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Abstract

The widely used Doyler-Fuller-Newman (DFN) model for lithium-ion batteries is too computationally ex-
pensive for certain applications, which has motivated the appearance of a plethora of simpler models. These
models are usually posed in an ad hoc manner, leading to inconsistencies with the DFN model and to mul-
tiple formulations of the same model, with the Single Particle Model (SPM) being a very good example
of the latter. In this work, we discuss the concept of SPM-type models showing that, despite the multiple
formulations found in the literature, these models always follow the same structure, and we extend this
discussion to models accounting for thermal effects. Then, we present a Thermal Single Particle Model with
electrolyte (TSPMe) derived in a systematic manner using asymptotic techniques. The validation of the
TSPMe against a thermal DFN model shows very high accuracy with a computational cost over forty times
smaller. The comparison against experimental data shows that the model does a reasonable job predicting
the behaviour of a real battery, but a very good parameter set is required to obtain accurate predictions.

Keywords: lithium-ion batteries, battery modelling, thermal-electrochemical model, reduced model,
asymptotic techniques

1. Introduction

With the electrification of vehicles and the spread of portable electronic devices, lithium-ion batteries
have become a key technology for energy storage. This has motivated a quest to design batteries that can
store more energy, last longer, and operate efficiently and safely. Mathematical models are an invaluable
tool for battery design and control as they provide a cheap, safe and fast alternative to experiments.

There exist multiple approaches to deterministic models for lithium-ion batteries, and they can usually
be classified into two broad categories: equivalent-circuit models and physics-based models. Equivalent-
circuit models describe the battery by assuming it has the structure of a particular electrical circuit. The
morphology of this circuit is a modelling assumption, and the values of the different parameters need to be
determined from fitting the model to experimental data (see [1, 2] for examples). Equivalent-circuit models
are widely used in battery management systems (BMS) because they are computationally cheap to simulate
[3]. However, they offer little insight on the battery internal states and therefore it is very complicated to
extend these models to account for additional physics. A detailed description of equivalent-circuit models
can be found in [4].

In this work, we focus on physics-based models. These models are derived from fundamental physical
laws and have the advantage that they provide significant insight on the internal states of the battery.
However, due to their complexity, they are computationally more expensive than equivalent-circuit models.
The most widely used physics-based model is the Doyle-Fuller-Newman (DFN) model, originally posed in
[5, 6]. This model accounts for conservation of mass and charge in both electrode and electrolyte, and the
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four equations are coupled together through the reaction current density term that describes the electrode-
electrolyte intercalation reaction. One of the key aspects for the success of the DFN model is that it assumes
a simplified geometry that captures the main features of a battery but is much more affordable to solve than
trying to resolve all the phenomena at a microscale level [7]. The geometry of the DFN model assumes
that most of the variables (electrolyte concentration and potentials both in electrode and electrolyte) can be
resolved at a macroscale level, in which the material is assumed to be homogeneous. In order to account for
the effects of the porous material on the transport equations in the homogeneous material, effective transport
parameters are used (often using the Bruggeman correlation [8]). The transport of intercalated lithium is
described by assuming that at each point of the electrode there is a representative spherical particle in which
lithium diffuses. Even though it is not explicitly derived in [5], this is a homogenised model and it can be
formalised from the mathematical point of view (see [9] for details). A more detailed description of the DFN
model can be found in the handbooks [4, 10].

The DFN model is still quite complex as it involves a coupled system of differential-algebraic equations
(DAEs). Hence, it is not suitable for applications where speed is crucial, such as battery optimization and
control, so simpler models have been posed in the literature. One of the best-known examples is the Single
Particle Model (SPM). The key idea of this model is that we can use one single particle in each electrode
to represent the behaviour of all particles. SPMs may [11] or may not [12] include electrolyte dynamics. In
both cases the model is much simpler than the DFN model as most of the variables of interest can be easily
computed from the concentrations in the electrode particles and the electrolyte.

