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A B S T R A C T   

Masonry structures represent the highest proportion of building stock worldwide. Currently, the structural 
condition of such structures is predominantly manually inspected which is a laborious, costly and subjective 
process. With developments in computer vision, there is an opportunity to use digital images to automate the 
visual inspection process. The aim of this study is to examine deep learning techniques for crack detection on 
images from masonry walls. A dataset with photos from masonry structures is produced containing complex 
backgrounds and various crack types and sizes. Different deep learning networks are considered and by 
leveraging the effect of transfer learning crack detection on masonry surfaces is performed on patch level with 
95.3% accuracy and on pixel level with 79.6% F1 score. This is the first implementation of deep learning for 
pixel-level crack segmentation on masonry surfaces. Codes, data and networks relevant to the herein study are 
available in: github.com/dimitrisdais/crack_detection_CNN_masonry.   

1. Introduction 

Brick masonry is one of the main structural components in modern 
and historical structures along the world. Numerous old masonry 
buildings still exist proving that when well-preserved, the life cycle of 
such structures may be significantly extended [1]. In many cases, his
torical masonry structures have been found to be vulnerable to seismic 
excitations and thus thorough damage assessment is required to propose 
suitable restoration schemes, when necessary [2]. Moreover, masonry 
has been widely used in modern structures in countries with low or no 
seismicity. When masonry structures subjected to induced seismicity, 
like the ones in the north of The Netherlands, have been found to be 
susceptible to seismic excitations given the fact that they were con
structed without any seismic design [3]. As another example of 
vulnerable masonry structural systems, arch bridges are the most com
mon single bridge type on the UK rail network, most of which are now 
over than 100 years old and showing significant signs of distress. The 
importance to develop improved analysis and assessment methods for 
these bridges was highlighted [4]. In brief, masonry structures need to 
be properly inspected to detect any defects on early stage or after an 
extreme event in order to safeguard them. 

Manual inspection is the most common practice due to its simplicity 
and the lack of reliable alternatives. Nevertheless, this practice is rather 
laborious, slow and expensive when accounting for the man-hours 
required to be invested in the field and at the office to process the ob
tained data. On top of that, the quality of the process can be subjective 
since it heavily relies on the skills and the physical condition of the 
inspector as well as lack of experience or tiredness could easily lead to 
ill-reported damage. Manual inspection can raise safety concerns since 
there are parts of the structures with access restrictions and difficult to 
reach. The manual inspection becomes particularly difficult for the post- 
event cases, such as in the catastrophic aftermath of a strong earthquake, 
when a high number of buildings need to be inspected with limited re
sources in a short time. Apart from the efficiency, reliability is another 
aspect to be considered when inspecting masonry structures manually. 
Significant variability in the routine inspection documentation of 
structural conditions was previously reported [5,6]. Discrepancy was 
observed both for the assignment of condition ratings but also for the 
prepared documents, e.g. field inspection notes, photographs, etc. Spe
cifically, on average between four and five different condition rating 
values were assigned to each structural component, with a maximum of 
six being assigned [5]. 
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In order to address the drawbacks of manual inspection, vision-based 
assessment and monitoring of civil infrastructures are gaining ground 
[7]. In particular, computer vision for crack detection has interested 
researchers for quite some time. Vision-based crack detection is a perfect 
example of non-destructive assessment technique, which can be useful 
especially for historical structures where strict regulations apply and 
even simple interventions, such as placing crack-rulers, are not 
permitted by the conservation authorities. 

Deep Learning (DL), which is a subfield of artificial intelligence, and 
its representative tool, namely Convolutional Neural Network (CNN) 
have proven their efficacy in object detection [8]. Unlike traditional 
machine learning approaches, DL does not require any hand-crafted 
features and thus provides end-to-end classifiers which internally 
learn features and can automatically detect objects [9]. This attribute of 
DL algorithms along with the recent development of the graphics pro
cessing units (GPU) which allowed for very fast computations have 
boosted their usage in different fields. For the case of crack detection 
from images, the user only provides as input different photos and re
ceives as output any detected cracks in these photos without the ne
cessity for any manual intervention. DL for crack detection has found 
different case studies such as on inspection of bridges [10], gas turbines 
[11] and asphalt surfaces [12]. 

The aim of this paper is to examine different DL techniques for crack 
detection on images from masonry walls. Recent developments in DL for 
crack detection and successful techniques are highlighted in Section 2.1 
while studies for vision-based assessment on masonry surfaces found in 
the literature are presented in Section 2.2. In order to address the lack of 
data in the literature, a dataset with photos from masonry structures is 
produced containing complex backgrounds and various crack types and 
sizes (Section 3). Since for masonry structures little work has been done 
for crack detection it is deemed beneficial to train networks both for 
patch classification (Section 4) and pixel-level segmentation (Section 5) 
in order to examine the efficacy of different techniques and broadcast 
the feasibility of DL methods on crack detection for masonry surfaces. To 
the authors’ best knowledge, this study is the first implementation of DL 
for pixel-level crack segmentation on masonry surfaces. The technique 
of transfer learning is also leveraged in order to improve the perfor
mance of the DL networks for crack detection on patch and pixel level. 
Finally, a comparative study is performed where a segmentation 
network trained on masonry images is tested on photos with cracks 
taken from concrete surfaces in order to evaluate the ability of CNNs to 
generalize over different materials (section 6). Codes, data and networks 
relevant to the herein study can be found in the GitHub repository: gi 
thub.com/dimitrisdais/crack_detection_CNN_masonry. 

2. Related work 

2.1. Convolutional neural networks for crack detection 

Image classification with CNN can be categorized into three types: 

image patch classification, boundary box regression and semantic seg
mentation [13]. In image patch classification the image is divided in 
patches and each patch is labelled with a class (Fig. 1a). When boundary 
box regression is considered, a box bounds the detected object, that is a 
crack, and reveals its position and boundaries (Fig. 1b). These two 
classification techniques have been extensively used to detect cracks and 
other defects, and have shown promising results [11,14–16]. Never
theless, these techniques are implemented at block level rather than at 
pixel level. On the contrary, semantic segmentation provides informa
tion about the exact location, width or length of any defects/cracks since 
each pixel is assigned to a class label (Fig. 1c) [17–20]. Pixel-wise image 
segmentation has gained ground in the recent years over image patch 
classification and boundary box regression. A review on DL methods for 
semantic segmentation applied to various application areas was pre
sented in [21]. 

