predictive power of performance in mathematics, limited 

studies are available on its causal effects on students’ performance in university 

mathematics. I believe that for perceived self-efficacy interventions to be effective 

as proxies for improved performance in mathematics, one must establish a causal 

relationship between the two variables. Thus, the present study attempts to fill this 

gap. 

1.2.3 Prior mathematics knowledge  

There are different levels (in terms of course contents and difficulty) of secondary 

school mathematics that engineering students followed before their enrolment into 

university programmes in Norway. These diverse mathematics courses make it 

difficult to find a coherent common descriptor of prior mathematics knowledge 

that is suitable for the Norwegian context. As such, it may be unrealistic to meet 

all the requisite elements that are embedded in the proposed conceptualisation of 

prior knowledge by Dochy, De Rijdt, and Dyck (2002) as follows: 

The whole of a person’s knowledge, which is as such dynamic in nature, is 

available before a certain learning task, is structured, can exist in multiple 

states (i.e. declarative, procedural and conditional knowledge), is both 

explicit and tacit in nature and contains conceptual and metacognitive 

knowledge components (p. 267). 

As an interim, I conceptualise prior mathematics knowledge as students’ 

performance on a test that is designed to expose Norwegian secondary school basic 

mathematics content knowledge. Prior mathematics knowledge is a crucial factor 

that affects the current mathematics learning outcomes. Students who are well 

prepared, in terms of the requisite mathematics content knowledge, for university 

learning clearly have a better chance of succeeding in the first-year mathematics 

courses than those students who are ill-prepared. Prior mathematics knowledge has 

been theoretically argued to be a potential source of perceived self-efficacy 

(Bandura, 1997; Usher & Pajares, 2009). Further, there is an accumulation of 

evidence on the direct influence of prior mathematics knowledge on approaches to 

learning and the students’ current performance on mathematics tasks (e.g., 

Hailikari, Nevgi, & Komulainen, 2008; Nguyen, 2016). However, little is known 

about the indirect effects of prior mathematics knowledge through either students’ 
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approaches to learning or perceived self-efficacy on performance in mathematics. 

Therefore, it is part of the intention of embarking on the present study to address 

this gap. 

1.3 Knowledge gaps and the research aims 

The summary of previous studies on the relationships between student-source 

factors and performance in mathematics that is presented in Section 1.2 exposes 

some knowledge gaps in mathematics education literature which the present study 

attempts to fill. The relationships between prior mathematics knowledge, the 

approaches to learning the subject, and perceived self-efficacy coupled with their 

combined effects on performance in mathematics have been sparsely reported in 

the literature. The available studies lack coherence in their findings. Some are 

conducted using statistical approaches that are not appropriate for evaluating 

causal claims. While others are conducted outside university mathematics learning 

whose findings are not generalisable to the population of the present study due to 

the task-specificity of the constructs under investigation. Further, to the best of my 

knowledge, after an extensive search of the literature, the interplay between these 

factors and their indirect effects on performance in university mathematics have 

not been reported in the Norwegian context.  

In a bid to fill these knowledge gaps, the present study is formulated to investigate 

causal effects1 of prior mathematics knowledge, approaches to learning 

mathematics, and perceived self-efficacy on students’ performance in a first-year 

introductory calculus course. Further, the interrelatedness of these factors and their 

combined effects on performance in mathematics are also investigated. I believe 

that my attempts in achieving these aims will serve crucial purposes in informing 

efforts to alleviate the problem of poor performance in mathematics among first-

year engineering students by identifying factor(s) to be prioritised for 

interventions. Further, the findings of the present study will be beneficial to 

university teachers, education researchers, policymakers, and other stakeholders 

 
1 The causal effect that is intended at this point is a functional relationship between the research 

variables such that changes in a causal variable lead to changes in the probability distributions of 

the effect variables. The definition may be contrasted with deterministic causation that requires 

that a change in causal variable leads to the same change at all levels of the effect variable (Kline, 

2016).  



7 

 

who are involved in teaching and learning first-year undergraduate mathematics 

courses for improved performance.  

1.4 Research questions  

To achieve the research aims that are presented in Section 1.3, I formulate and 

attempt to address the following research questions in the present study: 

1. Do approaches to learning mathematics differ with respect to the prevalence 

of deep and surface approaches among first-year engineering students? 

2. Does perceived self-efficacy influence adoption of either deep or surface 

approach to learning mathematics among first-year engineering students?  

3. What are direct and indirect causal effects of prior mathematics knowledge, 

approaches to learning, and perceived self-efficacy on performance in 

mathematics among first-year engineering students?  

1.5 Outline of the PhD study 

The three research questions presented in Section 1.4 are the central queries the 

present study attempts to address. As such, I followed a two-stage approach to 

scientific inquiry in the present study. A pilot study stage and a main study stage. 

The pilot study was aimed at the development and the validation of measures of 

the research constructs. The main study focused on the structural validation of 

hypothesised relationships between the research constructs. Structural equation 

modelling approach was mainly used in the analyses of the collected data for both 

the pilot and the main studies. The structural equation modelling approach pens 

the opportunity to evaluate causal claims as well as to deduce causal relationships2 

between the research variables. These causal claims are either inappropriate or 

rather unrealistic to be evaluated using other competing models such as the 

classical multiple linear regression, analysis of (co)variance, and path analysis 

(Bollen & Pearl, 2013).  

 

 

2 There is a causal relationship from a variable P to a variable Q if 

a. P has a non-trivial correlation with Q, 

b. P temporary precedes Q, 

c. and there is no variable R with confounding effects on both P and Q (Antonakis, 

Bendahan, Jacquart, & Lalive, 2010). 

Further, if such variable R exists, which is always the case, it should be controlled for in the 

structural model. 
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I believe that if I can provide empirical evidence that: 

a. characterises engineering students’ approaches to learning mathematics 

b. establishes the contribution of prior mathematics knowledge to engineering 

students’ performance in mathematics, and to what extent this contribution 

influences? 

c. exposes the main students’ approaches to learning (either deep or surface) 

that influence performance in mathematics, and to what extent? 

d. establishes the contribution of perceived self-efficacy to the students’ 

performance in mathematics, and to what extent? 

Then, by implication, I can possibly point to where interventions might have a 

positive impact and suggest (describe) evidence-based interventions to help 

engineering students perform very well in introductory mathematics courses.  

1.6 Outline of the present dissertation 

The remaining parts of the present dissertation are arranged in chapters. The next 

chapter that follows the current introduction chapter focuses on the conceptual 

framework. Therein, I introduce different types of frameworks in mathematics and 

argued for my choice of using the conceptual framework. Then, I present the 

primary postulations of both student approaches to learning theory and the self-

efficacy theory and link these postulations to my hypothesis formulations. The 

chapter concludes with some strengths, limitations, and my reflections on potential 

ways to network the theories for a coherence argument in the present study.  

Chapter Three is on methodology and methods. In the chapter, I highlight the 

crucial elements of my research paradigm and my conception of measurement. I 

introduce the specifics of operationalisations and measures of the research 

constructs. Further, I delve into some salient issues on validity and reliability as 

they relate to the latent variable theory of measurement. I immediately follow these 

issues with some procedures for data collection and analyses. The chapter 

concludes by highlighting some important aspects of ethical considerations in the 

present study. 

I present an overview of the papers in Chapter Four. For each paper, I highlight 

the study aims, specific research methods, and primary findings. Further, I 

demonstrate how the findings of each paper address the research questions and or 

hypotheses they are purported to address. Chapter Five presents an elaborate 
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discussion on the findings that are highlighted in Chapter Four. I expose some 

implications of these findings for agents of implementation, e.g., mathematics 

teachers and curriculum planners. I register my dispositions toward the concept of 

test validity, the intended validity evidence exposed in papers I-V, and the 

necessity for more validation studies to strengthen my findings. Further, I reflect 

on the contributions of each paper toward making a coherence argument for the 

achievement of the research aims. Finally, I acknowledge some potential 

limitations of this study and the implications of these limitations to generalisation 

of findings.  

In Chapter Six, the present dissertation concludes by enumerating the steps taken 

through the course of the present study to communicate the findings to the agents 

of implementation. I argue for the significance of the present study and its unique 

contributions to the literature. Finally, I highlight the most significant result of the 

present study and some descriptions of evidence-based interventions as proxies to 

enhance engineering students’ performance in an introductory calculus course. 
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2 The conceptual framework 

2.1 Frameworks in mathematics education research 

The online Oxford advanced learner dictionary defines a framework as “a set of 

beliefs, ideas or rules that is used as the basis for making judgements, decisions, 

etc.”  In the context of education research, a framework has been described as “a 

basic structure of the ideas (i.e., abstractions and relationships) that serve as the 

basis for a phenomenon that is to be investigated” (Lester, 2010, p. 69). Thus, 

adopting a framework in mathematics education research comes with lots of 

advantages. Some of these advantages are provisions of structures for 

conceptualisations of research constructs; formulating research questions; 

hypothesising relationships between research constructs; selecting or developing 

research instruments; justifying research methods; making sense of research data; 

and interpretations of results (Eisenhart, 1991; Lester, 2010). These advantages 

manifest through the crucial roles of theories in such frameworks. Theories in 

mathematics education serve many purposes such as lenses to examine the data, 

tools for analysing pedagogical activities, descriptions of the essence of learning, 

and arguments for justifying relationships between research constructs (Lester, 

2010; Prediger, Bikner-Ahsbahs, & Arzarello, 2008).  

In a paper presented at the thirteenth annual meeting of the North American chapter 

of the international group for Psychology of Mathematics Education, Eisenhart 

(1991) distinguished between three types of education research frameworks: (a) 

conceptual framework, (b) theoretical framework, and (c) practical framework. 

The main difference between these research frameworks boils down to the role of 

theory or theories therein. In a theoretical framework, for example, a theory (or 

theories) is usually assumed as the framework itself such that all the research 

activities are guided and explained through the adopted theory. For example, Jean 

Piaget’s research is deeply rooted in a constructivist genetic epistemology of 

adaptation (assimilation and accommodation). At the other extreme, is the practical 

framework (early work of Michael Scriven is an example (e.g.,Scriven, 1986)), in 

which case, there is little or no recourse to a theory. The research activities are 

based on ‘what works’ and the experience of the researchers (Lester, 2010).  
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At the middle of these two frameworks (theoretical and practical) lies the 

conceptual framework. A conceptual framework according to Eisenhart (1991) is 

“a skeletal structure of justification, rather than a skeletal structure of explanation 

based on logic (i.e., formal theory) or accumulated experience (i.e. practitioner 

knowledge)”, (p. 209). One distinguishing property of the conceptual framework 

is that a theory (or a variety of theories) is used as arguments for justifying 

appropriateness and usefulness of chosen constructs under investigation coupled 

with any expected relationship among them. This justification happens without 

total submission to every dictate of the proponents of such theories. This view is 

contrary to the theoretical framework in which researchers mostly see a theory (or 

theories) as a lens (perhaps the only one) through which data are viewed such that 

hypotheses of the theory are tested with the aim of supporting, modifying, or 

extending the theory. More so, the use of the theoretical framework in mathematics 

education research has been partly criticised for enforcing interpretation of results 

based on a ‘theoretical decree’ rather than evidence (i.e. what the data say?), lack 

of ‘triangulation’, and encouraging localised meanings (Lester, 2010).  

It is my opinion that adopting any of the three types of frameworks in mathematics 

education research depends on several factors such as the research focus, the 

research paradigm, and the researcher’s inquiry aims, rather than a mere right or 

wrong dichotomy. Thus, I adopt a conceptual framework in the present study for 

two reasons. First, I consider the nature of my study, which is framed within the 

quantitative research paradigm3. Second, I consider my inquiry aims which are to 

investigate potential causal relationships between the research constructs, unlike a 

description of the essence of such constructs (typical of a qualitative research 

paradigm). As such, I erect the skeletal structure for the present study by 

combining ideas from two well-established psychological theories and previous 

studies to operationalise and justify hypothesised relationships between my 

research constructs. The operationalisation of my object of research is achieved 

through the use of the theories and previous studies in formulating my research 

hypotheses as it is typical of research within the quantitative paradigm (e.g., 

Maciejewski & Merchant, 2016; Schukajlow, Achmetli, & Rakoczy, 2019). These 

two theories are student approaches to learning (SAL) theory (Marton & Säljö, 

1976a, 2005) and self-efficacy theory (Bandura, 1977, 2012).  

 
3 An elaborate discussion on the research paradigm is presented in the next chapter. 
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2.2 Student approaches to learning (SAL) theory 

2.2.1 Origin, ontology, and epistemology of the SAL theory 

Marton and Säljö dissatisfied with the dominant information processing (IP) theory 

in their research group at that time, went ahead to develop the SAL theory from 

their series of qualitative experimental studies. These studies were focused on 

Swedish undergraduate students’ approaches to reading, understanding and 

answering questions based on some presented passages of prose and newspaper 

articles (Marton & Säljö, 1976b, 2005). The ontology of this theory is perceived 

to be critical realism in which there is a rejection of multiple realities for the world 

people live in. To the SAL tradition, an individual learns (i.e. gains knowledge 

about the world through experiencing) in a dialectic relationship with social factors 

and that the knowledge gained is not constructed individually nor imposed by the 

environment (Marton & Booth, 1997). Therefore, individual’s characteristics, such 

as approaches to learning, are being shaped dynamically by social factors, prior 

experience and conception of learning (Marton & Booth, 1997). Thus, reality (in 

this case, learning) according to SAL theory is situated within the teaching-

learning context as opposed to the IP theory that restricts learning conception to 

what happens within an individual (Marton & Booth, 1997). Even though SAL 

theory originates from studies on newspaper passages it has been modified, 

expanded and applied to diverse teaching and learning situations (e.g., Hounsell, 

2005).  

In the original experiments conducted by Marton and Säljö, they utilised the term 

“approaches to learning” to connote adopted processes by the students prior to the 

experiments which directly affect their learning outcomes. The epistemology of 

the SAL theory as pursed by Marton and Säljö is phenomenography. The 

phenomenography is “a way of identifying, formulating, and tackling certain sorts 

of research questions, a specialization that is particularly aimed at questions of 

relevance to learning and understanding in an educational setting” (Marton & 

Booth, 1997, p. 111). It relies on students’ exploration of experience, prior 

knowledge and students’ description of what learning means to them. It 

encompasses a bottom-up qualitative research methodology in which a researcher 

explores a phenomenon without a formal theory before data collection. Instead, 

the evidence is extracted from the students’ account of the learning context to 

establish a coherent argument for describing the phenomenon (Marton, 1981).  
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2.2.2 Approaches to learning are not fixed constructs 

A basic tenet of SAL theory is that students approach learning in different ways 

because of constant interactions between intention, motive, and learning context. 

However, these diverse approaches can be classified into finite, manageable 

categories; in fact, two categories – deep and surface approaches (Marton & Säljö, 

2005). This historic categorisation of students’ learning approaches has equally 

been confirmed in other studies (e.g., Biggs, 1987; Entwistle & Waterston, 1988; 

Svensson, 2005).  The SAL theory is in contrast with the IP theory which sees 

students’ learning approaches as a function of mainly cognitive ability, fixed traits 

and universal across all cultures (Moreno & DiVesta, 1991). The IP theoretical 

framework has received criticisms for its perceived inappropriateness to describe 

students’ learning approaches as it excludes a good number of social factors. Some 

of these factors were enumerated by Biggs et al. (2001) as “students’ values and 

motives, their perceptions of task demands, teaching and assessment methods, 

classroom climate, and so on.” (p. 134). Thus, it follows that approaches to 

learning mathematics (deep and surface) among engineering students are not fixed 

but change as learning situations change coupled with students’ affective reactions. 

Students that adopt deep approaches to learning get hold of information with the 

intent of discovering the intended meaning of the learning material. In contrast, 

surface approach learners are preoccupied with the discourse or the text itself with 

little or no attention to the intended meanings. In more succinct words, “the former 

refers to paying attention to the meaning and significance of the materials to be 

learned, whereas the latter concentrates more on rote memorising” (Lonka, 

Olkinuora, & Mäkinen, 2004, p. 302). More recently, Biggs (2012) while 

distinguishing between the surface and deep approaches to learning posited that 

the surface approach to learning “refers to activities of an inappropriately low 

cognitive level, which yields fragmented outcomes that do not convey the meaning 

of the encounter” and the deep approach to learning “refers to activities that are 

appropriate to handling the task so that an appropriate outcome is achieved.”, (p. 

42). As such, I argue that because engineering students are being trained to solve 

practical problems using mathematics content knowledge, their approaches to 

learning introductory calculus course are expected to be deep approaches. 

However, since I cannot rule out students who are interested only in achieving a 

passing or good grade on the course, surface approaches to learning are also 

plausible among the engineering students. 
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Therefore, the following hypothesis is formulated: 

Hypothesis 1: There are differences in calculus learning approaches among 

first-year engineering students in terms of the prevalence of deep and 

surface approaches. 

2.2.3 Conception of mathematics, motivation, and approaches to learning 

The SAL theory posits that the type of approaches (deep or surface) adopted by 

students in learning a content is predictable from their conceptions of learning 

which in turn is linked with motivation to learn (Marton & Säljö, 2005). With a 

focus on mathematics learning, students who conceive the calculus course as 

something useful and proper understanding of it is necessary for intellectual 

development tend to adopt deep approaches to learning the course. In contrast, 

students whose conception of the calculus course is just a requirement to move to 

the next level of study are more likely to adopt surface approaches to learning the 

course. To substantiate this claim, Mji (2003) found that there is a strong 

relationship between surface approaches to learning and students’ conceptions of 

mathematics in a longitudinal study that involves 459 undergraduate students 

enrolled on a first-year mathematics course. Thus, deep approaches to learning are 

intrinsically motivated by the intention to develop conceptual understanding of 

learning materials, while surface approaches to learning are extrinsically motivated 

by the quest to achieve good grades in the course (Hounsell, 2005; Marton & Säljö, 

2005). 

2.2.4 Relationships between approaches to learning, previous and current 

performance 

Following Biggs et al. (2001) lines of thought, I deem it necessary to remark that 

SAL theory cannot be disjointed from the presage-process-product (3P) model 

initially developed by Dunkin and Biddle (1974) and adapted from classroom 

teaching context to student learning context by Biggs (1993). The 3P model elicits 

a dynamic interaction between presage factors (e.g., prior knowledge), process 

factors (e.g., ongoing approaches to learning) and product factors (e.g., students’ 

learning outcomes), as shown in Figure 1. This framework has helped educational 

psychologists in interpreting SAL theory and in developing instruments for 

measuring the approaches to learning (Biggs et al., 2001; Entwistle & Tait, 1994). 

In doing so, a more refined conceptualisation of approaches to learning as 
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motives,  predispositions, styles, and strategies to adopt a process was proposed 

(Biggs, 1993).  

 

Figure 1. The 3P model of teaching and learning 

Note. Reprinted from “The revised two-factor Study Process Questionnaire: R-

SPQ-2F” by J. Biggs, D. Kember and D.Y.P. Leung, 2001, British Journal of 

Educational Psychology, 71(1), p. 136 

(https://doi.org/10.1348/000709901158433). Copyright 2001 by the British 

Psychological Society. 

Figure 1 shows a dynamic system of continuous interaction between the presage, 

process, and product factors with ongoing approaches to learning at the centre of 

the model. The double-headed arrows indicate the feedback relationships between 

components of this model. Therefore, it can be deduced from the 3P model that 

engineering students’ learning approaches are perceived as context-dependent that 

change from one context to another based on prior mathematics knowledge and 

students’ current performance in mathematics.  

SAL theory has gained wide acceptance among education researchers in diverse 

fields, e.g., mathematics, science, and engineering especially in developing its 

measures and predicting students’ learning outcomes (e.g., Asikainen & Gijbels, 

2017; Biggs et al., 2001; Biggs & Tang, 2007). Deep approaches to learning are 

generally associated with increased learning outcomes, while surface approaches 

to learning are generally associated with decreased learning outcomes. For 

instance, Maciejewski and Merchant (2016) found in their study that deep 

approaches to learning have a positive correlation with student mathematics grades 

in the first year, while surface approaches to learning have a negative correlation 
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with student mathematics grades in year two, year three and year four. Moreover, 

relying on SAL theory directly or on measures based on SAL theory, some 

education researchers have investigated approaches to learning from a domain-

specific perspective such as mathematics, civil engineering, and economics (e.g., 

Maciejewski & Merchant, 2016; Salmisto, Postareff, & Nokelainen, 2017). 

Therefore, based on the postulates of SAL theory coupled with some insights from 

the previous studies, I formulated the following hypotheses: 

Hypothesis 2: There is an effect of prior mathematics knowledge on 

engineering students’ ongoing approaches to learning. 

Hypothesis 3: There are effects of engineering students’ approaches to 

learning on their performance in a first-year calculus course.  

Hypothesis 4: Ongoing approaches to learning mediate the effect of 

engineering students’ prior mathematics knowledge on their performance 

in a first-year calculus course.  

It is important to remark that the 3P model in the SAL tradition postulates a 

dynamic feedback relationship between approaches to learning, prior knowledge, 

and current students’ performance. However, hypotheses 2 to 4 present one-

directional effects between these constructs. It is my opinion that a dynamic 

feedback relationship is best investigated especially for these constructs using a 

longitudinal research design. Meanwhile, the present study follows a cross-

sectional design due to some external constraints of the research. It will be 

interesting to conduct a future study with this intention. More so, hypotheses 2 to 

4 have been formulated, in a broad sense, without differentiations into specific 

signs (positive or negative) of effects of each construct on another because these 

signs of effects are part of the knowledge gaps the present study intends to uncover. 

Finally, one may observe that SAL theory is contrasted with IP theory in some 

instances. I do not intend to pick on the theory. However, I think IP theory forms 

a default basis for comparison with SAL theory because the latter evolves from a 

dissatisfaction with the former by Marton, Säljö, and other colleagues.   
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2.3 Self-efficacy theory 

2.3.1 Origin, ontology, and epistemology of the self-efficacy theory 

Self-efficacy theory is deeply rooted in Bandura’s agentic social cognitive theory 

which sees an individual’s behavioural changes as consistently being regulated and 

modified by interacting with social factors in the environment whose feedback 

influences the next actions and outcomes (Bandura, 2001). The agentic social 

cognitive theory made an ontological paradigm shift from the traditional social 

cognitivism by rejecting the dualistic view of personal agency and social structure 

(Bandura, 2012).  Thus, to social cognitive theorists, “the self is not split into object 

and agent; rather, in self-reflection and self-influence, individuals are 

simultaneously agent and object” (Bandura, 1997, p. 5). This assertion means 

when a person acts intentionally on things around in the environment, he or she 

becomes an agent. Almost concurrently, when he or she acts on self or engages in 

self-reflection, he or she becomes an object. Therefore, Bandura argued that both 

the personal agency and the social structure “function interdependently rather than 

as disembodied entities” (Bandura, 2012, p. 15). 

An epistemological position that is fundamental to the agentic social cognitive 

theory is the concept of reciprocal determinism (Bandura, 2012).  It is a perspective 

with which human functioning is viewed as a causal dynamic system of interaction 

between personal factors, behavioural factors, and environmental factors. Thus, 

perceived self-efficacy, which is a component of the personal factors in the 

dynamic system, is considered not to be a fixed construct. Instead, it changes 

accordingly with respect to changes in the system (Bandura, 2012). In specific 

terms, Borgonovi and Pokropek (2019) applied reciprocal determinism to research 

on mathematics perceived self-efficacy. They wrote, “reciprocal determinism 

describes the sets of relationships underlying the interactions between: (a) 

individuals’ exposure to mathematics tasks, (b) mathematics self-efficacy beliefs, 

and (c) mathematics ability” (p. 269). Therefore, it can be argued that perceived 

self-efficacy is a task-specific construct that influences the performance of 

engineering students in a calculus task. 
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2.3.2 Perceived self-efficacy is a combination of confidence and estimations 

of expected outcomes 

Apart from the task-specificity of perceived self-efficacy, another basic tenet of 

self-efficacy theory is that all psychological and behavioural changes occur as a 

result of modifications in the sense of efficacy or personal mastery of an individual 

(Bandura, 1977, 1982). In the words of Bandura (1977), “people process, weigh, 

and integrate diverse sources of information concerning their capability, and they 

regulate their choice behavior and effort expenditure accordingly” (p. 212). Thus, 

Bandura’s self-efficacy theory posits that explanations and predictions of 

psychological changes can be achieved through appraisal of perceived self-

efficacy expectations of an individual. In other words, perceived self-efficacy is a 

combination of both outcome expectancy – credence that a given behaviour will 

or will not result to a given outcome – and self-efficacy expectancy – “the belief 

that the person is or is not capable of performing the requisite”, (Maddux, Sherer, 

& Rogers, 1982, p. 208). As such, one cannot wholly discern perceived self-

efficacy from the expectancy-value theory (Wigfield & Eccles, 2002). However, 

self-efficacy theory places more emphasis on competence beliefs than the 

expectancy-value theory does (Leaper, 2011).  

2.3.3 Perceived self-efficacy regulates the adoption of approaches to learning 

Perceived self-efficacy has been documented to form a strong positive relationship 

between ‘challenging set goals’ and ‘commitment for its attainment’. In Bandura’s 

words “the stronger the perceived self-efficacy, the higher the goal challenges 

people set for themselves and the firmer is their commitment to them” (Bandura, 

1993, p. 118). Perceived self-efficacy beliefs serve several purposes in regulating 

cognitive, motivational, affective, and decisional processes of an individual’s 

human functioning (Bandura, 2001, 2002). It is crucial to a learner as it stimulates 

the individual not to relent in completing difficult tasks despite hindrance. It makes 

the individual’s involvement very active and boosts morale to see to the attainment 

of a desirable outcome (Bandura, 1997, 2012). In a study involving undergraduate 

students following a biomechanics course in the United States, Wallace and 

Kernozek (2017) demonstrated how self-efficacy theory could be used by 

instructors to improve students learning experience and lower their anxiety 

towards the course. More so, Sheu et al. (2018) reported a meta-analysis study on 

the contributions of self-efficacy theory in learning science, mathematics, 

engineering and technology. More recently, Czocher, Melhuish, and Kandasamy 
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(2019) showed how interventions such as a mathematical modelling competition 

could be used to improve students’ mathematics perceived self-efficacy.  

Moreover, one may argue that perceived self-efficacy is not only a predictor of 

engineering students’ learning outcomes in mathematics, but it also regulates the 

adoption of approaches to learning from two perspectives. First, since perceived 

self-efficacy regulates individuals’ decisional processes and approaches to 

learning are parts of these processes (Biggs, 1993), then perceived self-efficacy 

could influence adoption of students’ approaches to learning. Second, deep 

approaches to learning are motivated intrinsically, surface approaches to learning 

are motivated extrinsically, and perceived self-efficacy regulates motivational 

processes. Then, perceived self-efficacy should influence the adoption of 

approaches to learning though motivation. As such, I formulate the following 

hypotheses: 

Hypothesis 5: There is a causal effect of perceived self-efficacy on 

engineering students’ ongoing approaches to learning a first-year calculus 

course.  

Hypothesis 6: There is an effect of perceived self-efficacy on engineering 

students’ performance in a first-year calculus course.  

2.3.4 Prior mathematics knowledge and perceived self-efficacy 

The development of people’s beliefs to complete a task in order to achieve a 

desirable outcome has been reported to have four primary sources of influence. 

These sources are enumerated as follows: “enactive mastery experience” – 

personal previous task-based achievement, “vicarious experience” – experience 

gained by monitoring peers or people around, “verbal persuasion” – 

complementary or contradictory feedback received from others, and 

“physiological and affective states” – physical or emotional situations during the 

behavioural changes (Bandura, 1997, p. 79; 2008). Personal experience on 

previous tasks exerts the most substantial influence among the four sources of 

perceived self-efficacy with successes consolidating a robust perceived self-

efficacy and failure, on the other hand, weakening it (Bandura, 2008; Yurt, 2014). 

Within the context of mathematics learning, prior knowledge, among other sources 

of perceived self-efficacy, has been shown to have the highest impact on students’ 
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perceived self-efficacy in solving mathematics problems (e.g., Joët, Usher, & 

Bressoux, 2011; Zientek, Fong, & Phelps, 2019).  

At this juncture, one may argue that Bandura’s self-efficacy theory can also be 

embedded in the 3P model as it emphasises the effect of previous experience (a 

presage factor) on perceived self-efficacy (a process factor), which in turn 

influences students’ performance (a product factor). As a result, I claim that prior 

mathematics knowledge influences perceived self-efficacy, which in turn affects 

engineering students’ performance in mathematics. Therefore, I formulated the 

following hypotheses:  

Hypothesis 7: There is an effect of prior mathematics knowledge on 

perceived self-efficacy among first-year engineering students. 

Hypothesis 8: Perceived self-efficacy mediates the effect of engineering 

students’ prior mathematics knowledge on their performance in a first-year 

calculus course.   

2.4 Reflective critique 

2.4.1 Implications of SAL theory to the present study 

The SAL theory of Marton and Säljö using phenomenography coupled with some 

modifications and advancement by Biggs and others has provided theoretical 

structures for conceptualising students’ approaches to learning in the present study. 

This statement is evident in the way the engineering student’s approaches to 

learning have been defined to include motives, predispositions, styles, strategies 

used in adopting a process rather than mere cognitive activity as in the IP 

framework. Moreover, the classification of students’ approaches to learning into 

‘surface’ and ‘deep’ approaches has influenced the present study towards selection 

and validation of a measure for the constructs (Zakariya, Bjørkestøl, Nilsen, 

Goodchild, & Lorås, 2020). According to SAL tradition, approaches to learning 

are not fixed, they are motivated by intention and purpose, and they influence 

learning outcomes. These basic ideas of the theory have strengthened the present 

study in formulating some research questions and hypotheses.  However, SAL 

theory is limited in scope as it only concerns approaches to learning and cannot be 

used to justify relations between perceived self-efficacy and learning outcomes in 

mathematics. This limitation of SAL theory led to the adoption of Bandura’s self-

efficacy theory.    
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2.4.2 Implications of self-efficacy theory to the present study 

The conceptual understanding of perceived self-efficacy in the present study has 

been provided with a theoretical structure from Bandura’s self-efficacy theory. 

Self-efficacy theory posits that all psychological and behavioural changes occur as 

a result of modifications in the sense of self-efficacy – the conviction to perform a 

task geared towards a desirable outcome, or personal mastery of an individual. 

Perceived self-efficacy is a task-specific construct. It has four sources of influence 

in which prior knowledge exerts the most substantial influence on the construct, 

and it affects learning outcomes in mathematics. These basic arguments of self-

efficacy theory shaped the formulation of some research questions and hypotheses 

of the present study.  Further, this theory has a strong instrumental role in 

developing the calculus self-efficacy inventory used in the present study, reported 

elsewhere (Zakariya, Goodchild, Bjørkestøl, & Nilsen, 2019).  

2.4.3 Potential for networking SAL and self-efficacy theories 

It is important to remark that the two theories used in the present are 

complementary to each other with a common aim of explaining differences in 

learning outcomes among higher education students. Complementarity in a sense 

that the self-efficacy theory addresses the aspects of perceived self-efficacy that 

the SAL theory cannot justify. Their ontological and epistemological positions on 

the constructs they address as being context-specific and influenced by social 

factors in a non-dualistic manner are potentials for networking these theories. 

There appears to be a common ground for the two theories in their paradigmatic 

research questions of either explaining or predicting the learning outcomes from 

students’ factors, even though their methodological approaches are different in 

terms of phenomenography in SAL theory and quantitative methodology in self-

efficacy theory. It can, therefore, be argued that these theories are not too distant 

from each to make a coherence argument for the present research. 

Another shared characteristic of the two theories is that they consolidate the 

‘presage’, ‘process’ and ‘product’ features of the 3P model. The 3P framework is 

necessary to anchor these two theories in a way that the eight hypotheses of the 

present study could form a uniform hypothesised conceptual model, as presented 

in Figure 2. Such that prior mathematics knowledge is embedded in the ‘presage’, 

ongoing learning approaches and perceived self-efficacy are embedded in the 

‘process’, and performance of students on mathematics tasks is embedded in the 
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‘product’ components of the 3P model. However, there are other aspects of 

engineering students’ learning that are not captured by the two theories. Some of 

these aspects are collective dimensions and the students’ activity systems, teacher-

student interaction, students’ mathematical discourse, contradictions, and tensions 

in learning first-year calculus course. In order to attend to these shortcomings, 

future (qualitative) research may be conducted using the activity theory, the 

anthropological theory of didactics, and commognition theory as theoretical 

approaches.  

 

Figure 2. The Hypothesised conceptual relationships between research variables 

Figure 2 shows the hypothesised relationships between the research constructs. 

The oval shapes represent unobserved (latent) variables, while the rectangles 

represent observed variables. Single-headed arrows indicate the directions of the 

hypothesised effects, and the double-headed arrow indicates a correlation. The 

figure shows that prior mathematics knowledge, deep approaches, surface 

approaches, and calculus self-efficacy are hypothesised to have direct effects on 

students’ performance in the first-year calculus course. Prior mathematics 

knowledge is hypothesised to have an indirect effect on performance in the first-

year calculus course via calculus self-efficacy and approaches to learning. Further, 

calculus self-efficacy is hypothesised to have an indirect effect on student 

performance in the first-year calculus course via approaches to learning, and there 
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is a negative correlation between deep and surface approaches. The correlation 

between deep and surface is negative because each student who adopts a deep 

approach to learning the calculus course is expected to have a low score on surface 

approach subscale and vice-versa.   

2.5 Summary of the chapter 

To conclude, the current chapter presents a brief introduction to frameworks in 

mathematics education research. This introduction was followed by my argument 

for justifying the appropriateness of adopting the conceptual framework in the 

present study rather than the practical or the theoretical frameworks. Primary tenets 

of the two theories that form the conceptual framework of the present study were 

discussed coupled with conceptualisations of approaches to learning and perceived 

self-efficacy. I demonstrate how the postulates from the two theories coupled with 

some insights from previous studies led to the formulation of my research 

hypotheses. Further, my reflective thoughts on the strengths and limitations of the 

two adopted theories with an argument for potentials on networking them were 

presented. 
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3 Methodology and methods 

3.1 Research paradigm 

There seems to be no agreement among philosophers, educators, and scientists on 

a precise definition of paradigm. In the classic book on the philosophy of science 

“The structure of scientific revolutions” by Thomas S. Kuhn, Margaret Masterman 

pointed out twenty-one different usages of paradigms in which Kuhn admitted that 

there are indeed twenty-two distinct usages (Kuhn, 2012). These distinct usages of 

paradigms have probably stemmed from its various conceptualisations across 

different fields of study. To bypass these controversies, one can refer to Kuhn’s 

(2012) definition of paradigm at some points in his book as “the entire 

constellation of beliefs, values, techniques, and so on shared by the members of a 

given community” (p. 174). Therefore, a paradigm may be described as shared 

beliefs, values, and methods by a community of educators in relation to conducting 

scientific inquiries in the field. In the forthcoming subsections, rather than 

announcing a research paradigm (which is a difficult task for me) for the present 

study, I present my stances from the following perspectives:   

• nature of reality of chosen attributes under study – ontological claims,   

• relations between the researcher(s) and the attributes under investigation – 

epistemological claims, and  

• procedures adopted by the researcher(s) to find out what can be known 

about the chosen attributes – methodological claims (Lincoln & Guba, 

2005).  

3.1.1 Ontological claims of the research paradigm 

The ontology of the present study follows the lines of thought of critical realism 

with a notion that the chosen attributes - students’ learning approaches, self-

efficacy, prior mathematics knowledge and performance have separate existence 

that is independent of whether the researcher is thinking about them or not. It is 

acknowledged that there is an objective reality to each of these attributes. 

However, my apprehension of this reality is theory-laden, which is contrary to the 

empiricist view (and its social science version – positivism) that claims total 

apprehension of reality. This view also contradicts relativism that denies separate 



26 

 

and absolute existence of such attributes and claims that multiple realities exist for 

each attribute. More so, I hold that individuals experience these attributes in 

different ways, either directly or indirectly observable. Moreover, these attributes 

can be operationalised and measured4. Direct apprehension of reality is a big claim 

which seems practically impossible when dealing with human subjects whose next 

actions are difficult to predict due to consciousness. However, it seems August 

Comte failed to acknowledge this fact when he advocated the adaptation of 

empiricism to studies in the field of social sciences. I also struggle with this idea, 

especially in the proper place to position mathematics education research. A clear-

cut demarcation seems obscure as to whether mathematics education belongs to 

natural sciences or social sciences. This confusion has metamorphosised, in my 

opinion, into lack of an acceptable universal epistemology of research in the field. 

3.1.2 Epistemological claims of the research paradigm 

On the question of how to approach the research constructs? I approached, studied, 

and treated the research constructs as social phenomena that confront the 

researcher as external factors each with a distinct existence in an objective way 

and not constructed. Objectivity in this sense connotes an approach that reflects 

the true nature of the constructs to a large extent, free from biases and 

intersubjectivity, i.e., repeated observations by different researchers shall produce 

similar (not exact) data. It is acknowledged in the present study that complete 

objectivity is not feasible but can be approached as close as possible. I am neither 

in support of subjectivism as understood by the constructivists nor positivists who 

claim researchers should be neutral and devoid of all biases. That is, I hold a 

contrary perspective to the accurate apprehension of reality as claimed by the 

positivists and localised representation of realities as claimed by the 

constructivists. Thus, findings that emanate from the present study represent, 

supposedly, a close estimation of the relationships between the research constructs.  

3.1.2 Logic of methodology of the research paradigm 

The logic of methodology in the present study follows a scientific approach of 

hypothetical deductions as postulated by Popper (2002). The effects between and 

within the research constructs were hypothesised based on theories as explained in 

the conceptual framework section and literature before data collection. The data 

 

4The issue of measuring the research constructs will be elaborated in the next section. 
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were collected through quantitative methods involving the use of survey 

instruments and tests. The hypotheses were then tested using critical descriptive 

and inferential statistics such as exploratory factor analysis, confirmatory factor 

analysis, item response theory, and structural equation modelling. These enable 

the researcher to achieve his inquiry aims of establishing the relationships between 

and within the research constructs. This methodology is considered appropriate 

because of its alignment with the ontology and epistemology of the present study, 

unlike the qualitative research methodology that is popular with relativism and 

subjectivism. Moreover, the use of structural equation modelling to evaluate the 

hypotheses requires large amount of data to ensure adequate measures of validity, 

reliability, significance, and effect sizes. Data from the large cohort of students 

could be too complex to analyse with the use of qualitative research methodology.   

3.2 Conceptualisations of measurement 

My statement in Section 3.1.2 that the research constructs can be operationalised 

and measured has provoked some reflections about what is measurement? Put 

differently, what is my perception of the word measurement? To address this 

question, I must allude to the fact that a thorough explanation of the word 

measurement is indefensible without a resort to philosophical theories on 

measurement. As such, I will highlight the conceptions of the measurement as 

articulated by three significant theories of measurement – classical theory (not 

classical test theory), representational theory, and latent variable theory – and 

justify my choice of upholding the latent variable theory of measurement.  

3.2.1 The classical theory of measurement 

The classical theorists (e.g., Michell, 1986) maintain a realistic ontological 

perspective of an attribute to measure while conceptualising measurement as “the 

estimation or discovery of the ratio of some magnitude of a quantitative attribute 

to a unit of the same attribute” (Michell, 1997, p. 358, italics removed). A classic 

example is the length of a side of the tabletop. To estimate this length (or discover 

the ratio of the side of a tabletop’ length to a unit, such as a meter), one enumerates 

the number of units that make up a length which equals to that of the side of the 

tabletop. This procedure can be done quickly by holding a meter rule next to the 

side of the tabletop and reading off the equivalent units of length from it. As such, 

measurement, according to the classical theory, entails logical arguments that 
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establish a quantitative structure for the attribute to be measured coupled with 

formulations of methods for a systematic numerical estimation of magnitudes. 

Therefore, for any attribute (e.g., length of the side of a tabletop) to be measurable, 

it must possess a quantitative structure, and such attribute is called a quantity 

(Michell, 1997).  

An attribute is said to possess a quantitative structure if, most importantly, it 

satisfies the first axiom5 by Hölder (1901) with an English translation by Michell 

and Ernst (1996). Moreover, the attribute, by extension, is commutative, 

associative and continuous (Michell, 1997). Hölder’s first axiom demands that a 

quantitative attributive must be divisible into divisibles. For instance, the length of 

a pencil (or mass of an object) is divisible when the pencil is broken into smaller 

parts with each smaller part still regarded as a length of the pencil. In this case, the 

length, so also the mass of an object, satisfies Hölder’s first axiom. More so, two 

or three broken lengths of the pencil (or bits of the mass of an object) can be put 

together to form a longer length, and both the order at which this combination takes 

place and its grouping are of no consequence to the resultant length. Thus, the 

length, so also the mass of an object, is both commutative and associative. 

Furthermore, a quantitative attribute must be continuous, i.e., infinitely dense. This 

means, for every two unequal broken lengths of a pencil, for instance, there must 

exist a third piece that is either greater than the first and less than the second or 

less than the first and greater than the second. It is important to emphasise that the 

conditions of quantitative structure apply to the essence of the attributes and the 

numerical estimations to quantify them. 

The restriction of measurable attributes to quantities in the classical theory of 

measurement poses a challenge to any claim of measuring psychological attributes 

such as perceived self-efficacy. The simple question is, do psychological attributes 

possess quantitative structure? A simple answer is no because most psychological 

attributes such as perceived self-efficacy cannot be combined the same way 

quantities can be combined. We know that two objects can be added by aligning 

side by side or put together in a container to get a heavier object. However, it is 

 

5 Hölder’s first axiom states that “[g]iven some quantity 𝑄 with levels (𝑎, 𝑏, 𝑐, … ), either 

(i) 𝑎 = 𝑏, (ii) there exists 𝑐 in 𝑄 such that 𝑎 = 𝑏 + 𝑐, or (iii) there exists 𝑐 in 𝑄 such 

that 𝑏 = 𝑎 + 𝑐” (Markus & Borsboom, 2013, p. 22). 
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unknown how such additive property can be theoretically confirmed for perceived 

self-efficacy. Further, an object of mass 20 grams is two times heavier than an 

object of mass 10 grams. However, there is no evidence to support the claim that 

a person with a score of 20 on a test of prior mathematics knowledge is twice 

competent on the mathematics content knowledge that the test is designed to 

expose than a student with a score of 10 on the same test. Thus, at both the attribute 

and the score levels most psychological attributes, if not all, do not possess 

quantitative structure. Therefore, it is a fruitless exercise and self-contradictory to 

claim measurement of psychological attributes and yet be a loyalist of the classical 

theory of measurement (Michell, 1997, 1999).  

3.2.2 The representational theory of measurement 

The legitimacy of measuring psychological attributes was defended by some 

theorists (e.g., Stevens, 1946) with an introduction of the representational theory 

of measurement. Albeit this defence comes with a price. This price is a more liberal 

approach of extending the concept of measurement to include attributes that do not 

possess quantitative structures. This attempt gave rise to a broader 

conceptualisation of measurement as “the assignment of numerals to objects or 

events according to rule” (Stevens, 1946, p. 677). Stevens’ definition of 

measurement opened doors for different levels of measurement (nominal, ordinal, 

interval, and ratio) because there are different rules one can utilise while assigning 

numerals to objects. With Stevens’ conception of measurement, attention was 

shifted from the realist view of the attribute to be measured (as emphasised in the 

classical theory) to operationalist view that emphasises standardised procedures of 

assigning numerals to objects. The fact that Stevens’ representational theory 

emphasises rules in his conception of measurement makes his theory susceptible 

to criticisms. First, for creating an impression that anything is measurable by mere 

assignment of numbers, and second for neglecting the quantitative structure of the 

attributes to be measured (e.g., Michell, 1997, 1999; Trendler, 2009). Perhaps, 

these criticisms led to a more refined conceptualisation of measurement and the 

introduction of the axiomatic approach to representational theory. 

The axiomatic approach to the representational theory of measurement retains the 

conceptualisation of measurement put forward by the Stevens (1946) but redefines 

the rules with the imposition of isomorphism on the representation (Luce & 

Suppes, 2002; Tversky, Krantz, Suppes, & Luce, 1971). Where, “an isomorphic 
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representation is an assignment of numerals to objects such that every relation 

between the numerals has a parallel relation between the objects” (Markus & 

Borsboom, 2013, p. 35). As an example, suppose objects X and Y are assigned 

numbers x and y, respectively, and x is greater than y, then X is longer than or 

heavier than Y, and vice versa. This idea appears to be trivially understood. 

However, when it is applied to the measurement of psychological attributes such 

as perceived self-efficacy the story will drastically change. This is because 

psychological attributes are susceptible to measurement disturbances which make 

it challenging to achieve isomorphic representation as propagated by the 

representational theory (Cliff, 1992; Trendler, 2009). I will close this section with 

an opinion of Trendler (2009) about the proposal of axiomatic representational 

theorists on measuring psychological attributes. He argued that “they 

[psychological attributes] are neither manipulable nor are they controllable to the 

extent necessary for an empirically meaningful application of measurement 

theory. Hence, they are not measurable” (p. 592, italics in the original). 

3.2.3 The latent variable theory of measurement 

The clash of paradigms between the classical and the representational theories of 

measurement seems to be resolved by the latent variable theory of measurement 

(Borsboom, 2008). Measurement, according to the latent variable theory “involves 

determining the position of people in a latent space on the basis of sets of fallible 

indicators” (Markus & Borsboom, 2013, p. 68). As such, all psychological 

attributes are assumed to be unobserved variables (latent variables) whose 

variability constitutes a common cause for the covariation in respondents’ scores 

on observed variables (indicators). Another crucial assumption in the latent 

variable theory is local independence. This assumption holds that if the latent 

variable does not vary then the covariation in respondents’ scores on observed 

variables will vanish. That is, “an item measures a particular attribute only if 

differences on the attribute cause differences in the item scores” (Markus & 

Borsboom, 2013, p. 84). The latent variables, e.g., perceived self-efficacy, are 

mostly continuous attributes that are not directly observable. At the same time, 

indicators are scale items designed to expose the latent variable(s) based on 

substantive theory (Kline, 2016). The substantive theory, e.g., self-efficacy theory, 

provides the structure of the attribute (as discussed in conceptual framework 

section) and there is no need to assume quantitative structure for such 

psychological attributes (Markus & Borsboom, 2013).  
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On the one hand, the latent variable theory upholds the realist view of 

psychological attributes (as in the classical theory) but rejects the quantitative 

structure (as in the representational theory). On the other hand, the latent variable 

theory does not subscribe to the isomorphic representation and acknowledge that 

the functional relationship between the latent variables and indicators are 

susceptible to disturbances which can be controlled during modelling (Borsboom, 

Mellenbergh, & van Heerden, 2003; Markus & Borsboom, 2013). The latent 

variable theory is adopted in the present study for several reasons. Some of the 

reasons include its recourse to substantive theory to understand the structure of 

each psychological attribute, its rich testable causal assumptions, and its robustness 

to noisy data (Antonakis et al., 2010; Bollen & Pearl, 2013). Examples of models 

that are based on the latent variable theory are exploratory factor analysis (not to 

be confused with principal component analysis), confirmatory factor analysis, item 

response theory, and structural equation modelling. These models form the 

essential tools of analysis in the present study. More about these models will be 

presented in the forthcoming sections, including their implications to test validity 

and reliability. In the meantime, I will present some specifics of research methods 

before returning to latent variable models.  

3.3 Research design 

The present study adopts a cross-sectional survey design through which data are 

collected using, for the most part, online questionnaires, and a test from a large 

cohort of university students. Survey design is considered appropriate for this 

study as it grants the opportunity to quantify the factors that influence students’ 

performance in mathematics. Further, it facilitates the investigation of inherent 

causal relationships within the research constructs using some substantive theories 

and advanced statistical analyses.  

3.4 Sample of the study 

The sample for the present study was collected in two phases. The first phase 

sample (pilot study) comprised first-year students who consented to take part in 

the project and had followed an introductory mathematics course in autumn 2018. 