The SPMs are widely used, but in their origin there are still two main challenges. First, most of these
models are posed on an ad hoc basis and therefore the connection to the DFN (or similar) model is lost. This
is far from ideal because, in the process of derivation, inconsistencies might be introduced and certain features
lost. In addition, it makes it hard to add new physics in a consistent way. The second issue, closely related to
the first, is that we can find multiple Single Particle Models in the literature following different formulations
[11, 12, 13, 14, 15, 16]. Over the last few years, there has been a surge in the asymptotic analysis of battery
models [15, 16, 17, 18, 19, 20, 21] with the goal of obtaining reduced models in a systematic manner. The
different authors take different assumptions to reduce the models. One big difference is that [18, 19, 20, 21]
assume fast diffusion in the electrodes and thus do not reduce to SPM-type models, while [15, 16, 17] retain
this feature. Given that our interest on this work is on SPM-type models, we will focus our attention on
the latter.

The key idea behind asymptotic methods is to analyse the dimensionless groupings that appear in the
model, determine which can be assumed to be small and perform an expansion in the limit where these
parameters tend to zero to obtain a simpler model. More details on these methods can be found in the
handbook [22]. These methods present multiple advantages. First, they are systematic so they can be
applied to all the models, even the very complex ones. Second, they also ensure the consistency between
the full and reduced models, and thus the reduced model satisfies the same physical laws as the full one
(e.g. conservation of mass). And third, we can validate the assumptions taken and estimate the error of the
reduced model a priori (i.e. before even solving the model).

So far we referred to electrochemical models only, but a similar description holds for coupled thermal-
electrochemical models. These are usually posed as a coupling between the DFN model, to describe the
electrochemistry, and some sort of thermal model [4, 23, 24]. Due to their complexity, simpler models have
been posed ad hoc, usually based on SPM-type electrochemical models [14]. The asymptotic analysis of
thermal-electrochemical models is even more recent as it is a natural evolution of the asymptotic reduction
of pure electrochemical models. To our knowledge, the only references in the literature on asymptotic
reductions of thermal-electrochemical models are [21, 25]. In [21] a multilayer cell is considered but with the
electrode fast diffusion electrochemical model presented in [19]; while in [25] a model for single-layer pouch
cells based on DFN and the SPMe of [15].

The goal of this paper is to derive a SPM-type thermal-electrochemical model for a multi-layer cell,
using an asymptotic method based on minimal assumptions. The resultant model, which we refer to as
Thermal Single Particle Model with electrolyte (TSPMe), is validated against the full thermal DFN model
and experimental data to show its validity and proof that it is suitable for practical applications. To the
best of our knowledge, this model is the first instance of an asymptotically derived thermal-electrochemical
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model for a multi-layer battery that also accounts for finite diffusion in the electrode particles.

2. Discussion of Doyler-Fuller-Newman model and Single Particle Models

Before presenting the formulation for the Thermal Single Particle Model with electrolyte, we discuss the
nature of Single Particle Models and compare it with that of the DFN model. Some of the most popular
reduced models for lithium-ion batteries are Single Particle Models (SPM), and in the literature we can
find several different models referred to as such [11, 12, 13, 14, 15, 16]. These are usually based on slightly
different sets of assumptions and therefore their formulations are different as well. Because the different
models are referred to by the same name, it makes the term “Single Particle Model” very confusing. With the
hope of shedding some light into this issue, in this section we discuss what are the fundamental features that
constitute a Single Particle Model, understanding it as a type of model rather than a specific formulation. We
refer to models of this kind as SPM-type models, which applies to both models with and without electrolyte
dynamics. However, given that the model without electrolyte dynamics (SPM) is a particular case to the
model with electrolyte dynamics (SPMe), we consider the latter in this analysis. By considering what are
the essential features of an SPM-type model we can better understand and classify existing models in the
literature.