Recently Fully Convolutional Networks (FCNs), which are end-to- 
end networks, have been extensively used for semantic segmentation 
[22]. FCNs performed as an extended CNN where the final prediction 
was an image with semantic segmentation instead of a class identifica
tion. In a recent study, FCNs have been implemented for semantic seg
mentation on concrete crack images by evaluating several pre-trained 
network architectures serving as the backbone of FCN encoder [23]. 
FCNs were also used by Yang et al. [24] to semantically identify and 
segment crack pixels with different scales and were combined with 
morphological operations to extract geometric characteristics, such as 
length and width, directly from images without manual measurement. 
An automatic crack segmentation method based on CNN and consisting 
of the extended FCN and the Deeply-Supervised Nets (DSN) was intro
duced by Liu et al. [17]. Special care was given to produce a dataset of 
photos from asphalt and concrete surfaces with cracks in multi-scale and 
multi-scene to evaluate the crack detection systems. A modified FCN 
with fine-tuning the DenseNet-121 (a densely connected CNN) was 
implemented by Li et al. [25] to provide pixel-level detection of multiple 
damages, i.e. crack, spalling, efflorescence and holes, found on concrete 
surfaces. The suggested method outperformed the results obtained from 
a method based on SegNet (a deep convolutional encoder–decoder ar
chitecture trained to classify urban street pictures at pixel level) while 
producing smaller sizes of trained models as well. An FCN was imple
mented to simultaneously identify material type (concrete, steel, 
asphalt), as well as fine (cracks, exposed rebar) and coarse (spalling, 
corrosion) structural damage [26]. 

U-net is a deep FCN that was developed for biomedical image seg
mentation and outperformed other state of the art networks [27]. Since 
then, U-net has become a benchmark for image segmentation in 
different fields and its efficacy to detect thin edges resulted in its wide 
implementation on the inspection of structures. In particular, U-net was 
implemented for crack detection on pavement surfaces [28,29]. Another 
showcase for U-net was presented by Liu et al. [30] for concrete crack 
detection, where the U-net performed better than the other FCN 
methods [23,24] while being trained on significantly smaller training 

Fig. 1. Crack detection with (a) image patch classification, (b) boundary box regression and (c) semantic segmentation. The output of each crack detection technique 
is denoted with red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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sets. Note that in order to solve the sample imbalance problem, the focal 
loss function was selected in the study by Lui et al. [30]. A DL algorithm 
based on U-Net and a CNN with alternately updated clique (CliqueNet), 
called U-CliqueNet, was proposed to separate cracks from background in 
tunnel images [31]. The system obtained promising results and was able 
to separate cracks from images with noise similar to cracks, such as 
patchwork joints, wires, etc. It is noted that, while other studies were 
based on datasets of couple of hundreds of images, the proposed network 
was trained on an extensive dataset consisting of 50,000 and 10,000 
images of 496 × 496 pixels for training and testing respectively. 

Feature Pyramid Networks (FPN) [32] is a typical model architecture 
to generate pyramidal feature representations for object detection. This 
architecture extracts features at different scales and then fuses them 
which reportedly provides predictions of higher accuracy [32]. FPN 
achieved state of the art single-model results on the COCO detection 
benchmark and has been implemented as a generic feature extractor in 
several applications such as object detection and instance object seg
mentation [33,34]. FPN was combined with an hierarchical boosting 
module to perform pavement crack segmentation obtaining high accu
racy and generalizability [35]. The cutting-edge single-stage object de
tector YOLOv3 adopting FPN was utilized to detect multiple concrete 
damages of highway bridges [36]. Multiscale feature maps were ob
tained by a generic pretrained CNN model and fused by implementing 
FPN in order to apply crack segmentation on concrete images [37]. 

Furthermore, transfer learning in DL has been extensively imple
mented on different fields of computer vision with remarkable results 
and is considered suitable when the training dataset is small allowing for 
better performance and less computational effort [9,38]. The intuition 
behind transfer learning for image classification is that if a model is 
trained on a large and general enough dataset, this model will effectively 
serve as a generic model of the visual world [39]. CNNs utilizing transfer 
learning have been used extensively for image classification and se
mantic segmentation in the field of crack detection [19,25,40,41]. 
Transfer learning was implemented in image-based structural recogni
tion to perform component type identification, spalling condition check, 
damage level evaluation, and damage type determination [42]. 

Lately, different studies obtained noteworthy results in crack seg
mentation by implementing region proposal networks followed by al
gorithms for pixel-level crack detection [43,44]. In particular, such a 
hybrid method was proposed by Kang et al. [44] where crack regions 
detected by Faster R-CNN were processed by a modified tubularity flow 
field algorithm to segment the crack pixels. As reported by Kang et al. 
[44], the advantages of this method is that Faster R-CNN can detect 
crack regions very well even on complex backgrounds while only a 
dataset of images with bounding boxes of cracks is required which 
drastically reduces the time to prepare a dataset. As stated by Kang et al. 
[44], the proposed method is useful for concrete surfaces only and its 
applicability on different materials might be limited Moreover, Chen 
et al. [45] implemented an encoder-decoder architecture and proposed a 
switch method to distinguish between the negative and positive sample 
automatically and skip the decoder module when the sample is negative 
to save the inference time. 

2.2. Vision-based assessment on masonry surfaces 

As shown in Section 2.1, vision-based and, in particular, DL methods 
for crack detection have been widely applied for concrete surfaces or 
asphalt. On the contrary, little research has been done on vision-based 
assessment and specifically for defect detection applied to masonry 
surfaces. Inarguably, the surface of masonry is less homogeneous and 
significantly noisier as compared to concrete or asphalt [46]. On top of 
that, studies have shown that DL models are sensitive to material. In 
other words, DL models that were trained on a specific surface type 
failed to achieve same accuracy when the material was different. The 
development of DL models that could be robustly applied to infra
structure inspection images for both concrete and asphalt pavement was 

attempted but crack detection models trained on one material did not 
necessarily work on other materials and significant performance 
degradation would be expected when testing on other materials [47]. In 
another study, various CNNs were trained on images from concrete 
structures for crack detection and their transferability of learned fea
tures to photos from different materials was examined by Özgenel and 
Sorguç [48]. Brickwork images were found to be the most challenging 
among the tested cases since brickwork jointing and background tex
tures constitute challenging noises. Moreover, it was concluded that the 
level of variance in the dataset was more important than the number of 
samples. 

Point clouds were obtained with laser scanning and photogrammetry 
techniques and were combined to detect different types of defects on 
ashlar masonry walls by using machine learning classification based on 
geometry and colour information [49]. U-net [27] was used for brick 
segmentation in masonry walls [50]. McCormick et al. [51] used a 
system that combined different types of sensors (multiple high- 
resolution cameras, laser scanning and inertial measurement unit) for 
tunnel inspection. Digital image correlation techniques were utilized to 
automatically trace any changes in between consecutive inspections and 
subsequently an operator would appropriately classify them among a list 
of defects [51]. Thus, the defect detection process is not fully automa
tized and human intervention is still required. 

CNN to classify different defect types, such as cracking, spalling, 
mortar loss, and vegetation, from images of masonry structures was used 
by Brackenbury et al. [46]. In detail, photos were taken from masonry 
bridges and corrected for perspective distortion and then resized to 
ensure a constant resolution. Defect classification was implemented on 
patches of 100 × 100 pixels. It was suggested that by firstly detecting 
and segmenting mortar joints, and then classifying defects, defected and 
defect-free areas of the masonry could be all predicted with more con
fidence and better accuracy. 