The second phase sample (main study) comprised first-year engineering students 

who consented to take part in the project and followed an introductory mathematics 

in autumn 2019. I focus on the first-year engineering students in the present study 
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for several reasons. First, it will avail me an opportunity to avert incoherence 

findings as it happened to Maciejewski and Merchant (2016) when they included 

students from other years of study in their study. Second, it is assumed that prior 

mathematics knowledge of the students may be assessed adequately in the first 

year of study. Third, consistent with the task-specificity of both perceived self-

efficacy and approaches to learning mathematics, as highlighted in the conceptual 

framework, I focus on students following a common course. As such, I delimit my 

study to engineering students because they form the largest population of students 

enrolled on a common mathematics course at the university. 

3.5 Operationalisations and measures 

3.5.1 Operationalisation of approaches to learning 

To operationalise approaches to learning to mathematics, it is necessary to 

highlight two crucial elements in the conceptualisations of these constructs. These 

crucial elements are motives and strategies (Biggs et al., 2001). For deep 

approaches to learning mathematics, the motive is to develop a conceptual 

understanding of the learning content while successful performance on the course 

becomes a by-product. As such, students devise lots of strategies to actualise this 

intention while learning mathematics. In contrast, the motive behind the adoption 

of surface approaches to learning mathematics is to pass the course with as little 

work as possible. In which case, students devise several strategies to actualise this 

intention while learning mathematics. Table 1 presents elaborated specifics of the 

motives and strategies behind the adoption of both deep and surface approaches to 

learning mathematics.  
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Table 1. Specifics of the operationalisation of approaches to learning mathematics 

Deep approaches to learning Surface approaches to learning 

Excitement about new mathematics 

topics and devotion of spare time to 

develop a proper understanding of the 

topics. 

The aim is to pass the course with 

limited work done. 

Self-testing on crucial mathematics 

topics to develop mastery of the subject 

matter 

Gross use of memorisation techniques 

with less care for developing a proper 

understanding of the mathematics 

content 

Study hard for mathematics because of 

personal interest and feeling of 

satisfaction in the subject 

Remembering answers to plausible 

examination questions is considered 

the best method to pass the 

examinations. 

High preparation for mathematics 

classes with unanswered questions 

during students’ self-study 

Thinking that in-depth preparation for 

classes or study of mathematics topics 

is unnecessary, it wastes time and 

confusing. 

Exploration of suggested readings for 

the course to develop more calculation 

skills 

Self-confinement to class materials 

with a thought that is unnecessary to 

solve extra mathematical tasks 

3.5.2 The measure of approaches to learning mathematics 

Consistent with the conceptual framework of the present study, the revised two-

factor study process questionnaire (R-SPQ-2F) was identified as the best among 

several measures that are developed to assess students’ approaches to learning. 

Apart from being developed based on SAL theory, its high psychometric 

properties, short length, and ease of score interpretations give it more advantages 

over similar measures, e.g., study skills inventory for students (ASSIST) and 

revised approaches to studying inventory (RASI). The R-SPQ-2F conceptualised 

and operationalised approaches to learning into deep and surface approaches and 

measured each approach with ten items on a five-point Likert scale. Sample items 
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on the R-SPQ-2F are presented in Table 2. R-SPQ-2F is a revision of earlier 

versions that date back to 1987 by Biggs et al. (2001). It has received global 

acceptance among researchers, translated and validated in several languages. 

However, these cross-cultural adaptations have equally provoked heated debates 

about cultural sensitivity of R-SPQ-2F (e.g., Immekus & Imbrie, 2010; López-

Aguado & Gutiérrez-Provecho, 2018; Socha & Sigler, 2014). For this reason, R-

SPQ-2F was translated to Norwegian, localised to mathematics (appendices A and 

B) in line with the context-specificity of the construct, and validated for its 

construct validity, discriminant validity and reliability based on some procedures 

that will be described in the next section. The results of these validation studies are 

well documented and will be presented in the next chapter (Zakariya, 2019; 

Zakariya, Bjørkestøl, et al., 2020). Following the latent variable theory, the deep 

and surface approaches to learning are latent variables that manifest through or are 

exposed by their respective items on the R-SPQ-2F. 

Table 2. Sample items of the R-SPQ-2F 

 Motive Strategy 

Deep 

approaches 

to learning 

“I find that at times studying gives 

me a feeling of deep personal 

satisfaction.” 

“I find most new topics interesting 

and often spend extra time trying 

to obtain more information about 

them.” 

“I work hard at my studies because 

I find the material interesting.” 

“I test myself on important topics 

until I understand them 

completely.” 

Surface 

approaches 

to learning 

“My aim is to pass the course while 

doing as little work as possible.” 

“I only study seriously what is 

given out in class or in the course 

outlines.” 

“I find I can get by in most 

assessments by memorising key 

sections rather than trying to 

understand them.” 

“I find the best way to pass 

examinations is to try to remember 

answers to likely questions.” 
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Note. All items are reprinted from “The revised two-factor Study Process Questionnaire: 

R-SPQ-2F” by J. Biggs, D. Kember and D.Y.P. Leung, 2001, British Journal of 

Educational Psychology, 71(1), p. 148 (https://doi.org/10.1348/000709901158433). 

Copyright 2001 by the British Psychological Society. The 19-item Norwegian version of 

R-SPQ-2F and its English back translations are available in Appendix 1 and Appendix 2, 

respectively.   

3.5.3 Operationalisation of perceived self-efficacy 

A good number of educators have argued that the best measures of perceived self-

efficacy with high predictive power of students’ performance in mathematics are 

task-specific measures (e.g., Kranzler & Pajares, 1997; Pajares & Miller, 1995). 

As such, to operationalise perceived self-efficacy, it is as well necessary to 

highlight two crucial elements in the conceptualisation of the construct as informed 

by the self-efficacy theory. These crucial elements are confidence and an 

estimation of the expected outcome (Bandura, 2006). That is, for a student to be 

described of possessing calculus perceived self-efficacy, for instance,  he or she 

must express his or her convictions of solving some presented calculus tasks and 

must provide an estimate of an expected score or a percentage on a metric scale 

defined by the researcher.  

3.5.4 The measure of mathematics perceived self-efficacy 

Surprisingly, an extensive search of the literature revealed a lack of perceived self-

efficacy measure specifically designed to expose student’s perceived self-efficacy 

on year-one calculus tasks. Therefore, with the operationalisation of perceived 

self-efficacy as highlighted above coupled with Bandura’s (2006) guidelines, I 

developed a measure of calculus perceived self-efficacy, namely, calculus self-

efficacy inventory, using the following steps:  

1. I extracted 15 exam-like questions from the old examination papers of the 

target introductory calculus course. The extracted questions are distributed 

across topics from the curriculum course content (e.g., limits, functions, 

differentiation, and integration). 

2. I prepared these questions into an inventory in which students are to rate 

their confidence in solving each task and by how much on a scale of 100 

points. 
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3. Then, the inventory was pilot-tested and validated for its psychometric 

properties. The results of this validation study are well-documented and will 

be presented in the next chapter (Zakariya et al., 2019).  

The calculus perceived self-efficacy is a latent variable that manifests through or 

is exposed by the items of the self-efficacy inventory. Figure 3 shows some sample 

items and the stem question of the calculus self-efficacy inventory. The full 

inventory is available in Appendix 3 and Appendix 4 for both the Norwegian and 

the English versions, respectively.  

 

Figure 3. Sample questions of the final version of the calculus self-efficacy 

inventory 

3.5.5 Operationalisation and measure of prior mathematics knowledge 

The prior mathematics knowledge of first-year engineering students varies 

distinctively depending on the types of mathematics – practical mathematics (P1 

and/or P2), and theoretical mathematics (S1, S2, R1 or R2) – they followed in their 

respective upper secondary schools. To find a common baseline in assessing this 
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diverse prior mathematics knowledge without compromising the entry 

requirements to engineering programs, I adopted and validated the Norwegian 

national mathematics test (NMT) and used it in the present study. The NMT is a 

test that is owned and conducted biennially for the past two decades by the 

Norwegian Mathematical Council. The Mathematical Council designed the test to 

assess pre-university knowledge of mathematics of undergraduate students on 

entry to degree programs across universities in Norway. Therein, 16 items are 

drawn from the lower secondary school mathematics curriculum in which the 

students are to solve within 40 minutes. Some of the items are standard multiple-

choice questions while others are short answer open-ended questions. Prior 

mathematics knowledge in all the analyses of the present study was treated as a 

latent variable that is manifested through or is exposed by the items of the NMT. 

The item quality (in terms of difficulty and discrimination indices), validity, and 

reliability of the NMT are studied and well-documented (Zakariya, Nilsen, 

Goodchild, & Bjørkestøl, 2020a). I did not include sample items on the test in the 

present study because permission to do so has not been granted by the Norwegian 

Mathematical Council, and this because the test is reused, to show trends of 

students’ competencies over several years.  

3.5.6 Operationalisation and measure of performance in mathematics 

Students’ performance in mathematics was operationalised and measured in the 

present study with their respective cumulative final scores in an introductory year-

one mathematics course. Consistent with the literature (e.g., Cano et al., 2018), I 

argue that these scores are the most suitable measure of students’ performance in 

the course. My argument is based on a premise that the scores are reflective of the 

overall achievement on university regular assessment that is common to all the 

students.  

3.6 Test validity and reliability  

3.6.1 Background to factor analysis 

The test validity of the measures used in the present study was investigated using 

factor analysis procedures. Factor analysis (FA) is a statistical tool that has gained 

wide acceptance among educationists over many decades in developing research 

measures, e.g., questionnaires, and tests (DiStefano & Hess, 2005). Exploratory 

and confirmatory factor analyses are two examples of FA with a shared origin 
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called the common factor model. Because the common factor models are based on 

latent variable theory, constructs, e.g., perceived self-efficacy and approaches to 

learning mathematics are unobserved variables that are operationalised by some 

scale items/indicators such that covariances of scores on these items are reflective 

of the constructs. As such, the test validity is the degree at which the covariation 

in the observed item scores reflect their common cause (the unobserved/latent 

construct). Exploratory factor analysis (EFA) seeks to explain the variability by 

optimally expressing each indicator as a linear function of a unique factor and one 

or more common factors such that a minimal number of factors are identified.  EFA 

is usually used at the early stage of scale development. On the other hand, 

confirmatory factor analysis (CFA) is used at a later stage of scale development to 

validate theorised relationships between indicators and factors of such measures. 

Thus, CFA constitutes a test of validity in the latent variable perspective. For 

instance, consider the measurement model of a Norwegian language validation of 

the R-SPQ-2F used in the present study, as shown in Figure 4.  

 

Figure 4. The measurement model of R-SPQ-2F (Norwegian version) 

Note. The Norwegian version of the R-SPQ-2F contains 19 items as opposed to 

the 20 items in the original questionnaire. 

The accompanied set of equations to the measurement model in Figure 4 are 

presented in Equation 1. Even though, these equations share some assumptions 

(e.g., linearity, i.e., a unit increase or decrease in 𝜂𝑗 brings a unit change in 𝑎𝑙𝑖 , 

constant coefficients, i.e. 𝜆𝑖′𝑠 are assumed to be equal across every individual of 
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the population, and so on) with regression equations (REs) they are substantially 

different from the REs in two ways. The first way concerns a causal assumption 

inherent in Equation 1. For each equation in (1), there is a causal effect of 𝜂𝑗 on 

𝑎𝑙𝑖  whose magnitude is measured by 𝜆𝑖 such that the positions of 𝜂𝑗 and 𝑎𝑙𝑖  are 

not interchangeable in Equation 1 unlike in regression that assumes 𝜆𝑖 to be a mere 

correlation coefficient. The second way concerns the orthogonality assumption on 

𝜀𝑖′𝑠, i.e., 𝜀𝑖′𝑠 have a mean of zero and neither correlate with each other nor with 

𝜂𝑗′𝑠 in REs. However, orthogonality in the context of structural equations may or 

may not be assumed depending on model theorisation, literature, valid claims, and 

other sources that the researcher can rely upon for his or her arguments (Bollen & 

Pearl, 2013). Further, the 𝜀𝑖′𝑠 are conceptually different from those of REs in that 

they incorporate errors that emanate from potential predictors of 𝑎𝑙𝑖  which are not 

accounted for in the measurement model. It is important to remark that these 

assumptions form the building blocks of the models used in the present study, and 

a rejection of a model challenges the validity of one or more of these assumptions. 

On the other hand, an acceptance of a model strengthens the plausibility of these 

assumptions.  

𝑎𝑙𝑖 =  𝜏𝑖 + 𝜆𝑖𝜂𝑗 + 𝜀𝑖 , 1 ≤ 𝑖 ≤ 19, 

 𝑗 = 𝐷𝐴 𝑖𝑓 𝑖 𝑓𝑎𝑙𝑙𝑠 𝑜𝑛 𝑑𝑒𝑒𝑝 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ 𝑒𝑙𝑠𝑒 𝑗 = 𝑆𝐴 

(1) 

Basically, CFA predicts a variance-covariance matrix ∑ from raw input data, 

sample correlation matrix or sample variance-covariance matrix (𝑆) and minimises 

the residual matrix (𝑆 − ∑) to achieve a good fit. There are several estimators used 

for this procedure, e.g., maximum likelihood (ML), weighted least square mean 

and variance adjusted (WLSMV), and so on, depending on several assumptions of 

normality, levels of measurement, and presence of missing data. The degree of a 

good fit is assessed by chi-square (𝜒2) statistics with a null hypothesis,  𝑆 = ∑ , 

coupled with some indices of the goodness of fits. Hence, a non-significant 𝜒2-

value indicates a good fit of the model (Brown, 2015). However, researchers have 

contended that due to the large sample size required to conduct CFA, a small 

difference in the residual matrix could make 𝜒2-value to be significant which could 

erroneously lead to a rejection of a good model (Prudon, 2015). To ameliorate this 

problem, methodologists have introduced some goodness of fit (GOF) indices.  
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3.6.2 The goodness of fit indices 

The GOF indices are used to assess the global fits of hypothesised measurement 

models against the collected data. Popularly reported GOF indices in education 

research are: TLI-Tucker-Lewis index (Tucker & Lewis, 1973), RMSEA-root 

mean square error of approximation (Steiger and Lind, 1980 in Steiger, 2016), 

SRMR-standardized root mean square residual (Jöreskog & Sörbom, 1988), and 

CFI-comparative fit index (Bentler, 1990). Both TLI and CFI are examples of 

comparative fit indices or incremental fit indices (Hu & Bentler, 1998). These 

indices examine the fit of the predicted or implied matrix ∑ by comparing its 𝜒2 -

value with that of a nested baseline model, equations 2 and 3. The values of CFI 

ranging from 0.00 to 1.00 while TLI may assume values out of this range. Hence, 

TLI is usually termed non-normed incremental fit index. For both CFI and TLI, a 

value 1.00 indicates a perfect model fit while values close to or greater than 0.90 

indicate a good fit (Bentler, 1990; Hu & Bentler, 1999).   

 
𝐶𝐹𝐼 = 1 −

𝜒𝑖𝑚𝑝𝑙𝑖𝑒𝑑
2 − 𝑑𝑓𝑖𝑚𝑝𝑙𝑖𝑒𝑑

𝜒𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
2 − 𝑑𝑓𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

 
(2) 

 

𝑇𝐿𝐼 =

(
𝜒2

𝑑𝑓)
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

 − (
𝜒2

𝑑𝑓)
𝑖𝑚𝑝𝑙𝑖𝑒𝑑

(
𝜒2

𝑑𝑓)
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

− 1
 

(3) 

RMSEA is a parsimony correction fit index which seeks to examine the model fit 

of a sample matrix (𝑆)  by including a ‘penalty function’ while favouring a model 

with “fewer freely estimated parameters” (Brown, 2015, p. 71). It is less dependent 

on the residuals, and it is computed using  𝜒2-value, degree of freedom and 𝑁-

sample size, Equation 4. RMSEA index ranging from 0.00 and has no upper bound 

with a value 0.00 signifying a perfect model fit. A cutoff RMSEA value of less 

than or equal to 0.06 was proposed by Hu and Bentler (1999) for a good model fit. 

Other experts (e.g., Browne & Cudeck, 1992) have proposed RMSEA values 

between 0.00 to 0.05 and 0.05 to 0.08 as depicting good, and an adequate model 

fits respectively.  A model with RMSEA value between 0.08 to 0.10 is 

characterised as having a "mediocre fit" while models with RMSEA values greater 

than 0.10 should be rejected (MacCallum, Browne, & Sugawara, 1996).  
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𝑅𝑆𝑀𝐸𝐴 = √
(𝜒2 − 𝑑𝑓)/𝑁

𝑑𝑓
 

(4) 

SRMR stands out among the fit indices as it is the only index that does not involve  

𝜒2-value in its computation. Instead, SRMR directly estimates the discrepancy 

between input sample matrix and predicted matrix. It is calculated by taking square 

root of the ratio of the corresponding sum of squares of the residuals to the number 

of residual, p(p+1)/2 where p is the number of scale items, Equation 5. It evaluates 

the model fit at an absolute level. Hence, an example of absolute fit indices. SRMR 

values ranging from 0.00 to 1.00 with a value of 0, indicating a perfect fit. A value 

less than or equal to 0.08 was suggested by Hu and Bentler (1999) as an indicator 

of a good fit. In practice, methodologists and researchers do not take the cutoff 

values of GOF indices as a rule of thumb. In fact, a close look at the work of  Hu 

and Bentler (1999) revealed that their cutoff criteria are not generalisable 

especially when other estimators apart from ML are used and more than five 

indicators per factors are involved (Marsh, Hau, & Wen, 2004). Further, Hu and 

Bentler (1999) criteria have been considered unrealistic for most social sciences 

research, especially when the data involve ordinal scales with multiple violations 

of assumptions (Marsh et al., 2004). It is therefore helpful, and of course, the 

criteria adopted in the present study, to utilise a combination of these indices with 

some relaxations in cutoff values. Further, I assessed the local fits of hypothesised 

models against the collected data by using significant statistics of indicator factor 

loadings, effect sizes, and interpretability of other parameter estimates such as 

effect weights and residuals.  

 

𝑆𝑅𝑀𝑅 = √
𝑠𝑢𝑚 (𝑆𝑖𝑗 − Σ𝑖𝑗 )2

𝑝(𝑝 + 1)/2
 

(5) 

 

 3.6.3 Structural equation modelling and causation 

A statistical tool that takes measurement model analyses (EFA and CFA) to the 

next level of providing empirical evidence for ‘causes and effects’ between 

research variables is the structural equation modelling (SEM). SEM approach to 

modelling has been applied widely in educational studies and proved compelling 
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in given potential cues to causal relations between latent factors (e.g., Roick & 

Ringeisen, 2018). However, it has been equally criticised for its “erroneous” causal 

claims from both ontological and epistemological perspectives. The ontological 

criticisms of SEM stem from the conception of reality as it relates to human 

characteristics. That is, such reality is very complex, and SEM attempts to reduce 

it to a set of linear equations lack validity. Critics argued that no amount of 

statistical tools (not limited to SEM) could accurately describe reality (e.g., 

Rogosa, 1987). This criticism to me seems valid, especially for those who claim 

direct apprehension of reality is possible in social science research. However, it 

has previously been mentioned while describing the ontology of the present 

research that direct apprehension of reality is not claimed. Hence, this criticism is 

relatively superficial with regards to the present study. Also, multiple theory-

driven indicators that are used to operationalise each construct of the present study, 

to a large extent, give reinforcement to the plausibility of their common factors.   

Critiques from the epistemological perspective revolve around the validity of SEM 

as regards to causal claims from nonexperimental research data. Critics argued that 

the necessary basic conditions of causal claims, e.g., correlations between 

variables, controlling extraneous variables, and establishing antecedents seem 

unrealistic with the adoption of SEM (e.g., Freedman, 1991). One could approach 

this criticism from many angles. First, it is essential to say in clear terms what SEM 

aims to achieve. According to Bollen and Pearl (2013), “SEM is an inference 

engine that takes in two inputs, qualitative causal assumptions and empirical data, 

and derives two logical consequences of these inputs: quantitative causal 

conclusions and statistical measures of fit for the testable implications of the 

assumptions” (p. 309). Thus, SEM is not looking for or discovering causal 

relationships from mere correlations. Second, the issue of causality transcends the 

boundary of SEM and extends to designs of the study. For instance, a longitudinal 

SEM study will, to a large extent, account for antecedents between variables more 

than a cross-sectional SEM study. In a similar manner, a quasi-experimental SEM 

study will control extraneous variables better than a longitudinal SEM study. 

Third, the present study does not aim at discovering causal relations between the 

research variables. Instead, with the help of SEM’s high precision, it is envisaged 

that compelling potential cues to causal effects between the variables will be 

achieved. This high precision of SEM and its robustness to assumption violations 

give it several advantages over other statistical analyses, e.g., multiple regression, 
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in exposing causal effects between research variables. According to Bullock, 

Harlow, and Mulaik (1994), SEM offers more than other statistical analyses in its:  

ability to analyse direct and indirect effects, assess both measurement and 

prediction error, allow multiple measures to represent latent variables, and 

provide simultaneous estimation of measured and structural relations in a 

complex, integrated mathematical model. (p. 262) 

Another set of threats to the validity of SEM causal estimates could stem from 

endogeneity problems, where some potential causes of the ‘effects’ are not 

included in the model. I briefly refer to Antonakis et al. (2010) who have identified 

and provided solutions to 14 sources of endogeneity problems in a 

nonexperimental SEM study. Of relevance to the present study are those threats to 

validity with sources from “omitted variable” (e.g., exclusion of “fixed effects”), 

“measurement errors”, “common-method variance” (e.g., gathering of data on 

approaches to learning mathematics and calculus self-efficacy at the same time), 

“model misspecification”, and “inconsistent inference”(Antonakis et al., 2010, p. 

1091). I acknowledge these threats to validity in the present studies, and I minimise 

them by following recommended solutions such as the use of instrumental 

variables to account for errors due to omitted variables, the inclusion of 

measurement errors in the model, and use of robust estimators.   

3.6.4 Reliability  

Reliability concerns the consistency of an instrument at measuring what it is 

designed to measure. In technical terms, the reliability of a composite score (Y) 

obtained from a measure is the ratio of the true variance of Y to the total variance 

of Y. A widely used index of reliability for the past six decades is the Cronbach 

alpha coefficient. More recently, there have been heated debates among 

methodologists on the appropriateness of using Cronbach’s alpha coefficient in 

estimating the reliability of ordinal scale data (e.g., Schmitt, 1996; Sijtsma, 2009). 

Some of these debates have been provoked by gross misuses and 

misinterpretations of Cronbach’s alpha especially in the presence of excess 

kurtosis and skewness, violation of tau-equivalent assumption, presence of 

correlated errors, and non-continuous item level of measurement that are inherent 

in ordinal data (e.g., Sijtsma, 2009). To avoid these challenges, alternative indices 

of reliability have been proposed, e.g., ordinal coefficient alpha, Omega, Beta, and 

H coefficients, and GLB-greatest lower bound coefficients, for estimating the 
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reliability of ordinal scales (e.g., Raykov & Marcoulides, 2016; Zinbarg, Revelle, 

Yovel, & Li, 2005).  

The omega coefficient and its extensions to the multidimensional scale using a 

latent variable approach by Raykov and Marcoulides (2016) were mostly used in 

the present study. The reliability indices that are based on the latent variable 

approach have been shown empirically to perform better than the Cronbach’s alpha 

estimates under violations of multiple assumptions which are inherent in the 

ordinal data of the present study (e.g., Gadermann, Guhn, & Zumbo, 2012; Raykov 

& Marcoulides, 2016; Zumbo, Gadermann, & Zeisser, 2007). Simplified formulae 

adapted for the present research, which involves a unidimensional scale with 

correlated errors and a two-factor multidimensional scale without correlated errors 

are presented. 

 
𝑟𝑅𝑀 =  

(∑ 𝜆𝑖 )𝑛
𝑖=1

2

(∑ 𝜆𝑖 )𝑛
𝑖=1

2
+ ∑ 𝑉𝑖 + 2 ∗ ∑ ∑ 𝑉𝑖𝑗

𝑖
𝑗=1

𝑛
𝑖=2

𝑛
𝑖=1

 
(6) 
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+  (∑ 𝜆𝑗 )𝑚
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𝑗=1 +  ∑ 𝑉𝑖 + ∑ 𝑉𝑗
𝑚
𝑗=1

𝑛
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(7) 

 

In both equations 6 and 7, 𝑟𝑅𝑀  is the Raykov and Marcoulides’ coefficient with 

values ranging from 0 to 1 that is indicative of item internal consistency from 

weakest (0) to strongest (1). 𝜆𝑖’s and 𝜆𝑗’s are (standardised) factor loadings of the 

subscale indicators,  𝑉𝑖’s and 𝑉𝑗’s are (standardised) unique variances, 𝑉𝑖𝑗’s are 

error covariances between indicators 𝑖 and 𝑗, and 𝐹12 is the (standardised) 

covariance between factors 1 and 2.  

3.7 Data collection and analysis 

The data used for the present study were collected in two phases. Phase one (pilot 

study) data were collected in spring 2019 with the aim of validating R-SPQ-2F and 

developing CSEI. Every year-one student who consented to take part in the project 

completed both the R-SPQ-2F and CSEI. It involved two data sets composed of 



45 

 

234 engineering and economics students as well as 253 engineering students that 

followed a first-year mathematics course. The 234-data set was used to develop 

the CSEI using EFA in FACTOR program. It was also used to establish a 

relationship between calculus self-efficacy and approaches to learning. Further, the 

253-data set was used to validate the Norwegian adaptation of the R-SPQ-2F. The 

method of analysis of R-SPQ-2F followed a series of confirmatory factor analyses 

using Mplus 8.3 program.  

Phase two data collection took place in autumn semester 2019 at two instances 

with the aim of examining the hypothesised relationships between the research 

constructs. Instance one of phase two data collection took place at the beginning 

of the semester in which all year-one engineering students who consented to take 

part in the project completed R-SPQ-2F (these data were not used in the final 

analyses) and took the NMT. Instance two of phase two data collection took place 

after the mid-term break towards the end of the semester. Both R-SPQ-2F and 

CSEI were administered. I deliberately delayed the administration of the CSEI for 

the purpose of making it close to the end of the term. This delay is necessary to 

increase the predictive power of CSEI as a substantial part of the calculus syllabus 

would have been completed at the time. The reason being that the CSEI was 

developed based on exam-like questions from the calculus curriculum, as 

discussed in the previous section. The administration of both R-SPQ-2F and CSEI 

at the same time could constitute a common-method variance endogeneity problem 

and threatens the validity of the model estimates. However, this problem was 

acknowledged and was addressed during the final modelling process. The 

structural equation modelling was used to analyse the data such that the research 

questions, as well as the hypotheses as presented in Figure 2, are addressed 

accordingly. 

3.8 Ethical issues 

Prior to the data collection of the present study, I, together with my supervisor 

team, visited the students in their classrooms to inform them about the purpose of 

the study and seek their consent. The content of the students’ consent centred 

around making connections between their final grades in their mathematics courses 

and data collected through the surveys. It was made clear to the students that we 

will neither store their personal information nor keep any information that could 
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allow anyone to identify them. We only need their permission to make the 

connection of data, because that can only be done if there are individual identifiers, 

e.g., names and student numbers. As soon as this is done, all means of 

identification will be removed. For additional security and confidentiality in the 

process, the connection of data was carried out by administrative staff in the 

division of student and academic affairs, and all means of identification were 

removed before the data sets were made available to the research team. All data 

used by the researcher were anonymised, and any publication from the research in 

journals, conference presentations or other means did not include anything from 

which participants may be identified. Only the staff in the division of student and 

academic affairs have access to the full data sets, and they are bound with strict 

rules of confidentiality.  

Further, the students were informed that taking part in the project is voluntary. If 

anyone chooses to take part now and decide later to withdraw his/her consent, it 

can be done without giving any reason by writing to his/her teacher. There was no 

adverse consequence for anyone who does not wish to participate or later 

withdraws his/her consent. We ensured strict compliance with personal data 

protection as regulated by the Norwegian Centre for Research Data (NSD). We 

applied for and received NSD approval to proceed with data collection provided 

the students give their consent. 

3.9 Summary of the chapter 

This chapter attempts to articulate the ontological, epistemological, and related 

methodological issues of the present study. The concept of measurement was 

presented from three major measurement theories, coupled with arguments for 

adopting latent variable theory. I delved into the specifics of operationalisations 

and measures of the research constructs. Thereafter, I discussed in detail the test 

validity and reliability from the perspective of the latent variable theory. Then, I 

followed up the validity issues with the procedures for data collection and 

analyses. Finally, I presented some ethical considerations with regards to the 

principle of informed consent, human subject protection, personal data protection, 

and legality. 
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4 Overview of papers 

The present chapter gives an overview of the eight papers that are put together to 

form the present dissertation. Herein, I emphasise the research aims, research 

methods, and the main results for each paper. Figure 5 provides an integrative view 

for navigating through the present chapter. In the figure, I present the links from 

the test validation studies to the structural validation studies. More so, I also 

present the links between each paper and the corresponding research question and 

hypotheses each paper is purported to address. Some peculiar abbreviations in the 

figure are ‘RQ’, for the research question, and ‘Hyp.’, for the hypothesis. 

 

Figure 5. An integrative overview of papers in Chapter Four 

4.1 Paper I and Paper II: Validation of approaches to learning 

questionnaire  

Paper I: Zakariya, Y. F., Bjørkestøl, K., Nilsen, H. K., Goodchild, S., & Lorås, 

M. (2020). University students’ learning approaches: an adaptation of the revised 

two-factor study process questionnaire to Norwegian. Studies in Education 

Evaluation, 100816. doi:10.1016/j.stueduc.2019.100816 
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Paper II: Zakariya, Y. F. (2019). Study approaches in higher education 

mathematics: Investigating the statistical behaviour of an instrument translated 

into Norwegian. Education Sciences, 9(3), 191. doi:10.3390/educsci9030191 

4.1.1 Research aim 

Studies reported in both Paper I and Paper II were aimed at addressing the first 

research question6 and testing Hypothesis 17 by investigating the prevalence of 

deep and surface approaches to learning mathematics among first-year engineering 

students. Simultaneously, the studies were also aimed at evaluating the construct 

validity and reliability of the R-SPQ-2F before using the measure in the main 

study.   

4.1.2 Research method 

Consistent with the latent variable theory of measurement, I used a series of 

confirmatory factor analyses with a weighted least square mean and variance 

adjusted (WLSMV) estimator to establish the construct validity of R-SPQ-2F. 

Several proposed and hypothesised models by Biggs et al. (2001) and other 

researchers were evaluated and tested against my collected data. I assessed the 

plausibility of the models by using the global and local fit statistics, as highlighted 

in section 3.6.2 to ascertain evidence of construct validity of the measure in the 

Norwegian context. Similarly, I investigated the reliability of the measure using 

the latent variable approach, as presented in section 3.6.4.  

4.1.3 Main results 

The results of Paper I confirmed that two-latent factors (deep and surface 

approaches) are responsible for the covariation of the students’ item scores on the 

measure. On the one hand, the results show that deep and surface approaches are 

prevalent among first-year engineering students. Thus, the results address the first 

research question of the present study and confirm the plausibility of Hypothesis 

1. On the other hand, the results provide evidence for the construct validity of R-

SPQ-2F. However, sufficient evidence of construct validity was achieved after 

 

6 Recall that the research question one is: Do approaches to learning mathematics differ 

with respect to the prevalence of deep and surface approaches among first-year 

engineering students? 

7 Recall that Hypothesis 1 is: There are differences in calculus learning approaches among 

first-year engineering students in terms of the prevalence of deep and surface approaches. 
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deleting one item8 from the original measure. As such, the Norwegian version of 

the R-SPQ-2F contains ten items on the deep approach subscale and nine items on 

the surface approach subscale of the measure. In a search for more validity 

evidence for the constructs exposed by the R-SPQ-2F, I evaluated and compared 

ten different hypothesised R-SPQ-2F models with my established model in Paper 

I. The findings of these comparisons were reported in Paper II. Therein, the results 

show that the best explanatory model of the R-SPQ-2F was the 10-item deep and 

9-item surface R-SPQ-2F that I established in Paper I. Furthermore, I got a 

reliability index of .81 for the deep approach subscale, an index of .72 for the 

surface approach subscale, and an index of .63 for the whole measure. The findings 

of these studies, on the one hand, reinforce my confidence to proceed with the use 

of the R-SPQ-2F in the main study. On the other hand, they contribute to ongoing 

international debates on the cross-cultural sensitive of the R-SPQ-2F.  

4.2 Paper III: Development and validation of calculus self-efficacy 

inventory 

Paper III: Zakariya, Y. F., Goodchild, S., Bjørkestøl, K., & Nilsen, H. K. (2019). 

Calculus self-efficacy inventory: Its development and relationship with 

approaches to learning. Education Sciences, 9(3), 170. 

doi:10.3390/educsci9030170 

4.2.1 Research aim 

The purpose of the study that was reported in Paper III was to develop a calculus 

self-efficacy inventory with high psychometric properties such as validity and 

reliability. I suppose that such a task-specific measure of perceived self-efficacy 

will go a long way in ensuring valid estimates of effect weights in the structural 

equation analysis of the hypothesised model that was presented in Figure 2.  

4.2.2 Research method 

I subjected the initial 15-item CSEI to exploratory factor analysis to investigate the 

factor structure of the CSEI. The exploratory factor analysis provides evidence for 

the construct validity of the measure. I investigated the discriminant or predictive 

validity of the measure using Spearman’ rank coefficient that accounts for the 

 

8 The statement of the deleted item is available in Chapter 5. 
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ordinal scale of measurement of the CSEI. Further, I provided evidence for the 

reliability index using the latent variable approach.  

4.2.3 Main results 

The results of the exploratory factor analysis revealed a one-factor structure for the 

CSEI with minimum rank factor analysis for factor extraction, oblique promin 

rotation, and parallel analysis procedure for retaining the extracted factors. The 

one-factor solution was achieved after deleting two items from the initial 15-item 

CSEI as recommended by the 95 percentiles of the parallel analysis procedure. The 

results confirm that the measure is unidimensional, i.e., all its items expose a single 

construct hypothesised to be calculus perceived self-efficacy. The reliability index 

of the final 13-item CSEI was found to be .90. The positive and negative 

Spearman’ rank coefficients that were found between scores of students on the 

CSEI and the deep and the surface approaches to learning, respectively, constitute 

evidence for discriminant or predictive validity of the CSEI. I claim that the 

findings of this study constitute an original contribution to the literature on the 

measures of mathematics perceived self-efficacy. 

4.3 Paper IV and Paper V: Validation of a test of prior mathematics 

knowledge  

Paper IV: Zakariya, Y. F., Nilsen, H. K., Goodchild, S., & Bjørkestøl, K. (2020). 

Assessing first-year engineering students’ pre-university mathematics knowledge: 

Preliminary validity results based on an item response theory model. Journal of 

Technology and Science Education, 10(2), 259-270. doi:10.3926/jotse.1017 

Paper V: Zakariya, Y. F., Nilsen, H. K., Bjørkestøl, K., & Goodchild, S. (2020). 

Impact of attitude on approaches to learning mathematics: a structural equation 

modeling approach. In T. Hausberger, M. Bosch & F. Chelloughi 

(Eds.), Proceedings of the Third Conference of the International Network for 

Didactic Research in University Mathematics (INDRUM 2020, 12-19 September 

2020) (pp. 268 - 277). Bizerte, Tunisia: University of Carthage and INDRUM. 

4.3.1 Research aim 

The studies reported in both Paper IV and Paper V are aimed at providing empirical 

evidence for item quality, construct validity, and reliability of the NMT. The 

studies attempt to address some issues that surround the following questions: 
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1. How difficult are the items on the test for the students, and why are they 

difficult? (item difficulty analysis) 

2. Do items on the test discriminate appropriately between students with low 

and high prior mathematics knowledge that the test was designed to expose? 

(item discrimination analysis) 

3. Does the variance of a single construct responsible for the covariance of 

students’ scores on the items of the test? (unidimensionality aspect of 

construct validity) 

4. How consistent are the items of the test in exposing the construct they are 

hypothesised to expose? (item reliability analysis)  

5. Does the attitude towards mathematics subscale of the NMT possess 

construct validity, predictive validity, and reliability? 

4.3.2 Research method 

I applied a two-parameter item response theory model coupled with the latent 

variable approach for reliability to address questions 1 to 5 that are presented in 

Section 4.3.1. Further, some students were interviewed to ascertain likely reasons 

why they perceived some questions on the test to be difficult. Finally, structural 

equation modelling was used to investigate the predictive validity of the NMT. 

4.3.3 Main results 

The results of the item response theory analysis confirm that some items of the 

NMT are too difficult for the students and some items lack appropriate 

discriminating indices. As an immediate implication of these findings, the items of 

poor quality (5 of them) were excluded from the test before the final analysis of 

the main study data. More so, it was revealed that the NMT is unidimensional and 

its items are reliable coupled with a reliability index of .92 on the whole test. These 

findings are well-documented in Paper IV. Further analysis in Paper V revealed 

that the attitudes toward mathematics subscale of the NMT has appropriate 

construct and a reliability index of .78. The attitudes toward mathematics had a 

positive effect on deep approaches to learning mathematics and a negative effect 

on the surface approaches to learning mathematics. These findings constitute 

evidence of predictive or discriminant validity of the subscale.  
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4.4 Paper VI: Addressing the research question two  

Paper VI: Zakariya, Y. F., Nilsen, H. K., Goodchild, S., & Bjørkestøl, K. (2020). 

Self-efficacy and approaches to learning mathematics among engineering 

students: Empirical evidence for potential causal relations. International Journal 

of Mathematical Education in Science and Technology, 1-15. doi: 

10.1080/0020739X.2020.1783006 

4.4.1 Research aim 

The purpose of the study reported in Paper VI was to investigate the potential 

causal effect of self-efficacy on approaches to learning to mathematics. Therein, I 

addressed the research question two9 and tested Hypothesis 510 of the present 

study.  

4.4.2 Research method 

In this study, I analysed the data at the instance two of phase two data collection, 

which involved both R-SPQ-2F and CSEI. I evaluated the hypothesised causal 

relationship between self-efficacy and approaches to learning mathematics using 

structural equation modelling with WLSMV estimator. This evaluation followed a 

two-stage measurement-then-structural model analytic procedure as it is typical in 

the literature (e.g., Byrne, 2012).  

4.4.3 Main results 

The results revealed that there is a substantial positive effect (𝛽 = .54, 𝑝 <  .001) 

of perceived self-efficacy on the deep approaches to learning to mathematics and 

a substantial negative effect (𝛽 = −.47, 𝑝 <  .001) of the former on the surface 

approaches to learning mathematics (Figure 6). These results may be interpreted 

to mean, for a unit standardised metric rise in perceived self-efficacy (e.g., cse + 

1) there is a corresponding causal effect of .54 times a unit standardised metric rise 

on the deep approaches to learning, and a corresponding causal effect of .47 times 

a unit standardised metric decrease in surface approaches to learning among the 

 

9 Recall that the research question two is: Does perceived self-efficacy influence adoption 

of either deep or surface approach to learning mathematics among first-year engineering 

students? 

10 Recall that Hypothesis 5 is: There is a causal effect of perceived self-efficacy on 

engineering students’ ongoing approaches to learning a first-year calculus course. 
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students. As such, these results confirm the plausibility of Hypothesis 5. More so, 

the results provide empirical evidence for a claim that perceived self-efficacy does 

influence the adoption of both deep and surface approaches to learning 

introductory calculus course among first-year engineering students at the 

University of Agder. That is, a high sense of perceived self-efficacy tends to induce 

the adoption of the deep approaches to learning, while a low sense perceived self-

efficacy tends to induce the adoption of surface approaches to learning. Thus, the 

results address the research question two of the present study.  

 

Figure 6. The validated causal model of the hypothesised relationship between 

self-efficacy and approaches to learning mathematics 

Note. The labels ‘cse’: calculus self-efficacy, deep: deep approaches to learning, 

surface: surface approaches to learning, and 𝑅2: effect size. The labels on the small 

boxes are item labels of the respective R-SPQ-2F and CSEI. All factor loadings, 

effect weights, residuals, covariances, and effect sizes are standardised. Figure 6 

is reprinted from Paper VI. 
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4.5 Paper VII: Addressing the research question three (Part A) 

Paper VII: Zakariya, Y. F., Nilsen, H. K., Bjørkestøl, K., & Goodchild, S. 

(forthcoming). Effects of prior mathematics knowledge and approaches to learning 

on performance in mathematics among first-year engineering students. European 

Journal of Education, under review. 

4.5.1 Research aim 

The research question three11 of the present study was split into parts:  

Part A: What are the direct and indirect effects of prior mathematics 

knowledge and approaches to learning on students’ performance in an 

introductory mathematics course? 

Part B: What are the direct and indirect causal effects of prior mathematics 

knowledge and perceived self-efficacy on performance in mathematics 

among engineering students? 

Part A of the research question three was addressed in Paper VII, and Part B was 

addressed in Paper VIII. Thus, the study reported in Paper VII aimed to investigate 

the causal direct effects of both prior mathematics knowledge and approaches to 

learning mathematics on students’ performance in the first-year introductory 

calculus course. Further, the mediating or indirect effect of prior mathematics 

knowledge through approaches to learning to mathematics on students’ 

performance in the course was also investigated. By extension, Hypothesis 212, 

Hypothesis 313, and Hypothesis 414 were evaluated in Paper VII. 

 

11 Recall that the research question three is:  What are direct and indirect causal effects of 

prior mathematics knowledge, approaches to learning, and perceived self-efficacy on 

performance in mathematics among first-year engineering students? 

12 Recall that Hypothesis 2 is: There is an effect of prior mathematics knowledge on 

engineering students’ ongoing approaches to learning. 

13 Recall that Hypothesis 3 is: There is an effect of engineering students’ approaches to 

learning on their performance in a first-year calculus course. 

14 Recall that hypothesis 4 is: Ongoing approaches to learning mediate the effect of 

engineering students’ prior mathematics knowledge on their performance in a first-year 

calculus course. 
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4.5.2 Research method 

I identified students’ responses to the NMT in instance one of phase two with their 

responses to the R-SPQ-2F in instance two of phase two data collection and their 

examination scores. The analyses followed a two-stage measurement-then-

structural model analytic procedure as it is typical in the literature (e.g., Byrne, 

2012). Confirmatory factor analysis was used to fit the measurement models. After 

that, I used the structural equation modelling to evaluate the hypothesised causal 

relationships between the research constructs and to investigate the mediating role 

of approaches to learning mathematics in the hypothesised model.  

4.5.3 Main results 

Direct effects 

The results revealed that there is a substantial negative effect of prior mathematics 

knowledge on surface approaches to learning mathematics (β = -.22, p < .05) and 

a non-significant positive effect of the former on deep approaches to learning 

mathematics (β = .13, p > .05). One may interpret these findings to mean that 

students who have low scores on the NMT have a high tendency of adopting 

surface approaches to learning the calculus course. In contrast, there was no 

substantial evidence to justify the hypothesised effect of prior mathematics 

knowledge on the adoption of deep approaches to learning the calculus course. As 

such, the findings, in parts, confirm the plausibility of Hypothesis 2. More so, 

surface approaches to learning mathematics have a substantial negative effect on 

students’ performance in the calculus course (β = -.30, p < .05) while the positive 

effect of deep approaches to learning to mathematics on students’ performance in 

the calculus course was not significant (β < .01, p > .05). It is noteworthy to deduce 

from these findings that, in as much as, students who adopt surface approaches to 

learning mathematics performed low in the course there is no substantial evidence 

to claim that students who adopt deep approaches to learning the course performed 

better in the course. Thus, Hypothesis 3 is partly confirmed. Furthermore, I found 

evidence to support the plausibility of the hypothesised effect of prior mathematics 

knowledge on students’ performance in the calculus course (Figure 7). The effect 

of the former on the latter was significant and positive (β = .20, p < .05).  
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Figure 7. The evaluated structural model of the effects of prior mathematics 

knowledge and approaches to learning on students’ performance in an introductory 

calculus course 

Note. All the estimates are standardised and the significant effect paths at p<.05 

are in boldfaces. The estimates in brackets are the corresponding standard errors 

associated with effect weights. A full figure that contains all the items and the 

associated parameter estimates is available in the appendix of Paper VII. Figure 7 

is reprinted from the paper. 

Mediating effects 

Finally, the results of the mediation analysis show that surface approaches to 

learning mathematics mediate the effect of prior mathematics knowledge on 

students’ performance in the course while the deep approaches to learning do not 

mediate this effect. That is, there is only a substantial indirect effect of prior 

mathematics knowledge through the surface approaches to learning on students’ 

performance in the course. Thus, evidence suggests that Hypothesis 4 is only 

plausible for the surface approaches to learning mathematics. Both the direct and 

the indirect effects that are reported in Paper VII seem to address part A of the 

research question three of the present study. 
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4.6 Paper VIII: Addressing the research question three (Part B) 

Paper VIII: Zakariya, Y. F. (2021). Self-efficacy between previous and current 

mathematics performance of undergraduate students: an instrumental variable 

approach to exposing a causal relationship. Frontiers in Psychology. 11:556607. 

doi:10.3389/fpsyg.2020.556607. 

4.6.1 Research aim 

The purpose of the study reported in Paper VIII was to investigate the causal effect 

of perceived self-efficacy on students’ performance in a first-year introductory 

calculus course. Therein, attempts are made to address part B of research question 

three and to evaluate Hypothesis 615, Hypothesis 716, and Hypothesis 817 of the 

present study. 

4.6.2 Research method 

I identified students’ responses to the NMT in instance one of phase two with their 

corresponding responses to the CSE in instance two of phase two data collection 

and their examination scores. In addition to the test questions of NMT, as a 

measure of prior mathematics knowledge, I used students’ responses to a 

preliminary item of the NMT on grade points (HGP) in latest pre-university 

mathematics course they have followed. Confirmatory factor analysis was used to 

fit the measurement models. After that, I used the structural equation modelling to 

evaluate the hypothesised causal relationships between the research constructs and 

to investigate the mediating role of perceived self-efficacy in the hypothesised 

model. Further, I used an innovative instrumental variable approach to modelling 

with NMT as an instrumental variable to account for endogeneity problems, as 

highlighted in Section 3.6.3. As such, I was able to discern the causal effect of 

perceived self-efficacy on students’ performance in the course from other 

confounding effects of omitted variables in the hypothesised model. According to 

 

15 Recall that Hypothesis 6 is: There is an effect of perceived self-efficacy on engineering 

students’ performance in a first-year calculus course. 

16 Recall that Hypothesis 7 is: There is an effect of prior mathematics knowledge on 

perceived self-efficacy among first-year engineering students. 

17 Recall that Hypothesis 8 is: Perceived self-efficacy mediates the effect of engineering 

students’ prior mathematics knowledge on their performance in a first-year calculus 

course.   
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the literature (e.g., Antonakis et al., 2010; Greenland, 2000), the techniques of the 

instrumental variable approach to modelling require (a) allowing disturbances of 

both the perceived self-efficacy and the performance to correlate (Figure 8) such 

that any common cause of the variables can be captured in the model; (b) 

introducing an instrumental variable (NMT) in the model that satisfies the 

following properties: (i) there is a substantial effect of NMT on perceived self-

efficacy, (ii) there is a trivial effect of NMT on performance in the model, and (iii) 

the disturbances of both NMT and the performance are not correlated.  It has been 

statistically shown that the introduction of the instrumental variable in the model 

allows for an unbiased estimate of the causal effect of perceived self-efficacy on 

performance in the course (Mulaik, 2009).  

4.6.3 Main results 

The results (Figure 8) revealed a substantial positive effect (β=.43, p = .02) of 

perceived self-efficacy on students’ performance in the calculus course. Thus, 

confirming the plausibility of Hypothesis 6. It was found that prior mathematics 

knowledge as exposed by the NMT has a substantial influence on perceived self-

efficacy in the course (β=.52, p < .001). That is, students with high scores on the 

prior mathematics knowledge test are ascribed to high sense of perceived self-

efficacy on the calculus task. As such, this finding provides empirical evidence for 

the plausibility of Hypothesis 7. The results of the mediation analysis show that 

perceived self-efficacy plays a significant mediating role between prior 

mathematics knowledge and students’ performance in the calculus, which 

confirms Hypothesis 8. Thus, I argue that it is prudent to develop interventions that 

foster perceived self-efficacy as proxies to enhance students’ performance in the 

course.  
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Figure 8. The evaluated model of the relationship between prior mathematics 

knowledge, self-efficacy, and students’ performance in an introductory calculus 

course 

Note. Figure 8 is reprinted from Paper VIII. Both HGP and PKMT (used in Paper 

VIII in place of NMT in the present dissertation) are measures of the prior 

mathematics knowledge of the students, CSE is a measure of the self-efficacy, and 

Exam represents students’ performance in the calculus course. The significant 

estimates and paths are in bold faces, and the items of both PKMT and CSE are 

not included in Figure 8 to enhance the readability of the figure. The full figure 

that contains all the items and the associated model parameters is available in the 

Appendix of Paper VIII. 