2.1. Electrochemical models

We start focusing on purely electrochemical models. By electrochemical models we refer to models that
only account for mass and charge transport (in both the electrodes and the electrolyte) but do not include
further physical effects such as thermal, mechanical or degradation. The classic example of an electrochemical
model is the Doyle-Fuller-Newman (DFN) model [5]. To better understand the electrochemical models, we
can represent them as a block diagram, as shown in Figure 1. In these diagrams, we have an input (or
inputs) that are known and want to calculate an output (or outputs) which are unknown. To convert an
input into an output we use a model, represented in the diagram by a block. Note that this model could
be anything that converts the input into an output, but here we consider it from the mathematical point
of view, in which the model is composed of a set of differential and/or algebraic equations that need to be
solved. The most typical setup for electrochemical models is to use the applied current density (iapp) as
input and calculate the terminal voltage (V ) as an output. Other setups, such as inputting the voltage are
common as well, but make the reduced models significantly more expensive as we discuss later. In addition,
sometimes there are other variables that might be of interest and hence be part of the model output.

We start by considering the DFN model [5]. The model is composed of a system of parabolic and elliptic
partial differential equations (PDEs), which are represented as a single block in the diagram indicating the
need to solve the full model at every step output is required (see Figure 1a). A very common method
to solve partial differential equations is to use the method of lines [26], which consists of discretising the
system in space, for example using finite volume methods [27] or finite element methods [28], and leaving
the time derivative without discretising. This method transforms parabolic PDEs into ordinary differential
equtions (ODEs) and elliptic PDEs into algebraic equations. Therefore, for the DFN model, which is a
coupled system of parabolic and elliptic PDEs, we obtain after discretising a system of differential-algebraic
equations (DAEs). Solving numerically a system of DAEs is a complex task, hence the model is very
expensive to compute.

The key aspect of SPM-type models is that they break this block into simpler blocks (see Figure 1b), and
we can group these blocks into two main steps. The first step involves calculating from the input current
the concentrations in the representative electrode particles (ck with k ∈ {n,p} for negative and positive
electrode, respectively), and in the electrolyte (ce, if not neglected). All the other variables of interest can
then be calculated from these concentrations using explicit expressions, or even closed-form expressions in
some cases. The first step in the SPM-type models (“ck model” and “ce model” blocks in Figure 1b) involves
solving up to three decoupled partial differential equations: two PDEs for the concentration of lithium in the
particles (one for each electrode) and one PDE for the ion concentration in the electrolyte. If the electrolyte
dynamics are not considered we only need to solve the two PDEs for the particles. Because the PDEs are
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iapp

DFN model
(PDEs → DAEs)

V

(a) DFN model

SPM-type

iapp

ck model
(PDEs → ODEs)

ce model
(PDEs → ODEs)

Potentials
(explicit expr.)

V

ck ce

(b) SPM-type

Figure 1: Block diagram of standard electrochemical models: (a) the Doyler-Fuller-Newman model (DFN) and (b) the Single
Particle Model type (SPM-type). Each block is a model (or part of a model) that converts the input variable into the output
variable (or variables). In brackets, we define the the type of expressions that compose the model (e.g. PDEs, ODEs, explicit
expressions) and, if applicable, the type of expressions after spatial discretisation (e.g. DAEs or ODEs). The colour of the
blocks indicates the complexity of the model: red for a system of differential-algebraic equations (DAEs, high complexity),
yellow for a system of ordinary differential equations (ODEs, medium complexity) and green for explicit expressions (low
complexity).