A novel damage identification architecture to detect two types of 
damages (efflorescence and spalling) in historic masonry buildings 
based on the Faster R-CNN ResNet101 model was proposed by [52]. In 
particular, two orthophotos were extracted from a historical structure 
and were segmented into small patches of 500 × 500 pixels. The pro
duced patches were annotated with bounding boxes marking the 
investigated damage types. Quick identification and detection of the 
surface damage was achieved. The necessity for the expansion of the 
database with wider range of distances and angles and more types of 
structural samples was reported. 

An automatic vision-based crack detection system using CNN was 
proposed by Ali et al. [53] to ease the inspection of masonry structures. 
The feature extraction process was done by CNN from colour images and 
three classifiers were studied, namely the CNN itself, SVM and Random 
Forest. False negative areas were found since the system would confuse 
the grout lines with cracks. Finally, since the cracks on masonry struc
tures could not be easily identified, extreme care was needed when 
annotating the dataset. 

A common limitation observed in the existing literature for vision- 
based assessment on masonry surfaces is that the developed methods 
regarded only a single structure and therefore their ability to generalize 
when tested on more diverse data remains to be evaluated. 

3. Dataset preparation 

In order to address the lack of data in the literature, a dataset with 
photos from masonry structures is produced containing complex back
grounds and various crack types and sizes. DL networks are data-driven 
techniques, thus they heavily rely on the quality and amount of data 
[54]. Before preparing the masonry dataset for this study, an extensive 
literature review is performed to spot good and bad practices when 
collecting data for crack detection. It is highlighted that the goal of 
training a network is to enhance its ability to generalize when fed with 
diverse data. 
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Special care is frequently paid when collecting data so that photos 
are taken in a homogeneous way keeping constant conditions, such as 
distance, angle etc. [25,55,56]. Moreover, it is common for datasets for 
crack detection to be custom-made and manually pre-processed to 
exclude noisy background and for images to be carefully selected to 
focus on the cracks [56]. Nevertheless, a common criticism over 
developed DL methods is that they attain remarkable results when tested 
on monotonous backgrounds, but their accuracy severely drops when 
deployed on images with complex backgrounds. Choi and Cha [19] 
observed that when a CNN trained on images of monotonous back
ground and subsequently tested on a more complex dataset the perfor
mance drastically decreased; precision dropped from 0.874 to 0.231. 
Several studies have emphasized the necessity for more complex data
sets [13,57,58]. The issue they raised is particularly important for the 
context of this paper since masonry surfaces consist of brick or stone 
materials, possibly with mortar joints, with several complex objects 
around, such as windows, doors, ornaments, labels, lamps, cables, 
vegetation etc. which can be characterized as noise for the crack 
detection process. Other materials, such as concrete or asphalt that crack 
detection methods have been widely investigated, provide a relatively 
smooth and flat surface. On the contrary, masonry surface is usually 
rough and uneven since mortar might protrude around the bricks or 
some gaps might exist in the interface between mortar joints and brick 
units. These anomalies might create shadows in the photos especially 
when the photos are taken with acute angles, causing the network to 
falsely consider these regions as cracks. Moreover, cracks are usually 
covered with dust or colour-paints. Therefore, it is deemed that a 
database as generic as possible would lead to higher chances of devel
oping a tool that is able to perform accurately in real cases. 

Taking all these into consideration a masonry dataset is prepared for 
this study. Photos were collected from different sources. Various images 
of masonry walls containing cracks were obtained from the Internet. 
Additionally, photos were taken from different masonry buildings in the 
Groningen region, The Netherlands. In fact, in order to simulate the 
scenario where different users will contribute in the data collection by 
taking photos with devices of different characteristics, various members 
of our research group were asked to photograph cracks from masonry 
walls with their phones or DSLR cameras after providing them with 
simple guidelines. It is noted that photos from masonry surfaces with 
(Fig. 2a-b) and without (Fig. 2c and d) cracks were taken under similar 
conditions (angle, distance, etc.) in order to enrich further the non-crack 
class. 

The herein created dataset will be referred to as “masonry dataset”. 
In total 351 photos containing cracks and 118 without any crack were 
gathered from masonry surfaces. These photos were divided in patches 
of 224 × 224 pixels, which leads to 4057 patch containing cracks while 
extra 7434 non-crack patches were randomly selected from the gathered 
photos. A sample of photos from the masonry dataset with cracks is 
presented in Fig. 3. A wide range of scales and resolutions was consid
ered. The crack patches depicture from small (couple of bricks) to larger 

(whole masonry walls) field of views. Cracks might extend over the 
joints, the bricks or both. Cracks appearing as straight lines, zigzag or 
complex shapes were examined. A diverse type of cracks in terms of 
length, width and shape were included in the masonry dataset. More
over, the crack patches included different types of noisy background, 
such as windows, plants, lamps and signs (Fig. 3). Further examples of 
objects that typically exist around masonry façades and are included in 
the non-crack patches are shown in Fig. 4. 

Along the development of this study, while collecting new data the 
different networks were run with the available dataset each time. It was 
observed that the metrics were improving as the masonry dataset was 
being enriched. The greatest improvement was recorded in the precision 
value; while extra types of background objects were included in the 
dataset the easier it was for the networks to learn to accurately negate 
them. Therefore, by improving how closely the dataset represents the 
real world the better would be the performance of the networks. 

4. Image patch classification for crack detection 

4.1. Convolutional neural networks for crack image classification 

Image patch classification for crack detection was implemented by 
leveraging the effect of transfer learning via fine-tuning. The technique 
of fine-tuning was implemented by discarding the fully connected (FC) 
layers at the top of a pretrained network and training new, freshly 
initialized FC layers on the new data with a low learning rate [9]. In 
detail, a FC layer with 128 features and rectified linear unit (ReLU) 
activation was added followed by batch normalization and a dropout 
layer with a probability of 0.5. Batch normalization is a technique that 
improves the speed, performance, and stability of artificial neural net
works and was used to normalize the input layer by adjusting and 
scaling the activations while dropout temporarily disconnects the neural 
connections between connected layers during training. Finally, a FC 
layer with softmax activation was placed to classify the images as crack 
or non-crack. 

Different state of the art CNNs pretrained on ImageNet (1.2 million 
images with 1000 categories) were examined herein for their efficacy to 
classify images from masonry surfaces on patch level as crack or non- 
crack. The considered networks were: VGG16 [59], MobileNet [60], 
MobileNetV2 [61], InceptionV3 [62], DenseNet121 [63], DenseNet169 
[63], ResNet34 [64], ResNet50 [64]. The configuration of ResNet34 and 
the pre-trained weights were obtained from Yakubovskiy [65], while for 
the rest of the networks the configuration and the weights were 
extracted from Keras [66]. The details of the different networks are 
shown in Table 1. All the models were deposited in the GitHub re
pository: github.com/dimitrisdais/crack_detection_CNN_masonry. 

At this point the architecture of MobileNet is highlighted since it 
obtained the best results as will be shown below (Section 4.3). Mobile
Net is a lightweight network destined to run on computationally limited 
platforms; it achieved accuracy comparable to VGG16 on ImageNet with 

Fig. 2. Images from masonry surfaces (a–b) with and (c–d) without cracks.  
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Fig. 3. Images from the masonry dataset containing cracks.  

