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Abstract
Background: Experimental treatments pass through various stages of development. If a treatment passes through
early-phase experiments, the investigators may want to assess it in a late-phase randomised controlled trial. An efficient
way to do this is adding it as a new research arm to an ongoing trial while the existing research arms continue, a so-
called multi-arm platform trial. The familywise type I error rate is often a key quantity of interest in any multi-arm plat-
form trial. We set out to clarify how it should be calculated when new arms are added to a trial some time after it has
started.
Methods: We show how the familywise type I error rate, any-pair and all-pairs powers can be calculated when a new
arm is added to a platform trial. We extend the Dunnett probability and derive analytical formulae for the correlation
between the test statistics of the existing pairwise comparison and that of the newly added arm. We also verify our ana-
lytical derivation via simulations.
Results: Our results indicate that the familywise type I error rate depends on the shared control arm information (i.e.
individuals in continuous and binary outcomes and primary outcome events in time-to-event outcomes) from the com-
mon control arm patients and the allocation ratio. The familywise type I error rate is driven more by the number of pair-
wise comparisons and the corresponding (pairwise) type I error rates than by the timing of the addition of the new
arms. The familywise type I error rate can be estimated using Šidák’s correction if the correlation between the test sta-
tistics of pairwise comparisons is less than 0.30.
Conclusions: The findings we present in this article can be used to design trials with pre-planned deferred arms or to
add new pairwise comparisons within an ongoing platform trial where control of the pairwise error rate or familywise
type I error rate (for a subset of pairwise comparisons) is required.
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Introduction

Many recent developments in clinical trials are aimed
at speeding up research by making better use of
resources. Phase III clinical trials can take several years
to complete in many disease areas, requiring consider-
able resources. During this time, a promising new treat-
ment which needs to be tested may emerge. The
practical advantages of incorporating such a new
experimental arm into an existing trial protocol have
been clearly described before,1–4 not least because it
obviates the often lengthy process of initiating and
launching a new trial which may compete for patients
with the existing one. One trial using this approach is

the STAMPEDE trial5 in men with high-risk prostate
cancer. STAMPEDE is a multi-arm multi-stage
(MAMS) platform trial that was initiated with one
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common control arm and five experimental arms
assessed over four stages. Five new experimental arms
have been added since its conception1 – see next section
for further design details. This was done within the
paradigm of a ‘platform’ that has a single master pro-
tocol in which multiple treatments are evaluated over
time. It offers flexible features such as early stopping of
accrual to treatments for lack-of-benefit or adding new
research treatments to be tested during the course of a
trial. There might also be scenarios when at the design
stage of a new trial another experimental arm is
planned to be added after the start of the trial, that is,
a planned addition. An example of this scenario is the
RAMPART trial in renal cancer – see ‘‘Results’’ sec-
tion and online Supplemental Appendix for design
details. In some platform designs, however, the addi-
tion of the new experimental arm would be intended
but not specially planned at the start of the platform,
that is, unplanned, and is opportunistic at a later stage.
In other words, in the planned scenario, the addition of
a new research arm at a later stage is clearly foreseen at
the design stage, whereas in the unplanned scenario the
opportunity or need to assess a further comparison
becomes apparent during the trial.

The type I error rate is one of the key quantities in
the design of any clinical trial. Two measures of type I
error in a multi-arm trial are the pairwise type I error
rate (PWER) and familywise type I error rate (FWER).
The PWER is the probability of incorrectly rejecting
the null hypothesis for the primary outcome of a partic-
ular experimental arm at the end of the trial, regardless
of other experimental arms in the trial. The FWER is
the probability of incorrectly rejecting the null hypoth-
esis for the primary outcome for at least one of the
experimental arms from a set of comparisons in a
multi-arm trial. It gives the type I error rate for a set of
pairwise comparisons of the experimental arms with the
control arm. In trials with multiple experimental arms,
the maximum possible FWER often needs to be calcu-
lated and known – see the review by Wason et al.6 for
details. In some multi-arm trials, this maximum value
needs to be controlled at a predefined level. This is
called a strongly controlled FWER as it covers all
eventualities, that is, all possible hypotheses.7 Dunnett8

developed an analytical formula to calculate the FWER
in multi-arm trials when all the pairwise comparisons of
experimental arms against the control arm start and
conclude at the same time. However, it has been unclear
how to calculate the FWER when new experimental
arms are added during the course of a trial.

The purpose of this article is threefold. First, we
describe how the FWER, disjunctive (any-pair) and
conjunctive (all-pairs) powers – see ‘‘Methods’’ section
for their definitions – can be calculated when a new
experimental arm is added during the course of an exist-
ing trial with continuous, binary, and time-to-event out-
comes. Second, we describe how the FWER can be

strongly controlled at a prespecified level for a set of
pairwise comparisons in both planned (i.e. the added
arm is planned at the design stage) and unplanned (e.g.
such as platform designs) scenarios. Third, we explain
how the decision to control the PWER or the FWER in
a particular design involves a subtle balancing of both
practical and statistical considerations.9 This article
outlines these issues and provides guidance on whether
to emphasise the PWER or the FWER in different
design scenarios when adding a new experimental arm.

The structure of the article is as follows. In the next
section, the design of the STAMPEDE platform trial is
presented. In ‘‘Methods’’ section, we explain how the
FWER, disjunctive, and conjunctive powers are com-
puted when a new experimental arm is added to an
ongoing trial. In ‘‘Results’’ section, we present the out-
come of our simulations to verify our analytical deriva-
tion. We also show two applications in both planned
(i.e. RAMPART trial in renal cancer) and platform
design (i.e. STAMPEDE trial) settings. We then pro-
pose strategies that can be applied to strongly control
the FWER when adding new experimental arms to an
ongoing platform trial in scenarios where such a con-
trol is required. Finally, we discuss our findings.