decoupled, we can solve them independently which results in a simple problem. To numerically solve these
PDEs we can use the method of lines again, in order to obtain a system of ODEs which can be solved
using standard methods. These systems of ODEs are much simpler to solve than the systems of DAEs that
arise from the DFN model. Additionally, further techniques can be used to speed up the calculations of
the solution of the ODE system (e.g residue grouping [29] or balanced truncation [30]). The second step
(“Potentials” block in Figure 1b) consists of evaluating the explicit expression for the terminal voltage and
for any other variable of interest (such as currents or potentials) which takes the electrolyte and electrode
concentrations as inputs. Because this step involves evaluating an explicit expression rather than solving an
equation, it is computationally cheap. In addition, we can limit this step to evaluating only the variables
we are interested in. The main advantage of this approach is that it fully decouples the problem, so each
concentration is the solution of an independent PDE and therefore much cheaper to solve than the DFN
model. Note, however, that this decoupling only occurs in the case where current is the input of the model.
If instead we want to simulate a potentiostatic discharge, we need to impose an algebraic constraint on the
voltage and thus we need to solve a system of DAEs. This system, even though it is more complex than the
standard decoupled SPM-type models, is still much simpler than the DFN model.

In the literature, we find several instances of SPM-type models, posed either in an ad hoc manner
[11, 12, 13, 14] or a systematic manner [15, 16]. In most cases both approaches yield very similar results, but
asymptotic methods are systematic and, therefore, more reliable. Moreover, the systematic approach allows
us to easily extend the models to account for extra physical phenomena in a rigorous way, ensuring that
underlying physical principles of the DFN model still hold for the SPM-type models. These systematically
derived models are obtained by applying asymptotic techniques, in which the size of the dimensionless
groupings appearing in the model is used to decide which terms of the equations can be neglected. There
are different sets of assumptions that lead to the derivation of SPM-type models (see [15, 16] for two different
examples) but they yield very similar results [31]. However, all of these assumptions are based on the same
key idea that allows for SPM-type models: the battery operates in a regime where deviations from the
equilibrium potential are small, which means that the battery operates at moderate to low C-rates. At high
C-rates the discrepancies between DFN and SPM-type models are considerable, mainly due to the effect

4



of the electrolyte, and thus the DFN model should be used [11, 15]. Note that the definition of what is
considered a “high C-rate” for the applicability of these models is not an absolute definition, but it depends
on the model parameters.

In the scenario of moderate to low C-rates, the analysis is as follows. If the deviations from equilibrium
potential are small, then all the particles within an electrode are approximately at the same potential,
which is around the equilibrium (or open-circuit) potential, and therefore they behave very similarly. In
consequence, we can define a representative particle (or average particle) for each electrode, and then solve
the lithium diffusion problem only for those two particles. Because all the particles behave similarly, the
reaction current density for the lithium intercalation must be identical for all particles within an electrode
and thus, using a conservation of charge argument, we can calculate it directly from the input current. This
is a crucial result because the reaction current density was the condition that coupled the four conservation
equations in the DFN model (conservation of mass and charge in both electrode and electrolyte). If the
reaction current density is known a priori, each of the four problems can now be treated separately and,
moreover, the potential equations both in the electrodes and the electrolyte can be integrated analytically.
Therefore, the only equations to solve numerically are the ones governing the concentrations and everything
else can be calculated from explicit expressions, as shown in Figure 1b. This reasoning can be formalised
into a rigorous mathematical analysis using asymptotic techniques, as shown in Appendix B.2. If additional
assumptions are taken, there might be further simplifications that take place in the model which may yield
different expressions for the potentials (“Potentials” block in Figure 1b). These further simplifications are
discussed in Section 3.1.

2.2. Thermal-electrochemical models

After considering electrochemical models, we focus on the coupled thermal-electrochemical models. These
models, apart from the physics discussed in the previous section, describe how the temperature evolves in the
battery. The two models are strongly coupled because the parameters of the electrochemical model depend on
temperature and the heat generated in the battery depends on the electrochemical processes. This coupling
adds an extra layer of complexity to thermal-electrochemical models compared to pure electrochemical
models. We can visualise this extra layer of complexity in the form of a block diagram, as shown in Figure 2.
Compared to the electrochemical models in Figure 1, the thermal-electrochemical model has additional
blocks to process the thermal inputs and outputs. In particular, the inputs for thermal-electrochemical
models are applied current density and ambient temperature (Tamb), and the new outputs are voltage and
cell temperature (T ).