Fig. 4. Images depicturing various ‘non-crack’ objects included in the masonry dataset for the training of the classification network.  

Table 1 
Details and metrics of the networks used for image classification. The metrics are presented for the validation set.  

Network Pretraineda Parametersb 

[millions] 
Weightc 

[MB] 
Accuracy 
[%] 

TN 
[%] 

TP 
[%] 

Analysis Timed 

[hours] 
Best Epoche 

VGG16 Yes 17.9 70.1 88.0 89.3 85.8 2.2 28 
ResNet34 Yes 24.5 96.1 91.6 96.8 82.3 0.7 84 
ResNet50 Yes 36.4 142.7 86.5 94.4 72.3 1.1 49 
DenseNet121 Yes 13.5 53.5 92.4 95.8 86.2 2.3 48 
DenseNet169 Yes 23.1 91.4 89.9 93.3 83.6 2.5 50 
InceptionV3 Yes 28.4 111.5 88.4 94.7 77.0 1.7 50 
MobileNet Yes 9.7 37.9 95.3 98.4 89.8 1.1 32 

No 89.0 96.4 75.8 95 
MobileNetV2 Yes 10.3 40.6 89.7 93.7 82.7 1.2 58 

TN: true negatives, TP: true positives. 
a Whether the encoder of a network is pretrained on ImageNet. 
b The total number of parameters of a network. 
c Size of the file where the weights of a network are stored. 
d Analysis time required to run a network for 50 epochs. 
e Epoch where the highest accuracy was obtained for the validation set. 
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only 1/30 of the computational cost and model size [67]. A standard 
convolution both filters and combines inputs into a new set of outputs in 
one step. MobileNet is based on depthwise separable convolutions which 
is a form of factorized convolutions (see Fig. 5); the depthwise convo
lution applies a single filter to each input channel and the pointwise 
convolution then applies a 1 × 1 convolution to combine the outputs of 
the depthwise convolution. This factorization (Fig. 5) has the effect of 
drastically reducing computation and model size. MobileNet comprises 
of multiple factorized layers with depthwise convolution, 1 × 1 point
wise convolution, batch normalization and ReLU activation (Fig. 6a) 
instead of layers of regular convolutions followed by batch normaliza
tion and ReLU activation (Fig. 6b). The MobileNet architecture has two 
hyper-parameters that is width and resolution multipliers in order to 
easily produce smaller versions of the network. Herein, for both hyper- 
parameters the default value is selected, that is 1, which means than no 
shrinking is applied to the model [60,66]. 

MobileNet or networks that made use of depthwise separable 
convolution have been implemented in recent studies for crack detec
tion. Single Shot MultiBox Detector [68], an object detection frame
work, was combined with MobileNet to detect different damage types on 
road surfaces [69]. MobilneNet performed as the encoder of a semantic 
segmentation network based on DeepLab [18] for real-time tunnel crack 
analysis [70]. The depthwise separable convolution was used to reduce 
computational complexity and improve computational efficiency of 
image classification for crack detection [71]. Depthwise convolutions 
have been successfully used for pixel-level segmentation of cracks on 
concrete surfaces [19]. 

4.2. Training configuration 

The networks for image classification are allowed to train for a great 
number of epochs, with a minimum of 50 epochs, until the accuracy (see 
Eq. (7)) on the validation set does not increase any further. The data are 
fed to the network with a batch size of 10. 

Optimization in DL networks updates the weight parameters to 
minimize the loss function. The Adam method (Adaptive Moment Esti
mation) was found to outperform other stochastic optimization methods 
[72], i.e. it converges faster, and is selected as the optimizer of the 
network herein. Adam is an algorithm for first-order gradient-based 
optimization of stochastic objective functions, based on adaptive esti
mates of lower-order moments [72]. The method is straightforward to 
implement, is computationally efficient, has little memory re
quirements, is invariant to diagonal rescaling of the gradients, and is 
well suited for problems that are large in terms of data and/or param
eters [72]. The hyperparameters have intuitive interpretations and 
typically require little tuning. The weight update with Adam optimizer is 
described as follows: 

mt = β1mt− 1 +(1 − β1) gt (1)  

vt = β2vt− 1 +(1 − β2)g2
t (2)  

m̂t =
mt

1 − βt
1

(3)  

v̂t =
vt

1 − βt
2

(4)  

wt = wt− 1 − α m̂t
̅̅̅̅
v̂t

√
+ ε

(5)  

where t is the timestep, gt is the gradient vector, mt and vt are the first 
(mean) and second (uncentered variance) biased moment estimates of 
the gradients respectively, m̂t and v̂t are the first (mean) and second 
(uncentered variance) bias-corrected moment estimates of the gradients 
respectively, β1 and β2 are the exponential decay rates for the moment 
estimates, α is the learning rate, w is the model weights and ε = 10− 8. 
The default values 0.9 and 0.999 are taken for β1 and β2 respectively 
[66,72]. The networks are trained with a constant learning rate α equal 
to 0.001. 

In the context of an optimization algorithm, a loss function is used to 
evaluate a candidate solution (i.e. a set of weights) that will minimize 
the prediction error. The cross entropy (CE) loss function (LCE) is utilized 
herein and is given as: 

LCE = − (ylog(ŷ)+ (1 − y)log(1 − ŷ) (6)  

where y is the ground truth, ̂y is the prediction. y can take values equal to 
0 (non-crack) or 1 (crack) while ŷ can be in the range of 0 to 1. 

The performance of the networks is evaluated based on the values of 
accuracy which is defined as: 

Fig. 5. Schematic representation of (a) standard convolutional filters, (b) depthwise convolutional filters, and (c) 1 × 1 convolutional filters called pointwise 
convolution. M, N and DK stand for the number of input channels, the number of output channels and kernel size respectively. 

Fig. 6. (a) Factorized layer with depthwise convolution, 1 × 1 pointwise 
convolution, batch normalization and ReLU activation. (b) Standard convolu
tional layer followed by batch normalization and ReLU activation. 
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Accuracy =
TP + TN

TP + TN + FP + FN
(7)  

where TP, TN, FP and FN correspond to true positive, true negative, false 
positive and false negative, respectively. The classification is binary with 
non-crack and crack cases corresponding to negative and positive class 
respectively. Thus, TP implies that a crack image is correctly classified 
while TN means that a non-crack image is predicted accurately. While 
accuracy performs as an average of the performance of the two classes, 
TP and TN provide a better insight on the classification error for each 
class individually and thus are reported as well. 

For the training of the image classification networks the 4057 crack 
and the 7434 non-crack patches of the masonry dataset are used. 60% 
and 40% of the patches are used for training and validation respectively. 
The networks are implemented on Keras [66], a high-level neural 
network API, written in Python and by utilizing TensorFlow as back-end. 
The networks are run on a laptop with Intel i7 processor with 2.20 GHz, 
16 GB RAM and Nvidia GPU GeForce(R) RTX 2060 with 6 GB. 