4.7 Summary of the chapter 

The present chapter gives the summaries of published and forthcoming papers that 

are combined to form the present dissertation. Therein, I highlighted the research 

aim, peculiar aspects of the research method, and crucial results in each paper. 

Further, I linked the findings of each paper to the research questions and or 

research hypotheses they are purported to address. These findings will be discussed 

in the next chapter.  
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5 Discussion of, reflection on, and limitations of findings  

5.1 Discussion of major findings 

In this chapter, I will set out more explanations and interpretations of the main 

results that are presented in Chapter Four of the present dissertation. However, a 

complete exposition of this discussion as it relates to the findings of each paper is 

available in the respective papers. Here, I will highlight some important 

interpretations and implications of these findings under two broad categories: test 

validation studies and structural validation studies. 

5.1.1 Findings of test validation studies 

There appears to be a consensus among quantitative education researchers on the 

fact that the quality and plausibility of findings resulting from nonexperimental 

quantitative research depend largely on test validity and reliability. Several pieces 

of empirical evidence have been provided to support the argument for ensuring test 

validity and reliability before implementation of such measures in quantitative 

research (e.g., Bisson, Gilmore, Inglis, & Jones, 2016; Jones, Bisson, Gilmore, & 

Inglis, 2019; Zakariya, 2020). It does follow from logical reasoning to at least be 

sure that a measure, indeed, exposes the construct it is purported to expose. 

Findings of the test validity studies in the present study underscore this logic of 

reasoning. For instance, contrary to the proposed first-order four-factor and two-

factor item-parcelled R-SPQ-2F measurement models by Biggs et al. (2001) I only 

found evidence to support a two-factor model without item-parcelling for the 

measure. This evidence was achieved after deletion of one item from the original 

20-item measure. The statement of the deleted item is  “I learn some things by rote, 

going over and over them until I know them by heart even if I do not understand 

them” (Biggs et al., 2001, p. 148). It has been argued that the deleted item is not 

only statistically poor but also conceptually cumbersome for students (Zakariya, 

Bjørkestøl, et al., 2020). More so, the finding conforms to a body of literature 

where researchers have recommended deletion of some items from the original R-

SPQ-2F to achieve sufficient evidence of its construct validity (e.g., Immekus & 

Imbrie, 2010; López-Aguado & Gutiérrez-Provecho, 2018; Socha & Sigler, 2014; 

Stes, De Maeyer, & Van Petegem, 2013).  
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More importantly, the findings reported in Paper I and Paper II confirm that deep 

and surface approaches to learning are prevalent among engineering students. 

Thus, the findings appear to address the first research question and Hypothesis 1 

of the present study. I would like to emphasise that this prevalence of deep and 

surface approaches is a characterisation of students’ learning processes at the 

group level. As such, there could be a discrepancy in terms of identifying an 

individual student with either deep or surface approaches to learning mathematics. 

Even though this characterisation of each student into either deep or surface 

approaches to learning does not have any substantial impact on the present study, 

yet I may recommend a qualitative research methodology to explore this 

possibility.  

The validity and reliability evidence I exposed in the present study for a measure 

of calculus self-efficacy is noteworthy. The findings confirm my confidence in the 

measure and are important to the validity of results from the structural evaluation 

of the hypothesised model in the main study. Similarly, my confidence is also 

reinstated by the findings reported in Paper IV and Paper V on the measure of prior 

mathematics knowledge.  Previous studies are lacking in mathematics education 

literature to compare my findings on the psychometric properties of the self-

efficacy inventory as well as the NMT. However, there are some notable 

advantages of CSEI such as its short length, its high predictive validity, and its 

reliability index over similar measures of mathematics self-efficacy that have been 

reported, elsewhere (e.g., Betz & Hackett, 1983; Kranzler & Pajares, 1997).  

It is important to acknowledge that the issues of test validity and reliability are a 

bit complex and are subject to open questions among methodologists and 

researchers especially when it comes to test score meanings and interpretations 

(Kane, 2013; Markus & Borsboom, 2013). As succinctly put by Kane (2012), 

Validity [in a broad sense] raises some difficult questions, and it would be 

unreasonable to expect that the answers will be simple or formulaic. Some 

aspects of validity tend to get quite technical (e.g. predictive models, 

statistical models of bias); some are more philosophical (e.g. causal 

inferences); and some raise broad social issues (fairness, intended and 

unintended consequences) (p. 4). 
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I do not claim to have exposed evidence of test validity for all the measures used 

in the present study in the broad sense of validity. I firmly believe that to achieve 

such an integrative perspective of validity for a measure requires more than one 

study and, indeed, multiple evidence is needed. However, I concentrate only on an 

aspect of test validity within the latent theory of measurement by making, 

evaluating, and deducing causal claims between theorised constructs and observed 

variables to provide validity evidence for the measures of research constructs. The 

data collected and analysed provide an empirical basis for the plausibility of the 

hypothesised relations. More studies are required to strengthen these relationships 

in independent samples. It is still an open question whether the students understand 

or make meaning of the items of the measures that I developed or validated with 

the intended understanding or meaning by the researcher. Future studies are 

recommended to explore this open question.  

5.1.2 Findings of structural validation studies  

The research question two 

The first crucial finding after the validations of research measures addresses the 

second research question of the present study. The finding shows that there is a 

substantial influence of perceived self-efficacy on students’ approaches to learning 

mathematics with a positive influence on the deep approaches and a negative 

influence on the surface approaches to learning. This finding, on the one hand, 

means that a high sense of perceived self-efficacy tend to induce the adoption of a 

deep approach to learning mathematics. That is, students with a high sense of 

perceived self-efficacy tend to:  

• Be excited about new mathematics topics and devote their spare time to 

develop a proper understanding of the topics. 

• Self-test themselves on crucial mathematics topics to develop mastery of 

the subject matter. 

• Study hard for mathematics because of personal interest and feeling of 

satisfaction in the course. 

• Be highly prepared for mathematics classes with unanswered questions 

during their self-study prior to their class attendance.  
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• Explore suggested readings for the course to develop more calculation 

skills. 

On the other hand, the finding means that a low sense of perceived self-efficacy 

tend to induce adoption of surface approaches to learning mathematics. That is, 

students with a low sense of perceived self-efficacy tend to: 

• Aim only at passing the course with limited work done. 

• Use memorisation techniques often with less care for developing a proper 

understanding of the mathematics content. 

• Think that remembering answers to plausible examination questions is the 

best method to pass the examinations. 

• Think that in-depth preparation for classes or study of mathematics topics 

is unnecessary; it wastes time and confusing. 

• Self-confine themselves to class materials with a thought that is 

unnecessary to solve extra mathematical tasks. 

The confirmed effect of perceived self-efficacy on approaches to learning 

mathematics has a potential implication to engineering course coordinators, 

university teachers, and other education stakeholders such as MatRIC who are 

directly involved in the teaching of mathematics to engineering students. This 

implication is the provision of evidence to support the logic of designing perceived 

self-efficacy interventions as proxies to influence the adoption of students' 

approaches to learning the course. Further, it can be argued that the effect of 

perceived self-efficacy on approaches to learning mathematics complements 

previous studies in science, technology, engineering, and mathematics (STEM) on 

the relationships between the constructs (e.g., Ardura & Galán, 2019; Shen, Lee, 

Tsai, & Chang, 2016). Complementary in the sense that the finding exposes the 

relationship between the constructs within the mathematics education literature 

which is lacking in the STEM research.  

The research question three 

The second set of crucial findings after the validations of research measures 

addresses the third research question of the present study. These findings expose 

the direct and indirect causal effects of prior mathematics knowledge, approaches 
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to learning mathematics, and perceived self-efficacy on performance in 

mathematics among first-year engineering students. Of prime importance among 

these findings is the substantial influence of surface approaches to learning 

mathematics on students’ performance in the course while deep approaches to 

learning mathematics fail to exert the expected influence on students’ performance 

in the course. An immediate implication of these findings to calculus teachers may 

be a need to discourage the students (during classroom sessions, consultations, and 

drop-in sessions) from using the following strategies while studying for the course: 

• Aiming only at passing the course with limited work done. 

• Use memorisation techniques often with less care for developing a proper 

understanding of the mathematics content. 

• Thinking that remembering answers to plausible examination questions is 

the best method to pass the examinations. 

• Thinking that in-depth preparation for classes or study of mathematics 

topics is unnecessary, it wastes time and confusing. 

• Self-confining themselves to class materials with a thought that is 

unnecessary to solve extra mathematical tasks. 

These strategies are not the best. In fact, evidence in the present study and 

elsewhere (e.g., Mundia & Metussin, 2019; Nguyen, 2016) shows that they may 

lead to low performance in the course. Therefore, it is not surprising that surface 

approaches to learning mathematics are the only mediators of the effect of prior 

mathematics knowledge on students’ performance in the course. This is because 

the effect of the deep approaches to learning mathematics on the students’ 

performance is not significant. The fact that the deep approaches to learning 

mathematics do not influence students’ performance in the course, contrary to my 

expectation, has antecedents in the literature (e.g., García et al., 2016). As such, 

one may ascribe this pattern of relationship between deep approaches to learning 

mathematics and students’ performance in the course to the nature of course 

assessment. Perhaps, the end of semester examination favours assessment of 

procedural knowledge rather than conceptual knowledge. In which case, deep 

approaches to learning mathematics that are presumed to lead to better conceptual 

understanding are not assessed. Even though some researchers (e.g., Rittle-
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Johnson & Alibali, 1999) have shown that both the procedural and conceptual 

knowledge of mathematics are causally related and as such the distinction between 

the types of understanding is faint.  

Another crucial finding in the present study that addresses some aspects of the 

research question three is the substantial causal effect of perceived self-efficacy on 

students’ performance in the course. This finding means that perceived self-

efficacy is a potential cause of students’ performance in the course. That is, 

students with a high sense of perceived self-efficacy performed better in the course 

than the students with a low sense perceived self-efficacy and that a cause of this 

better performance may be linked to the variability in the students’ perceived self-

efficacy. I claim that this finding is unique from two perspectives. First, the 

application of the instrumental variable approach to discern the causal effect of 

perceived self-efficacy from that of other omitted confounding effects on students’ 

performance in the course is unprecedented. To the best of my knowledge, I am 

not aware of any quantitative research in mathematics education that has applied 

this innovative approach to expose the causal effect of perceived self-efficacy on 

undergraduate students’ performance in mathematics. Second, the exposed causal 

effect of perceived self-efficacy on students’ performance in the course 

complements previous research within mathematics education (e.g., Pajares & 

Kranzler, 1995; Pajares & Miller, 1994). Complementary in the sense that the 

finding provides state of the art evidence on the causal relationship between the 

constructs.  

Furthermore, perceived self-efficacy was revealed to substantially mediate the 

effect of prior mathematics knowledge on students’ performance in the course. At 

this juncture, I think it is necessary to highlight one significance of this finding. 

Recall that prior mathematics knowledge has earlier been reported in Paper VII to 

have a substantial effect on students’ performance in the course. However, when 

perceived self-efficacy was included in the structural model, it absorbed, almost 

wholly, this effect of prior mathematics knowledge on students’ performance in 

the course. Moreover, it has earlier been reported that perceived self-efficacy 

influences adoption of approaches to learning mathematics (Zakariya, Nilsen, 

Goodchild, & Bjørkestøl, 2020b). Thus, as an implication of these findings, with 

respect to the studied constructs, one can argue that it seems prudent to develop or 

implement existing interventions that foster perceived self-efficacy with a focus 
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on calculus tasks. If such interventions are implemented, it appears plausible that 

improved learning outcomes in the course will be achieved among the engineering 

students. The next question should be what are the available evidence based-based 

interventions that foster perceived self-efficacy on mathematics tasks? I will 

attempt to address this question in the next chapter.  

5.2 Reflection on the findings  

In Section 5.2, I have attempted to highlight some essential interpretations and 

implications of findings that emanated from the eight papers that make up the 

present dissertation. It is crucial to acknowledge that each of these papers has 

specific ‘local’ aims and objectives (Section 4.1.1, Section 4.2.1, …, and Section 

4.6.1) toward achieving the ‘global’ aims of the present dissertation (Section 1.3). 

However, I believe some findings of these studies are prerequisites for other 

studies while some findings are complementary to each other toward making a 

coherence argument for the dissertation. For instance, the validity and reliability 

evidence of the R-SPQ-2F that are presented in Paper I and Paper II are 

prerequisites for the studies reported in Paper VI and Paper VII to ensure reliable 

estimates of the causal relationships that are reported in these papers. On the flip 

side, the findings that are reported in Paper VI, Paper VII and Paper VII are bits 

that strengthen each other to make a whole toward addressing the research 

questions two and three of the present study.  

The findings of the present study have shown that only surface approaches to 

learning to mathematics have a substantial negative influence on students’ 

performance in the introductory calculus course. In which case, the positive 

influence of deep approaches to learning mathematics on students’ performance in 

the course is not significant. Even though, these findings are contrary to the 

findings of some researchers (e.g., Maciejewski & Merchant, 2016; Mundia & 

Metussin, 2019) the findings conform to the report by Nguyen (2016). Thus, the 

present study seems to provide a clear understanding on the specific type of 

approaches to learning mathematics that influences first-year students’ 

performance in an introductory calculus course within the target population of 

students of the present study. I believe that these findings constitute an attempt to 

fill the related knowledge gap as exposed in Section 1.2.1. It is important to remark 

that the present study is confined to only two, supposedly, distinct types of 

approaches to learning to mathematics (deep and surface approaches) in which no 
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attempt is made to investigate a hybrid type or other types of approaches to 

learning the course. I envisage that future studies will be conducted with this 

intention.  

Further, the findings of the present study provide state-of-the-art evidence on the 

causal effect of perceived self-efficacy on students’ performance in a first-year 

introductory calculus course. Given that the structural equation modelling 

technique used to expose this causal effect follows an item-level modelling instead 

of composite score modelling (e.g., Pajares & Kranzler, 1995) I claim that the 

exposed causal effect has high accuracy in the representation of the reality 

(Bandalos, 2008). In addition, the instrumental variable approach to modelling 

used in exposing this causal effect strengthen the estimate of a causal relationship 

between the constructs. As such, the related knowledge gap as exposed in Section 

1.2.2 seems to be addressed. However, I acknowledge that there are some 

unanswered questions in the present study and the causal inferences remain 

controversial, especially from a nonexperimental study (Freedman, 2004). On this 

note, I point out to the following statements by McDonald (2011): 

Perhaps enough has been said to point up the difficulties attending causal 

inference from nonexperimental data. We must also face the fact that if 

investigators took the view that such inferences should never be attempted, 

many of the most important questions in the behavioural and social sciences 

would remain entirely out of the bounds of ethical and otherwise practical 

modes of research. (p. 371) 

The findings of the present study also provide empirical evidence for indirect 

effects of prior mathematics knowledge through both approaches to learning 

mathematics and perceived self-efficacy to students’ performance in the course. 

These findings constitute an attempt to fill the related knowledge gap that is 

exposed in Section 1.2.3. It would have been more interesting if the indirect effects 

of prior mathematics knowledge have been investigated with a complex model, as 

presented in Figure 2, rather than splitting the model into two and investigating 

them separately as reported in Paper VII and Paper VIII. Nevertheless, I could not 

investigate the complex model as proposed in Figure 2 because of the small 

resultant sample (less than 90 respondents) when data from instance one and 

instance two of the main study data collection were combined on all the variables. 

More so, some statistical techniques for handling missing data in SEM (e.g., full 
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information maximum likelihood) could not help the situation given the 

categorical level of measurement of most the research variables. As Mulaik (2009) 

rightly put it “It is unrealistic to suppose that one will always be able to perform a 

study with an SEM and get everything right the first time. Science progresses in 

graduated steps with series of studies” (p. 188). Therefore, all the findings of the 

present study provide tentative evidence for the established relationships between 

the research constructs that are subject to future validations. 

5.3 Limitations and generalisation of findings 

Despite the contributions of the present study to the literature and communication 

of its findings to agents of implementations18, there are some limitations that are 

worth mentioning. Some of these limitations are from the conceptualisation of this 

study, while several others are from the methodology and methods. For instance, 

my choice of concentrating on student-source factors has undoubtedly cut out 

some crucial factors that affect students’ performance in the course, e.g., collective 

dimensions and the students’ activity systems, students’ learning experience, 

teacher-student interaction, students’ mathematical discourse, contradictions, and 

tensions in learning first-year calculus course. Even within the student-source 

factors, my argument in Chapter One for the superiority of approaches to learning 

mathematics and perceived self-efficacy does not cover all the student-source 

factors. As such, I must admit that the findings of the present study are confined 

to the research constructs. However, I think it is not expected to proffer absolute 

solutions to students’ poor performance in a single project given that the problem 

of poor performance is multi-dimensional. Instead, multiple studies on different 

dimensions of the problem are expected. Thus, I recommend more studies on other 

factors that affect students’ performance in mathematics to complement the 

findings of the present study. 

The confinement of the research sample to first-year engineering students may 

constitute a limitation to the findings of the present study. Even though, there are 

obvious advantages and cogent reasons for focusing on this set of students as 

earlier highlighted in Chapter One and Chapter Three. It is logical to argue that 

more interesting findings would have been exposed had the present study covered 

a student’s population with greater diversity. On this basis, I recommend future 

 

18 An exposition on the research outreach is presented in the next chapter.  
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research on applications of the framework and analytic tools that are developed in 

the present study to different and diverse sets of students. It is also important to 

mention that it would have been more interesting if the innovative instrumental 

variable approach to modelling was used in Paper VII to expunge the confounding 

effects due to omitted variables on students’ performance in the course. As such, 

more refined causal effects of approaches to learning mathematics on students’ 

performance in the course would have been exposed. However, I was not able to 

use the instrumental variable approach to modelling in Paper VII due to lack of a 

suitable instrument for the analysis. I suppose future research would explore this 

possibility.  

It is acknowledged that some of the highlighted limitations of the present study 

pose challenges to the generalisation of the findings. Meanwhile, the relatively 

large samples of the present study coupled with the type of statistical tools used to 

evaluate the theory-driven hypothesised relationships between the research 

constructs offer some confidence to the generalisation of the findings. I am 

confident that the psychometric properties of the NMT that are reported in the 

present study are generalisable to the national context.  Notwithstanding, I advise 

the National Mathematical Council to replicate my study with a larger sample. 

Similarly, the findings from the validation studies of both the R-SPQ-2F and the 

CSEI are generalisable to first-year university students that followed the 

introductory calculus course in Norway. More importantly, I conjecture that 

similar patterns of relationships between prior mathematics knowledge, 

approaches to learning mathematics, perceived self-efficacy, and students’ 

performance in first-year mathematics will be exposed if the presented study is 

replicated beyond the Norwegian borders.  

5.4 Summary of the chapter 

I have attempted to shed more light on the crucial findings of the present study. 

Therein, I related the findings from both the pilot and the main studies to what is 

known in related literature. I exposed some implications of the findings to agents 

of implementation. I registered my dispositions toward the concept of test validity, 

the intended validity evidence exposed in papers I-V, and the necessity for more 

validation studies to strengthen my findings. Further, I reflected on the 

contributions of each paper toward making a coherence argument for the 

achievement of the research aims. Finally, I acknowledged some potential 
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limitations of this study and the implications of these limitations to the 

generalisation of findings. 
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6 Research outreach, significance of findings, and conclusion 

6.1 Research outreach and significance of findings  

I believe that the utility of education research is not effectively actualised until the 

findings of such research are communicated to agents of implementation. These 

agents of implementation may be classroom teachers from whom students’ data 

are collected, course coordinators, curriculum planners, research centres, e.g., 

MatRIC, research councils, e.g., National Mathematical Council in Norway, and 

the education research community. Many researchers concentrate on reaching out 

to the education research community through presentations of their research 

findings at conferences, seminars, workshops, and through journal article 

publications. In doing so, they tend to give less attention to other agents of 

implementation. I take to a more holistic approach of communicating the research 

findings of the present study by directly addressing the classroom teachers of 

mathematics at the university, a research centre, and the National Mathematical 

Council. For instance, I attended a seminar organised by MatRIC for PhD fellows 

and engineering mathematics teachers on May 13, 2019. Therein, I presented the 

initial conceptualisation of my project and received feedback from international 

mathematics education researchers that attended the conference from the United 

States, United Kingdom, and Sweden.  

More so, I engaged the National Mathematical Council in Norway on crucial 

findings of my validation studies on the NMT. I communicated to the Council 

about specific item quality of the test such as item discrimination and difficulty 

indices as well as predictive validity and reliability of the test. I made some 

recommendations for possible improvement of the test and its scoring procedure, 

and I offered an option to share full papers detailing with the analysis and critical 

interpretation of the findings in any forum they believe appropriate. To the best of 

my knowledge, this overarching test validation study on NMT is unprecedented 

within the Norwegian borders. As such, the significance of my findings may be 

perceived in shaping the future administration of the test. Thus, I claim that the 

present project is making a national impact through this research outreach. The 

validation of the R-SPQ-2F makes a substantial contribution, at least from a 

Norwegian context perspective, to the ongoing debate on the cultural sensitivity of 

the measure (e.g., Whitelock-Wainwright, Gasevi, Wood, & Ryan, preprint). 
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Similarly, the development and validation of the calculus self-efficacy inventory 

constitute an original contribution to the literature.   

Furthermore, I engaged the classroom teachers from whom students’ data were 

collected, engineering course coordinators, curriculum planners including the dean 

of faculty of engineering at the University of Agder, MatRIC leaders to discuss 

crucial findings of my project. In the seminar, I presented the significant findings 

of the present study from the research question one to the research question three. 

I highlighted the substantial influence of perceived self-efficacy on students’ 

performance in the first-year introductory calculus course as revealed from my 

study. After that, there was a general discussion on a matter arising from the 

presentation, including potential interventions that may foster students’ perceived 

self-efficacy. I believe, through this seminar, that I did send signals to appropriate 

agents of implementation on potential solutions in alleviating students’ poor 

performance in the course. Admittedly, to improve students’ performance in a 

course requires a holistic approach to the problem. However, I am confident that 

the findings of the present study have exposed the areas to look at when it concerns 

student-source factors in solving this problem. It is my opinion that the 

publications of findings of the present study in different peer-reviewed 

internationally recognised journals and a conference are sufficient in reaching out 

to education research community that is involved in the teaching and learning of 

mathematics at higher education. It is expected that these findings will reach a 

broad community of education researchers because all the papers are published as 

open access.  

6.2 Concluding remarks 

The present study was motivated by the poor performance of engineering students 

in a first-year introductory calculus course at the University of Agder. Therein, 

attempts were made to provide empirical evidence on the areas of concentration, 

as it concerns the student-source factors, to alleviate this problem. Previous studies 

suggest that prior mathematics knowledge, approaches to learning mathematics, 

and perceived self-efficacy, among other student-source factors, play the most 

significant roles in fostering students’ performance in mathematics. However, 

most of these previous studies are correlational (e.g., traditional regression-based 

studies), which makes it difficult to argue for the effectiveness of interventions on 

these factors as proxies to enhance performance in the course. This is because a 
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logical inference of the effect of one variable on the other after implementation of 

interventions requires causal assumptions between the variables (Pearl & 

Mackenzie, 2019). Thus, the present study was framed within the quantitative 

research paradigm and data were collected using mainly questionnaires and tests. 

The collected data were analysed using causal modelling techniques such that 

causal claims are made and evaluated.  

The evidence from a series of structural equation modelling techniques points to 

the fact that perceived self-efficacy (engineering students’ convictions to solve 

first-year introductory calculus tasks successfully) has the most substantial effect 

on the students’ performance in the course. Its effect overshadows the effects of 

both prior mathematics knowledge and approaches to learning mathematics on 

students’ performance in the course. Further, perceived self-efficacy appears to 

influence adoption of either deep or surface approaches to learning mathematics 

among the engineering students. Therefore, a major conclusion drawn from the 

findings of the present study is the identification of perceived self-efficacy as 

prime factor whose interventions could enhance students’ performance in the 

course. As such, I conclude the present dissertation by highlighting two evidence 

based-based interventions that foster students’ perceived self-efficacy in 

mathematics. These interventions will serve as potential cues in solving the 

problem of poor performance in mathematics if implemented by the university 

teachers, education researchers, policymakers, and other stakeholders who are 

involved in teaching and learning of first-year undergraduate mathematics courses. 

6.3 Evidence-based self-efficacy interventions 

Recall that there are four sources of perceived self-efficacy: “enactive mastery 

experience”, “vicarious experience”, “verbal persuasions”, and “physiological and 

affective states” (Bandura, 1997, p. 79), as highlighted in Chapter two. It is 

prudent, and of course, the approach adopted in perceived self-efficacy 

intervention studies, to intervene through these sources for improved perceived 

self-efficacy of the students. Two of these studies are summarised in the following 

sections, including some ideas about possible implementations in the teaching and 

learning of introductory calculus course at the University of Agder. One can build 

on these examples to develop and implement similar interventions in further 

studies. 
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6.3.1 Mathematical modelling competition 

Evidence has shown that mathematical modelling competitions have the potential 

to foster perceived self-efficacy on mathematics tasks. Czocher et al. (2019) 

demonstrated how an extra-curricular modelling competition led to post-secondary 

school students’ gains in perceived self-efficacy with a focus on applications of 

differential equations. The basic idea of this competition is to design modelling 

tasks drawn from the syllabus of a target course (in our case, calculus course) and 

invite students to participate outside the regular classroom teaching. Several 

examples of modelling tasks based on ideas from introductory calculus course are 

available, elsewhere, (e.g., Kilty & McAllister, 2018). The students can be divided 

into groups with each group voluntarily choosing a modelling task to work on 

during the competition. The students are expected to work collaboratively to solve 

the chosen problem using concepts and methods from the calculus course, seek 

mentorship from the teachers or older colleagues, and make a presentation on the 

day of the competition. The inherent mechanisms that enhance perceived self-

efficacy through the competition are students’ research experience, mentorship 

from the teachers or older colleagues and community involvement through 

collaboration with peers (Czocher et al., 2019). It is expected that this extra-

curricular activity will provide students’ with mastery experience on the content 

of the course, which is an important source of perceived self-efficacy (Bandura, 

2008). As such, I recommend a mathematical modelling competition to foster 

perceived self-efficacy on calculus tasks among engineering students.  

6.3.2 Vicarious experience presentation 

A video or live presentation by peers who have passed through a course has been 

shown empirically to be efficient in fostering students’ perceived self-efficacy on 

the course (e.g., Bartsch, Case, & Meerman, 2012; Luzzo, Hasper, Albert, Bibby, 

& Martinelli, 1999). The primary idea of the vicarious experience presentation is 

that the calculus teachers encourage the students to watch short videos of previous 

students (live models) who have followed and passed the course or invite the live 

models for a classroom presentation. In the presentation, the previously successful 

students on the course will narrate their experience, their challenges, their 

perseverance, their study approaches, and how they manage to pass the course. It 

has been suggested that a live presentation to provide vicarious experience could 

be better than a video presentation due to the presence of real-time interaction in 

the former (Bartsch et al., 2012). Further, previous successful students with an 
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average performance in the course are recommended to give the presentation. It is 

expected that by watching or monitoring the experience of peers with a similar 

level of performance will foster the perceived self-efficacy of the current students 

following the course. The idea is that if they can, then I can. Thus, I recommend 

this intervention to foster perceived self-efficacy on calculus tasks among 

engineering students. 
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List of appendices 

Appendix A: Revised Study Process Questionnaire (Norwegian 

version) 

Dette spørreskjemaet inneholder noen spørsmål om holdningene du har til studiene 

dine og den måten du normalt studerer på. Du bes her fokusere på emnet MA-

178. Det er ingen riktig måte å studere på. Det avhenger av hva som passer til din 

stil og av hvilke emner du studerer. Derfor er det viktig at du besvarer hvert 

spørsmål så ærlig som mulig.  

 

Vennligst marker det passende alternativet med en (  ), ved siden av det gitte 

spørsmålet på skjemaet kalt «Spørsmål om ‘generelle formål/svar-ark’». 

Bokstavene ved siden av hvert spørsmål står for følgende svar: 

A - denne uttalelsen stemmer for min del aldri eller kun sjeldent 

B – denne uttalelsen stemmer for min del noen ganger 

C – denne uttalelsen stemmer for min del omtrent halvparten av tiden 

D – denne uttalelsen stemmer for min del ofte 

E – denne uttalelsen stemmer for min del alltid eller nesten alltid 

 Spørsmål om ‘generelle formål/svar-ark’ A  B C D E 

1  Tidvis erfarer jeg at det å studere gir meg en dyp, 

personlig tilfredsstillelse 

      

2  Jeg erfarer at jeg må arbeide tilstrekkelig med et 

tema, slik at jeg kan trekke mine egne 

konklusjoner før jeg blir fornøyd 

      

3  Målet mitt er å bestå emnet og samtidig arbeide 

så lite som mulig 

      

4  Jeg studerer kun seriøst det som meddeles i 

undervisningen eller i emnebeskrivelsene 

      

5  Det er min erfaring at nesten alle tema kan være 

meget interessante, straks jeg setter meg inn i 

dem 

      

6  Jeg synes de fleste nye tema er interessante og 

bruker ofte ekstra tid på å forsøke og skaffe til 

veie mer informasjon om dem 
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7  Jeg synes ikke at emnet jeg tar er veldig 

interessant så jeg arbeider minimalt 

      

8  Jeg synes at det å studere akademiske fag til tider 

kan være like spennende som en god bok eller en 

god film 

      

9  Jeg tester meg selv i viktige tema inntil jeg forstår 

dem fullt ut 

      

10 Jeg erfarer at jeg kan klare meg gjennom de fleste 

vurderingsformer ved å memorere viktige 

avsnitt, fremfor å gjøre forsøk på å forstå dem 

     

11 Generelt begrenser jeg mine studier til det som 

spesifikt er oppgitt, ettersom jeg synes det er 

unødvendig å gjøre noe ekstra 

     

12 Jeg arbeider hardt med mine studier fordi jeg 

finner stoffet interessant 

     

13 Jeg bruker mye av min fritid på å finne ut mer om 

interessante tema som har blitt diskutert i ulike 

undervisningssituasjoner 

     

14 Jeg synes ikke det er til hjelp å studere emner i 

dybden. Det forvirrer meg og tiden kastes bort, 

når alt man behøver er grunnleggende kjennskap 

til de ulike temaene 

     

15 Jeg mener at forelesere ikke bør forvente at 

studentene bruker betydelig tid på å studere stoff 

som alle vet at det ikke vil bli eksaminert i 

     

16 Jeg møter til undervisning med spørsmål i 

tankene, og som jeg ønsker at blir besvart 

     

17 Jeg gjør et poeng ut av å se på mesteparten av den 

foreslåtte litteraturen som knyttes til 

forelesningene 

     

18 Jeg ser ikke noe poeng i læringsmateriale som det 

mest sannsynlig ikke vil bli eksaminert i 

     

19 Jeg erfarer at den beste måten å bestå eksamen 

på, er å prøve og huske svar på tilsvarende 

spørsmål 
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Appendix B: Revised study process questionnaire (English translation 

of the Norwegian version) 

This questionnaire has a number of questions about your attitudes towards 

mathematics and your usual way of studying it. Please focus here on the course 

MA-178. There is no right way of studying. It depends on what suits your own 

style and the course you are studying. It is accordingly important that you answer 

each question as honestly as you can.  

 

Place the mark (  ) at the appropriate option to each statement. The letters 

alongside each number stand for the following response. 

A—this item is never or only rarely true of me 

B—this item is sometimes true of me 

C—this item is true of me about half the time 

D—this item is frequently true of me 

E—this item is always or almost always true of me 

 Statement on approaches to learning mathematics A  B C D E 

1  I find that at times studying gives me a feeling of 

deep personal satisfaction. 

      

2  I find that I have to do enough work on a topic so 

that I can form my own conclusions before I am 

satisfied. 

      

3  My aim is to pass the course while doing as little 

work as possible. 

      

4  I only study seriously what’s given out in class or in 

the course outlines. 

      

5  I feel that virtually any topic can be highly 

interesting once I get into it. 

      

6  I find most new topics interesting and often spend 

extra time trying to obtain more information about 

them 

      

7  I do not find my course very interesting so I keep 

my work to the minimum. 

      

8  I find that studying academic topics can at times be 

as exciting as a good novel or movie. 
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9  I test myself on important topics until I understand 

them completely. 

      

10 I find I can get by in most assessments by 

memorising key sections rather than trying to 

understand them. 

     

11 I generally restrict my study to what is specifically 

set as I think it is unnecessary to do anything extra. 

     

12 I work hard at my studies because I find the material 

interesting. 

     

13 I spend a lot of my free time finding out more about 

interesting topics which have been discussed in 

different classes. 

     

14 I find it is not helpful to study topics in depth. It 

confuses and wastes time, when all you need is a 

passing acquaintance with topics. 

     

15 I believe that lecturers shouldn’t expect students to 

spend significant amounts of time studying material 

everyone knows won’t be examined. 

     

16 I come to most classes with questions in mind that I 

want answering 

     

17 I make a point of looking at most of the suggested 

readings that go with the lectures. 

     

18 I see no point in learning material which is not likely 

to be in the examination. 

     

19 I find the best way to pass examinations is to try to 

remember answers to likely 

questions. 
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Appendix C: Calculus self-efficacy inventory (Norwegian) 

Vennligst svar på spørsmålene ærligst mulig. Svarene behandles konfidensielt og 

vil kun bli brukt i forskningsøyemed.  

I. Kjønn:            Mann              Kvinne   [Marker med et kryss (X)]  

Punktene under utgjør en liste over ulike oppgaver fra Kalkulus-pensumet. I 

kolonnen “Tiltro” bes du om å angi hvor stor tiltro du har til at du hadde maktet å 

løse hver av oppgavene her og nå. Angi graden av tiltro med et tall fra 0 til 100, 

ut ifra skalaen under:  

 

0 10 20 30 40 50 60 70 80 90 100 

Kan 

overhodet 

ikke løse den 

  Moderat sikker på å 

løse den 

  Meget 

sikker på å 

løse den 

 

Oppgave  Hvor stor tiltro har du til at du kan løse hver av oppgavene 

under, her og nå? 

Tiltro 

(0 – 100) 

1  Regn ut (1 − 𝑖)666   

2  Regn ut grenseverdien  

lim
𝑥→1

1 − cos (1 − 𝑥2)

𝑥2 − 2𝑥 + 1
 

 

3  Gitt funksjonen 𝑓(𝑥) = ln (2𝑥2 − 3𝑥 + 2). Finn 

definisjonsmengden til funksjone 𝑓? 

 

4  Gitt funksjonen 𝑓(𝑥) = 𝑥 + 𝑒 𝑥. Verdien av 𝑐 som 

tilfredsstiller konklusjonen av Middelverditeoremet, 

Mean value Theorem på intervallet [0, 1] er hva? 

 

5  En funksjon er gitt ved 𝑓(𝑥) = 𝑒−𝑥(𝑥2 + 4𝑥 + 1). Finn 

ved regning alle ekstremalpunktene til 𝑓 og bestem om 

de er toppunkt eller bunnpunkt. 
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6  En kurve er gitt ved 𝑥 = 𝑦2 − 𝑥2𝑦 − 1. Bruk implisitt 

derivasjon til å finne et uttrykk for 𝑦′. 

 

7  En partikkel beveger seg på grafen til 𝑓(𝑥) = ln 𝑥, 𝑥 >

1 med en hastighet 2 enheter per sekund, målt på 

𝑥 −aksen. Hvor raskt endrer avstanden fra origo til 

partikkelen seg i det partikkelen passerer der 𝑥 = 𝑒 ? 

 

8  En båt kjører ut fra kysten i retning rett mot nord. Det står 

et fyrtårn 30 km øst for punktet på kysten hvor båten la 

ut ifra. På et tidspunkt observeres det med radar fra 

fyrtårnet at båten er nøyaktig 50 km fra fyrtårnet og at 

avstanden mellom båten og fyrtårnet øker med 3 meter 

per sekund. Hvor fort kjører båten på dette tidspunktet? 

Gi svaret i km per time. 

 

 

 

 

 

 

 

 

 

 

9 Regn ut integralene 

∫
𝑥 − 7

𝑥2 + 𝑥 − 6
𝑑𝑥 

 

10 Regn ut integralene  
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∫ 𝑥2𝑒−𝑥𝑑𝑥
∞

0

 

11 Finn 

∫
1

4𝑥2 + 1
𝑑𝑥 

 

12 En flate er avgrenset av funksjonen 𝑓(𝑥) =
1

3
𝑒 𝑥2

 der 0 ≤

 𝑥 ≤  2 og 𝑥 −aksen. Et kar lages ved å rotere flaten om 

x-aksen. Finn volumet av karet.  

 

13 Vi skal la 𝑓(𝑥) = √𝑥 ∙ 𝑒√𝑥 og 𝐷𝑓 = (0,4] i denne 

oppgava. Funksjonen h er definert på [0, 2] ved at ℎ(𝑥) =

∫ 𝑓(𝑡)𝑑𝑡
𝑥2

1
. Bestem ℎ′(𝑥). 
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Appendix D: Calculus self-efficacy inventory (English) 

Please answer the questions below as honestly as possible. Your answers will be 

treated with confidentiality and will only be used for research purposes. 

I. Sex:            Male              Female   [mark with a cross (X)]  

Below you will find a set of different tasks from the Calculus syllabus. In the 

column “Confidence” you are asked to state how much confidence you have that 

you could manage to solve each task – here and now. Please provide your level 

of confidence with a number from 0 to 100, using the scale below:  

0 10 20 30 40 50 60 70 80 90 100 

No possibility 

that I could 

solve this 

  Moderately 

confident that I 

could solve this 

  Totally 

confident that I 

could solve 

this 

Task  How confident are you that you can solve each of 

these problems right now? 

Confidence 

(0 – 100) 

1  Calculate (1 − 𝑖)666   

2  Calculate the value of the limit 

lim
𝑥→1

1 − cos (1 − 𝑥2)

𝑥2 − 2𝑥 + 1
 

 

3  Given the function 𝑓(𝑥) = ln (2𝑥2 − 3𝑥 + 2). What 

is the domain of the function 𝑓? 

 

4  Given the function 𝑓(𝑥) = 𝑥 + 𝑒 𝑥. What is the value 

of 𝑐 that satisfies the result of the Mean Value 

Theorem in the interval [0, 1] ? 

 

5  A function is given so that 𝑓(𝑥) = 𝑒−𝑥(𝑥2 + 4𝑥 + 1). 

Find, by calculating, all the turning points of 𝑓 and 

determine the maximum and minimum points. 

 

6  A curve is given by the equation 𝑥 = 𝑦2 − 𝑥2𝑦 − 1. 

Use implicit derivation to find an expression for 𝑦′. 
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7  A particle moves on the graph of 𝑓(𝑥) = ln 𝑥, 𝑥 > 1 

with a speed 2 units per second, measure along the x-

axis. How fast does the distance from the origin to the 

particle change when the particle is 𝑥 = 𝑒 ? 

 

8 A boat sails from the coast towards the North. A 

lighthouse stands 30 km east from the point on the 

coast where the boat departed. At one moment in 

time, radar from the lighthouse shows that the boat is 

exactly 50 km from the lighthouse and the distance 

between the boat and the lighthouse is increasing at 3 

metres per second. How fast is the boat moving at that 

moment? Give the answer in km per hour. 

 

 

 

 

 

 

 

9 Solve the integral 

∫
𝑥 − 7

𝑥2 + 𝑥 − 6
𝑑𝑥 

 

10 Calculate the integral 

∫ 𝑥2𝑒−𝑥𝑑𝑥
∞

0

 

 

11 Find 

∫
1

4𝑥2 + 1
𝑑𝑥 
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12 A surface is bounded by the function 𝑓(𝑥) =
1

3
𝑒𝑥2

 

where 0 ≤  𝑥 ≤  2 and the x-axis. A vessel is made 

by rotating the surface around the x-axis. Find the 

volume of the vessel.  

 

13 In this task, let 𝑓(𝑥) = √𝑥 ∙ 𝑒√𝑥 and 𝐷𝑓 = (0,4]. The 

function h is defined on [0, 2], with ℎ(𝑥) =

∫ 𝑓(𝑡)𝑑𝑡
𝑥2

1
. What is ℎ′(𝑥)? 
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A B S T R A C T

This paper reports a Norwegian validation study of a widely used instrument to measure students’ approaches to
learning, namely, Bigg’s revised two-factor study process questionnaire (R-SPQ-2F). Its cultural sensitivity and
psychometry evaluations have provoked rigorous discussion among educators in different languages. A survey
design was adopted involving 253 undergraduate engineering students across two universities. Confirmatory
factor analyses were used to test six models hypothesized to reflect the factor structures of R-SPQ-2F and uni-
dimensionality of its subscales. The results showed appropriate fits of a two-factor first-order model with 10
items measuring deep approach and 9 items measuring surface approach subscales. The reliability was found to
be high with coefficients of .81, .72 and .63 on deep subscale, surface subscale and the whole instrument re-
spectively. Findings may be interpreted as evidence of cultural sensitivity of the instrument and more validation
studies were recommended.

1. Introduction

The increase in number and diversity of higher education students
coupled with huge investment on the parts of government, parents,
educational stakeholders and students have prompted enormous re-
search into undergraduate students’ learning experience. An important
aspect of students learning that has attracted attention of education
researchers over the last decades is their learning approaches (e.g.,
Fryer & Vermunt, 2018; Maciejewski & Merchant, 2016). Approaches to
learning in higher education (HE) connotes predispositions adopted by
an individual when presented with learning materials and strategies
used to process the learning contents (Baeten, Kyndt, Struyven, &
Dochy, 2010). A long-standing categorization of learning approaches
into notions of “deep” and “surface” was introduced by Ference Marton
and colleagues over 40 years ago.

Marton and Säljö developed the students’ approaches to learning
(SAL) theory from their qualitative clinical experimental series of stu-
dies (Marton & Säljö, 1976a, 1976b) on Swedish undergraduate stu-
dents’ approaches to reading, understanding and answering questions
based on some presented passages of prose and newspaper articles. The
experiments were aimed at exploring qualitative differences in the
presented materials and describing practical differences in learning
processes. In these experiments, they utilized the term “approaches to
learning” to connote the processes adopted by the students, prior to the

experiments which directly influence their learning outcome. The series
of experiments resulted in a categorization of students’ learning pro-
cesses into deep and surface approaches.

A deep approach learner processes information with the intent of
discovering the meaning of intended content of the material while a
surface approach learner is preoccupied with the discourse or the text
itself with little or no attention to the intended meanings. More re-
cently, Biggs (2012) while describing surface and deep approaches to
learning posited that the surface approach to learning “refers to activ-
ities of an inappropriately low cognitive level, which yields fragmented
outcomes that do not convey the meaning of the encounter” and the
deep approach to learning “refers to activities that are appropriate to
handling the task so that an appropriate outcome is achieved.” (p.42).

Measurement of students’ approaches to learning is an aspect of
instruction in HE that has attracted attention for the past 45 years.
Questions like what should be measured in SAL?, how should it be
measured?, and how many subcategories should SAL measuring in-
strument contain?, etc., have been investigated extensively (e.g.,
Kember, 1990). John Bigg’s revised two-factor study process ques-
tionnaire R-SPQ-2F has been identified among the most widely studied
instruments for measuring approaches to learning (e.g., Lake, Boyd, &
Boyd, 2017; López-Aguado & Gutiérrez-Provecho, 2018). Similar in-
struments are the approaches and study skills inventory for students
(ASSIST) and revised approaches to studying inventory (RASI) that

https://doi.org/10.1016/j.stueduc.2019.100816
Received 22 May 2019; Received in revised form 6 September 2019; Accepted 7 September 2019

⁎ Corresponding author.
E-mail address: yusuf.zakariya@uia.no (Y.F. Zakariya).

Studies in Educational Evaluation 64 (2020) 100816

Available online 09 October 2019
0191-491X/ © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/BY/4.0/).

T

http://www.sciencedirect.com/science/journal/0191491X
https://www.elsevier.com/locate/stueduc
https://doi.org/10.1016/j.stueduc.2019.100816
https://doi.org/10.1016/j.stueduc.2019.100816
mailto:yusuf.zakariya@uia.no
https://doi.org/10.1016/j.stueduc.2019.100816
http://crossmark.crossref.org/dialog/?doi=10.1016/j.stueduc.2019.100816&domain=pdf


were developed and validated in different languages (e.g., Diseth, 2001;
Tait, Entwistle, & McCune, 1998; Valadas, Gonçalves, & Faísca, 2010).
Meanwhile, R-SPQ-2F has advantage over ASSIST with regards to its
concise length and it is more readily interpretable than the RASI be-
cause of its lower number of primary latent factors.

However, cultural sensitivity of R-SPQ-2F when adapted to different
languages has generated heated debates among researchers (López-
Aguado & Gutiérrez-Provecho, 2018; Socha & Sigler, 2014). In most
instances, only two latent factors as opposed to four hypothesized by
Biggs, Kember, and Leung (2001) have been reported to be the best
explanation for the factor structure of the instrument (e.g., López-
Aguado & Gutiérrez-Provecho, 2018). Contrary to Biggs et al. (2001), a
handful of studies also recommended deletion of some items from the
original instrument in order to achieve model fits (e.g., Socha & Sigler,
2014). These contrasting findings have created knowledge gaps for
more studies on the cultural sensitivity of the instrument. It is therefore
necessary to validate the Norwegian version of R-SPQ-2F before ap-
plying it to our university students. The main purpose of this study is to
confirm the underlying factor structure of R-SPQ-2F and establish its
reliability estimates using appropriate psychometric analysis.

2. Literature review

2.1. Factor structures of R-SPQ-2F

Psychometric properties such as validity and reliability of R-SPQ-2F
have been studied extensively and the results well documented (Biggs
et al., 2001; Chan & Sheung Chan, 2010; Weller et al., 2013). In Biggs
et al. (2001), validity, reliability and dimensionalities of R-SPQ-2F were
investigated involving 495 university students across various depart-
ments in a university in Hong Kong. The unidimensionality of each
substructure – deep motive (DM), deep strategy (DS), surface motive
(SM) and surface strategy (SS) – was investigated by conducting con-
firmatory factor analysis (CFA) which established the homogeneity of

each 5-item subscale. Two models were hypothesized and tested using
CFA to explain the factor structures of R-SPQ-2F. The first model (see,
Fig. 1A) was a first-order four-factor model – DM, DS, SM and SS – with
partial covariance and five indicators on each latent variable. The re-
sults showed a good fit with standardized root mean square residual
(SRMR)= .058, comparative fit index (CFI)= .904 and correlations of
.93, .70 and -.18 between DM and DS, SS and SM, and DM and SM
respectively. The second model (see, Fig. 1B) was as well a first-order
two-factor model – deep and surface – with two indicators each DM and
DS, SM and SS respectively got by summing items corresponding to the
subscales. The results also showed a good fit with SRMR= .015,
CFI= .992 and correlation −.23 between deep and surface factors.

A reliability check was conducted and Cronbach’s alpha coefficients
of .62, .63, .72 and .57 were reported for DM, DS, SM and SS respec-
tively. Further, acceptable Cronbach’s alpha coefficients of .73 and .64
were also reported for the 10-item deep approach (DA) and Surface
Approach (SA) factors respectively (Biggs et al., 2001). In a similar
corroborative empirical study involving 404 students of higher di-
plomas and associate degrees in Hong Kong, Chan and Sheung Chan
(2010) reported much higher Cronbach’s alpha coefficients of .70, .74,
.70, .65, .85 and .80 for DM, DS, SM, SS, DA, and SA respectively. More
so, Weller et al. (2013) conducted an exploratory factor analysis (EFA)
using maximum likelihood (ML) coupled with CFA after some changes
in the wordings of R-SPQ-2F to suit their research field. The results
made a perfect match of the two-factor extracted as in the original in-
strument with a considerable internal consistency and Cronbach’s alpha
values of .74 and .83 for DA and SA respectively.

