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ABSTRACT  
 

Use of Autoassociative Neural Networks for Sensor Diagnostics. (December 2003) 
 

 Massieh Najafi, B.Sc., University of Tehran  
 

Committee Co-Chairs: Dr. Reza Langari  
          Dr. Charles H. Culp III  

 
 

The new approach for sensor diagnostics is presented. The approach, Enhanced 

Autoassociative Neural Networks (E-AANN), adds enhancement to Autoassociative 

Neural Networks (AANN) developed by Kramer in 1992. This enhancement allows 

AANN to identify faulty sensors. E-AANN uses a secondary optimization process to 

identify and reconstruct sensor faults. Two common types of sensor faults are 

investigated, drift error and shift or offset error. In the case of drift error, the sensor error 

occurs gradually while in the case of shift error, the sensor error occurs abruptly. E-

AANN catches these error types. A chiller model provided synthetic data to test the 

diagnostic approach under various noise level conditions. The results show that sensor 

faults can be detected and corrected in noisy situations with the E-AANN method 

described. In high noisy situations (10% to 20% noise level), E-AANN performance 

degrades. E-AANN performance in simple dynamic systems was also investigated. The 

results show that in simple dynamic situations, E-AANN identifies faulty sensors.  
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1. INTRODUCTION   
 
 

When sensors malfunction, control systems become unreliable. Even with the most 

sophisticated instruments and control algorithms, a control decision based on faulty data 

could lead to disaster. Sensor Fault Detection is usually considered as a subset of Fault 

Detection. One of the well known approaches in Fault Detection is the model based 

approach in which a computational model is designed to predict the real system output 

while receiving the same input. Figure 1-1 shows the generic diagram of the model-

based technique.   

 

Real System

Model

Analysis
Input

+

-

Real System

Model

Analysis
Input

+
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Figure 1-1, Model based approach 

 

 

In spite of the popularity of the model-based approach in Fault Detection, this  

method is not appropriate for Sensor Diagnostics. This is because the model-based 

approach relies on the correct input data (which might be measured using sensors). This 

assumes that the input to the real system and the input to the model are correct (fault 

free). When there is a notable difference between the output of the real system and the 

output of the model, a problem exists in the real system. In Sensor Diagnostics the focus 

is to find dysfunctional sensors. 

 

Autoassociative  Neural Networks (AANN) are an alternative solution for Sensor 

Diagnostics. The AANN concept, which was developed by Kramer ([1] and [2]) can 
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capture the interrelationship between plant variables that have some degree of relation 

with each other. The correlation between plant variables is embedded in the AANN. 

 

Autoassociative Neural Networks for Sensor Diagnostics is the focus of this 

research. We are looking for a generic approach to be applicable in different systems.  A 

chiller model developed previously [3] will be used as a system to test our approach. 

 

1.1 Autoassociative Neural Network and Its Application in Sensor Diagnostics  

“An Autoassociative Neural Network (AANN) is a network in which the outputs are 

trained to emulate the inputs over an appropriate dynamic range. Plant variables that 

have some degree of coherence with each other constitute the input. During training, the 

interrelationships between the variables are embedded in the Neural Network connection 

weights”(Hines 1998). Autoassociative networks are composed of an input layer, a 

number of hidden layers and an output layer. Theoretically, it is sufficient for the AANN 

to contain three hidden layers [1]. However; in practice more hidden layers might be 

used for improved performance [4]. The architecture of a three hidden layer AANN is 

shown in Figure 1-2.  The output layer of AANN produces a transformed version of the 

inputs and is equal in dimension to the input. 

 

In Sensor Diagnostics, all data measured from the real system (a mix of input 

variables and output variables) constitute the input to the AANN. The AANN is trained 

in a way that its outputs match the inputs as closely as possible, in a least squares sense, 

over the training set. When data having no errors (no faulty sensors) is fed to the trained 

AANN, the difference between the input and output of the AANN is ideally zero. If the 

data is contaminated (one or more sensors being faulty), the difference between the input 

and output of the AANN will be non-zero. 
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Figure 1-2, Autoassociative Neural Network 

 

 

The AANN approach can be used to determine whether there is a sensor problem but 

the problem of locating the faulty sensors still remains. At the University of Tennessee, 

Hines and his colleagues have proposed a method to locate faulty sensors using AANN 

([5] and [6]). As noted by Hines [5] “As during the training of the AANN, the 

interrelationships between the variables are embedded in the Neural Network connection 

weights. As a result any specific network output shows virtually no change when the 

corresponding input has been distorted by noise, faulty data, or missing data”. This 

means that the difference between each AANN input and its corresponding output 

contains enough information to help determine the faulty sensors.  If the difference is 

zero, the corresponding sensor is healthy otherwise the sensor has a problem (Fig. 1-3). 

However we were unable to get the same results as they did, perhaps due to an error or 
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unreported assumptions in the original work. The proposed work seeks to develop an 

enhanced method which is referred to as E-AANN.  

 

 
Figure 1-3, Hines’ approach to using AANN for sensor diagnostics  

 

 

1.2 Proposed Solution, Enhanced Autoassociative Neural Network (E-AANN)  

Due to the inherent non-orthogonality of the AANN, when one of the AANN inputs 

is degraded or contaminated, it affects all AANN outputs. So any difference between the 

input and output of an AANN reflects sensor problems but is not sufficient to localize 

the faulty sensors. The new approach, E-AANN, is based on the fact that whenever the 

input to the AANN is fault free, the AANN output will be the same as input. In this 

situation, the Sum Squared Error (SSE) between the inputs ( niX i ,...2,1, = ) and 

outputs ( niY i ,...2,1, = ) should ideally be zero (Eq. 1).  

)1(0)()()(
1

2 =−=−−= ∑
=

N

i
ii

T XYYXYXJ  

)1.(Eq  

In order to locate the faulty sensor, each input is varied over its defined range while 

holding all other inputs fixed to determine when SSE is zero or close to zero (or in 

principle minimized). Once SSE equals to zero, the corresponding input is identified as 

the contaminated input (faulty sensor). E-AANN is explained in section 6 in details.  
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The next step in this research is to characterize the E-AANN performance. First it is 

investigated how precisely the E-AANN can reconstruct the correct value of a faulty 

sensor output. The aim is to find parameters that affect on the precision of E-AANN. 

Secondly the effect of noise on the E-AANN performance is investigated. Real sensors 

are noisy. It is necessary to see if E-AANN is capable of determining faulty sensors in 

noisy conditions. 

  

Two common types of sensor faults are investigated in this study. One is drift error 

and the other is shift or offset error. In the case of drift error, the sensor error occurs 

gradually. Initially, the error is very small but it grows slowly with time (Fig. 1-4). In the 

case of the shift error, the sensor error occurs abruptly.  The E-AANN capability to catch 

shift errors and drift errors in noisy conditions is studied. Initially the induced noise is 

low and then it will be increased step by step. At each noise level, the data will be 

contaminated by shift and drift errors (Figures 1-5 and 1-6 show drift and shift errors 

with noise). E-AANN will be evaluated in terms of its ability to catch these errors. If 

necessary, E-AANN will be revised to improve its performance. The maximum level of 

noise handled by E-AANN will be determined. The functionality of the E-AANN in 

high noisy situations will be evaluated.  

 

 

 

 

 



    

 

6 

Sample #

Sh
if

t E
rr

or
D

ri
ft

 E
rr

or

Sample #

Sh
if

t E
rr

or
D

ri
ft

 E
rr

or

 
Figure 1-4, Drift and shift errors 

 

 

 
Figure 1-5, Drift error with noise 
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Figure 1-6, Shift error with noise 
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2. LITERATURE SURVEY 
 

 

The topic of Fault1 Diagnostics can be divided into two main categories:  

System Fault Diagnostics  

Sensor Fault Diagnostics  

  

In a system, Fault Diagnostics deals with faults originating inside the system. It 

checks system components to see whether they work well. Sensor Diagnostics deals with 

faults coming from the sensors that measure system variables. It checks whether sensors 

show the correct values.  

 

2.1 System Fault Diagnostics 

Generally, the process of fault detection is divided into two steps: 1- Fault 

Determination and 2- Fault Isolation. In fault determination, it is checked whether 

system performance is within specifications or not. In fault isolation, the source of fault 

is located.  

 

There are several generic approaches to fault determination but the topic of fault 

isolation is still in its early stages. This is due to the fact that the process of Fault 

Isolation depends on the system specifications. Therefore it is difficult to derive a 

generic approach to fault Isolation.  
 

A generic fault detection mechanism must contain two sections: 1- Reference 

Calculation Section and 2-Analysis Section (Figure 2-1). The task of the Reference 

                                                 
1 A comprehensive literature survey has been performed on the issue of fault diagnostics and sensor 
diagnostics. Different approaches used in different systems have been investigated and their advantaged 
and disadvantages have been discussed. We have also performed a literature survey on the issue of fault 
diagnostics in chiller. This is true that in this project we look at diagnostic problems generically, but we 
thought it would be useful to also have a literature survey on a specific system (like chiller) to see how the 
results could be expanded. 
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Calculation is to prepare the tools for evaluation of the system performance.  It 

calculates the reference values to be compared with system outputs. The analysis Section 

handles two tasks. It compares the system outputs with the calculated references to 

determine if there is any problem in the system (Fault Determination). After 

determination of faults, it tries to isolate the fault (Fault Isolation). Therefore the analysis 

section is divided into two sections (Figure 2-2): 

I) Fault Determination Section 

II) Fault Isolation Section  

 
  

Input

Real System

Reference 
Computation

Analyzer System ConditionInput

Real System

Reference 
Computation

Analyzer System Condition

   

Figure 2-1, A generic fault detection mechanism 
 

 

System Output Fault 
Determination

System Condition

Reference Output

Fault 

Isolation

System Output Fault 
Determination

System Condition

Reference Output

Fault 

Isolation

 
 

Figure 2-2, The structure of analyzer 
 

 

2.1.1 Reference Computation Section 

As it was previously stated, the Reference Calculation prepares the tools for 

evaluation of the system performance. The most popular approach for reference 

calculation is the Model Based approach.  In this approach, a model is designed based on 

the real system specifications. It predicts the output of the real system with a defined 

input. The common methods to design a model are: 
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Physical or Parametric methods 

Data Driven methods 

Qualitative methods 

  

 Physical/Parametric Models 

These models are designed based on the equations and parameters of the real system. 

In this approach the key issue is to resolve the system equations and find the parameters. 