4.3. Results for crack image classification 

In this section the results from the trained networks for image clas
sification are presented .The obtained metrics from the trained models 
on the validation set are enlisted in Table 1 for the epoch that the highest 
accuracy is reached for each case. While all the considered networks 
obtain high accuracy on the validation set, that is 88% or more, Mobi
leNet outperforms the rest by scoring accuracy 95.3% (Table 1). In order 
to examine the benefit of transfer learning, MobileNet is also evaluated 
without pretraining with its weights randomly initialized [66]. Indeed, 
the accuracy of MobileNet drops from 95.3% to 89.0% which reveals 
that transfer learning offers a significant boost to the performance of the 
network. In more detail, when random initialization is considered, the 
ratio of TN remains high, that is 96.4%, however TP declines consid
erably from 89.8% to 75.8%. Consequently, without pretraining the 
network struggles to differentiate edges corresponding to the crack class 
and tends to label them as non-crack. 

In Figs. 3 and 4 representative images of the masonry dataset are 
presented. Based on the accuracy of the model it can concluded that the 
network learns rich features that allow for correct classifications on the 
dataset produced. A closer look to the performance of MobileNet is 
highlighted in the produced confusion matrix (Fig. 7). It is inferred that 
MobileNet excels in predicting correctly the non-crack case with only 
1.6% error while the error in the crack class is higher, that is 10.2% of 
the crack images are classified as non-crack. Different cases of FP and FN 
predicted with MobileNet from the validation set are displayed in Figs. 8 

and 9 respectively. Part of a pipe (Fig. 8a), joints without mortar 
(Fig. 8b, g–h), edges around doors (Fig. 8e–f), and blurry or dark edges 
(Fig. 8c–d) are wrongly classified as cracks. Evidently, a further 
expansion of the masonry dataset should take into consideration a better 
representation of the cases that yielded FP so that the network will learn 
their features and correctly classify them. On the other hand, crack 
images taken with acute angle (Fig. 9a) or with great field of view 
capturing thin cracks (Fig. 9b–d) are misclassified. Moreover, there are 
cases of close-up images of thin (Fig. 9e–j) or well-shaped cracks 
(Fig. 9k–m), crack with missing mortar (Fig. 9n) and crack in dark 
background (Fig. 9o) that the network falsely negates them to the non- 
crack class. 

5. Crack segmentation on pixel level 

5.1. Convolutional neural networks for crack segmentation 

As per Long et al. [22] “semantic segmentation faces an inherent 
tension between semantics and location: global information resolves 
what while local information resolves where”. Recently FCNs [22], 
which are end-to-end networks, have been extensively used for semantic 
segmentation and in particular for crack segmentation, as highlighted 
above (Section 2.1). FCNs perform as an extended CNN where the final 
prediction is an image with semantic segmentation instead of a class 
identification. FCNs adopt architectures with pyramidal shapes; they 
follow the usual contracting path (encoder) of image classification net
works and replace any FC layers with convolutional layers while on top 
of the encoder an expanding path (decoder) is added with successive 
convolutional layers followed by upsampling operators. The encoder 
captures context while the decoder enables precise localization. In order 
to avoid loss of low-level information, skip connections are used to allow 
the decoder to access the low-level features obtained by the encoder 
branch. A schematic representation of the encoder-decoder architecture 
of FCNs is shown in Fig. 10. U-net [27], a deep FCN, and FPN [32], a 
generic pyramid representation, are considered herein and combined 
with different CNNs performing as the backbone of the encoder part of 
the network. FPN in fact adopts a similar architecture with U-net, but 
FPN performs predictions independently at different stages of the 
expanding path and subsequently concatenates these predictions while 
U-net only produces predictions at the last stage. The implementation of 
the U-net and FPN based models with different CNNs as backbone is in 
accordance with the work of Yakubovskiy [65] and is further elucidated 
in the next paragraphs. Furthermore, different networks that were suc
cessfully used in the literature for crack segmentation are examined in 
an extensive comparative study. 

U-net [27] built upon the original implementation of FCN [22] by 
increasing the number of feature channels in the upsampling part, which 
allow the network to propagate context information to higher resolution 
layers. As a result, in U-net the expansive path is almost symmetric to the 
contracting path yielding a U-shaped architecture. In the encoder there 
are repeated blocks of two 3 × 3 convolutional layers and each of them is 
followed by batch normalization and ReLU activation. These blocks are 
referred to as ConvBlock. ConvBlocks are followed by a 2 × 2 max 
pooling layer with stride 2 which halves the dimensions of the images 
and doubles the number of feature channels, a process that is called 
downsampling. In the decoder, a 2 × 2 deconvolution layer succeeds 
each ConvBlock. The deconvolution layer, usually referred to as trans
pose convolution layer, upsamples the images, meaning it doubles its 
size and halves the number of feature channels. The final deconvolution 
layer restores the original size of the image. Then, a 1 × 1 convolution 
with sigmoid activation follows which yields the final prediction for 
each pixel of the image. In total the network has 23 convolutional layers. 
Same-level ConvBlocks between the encoder and the decoder are 
merged with skip connections (Fig. 11). 

FPN [32] is a typical model architecture to generate pyramidal 
feature representations for object detection. FPN is independent of the Fig. 7. Confusion matrix obtained with the MobileNet on the validation set.  
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backbone network and its architecture makes it easily configurable to 
receive different CNNs as the backbone of the encoder. In particular, 
FPN adopts a convolutional architecture as its backbone, typically 
designed for image classification, and builds a feature pyramid with a 
bottom-up pathway, a top-down pathway and lateral connections. The 
high-level features, which are semantically strong but lower resolution, 
are upsampled and combined with higher resolution features to generate 
feature representations that are both high resolution and semantically 
strong. The upsampling layer repeats the rows and columns of the input 
features by 2 × 2 and fills in the new rows and columns by using the 
nearest neighbour algorithm [66]. The bottom-up pathway which is the 
feed-forward computation of the backbone CNN produces a feature hi
erarchy consisting of feature maps at several scales with a scaling step of 
2. Layers producing output maps of the same size are considered in the 

same network stage and for each stage one pyramid level is defined. The 
top-down pathway obtains higher resolution features by upsampling by 
a factor of 2 spatially coarser, but semantically stronger, feature maps 
from higher pyramid levels. These features are then enhanced by 
element-wise addition with features from the bottom-up pathway which 
undergo a 1 × 1 convolutional layer to reduce channel dimensions. 
Further on, 3 × 3 convolutions are appended on each merged feature 
map and the produced maps from the different stages are concatenated. 
A schematic representation of FPN is displayed in Fig. 12. 

The CNNs that were tested for image classification in Section 4 are 
utilized as the encoder for U-net and FPN in order to perform crack 
segmentation on pixel level this time. In particular, the considered 
networks are: VGG16 [59], MobileNet [60], MobileNetV2 [61], Incep
tionV3 [62], DenseNet121 [63], DenseNet169 [63], ResNet34 [64], 

Fig. 8. Non-crack images classified as crack (false positive) by implementing MobileNet on the validation set.  

Fig. 9. Crack images classified as non-crack (false negative) by implementing MobileNet on the validation set.  