An example: STAMPEDE trial

STAMPEDE1 is a multi-arm multi-stage (MAMS)
platform trial for men with prostate cancer at high risk
of recurrence who are starting long-term androgen
deprivation therapy. In a four-stage design, five experi-
mental arms with treatment approaches previously
shown to be safe were compared with a control arm
regimen. In this trial, the primary analysis was carried
out at the end of stage 4, with overall survival as the
primary outcome. Stages 1 to 3 used an intermediate
outcome measure of failure-free survival. As a result,
the corresponding hypotheses at interim stages played
a subsidiary role – that is, used for lack-of-benefit anal-
ysis on an intermediate outcome, not for making claims
of efficacy. We, therefore, focus here on the primary
hypotheses on overall survival at the final stage – for
designs with both lack-of-benefit and efficacy stopping
boundaries see the articles by Blenkinsop et al.10 and
Blenkinsop and Choodari-Oskooei.11

Recruitment to the original arms began late in 2005
and was completed early in 2013. The design para-
meters for the primary outcome at the final stage were
a (one-sided) pairwise significance level of 0.025, power
of 0.90, and the target hazard ratio of 0.75 on overall
survival which required 401 control arm deaths (i.e.
events on overall survival). An allocation ratio of
A= 0:5 was used for the original comparisons so that,
over the long term, one patient was allocated to each
experimental arm for every two patients allocated to
control. Because distinct hypotheses were being tested
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in each of the five experimental arms, the emphasis in
the design for STAMPEDE was on the pairwise com-
parisons of each experimental arm against control, with
emphasis on the strong control of the PWER. Out of
the initial five experimental arms, only three of them
continued to recruit through to their final stage.
Recruitment to the other two arms stopped at the
second interim look due to lack of sufficient activity.

Since November 2011, five new experimental arms
have been added to the original design. Figure 1 pre-
sents the timelines for different arms, including three of
those added later. Note that patients allocated to a new
experimental arm are only compared with patients ran-
domised to the control arm contemporaneously, and
recruitment to the new experimental arm(s) continues
for as long as is required. Therefore, the analysis and
reporting of the new comparisons will be later than
for the original comparisons. Figure 1 also shows
the recruitment periods when the pairwise comparisons
of the newly added experimental arms with the
control overlap with each other as well as with those
of the original comparisons – see the top section of
Figure 1.

Methods

In this section, we first present the formulae for the cor-
relation of the two test statistics when one of the com-
parisons is added later in trials with continuous,
binary, and survival outcomes. We then describe how
Dunnett’s test can be extended to compute the FWER,
as well as conjunctive and disjunctive powers when a
new arm is added mid-course of a two-arm trial.

Type I error rates when adding a new arm

In a two-arm trial, the primary comparison is
between the control group (C) and the experimental
treatment (E). The parameter u represents the differ-
ence in the outcome measure between the two groups.
In the notation of this article, the control group is
always identified with subscript 0. For continuous out-
comes, u could be the difference in the means of the
two groups m1 � m0; for binary data difference in the
proportions p1 � p0; and for survival data a log hazard
ratio (logHR).

The efficient score statistic for u (based on the avail-
able data and calculated under the null hypothesis that
u= 0) is represented by S with V being Fisher’s
(observed) information about u contained in S.
Conditionally on the value of V , in large samples
(which is the underlying assumption throughout this
article), S follows the normal distribution with mean
uV and variance V , that is, S;N(uV ,V ). In the survival
case, S and V are the logrank test statistic and its null
variance, respectively.

In practice, the progress of a trial can be assessed in
terms of ‘information time’ t because it measures how
far through the trial we are.12 In the case of continuous
and binary outcomes, t is defined as the total number
of individuals accrued so far divided by the total sam-
ple size. In survival outcomes, it is defined as the total
number of events occurred so far divided by the total
number of events required by the planned end of the
trial.12 In all cases t= 0 and t = 1 correspond to the
beginning and end of the trial, respectively. In continu-
ous, binary, and survival outcome data, S has indepen-
dent and normally distributed increment structure.

Figure 1. Schematic representation of the control and experimental arm timelines in the STAMPEDE trial.
Bottom section: the thick horizontal bars represent the accrual period, and the following solid lines represent the follow-up period. Top section: the

striped bars represent the period when the recruited control arm patients overlap during this period between different pairwise comparisons. The

colours of the stripes represent the colours of each pairwise comparison. For example, the striped bar that is labelled as S(1, 2, 4; 6) represents the

period when the recruited control arm patients are shared between the original pairwise comparisons 1, 2, and 4 and the sixth newly added

comparison during this period.

Choodari-Oskooei et al. 275



This means that at information times t1, t2, . . . , tj, the
increments S(t1), S(t2)� S(t1), . . . , S(tj)� S(tj�1) are
independently and normally distributed.