As an example, we can mention to the work done by Lee and his colleagues [7] in which 

they have present a scheme for detecting faults in air-handling units.   

 

In less complicated systems, the physical model can be readily found. In some 

research efforts an estimation algorithm has been developed to update the model 

parameters based on the measured signals. In [8] Keyhani has explained how the 

measurement signals from an electric motor can be used for parameter identification to 

estimate the relevant information regarding the motor working condition. Kornand and 

his colleagues have persuaded the same approach for fault detection in milling [9]. They 

have used a precise force model and an estimation algorithm to update model parameters 

based on the measured force.  

 

However, when the system is too complicated or there is not enough information of 

the physical specifications of the system, the approach of physical/parametric models 

does not work. Also this approach can not lead to a generic fault detection mechanism as 

it mainly depends on system specifications which change from case to case.  
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Data Driven Models 

This is a generic approach for system modeling. In this approach the model is 

designed based on the system performance. The data constructed based on the system 

records is used to tune the model parameters. Neural Networks and Fuzzy logic systems 

are two well known tools for this approach. Chow and his colleagues have carried out 

comprehensive investigation on various neural network based (model based) fault 

detection scheme [10-12]. In [13], Chow proposed a typical back-propagation neural 

network structure for incipient motor faults diagnosis. In [14], Gao and Ovaska 

presented several typical fault diagnosis schemes based on neural networks, fuzzy logic, 

neural- fuzzy, and genetic algorithms. They compared the advantages and disadvantages 

of these methods. Nejjari and Benbouzid [15] applied fuzzy logic to the diagnosis of 

induction motor stator and phase conditions.  
 

 Data Driven Models can be deigned quickly. However, these models are only as 

good as data used to generate them. Their accuracy falls off rapidly in the region of 

operating space for which there is no training data. 

  

Qualitative Models  

Qualitative Models are designed based on the qualitative knowledge of the system. 

They predict the system behavior qualitatively. If some quantitative knowledge is 

included, the model is called semi-qualitative. Semi-qualitative models can determine a 

range for each system variable. For example Yumoto and his colleagues [16 and 17] 

have worked on fault diagnostics in HVAC systems using qualitative reasoning.   

 

The main advantage of qualitative models is their ability to predict the system 

performance even when system parameters change slightly. In situations that it is 

impossible to find the system variables exactly, qualitative approaches are a better 

solution. Qualitative models can not be used to develop generic approaches in diagnostic 
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area. This is due to the dependency of qualitative models on system specifications which 

change from case to case.  
  

2.1.2 Analysis Section 

The role of the Analyzer is to compare the system outputs with references to 

determine and isolate faults (Fault Determination and Fault Isolation). In model based 

approaches, the Fault Determination section compares the difference between the system 

output and model output (residual) with a constant or changeable threshold. The value of 

threshold depends on the system specifications, system noise level, model accuracy, and 

sensor resolutions. For example Ton and Huo [18] have shown how the threshold should 

be evaluated in neurofuzzy based fault detection mechanism for induction motors.    

 

When the residual passes the threshold, the Fault Determination section finds that 

there is an error. After that the Fault Isolation section comes in to isolate the fault. It 

looks for some predefined signatures in the faulty response. The signatures are defined 

based on the system specifications. They might be used to design a fuzzy system, train a 

neural network. Benhouzid and Nejjari [19] have shown how signatures can be 

expressed in a simple fuzzy logic approach to monitor the stator of induction motors.  

 

2.2 Sensor Diagnostics  

Like Fault Diagnostics, generally the process of sensor diagnosis is divided into two 

steps: 1- Sensor Fault Determination and 2- Sensor Fault Isolation. The first step 

determines if there is any sensor problem in the system while the second step locates the 

faulty sensors.   
 

A generic Sensor Fault Detection mechanism is divided into two parts: 1- Reference 

Calculation Section and 2- Analysis Section. Although this classification is similar to 

that of Fault Diagnostics, the internal structures are different. 
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2.2.1 Reference Computation Section 

As it was mentioned earlier, the task of the Reference Computation is to prepare 

some references for the evaluation of the system performance. On the issue of Fault 

Diagnostic, the well known approach for reference calculation was model based 

approach. Feeding the same input to the real system and the model, the difference 

between their outputs is the best source for fault detection purposes.  

 

In spite of the popularity of the model-based approach in Fault Detection, this 

method is not appropriate for Sensor Diagnostics. The model-based approach relies on 

the correct input data (which might be measured using sensors). This assumes that the 

input to the real system and the input to the model are correct (fault free). When there is 

a notable difference between the output of the real system and the output of the model, a 

problem likely exists in the real system. In Sensor Diagnostics, the focus is to find 

dysfunctional sensors. 

 

In a Sensor Diagnostics, as both input and output data are measured by sensors, none 

of them is trustable (each one might be faulty). We can not assume that the input data is 

correct and then relate any problems in the output data to the output sensors. Therefore 

the conventional model based approaches (the model tha t predicts the output of the 

system having the same data at the input) are not suitable for the Sensor Diagnostics. 

 

 Autoassociative Neural Network (AANN) 

Autoassociative  Neural Networks (AANN) are an alternative solution for Sensor 

Diagnostics. Autoassociative Neural Networks do not discriminate between the input 

and output. The concept of Autoassociative  Neural Network was first developed by 

Kramer [1] in 1992. Figure 2-3 shows the general architecture of the AANNs. Basically 

AANNs are identity mappings. In sensor diagnostics, the set of inputs and outputs of the 

real system constraint the input to the network [1, 5, and 6].  The AANN is trained to 

recreate the input as its output. When the data input to the AANN is non-faulty, the 
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AANN output is the same as input. When the input data is contaminated (there is a 

sensor problem), the AANN output will not be the same as its input. Autoassociative  

Neural Networks and their specifications are discussed in details in section 4. 
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Figure 2-3, AANN architecture 

 
 

2.2.2 Analysis Section 

The analyzer compares the calculated references by the system variables to 

determine if there is any problem (Task 1). After determination of a sensor problem, the 

analyzer tries to identify the faulty sensors (Task 2). The Analyzer needs to distinguish 

between the perturbations coming from the system noise and those coming from the 

sensor fault. These tasks are different than fault diagnostics. In fault diagnostics the 

analyzer should locate faulty parts based on the signatures defined based on the system 

specifications while in sensor diagnostics, the analyzer located faulty sensors without 

including system specifications. With sensor diagnostics, it is possible to come up with a 

generic approach as a sensor fault detection mechanism may not necessarily depend 

explicitly on system specifications.  
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2.3 Chiller Fault Diagnostics 

The majority of fault detection efforts in HVAC systems have focused on fault 

detection2 in chiller. This is due to the fact that chiller uses the largest portion of energy 

in buildings. Several efforts have been done to develop a chiller model for diagnostic 

purposes. A comprehensive chiller model [20] has been developed by ASHRAE 

(American Society for Heating, Refrigerating, and Air Conditioning engineers), which is 

called HVAC 1 primary Toolkit. This model has been written with FORTRAN 77 and 

used a comprehensive set of subroutines (38 subroutines) to predict the performance of 

different HVAC components.  

 

Gordon and Ng [21] have also developed their universal thermodynamic model. 

They used the fundamental relation between chiller COP and the cooling capacity (Heat 

absorption at the evaporator). Based on this way they were able to predict the chiller 

performance by identifying certain chillers parameters. The robustness of the Gordon 

and Ng model has been investigated in [22]. The model has been verified with 

experimental results with three proposed built system configuration. It has been shown 

that the model is both flexible and accurate with respect to changes in the system layout.  

 

Another model has been developed with the cooperation of United States 

Government (USG) and Lawrence Berkeley National Laboratory [23]. DOE-2 according 

to [24] is the most complex and comprehensive building energy simulation program 

                                                 
2 In the area of fault detection there are several names like “Fault Detection”, “Fault Diagnosis”, “Fault 
Determination”, and “Fault Isolation”. The meaning of these names might be slightly different from paper 
to paper. In this thesis, we have the following definitions: 
Fault Detection = Fault Diagnosis : The whole process of fault isolation and fault determination 
Fault Determination: The process of checking whether system performance is normal or not  
Fault Isolation : The process of isolating and finding the source of the fault    
 
In some papers, specially those in the area of chiller fault detection, these names have slightly different 
meanings: 
Fault Detection = Fault Determination  
Fault Diagnosis = Fault Isolation 
In those papers, the Fault Detection is know as Fault Detection and Diagnosis (FDD)  
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available. DOE-2, writhen in FORTRAN, is primary used for building energy analysis 

and predicts energy uses and costs.  

 

Sreedharam and Haves [25] have evaluated the above three models for FDD purpose 

(the Gordan and Ng model, the ASHRAE model, and DOE2 model). They have shown 

that all three models display similar level of accuracy. The Gordan-Ng model has the 

advantage of being linear in parameters. The ASHREA model may have advantages 

when refrigerant temperature measurements are also available. They have stated that the 

DOE2 model can be expected to have advantages when very limited data are available to 

calibrate the model.       

 

Fault isolation is inherently more complicated than fault detection though the last 

few decades have seen an absolute proliferation in this field. Stylianou and Nikanpour 

[26] have used a rule based approach using steady state and transient data to perform 

fault detection and diagnosis in chiller. Braun and Rossi [27] have proposed the use of a 

two-step approach towards chiller fault diagnostics. They first used statistical pattern 

recognition to test for the presence of a fault. If a fault was detected, they followed that 

up by using a matrix of symptoms to diagnose the fault. Grimmelius [28] has developed 

a comprehensive symptom matrix to aid the diagnosis process. A nonlinear statistical 

chiller model output was used as the base case value and was compared to values of 

selected variables whose deviation or residues were used to build the symptom matrix.   

Recently Wang and Wang [29] reported a first principle model for fault detection, 

diagnosis and evaluation (FDD&E) of the temperature sensors and flow meters in a 

central chilling plant and presented dynamic simulation results. The law-based sensor 

FDD&E is based on the fundamental mass (steady state) energy conservation 

relationships.   

 

The approach of Wang and Wang [29] monitors only a part of the sensors in the 

chiller (temperature sensors and flow rate sensors). They have assumed that data 
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measured by other sensors are correct. If there is any sensor problem, it should be from 

temperature or flow rate sensors. This approach cannot be made into a generic sensor 

diagnostic mechanism. In general we cannot assume that a part of the sensors are correct 

and try to monitor the others based on that.  