2.2. Cultural sensitivity of R-SPQ-2F

The cultural sensitivity of R-SPQ-2F has stirred up debates among
educationists in recent time especially when adapted into Spanish
(Justicia, Pichardo, Cano, Berbén, & De la Fuente, 2008), Turkish
(Önder & Besoluk, 2010), Japanese (Fryer, Ginns, Walker, & Nakao,

Fig. 1. Models 1 and 2 as hypothesized by Biggs et al. (2001).
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2012), Dutch (Stes, De Maeyer, & Van Petegem, 2013), Chinese (Xie,
2014), and Arabic (Shaik et al., 2017). The results of these studies have
ended in different conclusions with most studies proposing a two-factor
R-SPQ-2F without any further subcategories into motive and strategy.
In an attempt to investigate this phenomena, Leung, Ginns, and Kember
(2008) conducted an empirical study on two independent samples of
1146 university students in Australia and 1266 students in Hong Kong.
Their results showed no significant difference in the description of
students approaches to learning in both countries, the range of devel-
oping approaches from surface to deep is common and the Cronbach’s
alpha coefficients ranged from 0.64 (SS) to 0.74 (SM) and 0.70 (SS) to
0.77 (DM) for both Hong Kong and Australian samples respectively. The
hypothesized two-factor structural model was confirmed using CFA
which gave a good fit for both samples (Leung et al., 2008). This is one
of the few studies that have confirmed no cultural sensitivity of R-SPQ-
2F across different cultural settings.

On the other hand, Justicia et al. (2008) were among the earlier
researchers to provoke the discussion on cultural sensitivity of R-SPQ-
2F. In their empirical study, data were collected from two independent
samples of 314 and 522 university students. The first sample composed
of mainly year one education students (used for EFA) and second
sample composed of 274 and 248 final year students of education and
psychology respectively (used for CFA). The R-SPQ-2F was translated to
Spanish employing back-translation coupled with some modifications
to cater for cultural differences. Their analysis was rigorous including
EFA (both PCA and PFA – Principal Factor Analysis), CFA, item poly-
choric correlations to cater for multivariate normality and comparing
other models. The final results confirmed two-factor structures for R-
SPQ-2F, and no empirical evidence was found for differentiating be-
tween motive and strategy subscales. A corroborative result for best fit
of two underlying factor structures for R-SPQ-2F was as well reported in
the Turkish version of the instrument (Önder & Besoluk, 2010). Evi-
dence of reliability was also provided with Cronbach’s alpha coeffi-
cients of .78 and .74 for deep and surface dimensions respectively. The
Japanese (Fryer et al., 2012), Dutch (Stes et al., 2013) and Arabic
(Shaik et al., 2017) versions also reported two underlying factor
structures for the R-SPQ-2F in their respective studies with little con-
ceptual variations in deep and surface approaches.

A study that stood out almost completely was the report of Immekus
and Imbrie (2010) involving two cohorts (A=1490 and B=1533) of
university students in the United States of America. The reliability es-
timates were .81 and .80 (cohort A) and .81 and .78 (cohort B) for deep
and surface approach subscales respectively. The interesting part was
the factor analysis results. There was no empirical evidence for neither
the two-factor nor for the four-factor structures of the R-SPQ-2F in the
cohort A. However, a four-factor model was found fit after deleting 5
items. This was later confirmed using CFA on cohort B and found to
have a good fit with acceptable statistics and the final four-factor items
considerable overlapped with Bigg’s et al. 2001 initial substructures
(Immekus & Imbrie, 2010). In an attempt to reconcile between these
variant reports on latent structures of R-SPQ-2F, Socha and Sigler
(2014) conducted an empirical study involving 868 university students
and compared 8 statistical models. Rather than solving the problem,
they also came up with a two-factor best description of R-SPQ-2F at a
cost of deleting two items (Socha & Sigler, 2014).

3. Methods

3.1. Participants

A total of 253 year-one university engineering and computer science
students participated in this study. This comprised 168 males and 72
females distributed across two universities in Norway and age range of
20–23 years. 13 students did not indicate their gender. An effective
sample of size of 253 was realized after subtracting ten missing cases in
the main data. Despite the sample size was smaller than envisaged due

to general attitudes of undergraduate students towards responding to
questionnaires, it conforms with the recommendations of Monte Carlo
simulation studies reported in (Gagne & Hancock, 2006; Wolf,
Harrington, Clark, & Miller, 2013). This was based on the many ele-
ments such number of factors (≤ 4), expected factor loading (≤ .8),
number of indicators per factor (≤ 10), expected power (≥ .8), ex-
pected ratio of 2 -value to df (≤ 4), etc.

3.2. Materials

R-SPQ-2F was translated independently by two Norwegian first
language associate professors of mathematics education. Comparison of
translated versions was done, and agreements were reached on the
appropriate choices of words. A back-translation to English was con-
ducted by an English professor of mathematics education who has spent
about 15 years in Norway. The back translation was compared with the
original English version and minor corrections were made to cater for
cultural language differences. The instrument was then converted to
electronic form using SurveyXact and paper version was printed for
back-up.

3.3. Procedure for data collection

Electronic version of consent forms was sent to the students via their
university emails followed by a class visit for a presentation on the
project. In the presentation, we gave a brief description of our project to
the students and stressed the importance of their involvement in the
research. At this instance, some students filled-out the paper version of
the consent forms. A week after, we paid another visit with paper
version of the translated R-SPQ-2F, gave a 5-minute presentation on the
questionnaires and some students as well completed the paper version.
This was preceded by distribution of R-SPQ-2F electronic version via
emails. We gave a time frame of about three weeks to receive responses
accompanied with occasional reminders. The response rate was about
35% of the total population. The low response rate could be ascribed to
the general attitudes of undergraduate students towards completing
questionnaires as well the busy schedules of most of the students at the
time.

3.4. Procedure for data analysis

The collected data from both paper and electronic versions of R-
SPQ-2F were merged, screened, relabeled, coded and saved in ASCII
format. Confirmatory factor analysis was used to test six models and the
results were reported in the current article. The first CFA was used to
confirm model 1 proposed by Biggs et al. (2001) using weighted least
square mean and variance adjusted (WLSMV) estimator in Mplus ver-
sion 8.3 (Muthén & Muthén, 1998-2017; Muthén and Muthén, 1998).
WLSMV was utilized as it is robust enough to perform well on analysis
of ordinal data (in which basic assumptions of normality, absence of
kurtosis and skewness are violated), presence of missing data and small
sample size as compared to ML and others (Brown, 2015; Suh, 2015).
The second CFA was used to test model 2 proposed by Biggs et al.
(2001). The default ML estimator was used for this model because
summing the indicators scores has inflated the categories which make it
too cumbersome of WLSMV to handle. Model 3 was a modification of
model 2 containing four first-order factors – DM, DS, SM and SS –
measured by five indicators each and two second-order factors – deep
and surface – hierarchical model.

Model 4 was a proposed modified version of model 3 containing two
first-order factors – deep and surface – model measured by ten and nine
indicators respectively. Models 5 and 6 were single-factor models used
to check the unidimensionality of items in deep and surface subscales.
WLSMV estimator was used in the analysis of models 3-6. Cronbach
alpha coefficient estimate for the reliability of the instrument was not
used because it depends on Pearson correlations which requires
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normality assumption for accurate estimates. Rather, the internal con-
sistency of R-SPQ-2F and its subscales was checked using Raykov and
Marcoulides’ formula which have been confirmed to performed more
efficiently than Cronbach alpha under violations of multiple assump-
tions (Raykov & Marcoulides, 2016). For instructional purposes, the
data used for this study are available upon request and Mplus syntax
codes as well the English final version of R-SPQ-2F are enclosed in the
appendices. The Norwegian version of R-SPQ-2F is available upon re-
quest from the corresponding author.

3.5. Criteria for assessing a model fit

Apart from a non-significant 2 -value, there are a number goodness
of fits (GOF) indices proposed to assess the optimality of approximate
prediction of sample matrix by a CFA model. Popularly reported indices
in educational studies are: TLI-Tucker-Lewis index (Tucker & Lewis,
1973), RMSEA-root mean square error of approximation (Steiger and
Lind, 1980 in Steiger, 2016), SRMR (Jöreskog & Sörbom, 1988), and
CFI (Bentler, 1990). For both CFI and TLI a value 1.00 indicates a
perfect model fit while values close to or greater than 0.90 indicate a
good fit (Bentler, 1990; Hu & Bentler, 1999). A cut-off RMSEA value of
less than or equal to 0.06 was proposed by Hu and Bentler (1999) for a
good model fit. Other experts (e.g., Browne & Cudeck, 1992) have
proposed RMSEA values between 0.00 to 0.05 and 0.05 to 0.08 as de-
picting a good and an adequate model fits respectively. A model with
RMSEA value between 0.08 to 0.10 was characterized as having a
“mediocre fit” while models with value greater than 0.10 should be
rejected (MacCallum, Browne, & Sugawara, 1996). In the case of SRMR,
a value less than or equal to .08 was suggested by Hu and Bentler
(1999) as an indicator of a good fit.

In practice, methodologists and researchers do not take the cut-off
values of GOF indices as a rule of thumb. In fact, a close look at the
work of Hu and Bentler (1999) revealed that their cut-off criteria are
not generalizable especially when other estimators e.g. WLSMV apart
from ML are used and more than five indicators per factors are involved
in the instrument (Marsh, Hau, & Wen, 2004). Further, Hu and Bentler
(1998), 1999) criteria have been considered unrealistic for most social
sciences research especially when the data involved ordinal scales with
multiple violations of assumptions (Marsh et al., 2004). It is therefore
helpful, and of course the criteria adopted in the current study, to
utilize a combination of the indices with some relaxation in cut-off
values coupled with significant level of indicator factor loadings and
interpretability of other parameter estimates.

4. Results

4.1. Analysis of hypothesized model 1 (Biggs et al., 2001)

The first-order four-factor model of Biggs et al. (2001) was subjected
to CFA and the results are presented in Tables 1 and 2.

The results in Table 1 show a poor fit of model 1. This is evident
with a significantly high 2 -value (167, N=253)= 609.79, p< .05,
and none of the fit indices is within the recommended acceptable range.
In fact, the problem of this model is worse than the out of range fit
indices. The latent variable covariance matrix is not positive definite
(see, Table 2) which renders the model non-admissible. This was be-
cause of the presence of Heywood cases in form of standardized cor-
relations great than one (1.018 and 1.048) between latent variables DM
and DS, SM and SS respectively. This is interpreted to be an evidence of
over-factoring in the model and gross misspecifications that are sug-
gestive of redundant latent factors with high multicollinearity (Brown,
2015; Byrne, 2012). One may argue that the nonpositive definite matrix
was due to pairwise estimations (one by one correlation) involved in
the computation of polychoric correlation matrix used in the analysis of
ordinal data. In order to clear this doubt, the estimator was changed to
ML and the analysis was run again. The result is no different from the

one reported in Tables 1 and 2. Hence, it can be deduced that the hy-
pothesized model 1 is not descriptive enough of the data and therefore
rejected.

This finding, though contrary to the hypothesized model proposed
by Biggs et al. (2001) and those who confirmed it (e.g., Merino &
Kumar, 2013; Xie, 2014) it does conform to the results of non-ad-
missible solutions reported in many studies (e.g., López-Aguado &
Gutiérrez-Provecho, 2018; Socha & Sigler, 2014; Stes et al., 2013).
Moreover, some of the studies that confirmed admissible solutions for
the four-model (e.g., Xie, 2014) also found high correlation coefficients
between DM and DS, SM and SS which are suggestive of an over-fac-
tored model. They therefore concluded their studies with a two-factor
explanation of the instrument (e.g., Merino & Kumar, 2013; Xie, 2014).

4.2. Analysis of hypothesized model 2 (Biggs et al., 2001)

The first-order two-factor model of Biggs et al. (2001) was subjected
to CFA and the results are presented in Table 3 and Fig. 2.

The results in Table 3 appear to show a good model fit from the
perspective of GOF indices. The 2 -value (1, N= 253)=3.269,
p> .05 was not significant and all the fit indices are within re-
commended acceptable range except RMSEA. However, the main

Table 1
Mplus output of model 1: Selected GOF statistics.

Tests of model fits

Chi-Square Test of Model Fit
Value 609.786
Degrees of freedom 167
p-value 0.0000
RMSEA (Root Mean Square Error of Approximation)
Estimate 0.102
90 Percent C.I. 0.094 0.111
Probability RMSEA <= .05 0.000
CFI/TLI
CFI 0.710
TLI 0.670
Number of Free Parameters 103
SRMR (Standardized Root Mean Square Residual)
Value 0.100

Table 2
Estimated correlation matrix for the latent variables.

DM DS SM SS

DM 1.000
DS 1.018 1.000
SM −0.602 0.000 1.000
SS 0.000 0.000 1.048 1.000

Table 3
Mplus output of model 2: Selected GOF statistics.

Tests of model fits

Chi-Square Test of Model Fit
Value 3.269
Degrees of Freedom 1
p-value 0.0706
CFI/TLI
CFI 0.991
TLI 0.944
Number of Free Parameters 13
RMSEA (Root Mean Square Error of Approximation)
Estimate 0.095
90 Percent C.I. 0.000 0.217
Probability RMSEA <= .05 0.160
SRMR (Standardized Root Mean Square Residual)
Value 0.017
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problem of this model is that the residual covariance matrix was not
positive definite which renders the model non-admissible. This was
because of the presence of Heywood case in form of negative unique
variance of SM, see Fig. 2. This is suggestive of model gross mis-
specifications as positive definite variance/covariance matrix is a ne-
cessary condition for an admissible model (Brown, 2015; Kolenikov &
Bollen, 2012). Hence, it can be deduced that the hypothesized model 2
as well is not descriptive enough of our data and therefore rejected.

This finding as well, though contrary to hypothesized model pro-
posed by Biggs et al. (2001) it does conform to the results of non-ad-
missible solutions reported in many studies (e.g., López-Aguado &
Gutiérrez-Provecho, 2018; Socha & Sigler, 2014; Stes et al., 2013). The
negative unique variance found in the SM indicator completely over-
lapped with the finding of Socha and Sigler (2014) who also found
negative error disturbance in both SM and SS indicators.

4.3. Analysis of proposed hierarchical model 3

Observed methodological issues in terms of adding up scores on
component items to make indicators in model 2 coupled with its within
range accompanied GOF indices prompted the test of a hierarchical
four-factor model. It consists two first-order and two second-order
factors tested at item levels contrary to aggregating scores used by Biggs
et al. (2001). This proposed hierarchical model also relied on previous
studies which have tested similar models and found admissible solu-
tions (e.g., Justicia et al., 2008). The results are presented in Table 4

and Fig. 3.
The results in Table 4 show a poor fit of the proposed hierarchical

model. This is evident with a significantly high 2 -value (168,
N= 253)=521.11, p< .05, and none of the fit indices is within the
recommended acceptable range. Here again, the latent variable covar-
iance matrix is not positive definite which renders the model non-ad-
missible. This was because of presence of Heywood cases in form of
negative unique variance in latent variables DM and DS, SM and SS.
This is interpreted to be an evidence of over-factoring in the model and
gross misspecifications that are suggestive of redundant latent factors
(Brown, 2015; Byrne, 2012). Therefore, it can be deduced that the
hypothesized model 3 is not descriptive enough of the data and re-
jected. This finding also corroborated previous studies (e.g., López-
Aguado & Gutiérrez-Provecho, 2018; Merino & Kumar, 2013; Socha &
Sigler, 2014) who have also reported poor fit as well as non-admissible
solutions of this model.

4.4. Analysis of proposed model 4

The over-factoring observed in model 3 was corrected by collapsing
latent variables DM with DS and SM with SS to form a hypothesized
two-factor model and tested at item level. The results were presented in
Table 5 and Fig. 4.

The results in Table 5 (with item 8) show a poor fit of the proposed
two-factor model. This is evident with a significantly high 2 -value
(169, N=253)=522.18, p< .05, and none of the fit indices is within
the recommended acceptable range. In fact, all the GOF indices are the
same with ones obtained in model 3 except a slight change in 2 -value.
However, the model solution was admissible with a positive definite
variance/covariance matrix. We investigated the estimated standar-
dized factor loadings and found that item 8 has an extremely small
nonsignificant loading (.06, p> .05) on surface approach. This item
was removed as its contribution is negligible to the instrument.

The analysis was repeated and the obtained are results in Table 5
(without item 8). This showed an admissible solution with reduced 2

-value (151, N= 253)=377.68, significant p< .05 with <df/ 32 .
All factor loadings are significant (see, Fig. 4), SRMR (≤ .08), CFI/TLI
(closed to .90) and RMSEA (closed to 0.60) are within an acceptable
range. The combined GOF indices qualified the model for an appro-
priate fit of the data (Marsh et al., 2004). This finding is consistent with
most reported literature on the validation of R-SPQ-2F (e.g., Socha &
Sigler, 2014). The negative correlation (r = -.52, p< .05) found be-
tween deep and surface subscales is an indication of discriminant

Fig. 2. Model 2 diagram with standard estimated parameters.

Table 4
Mplus output of model 3: Selected GOF statistics.

Tests of model fits

Chi-Square Test of Model Fit
Value 521.114
Degrees of Freedom 168
p-value 0.0000
CFI/TLI
CFI 0.769
TLI 0.739
Number of Free Parameters 102
RMSEA (Root Mean Square Error of Approximation)
Estimate 0.091
90 Percent C.I. 0.082 0.100
Probability RMSEA <= .05 0.000
SRMR (Standardized Root Mean Square Residual)
Value 0.081
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validity between the subscales. This is expected and it is consistent with
the literature (e.g., López-Aguado & Gutiérrez-Provecho, 2018).

4.5. Analysis of models 5 and 6

The one-factor models 5 and 6 containing 10 items on deep

approach subscale and 9 items on surface approach subscale of R-SPQ-
2F were fitted and reported in Table 6. The results show good model fits
which confirmed the unidimensionality of each subscale. These results
partly agreed with Biggs et al. (2001) and some other literature that
have reported unidimensionality of items on each of deep and surface
subscales (e.g., López-Aguado & Gutiérrez-Provecho, 2018).

4.6. Reliability of R-SPQ-2F

Reliability estimate of the whole R-SPQ-2F was checked as well as
its subscales using latent variable approach suggested in (Raykov &
Marcoulides, 2016). This approach has been proven to perform better
than the conventional Cronbach’s alpha estimates under violations of
multiple assumptions like normality, skewness, etc. Simplified formulae
adapted for the current research involving unidimensional and two-
factor multidimensional scale are presented in Eqs. (1) and (2).
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Fig. 3. Model 3 diagram with standard estimated parameters.

Table 5
Mplus output of model 4: Selected GOF statistics.

Tests of model fits

Chi-Square Test of Model Fit with item 8 without item 8

Value 522.179 377.676
Degrees of Freedom 169 151
p-value 0.0000 0.000
CFI/TLI
CFI 0.769 0.844
TLI 0.740 0.824
Number of Free Parameters 101 96
RMSEA (Root Mean Square Error of Approximation)
Estimate 0.091 0.077
90 Percent C.I. 0.082 0.100 0.067 0.087
Probability RMSEA <= .05 0.000 0.000
SRMR (Standardized Root Mean Square

Residual)
Value 0.081 0.072
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In Eqs. (1) and (2), rRM is the Raykov and Marcoulides’ correlation
coefficient with a value ranges from 0 to 1 and interpreted like the
Cronbach alfa coefficients with 0 to 1 indicative of item internal con-
sistency from weakest to strongest (Raykov & Marcoulides, 2016). Li’ s
and Lj’ s are standardized factor loadings of subscale indicators, Vi ’ s
and Vj’ s are standardized unique variance computed by subtracting
respective squared factor loading from 1 of each subscale indicator and
F12 is the standardized covariance between factors 1 and 2. Using Eqs.
(1) and (2) it was found that deep and surface subscales as well as the
whole instrument have reliability coefficients of .81, .72 and .63 re-
spectively. These are indicative of high reliability of the instrument.
They are higher than the ones reported in (Biggs et al., 2001; López-

Fig. 4. Model 4 diagram with standard estimated parameters.

Table 6
Mplus output of models 5 and 6: Selected GOF statistics.

Tests of model fits

Chi-Square Test of Model Fit Model 5 (Deep) Model 6 (Surface)

Value 92.884 65.58
Degrees of Freedom 35 46
p-value 0.0000 0.000
CFI/TLI
CFI 0.943 0.919
TLI 0.926 0.887
Number of Free Parameters 50 96
RMSEA (Root Mean Square Error of Approximation)
Estimate 0.081 0.078
90 Percent C.I. 0.061 0.101 0.054 0.101
Probability RMSEA <= .05 0.006 0.027
SRMR (Standardized Root Mean Square Residual)
Value 0.047 0.050
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Aguado & Gutiérrez-Provecho, 2018) and within the ranges reported in
other literature (e.g., Justicia et al., 2008; Socha & Sigler, 2014).

5. Conclusion

The cultural sensitivity of R-SPQ-2F has been attracting attention of
educationists over a decade ago. Perhaps, this increased attention was
prompted by the global quest for breeding university students towards
deep approach to learning. This study was aimed at addressing issues
related to the construct validation of this instrument as applied to the
Norwegian context. In order to explain the factor structure of this in-
strument a series of confirmatory factor analyses were conducted, and
several hypothesized models were evaluated. The best explanation
found was a two-factor structure of the instrument measuring deep
approach with 10 items (as theorized in the English version) and sur-
face approach with 9 items (excluding item 8). The two-factor solution
of the R-SPQ-2F found in the current study is in-line with a handful of
adaptations of the instrument to Turkish (Önder & Besoluk, 2010),
Spanish (Merino & Kumar, 2013), Chinese (Xie, 2014), etc.

There are several reasons that justify the removal of item 8 (“I learn
some things by rote, going over and over them until I know them by
heart even if I do not understand them”) from the instrument. First,
apart from its nonsignificant factor loading as revealed by CFA, a close
look at the item itself raises some concerns. It includes some terms like
“rote”, “going over and over them” and “learning by heart” which
seems confounding and could pose some levels of confusion to students
(López-Aguado & Gutiérrez-Provecho, 2018). More so, a local misfit of
this item as well as its nonsignificant factor loading have been reported
in literature and its removal from the scale was recommended to obtain
a valid measure (e.g., Immekus & Imbrie, 2010; Socha & Sigler, 2014).

The results, though partly contrary to the hypothesized models of
Biggs et al. (2001) were similar to the ones in related studies (e.g.,
López-Aguado & Gutiérrez-Provecho, 2018; Socha & Sigler, 2014). The
findings of the current study being the first of its kinds in Norway to the
best of our knowledge have provided insights into the cultural sensi-
tivity of the R-SPQ-2F. We acknowledge the study of Diseth (2001) on
approaches to learning in the Norwegian context and the contributions
made in relating approaches to learning with other constructs e.g.

performance (Diseth, Pallesen, Brunborg, & Larsen, 2010). Some of our
findings such as classification of learning approaches into deep and
surface partly overlapped. However, their studies have relied on an old
instrument, ASSIST, which was considered too lengthy and almost
outdated as a revised version had been invoked. This current study
made a significant shift form this old trend by considering a concise and
easily interpretable measure of approaches to learning in the Norwe-
gian context. Further, the studies of Diseth and colleagues (e.g., Diseth
et al., 2010) have concentrated on Psychology students in contrary to
engineering students which were the focus of this current study.

The approach adopted in this study has relied on recent develop-
ment in structural equation modeling for psychometric studies and very
selective in the choice of statistical tools. However, the results pre-
sented here are representative of the data which might not be gen-
eralizable to other cultural backgrounds. It is therefore recommended
to make further explorations of this instrument before adapting it to
another cultural context. A limitation acknowledged in this current
study is the inability to investigate the measurement invariance of the
proposed model across different groups. It is hoped that more valida-
tion studies on the hypothesized model in an independent sample and
comparison of it with other models will be conducted. The instrument
as attached in Appendix A will be indispensable to university teachers
within Norway and the Mplus syntax codes provided in Appendix B
could be modified for further related studies in this area. It is re-
commended that scoring should be done as proposed by Biggs et al.
(2001) and scaled after summing by dividing scores on deep approach
(1+2 + 5+6 + 8+9 + 12+13+16+17) by 10 and scores on
surface approach (3+ 4 + 7+10+11+14+15+18+19) by 9.
This is conjectured to enhance the interpretation of the scores.

Acknowledgements

We acknowledge the support of faculty of engineering and science,
University of Agder, Kristiansand, Norway as well as MatRIC, Centre for
Research, Innovation and Coordination of Mathematics Teaching for
supporting this research. The anonymous reviewers are also acknowl-
edged for their comments and recommendations towards the im-
provement of the article.

Appendix A. Revised Study Process Questionnaire (R-SPQ-2F)

This questionnaire has a number of questions about your attitudes towards mathematics and your usual way of studying it.
There is no right way of studying. It depends on what suits your own style and the course you are studying. It is accordingly important that you

answer each question as honestly as you can.
Place the mark (✓) at the appropriate option to each statement. The letters alongside each number stand for the following response.
A—this item is never or only rarely true of me
B—this item is sometimes true of me
C—this item is true of me about half the time
D—this item is frequently true of me
E—this item is always or almost always true of me

Statement on approaches to learning mathematics A B C D E

1 I find that at times studying gives me a feeling of deep personal satisfaction.
2 I find that I have to do enough work on a topic so that I can form my own conclusions before I am satisfied.
3 My aim is to pass the course while doing as little work as possible.
4 I only study seriously what’s given out in class or in the course outlines.
5 I feel that virtually any topic can be highly interesting once I get into it.
6 I find most new topics interesting and often spend extra time trying to obtain more information about them
7 I do not find my course very interesting so I keep my work to the minimum.
8 I find that studying academic topics can at times be as exciting as a good novel or movie.
9 I test myself on important topics until I understand them completely.
10 I find I can get by in most assessments by memorising key sections rather than trying to understand them.
11 I generally restrict my study to what is specifically set as I think it is unnecessary to do anything extra.
12 I work hard at my studies because I find the material interesting.
13 I spend a lot of my free time finding out more about interesting topics which have been discussed in different classes.
14 I find it is not helpful to study topics in depth. It confuses and wastes time, when all you need is a passing acquaintance with topics.
15 I believe that lecturers shouldn’t expect students to spend significant amounts of time studying material everyone knows won’t be examined.

Y.F. Zakariya, et al. Studies in Educational Evaluation 64 (2020) 100816
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16 I come to most classes with questions in mind that I want answering
17 I make a point of looking at most of the suggested readings that go with the lectures.
18 I see no point in learning material which is not likely to be in the examination.
19 I find the best way to pass examinations is to try to remember answers to likely questions.

Appendix B. Mplus syntax codes used for the analysis
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Abstract: The revised two-factor study process questionnaire (R-SPQ-2F) has widely been considered
valid and reliable in many contexts for measuring students’ learning approaches. However, its
cultural specificity has generated considerable discussion, with inconclusive results when translated
to different languages. This paper provides more insights into the construct validity of a Norwegian
version of this instrument. The R-SPQ-2F is composed of ten items designed to expose deep learning
approaches and 10 items designed to expose surface learning approaches. A survey research design
involving a sample of 253 first year university students in a mathematics course was adopted. Ten
hypothesized models were compared using a series of confirmatory factor analyses following the
model proposals reported in the literature. A weighted least square mean and variance adjusted
(WLSMV) estimator was used to enhance model parameter estimations under multiple violations
of assumptions inherent in ordinal data. The results favored a two first-order factor model with
ten items measuring the deep approach and nine items measuring the surface approach including
a deletion of one item from this instrument. The findings of this study provide empirical evidence
for the cultural specificity of the instrument that is consistent with the literature. The R-SPQ-2F
is therefore recommended to assess students’ approaches to learning, and further studies into its
cultural specificity are recommended.

Keywords: university mathematics; deep learning; surface learning; multivariate statistics;
confirmatory factor analysis

1. Introduction

Empirical evidence has shown that students’ learning approaches contribute significantly to
their academic success in higher education (e.g., [1,2]). Learning approaches could be conceived
as an individual’s adopted predispositions when dealing with tasks and strategies used to process
learning materials which can be deep or surface in nature [3,4]. A deep approach to learning involves
concentration on latent meanings of the material to be learned, while a surface approach entails
memorization and less priority on the conveyed messages in the presented tasks. Deep learning has
been an emerging focus of higher education studies in preparing future leaders for our ever-increasingly
diverse society [2]. For many decades, educators have been challenged by the proper conceptualization
and operationalization of students’ approaches to learning (SAL).

The SAL theory of Marton and Säljö [5,6] uses phenomenography coupled with some constructivist
perspectives of Biggs [7,8] and has provided theoretical frameworks for conceptualizing students’
approaches to learning. This is evident in the way approaches to learning have been defined to
include motives, predispositions, styles, strategies used in adopting a process of learning tasks.
Moreover, the classification of approaches students adopted when learning into ‘surface’ and ‘deep’
has greatly influenced SAL measuring instruments. A widely studied instrument for measuring
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SAL is the Biggs’ [9] study process questionnaires [10]. This instrument has undergone several
revisions and validations from its initial 72-item to the present 20-item two-factor revised study process
questionnaire [9]. It has gained equally wide acceptance among educators, with many studies on its
psychometric properties, and Cronbach’s alpha ranges 0.57–0.85 have been reported as evidence of the
item’s internal consistency [9,11].

However, the cultural specificity of the two-factor revised study process questionnaires (R-SPQ-2F)
has generated considerable discussion with inconclusive results when the instrument has been
translated to different languages (e.g., [12,13]). Apart from the two models hypothesized by Biggs,
Kember and Leung [9], several alternative models have been proposed, and some items were deleted
to achieve modest fits in explaining the underlying factor structures of the instrument. This current
study was framed with the sole aim of exploring and comparing alternative models that best explain
the construct validity of the R-SPQ-2F when translated to the Norwegian context. This article is
a continuation of a work reported in [14], where the Biggs’ et al. [9] hypothesized models were
investigated and found to poorly represent Norwegian data with non-admissible solutions. In the
earlier work, a new model for the R-SPQ-2F was proposed and confirmed, and the model fits and
scale reliability were investigated and reported. The purpose of this paper is to contribute to this
body of research and expose some observable methodological weaknesses inherent in some reported
hypothesized models in literature.

2. Literature Review

Studies on the cultural specificity of the R-SPQ-2F can broadly be classified into two major
categories. The first category represents those that report first-order two-factor structures—the deep
approach (DA) and the surface approach (SA)—as the best explanatory models for the instrument
with ten items on each subscale [15–18]. This first category can further be divided into those that
include error covariance—the presence of a systematic commonly shared variance—between indicators
(e.g., [17]) and those that did not include the covariance (e.g., [16]). However, Biggs et al. [9] were
the first to start a discussion on the factor structure of their then newly developed instrument, the
R-SPQ-2F, by hypothesizing and testing two models. The first model was a first-order four-factor
model containing ‘deep motive,’ ‘deep strategy,’ ‘surface motive,’ and ‘surface strategy’ measured
by five items each. The first model was tested and found to fit their 495 data with a comparative fit
index (CFI) of 0.904 and a standardized root mean squared residual (SRMR) of 0.058 [9]. Further, CFIs
of 0.997, 0.998, 0.988, and 0.998 and SRMRs of 0.01, 0.02, 0.02 and 0.02 were also reported on ‘deep
motive,’ ‘deep strategy,’ ‘surface motive,’ and ‘surface strategy’ subscales, respectively. The second
model was a first-order two-factor model containing deep and surface approaches with two indicators
each—motive and strategy—gotten by corresponding item parceling (adding scores on five items) in
the first model. The results of the second model also suggest a good model fit with a CFI of 0.992 and
an SRMR of 0.015, both of which are within the proposed cutoffs by Hu and Bentler [19].

These two hypothesized models of Biggs et al. [9] have steered heated debates among educators
and methodologists when subjected to confirmatory analysis in an independent cultural context. For
example, the two models were tested and found to fairly explain the factor structure of the R-SPQ-2F
when translated to Spanish in a study involving 836 undergraduate students, out of which 314 were used
for exploratory factor analysis and the remaining 522 were used for confirmatory factor analysis [15].
An alternative model of a first-order two-factor model was proposed and tested containing the deep
and surface approaches measured by their corresponding ten items each as theorized in [9]. The
results suggest a modest fit with a significant χ2-value (169) = 645.77, p < 0.05, goodness of fit index
(GFI) = 0.95, SRMR = 0.09, root mean square error of approximation (RMSEA) = 0.07, non-normed fit
index (NNFI) = 0.91, CFI = 0.92, parsimony normed fit index (PNFI) = 0.80, and parsimony goodness
of fit index (PGFI) = 0.76. In another study, Önder and Besoluk [18] reported a Turkish validation of
the instrument when administered to 528 undergraduate students. Their findings also identified a
first-order two-factor model as the best explanation for the construct validity of the R-SPQ-2F. Their
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results involved a significant χ2-value (166) = 487.95, p < 0.05, GFI = 0.89, SRMR = 0.07, RMSEA = 0.06,
NNFI = 0.90, CFI = 0.93, PGFI = 0.92, incremental fit index (IFI) = 0.93, and relative fit index (RFI) = 0.88.
A major difference between these results and that of Justicia, Pichardo, Cano, Berbén and De la
Fuente [15] was the inclusion of error covariance between items 8 and 10 as well as between items 11
and 20.

Non-admissible solutions and poor fits for the hypothesized models in [9] were also reported
in a study involving 269 university and non-university students [17]. Following confirmatory factor
analysis results, a first-order two-factor model was identified as the best explanation for the construct
validity of the R-SPQ-2F. A significant χ2-value (168) = 259.32, p < 0.05, was also reported and coupled
with SRMR = 0.07, RMSEA = 0.05, Tucker-Lewis index (TLI) = 0.95, and CFI = 0.96. Similar to the
findings of Önder and Besoluk [18] an error covariance was also defined between items 4 and 14 in
order to achieve a good model fit. Corroborative results can also be found in a Chinese validation
of the R-SPQ-2F involving 439 university students, in which a first-order two-factor model was also
reported [16]. Table 1 presents a juxtaposition of the findings of these studies for easy comparison.

Table 1. Summary of findings on the first-order two-factor model of the revised two-factor study
process questionnaire (R-SPQ-2F).

[M1]-Justicia et al. [15] [M2]-Önder and
Besoluk [18]

[M3]-Merino
and Kumar [17] [M4]-Xie [16]

Error Covar. 8 and 10,
11 and 20 4 and 14

Cor. DA/SA −0.39 −0.51 −0.33 −0.35
df 169 166 168 169

χ2-value 645.77 487.95 259.32 489.40
GFI 0.95 0.89

SRMR 0.09 0.07 0.07
RMSEA 0.07 0.06 0.05 0.07

NNFI/TLI 0.91 0.90 0.95 0.91
CFI 0.92 0.93 0.96 0.92

PNFI 0.80 0.79
PGFI 0.76 0.92 0.72

IFI 0.93
RFI 0.88

There seems to be a consistency in the results of previous studies presented in Table 1. They
corroborate the theoretical explanation of indicators measuring the DA and the SA as proposed in [9]
with an exclusion of additional subdivisions of each factor into motive and strategy. The negative
standard correlation coefficients found in all the studies between the deep approach and the surface
approach subscales are indicative of discriminant validity. A close look at the results of Merino and
Kumar [17] as well as Önder and Besoluk [18] suggests a better fit of their models as compared to others.
This can be deduced from their reduced χ2-values and RMSEA within the range suggested in [19,20].
However, the inclusion of error covariance between some indicators in their models could pose some
complications in the application and interpretation of the scale item scores by classroom teachers.

The second broad category of studies on the cultural specificity of the R-SPQ-2F are the reports
of two first-order and four first-order factor structures with some items deleted to achieve good
fits (e.g., [10,21]). The number of items deleted ranged from 2–5. Immekus and Imbrie [22] after
establishing non-admissible solutions of the hypothesized Biggs’ et al. [9] model, subjected the data
from their first cohort of 1490 university students to an exploratory factor analysis (EFA). The results of
their EFA gave four extracted latent factors which they identified as ‘deep motive,’ ‘deep strategy,’
‘surface motive,’ and ‘surface strategy’ after rotating using Promax. Five items that exhibit substantial
cross-loading were removed from the model. The first-order four-factor model was then subjected
to a confirmatory factor analysis in an independent cohort of 1533 university students’ sample. The
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results of a confirmatory analysis suggest a modest fit with a significant χ2-value (114) = 568.54,
p < 0.05, RMSEA = 0.05, and CFI = 0.96. Surprisingly, relatively high positive correlations of 0.76 and
0.59 were found between ‘deep motive’ and ‘deep strategy’ as well as ‘surface motive’ and ‘surface
strategy,’ respectively.

No empirical evidence was found to support the first Biggs’ et al. model in the Japanese validation
of the R-SPQ-2F reported in [21]. However, a modest fit for the second Biggs’ et al. model involving
a first-order two-factor model with item parceling on each deep and surface approach latent factors
was confirmed. The study involved 269 university students distributed across different programs in a
Japanese tertiary institution. The results of their confirmatory analysis did not include the χ2-value,
instead an RMSEA = 0, CFI = 1, and TLI = 1 coupled with a positive correlation cooeficient of 0.30
between the deep and surface approach latent factors were reported [21]. There are some reservations
with respect to these results. First, the goodness of fits (GOF) indices indicate a perfect fit of the
model, which appears to be unrealistic. However, an observed methodological issue could stem
from the degress of freedom (though not reported), which is 1. This could make it difficult for the
variance/covariance matrix to be positively definite. Unfortunately, nothing was mentioned in the
article with respect to this matrix. Another methodological difficulty that could even lead to the
rejection of this model is the positive correlation of 0.30 reported between deep and surface approaches.
This shows a non-discriminating capacity of this model between the deep and surface approaches
which is contrary to both the theoretical and the conceptual interpretations of the instrument.

More so, Stes, De Maeyer and Van Petegem [12] could not also find any supportive empirical
evidence for both models hypothesized by Biggs et al. [9] in the validation of their Dutch version of the
instrument involving 1974 effetive sample of students distributed across diverse university programs.
For this reason, an exploratory factor analysis was conducted on a randomly selected 963 cases from the
total sample, using maximum likelihood for factor extraction and an oblique rotation. Five factors were
initially identified, and these were later collapsed into four factors—study is interesting (SI), spending
extra time (ST), minimal effort (ME), and learning by heart (LH)—after a series of confirmatory factor
analyses and item deletions. The final fitted solution was a first-order four-factor model with three
items measuring SI, four items measuring ST, five items measuring ME and three items measuring
LH. The final chi-squared statitistic as well as the degree of freedom were not reported. However,
some GOF indices such as GFI = 0.95, absolute goodness of fit index (AGFI) = 0.93, RMSEA = 0.06,
CFI = 0.94, and PGFI = 0.66 were reported as evidence of a good fit for their model. Further, relatively
high correlation coefficinets of 0.76 and 0.62 were found between SI and ST as well as between ME and
LH, respectively.

In an attempt to reconcile between variant inconclusive models results on the R-SPS-2F, Socha
and Sigler [13] conducted a validation study on the instrument invoving 868 university students.
In their study, eight models were compared using a confirmatory factor analysis, and a first-order
two-factor solution was found as the best explanation for the construct validity of the instrument
involving the deletion of two items from the original version. Their final results included a significant
χ2-value (134) = 504.83, p < 0.05, SRMR = 0.05, RMSEA = 0.06, and CFI = 0.95 and a negative correlation
of −0.38 between the deep and surface approach latent factors. Similar results can also be found in
another Spanish validation of the R-SPQ-2F involving 279 university students, in which a first-order
two-factor model coupled with two item deletion was also reported [10]. Table 2 presents a juxtaposition
of the findings of these studies for easy comparison.
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Table 2. Summary of findings on the two-factor and four-factor models of the R-SPQ-2F.

[M5]-Immekus
and Imbrie

[22]

[M6]-Fryer et al.
[21]

[M7]-Stes et al.
[12]

[M8]-Socha
and Sigler [13]

[M9]-López-Aguado
and Gutiérrez-Provecho

[10]

Item deleted 1, 3, 7, 13, 15 2, 3, 7, 10, 17 7, 8 7, 8

Cor. DA/SA DM/DS = 0.76
SS/SM = 0.59 0.30 SI/ST = 0.76

ME/LH = 0.62 −0.38 −0.41

df 114 134 134
χ2-value 568.54 504.83 226.53

GFI 0.95 0.91
AGFI 0.93
SRMR 00.05 0.05

RMSEA 0.05 0 0.06 0.06 0.05
CFI 0.96 1 0.94 0.95 0.91
TLI 1 0.90

PGFI 0.66 0.72

Note: DM = Deep motive; DS = Deep strategy; SM = Surface motive; SS = Surface strategy; SI = Study is interesting;
ST = Spending extra time; ME = Minimal effort; and LH = Learning by heart.

The results presented in Table 2 reveal variant and inconclusive solutions of the models. These
can be ascribed to some methodological issues inherent in the factor analysis procedure as well as
the cultural sensitivity of the instrument. For example, Immekus and Imbrie [22], after establishing
non-admissible solutions of the hypothesized models in [9], subjected their data to an exploratory
factor analysis (FA). Difficulties arose when some indicators loaded (loadings greater than |0.3|) on
more than one extracted factor. Rather than seeking theoretical explanations for this observation, they
opted to delete these indicators from the scales. For instance, item 1 loaded on deep motive (DM) and
deep strategy (DS) with 0.31 and 0.42 oblique rotated loadings, respectively. This could be suggestive
of over-factoring in the extraction, especially when this item has been theorized to measure both
DM and DS. To support this claim, the high positive correlations of 0.76 and 0.59 reported between
DM and DS as well as surface strategy (SS) and surface motives (SM), respectively, are indications of
multicollinearity, which could be addressed by collapsing the subcategories.

A similar methodological issue is also perceived in the analysis of Stes et al. [12] with high
positive correlations of 0.76 and 0.62 between SI and ST as well as ME and LH, respectively. Another
methodological issue involved in the analysis of Stes et al. [12] and Fryer et al. [21] is the use of
maximum likelihood estimator, which has been found to perform poorly in the analysis of ordinal data
(e.g., [23,24]). It is also important to remark that SI combined with ST and LH combined with ME are
other ways to refer to the DA and the SA, respectively. Later studies (e.g., [10]) seem to address some
of these methodological issues, yet the cultural specificity of the R-SPQ-2F still remains an important
consideration when adapted to a different language from English. Therefore, the current study sought
to build on this literature in searching and evaluating hypothesized models to explain the construct
validity of the R-SQP-2F in the Norwegian context.

3. Methods

3.1. Research Design and Materials

An appropriate design for this study is a survey type which can be used to justify the collection of
data from a large number of students using questionnaires. A Norwegian version of the R-SPQ-2F
was prepared using translation and back-translation approaches by two associate professors and
a full professor of mathematics education in the research team. A comparison was made between
translated versions, and some adjustments for language differences were done before the final version
was prepared in an electronic form.
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3.2. Sample and Data Collection Procedure

The sample comprised 253 undergraduate students on engineering programs in their first year
across two Norwegian government universities. This was made of up of males (168) and females (72),
including 13 students who did not respond to the gender item on the instrument, and their sample
had a mean age of 19–22 years. The sample size was considered appropriate with a justification from
reported computer simulated studies on the adequacy of a confirmatory factor analysis (CFA) sample
size (e.g., [25]). The data were collected using an online questionnaire development kit (SurveyXact)
and distributed to students (via university mails) who gave their consent to partake in the project.
Class visits were organized to encourage students’ participation, and some students completed a paper
version of the questionnaires during the visits. The data were collected within 3 weeks, screened for
outliers, and prepared for CFA. Very few data were missing at random and posed no concern for
the analysis.

3.3. Data Analysis

CFA was used to test ten models with a weighted least square mean and variance adjusted
(WLSMV) estimator using Mplus version 8.2 [26] for the analysis. The use of WLSMV was not
accidental. It was because of its robust ability to perform better than maximum likelihood (ML),
unweighted least squares (ULS), etc., in the analysis of ordinal data that violate multiple assumptions
(see [23]). Model fits were assessed based on χ2-values and combinations of the goodness of fit
indices with some relaxations in the suggested cut-offs (CFI/TLI closed to or ≥ 0.9, SRMR ≤ 0.8, and
RMSEA ≤ 0.60) proposed by Hu and Bentler [19]. This was necessary because of the type of data
(ordinal) as well as a different estimator (WLSMV) as compared to the continuous data and ML
estimator used in some simulation studies on cut-off criteria (e.g., [19,27]). The emerging results and
discussion are presented in the next few paragraphs.

4. Results

The first set of results as presented in Table 3 represent the tested and hypothesized two first-order
factor models of the R-SPQ-2F, as in the literature. Analyzed results from hypothesized model of
Xie [16] are included in Table 3, and those of Justicia et al. [15] were excluded, because they both
practically advocated the same model and the former is more recent. Notations and abbreviations
used in Table 1 are repeated in Table 3, with M2 used for Önder and Besoluk [18], M3 used for Merino
and Kumar [17], and M4 used for Xie [16].

Table 3. Selected CFA results of the two first-order factor hypothesized model of the R-SPQ-2F.

M2 M3 M4

Error Covar. 8 and 10,
11 and 20 4 and 14

Cor. DA/SA −0.519 −0.507 −0.512
df 167 168 169

χ2-value 495.212 517.980 522.179
p-value 0.000 0.000 0.000

CFI 0.785 0.771 0.769
TLI 0.756 0.741 0.740

SRMR 0.078 0.081 0.081
RMSEA
90% C.I.

0.088
0.079 0.097

0.091
0.082 0.100

0.091
0.082 0.100

The results presented in Table 3 show admissible solutions of the two first-order factor model of the
R-SPQ-2F. Negative standard correlations found between deep and surface components are suggestive
of a discriminant validity between these subscales. This could be interpreted to mean a student with a
high score on deep approach items had a low score on surface approach items and vice versa. This
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makes sense and is conceptually sound. However, the high χ2-values (496.21–522.18) coupled with
out of range fit indices are indicative of the poor fit of these models. The model proposed by Önder
and Besoluk [18] seems to perform better than others, with the lowest χ2-value (167, p < 0.05) = 495.21
and RMSEA ≤ 0.08. Meanwhile, the two error covariances involved between item 8 and item 10, as
well as item 11 and item 20, could pose some complications in classroom conceptual understanding
and interpretation of scores from this instrument. Therefore, all these models are not statistically and
conceptually fit to justify the construct validity of the R-SPQ-2F in the Norwegian context.

The second set of results concern the CFA of the two-factor and four-factor models hypothesized
to explain construct validity of the R-SPQ-2F. The model result of Fryer et al. [21] was not included in
Table 4 because it has been reported in [14]. The analyzed result showed a non-admissible solution of
the model with a negative error variance on the SM indicator, a result that is suggestive of over-factoring
in the model [14]. Further, analyzed results from the model hypothesized by López-Aguado and
Gutiérrez-Provecho [10] were included in Table 4, but those of Socha and Sigler [13] were omitted
because they are both practically advocating same model and the former is more recent. Notations and
abbreviations used in Table 2 are repeated in Table 4 with M5 used for Immekus and Imbrie [22]. Mod.
M5 was used for modified M5, M7 was used for Stes et al. [12], Mod. M7 was used for modified M7,
and M9 was used for López-Aguado and Gutiérrez-Provecho [10].

Table 4. Selected CFA results of the two-factor and four-factor hypothesized models on the R-SPQ-2F.

M5 Mod. M5 M7 Mod. M7 M9

Cor. DA/SA DM/DS = 0.737
SS/SM = 0.366 −0.290 SI/ST = 1.020

ME/LH = 0.401 −0.284 −0.40

df 84 89 85 89 134
χ2-value 152.278 289.254 138.318 257.024 301.440
p-value 0.000 0.000 0.0002 0.000 0.000

CFI 0.925 0.780 0.950 0.844 0.869
TLI 0.906 0.741 0.939 0.816 0.850

SRMR 0.054 0.077 0.052 0.072 0.068
RMSEA
90% C.I.