Furthermore, the Z-test statistic can be expressed in
terms of the efficient score statistic S and Fisher’s infor-
mation as Z = S=

ffiffiffiffi
V
p

. The Z-test statistic is (approxi-
mately) normally distributed Z;N(u

ffiffiffiffi
V
p

, 1) and has the
same independent increment property as that of S. For
example, in trials with continuous outcomes, where the
aim is to test that the outcome of n1 individuals in
experimental treatment E1 is on average smaller (here
smaller means better, for example, blood pressure) than
that of n0 individuals in control group (C), the null
hypothesis H1

0 : m1øm0 is tested against the (one-sided)
alternative hypothesis H1

1 : m1\m0. In this case, the
type I error rate is a predefined value a1 =F(za1

)
where F(:) is the normal probability distribution func-
tion. Denote Z1 the standardised test statistics for E1

versus control. Under H0, the distribution of the z-test
statistics is standard normal, N (0, 1). Table 1 presents
the test statistics for continuous, binary, and survival
outcomes with the corresponding Fisher’s (observed)
information.

If a different experimental arm, E2 is compared with
the control treatment C in another independent trial,
the corresponding null hypothesis is H2

0 : m2øm0 with
the type I error rate being similarly defined as a2.
Magirr et al.13 showed that the FWER is maximised
under the global null hypothesis, HG

0 , that is, when the
mean outcome in each of the experimental arms is
equal to that of the control arm, HG

0 : u0
1 = u0

2 = 0. In
the above scenario, since the two trials are independent,
the overall type I error rate (FWER) of the two com-
parisons, k = 1, 2, can be calculated using the Šidák14

formula

FWERS = Pr (reject at least one Hk
0 jHG

0 )

= Pr (rejectH1
0 orH2

0 jHG
0 )

= 1� Pr (acceptH1
0 andH2

0 jHG
0 )

= 1� (1� a1)(1� a2)

When a1 =a2 =a

FWERS = 1� (1� a)2 ð1Þ

where subscript S stands for Šidák. If the control arm
observations are shared between the two pairwise com-
parisons, one can replace the term (1� a)2 in equation
(1) to allow for the correlation between the two test sta-
tistics Z1 and Z2, that is, the correlation induced by the
shared control arm information. Dunnett8 provided an
analytical formula to estimate the FWER when all the
comparisons start and conclude at the same time, that
is, when all control arm observations overlap between
different comparisons. In the above scenario, the
FWER can be calculated using

FWERD = 1�F2 z1�a1
, z1�a2

; r12ð Þ ð2Þ

where F2(:; r12) is the standard bivariate normal prob-
ability distribution function and r12 is the correlation
between Z1 and Z2 at the final analysis. With equal allo-
cation ratio A=A1 =A2 across all experimental arms,
r12 =A=A+ 1, for example, r12 = 0:5 when
n0 = n1 = n2.

8

The formula for r12 can be extended for the scenario
when E2 is started later than E1 and C overlaps with
both of them, that is, when only some of the control
arm observations are shared between the two compari-
sons. This scenario is quite common in platform trials
where new experimental arms can be added to the pre-
vious sets of pairwise comparisons, and recruitment to

Table 1. Treatment effects, test statistics, expected information, and correlation between the test statistics of pairwise comparisons
in trials with continuous, binary, and survival outcomes, with common allocation ratio (A).

Outcome Treatment effect (u) Test statistics (Z) Fisher’s information (V) Correlation between two comparisons

Complete
overlap (r12)

Partial
overlap (r�12)

Continuous uc =m1 � m0 Z1 = uc

ffiffiffiffiffi
Vc

p
Vc =

s2
0

n0
+

s2
1

An0

� ��1 A
A+ 1

A
A+ 1 :

n0, 12

n0

Binary

(
ub1

= p1 � p0 Z1 = ub1

ffiffiffiffiffiffi
Vb1

p
Vb1

= p0(1�p0)
n0

+ p1(1�p1)
An0

� ��1 A
A+ 1

A
A+ 1 :

n0, 12

n0

ub2
= log p1(1�p0)

p0(1�p1)

n o
Z1 = ub2

ffiffiffiffiffiffi
Vb2

p
Vb2

= 1
n0p0(1�p0)

+ 1
An0p1(1�p1)

� ��1 A
A+ 1

A
A+ 1 :

n0, 12

n0

ub3
= log p1

p0

n o
Z1 = ub3

ffiffiffiffiffiffi
Vb3

p
Vb3

= 1�p0

n0p0
+ 1�p1

An0p1

� ��1 A
A+ 1

A
A+ 1 :

n0, 12

n0

Survival us = log (HR) Z
1
= us

ffiffiffiffi
Vs

p
Vs = d A

(1+ A)2

� ��1 A
A+ 1

A
A+ 1 :

e0, 12

e0

r12: correlation when there is complete overlap between pairwise comparisons. r�12: correlation when only n0, 12(e0, 12) control arm observation

(events) overlaps between comparisons 1 and 2. n0, 12(e0, 12), shared observations (events) in control arm; n0(e0), total observations (events) in

control arm; d, all events.
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the new experimental and control arms continues until
the planned end of that comparison. To achieve this,
we make use of the asymptotic properties of the effi-
cient score statistic and the z-test statistic. It has been
shown that over time, the sequence of z-test statistics
approximately has an independent and normally dis-
tributed increment structure for the estimators of the
treatment effects presented in Table 1.12,15 This means
that at information time t0.t

ffiffiffiffiffiffiffiffiffiffi
N (t0)

p
Z(t0)=

ffiffiffiffiffiffiffiffiffi
N (t)

p
Z(t)+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N (t0)� N (t)

p
Z(t0 � t)

where N(t0) and N (t) are the total sample sizes at infor-
mation times t0 and t. With equal allocation ratio to
both experimental arms, if n0, 12 control arm observa-
tions (where 0\n0, 12\n0) are shared between the two
comparisons, the correlation between Z1 and Z2 can be
calculated using equation (3) – see online Supplemental
Appendix for analytical derivations and more complex
formula for the case of unequal allocation ratio between
comparisons

r�12 =
A

A+ 1
:
n0, 12

n0

ð3Þ

Note that the factor n0, 12=n0 is bounded by 0, 1½ � with
the upper bound equal to 1 when n0, 12 = n0 (i.e. when
the two comparisons start and finish at the same time),
and the lower bound equal to 0 when there is no shared
observation in the control arm – in which case,
FWERD converges to FWERS .