 

On the other hand, the other approaches explained above are based on model-based 

approach. As it was explained in section 2.2.1, the model-based approach is not an 

appropriate approach for a generic sensor diagnostic mechanism. The model-based 

approach relies on the correct input data (which might be measured using sensors). This 

assumes that the input to the real system and the input to the model are correct (fault 

free). In Sensor diagnostics, as both input and output data are measured by sensors, none 

of them is trustable. Model-based approach might be used to monitor a part of the 

system sensors but not all sensors together. There are also some qualitative approaches 

for chiller diagnostic but as we explained in section 2.1.1, the qualitative approaches 

mainly depend on system specifications. Therefore for any system, a separate diagnostic 

mechanism must be designed. In this project, we are looking for a generic sensor 

diagnostic mechanism to be applicable in different systems.  
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3. INTRODUCTION TO NEURAL NETWORKS 
 

3.1 Introduction  

Basically a neural network constructs of a set of nodes connected by links. Each 

node might have several inputs with one output. The output is a function of the inputs 

(linear or nonlinear). The node output is transmitted to other nodes through the links. 

Thus each node output is the input for other nodes. This structure is similar to the 

structure of neural systems in human brains in which nodes are corresponding to neurons 

and links are corresponding to synapses transmitting signals between neurons.  

 

A weight factor is assigned to each link. When a signal transmits through the link, it 

is multiplied by the corresponding weight before it reaches the receiving node. Therefore 

the nodes can reinforce or inhibit signals between two nodes. For convenience, we name 

the weight associated with a link from node in  to node jn as ijw  (Figure 3-1). The signal 

sent from in  is denoted ix . 

 

 

∑

1n

2n

kn

jn

jx

1x

2x

kx

f

∑∑

1n

2n

kn

jn

jx

1x

2x

kx

f

 
Figure 3-1, Node with several inputs and one output 

 



    

 

19 

In feed forward neural networks, each node performs a simple two step operation. 

First it calculates a weighted sum of all input signals. For example node jn  in Fig 3-1 

calculates the following weighted sum in the first step.  
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)13.( −Eq  

Then the calculated sum is fed to a predefined function, f (typically a sigmoid 

function), to produce the output signal of the node. These two steps are illustrated in Fig. 

3-1. Combining these two steps, we have  
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3.2 Architecture of the Neural Network 

There are different types of neural networks. Feed Forward neural networks are the 

most widely used networks. The architecture of a three layer feed forward neural 

network3is shown in Figure 3-2. It organizes its nodes into three layers: the input layer, 

the hidden layer, and output layer. Each node in the input layer receives external input 

signal and transmit it to all nodes in the hidden layer through links. Similarly, hidden 

layer nodes receive input signals from the input layer and send the processed signal to 

each node in the output layer. Nodes in the output layer generate network outputs by 

processing transmitted signals from the hidden layer. This Neural Network architecture 

is called “feed forward” because the signals flow from the input layer to the output layer 

in a forward direction.  

                                                 
3 One of the main applications of feed forward neural networks is nonlinear mapping. It has been 
mathematically proven that a 3-layer feed forward neural network can handle any nonlinear mapping 
problem with sufficient number of nodes in each layer [35]. However, more layers help the network to 
have a better performance and learn the relation between the input and output data better.   
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Figure 3-2, Architecture of a three layer feed forward neural network 

 
 

 

3.3 Neural Network Training 

Backpropagation technique is the most popular approach in training feed forward 

neural networks. A set of training data is used to train the network. During training, the 

difference between the neural network output and the training data target gradually 

reduces. Backpropagation is based on the gradient descent concept.  

 

3.3.1 Gradient Descent 

Gradient Descent is a general method for function minimization. As you know the 

minimum of a function J(x) is defined as the zeros of its gradient.  

[ ] 0)()(minarg =∇⇒=∗ XJXJX X    

)33.( −Eq  

However, only in very special cases this minimization function has closed form 

solution. In other cases, finding a closed form solution is almost impossible or 

impractical.  
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Gradient descent finds the minimum of the function in an interactive fashion by 

moving in the direction of steepest descent. Assume that )(XJ ( T
nxxxX ],....,[ 21= ) is 

the cost function. We want to find the value of X that minimizes J. The symbol J∇  

denotes the gradient of J. The gradient is calculated as:  
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=∇    

)43.( −Eq  

Therefore J∇  is a vector function of X. The gradient has the property that when it is  

evaluated as X, it points in the direction of travel from X that will maximally increase J. 

Therefore to decrease the function J, the value of X should be slightly changed in the 

opposite direction (i.e. J∇− ). This can be done through the following algorithm. 

 

1- Start with an arbitrary initial condition )0(X  

2- Compute the gradient ))(( kXJX∇  

3- Move in the direction of steepest descent: 

))(()()1( kXJkXkX X∇−=+ η    (η  is the learning rate) 

4- Go to 2 (until converges) 

 

Practical Problems 

The implementation of gradient descent has several problems. 

I) Local Minima 

Gradient Descent algorithm does not guarantee to find the global minimum even if it 

converges. It might trap in local minima. There is no way to discriminate between the 

global minimum and local minimum. For instance, consider Figure 3-3 which shows the 

cost function, J, as a function of X. The function has two minimums; a global minimum 

and a local minimum. Gradient descent might converge to either one. It depends on the 

starting point. There is no way to prevent the solution to converge to a local minimum.   
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Figure 3-3, Local minima and global minima 

 

 

Some types of problems are proven to have no local minima. Therefore convergence 

to a global minimum is assured (provided the step size η  is not too large). For other 

problems we might not know whether local minima exist or whether a minimum found 

by gradient descent is a local or global minimum.  

 

II) Step Size  

In the updating equation of the gradient descent algorithm, there is a constant 

( 0>η ) which defines how big the step is made at each iteration. Unfortunately the 

choice of η  is problem-specific and can greatly affect the working of the algorithm. Too 

small an η  will drastically slow down the algorithm while a large value can cause the 

algorithm to oscillate and become unstable.  

 

3.3.2 Backpropagation Technique 

In a feed forward neural network, the main problem is to find the weights, W, such 

that the network captures the relation between the input and output. Backpropagation is 
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the well known approach for this purpose. The approach is based on the Gradient 

Descent. The objective function is defined as the sum-square-error at the outputs. 
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Where n
kt  is the desired target of the thk output neuron for the thn  example and 

n
ky ><2  is the output of the thk output neuron for the thn example4.  

                                                 
4 Note that here we considered a three layer neural network (one hidden layer, input layer, and output 
layer). The same approach can be implemented to other networks with more number of layers. An 
example of a hidden layer network is shown in Figure 3-4. The above notations are from [35]. 
 
based on the figure 3-4 we have the following notations:  

- ix is the thi  input to the network  

- ><1
ijw  is the weight connecting the thi  input to the thj  hidden layer.  

- ><1
jnet  is the dot product at the thj  hidden layer.  

- ><1
jy  is the output of the thj  hidden neuron 

- ><2
jkw  is the weight connecting the thk  hidden neuron to the thj  output 

- ><2
knet  is the dot product at the thk  output neuron 

- ><2
ky  is the output of the thk  output neuron 

- kt  is the target (desired) output at the thk  output neuron 

- For convenience we will treat biases as regular weights with an input 1 
 
Now based on the above notation the network equations are: 
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Figure 3-4, A general architecture of neural network 

 

 

Based on the gradient descent algorithm, the updating equation is: 
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Now the problem is calculation of 
W
WJ

∂
∂ )(

  (for each weight) in terms of what we 

know: the inputs jX , the network outputs ><2
ky  , and the desired targets kt . For 

simplicity we find the derivation for one example. This allows us to drop the outer 

summation.  
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Calculation of 
W
WJ

∂
∂ )( for Hidden to Output Weights 

In a three layer feed forward neural network, there are two sets of weights: hidden to 

output weights, input to hidden weights. In this section we find the derivation of cost 

function for hidden to output weights. By using the chain rule, the derivative of J(W) 

with respect to a hidden-to-output weight is (equations are based on Figure 3-4):  
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Now we calculate each of these terms separately: 
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Merging all these derivations yields  
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For the bias weights, use 1=><t
jy  in the expression above.  
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 Calculation of 
W
WJ

∂
∂ )( for Input to Hidden Weights 

Using the chain rule, the derivative of J(W) with respect to a IH weight is  
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The second and third terms are easy to calculate from our previous results:  
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Calculation of the first term (i.e.
><∂

∂
1

)(

jy
WJ ), however, is not straight-forward since we 

do not know what the output of the hidden neurons ought to be. This is known as the 

credit assignment problem, which puzzled connectionist for two decades. The trick to 

solve this problem is to realize that hidden neurons only contribute to the errors of the 

output nodes. The derivative of the error with respect to a hidden node’s output is 

therefore the sum of that hidden node’s contribution to the errors of all the output 

neurons.  
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The first two terms in the summation are known from our earlier derivation: 
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The last term in the summation is: 
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Merging these derivations yields:  
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Note that what have actually done is propagation of the error term Pn backwards 

trough the hidden-to-output weights (hence the term backprop, Figure 3-5). The final 

expression of 
W
WJ

∂
∂ )(

 for input to hidden weights is: 
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For bias weights, use xj=1 in the expression.  
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Figure 3-5, Neural network architecture
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4. AUTOASSOCIATIVE NEURAL NETWORK 
 
 

“An Autoassociative Neural Network (AANN) is a network in which the outputs are 

trained to emulate the inputs over an appropriate dynamic range. Plant variables that 

have some degree of coherence with each other constitute the input. During training, the 

interrelationships between the variables are embedded in the Neural Network connection 

weights” [2] 

 

4.1 Architecture of the Autoassociative Neural Network  

Autoassociative Neural Networks are essentially feed forward Neural Networks. 

Figure 4-1 shows the general architecture of an AANN. AANN architecture contains an 

input layer, a number of hidden layers and an output layer.  
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Figure 4-1, AANN general architecture  

 

It is theoretically sufficient for an AANN to have three hidden layers [1]. However, 

in practice, it has been shown that more hidden layers help AANN to have improved 
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performance. Additional hidden layers help the AANN to more effectively map the 

interrelationship among variables [4].  

 

The first hidden layer is called “mapping layer”. The transfer function of the nodes in 

the mapping layer can be sigmoid or other similar nonlinear functions. The second 

hidden layer is called the bottleneck layer. The dimensionality of the bottleneck layer is 

the smallest one in the network (its transfer function can be linear or nonlinear). The 

third or last hidden layer is called the de-mapping layer, whose nodal transfer functions 

are nonlinear (usually sigmoid). 