The classic example of a thermal-electrochemical model would be the DFN coupled with a thermal model
as shown in [4, 23, 24]. This model is even more computationally expensive than the standard DFN model,
and another issue arises when considering a battery composed of multiple layers (we refer to each layer as
a “cell”). As discussed in [9], in this situation the electrochemical behaviour needs to be described at a cell
level, but the thermal behaviour needs to be described at a battery level (i.e. across multiple cells). This
brings up a multi-scale coupling in the model that requires a hierarchy of submodels, similar to the one
between electrodes and particles in the DFN model.

The thermal model is posed at the battery level because heat can flow from one cell to the neighbouring
ones. However, ions cannot flow from one cell to the neighbouring ones, so the electrochemical models should
be posed independently for each cell. Even in the case for cylindrical and prismatic cells, composed of big
electrodes rolled up around a mandrel, the path for ions to go from one layer to the neighbouring ones is so
long compared to the electrode thickness that these effects can be neglected. The two problems are strongly
coupled, because the electrochemical properties of each cell can depend on the temperature while the heat
generated by the electrochemistry impacts the evolution of temperature. The coupling between these two
problems at different scales imposes a hierarchy similar to the classic DFN model. There, we solve for the
electrode potential and the electrolyte concentration and potential across the cell, and at each point of the
electrode domain there is a representative particle that describes the intercalated lithium concentration at
the microscale. Here, we solve for temperature across the battery and at each point there is a representative
cell that describes the electrochemical behaviour. Moreover, if the chosen electrochemical model is the DFN,
then the hierarchy is at three levels: battery, cell and particle. These relations are shown in Figure 3.
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iapp Tamb

TDFN model
(PDEs → DAEs)

V T

(a) TDFN model

TSPM-type

iapp Tamb

ck, ce and T model
(PDEs + ODE → ODEs)

V

Potentials
(explicit expr.)

T

Tck ce

(b) TSPM-type

Figure 2: Block diagram of thermal-electrochemical models: (a) the thermal Doyler-Fuller-Newman model (TDFN) and (b)
the Thermal Single Particle Model type (SPM-type). Each block is a model (or part of a model) that converts the input
variable into the output variable (or variables). In brackets, we define the the type of expressions that compose the model (e.g.
PDEs, ODEs, explicit expressions) and, if applicable, the type of expressions after spatial discretisation (e.g. DAEs or ODEs).
The colour of the blocks indicates the complexity of the model: red for a system of differential-algebraic equations (DAEs,
high complexity), yellow for a system of ordinary differential equations (ODEs, medium complexity) and green for explicit
expressions (low complexity).

battery (∼ 1 cm) cell (∼ 100 µm) particle (∼ 1 µm)