0.057
0.042 0.071

0.094
0.082 0.107

0.050
0.034 0.065

0.086
0.074 0.099

0.070
0.060 0.081

There seems to be indications of good fits in all the models analyzed and reported in Table 4.
The reduced χ2-values between 152.28 and 301.44 coupled with within suggested range indices may
prompt one to conclude that M5 and M7 have been demonstrated as the best models. However, there
was evidence of a gross misspecification and a high multicollinearity between DM and DS, which are
suggestive of over-factoring in M5. This is evident with a high standardized correlation coefficient
(r = 0.74, p < 0.05) between the DM and DS latent factors. This posed some methodological difficulties
involved in trying to balance both the theoretical and conceptual understanding that could yield a
substantive interpretation of scores from the instrument. Therefore, an attempt was made to revive
this model as reported under the heading modified model 5 (Mod. M5). Here, items measuring DM
and DS were merged to form a factor (DA), and those measuring SS and SM were merged to form
another factor (SA). The resulting two-factor model was subjected to CFA, and selected GOF indices
are presented in Table 4 with the heading Mod. M5. The χ2-value (89, N = 253) = 289.25 became bigger,
and all the fit indices were out of range.

The analyzed results of the proposed model by Socha and Sigler [13] were even worse. The
latent variance-covariance matrix was not positively definite, which is a necessary condition for an
acceptable model (see [28]). This was observed with the presence of the Heywood case in terms of a
standardized correlation coefficient great than 1 between latent factors SI and ST. In a similar manner to
M5, this model was modified, and the CFA results were reported with the heading Mod. M7 in Table 4.
The resulting χ2-value (89, N = 253) = 257.02, p < 0.05 is significant, but, when combined with GOF
indices, qualifies the model to an appropriate fit of the data [29]. However, a comparison of this model
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results with the ones reported in Table 4 with the heading M9 [10] favored the latter. This is evident
with the higher CFI/TLI and lower SRMR and RMSEA values observed in M9. Therefore, from the
foregoing discussion, what appears to be the best explanation of the factor structure of the R-SPQ-2F in
Norwegian context is the hypothesized model of López-Aguado and Gutiérrez-Provecho [10].

5. Conclusions

Teaching is considered successful when accompanied by meaningful learning. A good way
to ensure that successful learning takes place is to investigate the approaches adopted by students
when learning. Several efforts have been expended to promote deep learning in higher education
such that the emerging leaders will better be prepared for an ever-increasingly diverse society [30,31].
Both qualitative and quantitative studies have, for several years, been directed towards proper
conceptualization and operationalization of students’ approaches to learning. Prominent among these
studies are the works of Marton and Säljö [5,6], Entwistle and Waterston [32], and Biggs [33]. These
have led to the development of measuring instruments in which the study process questionnaire (SPQ)
seems to have gained global attention. However, studies on the cultural specificity of the latest SPQ
called the R-SPQ-2F have generated diverse and inconclusive results.

In this article, investigations were geared towards addressing the issue of R-SPQ-2F cultural
specificity when applied in the Norwegian context. Several models were compared, and what seems
to be the best explanation of the R-SPQ-2F construct validity is a two first-order factor model involving
deep and surface approaches to learning subscales. Meanwhile, by comparing the identified tested
hypothesized model proposed in [10,13], as reported in Table 4, with the results of the appropriate fit
(χ2-value (151, N = 253) = 377.68, p < 0.05, SRMR = 0.072, CFI = 0.844, TLI= 0.824, and RMSEA = 0.077)
found in [14], a conclusion could be drawn. There appears to be no obvious statistical difference
with consideration for respective χ2-values and GOF indices of these two models. Therefore, a two
first-order factor model with 10 items measuring the deep approach and nine items (contrary to eight
items in [10]) measuring the surface approach is still considered the best explanation for the R-SPQ-2F
construct validity.

The justification for removing one item from the instrument was previously explained in detail in
the first article. This study is to be followed up with an independent sample that will be collected in
the near future for a confirmation of the proposed model and the predictive validity of the R-SPQ-2F.
An interpretation of item scores can be achieved simply by adding corresponding items on the deep
approach (scaled by dividing the sum by 10) and those on the surface approach (scaled by dividing
the sum by 9) for classroom decisions. It is hoped that future replications of this study across other
universities and groups of students will be carried out. This instrument is therefore recommended for
measuring year-one undergraduate students’ approaches in Norwegian universities. For instructional
purposes, both data and Mplus syntax codes used for this study are available upon request from
the author.
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Abstract: This study was framed within a quantitative research methodology to develop a concise
measure of calculus self-efficacy with high psychometric properties. A survey research design was
adopted in which 234 engineering and economics students rated their confidence in solving year-one
calculus tasks on a 15-item inventory. The results of a series of exploratory factor analyses using
minimum rank factor analysis for factor extraction, oblique promin rotation, and parallel analysis for
retaining extracted factors revealed a one-factor solution of the model. The final 13-item inventory was
unidimensional with all eigenvalues greater than 0.42, an average communality of 0.74, and a 62.55%
variance of the items being accounted for by the latent factor, i.e., calculus self-efficacy. The inventory
was found to be reliable with an ordinal coefficient alpha of 0.90. Using Spearman’ rank coefficient,
a significant positive correlation ρ(95) = 0.27, p < 0.05 (2-tailed) was found between the deep
approach to learning and calculus self-efficacy, and a negative correlation ρ(95) = −0.26, p < 0.05
(2-tailed) was found between the surface approach to learning and calculus self-efficacy. These
suggest that students who adopt the deep approach to learning are confident in dealing with calculus
exam problems while those who adopt the surface approach to learning are less confident in solving
calculus exam problems.

Keywords: self-efficacy; deep approach; surface approach; higher education; parallel analysis

1. Introduction

Studies on meaningful learning experiences of students in higher education have taken variant
dimensions over the last decades. A good number of psychologists and sociologists have dug deep
into students’ reflections of themselves as they learn [1–3]. An outcome of this insight into students’
learning is the identification of perceived self-efficacy as a good predictor of desirable learning
outcomes [4]. Perceived self-efficacy, according to Bandura [5], refers to “beliefs in one’s capabilities
to organize and execute the courses of action required to manage prospective situations” (p. 2).
These internal convictions put an individual in a better situation to approach a presented task and
behave in a particular way. An individual will tend to engage in tasks for which they have perceived
self-competence and try to avoid the ones with less perceived self-competence. Self-efficacy is a
determinant factor that positively correlates with the amount of effort expended on a task, perseverance
when faced with impediments, and resilience during challenging situations [1].

There has been a long-time debate among educationists on what are appropriate ways of
assessing self-efficacy with some contending for the general perspective while others opting for the
domain/situation specific perspective (e.g., [6,7]). The domain-specific perspective has influenced the
conceptualization of self-efficacy around many fields. For example, mathematics self-efficacy has long
been conceptualized as “a situational or problem-specific assessment of an individual’s confidence in
her or his fully perform or accomplish a particular” [2]. In a similar manner, engineering self-efficacy has
been defined as a “person’s belief that he or she can successfully navigate the engineering curriculum
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and eventually become a practicing engineer” [8]. Self-efficacy among engineering students has
been investigated from conceptualization through developing measuring instruments to correlation
with other variables like performance, anxiety, and performance [9,10]. In the same way it has been
investigated in mathematics and other science-based courses.

Despite studies on mathematics self-efficacy and performance being sparse, especially in higher
education (HE), the available empirical evidence has established a remarkable relationship between
mathematics self-efficacy and academic performance, with the former being a strong predictor
of the latter [11–14]. For example, Peters [15] reported a quantitative empirical study on the
relationship between self-efficacy and mathematics achievement including other constructs among
326 undergraduate students. Employing multi-level analysis, it was found that mathematics self-efficacy
differed across genders, with boys taking the lead, and positively correlated with achievement. More
recently, Roick and Ringeisen [16] found, in their longitudinal study, that mathematics self-efficacy
exerted a great influence on performance and played a mediating role between learning strategies and
mathematics achievement. Similar corroborative results can also be found in the quantitative study
reported in [17].

A good number of educators have empirically shown and emphatically argued that the best way
to achieve a higher predictive power of mathematics self-efficacy on academic performance of students
is through task-specific measures (e.g., [14]). Surprisingly, an extensive search of the literature revealed
a lack of instruments for measuring students’ self-efficacy on year-one calculus tasks. This is despite
the fact that calculus has been a compulsory part of most year-one Science, Technology, Engineering,
and Mathematics (STEM) curricula of many universities in the world. The current study therefore
aimed at developing a measure for assessing students’ self-efficacy on year-one calculus tasks with high
psychometric properties. Furthermore, in order to enhance the predictive validity of the developed
instrument its relationship with approaches to learning was also investigated.

2. Literature review

It is Albert Bandura who is considered the first psychologist in the history of clinical, social,
and counseling psychology to have introduced the word “self-efficacy” (see, [18]) to refer to
“the conviction that one can successfully execute the behavior required to produce the outcomes” [19].
However, some authors have contended that the “outcome expectancy” concept, which was extensively
investigated prior to 1977, is equivalent to self-efficacy in theory, logic, and operationalization [20,21].
In Bandura’s rebuttal of this criticism, he elicited the conceptual differences between outcome and
self-efficacy expectancies while maintaining that the kinds of outcomes people expect are strongly
influenced by self-efficacy expectancies (see, [22]). An overview of some of these controversies
including arguments, counterarguments, disparities, and agreements can be found in the literature
(e.g., [23,24]).

The basic tenet of the self-efficacy theory is that all psychological and behavioral changes occur as
a result of modifications in the sense of efficacy or personal mastery of an individual [19,25]. In the
words of Bandura [19], “people process, weigh, and integrate diverse sources of information concerning
their capability, and they regulate their choice behavior and effort expenditure accordingly” (p. 212).
In addition, Bandura’s theory posits that the explanation and prediction of psychological changes can be
achieved through appraisal of the self-efficacy expectations of an individual. In other words, the mastery
or coping expectancy of an individual is a function of outcome expectancy—the credence that a given
behavior will or will not result to a given outcome—and self-efficacy expectancy—“the belief that the
person is or is not capable of performing the requisite” [23].

Furthermore, the applications of Bandura’s theory as suitable frameworks of conceptualization
are numerous in cardiac rehabilitation studies [26], educational research, clinical nursing, music and
educational practices [27–30]. In a study involving undergraduate students taking a biomechanics
course in the United States, Wallace and Kernozek [31] demonstrated how the self-efficacy theory can
be used by instructors to improve students’ learning experience and lower their anxiety towards the
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course. Moreover, Sheu et al. [32] reported a meta-analysis study on the contributions of self-efficacy
theory in learning science, mathematics, engineering, and technology. The foregoing discussion points
to the wide acceptance of Bandura’s self-efficacy theory not only among psychologists but also the
educational community at large.

The different conceptualizations of self-efficacy involving general and domain-specific perspectives
have recurring implications on the measurement of the construct. A look into the literature reveals that
mathematics self-efficacy has been measured with instruments tailored towards general assessment
(e.g., [16]), sources of efficacy (e.g., [33]), task-specific efficacy (e.g., [34]), and adaptations from other
instruments or which are self-developed (e.g., [35]). These instruments have their strengths and
weaknesses. A brief account of each type of instruments is presented in the forthcoming paragraphs
accompanied by the justification for a desired approach in the current study.

General assessment instruments have been developed to measure students’ self-reported ratings
of their capabilities to perform in mathematical situations. Chan and Yen Abdullah [36] developed a
14-item mathematics self-efficacy questionnaire (MSEQ) in which respondents appraised their ability
on a five-point Likert scale from 1 (never) to 5 (usually). MSEQ had four sub-structures comprised of
three items each measuring general mathematics self-efficacy and “efficacy in future” coupled with
four items each measuring self-efficacy in class and in assignments. Evidence of validity was provided,
and internal consistency of the items was investigated with Cronbach’s alpha of 0.94, which showed
high reliability. A similar result was also reported in an omnibus survey instrument developed by
Wang and Lee [37], in which mathematics self-efficacy was a subcategory. These kinds of omnibus
instruments have been reported to be problematic in their predictive relevance [38].

Other closely related instruments to mathematics general assessment types are the adapted
mathematics subcategory items from other instruments. For example, in a longitudinal study involving
3014 students, You, Dang and Lim [39] developed a mathematics self-efficacy measure by adapting
items from the motivated strategies for learning questionnaire (MSLQ) developed by Pintrich, Smith,
Garcia, and McKeachie [40]. Furthermore, in an attempt to operationalize mathematics self-efficacy,
Y.-L. Wang et al. [35] developed an instrument which was an adaptation of the science learning
self-efficacy questionnaire developed in [41] by substituting mathematics for science in the original
instrument. Some authors have independently developed measures for mathematics self-efficacy in
which the sources of their items are not disclosed. For example, Skaalvik, Federici, and Klassen [42]
developed a 4-item mathematics self-efficacy Norwegian measure as part of a survey instrument
without any disclosure of the sources of their items. These instruments were not too different from the
general academic self-efficacy measures in terms of their predictive power of performance [38].

Based on Bandura’s [3,5] theorized sources of self-efficacy—mastery experience, vicarious experience,
verbal/social persuasions, physiological or affective states—some educationists have developed and
investigated some measures [33,43,44]. In a quantitative empirical three-phase study, Usher and
Pajares [33] developed a measure and investigated the sources of mathematics self-efficacy. The study
started in Phase One with an 84-item measure and ended in Phase Three with a revised 24-item
instrument. The final version contained six items in each of the mastery experience, vicarious experience,
social persuasions, and physiological state subcategories with 0.88, 0.84, 0.88, and 0.87 Cronbach’s
alpha coefficients as pieces of evidence of item internal consistency, respectively. The study confirmed
the hypothesized mastery experience of Bandura [5] as the strongest predictor of learning outcome [33].
Other studies have also reported corroborative empirical evidence to confirm the hypothesized sources
of mathematics self-efficacy using Usher and Pajares’ [33] instrument with either wording or language
adaptations [45,46].

With the exception of sources of self-efficacy measures, the most effective approach in terms of
achieving high predictive power of learning outcome is to assess mathematics self-efficacy through
a task-specific measure [47]. The basic idea in developing a mathematics task-specific instrument
is to conceptualize self-efficacy on predefined mathematical task(s) and tailor the instrument items
towards the respondent’s self-capability to complete the tasks. An example of early instruments
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developed using this approach was the 52-item mathematics self-efficacy scale (MSES) by Betz and
Hackett [34] to measure self-efficacy among mathematics college students. In the administration
of this instrument, the respondents had to rate their confidence in successfully completing 18-item
mathematics tasks; solving 18-item math related problems; and achieving at least a “B” grade in a
16-item college mathematics related course like calculus, statistics, etc. Evidence of reliability was
provided with Cronbach’s alpha coefficients of 0.90, 0.93, and 0.92 on each subscale as well as 0.96
on the 52-item scale [34]. MSES has been investigated, revised, and validated with items adapted to
university mathematics tasks/problems as well as its rating reduced from a 10-point to five-point Likert
scale [14,48].

A task-specific mathematics self-efficacy instrument was also utilized by the Programme for
International Student Assessment (PISA) in their 2012 international survey across 65 countries as
reported in [49]. The eight-item instrument measured students’ self-reported level of confidence in
completing some mathematical tasks without solving the problems. The rating involved a five-point
Likert scale ranging from “not at all confident” to ”very confident”’ in which students were asked,
for example, “how confident would they feel about solving an equation like 2(x + 3) = (x + 3) (x – 3)”?
Cronbach’s alpha coefficient of 0.83 was provided as evidence of reliability [49].

3. Methods

3.1. Item Development

The items of the calculus self-efficacy inventory (CSEI) were developed based on the
recommendations of Bandura’s self-efficacy theory using the guidelines explained in the literature
(e.g., [50]). The initial inventory used in the current study contained 15 items selected from old
final examination questions in a year-one calculus course from 2014/2015 to 2018/2019 academic
sessions. Some of the topics covered in the course were functions, limits, continuity and differentiability,
differentiations and its applications, integration and its applications, etc. The items varied in level of
difficulty from procedural (involving recall of facts, definition, use of formulae, etc.) to conceptual items
which involve higher cognitive abilities such as applications, analysis, evaluations, etc. The students
were asked to rate their confidence to solve the tasks on a scale ranging from 0 (not confident at all),
through 50 (moderate confidence), to 100 (very confident). The 100-point scale was used because it
has been reported to enhance the predictive validity of the self-efficacy inventory (see, [50]). Sample
questions are presented in Table 1.

Table 1. Sample items on the calculus self-efficacy inventory (CSEI).

SN. How Confident are You that You can Solve Each of These Problems
Right Now? Confidence (0–100)

3
Calculate the limit:

lim
x→1

1−cos(1−x2)
x2−2x+1

7 A curve is given by x = y2
− x2y− 1. Use implicit differentiation to find y′.

11
Evaluate the integral.∫

x−7
x2+x−6 dx

14
A surface is bounded by the function f (x) = 1

3 ex2
where 0 ≤ x ≤ 2 and the

x-axis. A vessel is made by rotating the surface about the x-axis. Find the
resulting volume.

3.2. Research Design and Participants

This study adopted a survey research design involving 234 year-one university students in
engineering and economics programs offering a compulsory calculus course. The study population
comprised 135 males and 99 females with an average age between 19–22 years. The multicollinearity
and adequacy of the sample correlation matrix was checked using Bartlett’s test sphericity (N = 234,
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d = 91) = 1632.2, p < 0.05, which was significant, with a Kaiser–Meyer–Olkin (KMO) test = 0.88 and a
determinant greater than 0.00001. These all confirmed the sufficiency of the sample for factor analysis
as well as absence of multicollinearity in the data [51]. Moreover, the sample was also within the
suggested ranges, in the literature, for factor analysis of multiple item instruments (e.g., [52]).

3.3. Materials

Two instruments were used in this study. The first was the 15-item CSEI described in the previous
section entitled “item development”. The second instrument was a Norwegian version of the two-factor
revised study process questionnaire (R-SPQ-2F) developed by Biggs, Kember, and Leung [53]. This
version is a 19-item instrument that measures students’ approaches to learning on a five-point
Likert scale with 10 items measuring deep approach to learning and 9 items measuring surface
approach to learning mathematics. The psychometric properties of this instrument were investigated
elsewehere [54,55], and its reliability was found to be appropriate from 0.72 to 0.81 using Raykov and
Marcoulides’ [56] formula.

3.4. Procedure

The data were collected using both electronic and paper versions of the two questionnaires.
A total of 110 engineering students completed both the CSEI and the R-SPQ-2F, out of whom 95 gave
us their consent to identify their scores on both scales. Economics students only completed the CSEI
due to some logistic problems and formed the remaining 124 of the sample. The collected data were
screened for outlier cases and found to contain none. Responses on CSEI were coded on a 11-point
scale with 0 coded as 0, 0 < values ≤ 10 coded as 1, 10 < values ≤ 20 coded as 2, . . . , and 90 < values
≤ 100 coded as 11. Univariate and multivariate descriptive statistics analysis of the data revealed
the presence of excess kurtosis and skewness as both indices were greater than |1.0| on most of the
items of CSEI [57]. For this reason, 11-point categories were further collapsed to five-point ones, and a
polychoric correlation matrix was used in the factor analysis of the data using the FACTOR program
version 10.8.04 [58]. The recoding into five-point categories was done is such a way that 0–2 were
coded as 1, 3–4 were coded as 2, . . . , and 9–10 were coded as 5.

4. Results

4.1. Factor Analysis of CSEI

An exploratory factor analysis (EFA) was run on the 15-item CSEI data to determine the factor
structures of the inventory. As the data were found to contain excess kurtosis and skewness,
instead of a Pearson correlation matrix, a polychoric correlation matrix was used to enhance analysis
effectiveness [59]. Minimum rank factor analysis (MRFA) was used in extracting the common
underlying factors of CSEI instead of maximum likelihood (ML), unweighted least squares, etc., due to
its ability to optimally yield communalities of the sample covariance matrix [60]. The number of factors
to retain was based on the optimized parallel analysis procedure [61,62] which has been confirmed to
outperform the original Horn’s parallel analysis [63].

This procedure involves simulations of 500 datasets by permuting the sample data at random so
that numbers of cases and variables are unchanged. On each of these datasets, EFA was conducted
using MRFA, and the average eigenvalues of the extracted factors were then compared with the
eigenvalues of the sample. Factors with eigenvalues greater than the average eigenvalues of the
simulated datasets were then retained. This procedure has been shown to be an effective way of
deciding the number of factors to retain in EFA and also outperformed Kaiser’s criteria of eigenvalues
greater than 1 and use of scree plot [61]. The extracted factors were rotated using promin, an example
of oblique rotations described in [64]. An oblique rotation was appropriate because the latent factors
are assumed to be correlated contrary to the assumption of disjoint factors in the orthogonal rotations.
The analysis was performed on both the 11-point and five-point coding of the data. However, results
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from the five-point coding are presented in Table 2 due to slightly higher precisions in estimating factor
loadings and communalities of the items. Factor loadings less than or equal to |0.30| are excluded from
Table 2.

Table 2. Rotated and unrotated factor loadings and item communalities.

CSEI
First Analysis Second Analysis Third Analysis

F1 F2 F1 Communality F1 Communality

Item 01 0.99 0.73 1.00 —– ——
Item 02 0.51 0.50 0.82 0.43 0.42
Item 03 0.61 0.78 0.72 0.78 0.83
Item 04 0.79 0.62 0.77 0.64 0.70
Item 05 0.34 0.51 0.48 0.51 0.50
Item 06 0.83 0.55 0.80 0.60 0.89
Item 07 0.40 0.35 0.66 0.60 0.65 0.55
Item 08 0.71 0.76 0.82 0.73 0.75
Item 09 0.85 −1.04 —— ——- —— ——
Item 10 0.35 0.38 0.65 0.75 0.65 0.74
Item 11 0.38 0.74 0.95 0.76 0.96
Item 12 0.69 0.84 0.95 0.85 0.91
Item 13 1.02 −0.30 0.68 0.98 0.72 0.90
Item 14 0.80 0.74 0.77 0.72 0.77
Item 15 0.45 0.68 0.77 0.68 0.66

Table 2 presents rotated and unrotated factor loadings of a series of three exploratory factor
analyses of the CSEI data. The first analysis column of Table 2 represents rotated factor loadings of
a two-factor solution of the data. However, there was a gross misspecification in this model with
Items 07, 09, and 13 exhibiting substantial cross-loadings and out of range rotated factor loadings.
The out of range factor loadings in Item 09 (−1.04) and Item 13 (1.02) are suggestive of negative error
variance in the factor solutions of the items. Furthermore, a look at the polychoric correlation matrix
(see Appendix A) also revealed that Item 09 had negative correlation coefficients with most other items,
which is an indication of a negative variance. For this reason, Item 09 was deleted before the second
EFA was run. Moreover, the results of the optimized parallel analysis (Table 3) recommended retaining
one-factor solution in the model based on the 95 percentile and 2-factor solution based on the mean.
However, the 95 percentile recommendation of the parallel analysis has been reported to be more
accurate than its recommendation based on the mean [61]. Therefore, the second analysis was run
with a fixed one-factor solution of the model.

Table 3. Parallel analysis—minimum rank factor analysis (MRFA) results based on the polychoric
correlation matrix.

Variable Real-Data % of Variance Mean of Random %
of Variance

95 Percentile Random %
of Variance

1 50.09 ** 17.00 19.33
2 17.04 * 15.25 17.18
3 6.46 13.75 15.24
4 5.47 12.15 13.33
5 5.27 10.51 11.84
6 4.25 8.81 10.19
7 4.18 7.37 8.79
8 2.92 5.99 7.26
9 2.17 4.60 5.83
10 1.23 3.24 4.38

** Advised number of dimensions when 95 percentile is considered: 1. * Advised number of dimensions when
mean is considered: 2.
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The second analysis column of Table 2 presents unrotated factor loadings and item communalities
of a one-factor solution of the model with the exclusion of Item 09. This solution contains a Heywood
case in form of the communality of Item 01 equals 1. This means that all the variance of Item 01 is
shared with other items in the model and that this item has no unique variance at all [51]. Item 01 was
removed from the model for this reason and the third analysis was run. The third analysis column of
Table 2 presents unrotated factor loadings and item communalities of a one-factor solution of the model
excluding Items 01 and 09. All factor loadings were greater than 0.42 and the average communality
(0.74) was greater than the widely recommended 0.70, which are suggestive of a good model solution
for the sample data [65]. The extracted eigenvalues accounted for a total of 62.55% common variance
as depicted in Table 4. This can be interpreted to mean that the one-factor model explained 62.55% of
common variance of the factor solution which can be used to justify goodness of fit of the model.

Table 4. Eigenvalues and proportion of explained variance.

Variable Eigenvalue Proportion of
Common Variance

Cumulative Proportion
of Variance

Cumulative Percentage
of Variance

1 5.9848 0.6255 0.6255 62.55
2 1.2650 0.1322
3 0.7748 0.0810
4 0.4287 0.0448
5 0.3477 0.0363
6 0.3258 0.0341
7 0.1981 0.0207
8 0.1438 0.0150
9 0.0911 0.0095

10 0.0087 0.0009
11 0.0001 0.0000
12 0.0000 0.0000
13 0.0000 0.0000

4.2. Reliability of the Instrument

There have been heated debates among methodologists on the appropriateness of using Cronbach’s
alpha coefficients in estimating reliability of ordinal scale data. Some of these debates have been
provoked by gross misuses and misinterpretations of Cronbach’s alpha especially in the presence of
excess kurtosis and skewness, violations of the normality assumption, non-continuous item level of
measurement, etc., inherent in ordinal data [66,67]. To circumvent this problem, alternative indices
have been proposed for estimating the reliability of ordinal scales (e.g., [68,69]).

A widely used alternative estimate of reliability is the ordinal coefficient alpha proposed by Zumbo,
Gadermann, and Zeisser [70]. Ordinal coefficient alpha is similar to Cronbach’s alpha coefficient in
that they are both computed using the McDonald’s [71] formula (Equation (1)) for a one-factor factor
analysis model. However, the former is based on polychoric correlation matrix estimates that are
theoretically different from the Pearson correlation matrix estimates used in the latter. It has been
shown both through simulation and raw data studies that ordinal coefficient alpha outperforms the
Cronbach’s alpha coefficient in estimating reliability of scales measured using the Likert format of
fewer than six-point categories (e.g., [70,72]).

α =
p

p− 1

 p ∗ λ
2
− c

p ∗ λ
2
+ u

 (1)

In Equation (1), α is the ordinal coefficient, p is the number of items in the instrument, and λ, c and u
(where u = 1− c) are the average factor loading, average communality, and average unique variance,
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respectively. Using the values of these parameters as presented in Table 5, the ordinal coefficient alpha
can be calculated as follows:

α =
13

13− 1

[
13 ∗ .672

− .74
13 ∗ .672 + 0 .26

]
= 0.91. (2)

Table 5. Ordinal coefficient alpha reliability parameters.

CSEI λ c u

Item 02 0.43 0.42 0.58
Item 03 0.78 0.83 0.17
Item 04 0.64 0.70 0.30
Item 05 0.51 0.50 0.50
Item 06 0.60 0.89 0.11
Item 07 0.65 0.55 0.45
Item 08 0.73 0.75 0.25
Item 10 0.65 0.74 0.26
Item 11 0.76 0.96 0.04
Item 12 0.85 0.91 0.09
Item 13 0.72 0.90 0.10
Item 14 0.72 0.77 0.23
Item 15 0.68 0.66 0.34
Average 0.67 0.74 0.26

This is suggestive of a highly reliable unidimensional instrument with an appropriate internal
item consistency.

4.3. Correlation of Calculus Self-Efficacy with Approaches to Learning

In an effort to examine the predictive validity of the CSEI, a correlation between students’ scores
on the inventory and their respective scores on the R-SPQ-2F was investigated. Scoring of the CSEI was
accomplished by adding item scores on the final 13-item inventory while that of R-SPQ-2F was in line
with the procedure described in [54]. Each of the 95 engineering students had scores on self-efficacy
and deep and surface approaches to learning. These scores were explored using descriptive statistics
and tested for normality assumptions before the correlation analysis. As shown in Table 6 and Figure 1,
scores on both deep and surface approaches are normally distributed while scores on CSEI are not.

Table 6. Descriptive statistics and Shapiro–Wilk’s test of normality results.

Descriptive Statistics Test of Normality

N Min. Max. Mean Std.
Dev.

Skewness Kurtosis Shapiro–Wilk

Stat. Std. Err. Stat. Std. Err. Stat. df Sig.

Deep approach 95 1.20 4.70 2.82 0.68 0.03 0.25 0.10 0.49 0.99 95 0.82
Surface approach 95 1.00 4.00 2.42 0.63 0.15 0.25 -0.49 0.49 0.99 95 0.65

CSEI 95 13.00 65.00 46.07 11.43 −0.92 −0.25 0.86 0.49 0.94 95 0.00*

* Significant, p < 0.05.

The non-normal distribution of scores in the CSEI is evident from the significance level of
Shapiro–Wilk’s test statistic (N = 95, df = 95) = 0.94, p < 0.05, as shown in Table 6. Furthermore,
the CSEI scores also exhibited a negatively skewed distribution as shown in the last diagram of Figure 1.
For these reasons, a nonparametric bivariate Spearman rank correlation was used instead of the
Pearson correlation to check the relationship between the CSEI and the R-SPQ-2F scores. The results
revealed a significant positive correlation ρ(95) = 0.27, p < 0.05 (2-tailed) between the deep approach
to learning and calculus self-efficacy and a significant negative correlation ρ(95) = −0.26, p < 0.05
(2-tailed) between the surface approach to learning and calculus self-efficacy. These results could be
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interpreted to mean, at the group level, that students who adopt the deep approach to learning are
usually confident in dealing with calculus exam problems while those who adopt the surface approach
to learning are less confident to successfully solve calculus exam problems. This finding confirms the
hypothesis of the Bandura’s self-efficacy theory [4,6] and also corroborates the mediating role played
by self-efficacy between learning strategies and performance reported in [16].

1 
 

References 

 

 
Figure 1. Normal distribution of scores on CSEI and R-SPQ-2F scales.

5. Conclusions

Despite the abundant empirical evidence of the high predictive power of task-specific mathematics
self-efficacy in the literature, an instrument for its measure is still lacking [4,50]. The current study
was framed within a quantitative research methodology to develop a concise measure of calculus
self-efficacy with high psychometric properties among year-one university students. Bandura’s
self-efficacy theory provided a theoretical framework for the conceptualization and operationalization
of items on the developed calculus self-efficacy inventory (CSEI). This theory posits that all psychological
and behavioral changes occur as a result of modifications in the sense of efficacy or personal mastery
of an individual [19,25]. On this basis, the accompanied guidelines and recommendations of this
theory [50] were followed in constructing the CSEI items.

The initial instrument contained 15 items, in which 234 respondents rated their confidence in
solving year-one calculus tasks on a 100-point rating scale. The results of the factor analysis using
MRFA for factor extraction, promin rotation, and parallel analysis for retaining factors revealed a
one-factor solution of the model. The final 13-item inventory was unidimensional with all eigenvalues
greater than 0.42, an average communality of 0.74, and a 62.55% variance of the items being accounted
for by the latent factor, i.e., calculus self-efficacy. These results can be interpreted as evidence of
construct validity in measuring students’ internal confidence in successfully solving some calculus tasks.
The CSEI has the following advantages over the mathematics self-efficacy scale (MSES) developed
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by Betz and Hackett [34] and its revisions (e.g., [48]): Its concise length, task specificity, higher factor
loadings, and communality.

Furthermore, the reliability coefficient of the CSEI was found to be 0.91 using the ordinal coefficient
alpha with the formula described in [70]. This coefficient portrays evidence of high internal consistency
of items in the inventory [63]. This reliability coefficient is higher than the coefficient of the mathematics
task subscale of the MSES reported in [2,34], and it is within the ranges of the revised MSES reported
in [14,48]. There are some misconceptions on the appropriate use of the ordinal coefficient alpha for
estimating scale reliability as can be found in [73]. These misconceptions are acknowledged. However,
the examples of the types of items provided in Chalmer’s own article are enough to justify the use of
the ordinal coefficient alpha in the current study.

The results of the current study also provided an insight into the correlation between approaches to
learning and calculus self-efficacy. The significant positive correlation between the deep approach and
self-efficacy as well the significant negative correlation between the surface approach and self-efficacy
are indications of the predictive validity of the CSEI. This finding also confirms the hypothesis of
Bandura’s self-efficacy theory [4,6] as well as corroborates the mediating role played by self-efficacy
between learning strategies and performance reported in [16]. It is a crucial to remark that the causal
effect between calculus self-efficacy and approaches to learning is not claimed with this finding. Rather,
the results have only established a relationship between these constructs that can be explored further
in future studies. The final 13-item instrument is available in English and Norwegian upon request
from the corresponding author. This inventory is therefore recommended to university teachers in
order to assess students’ confidence in successfully solving calculus tasks.
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Appendix A

Standardized Variance/Covariance Matrix (Polychoric Correlation)

Variable 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
CSEI 01 1.000
CSEI 02 0.642 1.000
CSEI 03 0.682 0.427 1.000
CSEI 04 0.255 0.227 0.501 1.000
CSEI 05 0.365 0.210 0.409 0.368 1.000
CSEI 06 0.099 0.152 0.377 0.661 0.232 1.000
CSEI 07 0.502 0.314 0.543 0.339 0.266 0.367 1.000
CSEI 08 0.665 0.307 0.602 0.352 0.409 0.356 0.520 1.000
CSEI 09 -0.527 -0.136 -0.302 0.220 0.054 0.241 -0.064 -0.341 1.000
CSEI 10 0.463 0.328 0.499 0.366 0.435 0.323 0.383 0.612 -0.026 1.000
CSEI 11 0.373 0.253 0.477 0.492 0.266 0.440 0.517 0.376 0.200 0.398 1.000
CSEI 12 0.547 0.301 0.632 0.446 0.305 0.459 0.543 0.573 -0.014 0.459 0.756 1.000
CSEI 13 0.201 0.220 0.391 0.506 0.340 0.501 0.401 0.286 0.327 0.333 0.826 0.709 1.000
CSEI 14 0.684 0.346 0.623 0.280 0.444 0.153 0.502 0.667 -0.405 0.480 0.400 0.609 0.355 1.000
CSEI 15 0.393 0.331 0.502 0.422 0.365 0.387 0.433 0.536 0.030 0.361 0.375 0.555 0.395 0.601 1.000
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Abstract

The  importance  of  students’  prior  knowledge  to  their  current  learning  outcomes  cannot  be
overemphasised.  Students with adequate prior knowledge are better prepared for the current learning
materials  than  those  without  the  knowledge.  However,  assessment  of  engineering  students’  prior
mathematics  knowledge  has  been  beset  with  a  lack  of  uniformity  in  measuring  instruments  and
inadequate  validity  studies.  This  study  attempts  to  provide  evidence  of  validity  and  reliability  of  a
Norwegian national test of  prior mathematics knowledge using an explanatory sequential mixed-methods
approach. This approach involves use of  an item response theory model followed by cognitive interviews
of  some students among 201 first-year engineering students that constitute the sample of  the study. The
findings confirm an acceptable construct validity  for the test  with reliable items and a high-reliability
coefficient of  .92 on the whole test. Mixed results are found on discrimination and difficulty indices of
questions on the test with some questions having unacceptable discriminations and require improvement,
some are easy, and some appear too tricky questions for students. Results from the cognitive interviews
reveal the likely reasons for students’ difficulty on some questions to be lack of  proper understanding of
the questions, text misreading, improper grasping of  word-problem tasks, and unavailability of  calculators.
The findings underscore the significance of  validity and reliability checks of  test instruments and their
effect  on  scoring  and  computing  aggregate  scores.  The  methodological  approaches  to  validity  and
reliability checks in the present study can be applied to other national contexts.
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1. Introduction
Students’ knowledge before a teaching-learning activity has been reported in diverse fields of  studies to
exert  enormous  influence  in  facilitating  proper  understanding  of  current  learning  materials.  Many
psychological theories (e.g., self-efficacy theory) have acknowledged and emphasised this strong predictive
role of  prior knowledge on the current learning outcomes (Bandura, 1997; Marton & Booth, 1997). The
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correlation between prior academic achievement and students’ performance in the presented tasks has
been  extensively  reported  in  the  literature.  In  a  study  of  60  first-year  undergraduate  students  of
accounting and economics reported by Duff  (2004), prior academic achievement is found to correlate
(r=.53) with academic performance positively, and it is the best among other predictors such as age and
gender. This report is corroborated in a much larger sample longitudinal study in which prior academic
achievement is  also found to be the best,  among other factors,  in predicting 1,628 secondary school
students’ performance in reading and mathematics (Engerman & Bailey, 2006).

Furthermore,  Ayán  and García  (2008)  compare  the  efficacy  of  linear  and  logistic  regression  models  in
predicting 639 undergraduate students’ performance, and both models favour prior academic achievement over
other factors such gender and school location. In the same year, Hailikari, Nevgi and Komulainen (2008)
conducted a special problem-solving mathematical assessment to determine students’ prior knowledge in their
study and its predictive power of  academic performance. Their report shows that prior knowledge, coupled
with previous academic success explained 55% of  the variability observed in the performance of  students on
mathematics tasks. Similar results are also reported, elsewhere, (e.g., Casillas, Robbins, Allen, Kuo, Hanson &
Schmeiser, 2012; Newman Ford, Lloyd & Thomas, 2009; Richardson & Abraham, 2012). ‐

Recently, a group of  researchers Martin, Wilson, Liem and Ginns (2016) recorded mixed results on the
prior  knowledge  predictive  power  of  performance  in  a  2-year  longitudinal  study  among  university
students.  High  school  results  as  proxies  for  measuring  prior  knowledge  correlate  well  with  the
performance at the beginning of  their study while the ongoing semester course grades take the lead later.
Though, this finding seems not contradictory to the earlier reported ones as both high school grades and
the ongoing semester course grades still refer to prior academic achievement of  the students in some
sense.  The  findings  reported  by  Aluko,  Daniel,  Oshodi,  Aigbavboa  and  Abisuga  (2018);  Opstad,
Bonesrønning and Fallan (2017) corroborate this point. Aluko et al. (2018) utilised more sophisticated
statistical tools such as logistic regression and support vector machine learning to establish high correction
between prior academic achievement and performance.

Despite the importance of  prior knowledge and its correlation with students’ performance, studies on
psychometric properties of  measures of  engineering students’ prior mathematics knowledge are scarce in
the literature. As such,  the primary purpose of  the present study is to validate a prior knowledge of
mathematics test (PKMT), owned by the Norwegian Mathematical Council, using an item response theory
(IRT) model coupled with some cognitive interviews to extract detail information on likely reasons why
some questions are challenging for students. The present study will not only provide empirical evidence
for the validity of  the PKMT but also offer pieces of  advice to the Norwegian Mathematical Council
towards an improvement of  specific items on the test. Further, validation of  the PKMT is also crucial for
our ongoing relatively large-scale quantitative study on the contributions of  prior mathematics knowledge,
approaches to learning and self-efficacy on year-one engineering students’ performance in mathematics at
a Norwegian university. It is important to remark that the report presented in this article is preliminary
and as such more studies are still ongoing in relating the scores of  students on the prior knowledge of
mathematics test to students’ grades and other constructs.

The remaining part of  the present article is arranged such that a conceptual framework is elucidated in the
next section. The section was followed by another section where issues related to methodology, e.g., an
overview of  some specifics of  the PKMT, sample of  the study and procedure of  data collection and
analysis are presented. This is followed by a section where we present and discuss ensuing results from
both the quantitative and the qualitative approaches to data analysis. The last section, before the reference
list  sheds  more  lights  on  the  significant  findings  of  the  study,  gives  some  concluding  remarks  and
acknowledges the strengths and potential weaknesses of  the study.
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2. Conceptual Framework 
2.1. The Conceptualisation of  Prior Knowledge

There  seems  to  be  no  agreement  among  educationists  and  psychologists  on  a  definition  of  prior
knowledge. Though, it is used to be captured as cognitive entry behaviour enshrined in Bloom’s taxonomy
(Bloom,  1976).  The  definition  of  Bloom’s  cognitive  entry  behaviour  as  “those  prerequisite  types  of
knowledge, skills, and competencies which are essential to the learning of  a particular new task or set of
tasks” (Bloom, 1976: page 122) has been criticised and considered outdated in some quarters (e.g. Dochy,
De Rijdt & Dyck, 2002). In their review, Dochy et al. (2002) explicate many synonymous terms used to
describe prior knowledge in the literature and consider their general interpretations to be “definitional
snippets or vague statements” (Dochy et al., 2002: page 267). Thus, Dochy et al.  (2002) propose and
describe prior knowledge as:

The whole of  a person’s knowledge, which is as such dynamic in nature, is available before a certain learning task,
is structured, can exist in multiple states (i.e. declarative, procedural and conditional knowledge), is both explicit
and tacit in nature and contains conceptual and metacognitive knowledge components (Dochy et al., 2002: page
267).

Another  approach  through  which  prior  knowledge  has  been  conceptualised  is  from  an  angle  of
domain-specific tasks or accomplishments. In this view, prior knowledge is seen as the level of  knowledge
related to a specific field being studied which varies distinctively depending on the relevance and the
quality of  the material currently under study (Dochy, 1996; Hailikari et al., 2008). Thus, prior knowledge in
the present study refers to prior mathematics performance of  students before they start their university
education. 

The notion of  domain-specific prior knowledge seems to provide a basis for different indicators used in
the literature to assess prior knowledge of  the learners. There has been little coherence between various
indicators used by educationists as proxies to quantify students’ prior knowledge. This lack of  uniformity
can  be  linked  to  the  type  of  studies,  e.g.  longitudinal  (Engerman  &  Bailey,  2006),  meta-analysis
(Richardson & Abraham, 2012); students under study, e.g. university (Ayán & García, 2008), high school
students (Casillas et al., 2012); the field of  study, e.g. accounting (Duff  2004), mathematics (Hailikari et al.,
2008), economics (Opstad et al., 2017), and architecture (Aluko et al., 2018). In several of  these studies,
researchers have used students’ test scores on standardised tests, high school grades and entrance exams
(Aluko et al., 2018; Casillas et al., 2012; Duff  2004; Newman Ford et al., 2009) while others have used‐
students previous semester/year grades (Ayán & García, 2008; Engerman & Bailey, 2006; Martin et al.,
2016;  Zakariya,  2016)  or  a  special  exam  on  problem-solving  (Hailikari  et  al.,  2008)  to  assess  prior
knowledge. 

2.2. Study Setting

Students  that  are  admitted  into  science  and  engineering  courses  at  Norwegian  universities  have  the
freedom to  choose  between  three  routes  and  two  endpoints  for  their  mathematics  studies  at  upper
secondary schools (grades 11-13). The routes are practical mathematics (P-Mat) aiming at applications of
mathematics, social science mathematics (S-Mat) and advanced mathematics for science and technology
(R-Mat)  and  they  can  conclude  their  study  of  mathematics  after  two  or  three  years  at  their  upper
secondary schools. The Norwegian Mathematical Council has consistently administered a prior knowledge
of  mathematics test (PKMT) to year-one university and college students since 1984. The PKMT aims to
provide  empirical  evidence for  monitoring  of  the  basic  knowledge  of  mathematics  with  a  focus  on
undergraduate  students  following  mathematics  intensive  programmes  (e.g.  engineering  programmes)
across universities and colleges in Norway. The PKMT is conducted every two years since 2001, and the
latest was conducted in Autumn 2019. Prior to the year 2001, the test was conducted in 1984, 1986, 1999
and 2000. Accordingly, based on the results of  the PKMT pieces of  advice are offered by the Norwegian
Mathematical Council to government agencies, Norwegian Research Council, universities, colleges, and
other mathematics education stakeholders in Norway.  However,  it  is  apparent that  some mathematics
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educators and researchers in Norway have reservations about the validity of  the PKMT. It is the opinion
of  the authors that some of  these reservations could be traced to a lack of  validation studies on the
instrument which has motivated the present study.

3. Methodology
3.1. Measure

The PKMT has two main parts. The first part contains background information about the students
such  as  gender,  age,  some  information  about  the  highest  mathematics  content  followed  in  upper
secondary schools, and some items on attitudes towards mathematics. The second part is a 16-item test
on basic  mathematics tasks that are developed based on secondary school (grades 8-10) curriculum.
Items 1 and 2 have three parts each, items 9 and 11 have two parts each, while other items have only
one part  each to make a total  of  22 questions  on the  test.  Questions  9a,  11a,  11b,  14  and 15  are
standard  multiple-choice  questions  while  others  are  short  open-ended  questions.  Before  the
commencement of  the present study, the PKMT is administered using paper and pencil format. Thus,
we  independently  digitalised  the  test  and  administered  it  online  under  classroom  supervision.
Coincidentally,  the  Norwegian  Mathematical  Council  also  shifted  to  digital  PKMT  in  the  2019
administration of  the test at the national level. The use of  calculators is not allowed, and it takes 40
minutes to complete the test, including the time to complete background information. Sample questions
of  the PKMT are not included in the present article for confidentiality reasons. However, questions on
the test can be categorised into five clusters: (a) basic operations of  addition, multiplication, division
and ordering of  fractions and decimals; (b) simple percentages, ratio, proportion and average speed; (c)
solving linear equations and inequalities including an application of  Pythagoras theorem; (d) reading a
Cartesian graph, slope of  a straight line, similar triangles and volume of  solid shapes;  and (e) word
problems on  writing,  interpreting  and solving  linear/simultaneous  equations.  Further,  some  of  the
questions are discussed in parts in a way that they are not identifiable during the presentation of  some
interview transcripts.

3.2. Participants

A total of  201 year-one engineering students in a Norwegian university including 34 females and 167
males took the PKMT in Autumn 2019. The average age of  the students is 20.64 years, with a minimum
of  17 years and a maximum of  36 years. Appropriate consents are sought from the Norwegian Centre for
Research Data (NSD) as well as individual students who took parts in the test. The students are made to
understand that taking part in the study is entirely voluntary and that their refusal to give consent will not
in any way affect their grades. They are promised that utmost confidentiality will be ensured in dealing
with their data and that no student is identifiable during and after the study. The data used for the present
study are completely anonymous and are available upon request from the corresponding author. 

3.3. Data Analysis

The collected data are initially scored dichotomously using 1 point for a correct answer and 0 point for a
wrong. The scored data are analysed using a quantitative method. A two-parameter IRT model was used to
investigate item parametrisations such as item discriminating and difficulty indices as well as item reliability
of  the test. An IRT model is a framework that characterises a relation between examinee’s ability or latent
trait as measured by a scale and the examinee’s responses to each item on the scale (DeMars, 2010). IRT
models  can  be  one-parameter,  two-parameter,  three-parameter,  unidimensional  (i.e.,  items  measure  a
common  latent  trait)  and  multidimensional  (i.e.,  items  measure  separate  clusters  of  a  latent  trait)
depending on the complexity of  the scale. The basic notion of  the two-parameter IRT model is that a
subject’s probability of  getting an item correct is a monotonic increasing function (e.g., an exponential
function) of  two sets of  parameters: (a) the location (item difficulty) on the latent trait (in our case, prior
mathematics  knowledge)  to  be  measured;  and  (b)  the  slope  (item  discrimination)  of  item  response
function (IRF) otherwise known as item characteristic curve (ICC). Equation 1 presents a mathematical
representation of  a two-parameter IRT model.
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(1)

Equation 1 shows the probability (P) that a student with latent variable  θ (competence on the PKMT)
answers an item (Xi = 1) correctly which has both item difficulty and discrimination indices of  ai and bi

respectively and e is an exponential function. The test scores on the PKMT is put on a metric determined
by IRT model such that the group latent variable is normally distributed (mean = 0 and standard deviation
= 1) with values ranging from -3.5 to +3.5. Each item discrimination index (ai , i = 1, 2, …, 22) has the
same metric as the latent variable (θ) with values ranging over the set of  real numbers. It measures the
extent to which an item discriminates between students of  low and high ability on the PKMT. Items with
negative or less than 0.20 ai’s have been recommended to be rejected while items with 0.20 ≤ ai’s  < 0.40
demonstrate appropriate discrimination and may be improved and items with   ai’s  ≥ 0.40 demonstrate
good discrimination (DeMars, 2010; Ebel & Frisbie, 1991). However, depending on the sample size, item
discrimination is not expected to be excessively high. Also, each item difficulty index (bi , i = 1, 2, …, 22) is
on the same metric as the latent variable (θ) with value range over the set of  real numbers, and a practical
range  between -2  and  2  to  avoid  too  easy  or  too  tricky  items  on  the  test  (DeMars,  2010).  It  gives
information on the amount of  the latent variable (θ) at which 50% of  the students will get a correct score
on each item. In as much as there seems to be no specific range of  values to ascertain good difficulty
index, empirical evidence has supported retaining items of  the middle index of  difficulty on the test (Ebel
& Frisbie, 1991).