 

4.2 Autoassociative Neural Networks and Identity Mapping 

Autoassociative Neural Networks provide an identity mapping. The topic of identity 

mapping is considered as a subset of general mapping. In identity mapping the input 

variables are mapped to themselves5 without making a simple one-to-one mapping. Each 

output should be a function of all inputs. For example in Figure 4-2 the identity mapping 

must makes each 3 and 1,2,i ,X i =  as a function of 321 X ,X ,X ; 

),,(X 3211 XXXf=  

),,(X 3212 XXXf=  

),,(X 3213 XXXf=  

 

                                                 
5 The output is equal to input 
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Figure 4-2, Identity mapping 

 

 

In spite of the fact that there are many techniques for general mapping, most of them 

are not appropriate for identity mapping. When a general mapping technique is used for 

an identity-mapping problem, it chooses the easiest solution, which is developing a 

simple one to one mapping. Unless a mapping technique has an internal force to prevent 

one-to-one mapping, it is not appropriate for identity mapping. 

 

Autoassociative Neural Networks are appropriate for identity mapping as they have 

an internal force to prevent one-to-one mapping. The bottleneck layer (the second layer) 

plays this role. During training, the bottleneck layer forces the AANN to encode the  

inputs (compress the inputs) then decode them (decompression) to produce the network 

outputs. The training process selects the network weights such that the re-created 

measurement vector at the output layer matches the input as closely as possible, in least 

square sense, over the set of training examples.  

 

4.3 Autoassociative Neural Network Training 

Since AANNs are feed forward neural networks, they are trained based on back 

propagation technique 6. During training, the network learns the interrelationship  among 

                                                 
6 Back Propagation has been exp lained in section 3.  
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the variables. The set of variables fed to the AANN should be correlated.  This is 

checked by analyzing the covariance matrix of the data7. If the variables are not 

correlated, AANN will not find any coloration. In this situation, the network will 

memorize the data. 

 

4.3.1 AANN Training in Noisy Situations  

Training is critical with neural networks. Good training leads to a good 

generalization capability in which the trained network can generalize samples out of the 

training set with a good approximation. During training, the network must learn the 

interrelation between the input and output data to a specified accuracy.  Too high 

accuracy has opposite effect. If the network learns the data too perfectly, its 

generalization capability falls down. It cannot generalize samples out of the training set 

well.    

 

For example consider Figure 4-3, which shows a set of data (data with one input and 

one output).  

 

 

                                                 
7 Given n sets of variables denoted  { } { }n1 X,......,X , the covariance ),cov( ji xx=σ  of iX  and jX  is 

defined by: 

( )( ) jijijjiiji xxxxxxxx −=−−≡ µµ),cov(  

Where  is the expectation value, ii x=µ , and jj x=µ  respectively. The matrix ( )ijV  of 

quantities ),cov( jiij xxV =  is called the covariance matrix.  

The covariance of two variables x and x provides a measure of how strongly these variables are correlated.   



    

 

32 

Input

Output

Input

Output

 
Figure 4-3, Data set with one input and one output 

 

 

We want to train a neural network to find the relation between the input and output. 

Two possible solutions are shown in Figures 4-4 and 2-5.   

 

 

Input

Output

Input

Output

 
Figure 4-4, A good solution found by neural network 

 

 

Input

Output

Input

Output

 
Figure 4-5, A bad solution found by neural network 
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In Figure 4-4 the network has found a curve that is not so accurate. It maps the 

samples with a good approximation but not so perfectly. In Figure 4-5 the curve is 

perfect. It maps the samples exactly.   

 

Now let see what would be the network response to a sample out of the training set 

(red point). In the case of Figure 4-4, the network still maps the point with a good 

approximation while in the case of Figure 4-5 the network generalization is poor. This is 

due to the fact that in the case of Figure 4-5 the network has memorized the data. It has 

learned how to map each training sample exactly but is has not learned the relation 

between input/output. Figure 4-4 is an example of good training while Figure 4-5 is a 

bad one. Situations like Figure 4-5 usually happen when the network is forced to learn 

the data too perfectly. The network sees that the only way to reach the defined accuracy 

is to memorize the samples one by one.  

 

When a data is noisy, it has a level of uncertainty. The uncertainty level depends on 

the noise level. Higher noise causes higher uncertainty in individual measurements. If a 

neural network dealing with noisy data is forced to learn the data with accuracy beyond 

the uncertainty level, it will memorize the data (like what we had in Figure 4-5). At first 

the network tries to learn the data. It tries to find a relation between the input and output. 

When it sees no relation can satisfy the desired accuracy, it starts to memorize the 

samples one by one. In this situation the learning process takes a lot of time (symptom). 

As AANNs are feed forward neural networks, we might expect the same performance in 

noisy situations. Lets show it through an example.  

 

Consider the identity mapping problem8 shown in Figure 4-6 (an 8-sensor system 

problem). The training data is shown in Figure 4-7. 

 
                                                 
8 This identity mapping problem is an 8-sensor system (a chiller model system which has 3 inputs and 5 
outputs). The data used in this example is from the performance of that model. The process of data 
generation has been explained in section 5. Here we just use the data got from the model performance to 
train the AANN.  
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Figure 4-6, Identity mapping with 8 inputs/outputs  
 

 

The AANN performance is compared in noise free and noisy conditions.   

I) Noise free condition: The AANN was trained based on the data shown in Figure 4-

7. The selected AANN was an 8-11-5-11-8 neural network9. The nodal functions were 

sigmoid. The training accuracy was set at 0.0000110. The AANN reached the desired 

accuracy in less than 20 epochs 11.   

  

II) Noisy condition: In this situation the data was contaminated by 1% noise12. Again 

the AANN was a 8-11-5-11-8 neural network and the nodal function was sigmoid. At 

first the training accuracy was set at 0.00001. After 300 epochs, AANN still did not 

reach the desired accuracy. Figure 4-8 shows the relation between the epochs and the 

sum square error. As you see, AANN does not seem to reach the desired accuracy even 

after 400 or 500 epochs. This means that the 0.0001 training accuracy is beyond the 

                                                 
9 8-11-5-11-8 means a network with 8 nodes in the first layer, 11 nodes in the second layer, … , and 8 
nodes in the last later. 
10 Training accuracy is a standard term in training neural networks. It determines how precisely the 
network must be trained.  When the training accuracy is, say 0.00001, this means that after training, the 
sum square error between the inputs and outputs of the AANN should be less than 0.00001. 
11 Epoch is another standard term training neural network area. There are two approaches to train neural 
networks: batch and ... In batch at first the whole data is fed to the network. Then the weights are updated 
based on the error of the whole data.  After updating the weights, the data is again fed to the network and 
weights are updated again based on the new error. This process continues until the network reaches the 
desired accuracy. The number of times that data is fed to the network is named epoch.  
12 In section 5, the details about the process of inducing noise is explained. 
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uncertainty level caused by noise. In the second attempt, the training accuracy was set at 

0.001. This time the AANN reached the desired accuracy in less than 20 epochs.  
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Figure 4-7, Training set 

 

 
Figure 4-8, The relation between sum squared error and 300 epochs 
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5. CHILLER MODEL AND DATA GENERATION 
  

A chiller model was used as a system to test the developed diagnostic approach using 

synthetic data. The model was previously developed as a part of a master thesis. The 

detailed specifications of the model can be found in [3]. In this section, we explain the 

model’s inputs/outputs, the process of data generation, and the method of inducing noise 

to the system.   

 

5.1 Model Inputs/Outputs  

The model simulates the performance of a reciprocating, vapor compression cycle chiller 

(Figure 5-1).  

1
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Figure 5-1, System boundary of the chiller model, from [3] 

 
 
 
The inputs to the chiller model are (Figure 5-2):  
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1- Temperature of water into condenser:  cinTw _  

2- Temperature of water into evaporator: einTw _   

3- Mass flow rate of water in evaporator: evapMw  

 

The outputs to the model are (Figure 5-2): 

1- Temperature of water existing condenser: coutTw _  

2- Temperature of water existing evaporator: eoutTw _  

3- Coefficient of the chiller performance: COP  

4- Power consumed by compressor: W  

5- Efficiency of Compressor: compη  
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Figure 5-2, Chiller model inputs/outputs  

 

The input ranges are13:  

KT cin deg309289_ →≈ ,  

KT ein deg288275_ →≈  

sec/64.022.0 KgM we →≈  

                                                 
13 These ranges have been defined by designers [3]   
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5.2 Data Generation 

From 1000 samples generated by using the model, 300 samples were randomly 

chosen as the test set and the remainder (700 samples) were used as the training set. The 

training set is used to train the network and the test set is used to test the trained network.  

Figures 5-3 shows the complete dataset14. Figure 5-4 shows the training set. The data has 

been sorted in Figure 5-4. Figure 5-5 shows the test set (sorted) .In another test, we 

prepared a data with 4000 samples (3000 samples as training set and 1000 samples as 

test set). Since the same results occurred with both datasets, the smaller data set was 

used.  
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Figure 5-3, Whole data with 1000 samples 

                                                 
14 As it was explained, this data has been got from the chiller model developed by Rahul [3]. However, the 
data might be unreal comparing with a real chiller (for example it seems that the COP generated by model 
is unreal and the chiller efficiency is negative). In this project this data has only been used to verify the 
diagnostic approach. The unreality of the data does not have any effect on the results.   
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Figure 5-4, Training set (sorted) 
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Figure 5-5, Test set (sorted) 
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5.3 Normalization  

The data was normalized such that the mean value and variance of each variable 

became zero and one respectively15. This normalization keeps any single sensor from 

biasing the results due its large numerical values. Figure 5-6 shows the normalized 

training set and Figure 5-7 shows the normalized test set.  
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Figure 5-6, Normalized training set (sorted) 
 

 

                                                 
15 If we have a variable X with the mean value of Xmean and the variance of Xvar, we can normalize the X to 
have the mean value and variance of zero and one respectively based on the following equation: 

varX

XX
X mean

normalized
−

=  

)15.(( −Eq  
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Figure 5-7, Normalized test set (sorted) 
 

5.4 Inducing Noise   

As a part of this project, the effect of noise on sensor diagnostics is studied. 

Therefore it is necessary to generate noisy data in different situations. As you know the 

existing noise in a system does not depend on the current value of the system variables. 