Our analytical derivation shows that equation (3)
applies to both continuous and binary outcome mea-
sures. However, in survival outcomes, the ratio n0, 12=n0

should be replaced with the ratio of the shared events
in the control arm, that is, e0, 12=e0– see Supplemental
Appendix for analytical derivations and also the more
complicated formula for unequal allocation ratio.
Table 1 shows the corresponding formula for r�12 by
the type of outcome measure.

Power when adding a new arm

The power of a clinical trial is the probability that
under a particular target treatment effect u1, a truly
effective treatment is identified at the final analysis. In
multi-arm designs, per-pair (pairwise) power (v)16 cal-
culates this probability for a given experimental arm
against the control. In multi-arm settings, however,
there are other definitions of power that might be of
interest – depending on the objective of the trial. In the
above setting where there are two comparisons, define
the target treatment effects under the alternative
hypothesis for each of the comparisons as u1

1 and u1
2,

respectively. Disjunctive (any-pair) power is the prob-
ability of showing a statistically significant effect under
the targeted effects for at least one comparison

Od = Pr (reject at least one Hk
0 ju1 = u1

1, u2 = u1
2)

= 1� Pr (accept H1
0 and H2

0 ju1 = u1
1, u2 = u1

2)

when the two comparisons, k = 1, 2, are independent,
that is, r12 = 0, disjunctive power (Od) is defined as

Od = 1� (1� v1)(1� v2) ð4Þ

If r12 6¼ 0, then Od is calculated using

Od = 1�F2(z1�v1
, z1�v2

; r12) ð5Þ

Conjunctive (all-pairs) power is the probability of
showing a statistically significant effect under the tar-
geted effects for all comparison pairs. When the two
tests are independent, conjunctive power (Oc) is

Oc = Pr (reject all Hk
0 ju1 = u1

1, u2 = u1
2)

= Pr (reject H1
0 and H2

0 ju1 = u1
1, u2 = u1

2)

=v1 � v2

Given the correlation r12, then Oc is calculated using

Oc =F2(zv1
, zv2

; r12) ð6Þ

If a new experimental arm is added later on, the cor-
responding formula for r�12 in Table 1 can be used to
calculate both disjunctive (Od) and conjunctive (Oc)
powers in this scenario.

Results

In this section, we first show the results of our simula-
tions to explore the validity of equation (3) to estimate
r�12 and to study the impact of the timing of the addition
of a new experimental arm on the FWER and different
types of power. Because of the censoring, survival out-
comes are generally considered the most complex type
of outcomes listed in Table 1. We conduct our simula-
tions in this setting. Then, we estimate the correlation
structure between the test statistics of different compar-
isons in the STAMPEDE trial, including the first three
of the added arms to the original set of comparisons.
Finally, to illustrate the design implications in planned
scenarios, we show an application in the design of the
RAMPART trial.

Simulation design

In our simulations, we considered a hypothetical three-
arm trial with one control, C, and two experimental
arms (E1 and E2). We applied similar design parameters
to those in the article by Royston et al.16– see Section
2.7.1–taking median survival for the time-to-event out-
come of 1 year (hazard l1 = 0:693 in control arm). We
generated individual time-to-event patient data from an
exponential distribution and estimated the correlation
between the test statistics of the two pairwise
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comparisons Z1 and Z2 when E2 was initiated at differ-
ent time points after the start of the experimental arm
E1 and control. Accrual rates were assumed to be uni-
form throughout (across the platform) and set to 500

patients per unit time for both comparisons.
As in the STAMPEDE trial, the comparison set of

patients for the deferred experimental arm E2 are the
contemporaneously recruited control arm C individu-
als. This means that in our simulations, recruitment to
the control arm continued until conclusion of that
required for the E2 comparison. As for the final stage
of STAMPEDE, the design significance level and
power were chosen as ai = 0:025 and vi = 0:9, i= 1, 2

in all scenarios. The target hazard ratio under the alter-
native hypothesis in both pairwise comparisons was
0:75. To investigate the FWER under different alloca-
tion ratios, we carried out our simulations under three
allocation ratios of A= 0:5, 1, 2f g. Table 2 presents
details of the design parameters, including trial time-
lines, in each pairwise comparison for different values
of A. Calculations for Table 2 were done in Stata using

the nstage programme.17 In simulations, 50, 000 repli-
cations were generated in each scenario.

Finally, the main aim of our simulation study is to
explore the impact of the timing of adding a new experi-
mental arm on the correlation structure and the value
of the FWER. For this reason, only one original com-
parison was included in our simulations. In the follow-
ing sections and Discussion, we discuss how the FWER
can be strongly controlled and address other relevant
design issues, when more pairwise comparisons start at
the beginning.

Simulation results

The results are summarised in Tables 3 and 4. Table 3
shows the values of the correlation between the test sta-
tistics of the two pairwise comparisons as computed
from the corresponding equation for r�12 in Table 1, by
the timing of when the second experimental arm E2

was added. We estimated the number of shared control
arm events, e

0, 12
, via simulation. For each scenario, we

also simulated individual patient data under the null
hypothesis and computed both test statistics, which
were then used to estimate the correlation between
them. The results are also included in Table 3, that is,
r̂�12. The results indicate that the estimates r̂�12 accord
well with the corresponding values obtained from the
formula in all experimental conditions – they mostly
differed in the third decimal place.