In line with unidimensionality assumption of  IRT models (DeMars, 2010), a one-factor model of  the
PKMT with its 22 questions hypothesised to measure a common construct is evaluated using mean and
variance  adjusted  unweighted  least  squares  estimator  with  theta  parametrisation  (ULSMV-Theta).
ULSMV-Theta  is  used  because  of  its  satisfactory  performance  and  precision  in  estimating  model
parameters for a dichotomously scored IRT modelling in Mplus (Paek, Cui, Ozturk-Gubes & Yang, 2018).
The model fit is assessed using multiple criteria. For an appropriate fit, we follow the recommendations of
the ratio of  chi-square value to the degree of  freedom of  less than 3coupled with a root mean square
error of  approximation (RMSEA) of  less than .06 with non-significant 90% confidence interval (Brown,
2015), comparative fit and Tucker-Lewis indices (CFI and TLI) of  greater than or close to .90 (Bentler,
1990). Further, we look at the significant level or otherwise of  the factor loading of  each of  the items on
the test. This is necessary to determine the contribution of  these items to the test and to estimate each
item reliability using standardised R-square values.

The qualitative  method of  data  analysis  takes  the  form of  a  cognitive  interview.  This  interview was
conducted to further probe and to determine the most likely reasons why some perceived too difficult
questions based on the results  of  statistical  analysis  are not  answered correctly.  We rely  on students’
experience that voluntarily consented to take part in the interviews. In addition to the general consent to
take part in the research project, special consent was requested from each student before the interview to
audio record individual’s utterances. The semi-structured cognitive interview was individually conducted in
Norwegian using some leading questions with samples as follow:

If  you, please take a look at this task, do you think this is a task you would have mastered?

Do you have any idea on how to solve that one? Is it clear what they ask?

What do you think is the reason why many students got this question incorrect?

You get some calculations there, and you only have paper and pencil accessible, do you think that a calculator had
been necessary for some students on this task?

A total of  seven students were interviewed, including six males and one female. Each interview lasted
about 15 minutes, and the collected data were transcribed and translated into English. Selected results
from these interviews are presented in the next section.
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4. Results and Discussion
4.1. Results of  Quantitative Analyses

Results from the analysis of  a one-factor model of  the PKMT with its 22 questions hypothesised to
measure  a  common  construct  of  students’  prior  mathematics  knowledge  are  presented.  Descriptive
statistics of  the analysed data as well as some initial parameters are shown in Table 1. The table shows the
number of  correct and incorrect responses of  each item on the test, including the respective standardised
factor loadings, R-square values, and the p-values. 

Question Number of
correct

responses

Number of
incorrect
responses

Factor
loading

p-value R-square p-value

1A 173 28 .388 .001 .151 .091

1B 123 78 .472 < .001 .223 .006

1C 103 98 .444 < .001 .197 .006

2A 151 50 .454 < .001 .206 .017

2B 112 89 .562 < .001 .316 < .001

2C 85 116 .537 < .001 .288 < .001

3 64 137 .530 < .001 .281 < .001

4 116 85 .557 < .001 .310 < .001

5 143 58 .549 < .001 .301 < .001

6 128 73 .660 < .001 .436 < .001

7 113 88 .679 < .001 .461 < .001

8 133 68 .804 < .001 .646 < .001

9A 48 153 .169 .078 .029 .379

9B 19 182 .336 < .001 .113 .034

10 13 188 .553 < .001 .306 .001

11A 176 25 .891 < .001 .794 .003

11B 60 141 .350 < .001 .123 .033

12 82 119 .734 < .001 .539 < .001

13 58 143 .604 < .001 .365 < .001

14 86 115 .618 < .001 .382 < .001

15 125 76 .736 < .001 .542 < .001

16 67 134 .695 < .001 .483 < .001

Table 1. Descriptive statistics of  the 22-item PKMT

The results presented in Table 1 reveal that Question 11A of  the PKMT has the highest number of
correct responses with 176 students got it correctly while Question 10 has the least number of  correct
responses with only 13 students got it correctly. All the item factor loadings are significant except for
Question 9A, which has an insignificant factor loading of  .169 (p = .078). These factor loadings reflect
the strength at which each of  the questions of  the PKMT measures the purported prior mathematics
knowledge the instrument is designed to measure. Thus, from this initial analysis, one can deduce that
Question 9A has little or no substantial contribution to the instrument. Further, upon squaring each of
these standardised factor loadings, a measure of  variability (R-square) and reliability of  each question on
the PKMT was established. For instance, 31.6% and 79.5% variances of  Question 2B and Question
11A, respectively, are explained by the latent construct of  students’ competence on the PKMT. And
that these questions are reliable with significant reliability coefficients of  .316 and .795, respectively. On
the other hand, questions 1A, 2A, 9A, 9B and 11B have non-significant reliability coefficients of  .151, .
206, .029, .113, and .123, respectively, at α = .01 level of  significance. The reliability of  the whole test
was found to be .92 using a latent variable approach described in (Raykov, Dimitrov & Asparouhov,
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2010; Raykov & Marcoulides, 2016). The goodness of  fits statistics from the analysis of  the one-factor
PKMT model are presented in Table 2.

Model fit statistics Values

Chi-square (χ2)
Value 272.892

df 209

χ2/df 1.306

p-value .002

CFI/TLI
CFI .903

TLI .893

RMSEA
Estimate .039 

90 per cent C.I. .025 .051

Probability RMSEA <= .05 .927

Table 2. Selected goodness of  fit indices of  the one-factor PKMT model

The results presented in Table 2 show an appropriate fit of  the evaluated one-factor model of  the PKMT.
The chi-square statistic seems a bit high and significant (p=.002). However, its ratio to the degree of
freedom is less the recommended value of  3 for an acceptable model fit. Both the CFI and the TLI values
are within the recommended values of  an acceptable model fit (Bentler, 1990). The RMSEA is excellent
with  its  value  within  the  90  per  cent  confidence  interval,  and  its  probability  is  not  significant.  This
non-significant RMSEA probability shows that the model demonstrates a close fit of  the data and that the
hypothesis of  not-close fit should be rejected (MacCallum, Browne & Sugawara, 1996). Thus, the overall
fit statistics confirm that the hypothesised one-factor construct of  prior mathematics knowledge exposed
by the 22 questions is supported by empirical evidence. After establishing the model fit of  the PKMT, we
now turn to its item quality as explicated by item response theory parametrisation. The ensuing results on
item discrimination and difficulty indices of  each item on the PKMT as well as their respective p-values
are presented in Table 3. 

The  results  presented  in  Table  3  show that  all  the  questions  on the  PKMT have  acceptable  item
discrimination indices except for Question 9A (a9A = 0.172, p = .087) and Question 11A (a11A = 1.958,
p = .223)  which demonstrate too weak and too strong discriminations, respectively, among the students.
The inference can be drawn from the non-significant estimates of  the discrimination indices of  these
two questions. According to the classifications of  item discrimination index by Ebel and Frisbie (1991),
it can be inferred that our empirical evidence supports the removal of  Question 9A and Question 11A
from the test,  Questions  9B and 11B have appropriate  discriminating indices  but  can be improved
upon, and all other questions have good discrimination indices. Further, it is also revealed in Table 3
that some questions demonstrate appropriate difficulty. At the same time, some questions demonstrate
excessive item difficulty (i.e. too difficult questions), and other questions demonstrate weak difficulty
(i.e. easy questions). For instance, questions 1C, 2B, 2C, 4, 7, 9A, 12, and 14 demonstrate appropriate
difficulty  with  the  non-significant  estimates  (p  >  .01)  of  their  respective  difficulty  indices.  Also,
questions 1A, 1B, 2A, 5,  6,  8,  11A, and 15 are relatively easy questions  depending on the absolute
magnitude  of  their  estimates  while  other  questions,  e.g.  questions  3,  9B,  10,  and  11B are  difficult
questions. Selected results of  why students perceived some of  these questions difficult are presented in
the next section.
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Question Item discrimination p-value Item difficulty p-value

1A 0.421 .004 -2.795 .002

1B 0.536 < .001 -0.602 .006

1C 0.495 < .001 -0.070 .725

2A 0.510 < .001 -1.494 < .001

2B 0.679 < .001 -0.256 .112

2C 0.637 < .001 0.362 .040

3 0.626 < .001 0.890 < .001

4 0.670 < .001 -0.350 .034

5 0.657 < .001 -1.016 < .001

6 0.877 < .001 -0.531 < .001

7 0.924 < .001 -0.231 .080

8 1.354 < .001 -0.518 < .001

9A 0.172 .087 4.198 .090

9B 0.357 < .001 3.908 < .001

10 0.664 < .001 2.741 < .001

11A 1.958 .223 -1.295 < .001

11B 0.374 < .001 1.509 .001

12 1.081 < .001 0.317 .012

13 0.758 < .001 0.923 < .001

14 0.786 < .001 0.294 .049

15 1.086 < .001 -0.422 .001

16 0.965 < .001 0.620 < .001

Table 3. IRT parameterisation of  the PKMT

4.2. Results of  Cognitive Interviews

To further  probe  why  some  questions  are  perceived  difficult  by  the  students,  we  interviewed  some
students to hear their views and suggestions for the improvement of  such difficult questions. Results from
the transcripts of  interviews for Question 10 (this  is  a word-problem type question that requires the
students to manipulate some percentages and give the final answer in decimal number) show that some
students find it challenging to understand the question because of  its practical and word-problem nature.
Some of  the  reasons  stated  for  getting  the  question  incorrect  by  most  students  are  lack  of  proper
understanding of  the question, text misreading, and unavailability of  calculators. The students also think
that provision of  calculators during the test administration could improve their performance on such
difficult tasks. For the reason that they are used to working on mathematical tasks with calculators lately,
as mentioned by one of  the students “I would have thought about this for a while, I guess I had to because we are so
used to use the calculator all the time”.

Similarly, when the interviewer asked the following questions about Question 9: What is difficult here?
What  makes  this  a  bit  difficult?  If  you  could  try  to  describe  in  words  what  makes  it  difficult  to
understand?  Note:  Question  9  is  a  word-problem type  that  requires  the  students  to  manipulate  the
purchase  of  oranges  and  bananas  in  kilogrammes  using  letters  rather  than  numbers.  One  of  the
interviewees responded with the following answer: 

No, it is more. I think it was difficult to understand. That the a stands for, I am more like I do not manage to
deal with practical tasks after I began doing theoretical tasks […] This is a typical example of  what I find
difficult, that a is how many kilograms of  oranges that you buy, and b is for bananas. What is 10a plus 15b?
And then I become, like – actually I think I could have solved it if  I had more time. If  I had thought more about
it. It is not how to solve it; it is more like I put a lot more energy into solving this task than this task [she points
to task 3 which is on calculating the volume of  a compound figure] because it is too much text and I become
stressed, and I think back to the practical math that I had and that I did not like.
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It can be deduced from the excerpts of  interview transcriptions for Question 9 that some students could
not solve the problem correctly because of  their inadequate reading comprehension, interpretations, and
improper understanding of  the word-problem task. Meanwhile, of  the six difficult questions (3, 9B, 10,
11B, 13 and 16) identified in Table 3, only questions 3 and 11B are not posed in word problems. Thus, it
can be inferred that the challenge with our students lies on their improper grasping of  word-problem
tasks which could stem from their preference for other types of  mathematical tasks as evident in one of
the student’s response during the interview “It is not how to solve it, it is more like I put a lot more energy into
solving this task than this task [she points to task 3 which is on calculating the volume of  a compound figure]
because it is too much text and I become stressed, and I think back to the practical math that I had and that I did not like” .
This finding conforms to the global trend of  students’ perceived difficulty of  mathematical word-problem
tasks at  elementary,  secondary and university  levels  (e.g.,  Vilenius Tuohimaa,  Aunola & Nurmi,  2008;‐
Zheng, Swanson & Marcoulides, 2011).

5. Conclusions
Prior mathematics knowledge of  students has been identified as instrumental to the learning outcomes of
current materials. Both theoretical and empirical evidence has been documented to support this claim
(Bandura, 1997; Zakariya, 2016). However, proper assessment of  students’ prior mathematics knowledge
has been beset with inconsistency in the available numerous measuring instruments and lack of  validation
studies. Attempts are made in the present study to validate a national test of  prior mathematics knowledge
of  university students in Norway using mixed methods research design. The design involves the use of
item response theory to provide psychometric properties of  the test and cognitive interviews to probe
plausible reasons why students find some questions challenging. 

The findings of  the present study provide empirical evidence for the construct validity of  the Norwegian
prior knowledge of  mathematics test. In particular, our evaluation of  a one-factor model shows that the
test is  measuring just  a single latent variable (i.e.  prior  mathematics knowledge of  students)  that  it  is
purported to measure. Further, it is also found that out of  the 22 questions on the test only questions 1A,
2A,  9A,  9B  and  11B  demonstrate  lack  of  acceptable  reliability  coefficients.  However,  the  reliability
coefficient of  the whole test using latent variable approach is found to be very high (.92) which proves
high internal consistency of  the items on the test (Raykov et al., 2010). The latent variable approach is
used to compute the reliability coefficient of  PKMT because of  its reported excellent performance over
the popular  Cronbach’s alpha and Kuder-Richardson formula 20 (e.g.,  Raykov et al.,  2010;  Raykov &
Marcoulides, 2016). In as much as most of  the reviewed literature in the present study (e.g., Hailikari et al.,
2008; Newman Ford et al., 2009) do not report reliability coefficients of  their measures of  prior academic‐
knowledge, the reliability coefficient of  the PKMT is higher than the one reported by Lee and Chen
(2009) but slightly lower than the Kuder-Richardson coefficient reported by Casillas et al. (2012).

The findings  of  the  present  study also show that questions  on the PKMT are at  different  levels  of
difficulty  and  variant  discriminations  between  students  of  low  and  high  competence  in  the  prior
mathematics knowledge test. These findings have several implications on the validity and reliability of
aggregate scores of  the test and other analyses (e.g. means comparisons between universities and previous
years) usually presented by the Norwegian Mathematical Council. For instance, the assignment of  a score
of  1 point to an easy and poorly discriminating item, e.g., Question 11A and to a challenging and good
discriminating item, e.g., Question 10 may bias the aggregate scores of  students with low ability upward
on the test and reduce the aggregate scores of  highly competent students. This kind of  bias in aggregate
scores  is  a  threat  to  the  validity  of  the test  and a typical  disadvantage  of  using classical  test  theory
approach in scoring tests (DeMars, 2010). Thus, we urge the Norwegian Mathematical Council to use item
response theory which can incorporate the test item difficulty and discrimination indices in the scoring
process such that more valid aggregate scores can be obtained. Moreover, of  course, a more reliable mean
score comparison can be made.  Further, compelling evidence is  also provided in the findings of  the
present study that suggests the removal of  or at least improvement in item wordings and presentation of
questions 9A, 9B, 11A and 11B on the test. 
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Moreover, six out of  the 22 questions of  PKMT are also found to be very difficult for students to answer
correctly. Empirical evidence from cognitive interviews of  some students who took part in the test reveals
potential  reasons  why  these  questions  are  perceived  difficult.  Some of  the  ascribed  causes  of  poor
performance  on  these  questions  are  lack  of  proper  understanding  of  the  question,  text  misreading,
improper grasping of  word-problem mathematical tasks, and unavailability of  calculators. Given that low
performance  on  word-problem  tasks  is  not  peculiar  to  Norwegian  engineering  students  (e.g.,
Vilenius-Tuohimaa et al., 2008), we recommend innovative teaching and learning strategies to alleviate
these problems. Such strategies can be the use of  modelling activities, problem-based learning, and so on
(Greer,  1997;  Zakariya,  Ibrahim  &  Adisa,  2016)  to  foster  understanding  and  interpretation  of
word-problem  mathematical  tasks.  The  Norwegian  Mathematical  Council  may  also  consider  the
introduction of  calculators in subsequent PKMT administrations. Finally,  this  section is concluded by
acknowledging some strengths and potential weaknesses of  the findings of  this study. 

6. Strengths and Potential Weaknesses of  this Study
A strength of  this study lies in the use of  explanatory sequential mixed-methods approach to data analysis
(Bryman, 2016) that involves a robust quantitative analysis procedure in terms of  an IRT followed by
some cognitive interviews. The interviews avail us the opportunity to look at the data beyond statistical
analyses and provide a more elaborate description of  the phenomenon. Another strength of  this study
encompasses a relatively large data set of  201 engineering students used in the present study. The large
sample involved is a potential for generalisation of  our findings, especially now that such large-scale study
is scarce in mathematics education research. However, a potential limitation of  the present study could
stem from a lack of  external validity of  the PKMT. There was no independently measured variable such
as students’ grades, and grade point average through which the predictive validity of  the PKMT can be
confirmed. We did not investigate the content validity of  the test items as we lack the permission to do so.
Instead, our findings only provide evidence for its psychometric property. Also, the restriction of  the
sample of  the study to a Norwegian university and only engineering students might, in a way, limit the
generalisation  of  our  findings.  Thus,  we  recommend  the  replications  of  the  present  study  in  more
substantial  and more diverse university  student populations.  Despite  these limitations,  our study does
provide potential cues on the construct validity, reliability, and item quality of  the PKMT which will be
useful to Norwegian Mathematical Council, researchers, and other stakeholders in mathematics education.
The  methodology  adopted  in  the  present  study  can  also  be  applied  in  other  national  contexts  to
investigate the validity of  their measures. 
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This study aims at validating an attitude subscale of a national mathematics test that 

has been repeatedly used for over two decades and to expose the relations between 

students’ attitude towards mathematics and their approaches to learning mathematics. 

A sample of 196 year-one engineering students completed two survey instruments used 

for the study. Using a structural equation modelling approach, empirical evidence of 

construct validity, discriminant validity and reliability were found for the attitude 

subscale. Further, it was also found that students’ attitude towards mathematics had a 

substantial positive impact on deep approaches to learning and a substantial negative 

impact on surface approaches to learning. These findings could be of help to university 

teachers and other stakeholders in designing appropriate interventions to support the 

students. 

Keywords: students’ practices, deep approach, surface approach, attitude, structural 

equation modelling. 

INTRODUCTION 

Approaches to learning in higher education are part of students’ practices that have a 

considerable effect on learning outcomes. Students who care for every detail in their 

course content with the intent to achieve conceptual understanding (deep approach) are 

more likely to perform better than others who only rely on memorization of key points 

(surface approach). Approaches to learning have been conceptualized to include 

“predispositions adopted by an individual when presented with learning materials and 

strategies used to process the learning contents” (Zakariya, Bjørkestøl, Nilsen, 

Goodchild, & Lorås, 2020). It is an essential factor in students’ practices that has 

received increased attention in recent times. Perhaps, as a result of international 

campaigns on aligning university education towards developing learners’ deep 

approaches that will enable them to navigate easily through an increasingly changing 

society.  

Several empirical studies have been reported on the factors that encourage or 

discourage the adoption of either deep or surface approaches to learning. One of these 

studies is a critical review by Baeten, Kyndt, Struyven, and Dochy (2010). Therein, a 

total of 118 empirical studies were reviewed, and the results can be summarized as 

follows: satisfaction with course quality, big five personality traits except for 

neuroticism, and emotional stability are some of the factors that stimulate adoption of 

the deep approaches to learning. It was also found that students that experience intrinsic 

motivation, and who are self-efficacious and self-confident are most likely to adopt 

deep approaches to learning. In a follow-up quasi-experimental study Baeten, 
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Struyven, and Dochy (2013) investigated the contribution of some teaching methods 

on students’ approaches to learning. They found that adoption of deep approaches to 

learning decreases among the participants in a lecture-based group while they remain 

stable in a student-centred learning environment over a period. 

More so, Von Stumm and Furnham (2012) conducted an empirical study involving 579 

psychology and computer science undergraduate students on relations between 

approaches to learning, personality, intelligence and intellectual engagement. It was 

found that deep approaches to learning strongly related to intellectual engagement 

while personality and intelligence explained 25% variability in surface approaches to 

learning among the subjects of their study. In an attempt to unravel the interwoven 

bond between critical thinking, self-efficacy and learning approaches, Hyytinen, 

Toom, and Postareff (2018) conducted an empirical study involving 92 science 

education undergraduate students in Finland.  Their results showed that students with 

high self-efficacy also adopt deep approaches to learning. Some researchers have 

studied relations between approaches to learning and other factors in domain-specific 

contexts. For instance, Mji (2000) found that there was a strong relationship between 

students’ different conceptions of mathematics and their approaches to learning the 

subject.  

Despite the importance of approaches to learning and its relations with some affective 

constructs, e.g. self-efficacy there are few studies on its relations with attitudes of 

students. One of the relatively recent studies on this topic is the report by Alkhateeb 

and Hammoudi (2006) on the relations between attitude towards mathematics and 

students’ approaches to learning. In their study, students with a positive attitude 

towards mathematics were identified with deep approaches to learning while those with 

a negative attitude towards mathematics were identified with surface approaches to 

learning approaches. However, their study had some methodological issues such as the 

use of regression analysis to examine the relations between these constructs, given that 

the regression analysis does not account for measurement errors in the predictor 

variable(s). Another methodological issue in their study involved the use of mean 

scores derived from item parcelling of ordinal variables which could lead to biased 

results because of violation of multiple assumptions, e.g. tau-equivalent, and normal 

distribution (Zakariya, 2020). 

Thus, the present study was motivated by the sparsity of studies on the relationship 

between attitude towards mathematics and approaches to learning coupled with some 

methodological issues observed in available studies (e.g., Alkhateeb & Hammoudi, 

2006). Further, to the best of our knowledge, there was no validation study on the 

attitude subscale of the Norwegian national mathematics test for the past fifteen years. 

The national mathematics test is a test that is conducted every two years and designed 

to assess pre-university knowledge of mathematics of year-one undergraduate students 

across universities in Norway. The validity of this test is essential to ensure the test 

measures what is purported to measure, which will facilitate more accurate 

interpretations of its ensuing results. Therefore, the primary purposes of the present 

269 sciencesconf.org:indrum2020:293629



  

study are to use a structural equation modelling approach to (a) validate the attitude 

subscale of the Norwegian national mathematics test; (b) expose the impact of attitude 

towards mathematics on students’ learning approaches. The use of the structural 

equation modelling approach will avail us an opportunity of taking of care of the two 

methodological issues involved in the use regression analysis that is typically used in 

the literature (e.g., Alkhateeb & Hammoudi, 2006). In the next section, a conceptual 

framework coupled with a theoretical perspective that justifies the rationale for finding 

the relations between these constructs is discussed. 

CONCEPTUAL FRAMEWORK 

A theoretical structure that could be used to justify the relations between attitude 

towards mathematics and approaches to learning is social cognitive theory. This theory 

sees an individual’s behavioural changes as consistently being regulated and modified 

by interacting with social factors in the environment whose feedback influences the 

next actions and outcomes (Bandura, 2001). Central to this theory is the concept of 

reciprocal determinism that postulates a dynamic relationship between personal, 

behavioural, and environmental determinants (Bandura, 2012). Even though both the 

attitude towards mathematics and approaches to learning are personal factors, it is 

presumed that the dynamic relationship between the determinants (personal, 

behavioural, and environmental) can be extrapolated to within the personal 

determinants (cognitive, affective and biological factors). As such, a causal 

relationship between attitude towards mathematics and approaches to learning can be 

theoretically postulated. Empirical evidence has shown that students’ attitude towards 

learning mathematics is greatly influenced by consistent interactions with teachers, 

peer groups and parents (e.g., Davadas & Lay, 2017). In other words, students whose 

teachers are efficacious, motivate them to learn, give positive feedback, maintain good 

teacher-student relations are more likely to develop a positive attitude towards 

mathematics. This, in turn, influences their approaches to learning the subject.     

Several attempts have been made to conceptualize and operationalize both attitude 

towards mathematics and approaches to learning. Attitude towards mathematics has 

been conceptualized to include appraisal, valuation and enjoyment of mathematics 

(Zakariya, 2017). It is a construct whose multifaceted nature has influenced, to a great 

extent, the development of its measuring instruments (e.g., Palacios, Arias, & Arias, 

2013; Zakariya, 2017).  Some of these instruments have contributed significantly to the 

measurement of this construct as well as in relating it to other constructs from 

quantitative research perspectives. However, for the purpose of this study, a 5-item 

unidimensional attitude scale which is part of the national mathematics test in Norway, 

was selected. Our choice of this scale was prompted by two factors: (a) availability in 

the Norwegian language; (b) our quest to provide construct and discriminant validity 

which is lacking in the literature. 

In addition, the “revised two-factor study process questionnaire” (R-SPQ-2F) has been 

identified as one of the best instruments for measuring students’ approaches to learning  
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(López-Aguado & Gutiérrez-Provecho, 2018). R-SPQ-2F was chosen for the present 

study because of its high psychometric properties, a small number of items and ease of 

score interpretations. Further, Norwegian validations of this instrument have been 

undertaken (e.g., Zakariya, 2019; Zakariya et al., 2020). The Norwegian version has 

ten items on deep subscale and nine items on surface subscale with evidence of 

construct validity, discriminant validity, and internal consistency of its items. 

Based on the postulates of the social cognitive theory coupled with previous literature, 

the two hypotheses of the present study are stated as follows, while Figure 1 depicts 

these hypothesized relations: 

(H01) There are substantial positive impacts of attitude towards mathematics on 

deep approaches to learning. 

(H02) There are substantial negative impacts of attitude towards mathematics on 

surface approaches to learning. 

Figure 1 shows hypothesized impact of attitude measured by five items (att01 – att05) 

on both deep and surface approaches each measured by ten items and nine items 

respectively with an error correlation (indicated by the double-headed arrow) between 

deep and surface approaches. The plus (+) and minus (-) signs indicate the 

hypothesized positive and negative impacts of attitude on deep and surface approaches, 

respectively.   

 

Figure 1: A hypothesized model of the relations between attitude towards mathematics 

and approaches to learning mathematics 

METHOD 

SAMPLE AND MEASURES 

The sample for this study was made up of 196 year-one engineering students, including 

34 females and 162 males with an average age of 24.64 years. Two online survey 
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instruments were completed by the students, including R-SPQ-2F (Norwegian version) 

and attitude towards mathematics scale (AtMS). R-SPQ-2F is a 19-item questionnaire 

in which respondents rated their level of agreement from (1) ‘never or only rarely true 

of me’ to (5) ‘always or almost always true of me’ to statements like “I test myself on 

important topics until I understand them completely” (deep approach), “I see no point 

in learning material which is not likely to be in the examination” (surface approach), 

etc. On the other hand, AtMS is a 5-item scale in which respondents rated their level 

of agreements from (1) ‘strongly disagree’ to (4) ‘strongly agree’ to statements like “I 

work with mathematics because I like it”, and “I'm interested in what I learn in math”. 

DATA ANALYSIS 

The analyses proceeded in two stages. Stage one involved fitting a measurement model 

to examine the construct validity and unidimensionality of the AtMS. In this stage, 

AtMS data were screened for outliers, normality assumption, skewness, and kurtosis. 

It was found that AtMS contained excess kurtosis (absolute value > 2) and both 

Kolmogorov-Smirnov’s and Shapiro-Wilk’s tests were significant for each item which 

showed that the data were not normally distributed. Thus, weighted least square mean 

and variance adjusted (WLSMV) estimator was used for the confirmatory factor 

analysis as it is robust enough to perform well under violation of multiple assumptions 

(Suh, 2015; Zakariya, Goodchild, Bjørkestøl, & Nilsen, 2019). Further, both the item 

and scale reliability indices of AtMS were investigated using latent factor approach as 

opposed to the Cronbach alpha coefficient. 

Analyses in stage two involved validating a structural model that explains the relations 

between attitude towards mathematics and approaches to learning. It consisted of 

evaluating the model and conducting exploratory post hoc analysis for its 

improvement. The structural equation modelling approach was used to either confirm 

or falsify the causal hypothesized relations between attitude towards mathematics and 

approaches to learning without claiming outright causation between the constructs.  

Model fits were assessed based on a combination of criteria as proposed in literature 

which includes: 𝜒2 ratio to the degree of freedom (df) less than 3, significant estimated 

parameters, comparative fit index (CFI), Tucker-Lewis index (TLI) close to or ≥ .95, 

root mean square error of approximation (RMSEA) ≤ .06, and standardized root mean 

square residual (SRMR) ≤ .08 (Chen, 2007; Hu & Bentler, 1999). All the analyses were 

performed using Mplus 8.3 software, and the results are presented in the next section.  

RESULTS 

STAGE ONE: MEASUREMENT MODEL AND RELIABILITY 

A one-factor model was evaluated for the measure of attitude towards mathematics, 

and the results are presented in Table 1. 

GOF indices Model 1 Model 2 

𝜒2-value 84.078 3.562 
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df 5 3 

p-value < .001 .313 

𝜒2/𝑑𝑓 16.816 1.187 

CFI .927 .999 

TLI .854 .998 

RMSEA (90% CI) .284 (.233 - .339) .031 (< .001 - .128)  

CFit < .001 .510 

SRMR value .076 .038 

Table 1: Selected goodness of fit indices (GOF) for measurement 1-factor model of AtMS 

Note. CFit: close fit (i.e. probability of RMSEA <= .05) 

The results of the selected goodness of fit (GOF) indices, presented in Table 1 (Model 

1) showed an appropriate fit of the one-factor model AtMS. However, the significant 

chi-square value, its ratio to df > 3, and the low value of TLI, suggest that the model 

can be improved. Thus, a post hoc analysis was conducted using suggestions from 

modification indices. On this basis, two error covariances were included in the model 

between item 02 and item 04 as well as between item 01 and item 05. These resulted 

in a significant improvement in the model (Model 2) as indicated by the significant chi-

square difference test statistics with Satorra-Bentler correction Δ𝜒[2]
2 = 80.516,𝑝 <

.001. The model chi-square value is no longer significant, which is expected and its 

ratio to df < 3, CFI, TLI, RMSEA and SRMR, all now within the recommended ranges. 

These suggest an excellent fit of Model 2. All the factor loadings are found to be 

significant, and all the items are reliable with an ordinal coefficient alpha of .78 on the 

whole measuring instrument. 

STAGE TWO: STRUCTURAL MODEL 

In an attempt to test hypotheses one and two, we evaluated two structural models. The 

first model (Model 3) concerns the impact of attitude towards mathematics on the two 

dimensions of approaches to learning the subject. The second model (Model 4) 

concerns the final improvement of Model 3 through post hoc analyses. Selected GOF 

indices of these models are presented in Table 2, while Figure 2 displays standardized 

estimates of factor loadings, regression weights, variance explained, etc. 

GOF indices Model 3 Model 4 

𝜒2-value 425.784 301.876 

df 247 204 

p-value < .001 < .001 

𝜒2/𝑑𝑓 1.724 1.480 
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CFI .913 .953 

TLI .902 .947 

RMSEA (90% CI) .061 (.051 - .070) .049 (.037 - .061)  

CFit .037 .518 

SRMR value .070 .059 

Table 2: Selected goodness of fit indices for measurement 1-factor model of AtMS  

The results in Table 2 (Model 3) showed an appropriate fit of the model except that 

both CFI and TLI are relatively low and close fit probability assessment of RMSEA 

was significant which implies the model is not close enough to the data. As the first 

step in post hoc analysis of the structural equation modelling approach, we scanned 

through the estimates and discovered that item 4 and item 10 of the surface approach 

subscale of R-SPQ-2F had non-significant factor loadings. These items were deleted 

from the model, and the resulting model improved significantly as indicated by the 

significant chi-square difference test statistics with Satorra-Bentler correction Δ𝜒[43]
2 =

123.908,𝑝 < .001. The results, as presented in Table 2 (Model 4) suggest an excellent 

fit of the model. Figure 2 gives more detail on the parameter estimates of Model 4.  

 

Figure 2: Validated structural model of the relations between attitude towards 

mathematics and approaches to learning mathematics 

The illustrated results by Figure 2 show that there is a significant positive impact of 

attitude towards mathematics on deep approaches to learning (β= .377, p < .05) and a 

significant negative impact on the surface approaches to learning (β= -.371, p < .05) 

which confirm hypothesis one (H01) and hypothesis two (H02) respectively. These 

findings could be interpreted to mean that students who have a high (positive) attitude 

towards learning mathematics are more likely to adopt deep approaches to learning the 

subject. On the other hand, students who have a low (negative) attitude towards 

mathematics are more likely to adopt surface approaches to learning the subject. It is 
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also revealed in Figure 2 that attitude towards mathematics explained 14.2% and 13.8% 

variances in predicting deep and surface approaches, respectively. These percentages 

of explained variances appear low. However, they are statistically significant. The low 

percentages of explained variances in deep and surface approaches are suggestive of 

the presence of other factors that are not captured in the present study and yet influence 

the adoption of students’ learning approaches. In the next section, we present a brief 

discussion of the significant findings. 

DISCUSSION 

Attempts are made in the present study to provide empirical evidence for construct and 

discriminant validity of a 5-item attitude subscale of the Norwegian national 

mathematics test and to expose the impact of attitude towards mathematics on students’ 

learning approaches. The attitude subscale was found to be unidimensional, and 

possesses construct validity, it discriminates cleanly between two approaches to 

learning and it has high internal item consistency with an ordinal coefficient of .78. 

However, this validity evidence was achieved after accounting for two error 

covariances between item 02: “I work with math because I like it” and item 04: “I’m 

interested in what I learn in math” as well as between item 01: “making an effort in 

math is important because it will help me in work I will be doing later” and item 05: 

“mathematics is an important subject for me because I need it when I want to study 

further”.  

It is important to remark that the error covariances appear to make sense conceptually 

since both item 02 and item 04 seem to capture intrinsic motivation part of attitude and 

item 01 and item 05 seem to capture usefulness of mathematics part of attitude. This 

finding corroborates other studies that have reported multidimensional attitude scales 

(Palacios et al., 2013). Further, the reliability coefficient of the AtMS (α = .78) is higher 

than that of the perception of utility subscale (α = .679) reported in (Palacios et al., 

2013) and that of the usefulness of mathematics subscale (α = .75) reported in 

(Zakariya, 2017) even though the final reliability coefficients of the whole scales 

reported in the two previous studies are higher than α = .78 that was found for the 

AtMS. 

Another important finding of the present study is the substantial positive impact of 

attitude towards mathematics on the deep approaches to learning as well as the 

substantial negative impact on the surface approaches to learning.  These findings, on 

the one hand, suggest that year-one engineering students who enjoy mathematics, who 

are interested in the subject and recognize the utility of mathematics to their future 

studies are more likely to adopt deep approaches to learning the subject. On the other 

hand, the findings suggest that year-one engineering students who find mathematics 

less enjoyable and struggle to discover its relevance to their future studies may tend to 

adopt surface approaches to learning the subject. These findings agree with the report 

by Alkhateeb and Hammoudi (2006) and partly support some reported results by 

García, Rodríguez, Betts, Areces, and González-Castro (2016). More importantly, we 
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do not claim outright causal relations between these constructs. However, our results 

have only provided tentative empirical evidence that confirms our hypothesized causal 

relations between engineering students’ attitude towards mathematics and approaches 

to learning. Future replication studies are recommended to confirm these findings in 

independent samples. Finally, it is hoped that the findings of this study have shed some 

light on a general understanding of the causal relations between the attitude of students 

towards mathematics and their approaches to learning the subject. This could be of help 

to university teachers and other stakeholders in designing appropriate interventions to 

support the students.   

REFERENCES 

Alkhateeb, H. M., & Hammoudi, L. (2006). Attitudes toward and approaches to 

learning first-year university mathematics. Perceptual and Motor Skills, 103, 

115-120. doi:10.2466/pms.103.1.115-120 

Baeten, M., Kyndt, E., Struyven, K., & Dochy, F. (2010). Using student-centred 

learning environments to stimulate deep approaches to learning: Factors 

encouraging or discouraging their effectiveness. Educational Research Review, 

5(3), 243-260. doi:10.1016/j.edurev.2010.06.001 

Baeten, M., Struyven, K., & Dochy, F. (2013). Student-centred teaching methods: Can 

they optimise students’ approaches to learning in professional higher education? 

Studies in Educational Evaluation, 39(1), 14-22. 

doi:10.1016/j.stueduc.2012.11.001 

Bandura, A. (2001). Social cognitive theory: An agentic perspective. Annual Review 

of Psychology, 52(1), 1-26. doi:10.1146/annurev.psych.52.1.1 

Bandura, A. (2012). On the functional properties of perceived self-efficacy revisited. 

Journal of Management, 38(1), 9-44. doi:10.1177/0149206311410606 

Chen, F. F. (2007). Sensitivity of goodness of fit indexes to lack of measurement 

invariance. Structural Equation Modeling: A Multidisciplinary Journal, 14(3), 

464-504. doi:10.1080/10705510701301834 

Davadas, S. D., & Lay, Y. F. (2017). Factors affecting students’ attitude toward 

mathematics: A structural equation modeling approach. Eurasia Journal of 

Mathematics, Science and Technology Education, 14(1), 517-529. 

doi:10.12973/ejmste/80356 

García, T., Rodríguez, C., Betts, L., Areces, D., & González-Castro, P. (2016). How 

affective-motivational variables and approaches to learning predict mathematics 

achievement in upper elementary levels. Learning and Individual Differences, 

49, 25-31. doi:10.1016/j.lindif.2016.05.021 

Hu, L. t., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure 

analysis: Conventional criteria versus new alternatives. Structural Equation 

Modeling: A Multidisciplinary Journal, 6(1), 1-55. 

doi:10.1080/10705519909540118 

Hyytinen, H., Toom, A., & Postareff, L. (2018). Unraveling the complex relationship 

in critical thinking, approaches to learning and self-efficacy beliefs among first-

276 sciencesconf.org:indrum2020:293629



  

year educational science students. Learning and Individual Differences, 67, 132-

142. doi:10.1016/j.lindif.2018.08.004 

López-Aguado, M., & Gutiérrez-Provecho, L. (2018). Checking the underlying 

structure of R-SPQ-2F using covariance structure analysis / Comprobación de la 

estructura subyacente del R-SPQ-2F mediante análisis de estructura de 

covarianza. Cultura y Educación/ Culture and Education, 30(1), 105-141. 

doi:10.1080/11356405.2017.1416787 

Mji, A. (2000). Conceptions of and approaches to learning mathematics. Psychological 

Reports, 87, 971-972. doi:10.2466/pr0.2000.87.3.971 

Palacios, A., Arias, V., & Arias, B. (2013). Attitudes Towards Mathematics: 

Construction and Validation of a Measurement Instrument // Las actitudes hacia 

las matemáticas: Construcción y validación de un instrumento para su medida. 

Revista de Psicodidactica / Journal of Psychodidactics, 19(1), 67-91. 

doi:10.1387/RevPsicodidact.8961 

Suh, Y. (2015). The performance of maximum likelihood and weighted least square 

mean and variance adjusted estimators in testing differential item functioning 

with nonnormal trait distributions. Structural Equation Modeling: A 

Multidisciplinary Journal, 22(4), 568-580. doi:10.1080/10705511.2014.937669 

Von Stumm, S., & Furnham, A. F. (2012). Learning approaches: Associations with 

typical intellectual engagement, intelligence and the big five. Personality and 

Individual Differences, 53(5), 720-723. doi:10.1016/j.paid.2012.05.014 

Zakariya, Y. F. (2017). Development of attitudes towards mathematics scale (ATMS) 

using Nigerian data – Factor analysis as a determinant of attitude subcategories. 

International Journal of Progressive Education, 13(2), 74-84.  

Zakariya, Y. F. (2019). Study approaches in higher education mathematics: 

Investigating the statistical behaviour of an instrument translated into 

Norwegian. Education Sciences, 9(3), 191. doi:10.3390/educsci9030191 

Zakariya, Y. F. (2020). Investigating some construct validity threats to TALIS 2018 

teacher job satisfaction scale: Implications for social science researchers and 

practitioners. Social Sciences, 9(4). doi:10.3390/socsci9040038 

Zakariya, Y. F., Bjørkestøl, K., Nilsen, H. K., Goodchild, S., & Lorås, M. (2020). 

University students’ learning approaches: an adaptation of the revised two-factor 

study process questionnaire to Norwegian. Studies in Education Evaluation, 

100816. doi:10.1016/j.stueduc.2019.100816 

Zakariya, Y. F., Goodchild, S., Bjørkestøl, K., & Nilsen, H. K. (2019). Calculus self-

efficacy inventory: Its development and relationship with approaches to 

learning. Education Sciences, 9(3), 170. doi:10.3390/educsci9030170 

 

277 sciencesconf.org:indrum2020:293629



166 

 

 

  



167 

 

Paper VI 

 

 

 

 

 

 

 

 

 

 

 

Zakariya, Y. F., Nilsen, H. K., Goodchild, S., & Bjørkestøl, K. (2020). Self-efficacy and 

approaches to learning mathematics among engineering students: Empirical evidence 

for potential causal relations. International Journal of Mathematical Education in 

Science and Technology, 1-15. doi: 10.1080/0020739X.2020.1783006 

 

 



Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tmes20

International Journal of Mathematical Education in
Science and Technology

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tmes20

Self-efficacy and approaches to learning
mathematics among engineering students:
empirical evidence for potential causal relations

Yusuf F. Zakariya , H. K. Nilsen , Simon Goodchild & Kirsten Bjørkestøl

To cite this article: Yusuf F. Zakariya , H. K. Nilsen , Simon Goodchild & Kirsten Bjørkestøl (2020):
Self-efficacy and approaches to learning mathematics among engineering students: empirical
evidence for potential causal relations, International Journal of Mathematical Education in Science
and Technology, DOI: 10.1080/0020739X.2020.1783006

To link to this article:  https://doi.org/10.1080/0020739X.2020.1783006

© 2020 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 25 Jun 2020.

Submit your article to this journal 

Article views: 128

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tmes20
https://www.tandfonline.com/loi/tmes20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/0020739X.2020.1783006
https://doi.org/10.1080/0020739X.2020.1783006
https://www.tandfonline.com/action/authorSubmission?journalCode=tmes20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tmes20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/0020739X.2020.1783006
https://www.tandfonline.com/doi/mlt/10.1080/0020739X.2020.1783006
http://crossmark.crossref.org/dialog/?doi=10.1080/0020739X.2020.1783006&domain=pdf&date_stamp=2020-06-25
http://crossmark.crossref.org/dialog/?doi=10.1080/0020739X.2020.1783006&domain=pdf&date_stamp=2020-06-25


INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY
https://doi.org/10.1080/0020739X.2020.1783006

Self-efficacy and approaches to learning mathematics among
engineering students: empirical evidence for potential causal
relations

Yusuf F. Zakariya , H. K. Nilsen, Simon Goodchild and Kirsten Bjørkestøl

Department of Mathematical Sciences, University of Agder, Kristiansand, Norway

ABSTRACT
Theories of self-efficacy and approaches to learning are well-
established in the psychology of learning. However, studies on rela-
tionships between the primary constructs on which these theo-
ries are developed are rarely reported in mathematics education
research. Thus, the purpose of the current study is to provide empir-
ical evidence for a potential causal relationship between perceived
self-efficacy and approaches to learning. The present study adopts
a cross-sectional survey research design that includes 195 engineer-
ing students enrolled on a first-year introductory calculus course. The
data are collected using two well-developed and validated instru-
ments with established high psychometric properties. Two hypothe-
ses are formulated and tested using a structural equation modelling
approach coupled with a weighted least square mean and variance
adjusted estimator. The findings show that a high sense of perceived
self-efficacy has a strong tendency to induce a deep approach to
learning mathematics. In contrast, a low sense of perceived self-
efficacy induces a surface approach to learning mathematics with
a strong effect. This study represents a shift from the usual correla-
tional studies that characterize quantitative research in mathemat-
ics education literature to causal relation research. Therein, causal
assumptions are made and tested against the collected data, and
some recommendations are made for future studies.
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1. Introduction

Mathematics instruction that leads to satisfactory learning outcomes in terms of high per-
formance as measured in examinations, understanding that supports future progression,
engaged, motivated and enthusiastic students, has not been an easy task. Students, teach-
ers, parents, researchers, policymakers, and other education stakeholders seek possible
solutions to the global trend of poor performance in mathematics. The utility of mathe-
matics transcends several educational levels, employment, and career opportunities, which
explains why engineering students value the subject (Tossavainen et al., 2019). Mastery of
introductory first-year mathematics courses is crucial to successful performance on core
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engineering courses at later years in the university. However, many first-year engineer-
ing students struggle with these courses, and their poor performance compels some of
them to develop negative attitudes towardmathematics and change their career aspirations
(Braathe & Solomon, 2015; Martínez-Sierra & García-González, 2016). Since students suf-
fer most of the associated effects of poor performance in mathematics, a study that focuses
on factors that emanate from the students is equally important. Several empirical studies
have linked a variety of factors to poor performance in mathematics. These factors include
but are not limited to mathematics anxiety (Dowker et al., 2016), attitudes toward math-
ematics (Dowker et al., 2019), academic motivation (Tossavainen et al., 2019), perceived
self-efficacy (Williams & Williams, 2010), approaches to learning (Maciejewski & Mer-
chant, 2016), conception of mathematics (Yang et al., 2019), prior mathematics knowledge
(Zakariya, 2016), and self-concept (Pajares & Miller, 1994).

Two of these factors (perceived self-efficacy and approaches to learning) have received
increased attention recently. The reason for this increased attentionmay lie in their satisfac-
tory prediction of students’ performance in mathematics (Loo & Choy, 2013; Maciejewski
& Merchant, 2016; Williams & Williams, 2010). Perceived self-efficacy is linked to Albert
Bandura’s self-efficacy theory, which is grounded in the agentic social cognitive theory
(Bandura, 1997). Perceived self-efficacy encapsulates ‘beliefs in one’s capabilities to orga-
nize and execute the courses of action required to produce given attainments’ (Bandura,
1997, p. 3). With a particular focus on engineering students, perceived self-efficacy has
been defined as ‘a person’s belief that he or she can successfully navigate the engineering
curriculum and eventually become a practicing engineer’ (Jordan et al., 2010, p. 2). It is an
important personal factor that facilitates improved students’ performance in mathemat-
ics and boosts perseverance when undertaking difficult tasks (Bandura, 2012). Empirical
studies have revealed that students with a high sense of perceived self-efficacy have low
mathematics anxiety, high motivation to learn, positive attitudes toward mathematics, and
increased interest in the subject (Bandura, 1997). Perceived self-efficacy has also been
reported to predict students’ performance in mathematics better than mathematics self-
concept and prior knowledge of mathematics (Pajares &Miller, 1994). Efficacy beliefs have
also been found to exert a more substantial direct effect on students’ performance in a
mathematics problem-solving activity than mental ability, mathematics anxiety, and high
school mathematics content level (Pajares & Kranzler, 1995).

Students approach their learning of mathematics in different ways. However, these
diverse ways of learning have been postulated by the approaches to learning theory to con-
verge to two main approaches (Marton & Booth, 1997). Some engineering students learn
mathematics with the motives of developing a deep understanding of its concepts (deep
approach). In contrast, other students are extrinsically motivated to learn mathematics,
such as satisfying the curriculum requirement, and thereby concentrate on crucial points
(surface approach) to pass the course (Zakariya et al., 2020). Deep approaches to learn-
ing have generally been associated with an improved performance of first-year students on
mathematics tasks more than surface approaches (Maciejewski & Merchant, 2016). How-
ever, there are some studies where a surface approach to learning mathematics has been
reported to have a slightly higher positive correlation with performance than the deep
approach to learning among engineeringmasters students (Svedin et al., 2013). Approaches
to learning are strongly related to attitudes towardmathematics, conceptions ofmathemat-
ics, and enjoyment ofmathematics. Prior studies have shown a positive correlation between
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deep approach and attitudes toward mathematics and a negative correlation between sur-
face approach and the latter (Alkhateeb & Hammoudi, 2006). The surface approach to
learning predicts performance better than the enjoyment of mathematics, mathematics
anxiety, motivation, the utility of mathematics, and gender (García et al., 2016).