The noise level is defined based on the variable changes. In order to induce A% noise to 

a variable X, we have:  

 

A
XX

XX noisy ×
−

+=
100

)min()max(
  

)25.( −Eq  
In order to induced noise to the data got from the chiller model, at first we need to 

find the range of variables. The noise is induced before normalization. Figures 5-8 and 

5-9 show the training data and the test data with 2% noise. Figures 5-10 and 5-11 show 

the same data with 5% noise.   
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Figure 5-8, Training set with 2% noise 
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Figure 5-9, Test set with 2% noise 
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Figure 5-10, Training set with 5% noise 
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Figure 5-11, Test set with 5% noise 
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6. ENHANCED AUTOASSOCIATIVE NEURAL NETWORK (E-AANN) 
 
 

AANNs are appropriate tool for sensor diagnostics as they reproduce the input data 

at the output. In sensor diagnostics, all data measured from the real system (the input and 

output variables) constitute the input vector to the AANN (Figure 6-1).  
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Figure 6-1, AANN structure 

 

 

The AANN is trained to match the inputs as closely as possible over the training set. 

When non-faulty data is fed to the trained AANN, the difference between the input and 

output of the AANN is ideally zero. When the data is contaminated (a sensor is faulty), 

the difference between the input and output of the AANN will be non-zero. The AANN 
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approach can be used to determine whether there is a sensor problem but the issue of 

locating the faulty sensors still remains.  

 

6.1 Hines Approach  

At the University of Tennessee, Hines and his colleagues have proposed a method to 

locate the faulty sensors using AANN [5 and 6]. They believe that the difference 

between each AANN input and output contains enough information to capture faulty 

sensors. As noted by Hines [6] “When a sensor that is input to the autoassociative  

network is faulty due to a drift or gross failure, the network still gives a valid estimate of 

the correct sensor value due to its use of information from other correlated sensors 

(Figure 6-2). The estimate sensor output is then compared to the actual sensor output. 

The difference is called an error or residual. The residual normally has a mean of zero 

and a variance related to the amount of the noise in the sensor’s signal. When a sensor is 

faulty, it’s associated residual’s mean or variance changes. This can be detected via 

statistical decision logic.”  

 

This means that when the difference between each AANN input and output is zero, 

the corresponding sensor is healthy otherwise the sensor has a problem. However, we 

were unable to reproduce the same results as Hines, perhaps due to an error or 

unreported assumptions in the original work. We believe that due to the inherent non-

orthogonality of the AANN, when one of the AANN inputs is contaminated, this affects 

all the AANN outputs.  The mapping function between the AANN input and output is 

nonlinear (due to the nonlinearity of the node functions) so we cannot expect to see no 

change when there is perturbation in one of the inputs (even if that perturbation is small). 

Finding the difference between the input and output of the AANN can be used to 

determine sensor problems but is not sufficient to localize the faulty sensors.  
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Figure 6-2, Approach recommended by Hines 

 

 

6.2 Enhanced Autoassociative Neural Network 

In order to remedy this situation, an extension to the AANN concept has been 

developed. This extension is based on the fact that when the input to the AANN is fault 

free, AANN output will be the same as input. In this situation the Sum Squared Error 

between the inputs and output should be ideally zero: 
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From a procedural standpoint, the proposed extension can be viewed as an 

optimization process tha t determines )min(arg* JX = : 
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Once *X  has been determined, the difference, XX −* , can be used to identify the 

faulty sensor and the extent of the fault induced error. 
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E-AANN can be used to locate the faulty sensor and also estimate the real value of 

the faulty sensor output. The input to the E-AANN is the data measured from the real 

system (both input variables and output variables) and the output to the E-AANN is the 

data reconstructed by the E-AANN. If the input data is fault free, then E-AANN output 

will be the same as the input and the difference between the output and the input will be 

zero. When one of the inputs is contaminated, the corresponding output will not track the 

input and their difference will not be zero anymore. In order to locate the faulty sensors, 

we only need to find the difference between each E-AANN input and output. If the 

difference is roughly zero, the input is fault free and the corresponding sensor is healthy. 

If the difference is not zero, the input is contaminated and the corresponding sensor is 

faulty.  

 

6.3 Examples  

Consider the chiller model explained in section 5 (an 8-sensor system). The model 

was used to generate 1000 sets of steady state data. 700 data sets were used to train the 

network and the remaining 300 sets were used as the test set. The AANN embedded in 

the extended E-AANN is an 8-11-5-11-8 neural network.  

 

Example 1: In this example the E-AANN performance is evaluated in a range of 

time domain. Figure 6-3 shows the test data with 1% noise and no induced fault.  Figure 

6-4 shows the same test data but this time, sensor #3 has drift error. E-AANN output is 

shown in Figure 6-7. For better comparison we have zoomed in on the third graph of 

Figure 6-3 (sensor #3 output in non-faulty condition), the third graph of Figure 6-5 

(sensor #3 output after inducing drift error), and the third graph of Figure 6-7 (the data 

reconstructed by E-AANN) in Figure 6-6.    
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Figure 6-3, Test data with 1% noise 
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Figure 6-4, Test data with 1% noise, sensor #3 has drift error 
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Figure 6-5, E-AANN output 
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Figure 6-6, Sensor #3 output before contamination, after inducing drift 

error, and the data reconstructed by E-AANN 
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Example 2: In this example one of the samples in the test set is chosen. The first 

sensor is intentionally induced an error (offset). Then the contaminated sample is fed to 

the E-AANN. The original data, contaminated data and reconstructed data are shown in 

Table 6-1. Figure 6-7 shows the changes of the cost function. You see that the cost 

function is minimum for sensor #1 somewhere between -1.5 and -2 (note that the data is 

normalized). This means that E-AANN has found the first sensor faulty and its real value 

is between -1.5 and -.2. Figure 6-8 shows the counter plot of the cost function.  

 

Table 6-1. Original data, contaminated data and reconstructed data 
 

  Synthetic Data 
Contaminated 

Data Value 
E-AANN Output 

Sensor #1 -1.674 0.1 -1.6749 

Sensor #2 -1.674   -1.674 

Sensor #3 -1.764   -1.764 

Sensor #4 -1.628   -1.628 

Sensor #5 -1.715   -1.715 

Sensor #6 -1.879   -1.879 

Sensor #7 -0.880   -0.880 

Sensor #8 1.0486   1.0486 
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Figure 6-7, Cost function 
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Figure 6-8, Contour plot of cost function  
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7. E-AANN SPECIFICATIONS 
 

The E-AANN can handle two tasks simultaneously; 1- isolation of faulty sensors and 

2- reconstruction of faulty sensor outputs. In this section we characterize E-AANN 

performance. We will discuss E-AANN accuracy in reconstructing sensor outputs, 

influential parameters on E-AANN accuracy, E-AANN ability to locate faulty sensors in 

noisy conditions, and influential parameters on E-AANN performance in noisy 

situations.  

 

7.1 E-AANN Accuracy  

It is important to see how precisely E-AANN can reconstruct sensor outputs. In order 

to improve the E-AANN accuracy, at first we need to know effective parameters. Our 

results show that in noise free situations, E-AANN accuracy is mainly affected by two 

parameters: I) AANN accuracy and limitations and II) E-AANN step size.  

 

AANN Accuracy: As E-AANN is an extension of the AANN, its accuracy is 

affected by the AANN accuracy and limitations. The accuracy of the AANN depends on 

the AANN training accuracy16. If the training accuracy is high, AANN can map and 

generalize the data precisely. If it is low, then AANN accuracy is poor.  

 

On the other hand, when the training accuracy is too high, it has opposite effect on 

the AANN performance. Too high a training accuracy makes the AANN to memorize 

the data instead of learning the correlation among the variables (for example in section 4, 

it was shown that the training accuracy of 0.00001 mage the AANN to memorize the 

data). Therefore the AANN can map the samples of training set perfectly but its 

generalization capability is poor and it cannot map the samples of test set well.  

 

                                                 
16 The issue of training accuracy has been discussed in details in section 3. 
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E-AANN Step Size: E-AANN locates the faulty sensors through a numerical search. 

It divides each input range into N points (N is user selectable). Then it calculates the 

value of the cost function (J) at each point. When the cost function is minimum, the 

corresponding point is used to locate the faulty sensor. The value of N has influence on 

E-AANN accuracy. The more N is increased, the smaller step size17 we have. Smaller 

step size means higher resolution and better accuracy. On the other hand, E-AANN step 

size and E-AANN computational time move in opposite direction. When the step size is 

small, the computational time is high. When the step size is large, the faulty sensor is 

located fast but the accuracy is poor. 

  

7.2 E-AANN Performance in Noisy Situations  

Usually diagnosis mechanisms have poor performance in noisy situations because it 

is difficult to catch the symptoms of faulty behavior from noisy signals. A good sensor 

diagnosis mechanism must be able to discriminate between the perturbations coming 

from the noise and those coming from the sensor error. The E-AANN is capable of 

detecting and isolating single sensor faults even when the data is noisy. To locate faulty 

sensors in noisy situations, the difference between the E-AANN input and output must 

be evaluated in a range of time domain.   

 

For example, consider the chiller model explained in section 5 (an 8-sensor system). 