D. Dais et al.                                                                                                                                                                                                                                     



Automation in Construction 125 (2021) 103606

9

ResNet50 [64]. It is noted that U-net is also considered as a standalone 
network configured as explained above (Fig. 11). For further reference, 
the models based on U-net and FPN will be called with the base-model 
followed by the backbone network, e.g. U-net-MobileNet uses U-Net as 
base-model with MobileNet as backbone. Moreover, apart from U-net, 
other networks found in the literature and performed well in crack 
segmentation are examined as well. In particular, DeepLabv3+ [73], 
DeepCrack [17], and FCN based on VGG16 (will be referred to as FCN- 
VGG16) [22]. All the networks used in the herein study for segmentation 

are listed in Table 2 and can be found in the GitHub repository: github. 
com/dimitrisdais/crack_detection_CNN_masonry. 

5.2. Training configuration 

The segmentation networks are allowed to train for a great number 
of epochs, with a minimum of 100 epochs, until the F1 score (see Eq. 
(11)) on the validation set does not increase any further. The data are fed 
to the network with a batch size of 4. Similar to the image classification 

Fig. 10. Schematic representation of the encoder-decoder architecture of Fully Convolutional Networks.  

Fig. 11. Illustration of the architecture of U-net as implemented in the herein study. The numbers below the layers denote their size/feature channels respectively.  

Fig. 12. Schematic representation of Feature Pyramid Network. The rectangles with grey hatch correspond to feature maps and the thicker outlines denote 
semantically stronger features. The lateral connections and the top-down pathway are merged by addition as shown in the detail (denoted with dashed line). conv 
and up strand for convolution and upsampling respectively. 
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case, the networks for crack segmentation are trained with Adam as 
optimization algorithm and the learning rate is kept constant equal to 
0.0005. The Adam algorithm is further explained above (Section 4.2). 

Datasets for image segmentation on crack detection are character
ized by severe class imbalance i.e. the background class occupies the 
greatest part of photos while cracks extend over limited pixels. Due to 
this imbalance, if special measures are not taken, the network tends to 
become overconfident in predicting the background class which could 
lead to misclassifications of cracks and numerous false negatives. To 
overcome this, the weighted cross entropy (WCE) loss function is 
implemented herein. In particular, misclassifications of the crack class 
are penalized with a higher weight. The WCE loss function (LwCE), uti
lized here, is given as: 

LwCE = − (β ylog(ŷ)+ (1 − y)log(1 − ŷ) (8)  

where y is the ground truth, ̂y is the prediction, and β is the weight of the 
positive class (i.e. crack) chosen as 10. Also, y can take values equal to 
0 (background) or 1 (crack); while ŷ can be in the range of 0 to 1. In 
order to evaluate the effect of the loss function to the performance of the 
network, different loss functions are examined, i.e. CE, F1 score and 
focal loss. CE and F1 score correspond to the loss functions obtained 
from Eqs. (6) and (11) respectively while focal loss reshapes CE to down- 
weight easy examples and thus focus training on hard negatives [74]. It 
is noted that the focal loss is implemented with the default values sug
gested by Lin et al. [74]. 

The evaluation of the network is on the values of precision, recall and 
F1 score. These metrics are given as: 

Precision =
TP

TP + FP
(9)  

Recall =
TP

TP + FN
(10)  

F1 score =
2 x Precision x Recall

Precision + Recall
(11)  

where TP, FP, TN, FN correspond to true positive, false positive, true 
negative and false negative, respectively. 

Another common metric in image segmentation is accuracy which 
denotes the correctly predicted pixels over the total number of pixels. 
When there is class imbalance, accuracy is not considered suitable to 
evaluate the performance of the network since accuracy will yield a 
score close to its maximum value, that is 1, even if the whole image is 
classified as the prevailing class (i.e. background). Therefore, accuracy is 
ignored and is not reported. 

Precision regards the correct positive predictions over the total 
number of the positive predictions and measures the efficiency of the 
network to negate crack-like objects in the background. Recall considers 
the completeness of the positive predictions i.e. how many of the actual 
crack pixels are correctly classified. Precision and recall frequently 
conflict with each other [75]. In other words, usually high recall values 
lead to low precisions and vice versa. F1 score is the harmonic mean of 
precision and recall. 

Requesting the model to segment the exact width of the crack has 
been found to be rather strict and hard to achieve. Different approaches 
have been implemented in order to overcome this limitation. In partic
ular, connectivity constraints were incorporated in the loss function to 
take into consideration the relationship among annotations of neigh
bouring pixels [56]. Other suggested solution was to apply post- 
processing to isolate noisy parts [76]. A common approach was to 
allow for some tolerance in the evaluation of the crack detection. Thus, 
background pixels predicted as cracks (FP) were considered as TP if they 
were a few pixels apart from the annotated cracks [56,76–78]. The latter 
proposed approach is followed in the herein study. 

For the training of the segmentation networks the 4057 crack patches 
of the masonry dataset were used. In particular, 60% and 40% of the 
patches were used for training and validation respectively. The crack 

Table 2 
Details and metrics of the networks used for segmentation. The metrics are presented for the validation set.  

Network Pretraineda Loss Parametersb 

[millions] 
Weightc 

[MB] 
F1 score 
[%] 

Recall 
[%] 

Precision 
[%] 

Analysis timed 

[hours] 
Best Epoche 

DeepCrack No WCE 29.5 115.5 74.0 80.1 71.6 5.2 28 
DeepLabv3+ No WCE 41.3 162.2 74.9 79.0 73.8 5.6 26 
FCN-VGG16 No WCE 27.8 108.8 75.6 76.6 76.9 2.5 95 
U-net No WCE 34.5 135.1 75.7 78.9 75.7 5.8 75 
U-net-VGG16 Yes WCE 46.1 180.2 77.2 81.2 76.2 6.0 37 
U-net-ResNet34 Yes WCE 48.0 188.1 77.6 78.3 79.5 4.9 61 
U-net-ResNet50 Yes WCE 73.7 288.5 76.3 80.9 74.8 6.8 45 
U-net-Densenet121 Yes WCE 41.6 163.5 78.1 80.7 78.1 6.2 55 
U-net-Densenet169 Yes WCE 54.3 213.4 78.5 83.5 76.2 7.1 63 
U-net-InceptionV3 Yes WCE 68.5 268.1 77.7 79.2 78.9 6.8 31 
U-net-MobileNet Yes WCE 37.8 147.9 79.6 79.9 81.4 4.8 45 

No WCE 75.4 80.7 73.4 36 
Yes CE 76.6 73.0 83.0 36 
Yes F1-score 78.2 77.1 82.0 29 
Yes Focal Loss 71.2 61.1 89.4 85 

U-net-MobileNetV2 Yes WCE 39.5 154.9 77.7 76.6 81.9 5.3 58 
FPN-VGG16 Yes WCE 32.2 125.8 77.9 82.0 76.2 5.6 79 
FPN-ResNet34 Yes WCE 38.3 150.2 78.0 81.5 77.2 5.2 36 
FPN-ResNet50 Yes WCE 42.1 164.8 77.2 81.4 75.8 5.8 27 
FPN-Densenet121 Yes WCE 24.6 97.0 79.0 83.6 77.2 6.1 31 
FPN-Densenet169 Yes WCE 30.6 120.8 78.6 80.0 79.5 6.6 59 
FPN-InceptionV3 Yes WCE 40.0 157.2 79.6 81.3 80.1 5.7 34 
FPN-MobileNet Yes WCE 20.8 81.4 79.5 79.5 81.7 4.6 40 
FPN-MobileNetV2 Yes WCE 19.9 78.3 78.5 76.7 82.7 4.8 49 

WCE: weighted cross entropy, CE: cross entropy. 
a Whether the encoder of a network is pretrained on ImageNet. 
b The total number of parameters of a network. 
c Size of the file where the weights of a network are stored. 
d Analysis time required to run a network for 100 epochs. 
e Epoch where the highest F1 score was obtained for the validation set. 
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patches were fed to the networks along with pixel-level annotated labels. 
Similar to the classification networks, the segmentation models were 
implemented on Keras [66] by utilizing TensorFlow as back-end and 
were run on the same computing laptop (see Section 4.2 for details). 