The results for each allocation ratio indicate that
when E2 starts later than E1 and C, the estimates r̂�12

and the FWER are driven by the shared control arm
events between the two pairwise comparisons (see
Table 3). The higher the number of the shared control

Table 3. Estimates and real values of the correlation between the test statistics of the two pairwise comparisons, Z1 and Z2, by the
timing of the addition of experimental arm E2.

Time E2

started
Allocation Ratio = 0:5 Allocation Ratio = 1 Allocation Ratio = 2

Shared
control
arm events

r�12 r̂�12 FWER Shared
control
arm events

r�12 r̂�12 FWER Shared
control
arm events

r�12 r̂�12 FWER

0:0 401 0:33 0:33 0:047 264 0:50 0:50 0:045 196 0:66 0:66 0:043
0:2 348 0:29 0:29 0:048 226 0:43 0:43 0:046 170 0:58 0:57 0:044
0:4 298 0:25 0:25 0:048 189 0:36 0:36 0:047 144 0:49 0:49 0:045
0:6 249 0:20 0:20 0:048 155 0:29 0:29 0:048 121 0:41 0:40 0:046
0:8 204 0:17 0:16 0:049 123 0:23 0:23 0:048 98 0:33 0:33 0:047
1:0 161 0:13 0:14 0:049 94 0:18 0:18 0:049 77 0:26 0:26 0:048
1:2 122 0:10 0:10 0:049 67 0:13 0:13 0:049 58 0:20 0:20 0:049
1:4 87 0:07 0:07 0:049 45 0:09 0:09 0:049 41 0:14 0:15 0:049
1:6 57 0:05 0:05 0:049 26 0:05 0:05 0:049 26 0:09 0:08 0:049
1:8 33 0:03 0:03 0:049 12 0:02 0:03 0:049 15 0:05 0:07 0:049
2:0 14 0:01 0:02 0:050 3 0:01 0:01 0:050 6 0:02 0:04 0:049

FWER: familywise type I error rate.

The values for r�12 are calculated from equation (3). The estimates r̂�12 are obtained from simulating individual patient data. The number of trial-level

replicates is 50,000 in all experimental conditions.

Table 2. Three different trial designs for each pairwise
comparison of experimental arm versus control in a three-arm
trial.

Scenario A e0 n0 Overall trial
period

1 0:5 401 789 2:36
2 1 264 545 2:18
3 2 196 389 2:33

Key: A, allocation ratio; e0, total control arm events required; n0,

number of patients accrued to control arm by the end of trial; overall

trial period, duration (in time units) up to the final analysis.
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arm events, the lower the value of the FWER is because
r�12 is higher. The FWER reaches its maximum when
there is no shared information between the two pair-
wise comparisons at which point equation (1) can be
used to calculate the FWER. This is when the two pair-
wise comparisons are effectively two completely inde-
pendent trials in one protocol. In this case, Bonferroni
correction can also provide a good approximation, that
is, a1 +a2 = 0:05. The results indicate that even for a
correlation of as high as 0:30, the Bonferroni correction
provides a good approximation. This correlation
threshold corresponds to an overlap (in terms of ‘infor-
mation time’) of about 60% between the newly added
comparison and that of the existing one for an equal
allocation ratio (A= 1). If more individuals are allo-
cated to the control arm (i.e. A\1), the amount of
overlap has to be even higher to achieve this correlation
threshold, for example, about 87% when A\1 in our
simulations for either experimental arm.

Furthermore, it is evident from our simulations that
when more individuals are allocated to the control arm
(i.e. A\1), the timing of adding a new experimental
arm has very little impact on the value of the FWER.
For an equal allocation ratio (A= 1), the impact on
the FWER is modest, whereas for the uncommon sce-
nario of allocation ratio A.1, the impact is moderate.
Therefore, in many multi-arm trials, where often more
individuals are allocated to the control arm than each
experimental arm, the timing of the addition of a new
experimental arm is unlikely to be a major issue.

Finally, Table 4 presents the disjunctive and conjunc-
tive powers in each scenario. The results indicate that
the timing of the addition of the new arm has more
impact on both types of powers. Nonetheless, the impact
is still relatively low – particularly, when the allocation
ratio is less than one. However, the degree of overlap
affects the two types of powers in opposite directions.
While conjunctive power decreases with smaller overlap,
disjunctive power increases in such scenario.

FWER of STAMPEDE when new arms were added

In this section, we calculate the correlation between the
test statistics of different pairwise comparisons in
STAMPEDE when new arms are added. The newly
added therapies look to address different research ques-
tions than those of the original comparisons. When the
first new experimental arm was added, STAMPEDE
had only three experimental arms open to accrual
because arms E3 and E5 were stopped at their second
interim look. The new experimental arms E6, E7, and E8

were added in November 2011, January 2013, and July
2014, respectively. The final stage design parameters of
the three added comparisons were similar to those of
the original comparisons (i.e. final stage sig. level and
power of ai = 0:025 and vi = 0:90), except that their
allocation ratio was set as A6 =A7 =A8 = 1. Some of
the control arm patients recruited from the start of E6

and E7 are shared between the original family and the
new comparisons – see the top section of Figure 1. In all
three added comparisons, the final analysis takes place
when 267 primary outcome events are observed in the
contemporaneously randomised control arm patients.