Despite the success and satisfactory performance of both approaches to learning and
perceived self-efficacy in predicting students’ mathematics achievement, studies on causal
relations between these constructs are rarely reported in the literature. Admittedly, some
correlational studies are available which focus on science courses e.g. chemistry (Ardura &
Galán, 2019), students enrolled on earth science programmes (Shen et al., 2016), and teach-
ers in training (Phan, 2011). Thus, the purpose of the current study is to provide evidence
for a potential causal relationship between perceived self-efficacy and approaches to learn-
ing among engineering students enrolled on a first-year calculus course. The present study
is significant because if such a causal relation is revealed, then it is worth seeking inter-
ventions on one of the two constructs that can be designed to boost the other construct,
which will, in turn, enhance students’ performance. It is important to remark that the cur-
rent study is not aimed at discovering an outright causal relation between the research
constructs. Instead, causal assumptions are made therein to develop a model, and data are
collected to test the causal model such that empirically-based arguments can be articulated
to justify the plausibility of the model. As such, the main research question that this study
attempts to address is: Does perceived self-efficacy influence the adoption of either deep or
surface approach to learning mathematics among first-year engineering students?

2. Conceptual framework

A conceptual framework that can justify the relationship between approaches to learning
mathematics and perceived self-efficacy among engineering students, rests on ideas from
two psychological theories. Namely, approaches to learning theory and self-efficacy theory.
The ontological and epistemological postulates of these theories and arguments that result
in hypothesis formulations are presented in this section.

3. Student approaches to learning (SAL) theory

SAL theory can be linked to several studies of Marton and his colleagues on explorations
and characterizations of approaches that university students adopt while reading some
passages of prose and extracts of newspaper articles before being examined on their under-
standing of the presentedmaterials (Marton& Säljö, 1976, 2005). Their qualitative analyses
reveal diverse approaches to students’ learning, which are highly motivated by prior expe-
rience, social factors, and the meanings that the students attached to learning (Marton &
Booth, 1997). According to SAL theory, learning – a change in the experience of people
about the world – forms a non-dualistic relationship between an individual and every-
thing outside of it that is neither individually constructed nor environmentally imposed
(Marton & Booth, 1997). Thus, it can be argued that students’ approaches to learning vary
because of the feedback relationship between students’ motivation to learn, intentions, and
learning context. However, these various students’ approaches to learning can be generally
classified into deep and surface approaches (Marton & Säljö, 2005).
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Biggs (2012) describes deep approaches to learning as ‘activities that are appropriate to
handling the task so that an appropriate outcome is achieved’ while surface approaches
to learning, on the other hand, encapsulate ‘activities of an inappropriately low cognitive
level, which yields fragmented outcomes that do not convey the meaning of the encounter’
(p.42). As such, considering the nature of engineering programmes in which students are
being trained to solve practical problems, it is expected, if not required, that students adopt
approaches that will facilitate the development of high cognitive skills required to solve
these problems. Furthermore, approaches to learning according to SAL tradition (Mar-
ton & Booth, 1997) are predictable from students’ learning conception – ‘a qualitatively
distinct manner in which the subjects were found to voice the way they thought about
learning’ (p.36), motives, intents, and the learning situations. For instance, engineering
students who conceive calculus tasks as something useful and which proper understand-
ing of it is necessary for intellectual development are likely to adopt deep approaches to
learning the course. On the other hand, students who conceive calculus tasks as a mere
requirement to move to the next level of study are likely to adopt surface approaches to
learning the course. Thus, a deep approach to learning is intrinsically motivated, while a
surface approach to learning is extrinsically motivated (Hounsell, 2005; Marton & Säljö,
2005).

It is important to remark that learning situations in the context of mathematics learn-
ing also include the nature of mathematics tasks. Such that the approaches students adopt
to learning the subject are highly influenced by the nature of the tasks. Maciejewski and
Merchant (2016), in an empirical cross-sectional study, show that there is a strong correla-
tion between a deep approach to learning and students’ first-year grades on mathematics
tasks while a surface approach to learning has no significant correlation. However, for year-
two, year-three, and year-four students, there is a strong negative correlation between the
surface approach to learning and students’ grades in which a deep approach shows no sig-
nificant correlation. These discrepancies and inconsistencies in strength and direction of
correlation coefficients between approaches to learning mathematics and students’ grades
are argued, using Bloom’s taxonomy, to stem from the different nature of mathematics
tasks at the different years of study (Maciejewski & Merchant, 2016). As such, considering
its task specificity, approaches to learningmathematics are best investigated by focusing on
a set of students who are following a common mathematics course.

4. Self-efficacy theory

Perceived self-efficacy is an essential component of the agentic social cognitive theory
that describes behavioural changes of an individual as continuously being modified and
regulated through a feedback interaction with social factors (Bandura, 2001). Unlike the
traditional social cognitivism, it is argued that both social structure and personal agency
‘function interdependently rather than as disembodied entities’ (Bandura, 2012, p. 15).
Thus, a rejection of an ontological position of dualism between social structure and
personal agency. As such, agentic social cognitive theory relies on an epistemological
proposition called ‘reciprocal determinism’ introduced by Bandura (1986, 2012). Recipro-
cal determinism describes human functioning as a triadic feedback causal model between
personal, environmental, and behavioural factors. Therefore, it can be argued that per-
ceived self-efficacy of engineering students on mathematics tasks is not a fixed construct
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since it an integral part of the personal factors that are embedded in the reciprocal deter-
ministic model. Instead, it is causally affected by changes in the model. Borgonovi and
Pokropek (2019) elaborate more on this concept when they write ‘reciprocal determin-
ism describes the sets of relationships underlying the interactions between: (a) individuals’
exposure to mathematics tasks, (b) mathematics self-efficacy beliefs, and (c) mathematics
ability’ (p. 269).

Perceived self-efficacy contributes significantly to regulating affective, cognitive, deci-
sional, and motivational processes of human functioning (Bandura, 2001, 2002). It is an
essential construct in the learning process as it serves as a stimulus for students not to give
up on difficult learning situations such that desired outcomes are achieved. It makes the
individual’s involvement very active and boosts morale to see to the attainment of a desir-
able outcome (Bandura, 1997, 2012). Since self-efficacy beliefs regulate some decisional
processes of a learner, it can be argued that there is a causal relationship between perceived
self-efficacy and approaches to learningmathematics. This is because students’ approaches
to learning a content are crucial components of their decisional processes (Biggs, 1993).
Another proxy construct through which perceived self-efficacy can be causally linked with
approaches to learning is students’ motivation. Intrinsic motivation has been shown to
induce a deep approach to learningwhile extrinsicmotivation to induce a surface approach
to learning (Marton & Booth, 1997). As such, it is expected that perceived self-efficacy
is causally related to deep and surface approaches through motivation as an intervening
construct since self-efficacy beliefs regulate motivational processes (Bandura, 1997).

To substantiate the argument on the causal relationship between approaches to learn-
ing mathematics and perceived self-efficacy, one could also turn to some findings that
have been reported in other fields. For instance, Diseth (2011), in a study involving 177
first-year undergraduate students following a psychology course used a causal model to
expose a negative relation between self-efficacy and surface approaches to learning, and
an indirect positive relationship between self-efficacy and deep approaches to learning.
The study by Shen et al. (2016) also reports a strong positive relationship between the
deep approach to learning earth sciences and perceived self-efficacy. After an extensive
search of the literature, the only quantitative study the authors could find on approaches to
learning mathematics, and perceived self-efficacy is a correlational study by Zakariya et al.
(2019). Therein, deep approaches to learningmathematics are found to have a positive cor-
relation with perceived self-efficacy on calculus tasks, and a negative correlation is found
between the latter and surface approaches to learning. Thus, based on the aforementioned
discussion, the following hypotheses are formulated.

Hypothesis one: There is a positive causal effect of perceived self-efficacy on deep approaches
to learning a first-year introductory calculus course among engineering students.

Hypothesis two: There is a negative causal effect of perceived self-efficacy on surface
approaches to learning a first-year introductory calculus course among engineering students.

5. Methodology

5.1. Participants

The focus of the current study, using a cross-sectional survey research design, is on
first-year engineering students at a leading Norwegian university. Even though they
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are enrolled on different engineering programmes, they followed a common introduc-
tory first-semester calculus course at the university. A total of 195 (47 females) stu-
dents who voluntarily gave their consent took part in the study. The sample corre-
sponds to about 65% of the total population of first-year engineering students who were
invited to participate in the study. This response rate is considered high in the literature
(Babbie, 1990).

5.2. Materials

Twowell-developed survey instrumentswere used for collecting the research data. The first
instrument was a Norwegian language adaptation of the revised two-factor study process
questionnaire (R-SPQ-2F). This instrument was initially conceptualized and operational-
ized based on SAL theory tomeasure students’ approaches to learning by Biggs et al. (2001)
andwas adapted tomathematics learning context amongNorwegian first-year engineering
students by Zakariya et al. (2020). The Norwegian adaption of the R-SPQ-2F is a 19-item
questionnaire that measures two dimensions (deep and surface) of approaches to learning
mathematics on a five-point Likert scale from (1) never or only rarely true of me, through
(3) it is true of me about half the time, to (5) it is always or almost always true of me. The
deep approach subscale has ten items with a reliability coefficient of .81, and the surface
approach subscale has nine items with a reliability coefficient of .72 (Zakariya et al., 2020).
The construct validity of the Norwegian adaption of R-SPQ-2F has been studied involving
several comparisons of competing models using confirmatory factor analyses (Zakariya,
2019). Despite the availability of other measuring instruments of students’ approaches to
learning, such as the approaches and study skills inventory for students (ASSIST), R-SPQ-
2F was adopted in the current study for a few reasons. First, it has been validated and
available in Norwegian, which is the main language of instruction in the university under-
graduate programmes. Second, it is concise with only 19 items, unlike the ASSIST, with 52
items and has strong psychometric characteristics. Third, given that approaches to learning
are context-specific, an adapted R-SPQ-2F into mathematics context is likely to possess a
high predictive power.

The second instrument used for collecting data in the current study was a calculus
self-efficacy inventory (CSEI) developed by (Zakariya et al., 2019). The CSEI is a 13-item
instrument developed based on guidelines for constructing perceived self-efficacy scales as
explicated by the Bandura’s self-efficacy theory (Bandura, 2006). The inventory contains
calculus final exam-like questions inwhich the students are required to rate howmuch con-
fidence they have in solving the questions correctly on a scale from 0 to 100. It was found to
have high construct validity with unidimensionality of its items, high discriminant valid-
ity, and a high reliability index of .90 (Zakariya et al., 2019). The CSEI was adopted in the
current study not only for its strong psychometric properties and because its theoretical
foundation suits our conceptual framework but also for its specificity in measuring stu-
dent perceived self-efficacy on calculus tasks. The Norwegian adaption of R-SPQ-2F and
the CSEI were embedded in an on-line survey tool and administered to the students via
their email addresses. The data collection exercise took about two weeks, and the collected
data were screened for outliers and missing values. There was no case of outliers, and few
data were missing at random, which were less than 1% of the total data collected and, as
such, do not pose any challenge to the analyses.
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Figure 1. A hypothesized causal model of the relations between perceived calculus self-efficacy and
approaches to learning mathematics.

5.3. Data analysis

The collected data were analysed using a structural equation modelling (SEM) approach.
This involved testing the plausibility of the hypothesized causal relations betweenperceived
self-efficacy and approaches to learning mathematics, as shown in Figure 1. As succinctly
put by Bollen and Pearl (2013), ‘SEM is an inference engine that takes in two inputs, qual-
itative causal assumptions, and empirical data, and derives two logical consequences of
these inputs: quantitative causal conclusions and statistical measures of fit for the testable
implications of the assumptions’ (p.309). It is thus argued that the use of SEM in exposing
the causal relationship between the current research constructs is justified, and an alter-
native statistical model that can do a satisfactory job in evaluating these causal claims is
unlikely (Bullock et al., 1994). All the model parameters such as factor loadings, effect
weights, residuals, and intercepts were evaluated using the weighted least square mean and
variance adjusted (WLSMV) estimator with theta parameterization. WLSMV was used
because of its satisfactory high performance in the analysis of categorical data such as the
ones obtained using the Likert scale (Suh, 2015).

Figure 1 presents a graphical representation of the hypotheses one and two of the cur-
rent study. The big oval shape with a label ‘cse’ represents the latent variable of the students’
perceived calculus self-efficacy (henceforth refers to as self-efficacy) as measured by its
13 observed variables (rectangles with labels ‘cse01’ to ‘cse13’) accompanied by the small
oval shapes with small arrows pointing to each rectangle indicating the associated errors
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in predicting each observed variable. In a similar manner, the big oval shapes with the
labels ‘deep’ and ‘surface’ represent the latent variables of deep and surface approaches to
learning mathematics, respectively, each of which is measured by its respective number of
observed variables (‘al01’-‘al19’). The single-headed arrow between ‘cse’ and ‘deep’ and
the one between ‘cse’ and ‘surface’ both indicate the hypothesized causal relations between
these latent constructs with their respective signs as postulated in the hypotheses one and
two. The double-headed arrow with a negative sign is an expected negative correction
between deep and surface approaches. This is because a student with a high score on sur-
face approach items of the R-SPQ-2F is expected to have a low score on the deep approach
items.

The causal model presented in Figure 1 carries with it a few assumptions that are
subject to testability. Prominent assumptions are represented by causal arrows from the
self-efficacy to the two dimensions of approaches to learning. The observed variables are
also assumed to relate to their respective latent constructs in a linearly causal manner. The
errors of the observed variables are assumed to be uncorrelated with each other and with
any of the latent constructs. It is also assumed that none of the observed variables exhibits
a cross-loading i.e. each observed variable is assumed to expose only one latent construct.
These qualitative assumptions are the elements that make a whole of the causal model pre-
sented in Figure 1 onwhich data are collected, analysed, and their plausibility is ascertained
using some goodness of fit (GOF) indices. The following GOF indices are used to judge an
acceptable fit: Tucker-Lewis index (TLI) and comparative fit index (CFI) with values close
to or greater than .90 (Bentler, 1990), standardized rootmean square residual (SRMR)with
a value less than .80 (Hu & Bentler, 1999), and root mean square error of approximation
(RMSEA) with a value less than or equal to .10 (MacCallum et al., 1996). Chi-square statis-
tics are reported, and its ratio to the degree of freedom of less or equal to 3 (Brown, 2015)
is used to assess a model fit. Also, chi-square statistics are also used to compare competing
models using a difference test.

6. Results

6.1. Measurementmodel evaluations

The evaluation of the hypothesized causal model presented in Figure 1 proceeds in two
steps. The first step concerns fitting a separate measurement model for both CSEI and R-
SPQ-2F. This step is a preliminary step to the structural equationmodelling of the relations
between the research constructs. The ensuing results are presented in Table 1 with Model
1 for the CSEI measurement model and Model 2 for the R-SPQ-2F measurement model.
Table 1 also presents improved results for both Model 1 and Model 2.

The results presented in Table 1 reinforce a rejection of Model 1. Consequently, a rejec-
tion of some assumptions associated with this model. This is evident with a high ratio of
chi-square value to df (higher than 3), a low TLI value (lower than .90), and a high RMSEA
value (higher than .10). Thus, the results show some inconsistency between the data col-
lected and the hypothesized model. As such, Model 1 was improved upon by adding two
error covariances between ‘CSE09’ and ‘CSE11’ as well as between ‘CSE12’ and ‘CSE13’,
the results of which are presented in Table 1 (Improved Model 1). There is a significant
improvement in Model 1 after modifying it, as shown in Table 1 with a reduced ratio of
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Table 1. Selected GOF indices for the evaluations of CSEI and R-SPQ-2F measurement models.

CSEI R-SPQ-2F

Fit statistics Model 1 Improved Model 1 Model 2 Improved Model 2

Chi-square value (χ2) 250.18 184.92 461.92 300.15
Degree of freedom (df ) 65 63 151 148
χ2 / df 3.85 2.94 3.06 2.03
TLI .88 .92 .77 .89
CFI .90 .94 .80 .90
SRMR .07 .06 .09 .07
RMSEA .12 .10 .10 .07

chi-square value to df, improved TLI and CFI, and reduced SRMR and RSMEA. The chi-
square difference test exposes this improvement better as it returns a significant difference
in chi-square values (χ2(2) = 65.26, p < .001) between Model 1 and Improved Model 1.
These are all suggestive of the plausibility of the Improved Model 1.

Similarly, the results presented in Table 1 (Model 2) also show that the hypothesized
measurement model for the R-SPQ-2F should be rejected. This is evident with a high ratio
of chi-square value to df (higher than 3), a low TLI and CFI values (far lower than .90),
and a high SRMR value (higher than .08). As such, Model 2 was improved upon by
allowing ‘al10’ and ‘al19’ to cross-load on the deep approach to learning in addition to
the surface approach to learning they were initially hypothesized. Also, an error covari-
ance between ‘al15’ and ‘al18’ was included to achieve the model results presented in
Table 1 (Improved Model 2). As it can be read from Table 1 (Improved Model 2), all the
GOF indices are within the cutoff criteria coupled with a significant chi-square difference
test (χ2(3) = 161.77, p < .001) which affirm the plausibility of the improved version of
Model 2. The model modifications that have been carried out in this section are all guided
by modification indices of the respective output during the analyses, and its conceptual
implications are presented in the next section.

6.2. Structural model evaluations

After the validation of themeasurementmodels, we proceed to the second step of the analy-
ses, which concerns investigating the causal relations between self-efficacy and approaches
to learning mathematics. The ensuing results of the selected fit statistics show the ratio of
chi-square value to df to be 1.59, a TLI value to be .90, a CFI value to be .91, an SRMR
value to be .07, and an RMSEA value to be .06 which are suggestive of an acceptable fit of
the model. The causal estimates, as well as the associated standardized model parameters
such as factor loadings, factor variance, and error covariance, are presented in Figure 2.

The results presented in Figure 2 show all the significant standardized factor load-
ings and error covariances. Figure 2 shows that there is a significant positive causal
effect of the self-efficacy on deep approaches to learning a first-year introductory calculus
(β = .54, p < .001) with a medium significant effect size of .29, and a significant negative
causal effect of self-efficacy on surface approaches to learning a first-year introductory cal-
culus (β = −.47, p < .001) with amedium significant effect size of .22. The results confirm
the hypotheses one and two, respectively. These results can be interpreted to mean, given
a unit metric increase in self-efficacy (e.g. cse+ 1) there is a corresponding effect of a .54
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Figure 2. A validated causal model of the relations between self-efficacy and approaches to learning
mathematics.

times a unit metric increase on deep approaches to learning, and a corresponding effect
of a .47 times a unit metric decrease in surface approaches to learning among engineering
students. Further, the respective effect sizes show that self-efficacy accounts for 29% of the
variability in deep approaches to learning and 22% variability in the surface approaches
to learning. At this juncture, it is important to remark that the results presented in Figure
2 are valid up to the group level, and there could be some discrepancy when it comes to
each individual student that took part in the study. Further discussion on these results is
presented in the next section.

7. Discussion, limitations, and conclusion

7.1. Discussion

The current study attempts to provide evidence for possible causal relations between
self-efficacy and approaches to learning an introductory calculus course among first-year
engineering students. In order to achieve this, both measurement and structural eval-
uations of models based on data collected using CSEI and R-SPQ-2F are reported in
the current study. We improved on the CSEI measurement model by adding two error
covariances. The first error covariance was between ‘CSE09’ and ‘CSE11’. These two items
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measure students’ confidence in solving two different indefinite integral tasks. As such, an
error covariance between these items could account for any error source from the com-
mon topic from which these two items have been drawn. The second error covariance was
between ‘CSE12’ and ‘CSE13’, which can also be justified from a common topic (appli-
cations of integral calculus) from which the two items have been drawn. The addition of
these two error covariances negates the lack of it that was initially assumed in the CSEI
measurement model. Thus, it demonstrates how the plausibility of model assumptions can
be tested in the SEM framework, which is contrary to those who think SEM assumptions
are never tested (e.g. Freedman, 1995). Further, the addition of these error covariances also
shows amarked difference between SEM framework and regressionmodels because, in the
latter, errors are always assumed to be orthogonal i.e. uncorrelated with each other (Bollen
& Pearl, 2013).

The measurement model of the R-SPQ-2F was also improved upon by allowing items
al10 (‘I find I can get by in most assessments by memorizing key sections rather than try-
ing to understand them’) and al19 (‘I find the best way to pass examinations is to try to
remember answers to likely questions’) that are initially on the surface approach dimen-
sion to cross-load on the deep approach dimension (Zakariya et al., 2020). A common
aspect of these two items revolves around the memorization of key concepts. The finding
of the current study suggests that the memorization technique is not peculiar to surface
approach learners. Rather, students that adopt a deep approach to learning mathematics
may also use the memorization technique. This finding, on the one hand, corroborates
a report of widespread use of the memorization technique found among high achieving
Asian students as ameans of understanding (Kember, 1996). On the other hand, it suggests
Entwistle (1997) could be right when he wrote: ‘memorization is a necessary precursor to
understanding, and for other purposes it is a way of reinforcing understanding’. Thus, a
deep approach learner can as well use memorization techniques strategically to recall defi-
nitions of concepts, theorems, and procedures of carrying out some special differentiation
or integration in a first-year calculus course.

Another model improvement of the R-SPQ-2F is the addition of an error covari-
ance between al15 (‘I believe that lecturers shouldn’t expect students to spend significant
amounts of time studyingmaterial everyone knows won’t be examined’) and al18 (‘I see no
point in learningmaterial which is not likely to be in the examination’) which are bothmea-
suring surface approaches to learning (Zakariya et al., 2020). This error covariance seems
to be conceptually justified as both items share a common latent factor and emphasise skip-
ping materials that are not going to be on students’ examination questions. Moreover, this
finding also fits into the body research that has advocated the inclusion of error covariances
between some other items of surface approach dimension of the R-SPQ-2F (e.g. Önder &
Besoluk, 2010).

Of prime importance in the current study is the established potential causal relation
between self-efficacy and approaches to learning mathematics. It was found that self-
efficacy has a positive effect on the deep approach to learning and a negative effect on the
surface approach to learning. This seems to be the first time such a finding is being reported
onmathematics learning of engineering students. However, our findings, on the one hand,
do support a negative relation between self-efficacy and approaches to learning among psy-
chology students reported by Diseth (2011). On the other hand, our findings establish a
reverse relationship as compared to the report by Ardura and Galán (2019) on self-efficacy



12 Y. F. ZAKARIYA ET AL.

and approaches to learning Physics and Chemistry among secondary school students.
Therein, Ardura and Galán (2019) proposed, tested, and found small effects (from – .12
to .25) between the dimensions of approaches to learning on self-efficacy. The reported
potential causal effects between self-efficacy and approaches to learning mathematics in
the current study are far away higher than the reverse effects by Ardura and Galán (2019).
These suggest that our model establishes a better and more appropriate causal direction
of the relationship between these constructs. Further, the estimates of the potential causal
effects between self-efficacy and approaches to learning in the current study are higher than
the correlation coefficients between these constructs in earth sciences (Shen et al., 2016)
and in mathematics (Zakariya et al., 2019).

Even though, the percentages of explained variance in deep approaches to learning
(29%) and surface approaches to learning (22%) that are accounted by the self-efficacy
seem low in the current study they are substantially higher than reported values in the lit-
erature (e.g. Diseth, 2011). These percentages of explained variance are reflections of the
fact that there are other factors e.g. motivation, nature ofmathematics tasks, etc., that influ-
ence approaches to learningmathematics, which our proposedmodel does not account for.
Admittedly, we do not seek to propose a model that explains every relation between self-
efficacy and approaches to learning mathematics. Instead, the current study has attempted
to provide evidence for a potential causal relationship between these constructs. The find-
ings of the current study, therefore, will serve as justifications of designing self-efficacy
interventions by university lecturers, engineering course coordinators, and other stake-
holders who are directly involved in the teaching of mathematics to engineering students
as proxies to induce desired learning approaches in their students.

7.2. Limitations

Despite the promising strength of the current study in providing evidence on the causal
relation between the two important student-source factors, some limitations can be
acknowledged. First, the current study is confined within the two research constructs
without relating the ensuing effects to students’ performance in the introductory calcu-
lus course. The authors acknowledge that it would have been more interesting to see how
these effects translate either directly or indirectly from self-efficacy through approaches
to learning to students’ grades in the course. However, students’ grades are not included
in the model because of the unavailability of these grades to the researchers at the time
of the study. A future study will be conducted with this intention. Second, given that the
scope of the current study is limited to first-year engineering students at one university,
its findings might be limited to this student population. Perhaps, the inclusion of students
from year two, year three and year four or students following other programmes in the
study and other institutions would have increased the generalization power of its find-
ings. Third, and closely related to the second limitation is the lack of cross-validation of
the established structural model of the relation self-efficacy and approaches to learning.
To this end, we recommended replicated evaluations of this model in independent sam-
ples and across different student populations. Lastly, the authors declare that the model
proposed and evaluated in the current study is neither an absolute model nor a simplifi-
cation of reality between the research constructs. Rather, attempts have only been made
to understanding the complex relationship between these constructs from a theoretical
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and empirical perspective. Future in-depth analyses are recommended using case studies,
longitudinal design studies, and experimental design studies.

8. Conclusion

The current study was motivated by the dearth of studies on relationships between two
well-established psychological theories that concern students’ learning of mathematics
in higher education. Therein, empirical evidence is provided for a potential causal rela-
tion between self-efficacy and approaches to learning a first-year calculus course among
engineering students. A high sense of self-efficacy is found to induce the adoption of a
deep approach to learning, while low sense self-efficacy induces an adoption of a surface
approach to learning. We claim this to be an original contribution to the literature when
it comes to the learning of mathematics among engineering students. As such, more stud-
ies are recommended using diverse methodological approaches and designs to understand
further the relations between self-efficacy and approaches to learning mathematics.
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mathematics among first-year engineering students

Abstract

This study is aimed at unravelling the specific effects of prior mathematics knowledge and 
approaches to learning on performance in mathematics among a convenient sample of 188 
engineering students. The design is cross-sectional, and data were analysed with structural 
equation modelling. We found a positive effect of prior mathematics knowledge on 
performance and a negative effect of the former on surface approaches to learning. The effect 
of surface approaches to learning on performance is significant, negative, and surface 
approaches to learning mediate the effect of prior mathematics knowledge on performance. 
There are no substantial relations between prior mathematics knowledge, deep approaches to 
learning, and performance. Even though students who adopt surface approaches performed 
poorly, we found no evidence to claim that students who adopt deep approaches perform better 
in the course. By implication, our findings underscore the importance of discouraging 
engineering students from capitalising on surface approaches to learning mathematics.

Keywords: approaches to learning, higher education, mediation analysis, prior mathematics 
knowledge, structural equation modelling

INTRODUCTION

Students approach learning in different ways depending on the learning context, motivation to 
learn, intentions, self-efficacy, and nature of course assessment. Some students approach 
learning with concentration and seek a proper understanding of content materials, while others 
give the impression that for them learning is an obstacle or a requirement to proceed to the next 
stage of study or employment and, as such, rely heavily on memorising facts and procedures. 
The former students are said to adopt deep approaches to learning while the latter students are 
said to adopt surface approaches to learning (Entwistle, 1997; Zakariya, Bjørkestøl, Nilsen, 
Goodchild, & Lorås, 2020). Some researchers have identified a third approach (strategic) in 
which students effectively organise resources and manage their time efficiently with the 
intention of getting high grades in their examinations (Tait, Entwistle, & McCune, 1998). 
However, Biggs, Kember, and Leung (2001) have demonstrated how a strategic approach can 
be subsumed in the deep and surface approaches to learning. It has been theoretically argued 
that approaches to learning, whether as adopted processes before a learning activity that directly 
affect learning outcomes (Marton & Säljö, 2005) or as students’ tendencies to adopt a 
process/strategy in a learning situation as noted by Biggs (1993), have a decisive role in the 
effectiveness of teaching and learning. There is an accumulation of evidence that suggests a 
relationship between approaches to learning and conceptions of mathematics (Mji, 2000), 
attitudes toward mathematics and mathematics anxiety (Alkhateeb & Hammoudi, 2006; 
Rozgonjuk, Kraav, Mikkor, Orav-Puurand, & Täht, 2020), and mathematics self-efficacy 
(Zakariya, Nilsen, Goodchild, & Bjørkestøl, 2020). 

Generally, approaches to learning have been found to relate with performance and shown to be 
better predictors of performance than mathematics anxiety, gender, enjoyment of mathematics, 
the utility of mathematics, and intrinsic motivation (García, Rodríguez, Betts, Areces, & 
González-Castro, 2016). However, results of studies on specific effects of either deep or surface 
approaches to learning on students’ performance have been inconclusive. Some researchers 
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found that a deep approach to learning predicts performance, while surface approach does not 
do so. For instance, Guo, Yang, and Shi (2017) found, in a study involving 74687 university 
students drawn from 39 different universities in China on a variety of courses (42% of whom 
enrolled on science and engineering programmes), that there is a positive effect of a deep 
approach to learning on students’ learning outcomes. Moreover, a negative non-significant 
impact of a surface approach to learning was found on students’ learning outcomes. One may 
challenge the validity of the findings by Guo et al. (2017) because a self-report measure of 
learning outcomes was used in the study. However, there have been similar findings whereby 
the deep approach to learning predicts students’ performance and the surface approach to 
learning does not predict students’ performance. Therein, performance is measured by either a 
semester final examination scores (Cano, Martin, Ginns, & Berbén, 2018) or by course grades 
(Maciejewski & Merchant, 2016).

In contrast, a few researchers found that the surface approach to learning predicts academic 
performance, while the deep approach does not do so (Diseth, 2007; Trigwell, Ellis, & Han, 
2012). The contribution of approaches to learning, among other factors, to 442 students’ end of 
the semester performance in a first-year psychology course was investigated by Diseth, 
Pallesen, Brunborg, and Larsen (2009). Therein, the results of their structural equation 
modelling (SEM) show that the surface approach to learning has a significant negative effect 
on the students’ performance in the course. However, the deep approach to learning has no 
significant effect on the students’ performance (Diseth et al., 2009). In a similar study, Valadas, 
Almeida, and Araújo (2016) investigated the role played by approaches to learning between 
previous and current academic performance of 247 first-year undergraduate students (38% of 
whom enrolled on science and technology programmes). Using the SEM approach, it was found 
that previous academic performance predicts both deep and surface approaches to learning. The 
surface approach to learning predicts the current academic performance, and the deep approach 
to learning fails to predict the current academic performance (Valadas et al., 2016).

There have also been some findings of no significant correlations between neither deep 
approach nor surface approach to learning, and students’ end of the semester examination scores 
(Gijbels, Van de Watering, Dochy, & Van den Bossche, 2005; Öhrstedt & Lindfors, 2018). In 
contrast, Herrmann, Bager-Elsborg, and McCune (2016) reported significant correlations 
between both deep and surface approaches with grade point average, using 4377 university 
students. One may argue that the lack of coherence in these findings can be ascribed to the 
different student populations, diverse fields of study, and lack of uniformity of the measures of 
performance involved in the studies. However, an exposition of literature with a focus on 
mathematics learning, that is presented in the next section, refutes this argument. These 
inconclusive or rather incoherence findings have motivated the present study. Thus, the purpose 
of the present study is to expose the structural relationship between prior mathematics 
knowledge, approaches to learning and current mathematics performance among first-year 
engineering students. We have focused on first-year engineering students learning introductory 
calculus course in the present study for many reasons. One of these reasons, others are 
mentioned in the methods section, is that they perform poorly in the course every year. Recent 
evidence for this claim is clear in a descriptive analysis of grade distribution for autumn 
semester 2019 that shows 43% failed the course at a Norwegian university. Thus, we aim at 
addressing the following research question: What are the individual and combined effects of 
prior mathematics knowledge and approaches to learning on students’ performance in an 
introductory mathematics course? 
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The remaining part of this paper is arranged as follows: First, a conceptual framework that 
guides the current study is presented; this includes a theoretical perspective on the approaches 
to learning, a more focused overview of research that focuses on mathematics learning, and 
formulations of hypotheses. Second, a section on methodological issues is presented, which is 
followed by the result section. Third, the results are discussed in a separate section. The paper 
closes with some remarks, including strengths and potential weaknesses. 

CONCEPTUAL FRAMEWORK

Theoretical perspectives on approaches to learning

The concept of approaches to learning was introduced as university students’ adopted processes 
before a learning activity that directly affect learning outcomes in the early work of Marton and 
Säljö (1976). The concept grew rapidly and eventually evolved into approaches to learning 
(SAL) theory. The SAL theory, as pursued by Marton and Booth (1997), makes an ontological 
shift from the cognitivist’s and constructivist’s dualistic view of an individual and the 
individual’s social, cultural, physical and temporal context, when explaining learning. In SAL 
theory, learning is an activity that leads to an individual’s gains in knowledge about the world 
through experience. The world that is not separated from the individual, neither individually 
constructed nor culturally imposed. Instead, the world is constituted in a feedback relationship 
between the individual and the environment as experienced by the individual (Marton & Booth, 
1997). As such, in explaining students’ learning, SAL theory emphasises “taking the 
experiences of people seriously and exploring the physical, the social, and the cultural world 
they experience” (Marton & Booth, 1997, p. 13). The epistemological position in the SAL 
tradition follows a phenomenographical approach with ‘a way of experiencing a meaning that 
is dialectically intertwined with a structure’ as its unit of analysis (Marton & Booth, 1997). 
Thus, it is challenging to discern approaches to learning from a few dependent factors such as 
the previous learning experience, intention to learning, the conception of learning, motives, 
methods of assessment, and the learning context (Biggs et al., 2001; Iannone, Czichowsky, & 
Ruf, 2020; Marton & Säljö, 2005).

Given that students experience the world in qualitatively different ways, it is logical to 
acknowledge the plausibility of different approaches to learning among them. However, a series 
of empirical studies in the SAL tradition have shown that these diverse approaches to learning 
can be substantially described using deep and surface approaches (Entwistle, 2005; Marton & 
Säljö, 2005; Svensson, 2005). The deep approach to learning has been conceptualised as 
“activities that are appropriate to handling the task so that an appropriate outcome is achieved” 
(Biggs, 2012, p. 42). Within the context of mathematics learning, appropriate activities entail 
paying keen attention to the content of the learning material with the intention of proper 
grasping of the content. In this case, the appropriate learning outcome/performance of a student 
that adopts a deep approach to mathematics naturally comes as a by-product of his/her 
understanding of the content and not the primary aim. In contrast, the surface approach to 
learning has been conceptualised as  “activities of an inappropriately low cognitive level, which 
yields fragmented outcomes that do not convey the meaning of the encounter” (Biggs, 2012, p. 
42). Thus, students who adopt surface approaches to learning mathematics are usually driven 
by the intention to pass the course with minimal effort and therefore concentrate on critical 
points of the learning materials. 
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Consistent with the ontological and epistemological claims of the SAL theory, approaches to 
learning mathematics have been argued to be context-specific rather than being fixed personal 
characteristics, motivated by intentions, good predictors of students’ performance on 
mathematics tasks (Zakariya, Nilsen, et al., 2020). The variability in the adoption of either deep 
or surface approaches to learning mathematics has been empirically shown to depend on the 
nature of mathematics tasks that the students are exposed to (Maciejewski & Merchant, 2016). 
A mathematics course, such as an introductory first-year calculus, in which the curriculum 
emphasis is mostly on mastery of techniques of differentiation and integration of functions, has 
the tendency to encourage adoption of surface approaches to learning. On the other hand, 
higher-level university mathematics courses such as real analysis, abstract algebra, and 
numerical analysis of differential equations, with emphases mostly on proofs and conceptual 
mathematical arguments, have the tendency to encourage adoption of deep approaches to 
learning. These qualitative differences in students’ approaches to learning mathematics are 
theorised to be related to qualitative differences in the students’ learning outcomes on the 
courses. Thus, it can be argued that approaches to learning mathematics influence the 
performance of engineering students on mathematics tasks. As such, the following hypothesis 
is formulated: 

Hypothesis 1: There are effects of engineering students’ approaches to learning on their 
performance in a first-year calculus course 

Deep and surface approaches to learning and students’ performance in mathematics

The situation of the relationships between deep and surface approaches to learning and students’ 
performance in mathematics has not been that different from the previously reported studies in 
other fields. There is a body of research that supports the plausibility of Hypothesis 1. Even 
though the study by Mundia and Metussin (2019) shows no significant effect of neither deep 
approach nor surface approach to learning on achievement of students in mathematics. The 
debate among researchers on mathematics learning surrounds the question of which of the two 
approaches (deep or surface) influence students’ current performance or is influenced by 
students’ past performance in mathematics? In a study that involves 899 undergraduate students 
following first-year mathematics classes by Cano et al. (2018), it was found that a deep 
approach to learning has a positive effect on students’ mathematics achievement in the course. 
In contrast, the effect of the surface approach to learning on the students’ mathematics 
achievement was not significant (Cano et al., 2018). Maciejewski and Merchant (2016) reported 
mixed findings on the effect of approaches to learning on students’ current performance 
depending on years of study. For students in year-one, it was found that a deep approach to 
learning predicts students’ grades on a mathematics course while the surface approach to 
learning does not predict the course grades. However, for students in other years of study, the 
surface approach to learning predicts students' course grades negatively while the deep 
approach to learning does not predict the course grades (Maciejewski & Merchant, 2016).

One may argue, as did, and subsequently shown empirically by, Maciejewski and Merchant 
(2016), that the variability in the mathematics tasks exposure across different years of university 
study could account for the inconsistent prediction of students’ course grades by the approaches 
to learning. However, findings from other mathematics education literature weaken this 
argument. For instance, Nguyen (2016) investigated the contribution of admission points, 
approaches to learning, and demographic factors of 616 students’ performance in an 
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introductory first-year calculus course, and reported a contrary finding to the one by 
Maciejewski and Merchant (2016) for year-one students. Therein, it was found that the surface 
approach to learning has a negative effect on students’ performance as measured by course 
grades in the course. In contrast, a deep approach to learning fails to predict students’ 
performance in a first-year calculus course. Furthermore, there was a significant effect of past 
performance, as measured by the admission points, on the current performance in the calculus 
course (Nguyen, 2016). Another related study, though it was conducted using upper primary 
school students, is a multiple linear regression analysis study by García et al. (2016). They 
found that the surface approach to learning predicts students’ mathematics performance scores 
with a negative regression weight. On the other hand, the deep approach to learning does not 
predict students’ performance in mathematics examination (García et al., 2016).

The foregoing discussion has exposed some gaps in research that focuses on mathematics 
learning about the specific effects of either deep or surface approaches to learning mathematics 
on students’ performance in the subject. As such, more studies aimed at filling these gaps are 
required. The present study using first-year engineering students enrolled in a mathematics 
course is hoped to contribute to the ongoing debate in research that focuses on mathematics 
learning. Thus, by drawing mainly on the literature in the current section coupled some tenets 
of SAL theory that are presented in the theoretical perspectives section, the following additional 
hypotheses are formulated and will be subjected to testing in the present study.

Hypothesis 2: There are effects of prior mathematics knowledge on engineering 
students’ deep and surface approaches to learning mathematics.

Hypothesis 3: Both the deep and surface approaches to learning mediate the effect of 
engineering students’ prior mathematics knowledge on their current performance in a 
first-year calculus course. 

It is important to remark that the formulation of hypotheses 2 and 3 relies mainly on previous 
studies as it is typical of practices when using a conceptual framework. As rightly puts by 
Eisenhart (1991), a conceptual framework is “a skeletal structure of justification, rather than a 
skeletal structure of explanation based on logic (i.e., formal theory) or accumulated experience 
(i.e. practitioner knowledge)”, (p. 209). As such, a researcher can combine a formal theory with 
previous studies to formulate the research hypotheses which is contrary to an adoption of a 
theoretical framework in which case the researcher is confined to the hypotheses of the formal 
theory (Lester, 2010). Figure 1 presents a hypothesised relationship between the variables.
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Figure 1. A hypothesised model of relationship between the research constructs

METHODS

Sample of the study

The present study adopts a cross-sectional research design with a focus on first-year engineering 
students enrolled on an introductory calculus course at a university in Norway during the 
autumn 2019 semester. The sample is convenient because of the strict rules on individual 
consent for studies in Norway. First-year university students are chosen for the present study to 
avoid conflicting findings, as reported by Maciejewski and Merchant (2016) when students 
from other years of study are included in their study. Also, it is assumed that pre-university 
mathematics knowledge may be assessed adequately in the first year of study. Further, these 
students encounter severe challenges in passing the first-year introductory calculus course. 
Perhaps, it is due to their newness to the university system. Consistent with the task-specificity 
of approaches to learning, as postulated by the SAL theory, we focus on students following a 
course. As such, we restrict our sample to engineering students because they form the largest 
population of students following the same mathematics course at the university. A valid sample 
of 188 students (25% females) with a mean age of 22 years participated in the present study, 
which amounts to 63% of the first-year students’ enrolment in the course. Moreover, these 
engineering students have been previously characterised to study mathematics with 
predominantly deep and surface approaches (Authors, 2019a).  

Measures

Two research instruments are used in the present study and the final cumulative examination 
scores of students are taken as a measure of current mathematics performance on the 
introductory calculus course. The first research instrument is a measure of prior mathematics 
knowledge, and the second research instrument is a measure of approaches to learning 
mathematics. Full descriptions of these instruments are presented in the forthcoming sections.

Prior mathematics knowledge 
We adopt a Norwegian national mathematics test (NNMT) that was administered at the time of 
the study (i.e., autumn 2019) as a proxy to measure prior mathematics content knowledge of 
the students. The NNMT examines basic knowledge of mathematics with a focus on the upper 
secondary curriculum. The Norwegian Mathematical Council administers this test to first-year 
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university students across Norway with an intention to monitor the level of preparedness of the 
students’ in mathematics for university education. It is assumed that the NNMT will be most 
appropriate as a proxy for assessing students’ mathematics knowledge in the present study. This 
is because the test draws on basic mathematics content knowledge that is common to the upper 
secondary school mathematics curriculum, and it has been consistently used for the past three 
decades. In addition to the preliminary section, the NNMT contains 16 stem questions on 
mathematics tasks, and some questions have two or three parts to make a total of 22 items. The 
NNMT has been subjected to tests of item quality (e.g., difficulty and discrimination indices), 
and reliability (Authors, 2020a). It was found to possess unidimensionality, appropriate 
construct validity, and a reliability coefficient of .90. Following the recommendations of the 
study by Authors (2020a), scores of students on only seventeen items that meet an acceptable 
level of both difficulty and discrimination indices, are used in the present study. The seventeen 
items capture simple manipulations of fractions, ratios and percentages, and some short answer 
word problems. 

Approaches to learning mathematics
We adopted a Norwegian version of the two-factor approaches to learning questionnaire (R-
SPQ-2F) to assess students’ approaches to learning mathematics (Authors, 2020b). The 
Norwegian version of the R-SPQ-2F (henceforth, R-SPQ-2F) was adopted in the present study 
for several reasons. First, it was conceptualised and operationalised to expose approaches to 
learning based on the postulates of the SAL theory (Biggs et al., 2001). Second, it has been 
validated using data from students on a mathematics course, which is in line with the task-
specificity of the approaches to learning (Authors, 2019a). Third, it has only 19 items (ten items 
on deep and nine items on surface approaches to learning mathematics) as compared to the 
study skills inventory for students (52 items), or the revised approaches to studying inventory 
(24 items). It is available in Norwegian, which takes care of any context, language, or cultural 
dependence of the construct it is purported to measure. Example of an item on the deep approach 
(a reliability coefficient of .81) subscale of the R-SPQ-2F is “I test myself on important topics 
until I understand them completely,” while “I do not find my course very interesting so I keep 
my work to the minimum” is an example of an item on a surface approach subscale (a reliability 
coefficient of .81) (Authors, 2020b). Students are meant to self-report their dispositions to items 
on the R-SPQ-2F using a five-point Likert scale from “never or only rarely true of me” to 
“always or almost always true of me”. The R-SPQ-2F has been found to possess high construct 
validity (Authors, 2020b), and discriminant validity (Authors, 2019b).

Current mathematics performance of students
The current mathematics performance of students (henceforth, performance) was measured 
using the final scores of each participating student in the introductory calculus course.  The 
final examination is an individual written in-class examination that lasts for four hours. It is 
assumed that these scores are reflective of students’ performance in the course.

Data curation, ethics, and analysis 

Data curation and ethical considerations

The NNMT and the R-SPQ-2F are prepared using online SurveyXact and distributed via email 
to collect data used for the present study at two instances. Instance one of the data collection 
took place at the beginning of the autumn 2019 semester in which the students sat for the online 
NNMT in classrooms under the supervision of their class teachers. It took up to 40 minutes to 
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complete the test. It is assumed that the early weeks of the semester is the best time to administer 
the NNMT for a valid assessment of the prior mathematics knowledge. The second data 
collection point occurred towards the last week of the semester using the R-SPQ-2F to assess 
students’ ongoing approaches to learning the subject. Meanwhile, before the first data collection 
point, the students were informed of the purpose of study during a class visit by the researchers, 
and their consent was sought. They gave their voluntary consent (written and via digital 
channel) to take part in the study and to authorize the researchers to access their final grades in 
the course via the university students’ examination office. 

Data analysis

The collected data were screened and found to contain no out-of-range value on any of the 
research variables. Some data were missing at random, especially on the NNMT and exam 
scores as a result of some discrepancies in the number of students who sat for the two tests. 
These missing data are minimal (between 12-20 cases) and therefore assumed to have no 
substantial effect on the results of the analysis. The data were analysed using an item-level SEM 
approach. This involves a two-step method of firstly evaluating the measurement models for 
the NNMT and the R-SPQ-2F before proceeding to evaluating the structural model in line with 
the best practice in SEM literature (Byrne, 2012). The SEM approach was used because of its 
satisfactory performance in predictions over linear regression models and path analyses (Bollen 
& Pearl, 2013). Data from both the NNMT and the R-SPQ-2F are categorical because of the 
correct/incorrect and the Likert scale response formats used in the scoring of the instruments, 
respectively. As such, the weighted least square mean and variance adjusted (WLSMV) 
estimator with theta parameterization was used in the evaluation of the models. We assess the 
local fits of the models by looking at the significant level of the item factor loadings, item 
residuals, and standard errors. The global fits of the models were assessed with a combination 
of fit indices, as recommended in the literature for an acceptable fit. First, the ratio of chi-square 
value to the degree of freedom with a magnitude of less than three was used. This ratio was 
combined with a value of close to or greater than .90 for both the TLI-Tucker-Lewis index and 
the CFI-comparative fit index (Bentler, 1990). Further, an RMSEA-root mean square error of 
approximation, the value of less than .06, was used to judge a good fit (Hu & Bentler, 1999). It 
is important to remark that we do not use chi-square value to assess the global fit of the models 
because of its sensitivity to large sample size (Brown, 2015). Instead, we use its ratio to the 
degree of freedom. As such, we do not include its p-values in our results. 

RESULTS

Step one: Evaluation of measurement models

A one-factor measurement model was evaluated for the NNMT by fitting the seventeen items 
on the test while constraining the variance of the latent factor (prior mathematics knowledge) 
to 1. The constrained latent factor variance to 1 ensures model identification and allows the 
factor loadings of each of the items to be freely estimated. Further, a two-factor measurement 
model was evaluated for the R-SPQ-2F. Following the recommendations by Authors (2020b), 
item10 and item19 that are hypothesised to expose surface approach to learning were cross-
loaded on the deep approach subscale, and an error covariance was allowed between item15 
and item18 on the surface approach subscale.  The models for the NNMT and the R-SPQ-2F 
were evaluated separately. Some selected global fit statistics of these models are presented in 
Table 1. 
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Table 1. 

Global fit statistics of the NNMT and R-SPQ-2F measurement models

Global fit statistics NNMT model R-SPQ-2F model

Chi-square
Estimate (𝜒2) 143.793 283.336
Degrees of freedom ( )𝑑𝑓 119 148

 𝜒2 ∕ 𝑑𝑓 1.21 1.91

RMSEA
Estimate .043 .070
90 percent confidence interval [< .001, .066]  [.058, .082]
Probability RMSEA <= .05           .676 .005

TLI/CFI
TLI .936 .895
CFI   .944 .909

The results presented in Table 1 show that both the NNMT and the R-SPQ-2F have acceptable 
measurement model fits as indicated by global fit statistics. The ratios of the chi-square values 
to the degrees of freedom are less than the recommended value criterion for an acceptable fit. 
The RMSEA value of the NNMT model with a non-significant 90 percent confidence interval 
shows that there is a substantial agreement between the NNMT model and the collected data. 
Even though the RMSEA value of the R-SPQ-2F model is higher than the .06 recommended 
value by Hu and Bentler (1999), its 90 percent confidence interval includes .06 and, as such, 
considered for an acceptable fit (MacCallum, Browne, & Sugawara, 1996). The TLI and the 
CFI values of both NNMT and the R-SPQ-2F models are within the ranges suggested for an 
acceptable fit. In addition to the global fit statistics presented in Table 1, the local fits statistics 
show acceptable values. The factor loadings are significant and moderately high for each item 
in the two models, the item residuals and the standard errors are within acceptable ranges. Both 
the global and local fits statistics of the NNMT and R-SPQ-2F models are suggestive of the 
plausibility of the models. Thus, we proceed to the analysis of the structural evaluation of the 
models.