The model was used to generate 1000 sets of steady state data. Seven hundred (700) data 

sets were used to train the network and the remaining 300 data sets were used in testing, 

test set. Each sensor’s data was normalized to have the mean value of zero and variance 

of one18. In this example we induce 2% noise to the data. The AANN embedded in the 

E-AANN is an 8-11-5-11-8 neural network. Figure 7-1 shows the test data with 2% 

noise without any induced fault. Figure 7-2 shows the same data but this time the sensor 

                                                 
17 Step Size = range / N 
18 The detail of the process of data generation can be found in section 4. 
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#3 has drift error19. For better comparison we have zoomed in on the third graph of 

Figure 7-1 and the corresponding graph of Figure 7-2 as depicted in Figures 7-4.  
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Figure 7-1, Test set with 2% noise 
 

 

                                                 
19Drift Error Faults a sensor fault in which the sensor error occurs gradually (Figure 7-3). Initially, the 
error is very small but tit grows slowly with time. There is another kind of sensor error, shift error, in 
which the sensor error occurs abruptly (Figure 7-3).  
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Figure 7-2, Test set with 2% noise, sensor 3 has drift error 
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Figure 7-3, Drift error and shift error 
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Figure 7-4, Sensor 3 output before and after inducing drift error, noise 

level is 2% 
 
 

The E-AANN output is shown in Figure 7-5. The sensor #3 output before 

contamination, after inducing drift error, and the data reconstructed by E-AANN is 

shown in Figure 7-6. The difference (error) between the E-AANN input and output is 

shown in Figure 7-7. The third graph of Figure 7-7 is different from others. All graphs 

have small perturbations (i.e. noisy shape signals) and zero mean value except for the 

third one, which has non-zero mean value. We conclude that the perturbations in all 

graphs except the third one are due to the noise and the corresponding sensors are 

healthy but the corresponding sensor to the third graph (sensor #3) is faulty. This means 

that the existing noise in the system does not have any influence on the mean value of 

the graphs of Figure 7-7. When the mean value is zero, the sensor is healthy. When the 

mean value is non-zero, the sensor has errors.  
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Figure 7-5, E-AANN output; the input data had 2% noise and drift-
error 
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Figure 7-6, Sensor #3 output before contamination, after inducing drift 

error, and the data reconstructed by E-AANN 
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Figure 7-7, The difference between E-AANN input and output. The 
input data had 2% noise and drift error 

 

 

Let test the E-AANN with another kind of sensor fault. This time we work with the 

same data with the same level of noise, but instead of inducing a drift error we induce a 

shift error (in shift error the sensor error occurs abruptly, Figure 7-3). Figure 7-8 shows 

the test data with 2% noise and induced fault (sensor #3 has drift error). For better 

comparison we have zoomed in on the third graph of Figure 7-8 and 7-1 as depicted in 

Figure 7-9. The induced noise and shift error to sensor #3 is shown in Figure 7-10 

([sensor #3 output + noise + drift error]-[sensor #3 output]). 
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Figure 7-8, Test set with 2% nois e, sensor 3 has drift error 
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Figure 7-9, Sensor 3 output before contamination and after inducing 

shift error, noise level 2% 
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Figure 7-10, The induced 2% noise and shift error to sensor #3 

([sensor #3 output + noise + drift error]-[sensor #3 output]) 
 
 

The E-AANN output is shown in Figure 7-11. The sensor #3 output before 

contamination, after inducing shift error, and the data reconstructed by E-AANN is 

shown in Figure 7-12. The difference between the E-AANN input and output is shown in 

Figure 7-13. Again we see that the third graph of Figure 7-13 is different from others. 

All graphs have perturbations with zero mean value but the mean value of the third 

graph is non-zero. Again this means that the corresponding sensor to the third graph 

(sensor #3) has a problem.  
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Figure 7-11, E-AANN output; the input data had 2% noise and shift-
error 
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Figure 7-12, Sensor #3 output before contamination, after inducing 

shift error, and the data reconstructed by E-AANN 
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Figure 7-13, The difference between E-AANN input and output. The 
input data had 2% noise and shift error 

 
 

In another example, we increase the noise level to see if E-AANN is still capable of 

locating faulty sensors. Figure 7-14 shows the test data with 5% noise induced and no 

fault. The data is contaminated by the same sensor faults (drift error and shift error).   

 

I) Drift error:  Figure 7-15 shows the contaminated data with drift error (sensor #3 

has drift error). For better comparison we have zoomed in on the third graph of Figure 7-

15 and the corresponding graph of Figure 7-1 as depicted in Figure 7-16. The induced 

noise and drift error to sensor #3 is shown in Figure 7-17 ([sensor #3 output + noise + 

drift error]-[sensor #3 output]). The E-AANN output is shown in Figure 7-18. The 

sensor #3 output before contamination, after inducing drift error, and the data 

reconstructed by E-AANN is shown in Figure 7-19. The difference between the E-

AANN input and output is shown in Figure 7-20. Again we see the third graph of Figure 
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7-20 has a different mean value comparing with others. The only difference comparing 

with previous example is that in Figure 7-20 graphs seem to have more perturbations. 
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Figure 7-14, Test data with 5% noise 
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Figure 7-15, Test set with 5% noise, sensor 3 has drift error 
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Figure 7-16, Sensor 3 output before contamination and after inducing 

drift error, noise level is 5% 
 

 
Figure 7-17, The induced 5% noise and drift error to sensor #3 
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Figure 7-18, E-AANN output; the input data had 5% noise and drift-
error 
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Figure 7-19, Sensor #3 before contamination, after inducing drift error, 

and the data reconstructed by E-AANN, noise level is 5% 
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Figure 7-20, The difference between E-AANN input and output. The 
input data had 5% noise and drift error 

 
 

II) Shift error: Figure 7-21 shows the contaminated data (sensor #3 has shift error). 

we have zoomed in on the third graph of Figure 7-21 and the corresponding graph of 

Figure 7-1 as depicted in Figure 7-22. The induced noise and drift error to sensor #3 is 

shown in Figure 7-23. The E-AANN output is shown in Figure 7-24. The sensor #3 

output before contamination, after inducing shift error, and the data reconstructed by E-

AANN is shown in Figure 7-25. The difference between E-AANN input/output is shown 

in Figure 7-26. Again we see the third graph of Figure 7-26 has a different mean value 

comparing with others.  
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Figure 7-21, Test set with 5% noise, sensor 3 has shift error 
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Figure 7-22, Sensor 3 outputs before contamination and after inducing 

shift error, noise level is 5% 
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Figure 7-23, The induced 5% noise and shift error to sensor #3 
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Figure 7-24, E-AANN output; the input data had 5% noise and shift-
error 
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Figure 7-25, Sensor #3 output before contamination, after inducing 

shift error, and the data reconstructed by E-AANN, noise level is 5% 
 

0 100 200 300
-2

0

2

S
en

so
r 1

0 100 200 300
-2

0

2

S
en

so
r 2

0 100 200 300
-2

0

2

S
en

so
r 3

0 100 200 300
-2

0

2

S
en

so
r 4

0 100 200 300
-2

0

2

S
en

so
r 5

0 100 200 300
-2

0

2

S
en

so
r 6

0 100 200 300
-2

0

2

S
en

so
r 7

Sample #
0 100 200 300

-2

0

2

S
en

so
r 8

Sample #
 

Figure 7-26, The difference between the E-AANN input and output. 
The input data had 5% noise and shift error 

A 
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As it was mentioned, when a data is noisy, it has a level of uncertainty. This 

uncertainty might confuse E-AANN sometimes. Due to the uncertainty, E-AANN might 

minimize the cost function by varying a non-faulty sensor. This is the reason of the 

behaviors named as A in the Figure 7-26. In these cases E-AANN has located the faulty 

sensor wrong. As the level of the uncertainty depends on the noise level, we might 

expect more behaviors like A in higher noisy situations. If you see Figure 7-7 which 

shows the difference between E-AANN input and output when the noise level is 10%, 

you see that there exist more behaviors like A. 

 

7.3 Maximum Level of Noise Tolerated by E-AANN  

It is important to see what would be the E-AANN performance when the level of 

noise is too high. Is there any distinct boundary as the maximum level of noise for the E-

AANN? Since the E-AANN is an extension of the AANN, its performance is affected by 

the AANN limitations in high noisy situations. When noise level is high, AANN 

reconstructs the input data with degraded accuracy. Therefore we must expect degraded 

performance from the E-AANN in high noisy situations (for example in chiller model, it 

will be shown that when the noise level is 10% to 20% the E-AANN performance 

degrades).   

 

Our results show that there is no distinct boundary as the maximum noise level for 

the E-AANN. As the noise level increases, the E-AANN accuracy decreases, so the E-

AANN may not catch small sensor faults when noise level is high.  

 

In the previous example E-AANN was used to catch sensor faults when the data had 

5% noise. The noise level was increased to 10% (same data) to see if E-AANN can catch 

the same drift error and sensor error or not. Figure 7-27 shows the test data with 10% 

and no induced fault. Figure 7-28 shows the same data but sensor #3 has a drift error. 

For better comparison we have zoomed in on the third graph of Figure 7-27 and the 
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corresponding graph of Figure 7-28 as depicted in Figure 7-29. The induced noise and 

drift error to sensor #3 is shown in Figure 7-30. The E-AANN output is shown in Figure 

7-31 and the zoomed of the third graph is shown in Figure 7-32. The difference between 

the E-AANN input and output is shown Figure 7-33.  

 
 

0 100 200 300
-2

0

2

S
en

so
r 1

0 100 200 300
-2

0

2

S
en

so
r 2

0 100 200 300
-2

0

2

S
en

so
r 3

0 100 200 300
-2

0

2

S
en

so
r 4

0 100 200 300
-2

0

2

S
en

so
r 5

0 100 200 300
-2

0

2

S
en

so
r 6

0 100 200 300
-2

0

2

S
en

so
r 7

Sample #
0 100 200 300

-2

0

2

S
en

so
r 8

Sample #
 

Figure 7-27, Test data with 10% noise 
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Figure 7-28, Test set with 10% noise, sensor 3 has drift error 
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Figure 7-29, Sensor 3 output before contamination and after inducing 

drift error, noise level 10% 
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Figure 7-30, The induced 10% noise and drift error to sensor #3 
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Figure 7-31, E-AANN output; the input data had 10% noise and drift-

error 
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Figure 7-32, Sensor #3 outputs before contamination, after inducing 

drift error, and the data reconstructed by E-AANN, noise level is 10% 
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Figure 7-33, The difference between E-AANN input and output. The 
input data had 10% noise and drift error 

A 
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Again as we see in Figure 7-33, all graphs have perturbations with zero mean values 

except the third one. Therefore we conclude the same. Now let us see E-AANN response 

to the shift error. Figure 7-34 shows the test data while sensor #3 has shift error. We 

have zoomed in on the third graph of Figure 7-34 and the corresponding graph of Figure 

7-27 as depicted in Figure 7-35. The induced noise and drift error to sensor #3 is shown 

in Figure 7-36. The E-AANN output is shown in Figure 7-37 and the zoomed of the third 

graph is shown in Figure 7-38. 
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Figure 7-34, Test set with 10% noise, sensor 3 has shift error 
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Figure 7-35, Sensor 3 output before contamination and after inducing 

shift error, noise level is 10% 
 
 

 
Figure 7-36, The induced 10% noise and shift error to sensor #3 
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Figure 7-37, E-AANN output; the input data had 10% noise and shift-
error 
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Figure 7-38, Sensor #3 output before contamination, after inducing 

shift error, and the data reconstructed by E-AANN, noise level is 10% 
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Figure 7-39, The difference between E-AANN input and output. The 
input data had 10% noise and shift error 

 
 

The difference between the E-AANN input and output is shown Figure 7-39. As the 

third sensor was contaminated by the shift error, we expect the third graph of Figure 7-

39 to be similar to the third graph of Figure 7-26. However, as you see, there is no shift 

in the mean value of the third graph signal. This is due to the high noise level existing in 

the system. The graphs in Figure 7-39 are dominated by noise and the symptoms of 

faulty response are hidden behind the noise. If the induced shift error were bigger, we 

would see a shift in the mean value of the third graph of Figure 7-44. The use of Filter 

could remove the noise and show the shift in the delta graph (Future work).     
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8. APPLICATION OF E-AANN IN SENSOR DIAGNOSTICS IN  
 

DYNAMIC SYSTEMS  
 

8.1 Introduction  

In previous sections it was shown that E-AANN was capable of locating different 

types of sensor errors in different situations. We showed how E-AANN could catch 

faulty sensors in both noise free and noisy situations. We discussed the issue of 

maximum level of the noise tolerated by the E-AANN. However all the systems used in 

previous sections were static systems. Now the question is what if the system is 

dynamic? Is E-AANN still capable of locating faulty sensors in dynamic situations or 

not?  