5.3. Results for crack segmentation 

In this section the segmentation results from the trained networks are 
presented. The obtained metrics from the trained models on the vali
dation set are shown in Table 2 for the epoch that the highest F1 score is 
reached for each case. From Table 2, a high value of recall does not 
necessarily mean high precision and vice versa. Thus, F1 score, the 
average between recall and precision, is deemed the most indicative 
metric to decide which networks perform better. Thus, U-net-MobileNet 
and FPN-InceptionV3 attain the highest F1 score, that is 79.6%, and 
FPN-MobileNet follows with 79.5%. 

Firstly, the effect of the loss function on the performance of the 
networks was evaluated. U-net-MobileNet was trained, apart from WCE, 
with CE, F1 score and focal loss as loss function. It is noted that similar 
results were extracted for the other networks but for brevity only results 
for U-net-MobileNet are presented. The performance of U-net-MobileNet 
for the different loss functions is displayed in Table 2 and the evolution 
of the metrics is shown in detail in Fig. 13. As shown in Table 2, the best 
performance is reached when WCE is utilized; the obtained F1 score is 
79.6%, 76.6%, 78.2% and 71.2% for WCE, CE, F1 score and focal loss 
respectively. Precision is in the range of 90% for CE (Fig. 13b) and focal 
loss (Fig. 13d) while recall remains significantly lower, i.e. in the range 
of 60% to 70%. Thus, these two loss functions are not able to handle the 
class imbalance problem for crack segmentation since the network be
comes overconfident in predicting background while neglecting the 
minority class, that is crack. When WCE (Fig. 13a) and F1 score 
(Fig. 13c) are used as loss function the discrepancy between precision 
and recall is less profound. Specifically for WCE, in the first epochs, the 
recall value ranks approximately 90% while further on converges to 
80% and from the 80th epoch onwards decreases to 70%. On the other 
hand, precision follows an opposite path, starting from 50% and grad
ually increasing up to 85% in the final epochs. F1 score in the beginning 
of training is 60% and then converges to value close to slightly below 
80%. The highest F1 score is attained in the 45th epoch. The perfor
mance of the three metrics indicates that in the beginning, the system is 
overconfident to predict cracks. In this process, it misclassifies back
ground as cracks. Similar behaviour was reported by [30,56]. As Zhang 
et al. [75] pointed out, precision and recall frequently conflict with each 
other and a compromise between recall and precision is made to select 
the best model. In order to visualize the meaning of different values of 
recall and precision, predictions with U-net-MobileNet for different 

images are exhibited for the epochs 3 and 45 which correspond to the 
highest recall and F1 score respectively (Fig. 14). All the examples in 
Fig. 14 rank a recall value close to 100% (i.e. maximum value) at epoch 
3. Nevertheless, precision and F1 score remain significantly lower. 
Taking a closer look at the predictions at epoch 3, large parts of the 
background have been misclassified as cracks (Fig. 14). Regarding the 
predictions on epoch 45, recall slightly drops while precision signifi
cantly increases since the network learns to negate greater parts of the 
background (Fig. 14). 

Furthermore, the networks found in the literature, that is DeepCrack, 
DeepLabv3+, FCN-VGG16 and U-net, have similar performance in terms 
of F1 score, i.e. from 74% to 75.7%. U-net outperforms the other net
works obtained from the literature achieving F1 score 75.7% with FCN- 
VGG16 following closely with F1 score 75.6%. Moreover, regarding the 
performance of the networks found in the literature except for FCN- 
VGG16, significant discrepancy is observed between the recall and 
precision values; the networks favour the recall which lead to lower 
values of precision. The models based on U-net and FPN with a pre
trained CNN as backbone attain F1 score from 77.2% to 79.6% which 
means that they surpass the F1 score, that is 75.7%, of the models found 
in the literature and are implemented without pretraining. Furthermore, 
in Table 2 can be observed that U-net and U-net-MobileNet without 
pretraining reach similar F1 score, that is 75.7% and 75.4% respectively, 
while the pretrained U-net-MobileNet yields F1 score 79.6%. This 
observation highlights the effect of pretraining on the performance of 
the networks; F1 score is boosted by 4.2% when pretraining is consid
ered for U-net-MobileNet. The U-net-MobileNet without pretraining in 
terms of F1 score records performance similar to FCN-VGG16 and U-net 
and outperforms DeepCrack and DeepLabv3+. The models based on FPN 
in general score higher than the corresponding ones built on U-net while 
the highest F1 score is obtained with U-net-MobileNet and FPN- 
InceptionV3 (Table 2). It is noted that the models based on FPN have 
almost half the size of the ones with U-net in terms of model parameters 
and memory size of the stored weights (Table 2). Thus, FPN models 
match the performance of the U-net counterparts while being signifi
cantly more lightweight networks. 

In Fig. 15 different examples from the validation set are presented 
with predictions obtained with DeepCrack, DeepLabv3+, U-net, U-net- 
MobileNet (with and without pretraining) and FPN-InceptionV3. In 
particular, images with edges around openings (Fig. 15a-e), crack-like 
mortar joints (Fig. 15f-i), shadows (Fig. 15k) and dark spots (Fig. 15l) 
are displayed. While the pretrained U-net-MobileNet and FPN- 
InceptionV3 are able to negate different types of noisy background, 
the rest of the networks (Fig. 15) score lower in terms precision. 

Images from the validation set with predictions obtained using U- 
net-MobileNet have already been presented in Fig. 14 and Fig. 15 while 

Fig. 13. The metrics F1 score, Recall and Precision as obtained from the pretrained U-net-MobileNet for different loss functions: (a) weighted cross entropy (WCE), 
(b) cross entropy (CE), (c) F1 score, and (d) focal loss. 
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extra examples are shown in Fig. 16. The network successfully segments 
cracks with different crack size, scale and background complexity; close- 
up photos (Fig. 16a–c), images with a larger field of view (Fig. 16d–f) 
and with unwanted objects (i.e. windows and colour-paints) 
(Fig. 16g–i). Apparently, there are cases that the network failed to 
perform crack segmentation accurately. For example, in Fig. 16j–k the 
network fails to detect parts of the cracks. Moreover, Fig. 16l–r displays 
examples where the model does not manage to negate noisy types of 
background. 