To calculate the correlation between different test
statistics, we needed to estimate (or predict) the shared
control arm events of the corresponding pairwise com-
parisons – Section B of Supplemental Appendix
explains this in detail. As the results in Table 1 in
Supplemental Appendix show, only seven common
control arm primary outcome events were expected to
be shared between E7 and the original family of pair-
wise comparisons at their respective primary analysis.
For the E6 comparison, the (expected) number of com-
mon control arm primary outcome events is 77, but it
is still a small fraction of the total events required at its
main analysis. As a result, the correlations between the
corresponding test statistics are quite low in both cases,
that is, r̂�k6 = 0:12 and r̂�k7 = 0:01, k = 1, 2, 4. Between
E6 and E7 comparisons, the number of shared primary

Table 4. Disjunctive (Od) and conjunctive (Oc) powers by the timing of the addition of the second arm and the correlation between
the test statistics of the two pairwise comparisons.

Time E2

started
Allocation Ratio = 0:5 Allocation Ratio = 1 Allocation Ratio = 2

r�12 Od Oc r�12 Od Oc r�12 Od Oc

0:0 0:33 0:977 0:823 0:50 0:968 0:833 0:66 0:956 0:844
0:2 0:29 0:979 0:821 0:43 0:972 0:828 0:58 0:963 0:837
0:4 0:25 0:980 0:819 0:36 0:975 0:825 0:49 0:968 0:832
0:6 0:20 0:983 0:817 0:29 0:979 0:821 0:41 0:972 0:827
0:8 0:17 0:984 0:816 0:23 0:982 0:819 0:33 0:977 0:823
1:0 0:13 0:986 0:815 0:18 0:984 0:817 0:26 0:980 0:820
1:2 0:10 0:987 0:813 0:13 0:986 0:815 0:20 0:983 0:817
1:4 0:07 0:988 0:812 0:09 0:987 0:813 0:14 0:985 0:815
1:6 0:05 0:988 0:812 0:05 0:988 0:812 0:09 0:987 0:813
1:8 0:03 0:989 0:811 0:02 0:989 0:810 0:05 0:988 0:812
2:0 0:01 0:990 0:810 0:01 0:990 0:810 0:02 0:989 0:810
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events was expected to be higher (e0, 12 = 92) which will
result in a slightly higher correlation. But, even in this
case, the correlation is well below 0:30. Not only do the
first three added comparisons pose distinct research
questions, the correlation between the test statistics of
the corresponding pairwise comparisons are very low.
If the strong control of the FWER was required for the
three added arms, the simple Bonferroni correction
could have been used to approximate Dunnett’s correc-
tion since both the correlation and the amount of over-
lap between the three comparisons were very low.

Design application: RAMPART trial

Renal Adjuvant MultiPle Arm Randomised Trial
(RAMPART) is an international phase III MAMS trial
of adjuvant therapy in patients with resected primary
renal cell carcinoma (RCC) at high or intermediate risk
of relapse. The control arm (C), that is, active monitor-
ing, and the first two experimental arms (E1 and E2),
are due to start recruitment at the same time, with
another experimental treatment (E3) – which is in early-
phase development – expected to be added at least
2 years after the start of the first three arms. The
deferred experimental arm, E3, will share some of the
control arm patients with the other two comparisons
and only be compared against those recruited contem-
poraneously to the control arm over the same period.
No head-to-head comparison of the experimental arms
is planned, and all the stopping boundaries are prespe-
cified. The trial design has passed both scientific and
regulatory reviews, obtained approval from both the
EMA and FDA, and started in mid-2018. During
reviews of the design, it was deemed necessary to con-
trol the FWER at 2.5% (one-sided) in this trial,
whether or not the deferred arm is added. Section C of
Supplemental Appendix presents a table summary of
the design for RAMPART – see https://www.rampart-
trial.org/ for full details of the design and trial protocol.

We carried out simulations to investigate the impact
of the timing of adding the third experimental arm on
the FWER. This was done at 2 years, 3 years, and
4 years into the two original comparisons. The simula-
tion results confirmed our findings that the timing of
the addition of E3 has no practical impact on the value
of FWER. Therefore, the overall (one-sided) type I
error rate was proportionally split between the two
comparisons that start at the same time and the
deferred comparison, that is, E3 versus C, using the
Dunnett correction. Note that in the two comparisons
that start at the same time, there is a large proportion
of shared control arm information. To make use of the
induced correlation between the test statistics of these
comparisons, simulations were used to approximate
Dunnett probability in this case. Simulations showed
that the final stage significance level of 0:0097 in all
pairwise comparisons controls the overall FWER at

2:5% when the deferred arm is added later on. Our
simulations also showed that the final stage significance
level of the two original pairwise comparisons can be
increased to 0:015 if E3 is not added to buy back the
unspent type I error of the third pairwise comparison.
This will decrease the required effective sample size,
that is, events, in these two comparisons – see the last
two columns of Table 2 in Supplemental Appendix –
and will bring forward the (expected) timing of the final
analysis in both the E1 versus C (;10 months) and E2

versus C (;4 months) comparisons.