Step two: Evaluations of structural models (hypothesis testing)

In order to test the hypotheses of the present study and by extension to address the research 
question, we evaluate the hypothesised model of relationship between the research constructs 
(Figure 1). The results of selected global fit statistics of the structural model are presented in 
Table 2, and Figure 2 shows the parameter estimates of the model.

Table 2. 

Selected global fit statistics of the relationship between prior mathematics knowledge, 
approaches to learning and performance

Global fit statistics Structural model

Chi-square
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Estimate (𝜒2) 717.548
Degrees of freedom ( )𝑑𝑓 621

 𝜒2 ∕ 𝑑𝑓 1.16

RMSEA
Estimate .029
90 percent confidence interval [.017, .038]
Probability RMSEA <= .05           1.000

TLI/CFI
TLI .929
CFI   .934

The global fit statistics presented in Table 2 show an acceptable global model fit of the 
relationship between the research constructs. This acceptable fit is deduced from the fact that 
all the global fits statistics are within the recommended values. The results presented in Table 
2 guarantee the plausibility of the standardized model estimates of effects (standard errors – 
S.E.s) that are presented in Figure 2. 

Figure 2. The evaluated structural model of the relationship between prior mathematics 
knowledge, approaches to learning, and students’ performance. The significant effect paths at 
p<.05 are in boldface. A full figure that contains all the items and the associated parameter 
estimates is available in the appendix.

The results presented in Figure 2 show that the surface approach to learning has a standardised 
significant negative effect (β = -.30, S.E. = .11, p < .05) on the performance of students. In 
contrast, the deep approach to learning has negligible effect (β < .01, S.E. = .10, p > .05) on the 
performance. This finding substantiates the plausibility of Hypothesis 1 of the present study. 
As such, approaches to learning influence students’ performance but only through the surface 
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approach. The double-headed arrow between the deep and the surface approaches shows a 
standardised significant correlation coefficient (r = -.46, S.E. = .08, p < .05) between errors 
involved in measuring the two latent constructs. This error covariance is acknowledged and 
included in the model to enhance reliable model estimates. It is also shown in Figure 2 that the 
standardised effect of the prior mathematics knowledge on the surface approach to learning is 
significant and negative (β = -.22, S.E. = .12, p < .05). In contrast, there is no significant 
standardised effect of the prior mathematics knowledge on the deep approach to learning (β = 
.13, S.E. = .10, p > .05). These findings partly confirm the plausibility of Hypothesis 2 by 
establishing the effects of the prior mathematics knowledge on approaches to learning. Further, 
the findings show that the surface approach to learning is the only predictable approach by the 
prior mathematics knowledge of students. Moreover, the results presented in Figure 2 show that 
prior mathematics knowledge has a significant effect (β = .20, S.E. = .09, p < .05) on the 
students’ performance. The small arrow with a significant estimate of .84 (S.E. = .07, p < .05) 
is the residual variance involved in the prediction of performance by both the prior mathematics 
knowledge and the approaches to learning.

Mediation analysis results
We conducted a partial mediation analysis on the structural model presented in Figure 2 in order 
to investigate the total effect and specific mediating effects of the prior mathematics knowledge 
through the approaches to learning on performance. 

Table 3. Mediation analysis results from prior mathematics knowledge through approaches to 
learning to performance

Effects from prior mathematics knowledge 
to performance

Estimate Lower 5% Upper 5%

Total effect .268 .109 .427
Specific indirect effect (Surface approach) .136 .068 .147
Specific indirect effect (Deep approach) < .001 -.021 .020

The presented results in Table 3 of the partial mediation analysis show that the prior 
mathematics knowledge has a total effect of β = .268 [.109, .427] on performance. The 95% 
percent confidence interval of this estimate using bootstrapping [.109, .427] shows that the total 
effect can go as high as .427. Since the confidence does not include 0, we conclude that the 
total effect size is significant. The specific standardised mediating effect of the prior 
mathematics knowledge through the surface approach to learning on performance is β =.136 
[.068, .149]. Since the 95% confidence interval of this estimate does not include 0, we conclude 
that this mediating effect is significant. In contrast, the specific standardised mediating effect 
of the prior mathematics knowledge through the deep approach to learning on performance is 
β < .001[-.021, .020]. The 95% confidence interval of this estimate includes 0. Thus, the 
standardised mediating effect is not significant. Therefore, it can be deduced from the mediation 
analysis results that, of the two approaches to learning, only the surface approach to learning 
partially mediates the effect of the prior mathematics knowledge on performance, which 
partially contradicts Hypothesis 3.

DISCUSSION 

The concept of approaches to learning has been thoroughly articulated and operationalised by 
the SAL theory. The approaches adopted by the students to learn explain some qualitative 
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differences in their learning outcomes (Marton & Säljö, 2005). However, there have been 
heated debates among education researchers on the contributions of either deep or surface 
approaches to the learning outcomes on mathematics tasks. Perhaps, these debates were 
generated by the inconclusive findings of the empirical studies reported with this intention. As 
such, attempts are made in the present study to disentangle the complicated relationship 
between approaches to learning mathematics, previous and current students’ performance on 
mathematics tasks. The first step of our analysis involves evaluations of the measurement 
models of the NNMT and the R-SPQ-2F using data collected from first-year engineering 
students enrolled on an introductory calculus course. The results of this analysis confirm the 
factor structures of these instruments, as postulated in the literature (e.g., Authors, 2020b). The 
second step is a structural evaluation of a hypothesised model of the relationship between these 
constructs and performance. The ensuing findings are discussed in the next section.

The effect of approaches to learning on performance
The findings of the present study show that there is a significant negative effect of the surface 
approach to learning on performance. In contrast, the deep approach to learning has no 
significant effect on performance. One may interpret these findings to mean that students who 
adopt surface approaches to learning mathematics have low scores (grades) in the introductory 
calculus course. However, there is no evidence in the present study to justify a substantial 
relationship between students who adopt deep approaches to learning mathematics and their 
performance in the course. As such, one may discourage adoption of the surface approach to 
learning, but that does not mean encouragement of the deep approach to learning either. It is 
less surprising that the deep approach to learning does not influence students’ performance in 
the present study, given that similar findings have been reported, elsewhere (e.g., García et al., 
2016). Even though some researchers have reported a substantial contribution of the deep 
approaches to learning to students’ performance in mathematics (e.g., Cano et al., 2018). 
Therefore, based on the SAL theory, a major contribution of the present study is an 
identification of the surface approach to learning as the only predictor of performance among 
first-year engineering students. This contribution fits very well among the existing research in 
the field (Mundia & Metussin, 2019; Nguyen, 2016).

The effects of prior mathematics knowledge on approaches to learning and performance. 

It was also found in the present study that prior mathematics knowledge has significant positive 
and negative effects on the students’ performance and the surface approach to learning, 
respectively. These findings can be interpreted to mean, students who have high scores on the 
NNMT performed very well in the introductory calculus course while those students who have 
low scores on the NNMT are associated with the surface approaches to learning. The fact that 
prior mathematics knowledge predicts the surface approach to learning negatively is consistent 
with the postulates of the SAL theory and corroborates the findings of previous studies (e.g., 
Valadas et al., 2016). The positive relationship between the prior mathematics knowledge and 
the students’ performance is expected, given the level of precision offered by the SEM approach 
used in scoring the former. This finding corroborates the findings of previous studies that have 
reported a similar relationship between the prior and current performance of students (Diseth et 
al., 2009; Valadas et al., 2016). Further, it was found that the positive effect of prior 
mathematics knowledge on the deep approach to learning is not significant. This finding shows 
that students who scored high on the NNMT also scored high on the deep approach subscale of 
the R-SPQ-2F. However, the strength of the relationship between the scores of students on the 
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two variables is not enough to substantiate any sizeable relationship between them. Even though 
the finding appears not to agree with the postulates of the SAL theory, it does support the 
finding of no significant relationship between prior academic achievement and the deep 
approach to learning reported by Diseth et al. (2009).

Mediating effects of the approaches to learning

An essential finding of the present study comes from the results of the partial mediation 
analysis. It is a partial mediation because the direct effect of prior mathematics knowledge on 
performance was studied simultaneously with its indirect effect through approaches to learning, 
unlike a full mediation analysis where the direct effect from the predictor variable to the 
outcome variable will not be included in the analysis (Rucker, Preacher, Tormala, & Petty, 
2011). The finding shows that the effect of prior mathematics knowledge on performance is 
mediated by the surface approach to learning. In contrast, the deep approach to learning fails to 
mediate this effect. An interpretation of this finding is that, given that the direct effect is 
controlled for, students with high scores on the NNMT and low scores on the surface approach 
subscale performed better in the introductory calculus course than those students who have low 
scores on the NNMT and high on the surface approach subscale. However, we found no 
substantial evidence to make a similar interpretation for the deep approach subscale. We claim 
that our finding on the mediating effect of approaches to learning as intervening factors between 
previous and current performance in mathematics is a new observation in research with a focus 
on mathematics learning. An extensive search of the literature corroborates this claim. The 
authors could only find few studies in other fields, for instance, the study by Valadas et al. 
(2016), who found no substantial mediating effect of neither deep nor surface approaches to 
learning between prior knowledge and academic success among first-year university students. 
One may argue that the reason why Valadas et al. (2016) could not detect the mediating effect 
is that they measured academic success by a self-reported number of failed courses by the 
students. In the present study, given that we used examination scores that are common to every 
student for measuring performance, it is expected that our finding on the mediating effect is 
closer to reality than theirs.

CONCLUDING REMARKS

We conclude this article by highlighting some perceived strengths of the study, potential 
limitations, and recommendations for future studies. First, the research instruments used in the 
present study are carefully prepared based on theoretical and empirical evidence. It has been 
argued in the literature (e.g., Zakariya, 2020) that the validity of findings from quantitative 
research depends mainly on the quality of research instruments. As such, the specially tailored 
measures of the prior mathematics knowledge and the approaches to learning mathematics 
constitute a strength of the present study. Second, unlike the correlation/regression studies that 
are usually reported in the quantitative research with a focus on mathematics learning (e.g., 
Nguyen, 2016), the use of SEM offers some strength to the validity of our findings. The ability 
of the SEM approach to model error covariance, item cross-loading, and to study the 
relationship between latent factors demonstrates SEM’s superiority over path analysis and 
multiple linear regression (Bollen & Pearl, 2013). By implications, the findings of the present 
study underscore the importance of discouraging engineering students from capitalising on the 
surface approach to learning mathematics. As such, university teachers, curriculum planners, 
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and other stakeholders in the teaching of mathematics to engineering students are charged with 
the responsibility of guiding the students towards a good approach to learning the subject.  

Despite the strengths of the present study, some limitations are recognised. The first limitation 
may stem from the non-inclusion in our model, factors such as self-efficacy, the conception of 
and attitudes towards mathematics, gender, and age that could affect students’ performance. 
The non-inclusion of these factors in our model could, perhaps, explain the sizeable residual 
variance of .84 that was found. That means only 16% of the students’ performance variability 
is explained by prior mathematics knowledge and approaches to learning. We recommend 
further investigation with this intention. It is acknowledged that the self-report questionnaire 
(R-SPQ-2F) used in the present study carries with itself some weaknesses. It does not cover all 
aspects of the students’ approaches to learning, and some students might fake their dispositions 
or be too shy to reveal their actual thoughts while answering the questionnaire. The present 
study does not account for all these specific shortcomings of the R-SPQ-2F, which might 
constitute a threat to the findings. However, with the inclusion of measurement errors, we hope 
that some of these shortcomings are taken care of in the present study. Though, restricting our 
sample to engineering students in their first year of study increases the precision of the model 
estimates but may limit generalisation beyond this student’s population. Further, the sample 
size appears to be small. As such, we recommend future replications of the present study in a 
large and diverse student population. 
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Appendix: The full structural model of effects of prior mathematics knowledge, and approaches to learning on students’ performance. 
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Self-Efficacy Between Previous and
Current Mathematics Performance of
Undergraduate Students: An
Instrumental Variable Approach to
Exposing a Causal Relationship
Yusuf F. Zakariya*

Department of Mathematical Sciences, University of Agder, Kristiansand, Norway

Purpose: Self-efficacy has been argued theoretically and shown empirically to be an
essential construct for students’ improved learning outcomes. However, there is a
dearth of studies on its causal effects on performance in mathematics among university
students. Meanwhile, it will be erroneous to assume that results from other fields of
studies generalize to mathematics learning due to the task-specificity of the construct.
As such, attempts are made in the present study to provide evidence for a causal
relationship between self-efficacy and performance with a focus on engineering students
following a mathematics course at a Norwegian university.

Method: The adopted research design in the present study is a survey type in
which collected data from first-year university students are analyzed using structural
equation modeling with weighted least square mean and variance adjusted (WLSMV)
estimator. Data were generated using mainly questionnaires, a test of prior mathematics
knowledge, and the students’ final examination scores in the course. The causal effect
of self-efficacy was discerned from disturbance effects on performance by using an
innovative instrumental variable approach to structural equation modeling.

Results: The findings confirmed a significant direct effect of the prior mathematics
knowledge test (β = 0.52, SE = 0.01, p < 0.001) on self-efficacy, a significant direct
effect (β = 0.43, SE = 0.19, p = 0.02) of self-efficacy on performance, and a substantial
mediating effect (β = 0.22, SE = 0.10, p = 0.03) of self-efficacy between a prior
mathematics knowledge test and performance. Prior mathematics knowledge and self-
efficacy explained 30% variance of the performance. These findings are interpreted to
be substantial evidence for the causal effect of self-efficacy on students’ performance
in an introductory mathematics course.

Conclusion: The findings of the present study provide empirically supports for
designing self-efficacy interventions as proxies to improve students’ performance
in university mathematics. Further, the findings of the present study confirm some
postulates of Bandura’s agentic social cognitive theory.

Keywords: self-efficacy, prior mathematics knowledge, undergraduate learning, causal model analysis,
instrumental variable approach
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INTRODUCTION

There has been a growing interest in research on students’
affective factors and their contributions to learning outcomes
at all levels of education. Apart from the fact that some of
these affective factors, e.g., self-efficacy, satisfactorily predict
students’ performance, an explanation for the growing interest
may be ascribed to the ease of developing interventions that
influence such factors (Czocher et al., 2019). For instance,
perceived self-efficacy, which has been conceptualized as “beliefs
in one’s capabilities to organize and execute the courses of action
required to produce given attainments” (Bandura, 1997, p. 3), was
shown to predict academic achievement better than intelligence
test scores, measures of self-esteem, and personal traits among
school children (Zuffianò et al., 2013; Özcan and Eren Gümüş,
2019). With regards to the learning outcomes in undergraduate
mathematics, perceived self-efficacy was found to be a better
predictor of performance than the usefulness of mathematics,
prior mathematics knowledge, self-concept (Pajares and Miller,
1994), mathematics anxiety, and mental ability (Pajares and
Kranzler, 1995). A high sense of self-efficacy has also been linked
with the adoption of deep approaches to learning, high learning
motivation, positive attitude toward mathematics. In contrast, a
low sense of self-efficacy has been linked with the adoption of
surface approaches to learning, high mathematics anxiety, and
low interest in mathematics (Bandura, 1997; Rozgonjuk et al.,
2020; Zakariya et al., 2020b). More recently, Schukajlow et al.
(2019) demonstrate an approach through which constructing
multiple solutions to real-life problems can be used as an
intervention to influence students’ self-efficacy in mathematics.
Student-centered instructional methods have also been linked
with high self-efficacy (Lahdenperä et al., 2019).

Even though the relationship between self-efficacy and
students’ performance has been widely studied, little is known
about the causal effect of the former on the latter as it concerns
the learning of university mathematics. The available studies on
self-efficacy with a focus on university mathematics are either
relatively old (e.g., Hackett and Betz, 1989; Pajares and Miller,
1994), utilized regression models which make it difficult to
evaluate causal hypotheses between self-efficacy and students’
performance in mathematics (e.g., Peters, 2013), or do not
account for confounding factors in their structural models (e.g.,
Roick and Ringeisen, 2018). By a causal effect, the author means,
if A is a cause of B then at least all the following conditions are
satisfied: (1) A temporarily precedes B, i.e., data on A are collected
before data on B or A is theorized to happen before B; (2) There
is a substantial correlation between A and B; (3) There should
not be a third variable C that explains the relationship between
A and B (Antonakis et al., 2010). The third condition is the
most difficult to meet, especially in non-experimental research.
Such variable C will always exist. The most important question
is how well a researcher can control it? Among the several
attempts that have been shown empirically to yield satisfactory
performance in controlling for an extraneous variable, such as C
in non-experimental research, is the use of instrumental variable
approach (Antonakis et al., 2010; Bollen, 2019). The basic idea
of the instrumental variable approach is to find a fourth variable

called an instrument that satisfies some properties (which will be
explained in the “Materials and Methods” section) and use it to
discern the actual effect of A on B from any confounding effects
of C (Greenland, 2000; Bollen, 2019).

As such, the primary purpose of the present study is
to investigate the causal effects of perceived self-efficacy on
the current students’ performance in mathematics among
engineering students with an application of the innovative
instrumental variable approach to modeling. Further, the effects
of prior mathematics knowledge on the perceived self-efficacy
and the current students’ performance are also investigated. An
advantage of using the innovative instrumental variable approach
in exposing these causal effects lies in a fact that reliable estimates
of effects can be justified. Despite the wide application of
the instrumental variable approach among epidemiologists and
econometricians (Antonakis et al., 2010), it is innovative in the
present study because the author is not aware of its previous use
in mathematics education research. It is the opinion of the author
that policymakers, researchers, and education stakeholders are
more interested in studies that explore answers to questions on
what brings about improved students’ performance and to what
extent? Rather than, in studies that focus on correlations between
variables whose findings are either complicated to interpret
or beset by unclear conclusions (Pajares and Miller, 1994).
The present study, therefore, attempts to address the following
research question: What are the direct and indirect causal effects
of prior mathematics knowledge and perceived self-efficacy on
performance in mathematics among engineering students? The
author draws on both theoretical and analytical perspectives to
address this question. The statistical analyses in the present article
are moderately advanced and up to date. However, the author has
deliberately chosen a simple language of presentation with less
mathematical abstractions to make the findings more accessible.

The remaining part of the present article is organized as
follows: An overview of a theoretical perspective which leads
to the formulation of research hypotheses is presented in the
next section. Next is the “Materials and Methods” section where
research methodological related issues are presented. The fourth
section presents analyses and results. The major findings are
discussed in the fifth section, including potential limitations and
recommendations for further studies. Finally, the article closes
with some remarks.

CONCEPTUAL FRAMEWORK

Perceived self-efficacy is firmly rooted in the agentic social
cognitive theory (henceforth, social cognitive theory) as
propagated by Albert Bandura in his decades of work on the
theory (Bandura, 2001, 2012). Bandura, dissatisfied with some
ontological and epistemological claims of traditional cognitive
theory (cognitive theory), developed the social cognitive theory.
The ontological paradigm shift from the cognitive theory lies
in a rejection of dualism between personal agent and object of
actions. Reciprocal determinism is an epistemological position
that differentiates the social cognitive theory from the cognitive
theory. Reciprocal determinism is a feedback causal model of
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the relationship between behavioral factors, personal factors, and
environmental factors (Bandura, 2012). That is, an individual’s
behavioral changes are consistently being regulated and modified
by interacting with social factors in the environment whose
feedback influences the next actions and outcomes.

Therefore, it is argued that perceived self-efficacy being an
integral part of the personal factors cannot be a fixed trait. It
changes in response to changes that occur to the rest of the
factors in the reciprocal deterministic system (Bandura, 2012).
As it concerns mathematics learning, Borgonovi and Pokropek
(2019) conceptualized and described reciprocal determinism as
“the sets of relationships underlying the interactions between (a)
individuals’ exposure to mathematics tasks, (b) mathematics self-
efficacy beliefs, and (c) mathematics ability” (p. 269). Therefore, it
follows logically to argue that mathematics perceived self-efficacy
(henceforth, self-efficacy) is a task-specific construct and affects
the performance of engineering students in calculus tasks. Earlier
studies have investigated the task-specificity of self-efficacy and
confirm that proper attention to task-specificity is a satisfactory
way to improve the predictive power of self-efficacy on students’
performance in mathematics (Pajares and Miller, 1995). In the
present study, the implications of the task-specificity of self-
efficacy go beyond the prediction of performance but extend to
the research focus and adoption of a self-efficacy measure whose
detail is presented in the “Materials and Methods” section.

The concept of self-efficacy has emerged from the social
cognitive theory to become a theory on its own. According to the
self-efficacy theory, there are four primary sources of self-efficacy
beliefs: enactive mastery experience, i.e., personal previous task-
based achievement, vicarious experience, i.e., experience gained
by monitoring peers or people around, verbal/social persuasions,
i.e., complementary or contradictory feedback received from
others, and physiological or affective states, i.e., physical or
emotional situations during the behavioral changes (Bandura,
2008). Among the sources of influence of self-efficacy, previous
task-based achievement has been shown empirically to have the
most significant impact on students’ self-efficacy on mathematics
tasks (e.g., Joët et al., 2011; Zientek et al., 2019). Further, Yurt
(2014) showed that, apart from predicting self-efficacy, mastery
experience has a highly significant correlation with students’
mathematics achievement as measured by the end of the semester
course grades. As such, if pre-university mathematics content
knowledge is considered to be part of the personal previous
task-based achievement, then a causal effect is expected between
prior mathematics knowledge and the self-efficacy of engineering
students. Therefore, the following hypothesis is formulated:

Hypothesis one: There is a direct effect of prior
mathematics knowledge on self-efficacy among first-year
engineering students.

Fundamental goals of self-efficacy theory within the teaching
and learning context are to explain, predict and evaluate
differences in students’ performance that are brought about by
their self-efficacy (Bandura, 2012). A high sense of self-efficacy
instills confidence on students’ minds when confronted with
difficult and challenging mathematical tasks and as such, enables

the students to persevere, so that desired outcomes are achieved.
In contrast, students with a low sense of self-efficacy cannot
forebear difficult situations, doubt their ability, and as such,
perform poorly on the learning material. Roick and Ringeisen
(2018) reported a longitudinal study in which the contribution
of self-efficacy to students’ performance in mathematics was
investigated. They used a structural equation modelling (SEM)
approach with a sample of 206 university students and
found that self-efficacy predicts students’ performance. Similar
corroborative findings on the predictive power of self-efficacy as
it concerns university mathematics can be found, elsewhere (e.g.,
Pajares and Miller, 1994; Pajares and Kranzler, 1995). However,
as it is highlighted in the introduction section of the present
article, some of these studies have one limitation or the other
that makes it difficult to deduce substantial causal claims between
self-efficacy and students’ performance in mathematics. More so,
it could be erroneous to assume that findings from other fields
generalize to the university mathematics context considering the
task-specificity of self-efficacy. Instead, the author draws on these
studies and some postulates of self-efficacy theory to formulate
the following hypotheses:

Hypothesis two: There is a direct effect of self-efficacy on
engineering students’ performance in a first-year calculus
course.
Hypothesis three: Self-efficacy mediates the effect of
engineering students’ prior mathematics knowledge on
their performance in a first-year calculus course.

MATERIALS AND METHODS

Research Focus
The present study focuses on the engineering students following
a first-year mathematics course at a Norwegian university.
Students enrolled in a first-year mathematics course are chosen
as participants in the present study for several reasons. First, the
author can assess their pre-university mathematics knowledge
effectively better than that of students in year two, year three
and year four. Second, they are more susceptible to poor
performance, high anxiety, and lack of confidence due to their
transition from secondary school to university and newness to
the university culture. In line with the task-specificity of self-
efficacy, data collected from students enrolled on a common
mathematics course are more likely to be objective and when
analyzed could give a close estimation of the causal relationship
between the research constructs. Further, engineering students
are the target group in the present study because they form
the largest student population following a common mathematics
course in the university.

Sample of the Study
An effective sample of 189 engineering students voluntarily
participated in the study, most of whom are men (75%). Their
age distributions are as follows: 17–20 years (31%), 21–25 years
(49%), 26–35 years (15%), and over 36 years (5%). The inclusion
and exclusion criteria are based on voluntary consent. As such,
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the sample can be characterized as a convenient sample. The
language of instruction in the course is Norwegian as well as the
language used for the mandatory exercises and examinations.

Measures
Prior Mathematics Knowledge
The author adopted a Norwegian mathematics test as a proxy
to expose the prior mathematics content knowledge of the
participating students in the present study. The test was designed
by the Norwegian Mathematical Council to assess pre-university
mathematics content knowledge, and it is administered every two
years, independent of the present study, to first-year students
across several universities and colleges in Norway. It is a 22-
item test in which questions are formulated based on the
secondary school curriculum. It is assumed that the test is
most appropriate in the present study because it has been
developed within the Norwegian context and consistently been
applied to serve a similar purpose as that of the present study,
for the past three decades. Further, the construct validity and
the reliability index (using Omega coefficient) of the test have
been investigated using a latent variable approach in Mplus 8.3
program, and the latter was found to be 0.92 which together
with the unidimensionality of the test show high internal
consistency of its items (Zakariya et al., 2020a). However, only
a portion of the test (17 items, henceforth, PKMT – prior
knowledge of mathematics test) that is of high psychometric
properties such as appropriate item difficulty indices (−2.795 to
0.923), item discrimination indices (0.421–1.354), item reliability
(0.151–0.646), and unidimensionality, i.e., all the 17 items expose
a common latent construct (Zakariya et al., 2020a), is used in
the present study. The 17-item PKMT has only two standard
multiple-choice questions, and the remaining 15 questions
require short answers. All the questions examine the basic
knowledge of operations with fractions, decimals, percentages,
ratios, similar triangles, speed and distance, and some word
problems. A score of 1 point was assigned to a correct answer
and a 0 point, otherwise.

Calculus Self-Efficacy
Following the task-specificity of the self-efficacy, the calculus
self-efficacy inventory (CSEI) was adopted in the present study.
The CSEI was developed with a specific purpose of exposing
students’ self-efficacy in solving some mathematical tasks drawn
from the first-year introductory calculus course (Zakariya et al.,
2019). According to the self-efficacy theory, such an inventory
offers the best precision in exposing the construct (Bandura,
2006). The CSEI has two parts: preliminary and main parts. The
preliminary part of the CSEI contains questions on gender, age,
and grade points of students in the highest upper secondary
school mathematics course (HGP) they followed before their
enrollment into the university. Responses of students to the
question on HGP, in addition to the PMKT, are used as proxies
to measure their prior mathematics content knowledge. The
response values on this item ranging from 1 to 6 points depending
on the grades. Further, the main part of the CSEI contains 13
items on exam-type mathematics tasks in which the contents
are drawn from the current course curriculum followed by the

students. The responses of students on this part of CSEI are
used as proxies to expose the latent construct of self-efficacy.
The students rate their confidence, on a scale of 0–100, in their
belief that they can successfully solve the mathematics tasks.
The conceptualization, operationalization, and psychometric
properties of the CSEI have been previously studied using factor
analysis in FACTOR program coupled with Spearman’s rank
correlation and well documented (Zakariya et al., 2019). The
CSEI was found to possess construct and discriminant validity,
unidimensionality, and with a reliability index of 0.90 using
ordinal coefficient alpha (Zakariya et al., 2019).

Performance
Finally, the current performance of students in the present study
is operationalized and measured by their final scores achieved
in the first-year introductory calculus course they followed. It is
presumed in the present study, and consistent with the literature
(e.g., Cano et al., 2018), that such scores offer the best opportunity
to compare individual performance in the course.

Data Collection and Ethical
Considerations
The data used in the present study are collected mainly through
an online platform, SurveyXact. The author together with his
research team independently converted the PKMT to an online
test after being granted permission to access the test by the
Norwegian Mathematical Council. Similarly, an online version
of the CSEI was also prepared. The students were informed of
the purpose of the study at a class visit before data collection.
Their voluntary consent to take part in the study was sought.
As such, they were promised of no consequence, whatsoever, for
anyone who decides not to participate in the study. The students
were informed that their data will be treated with a high level
of security and confidentiality in line with the regulations of the
Norwegian Centre for Research Data.

The data were collected on three occasions. At the first
occasion, the PKMT was administered in which 40 min of class
time was used on the test. This test administration took place
in the early weeks of the Autumn semester 2019 because the
beginning of the semester is the best time to assess pre-university
mathematics content knowledge. On the second occasion, toward
the last week of lectures in the Autumn semester 2019, the
researchers administered the CSEI through students’ registered
emails with the university. Because items of the CSEI are
drawn from the ongoing mathematics course curriculum, the
administration of CSEI was deliberately delayed until the end of
the semester. This delay was aimed at ensuring a substantial part
of the course curriculum had been covered. The collected data
from the two occasions were merged to form an effective sample
for the study. In order to ensure the personal data protection
regulations are met, the students’ administrative affairs office was
involved in the process when it came to collating identifiable
data. The researcher simply sent the generated survey data to
the examination office where the individual final examination
scores in the course were added. Afterward, the examination
office removed any identifiable information from the data set,
and the researcher was provided with a completely anonymized
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data set. This procedure constitutes the third occasion of the
data collection. The data were screened for out of range values,
missing values, and normal distribution, all of which pose no
challenge to the analyses.

Data Analysis
The Hypothesized Model and Choice of an
Instrument
The hypothesized model of the relationship between the calculus
self-efficacy (CSE), prior mathematics knowledge (HGP and
PKMT), and students’ performance in the course (Exam) is
presented in Figure 1. The main aim of evaluating this model
is to estimate the effects of CSE and HGP on Exam. However,
there is a challenge with the model. This is because there are
some omitted variables, such as the similarity between items on
the CSEI and the final examination. The omitted variables act as
common causes of both the CSE and the Exam, thereby causing
the errors e1 and e2 to correlate. This correlation may bias the
estimate of the effect of self-efficacy on performance, and thereby
constitutes an endogeneity problem in the model (Antonakis
et al., 2010). CSE is an endogenous variable in the model because
both HGP and PKMT predict it, and it predicts Exam. A way to
circumvent this problem, so that a reliable estimate of the effect
of self-efficacy on performance can be found is to introduce an
instrumental variable, simply called an instrument, in the model
(Greenland, 2000). It is assumed that the omitted variables do not
affect both HGP and PKMT because they are exogenous variables,
i.e., they are not predicted by any variable in the model, and
as such do not need an instrument. The double-headed arrow
between HGP and PKMT in Figure 1 is a standard notation for
correlation between the variables in the SEM literature. It should
not be confused with a feedback effect.

An instrument “I” is an exogenous variable that satisfies the
following properties: (a) “I” has a direct effect on the endogenous

variable (CSE) that needs an instrument; (b) The direct effect
of “I” on the outcome variable (Exam) is close to zero or
completely negligible in the presence of the endogenous variable;
(c) “I” should not correlate with the errors associated with the
outcome variable (Greenland, 2000; Antonakis et al., 2010). The
preliminary analysis in the present study shows that PKMT is the
only variable that satisfies the properties (a)–(c), and thus, it was
selected as an instrument to discern the true effect of self-efficacy
on the performance from the omitted causes in the model.

The Procedure of Data Analysis
The collected data are analyzed using the SEM approach to
evaluate the model presented in Figure 1 and as such, to
confirm the plausibility of the research hypotheses. The SEM
approach was adopted in the present study because it offers
the best and most robust modeling capacity to evaluate causal
hypotheses (Bollen and Pearl, 2013). SEM does it better than
the path analysis, multiple linear regression, and the partial-
least square techniques (Antonakis et al., 2010). Because PKMT
was dichotomously scored, the weighted least square mean and
variance adjusted (WLSMV) estimator was used which has been
shown to provide satisfactory parameter estimates in the analysis
of categorical data (Suh, 2015). The author ascertains the “data
fitness” of the hypothesized model by looking at both global
and local fit indices and parameters. The global fit criteria used
are chi-square ratio to the degree of freedom of less than 3,
comparative fit (CFI) and Tucker-Lewis indices of greater than
or close to 0.90 (Bentler, 1990), and a root mean square error of
approximation (RMSEA) value of less than 0.08 (Brown, 2015).
The local fits of the model parameters are ascertained by looking
at the magnitude and the significant levels of factor loadings,
standard errors, and the residual variance, in line with the best
practice in SEM literature (Marsh et al., 2004). All the analyses
were performed in Mplus 8.3 program.

FIGURE 1 | The hypothesized model of the relationship between prior mathematics knowledge, self-efficacy, and students’ performance in an introductory calculus
course. Both HGP and PKMT are measures of the prior mathematics knowledge of the students, CSE is a measure of the self-efficacy, and Exam represents a
measure of performance. The items of both PKMT and CSE are not included in Figure 1 to enhance the readability of the figure.
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RESULTS

The first set of results are from the evaluations of one-factor
models for each of the prior mathematics knowledge test and the
calculus self-efficacy measurement models. These measurement
models are evaluated separately before an evaluation of the
hypothesized structural model. In this way, the author could
detect and correct any local misspecification in each of the
measurement models. This two-step of measurement-before-
structural model evaluation has been proven efficient and
highly recommended in SEM literature (Byrne, 2012). The
dichotomously scored 17 items of the PKMT are hypothesized to
expose a common latent factor (prior mathematics knowledge)
and tested. All the factor loadings are freely estimated, and the
factor variance is fixed to 1 so that the model is identified
(Zakariya et al., 2020a). Similarly, the 13 items of the CSEI are
hypothesized to expose a common latent factor (self-efficacy)
and tested. The factor loadings are freely estimated, the factor
variance is fixed to 1, two error covariances between item 09 and
item 11 as well as between item 12 and item 13 are allowed in
the model as recommended by Zakariya et al. (2019). Further,
a maximum likelihood with robust standard errors (MLM)
estimator was used instead of the WLSMV because the students’
responses on the CSEI are continuous and not categorical. The
results from these analyses with regards to the selected global fit
indices are presented in Table 1.

The results presented in Table 1 show that the global fit
indices are within the recommended ranges for acceptable model
fits of the analyzed data. In particular, the ratios of chi-square
values to the degrees of freedom, the CFI and the TLI values
suggest an acceptable fit for both the PKMT and CSEI models.
The RMSEA value and its associated 90% confidence interval
with a non-significant p-value of the PKMT model show that
there is an excellent agreement between the model and the data
(Bentler, 1990). Even though the p-value of the 90% confidence
interval for the RMSEA value in CSEI model is significant, the
estimate is lower than 0.08, which suggests a good fit (Brown,
2015). The factor loadings are significant and moderately high,
the standard and residual errors are low which are suggestive
of acceptable local fit statistics for both the PKMT and CSEI

TABLE 1 | The selected global fit indices for evaluated PKMT and CSEI
measurement models.

Global fit indices PKMT model CSEI model

Chi-square

Estimate (χ2) 143.793 132.162

Degrees of freedom (df ) 119 64

χ2/df 1.21 2.065

CFI/TLI

CFI 0.944 0.911

TLI 0.936 0.892

RMSEA

Estimate 0.043 0.076

90 percent confidence interval [<0.001, 0.066] [0.057, 0.094]

Probability RMSEA ≤ 0.05 0.676 0.013

models (Marsh et al., 2004). As such, the author proceeds to the
evaluation of the hypothesized structural model, as presented in
Figure 1, and the resulting global fit indices are presented in
Table 2. Further, Figure 2 presents the standardized estimates of
the causal effects between the research variables.

The results presented in Table 2 show an excellent model
fit of the evaluated hypothesized structural relationship between
the research variables. An excellent model fit in the sense that
there is a substantial agreement between the hypothesized model
and the analyzed data. This model fit can be deduced from
the selected global fit indices that are within the recommended
ranges. The ratio of chi-square estimate to the degree of freedom
is far less than 3. The CFI and TLI indices are greater 0.95, which
indicate an excellent model fit according to the cutoff criteria by
Hu and Bentler (1999). The RMSEA estimate together with its
perfect (p-value = 1.000) 90% confidence interval, suggested that
there is a substantial-close fit between the model and analyzed
data (Brown, 2015). The global fit indices presented in Table 2
strengthen the plausibility of the standardized estimates of the
causal effects presented in Figure 2.

The results presented in Figure 2 show reliable estimates of
the standardized causal effects between the research variables.
The reliability of these estimates has been strengthened by
the excellent global fit indices reported in Table 2. Figure 2
shows a significant direct effect of PKMT (β = 0.52, standard
error – SE = 0.01, p < 0.001) on self-efficacy. The direct effect of
HGP on self-efficacy is negative and not significant (β = −0.12,
SE = 0.09, p > 0.05). Even though, one would have expected a
positive effect of HGP on self-efficacy given that students with
high grade points in upper secondary school mathematics are
expected to have high self-efficacy. The result of the present study
does not conform to this expectation. These results show that
among the two measures of prior mathematics knowledge, it is
only the scores of students on the pre-university mathematics
test that have a substantial effect on students’ self-efficacy. As
such, Hypothesis one is confirmed. The correlation between
PKMT and HGP is significant (r = 0.31, SE = 0.08, p < 0.001),
and it is expected. This is because both PKMT and the HGP
are hypothesized to expose different facets of a construct. The
correlation between these variables was evaluated instead of a

TABLE 2 | The selected global fit indices of the evaluated hypothesized structural
model of the relationship between the research variables.

Global fit indices Hypothesized model (Figure 1)

Chi-square

Estimate (χ2) 492.432

Degrees of freedom (df ) 458

χ2/df 1.075

CFI/TLI

CFI 0.958

TLI 0.954

RMSEA

Estimate 0.020

90 per cent confidence interval [<0.001, 0.033]

Probability RMSEA ≤ 0.05 1.000
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FIGURE 2 | The evaluated model of the relationship between prior mathematics knowledge, self-efficacy, and students’ performance in an introductory calculus
course. Both HGP and PKMT are measures of the prior mathematics knowledge of the students, CSE is a measure of the self-efficacy, and Exam represents a
measure of performance. The significant estimates are in bold faces, and the items of both PKMT and CSE are not included in Figure 1 to enhance the readability of
the figure. The full figure that contains all the items and the associated model parameters is available in Appendix Figure A1.

causal relationship for two reasons. The first reason is that they
expose different facets of a construct while the second reason is
to comply with the recommendations of instrumental variable
approach for handling endogeneity problem due to omitted
variables in the model (e.g., Kenny, 2012).

It is also revealed in Figure 2 that the direct effect of
self-efficacy on students’ performance is significant (β = 0.43,
SE = 0.19, p = 0.02) and a significant standardized residual
estimate of 0.76. These results confirm the plausibility of
Hypothesis two. The residual error shows that the prior
mathematics knowledge of students explains 24% of the factor
variance in self-efficacy. The percentage of the explained factor
variance is moderate, considering the limited number of variables
that predict self-efficacy in the model. The error covariance
between the self-efficacy and students’ performance is not
significant (r = 0.10, SE = 0.25, p > 0.05) which is a good result
as it confirms the reliability of the estimated effect of self-efficacy
on performance after introducing the instrument in the model.
Figure 2 also shows that the direct effect of HGP on the students’
performance is significant (β = 0.20, SE = 0.07, p = 0.005).

More so, the results of the mediation analysis show the
standardized total effect of prior mathematics knowledge (PKMT
and HGP) on performance to be 0.37. A significant indirect
effect of PKMT through self-efficacy was found (β = 0.22,
SE = 0.10, p = 0.03), and a non-significant indirect of HGP on
performance through self-efficacy efficacy (β = −0.05, SE = 0.04,
p > 0.05). These results show that self-efficacy mediates the
direct effect of PKMT on performance while that of HGP on

performance is not mediated, beyond chances. This finding
confirms, in part, the plausibility of Hypothesis three. Finally,
the significant standardized residual estimate of 0.70 on the
Exam variable in Figure 2 shows that 30% of the variability in
students’ performance is explained by both the prior mathematics
knowledge and self-efficacy. This variability is considered to be
moderately high, and more discussion about this is presented in
the next section.

DISCUSSION, LIMITATIONS, AND
RECOMMENDATIONS

Discussion of Findings
Self-efficacy has been articulated theoretically to be an important
construct in explaining variability in students’ performance.
Several pieces of empirical evidence have demonstrated its
relevance to students’ performance in psychology, sport, and
clinical medicine (Bandura, 1997). Meanwhile, due to the task-
specificity of self-efficacy, it could be erroneous to assume
generalization of findings from other fields to the mathematics
learning context. More so, there are limited studies with a
focus on mathematics self-efficacy and its effects on students’
performance in university mathematics. As such, attempts are
made in the present study to investigate the causal effects
of mathematics self-efficacy on students’ performance through
an innovative approach of instrumental variable modeling
(Greenland, 2000). Prior mathematics knowledge (PKMT
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and HGP) and self-efficacy (CSEI) are conceptualized and
operationalized based on previous studies and the self-efficacy
theory. The measurement model of PKMT was evaluated, and
it was found to provide reliable estimates of the construct
it was hypothesized to expose. The findings of the present
study also confirm reliable estimates of the measurement model
of CSEI. These findings are consistent with the findings of
previous studies on the two measures (Zakariya et al., 2019,
2020a). After establishing acceptable measurement models of the
two measures, the hypothesized structural relationship between
the research constructs was evaluated. The major findings are
discussed in the forthcoming paragraphs.

The results of the present study confirm a direct effect of
prior mathematics knowledge test on students’ calculus self-
efficacy. This finding can be interpreted to mean that students
with high scores on the prior mathematics knowledge test have
a high sense of self-efficacy in solving first-year calculus tasks
successfully. This finding is consistent with the postulated impact
of personal previous task-based achievement on self-efficacy
by the self-efficacy theory (Bandura, 2012). It was found that
prior mathematics knowledge test alone accounts for 27% (i.e.,
the square of 0.52 times 100%) of the variability of the self-
efficacy. However, this percentage of explained variance reduced
to 24% when this direct effect of the test scores is combined
with the direct effect of HGP on self-efficacy. The direct effect
of prior knowledge of mathematics test on self-efficacy found
in the present study is far higher than the effects of high
school level, and the college credits (both operationalized to
measure prior experience) on students’ self-efficacy in completing
mathematics problem-solving tasks reported, elsewhere (Pajares
and Miller, 1994; Pajares and Kranzler, 1995). Given that
these studies are relatively old and the mathematics curriculum
in higher education is changing to catch up with our 21st-
century challenges, it is claimed that the present finding is
novel and the captures current situation on the causal relation
between prior mathematics knowledge and self-efficacy among
university students.

Another major finding of the present study is the exposed
direct effect of calculus self-efficacy on students’ performance
in the course. A unique feature about the estimate of this
direct effect lies in the ability of the instrumental variable
approach to discern this effect from that of other disturbances
which affect students’ performance but are not included in
the model. This finding is interpreted to mean a high sense
of self-efficacy is a potential cause of high scores of students,
beyond chances, in the first-year introductory calculus course. By
implication, this finding provides empirical support for designing
interventions that foster self-efficacy as proxies to enhance
students’ performance in the first-year introductory mathematics
course. Such interventions may be in the inform of realistic
modeling of the links between previous achievements and self-
efficacy, social persuasion by older students who have passed
the course, and other related activities that can be traced to the
sources of self-efficacy. The magnitude of the estimated causal
effect of self-efficacy on students’ performance in the present
study is substantially higher than comparable direct effects
reported in previous studies (Pajares and Kranzler, 1995; Roick

and Ringeisen, 2018). As such, the author claims that the causal
relationship exposed between self-efficacy and performance by
the findings of the present study has a significant contribution
to mathematics education literature.

Apart from the substantial contribution of the calculus self-
efficacy to students’ performance exposed in the present study,
a major finding is the detected mediating role of self-efficacy
between prior knowledge mathematics test and students’ current
performance in the course. It was found in the present study
that about 46% (i.e., 0.17 out of 0.37) of the total effect of
prior mathematics knowledge (PKMT and HGP) on students’
performance is mediated by self-efficacy. On the one hand, this
finding may be interpreted to mean students with high scores on
both the prior knowledge of mathematics test and the self-efficacy
performed, beyond chances, better than the students who do not
score high on the two measures. On the other hand, it confirms
the mediating role of self-efficacy as postulated by the self-
efficacy theory (Bandura, 1997). This finding also corroborates
the mediating role of mathematics self-efficacy that is reported,
elsewhere, using path analysis (Pajares and Miller, 1994). Despite
the limited number of variables the author considered in the
evaluated structural model of the relationship between the
research constructs, the percentage of the explained variance
(30%) in students’ performance is higher than the reported values
in studies with several predictor variables (Pajares and Miller,
1994, 1995). It is conjectured that the task-specificity of the
self-efficacy measure coupled with the innovative instrumental
variable approach used in the present study contributes to
the moderately high percentage of explained variance in the
students’ performance. Potential variables that could increase
the percentage of explained variance, if included in the model,
are approaches to learning mathematics, academic motivation,
mathematics anxiety, and attitudes toward mathematics learning.
Future studies are recommended with this intention.

Potential Limitations and
Recommendations
A potential limitation of the present study is attributable to
the restriction of sample to first-year engineering students
enrolled on a course. Even though this restriction offers several
advantages as previously highlighted in the “Materials and
Methods” section, it might also hinder the generalization of the
findings beyond a similar student population. Future replicated
studies are recommended with a focus on students following
a variety of courses at different levels of higher education.
However, such studies should devise innovative ways or use
robust statistical modeling such as multi-level SEM combined
with the instrumental variable approach to account for task-
specificity of the self-efficacy across diverse populations. Also,
the relatively small sample size (189 students) could be a threat
to the validity of the SEM results given that some researchers
have recommended higher sample sizes (Marsh et al., 1998;
Byrne, 2012). However, it has been theoretically argued and
empirically shown that a “one size fits all” rule is not tenable for
sample sizes of SEM studies (Wolf et al., 2013). As such, sample
sizes close to 200 cases are recommended for conducting SEM
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studies that involve moderately complex models (Kline, 2016).
Notwithstanding, future replication studies are recommended
with a larger sample size to cross-validate the findings of
the present study.

More so, the self-efficacy theory postulates a feedback causal
relationship between self-efficacy and students’ performance in
mathematics through reciprocal determinism model (Borgonovi
and Pokropek, 2019). Nevertheless, the focus of the present
study is only on one-directional causal effect from self-efficacy to
students’ performance which could also constitute a limitation.
The author argues that such a feedback causal relationship is
better investigated using a longitudinal research design (e.g.,
Roick and Ringeisen, 2018) than the survey research design used
in the present study. As such, future longitudinal studies are
recommended with this intention. The author also acknowledges
that a limited number of predictor variables in the evaluated
structural model of the present study may constitute another
limitation. Had been more relevant variables such as approaches
to learning, motivation, and mental ability that have been linked
with performance are included in the model (Pajares and Miller,
1994; Zakariya et al., 2020b), the percentage of explained variance
in students’ performance would have improved. Future study
may also be conducted with this intention.

CONCLUSION

The present study is motivated by the lack of empirical evidence
on the causal relationship between self-efficacy and students’
previous and current performance in university mathematics.
Therein, attempts are made to fill this gap by investigating
hypothesized causal claims between the research constructs using
the instrumental variable approach to modeling. The major
findings in the present study establish a causal relationship with
reliable estimates between self-efficacy and students’ performance
in an introductory calculus course at a university in Norway. The
author conjectures that these findings are generalizable to similar
student populations within and beyond Norwegian borders. This
conjecture is based on both theoretical and innovative statistical

perspectives adopted in the present study. As such, the author
recommends replication of the present study to investigate this
conjecture within the quantitative research paradigm. The author
declares that an outright discovery of the causal relationship
between self-efficacy and students’ performance in mathematics
is not claimed in the present study. Instead, it is hoped that
foundations are laid for future experimental, randomized-control
trial studies with this intention.
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APPENDIX

FIGURE A1 | The full evaluated model of the relationship between prior mathematics knowledge, self-efficacy, and students’ performance in an introductory calculus
course. The significant paths are in bold faces.
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