 

In static systems there is no delay between the input change and its effect on the 

output. When the system input changes, the output responds to that change immediately. 

There is no transition period between the input change and the output response. In 

dynamic systems, the output does not respond to the input change immediately. There is 

a delay between the input change and the appearance of its effect on the output   

 

Our results show that in the case of dynamic systems, E-AANN is still capable of 

locating faulty sensors if the training data has some specifications. We start with the 

evaluation of E-AANN behavior in dynamic situations and non-faulty conditions. Then 

we will do through the E-AANN capabilities of locating faulty sensors in dynamic 

situations.  
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8.2 E-AANN Response to Dynamic Systems in Non-faulty Situations 

As it was mentioned, in dynamic systems the system output does not respond to the 

input change immediately. In dynamic systems we have two types of data. The data that 

is measured when the system is in transition period and the data measured when the 

system has passed the transition period. We name the first one as Dynamic Data and the 

second one as Static Data.   

 

In order to use the E-AANN for sensor diagnostics in dynamic systems, the AANN 

embedded in the E-AANN should be trained based on Static Data.  For test data, there is 

no limitation.  

 

Example 1: Consider the chiller model explained in section 3. That model simulates 

a static system with three inputs and five outputs (Figure 8-1).   
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Figure 8-1, Chiller model inputs/outputs  
 

 

In this section the chiller model is modified to mimic dynamic systems. As a simple 

dynamic system, in this example the model has been modified such that the first output 

(Tout_c) has a delay with four samples (Figure 8-2). Therefore the first output responds 

to the input changes four samples later20.  

                                                 
20In a dynamic system, the system output responds to the input change either with delay or gradually. In 
this example the model has been modified such that the first output responds to the input change with 
delay not gradually.    
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Figure 8-2, Static model with delay on one sensor to mimic      

dynamic system, Z-4 means a delay of 4 samples 
 

 

Figure 8-3 shows the E-AANN diagram. You see that the first output of the chiller 

model corresponds to the fourth input/output of the E-AANN. The training data, which 

is made up of static data, is shown in Figure 8-4. The test data contains both Dynamic 

Data and Static Data. It has no induced sensor error. Figure 8-5 shows the test data. It 

has been prepared by varying the system input every 10 samples21 (Step = 10).   

                                                 
21 In this example the system delay is less than the step size of the data (system delay is 4 and step size is 
10). In next examples we will go through the cases in which the system delay is bigger than step size.  
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Figure 8-3, E-AANN inputs and outputs  
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Figure 8-4, Training set 
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Figure 8-5, Test set, step size is 10 
 

 

The E-AANN output is shown in Figure 8-6. The difference between the E-AANN 

input and output is shown in Figure 8-7. For better comparison we have zoomed in on 

the graphs of Figure 8-7 as depicted in Figure 8-8. As you see all graphs are straight 

lines except the fourth one. The fourth graph (the graph corresponding to the first output 

of the chiller model) has some perturbations but still its mean value is zero. We conclude 

that the perturbations in the fourth graph are from the system dynamics.  
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Figure 8-6, E-AANN output 
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 Figure 8-7, The difference between the E-AANN input and output 

(delay = 4 steps) 
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Figure 8-8, The difference between the E-AANN input and output 

zoomed in (delay = 4 steps)  
 

Example 2: In this example we consider the same system but this time we increase 

the delay of the first output to 12 steps (Figure 8-9). The other conditions are the same. 

The E-AANN output is shown in Figure 8-10. The difference between E-AANN 

input/output is shown in Figure 8-11. For better comparison we have zoomed in on the  

graphs of Figure 8-11 as depicted in figure 8-12. Again you see, except the fourth graph, 

all graphs are straight lines. The fourth graph has some perturbations. 
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Figure 8-9, Static model with delay on one sensor to mimic      

dynamic system, Z-12 means a delay of 12 samples 
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Figure 8-10, E-AANN output 
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Figure 8-11, The difference between the E-AANN input and output 

(delay =12 steps) 
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Figure 8-12, The difference between the E-AANN input and output 

zoomed in (delay = 12 steps) 
 

 

Now the question is why E-AANN has such a behavior? Let us start with the first 

example. When a dynamic data set is fed to the E-AANN (In example 1, a data set 

whose first output still has not respond to the input change), at first E-AANN thinks that 

the fourth sensor (the sensor corresponding to the first output) has a problem. This is due 

to the fact that AANN embedded in the E-AANN has been trained based on the static 

data. In this situation, E-AANN reconstruct the value of the fourth sensor and change it. 

Therefore the difference between E-AANN input/output for the fourth sensor becomes 

non-zero. After a while when the first output responds to the input change, the difference 

between E-AANN input/output becomes zero. The above process repeats whenever the 

system input changes. The effect of that is small perturbations appearing in the graphs 

that show the difference between E-AANN input/output. Therefore we can say that the 

system dynamics causes small perturbations in the graphs showing the difference 

between E-AANN input and output.  



    

 

89 

If we zoom in on the fourth graph of Figure 8-8, it will be similar to the graph shown 

in Figure 8-13. In this graph there is a parameter (d) which we are interested in. The 

value of d depends on two parameters; 1- The system delay (in the first example the 

system delay was 4) and 2- The data step size (in example 1, the step size was 10). d 

depends on the difference between the step size and system delay 

( )( DelayStepSized −∝ ). The bigger the difference is, the bigger d is. In the first 

example, the difference was 6 (10 – 4 = 6) and you saw d in the Figure 8-7. In Example 

2 the difference was negative (10 – 12 = -2). Before speaking about the effect of 

negative difference on graphs, let us at first talk about the systems that have negative 

difference. Do we have real systems with negative difference in reality? 

  

 

dd

 
Figure 8-13, Fourth graph of Figure 8-8 zoomed in 

 

 

When the difference is negative, it means that the input to the system changes before 

the system output responds to the previous change completely. In reality it is common to 

have a small negative difference. Real systems are usually in feed back control loops and 

sometimes the controller changes the system input before waiting to see the effect of the 

previous change at the output completely. However a big negative difference does not 

have any real application. In the case of big negative difference, the system input 

changes too fast to let the system output respond. This is system is unstable.  

 

Now let see what would be the E-AANN behavior in the case of negative difference. 

In example 2 the difference was -2. The difference between the E-AANN input and 
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output was shown in Figure 8-11 and 8-12. You see that the fourth graph still has some 

perturbations but the important thing is that the graph fluctuates around zero. In fact the 

negative difference has made the fluctuation. As another example, consider the system in 

the second example but this time the delay of the first output is 20 (Figure 8-14). In this 

case the difference is -10 (10 – 20 = -10). The difference between E-AANN input and 

output is shown in Figure 8-15. You see that the fourth graph again has a smooth 

fluctuation around zero       
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Figure 8-14, Static model with delay on one sensor to mimic      

dynamic system, Z-20means a delay of 20 samples 
 

 

 

 



    

 

91 

0 100 200
-2

0

2

S
en

so
r 1

0 100 200
-2

0

2

S
en

so
r 2

0 100 200
-2

0

2

S
en

so
r 3

0 100 200
-2

0

2

S
en

so
r 4

0 100 200
-2

0

2

S
en

so
r 5

0 100 200
-2

0

2

S
en

so
r 6

0 100 200
-2

0

2

S
en

so
r 7

Sample #
0 100 200

-2

0

2

S
en

so
r 8

Sample #
 

Figure 8-15, The difference between the E-AANN input and output 
(delay = 20 steps) 

 

 

Example 3: In this example we work on a more complicated dynamic system. We 

modify the chiller model in a way that the last three outputs of the system have delay 

with four samples (Figure 8-16). The training data is the same as the training data shown 

in Figure 8-4. The test data is shown in Figure 8-17. The E-AANN output is shown in 

Figure 8-18. The difference between E-AANN input and output is shown in Figure 8-19.  

In spite of the fact that some graphs have small perturbations, the mean value of all 

graphs is zero.   
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Figure 8-16, Static model with delay on multiple sensors to mimic       
dynamic system 
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Figure 8-17, Test data 
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Figure 8-18, E-AANN output 
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Figure 8-19, The difference between the E-AANN input and output 
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8.3 E-AANN Application in Sensor Diagnostics in Dynamic Situations  

As you saw in previous examples, system dynamics causes some perturbations in the 

graphs showing the difference between the E-AANN input/output. The mean values of 

the graphs are zero in the case of positive difference between the data step size and 

system delay or non-zero in the case of negative difference. We also explained that in 

real applications the difference between the step size and system delay is positive or 

small negative. This means that the mean value of the graphs showing the difference 

between E-AANN input/output is zero or close to zero.  

 

In previous sections we showed that the sensor errors effectively change the mean 

value of the graphs showing the difference between E-AANN input and output. 

Therefore we believe that E-AANN can still be used to catch sensor faults in dynamic 

situations. In the case of positive difference between the data step size and system delay, 

the mean values of the graphs are zero as far as there is no sensor error. When the mean 

value is non-zero, it means that there is sensor problem. In the case of small negative 

difference, the mean values of the graphs are zero or close to zero. In this situation E-

AANN might not catch small sensor faults.      

 

Example 4: Consider the third example. Here we induce a drift error22 to the sensor 

measuring the third output. The test set is shown in Figure 8-20. The E-AANN output is 

shown in Figure 8-21. The difference between the E-AANN input and output is shown in 

Figure 8-22. Now you see that the sixth graph (the graph corresponding to the sensors 

measuring the third output) has non-zero mean value which means that the 

corresponding sensor has a problem.  

