

1ST INTERNATIONAL CONFERENCE ON BIOMASS UTILIZATION & SUSTAINABLE ENERGY 2020 (ICoBiomasSE 2020)

Conference Program & Abstract Book

Centre of Excellence for Biomass Utilization Universiti Malaysia Perlis (UniMAP)

Co-Organizers:

Taiwan - Malaysia Innovation Center (Clean Water and Sustainable Energy (WISE Center)

15th - 16th December 2020 https://icobiomasse.wixsite.com/icobiomasse2020

CHEMICALLY MODIFIED PALM KERNEL SHELL BIOCHAR FOR THE REMOVAL OF HEAVY METALS FROM AQUEOUS SOLUTION

Muhammad Imran-Shaukat¹, Rafeah Wahi^{1,*}, Nur Rafikah Rosli¹, Sharifah Mona Abd Aziz Abdullah², and Zainab Ngaini¹

¹Faculty of Resources Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia ²Centre of Pre-University Studies, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak,

Malaysia.

*Corresponding author: imranchemi@gmail.com

ABSTRACT

Worldwide escalated domestic, agricultural, and industrial operations have resulted in the discharge of toxic disadvantageous heavy metals into the water bodies. Toxic heavy metals eradication from water is a complicated subject, therefore a viable, resilient, and green technology is imperative. Heavy metal removal can be accomplished through easy access, economical, and efficient sorbents. In the current study, Waste Palm Kernel Shell was gathered cleaned, transformed into biochar, and acid-base modification was performed to refine its adsorption capabilities. Batch experiments were conducted to explore the adsorption capability for heavy metals aqueous removal involving Chromium, Nickel, and Copper. The surface area was expanded from 112.934 m2/g to 149.670 m2/g by chemical modification. In the batch adsorption, Palm Kernel Shell biochar exhibited 98.62%, 97.10%, and 48.98% Copper, Nickle, and Chromium ion removal respectively while modified Palm Kernel Shell biochar resulted in 99.29% Copper, 96.77% Nickle, and 42.97% Chromium ion elimination. These results are proportionate to already reported in the studies of different agricultural materials-based sorbents. Adsorption by both Palm Kernel Shell biochar and modified Palm Kernel Shell biochar were well defined by Langmuir isotherm and pseudo-secondorder kinetics. This research's findings will present new understandings for heavy metals elimination from the wastewater system.