Strong control of FWER when required

Opinions differ as to whether the FWER needs to be
strongly controlled in all multi-arm trials.9,6,18–21 In our
view, there are cases, such as examining different doses
of the same drug, where the control of the FWER
might be necessary to avoid offering a specific therapy
an unfair advantage of showing a beneficial effect.
However, in many multi-arm trials where the research
treatments in the existing and added comparisons are
quite different from each other, we would argue that
greater focus should be on controlling each pairwise
error rate.9,22 To support this view, consider the follow-
ing: if two distinct experimental treatments are com-
pared to a current standard in independent trials, it is
accepted that there is no requirement for multiple test-
ing adjustment.18 Therefore, it seems fallacious to
impose an unfair penalty if these two hypotheses are
instead assessed within the same protocol where both
hypotheses are powered separately and appropriately.
This is seen most clearly when the data remain entirely
independent, for example, when these are non-
overlapping with effectively separate control groups.
Moreover, the statistical reasoning behind the multipli-
city adjustment is to limit the possibility of chance as
the cause of significant finding. As Proschan and
Waclawiw19 point out, this becomes less compelling if
each comparison answers a different scientific question.
In Wason’s 2014 review, this seems to be an emerging
consensus among the broader scientific community (see
Figure 2 in Wason et al.6 review).

The timing of adding a new research arm can be con-
sidered to be a design parameter. Therefore, like any
other design parameter, its prespecification is a pre-
requisite to the exact calculation of the overall type I
error rate. The prespecification of the timing enables the
exact calculation of the correlation structure, that is, from
formulas in Table 1 – which is then used by the Dunnett
method to compute the overall type I and II error rates.

However, the findings from our simulations and
analytical derivations indicate that by assuming no
overlap between the new research arm and that of the
existing comparisons, we can relax the requirement for
the prespecification of the timing with minimal impact
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on the FWER. The ‘no-overlap’ condition is when the
FWER reaches its upper bound and is strongly con-
trolled regardless of the timing of the addition of the
new research arm. In the following, we describe how
both the original comparisons and the added arm can
be powered using this approach in both planned and
unplanned scenarios.

Our results indicate that the timing of adding a new
experimental arm to an ongoing multi-arm trial – where
the allocation ratio is often one or less, that is, more
patients are recruited to the control arm – is almost
irrelevant in terms of changing the value of the FWER.
Even in cases where there is an overlap (in terms of
‘information time’) of 60%, the impact on the increase
of FWER can be negligible. The practical implication
of this finding is that in cases where strong control of
the FWER is required, one can simply divide the over-
all FWER by the total number of pairwise comparisons
K, including the added arms, and take the worst-case
scenario of complete independence and design the
deferred arm with aK as an independent trial. In this
case, they can be considered as separate trials and the
new hypothesis can be powered separately and appro-
priately. If the FWER for the protocol as a whole is
required to be controlled at a certain level, as in the
RAMPART trial, then the overall type I error can be
split accordingly between the original and added

comparisons. This seems to be a practical strategy to
control the FWER because in most cases the exact tim-
ing of the availability of a new experimental therapy
may not be determined in advance. If the new experi-
mental arm is not actually added, the final stage signifi-
cance level of the original comparisons can be relaxed
to achieve the target FWER. There might be situations
where more experimental therapies are available later
than planned at the design stage, that is, the unplanned
scenario. In this case, one way to control the FWER
for the new set of pairwise comparisons is to reduce the
final significance level for the existing comparisons.
But, this would increase the (effective) sample size of
the existing comparisons and thus the overlap between
the new and existing comparisons would increase –
which in turn would affect FWER. In this case, a recur-
sive procedure would be required to achieve the desired
level for the FWER.

Finally, we emphasise that the decision to control
the PWER or the FWER (for a set of pairwise compar-
isons) depends on the type of research questions being
posed and whether they are related in some way, for
example, testing different doses or duration of the same
therapy in which case the control of the FWER may be
required. These are mainly practical considerations and
should be determined on a case-by-case basis in the
light of the rationale for the hypothesis being tested

Figure 2. Strategies to control type I error rate when adding new experimental arms.
Key: (1) allocation ratio for either of the new or ongoing comparisons; (2) for example, \60% of information time when A= 1; (3) correlation

between the test statistics of pairwise comparisons; (4) K is the total number of pairwise comparisons, including the added arms.
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and the aims of the protocol for the trial. Once a deci-
sion has been made to strongly control (or not) the
FWER, Figure 2 summarises our guidelines on how to
power the added comparison to guarantee strong con-
trol of the FWER. We believe this is a logical and
coherent way to assess the control of type I error in
most scenarios.

Discussion

It is practically advantageous to add new experimental
arms to an existing trial since it not only prevents the
often lengthy process of initiating a new trial but also it
helps to avoid competing trials being conducted.1,2 It
also speeds up the evaluation of newly emerging thera-
pies and can reduce costs and numbers of patients
required.3,4 In this article, we studied the familywise
type I error rate and power when new experimental
arms are added to an ongoing trial.

Our results show that under the design conditions,
the correlation between the test statistics of pairwise
comparisons is affected by the allocation ratio and the
number of common control arm shared observations in
continuous and binary outcomes and primary outcome
events in trials with survival outcomes. The correlation
decreases if more individuals are proportionately allo-
cated to the control arm. This correlation increases as
the proportion of shared control arm information
increases, and it reaches its maximum when the number
of observations (in continuous and binary outcomes)
or events (in survival outcomes) is the same in both
pairwise comparisons. Our results also showed that the
correlation between the pairwise test statistics and the
FWER are inversely related. The higher the correla-
tion, the lower the FWER.

We reiterate that in a platform protocol, the empha-
sis of the design should be on the control of the PWER
if distinct research questions are posed in each pairwise
comparison, particularly when there is little or no over-
lap between the comparisons. To support this, we
would argue that the scientific community at large is
increasingly judging the effects of treatments using
meta-analysis rather than focusing on specific individ-
ual trial results.23 For this purpose, the readers and
reviewers are not concerned about the value of type I
error for each trial or a set of such trials.