 

 

                                                 
22 The same drift error we had in previous sections  
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Figure 8-20, Test Data, the sixth sensor has drift error 
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Figure 8-21, E-AANN output 
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Figure 8-22, The difference between the E-AANN input and output 
 

 
Based on the dynamic systems stated in this section, E-AANN can still be used to 

catch sensor faults. You saw that system dynamics causes small perturbations on the 

delta graphs (the graphs show the difference between E-AANN input and output) but 

still the mean values are zero. However, E-AANN performance must be evaluated in the 

case of more complicate dynamic systems.  
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9. CONCLUSION 
 
 

The use of AANN in sensor diagnostics has been extended to allow the isolation of 

individual sensor faults. This extension implements a secondary optimization process, 

which enables the user to make effective use of the AANN concept in diagnosing sensor 

faults. The examples given illustrate the effectiveness of this approach. E-AANN 

performance was studied under noisy conditions. The results showed that sensor faults 

can be detected and corrected in noisy situations with the E-AANN method described. 

 

In high noise situations, the E-AANN performance degrades. The results show that 

as the noise level increases, the E-AANN accuracy decreases. In other words, E-AANN 

may not catch small sensor faults when the noise level is high. This is due to the fact that 

in high noise situations, the symptoms of fault response are hidden. The use of filters 

could improve E-AANN performance in high noise situations (future work). 

 

E-AANN performance in simple dynamic systems was also evaluated. It was shown 

that E-AANN is still capable of locating sensor faults in dynamic systems if the training 

data is based on static data. However more study needs to be done to evaluate E-AANN 

performance in more complicated dynamic systems   

 

The next major investigation is to deal with multiple sensor faults. In this project, it 

was assumed that only one sensor was faulty. However, in the case of multiple sensor 

faults, the problem is much more complicated.  

 



    

 

98 

REFERENCES 
 
 

1. M.A. Kramer, “Autoassociative neural networks”, Computers in Chemical 
Engineering, vol. 16, no 4, pp. 313-328, 1992.  

 
2. M.A. Kramer, “Nonlinear principle component analysis using autoassociative 

neural networks”, AIChE Journal, vol. 37, no. 2, pp. 233-243, February 1991. 
 

3. R. Prabhu, “A neuro computational approach to chiller fault identification and 
isolation”, Master’s Thesis, Texas A&M University, Mechanical Engineering, 
2002. 

 
4. M. Shajith Ikbal, H. Misra, B. Yegnanarayana, "Analysis of autoassociative 

mapping neural networks", in International Joint Conference on Neural 
Network , vol. 5, pp 3025 –3029, 1999. 

 
5. J.W. Hines and R. E. Uhrig, "Use of autoassociative neural networks for signal 

validation", Journal of Intelligent and Robotic Systems, pp.143-154, 1998. 
 

6. J.W. Hines, D.J Wrest, and R.E. Uhrig, “Plant wide sensor calibration 
monitoring, intelligent control”, Proceedings of the 1996 IEEE International 
Symposium on Intelligent Control, pp. 378 –383, 1996. 

 
7. W.Y. Lee, C. Park, and G.E. Kelly, "Fault detection in an air-handling unit using 

residual and recursive parameter identification methods", ASHRAE Transactions, 
vol. 102, no. 1, pp. 528-539, 1996. 

 
8. Keyhani and S.M. Miri, "Observers for tracking of synchronous machine 

parameters and detection of incipient fault", IEEE Transaction on Energy 
Conservation, vol. 1, pp. 184-190, 1998. 

 
9. H. Konrad, R. Isermann, and N. Heintz, "Model based fault detection in milling 

by classification of estimated cutting parameters", in IEEE International 
Conference on Intelligent Systems for 21st Century, vol. 3, pp. 2193-2198, 
Vancouver, 1995. 

 
10. M.Y. Chow and S.O. Yee, "Methodology for on- line incipient fault detection in 

single phase squirell cage induction motors using artificial neural networks", 
IEEE Transaction on Energy Conservation, vol. 6, 536-545, 1991. 

 
11. M.Y. Chow and S.O. Yee, "Application of neural networks to incipient fault 

detection in motors", Journal of Neural Network Computing, vol. 2, no. 3, pp. 
26-32, 1991. 



    

 

99 

 
12. M.Y. Chow, P.M. Mangum, and S.O. Lee, "A neural network approach to real-

time condition monitoring of induction motors", IEEE Transaction Ind. 
Electron., vol. 38, pp. 448-453, 1991. 

 
13. M.Y. Chow, R.N. Sharpe, and J.C. Hung, "On the application of artificial neural 

networks for motor fault detection", IEEE Transaction Ind. Electron., vol. 40, pp. 
181-196, 1993. 

 
14. X. Z. Gao and S. J. Ovaska, "Soft computing methods in motor fault diagnosis," 

Applied Soft Computing Journal, vol. 1, no. 1, June 2001. 
 

15. H. Nejjari and M.E.H. Benhouzid, "Application of fuzzy logic to induction 
motors condition monitoring", IEEE Power Eng. Rev., vol. 19, pp. 52-54, 1999. 

 
16. M. Yumoto, T. Ohkawa, N. Komodo, and F. Miyasaka, "Practical application of 

stochastic qualitative reasoning to fault detection of building air conditioning 
systems", in Proc of Tenth International Workshop on Qualitative Reasoning,  
pp. 283-291, 1996. 

 
17. M. Yumoto, T. Ohkawa, N. Komoda, and F. Miyasaka, "An approach to 

automatic model generation for stochastic qualitative simulation of building air 
conditioning systems", in Proc of IEEE International Symposium on Industrial 
Electronics, pp. 1037- 1042, Trento, Italy,1996. 

 
18. W.W. Tan and H. Hou, "An on- line neurofuzzy approach for detecting faults in 

induction motors", IEEE International Conference on Machines and Drives, pp. 
878-883, 2001. 

 
19. M.E.H. Benhouzid and H. Nejjari, "A simple fuzzy logic approach for induction 

motors stator condition monitoring", IEEE International Conference on 
Machines and Drives, pp. 634-639, Boston, 2001. 

 
20. JPH. Bourdouxhe, M. Grodent, JJ. Lebrun, C. Saavedra, KL. Silva: “A toolkit for 

primary HVAC system energy calculation- Part 2: Reciprocating chiller models.” 
ASHRAE Transaction, vol. 100, no. 2, pp. 774-786, 1994. 

 
21. KC. Ng, HT. Chua, W. Ong, SS. Lee, JM. Gordon: “Diagnostics and 

optimization of reciprocating chillers: Theory and experiment.” Appl. Thermal 
Eng., vol. 17, no. 3, pp. 263-276, 1996. 

 
22. K C Ng, H T Chua, A S Ong. Experimental verification of a diagnostic model for 

reciprocating chillers. Journal of Process Mechanical Engineering (Part E), vol. 
211, no. 4, pp. 259-265, 1997. 



    

 

100 

 
23. Pacific Gas and Electric, “CoolTools: A toolkit to optimize chilled water plants”, 

San Francisco, CA, 2001, http://www.hvacexchange.com/cooltools 
 

24. TS. Steele, WE. Koran, MB. Kaplan: “DOE-2.1C model calibration with short-
term tests versus calibration with long-term monitored data” in Proceedings from 
the ACEEE 1994 Summer Study on Energy Efficiency in Buildings. Washington, 
D. C.: American Council for an Energy Efficient Economy. 

 
25. P. Sreedharam and P. Hvaes: “Comparison of chiller modes for model-based 

fautl detection” available at: 
http://www.energy.ca.gov/pier/buildings/presentations/40099012_E5_P5_3c.pdf 

 
26. M. Stylianou and D. Nikanpour: “Performance monitoring, fault detection and 

diagnosis of reciprocating chillers.” ASHRAE Transactions, vol. 102, no.1, pp. 
667-679, 1996. 

 
27. JE. Braun and TM. Rossi: “A statistical, rule-based fault detection and diagnosis 

method for vapor compression air conditioners.” International Journal of HVAC 
& Ref. Research, vol. 3, no. 1, pp. 19-37, 1997. 

 
28. HT. Grimmelius, JK. Woud, and G. Been: “On-line failure diagnosis for 

compression refrigeration plants.” International Journal of Refrigeration, vol. 
18, no. 1, pp. 31-41, 1995. 

 
29. S. Wang and J.B. Wang: “Law-based sensor fault diagnosis and validation for 

building air-conditioning systems”, International Journal of HVAC & Ref. 
Research, vol. 5. pp: 353-380, 1999. 

 
30. J.M. Gordon and K.C. Ng "Predictive and diagnostic aspects of a universal 

thermodynamic model for chillers". International Journal of Heat and Mass 
Transfer, vol. 38, pp. 807-818, 1995. 

 
31. A. Rizzo and M.G. Xibilia, “An innovative intelligent system for sensor 

validation in tokamak machines”, IEEE Transactions on Control Systems 
Technology, vol. 10, no. 3, pp. 421-431, May 2002. 

 
32. S. Satoh, M.S. Shaikh, and Y. Dote, “Fast fuzzy neural network for fault 

diagnosis of rotational machine parts using general parameter learning and 
adaptation”, in Proc of the 2001 IEEE Mountain Workshop on Soft Computing 
and Industrial Applications, pp. 87-91, 2001. 

 
33. T. Yamasaki, M. Yumoto, T. Ohkawa, N. Komoda, and F. Miyasaka, “Automatic 

parameter tuning of stochastic qualitative model of building air conditioning 



    

 

101 

systems”, in Proc of IEEE International Conference on Intelligent Engineering 
Systems, pp.415-420, 1997. 

 
34. P. Amann, J.M. Perronne, G.L. Gissinger, and P.M. Frank, "Identification of 

fuzzy relational models for fault detection", Control Engineering Practice, vol. 9, 
no. 5, pp. 555-562, 2001.  

 
35. Class Notes: “Introduction to Pattern Recognition”, R. Guiterrez-Osuna, CPSC 

689. Fall 2002, Texas A&M University, available at: 
http://faculty.cs.tamu.edu/rgutier/courses/cpsc689_f02/index.html  

 
 
 



    

 

102 

VITA 
 

Massieh Najafi was born in 1977 in Iran. He received his B.Sc. degree in Mechanical 

Engineering from University of Tehran in Iran in 2000. He then started his graduate 

studies in the Mechanical Engineering Department at Texas A&M University. Mr. 

Najafi has been research assistant in the Mechanical Engineering Department of Texas 

A&M from September 2001 to February 2002, research assistant at Energy System 

Laboratory at Texas A&M University from February 2002 to August 2003. His research 

interests are fault detection, sensor diagnosis, intelligent systems, and controls.    

 

 