6. Comparative study 

In a previous study for crack detection on concrete surfaces it was 
concluded that when a DL network was trained on images of monoto
nous background and subsequently tested on a more complex dataset the 
performance drastically decreased [19]. In more detail, precision from 
87.4% fell to 23.1%. Moreover, DL networks trained on concrete images 
found to perform poorly when tested on masonry images because they 
are rather complex [48]. This behaviour of CNN was explained by [79]; 
the transferability of features decreases as the distance between the base 
task (i.e. training dataset) and target task (i.e. testing dataset) increases. 
To build up on these findings, U-net-MobileNet trained on the masonry 
dataset is tested on images from concrete surfaces in order to evaluate 
the ability of CNNs to generalize over different materials. 

In particular, the open source dataset prepared by Yang et al. [24] is 
selected and will be referred to as the “concrete dataset”. The dataset 
consists of 776 concrete images containing different crack types. Ex
amples of images in the concrete dataset with their labelled cracks are 

presented in Fig. 17. An FCN was trained and morphological trans
formations were applied to further improve the crack segmentation. The 
reported F1 score, recall and precision were 80%, 79% and 82% 
respectively [24]. 

When U-net-MobileNet is tested on the concrete dataset it ranks 
74.7%, 70.9%, 91.2% for F1 score, recall and precision respectively. The 
network does not perform satisfactorily in terms of recall value while 
excels in terms of precision. These results can be explained by taking a 
closer look on the predictions on the concrete dataset (Fig. 17). In fact, 
the network performs exceptionally segmenting cracks with compli
cated shapes (Fig. 17a–d) obtaining 79% recall or above and a minimum 
of 94% in terms of precision. On the other hand, the network fails to 
detect cracks like in Fig. 17e–f but it is noted that these defects look like 
spalling and do not have a typical crack-like shape; similar defects do not 
exist in the masonry dataset. Additionally, precision is high which im
plies that the network can easily negate the background. This could be 
attributed to the fact that concrete surfaces are rather homogeneous and 
less complex than masonry surfaces. Consequently, the performance of 
U-net-MobileNet trained on the masonry dataset deteriorates, i.e. F1 
scores declines from 79.6% to 74.7%, when tested on the concrete 
dataset but not as drastically as reported in the literature when networks 
trained on concrete images were consequently tested on masonry 
photos. As explained above (Section 2.2), this is attributed to the fact 
that masonry surfaces are more complex than concrete ones. It is noted 
that in the literature there are various datasets of concrete surfaces while 
only limited data for masonry exist. Thus, when crack segmentation on 
concrete surfaces is requested, it is recommended to train a model solely 
on concrete images instead of relying on models trained on masonry 

Fig. 14. The original image, the ground truth and the predictions with U-net-MobileNet at epochs 3 and 45 are displayed for different images from the masonry 
dataset. At the top of each prediction the calculated metrics (F1: F1 score, RE: recall, and PR: precision) are highlighted. 
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Fig. 15. The original image, the ground truth and the prediction with different netwroks are displayed for different images from the masonry dataset. At the top of 
each prediction the calculated metrics (F1: F1 score, RE: recall, and PR: precision) are highlighted. 
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Fig. 15. (continued). 
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Fig. 16. The original image, the ground truth and the prediction with U-net-MobileNet are displayed for different images from the masonry dataset. At the top of 
each prediction the calculated metrics (F1: F1 score, RE: recall, and PR: precision) are highlighted. 
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data. On the other hand, for cases where only few data exist, e.g. timber 
surfaces, a model trained on a dataset with complex backgrounds like 
the masonry dataset produced herein could be an alternative. 

7. Conclusions 

In this study the feasibility of DL techniques for crack detection on 
images from masonry walls is investigated. Even though masonry sur
faces have been reported to be rather complex for CNN on crack 
detection, this study showcases that DL algorithms are able to accurately 
detect cracks from images of real masonry surfaces. In order to address 
the lack of data in the literature, a dataset with photos from masonry 
structures was produced containing complex backgrounds and various 
crack types and sizes. Different DL networks are considered and by 
leveraging the effect of transfer learning crack detection on masonry 
surfaces is performed both on patch and pixel level. To the authors’ best 
knowledge, this is the first implementation of DL for pixel-level crack 
segmentation on masonry surfaces. State of the art CNNs pretrained on 
ImageNet are examined for their efficacy to classify images from ma
sonry surfaces on patch level with MobileNet obtaining the highest ac
curacy, that is 95.3%. U-net, a deep FCN, and FPN, a generic pyramid 
representation, are combined with different pretrained CNNs perform
ing as the backbone of the encoder part of the network to perform pixel 
level crack segmentation. U-net-MobileNet and FPN-InceptionV3 attain 
the highest F1 score, that is 79.6%, and outperform other networks for 
crack segmentation from the literature. In particular, for U-net-Mobi
leNet, when the backbone CNN is considered without pretraining, F1 
score declines from 79.6% to 75.4%, which demonstrates the beneficial 
effect of transfer learning. The ability of CNNs to generalize over 
different materials is evaluated. The performance of U-net-MobileNet 
trained on the masonry dataset deteriorates, i.e. F1 scores declines from 
79.6% to 74.7%, when tested on concrete images but not as drastically 
as reported in the literature when networks trained on concrete images 
were consequently tested on masonry photos. Codes, data and networks 
relevant to the herein study can be found in the GitHub repository: gi 
thub.com/dimitrisdais/crack_detection_CNN_masonry. 

Although the proposed DL algorithms achieved promising results, 

further improvements are required to achieve a fully automated vision- 
based assessment of masonry surfaces. The current study focuses on the 
detection of cracks but in the future the annotations of the masonry 
dataset could be updated to consider other defect types as well. The 
results of DL methods heavily rely on the quality of data. Thus, the 
expansion of the current masonry dataset is highly recommended with 
special care for the inclusion of even broader background types. In 
particular, including photos under low-lighting conditions and further 
evaluating the accuracy of the crack detection is highly recommended. 
With the increasing accessibility to high quality camera sensors it is 
advised that the research community develops ways to further mobilize 
engineers, practitioners and citizens to contribute in the data collection 
process and provide them with guidelines and automatic procedures 
that will render the gathered data reliable. Significant research has been 
devoted to the automatic semantic segmentation of photos coming from 
building façades, a technique known as façade parsing. Further studies 
are advised to evaluate whether façade parsing could be utilized to 
preliminarily detect objects like doors, ornaments, etc. and negate them 
so that the network would search for defects only on masonry surfaces. 
Herein, networks based on U-net and FPN architectures were imple
mented. Recent studies have come up with updated versions of these 
architectures which outperformed the original implementations. A 
further investigation whether these updated versions could improve the 
accuracy of the herein suggested DL algorithms for crack detection is 
encouraged. The best performing networks implemented herein scored 
better than other networks which have already been successfully used in 
the literature for crack segmentation on concrete or asphalt surfaces. 
Thus, it is highly recommended that the best architectures used herein 
are implemented on other types of surfaces as future research. 
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