Another relevant question in a multi-arm platform
protocol is what constitutes a family of pairwise com-
parisons. Even in the multi-arm parallel group trials, as
Miller24 indicated: ‘There is no hard-and-fast rules for
where the family lines should be drawn .’... In platform
trials, this is even more complicated. The difficulty in
specifying a family arises mainly due to the dynamic
nature of a platform trial, that is, stopping of accrual to
experimental treatments for lack-of-benefit and/or add-
ing new treatments to be tested during the course of the

trial. The definition of a family in this context involves
a subtle balancing of both practical and statistical con-
siderations. The practical and non-statistical considera-
tions can be more complex in nature, hence the need
for (case-by-case) assessment. However, we (and many
others) believe the most important criteria is the relat-
edness of the research questions.6,19,22 A consideration
that can help to decide the relatedness of the research
questions may include ‘how different is the target popu-
lation for the added arm?’ Moreover, therapies that
emerge over time are more likely to be distinct rather
than related, for example, different drugs entirely rather
than doses of the same therapy. For this reason, each
hypothesis is more likely to inform a different claim of
effectiveness of previously tested agents. An example is
the STAMPEDE platform trial where distinct hypoth-
eses were being tested in each of the new experimental
arms, and these do not contribute towards the same
claim of effectiveness for an individual drug. In this
case, the chance of a false-positive outcome for either
claim of effectiveness is not increased by the presence of
the other hypothesis.

Although we have focused on single-stage designs,
our approach can easily be extended to the multi-stage
setting where the stopping boundaries are prespecified.
As we have shown in RAMPART, if there are interim
stages in each pairwise comparison, the correlation
between the test statistics of different pairwise compari-
sons at interim stages also contribute to the overall cor-
relation structure. Similar correlation formula to those
presented in Table 1 can be analytically derived, see
Supplemental Appendix, to calculate the interim stages
correlation structure. Our experience has shown that
even in this case the correlation between the final stage
test statistics principally drives the FWER. Our empiri-
cal investigation has indicated that even large changes
in the correlation between the interim stage test statis-
tics have minimal impact on the estimates of the
FWER. Nonetheless, if researchers wish to have the
flexibility of non-binding stopping guidelines, then the
correlation structure can be estimated in the same man-
ner as discussed in this article by considering the corre-
lation between the final-stage test statistics only. In
addition, in the multi-stage designs, there is a chance
that some of the original arms are stopped for lack-of-
benefit. Even in this case, the FWER is strongly con-
trolled at the prespecified level if the decision to add a
new research arm is taken at the initial design stage,
that is, planned scenario. However, in the unplanned
scenario, the only way to control the FWER for the
new set of pairwise comparisons is to suitably reduce
the pairwise type I error rates for all the ongoing com-
parisons, that is, decrease their final significance level,
due to the addition of the new research arm.

Furthermore, in our simulations, one experimental
arm started with control at the beginning of the trial
since the aim was to investigate the impact of the
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timing of adding new experimental arms on the correla-
tion structure and the value of the FWER. In many
scenarios such as RAMPART and STAMPEDE, more
than one experimental arms start at the same time in
which case there will be substantial overlap in informa-
tion between the pairwise comparison of these arms to
control. If strong control of the FWER is required in
this case, Dunnett’s correction (i.e. equation (2)) should
be used to calculate the proportion of the type I error
rate that is allocated to each of these comparisons as
we have done in the case of RAMPART.

Moreover, in some designs such as RAMPART, it is
required to control the FWER at a prespecified level.
In general, any unplanned adaptation would affect the
FWER of a trial. This includes the unplanned addition
of a new experimental arm. It will be possible to
(strongly) control the FWER if the addition of new
pairwise comparisons is planned at the design stage of
an MAMS trial as we have shown in the RAMPART
example. In this case, the introduction of a new hypoth-
esis will be completely independent of the results of the
existing treatments. In platform protocols in general, it
becomes infeasible to control the FWER for all pair-
wise comparisons as new experimental treatments are
added to the existing sets of pairwise comparisons.

In this article, we have investigated one statistical
aspect of adding new experimental arms to a platform
trial. The operational and trial conduct aspects also
require careful consideration, some of which have
already been addressed by Sydes et al.1 In this article,
Sydes et al. put forward a number of useful criteria that
can be thought about when considering the rationale
for adding any new experimental arm. For example, in
the STAMPEDE trial, the decisions to add new
research arms have been made independently of the
accumulating data from the ongoing comparisons. In
other words, the decisions to add new arms have been
driven by the need to assess new treatment regimens
rather than results from the ongoing comparisons. To
achieve this, there should be a mechanism in place to
ensure that the committee that makes the decision to
add an arm is blind to the accumulating results from
the ongoing comparisons. Both statistical and conduct
aspects require careful examination to efficiently deter-
mine whether and when new experimental arms can be
added to an existing platform trial.

Conclusion

The familywise type I error rate is mainly driven by the
number of pairwise comparisons and the corresponding
pairwise type I error rates. The timing of adding a new
experimental arm to an existing platform protocol can
have minimal, if any, impact on the FWER. The simple
Bonferroni or Šidák correction can be used to approxi-
mate Dunnett’s correction in equation (2) if there is not

a substantial overlap between the new comparison and
those of the existing ones, or when the correlation
between the test statistics of the new comparison and
those of the existing comparisons is small, less than,
say, 0:30.
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