thermal model cell model particle model
interface reaction

temperature

heat sources

Figure 3: Sketch of the multiple scales involved in a thermal-electrochemical model. The thermal model is posed at the battery
level, but it is coupled to the cell level through temperature dependence of parameters and heat generation terms. The cell
model, in turn, is coupled with the particle model through the interface reaction.
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The thermal-electrochemical coupling at multiple scales results, after spatial discretisation, into a system
of DAEs again, even when using an SPM-type electrochemical model, because for each point at the battery
level we have a cell to represent the electrochemical behaviour. These cells are connected in parallel and
therefore the total applied current is divided over the different cells, but not in an even way as it depends
on the cell temperature. Therefore, we need additional algebraic constraints for the terminal voltage and
applied current of each cell. Algebraic constraints were one of the main causes of the complexity of the DFN
model, therefore, in this case too, we look for methods to simplify the model. The starting point is the DFN
model coupled to a thermal model (see [4, 23, 24] for details). The simplifications on the electrochemical
part of the model follow the procedure explained in Section 2.1, so here we focus on the thermal part only.
In order to get rid of the DAEs again, we need to work in a regime in which the different instances of
the electrochemical model (i.e. the different cells) can be considered to be very similar. It is the same
idea as taking that all the particles work similarly within each electrode in the SPM model. There are
two main assumptions that lead to this decoupling: the assumption that the temperature variation is small
enough to not cause significant variations in the electrochemical parameters, and the assumption that the
temperature is approximately homogeneous within the battery. The validity of each assumption depends
on the battery chemistry, geometry and cooling conditions. In this work, we focus on the latter assumption
as it is reasonable for the batteries and the conditions we are interested in: LG M50 cylindrical batteries
cycled in a thermal chamber without any active cooling. The physical reasoning behind the reduction of
the thermal model is that in this situation the bottleneck in the heat transfer is the heat dissipation to
the environment rather than the heat transport inside the battery. Then, the thermal gradients inside the
battery are negligible and the temperature is closely captured by the average temperature and we find that
each cell of the battery behaves very similarly so we only need to solve one instance of the electrochemical
model. The details for the derivation of the reduced thermal model are shown in Appendix B.1.

In terms of the block diagram, the TSPMe works in the following way. A system of coupled PDEs and
ODEs (the latter for the temperature) is solved from the input variables, which in this case are the input
current and ambient temperature. All the other quantities of interest can then be calculated from them.
The main difference compared to the purely electrochemical models is that, if the parameters depend on
temperature, the system of PDEs and ODEs is now coupled so concentrations and temperature need to be
solved simultaneously (see Figure 2).

3. Thermal Single Particle Model with electrolyte (TSPMe)

Having discussed the background and interpretation of both DFN and SPM-type models, we can now
present the Thermal Single Particle Model with electrolyte (TSPMe). The details on the full derivation
from the DFN model are given in Appendix B. The TSPMe is a reduced thermal-electrochemical model for
lithium-ion batteries. It consists of an SPMe for the electrochemistry coupled with a lumped thermal model
for the cell, which requires solving three diffusion equations for the concentrations (two for a representative
particle in each electrode and one for the electrolyte) and a first-order ODE for the average cell temperature.
This model can be further simplified for some particular cases, as presented in Section 3.1.

The geometry of the model is shown in Figure 4. The two electrode particles are defined in the domain
0 ≤ r ≤ Rk (for k ∈ {n,p}), where n denotes the negative electrode/particle and p denotes the positive
electrode/particle. The electrolyte domain spans across the two porous electrodes and the separator (0 ≤
x ≤ L), where the negative electrode is defined in 0 ≤ x ≤ Ln, the separator in Ln ≤ x ≤ L − Lp and the
positive electrode in L − Lp ≤ x ≤ L. For the full cell, given that the heat equation is averaged over the
whole cell, we do not need to define a domain.

We need to solve for the concentrations (and we are interested in certain quantities defined) both in the
electrodes and the electrolyte, so we identify them with the subscripts n and p to denote the negative and
positive electrodes/particles, respectively, and the subscript e to denote the electrolyte.
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x

x = 0 x = Lx = Ln x = L− Lp

r
Rn

r
Rp

representative
positive particle

representative
negative particle

negative electrode separator positive electrode

Figure 4: Geometry of the TSPMe. Note that we do not pose a geometry for the thermal model because it is a lumped model
and therefore there is no space distribution for temperature. The subscripts n and p denote the parameters for the negative
and positive electrodes, respectively.
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Then, in each particle the governing equations for intercalated lithium are

∂ck
∂t

=
1

r2

∂

∂r

(
r2Dk

∂ck
∂r

)
, in 0 < r < Rk, (1a)

∂ck
∂r

= 0, at r = 0, (1b)

−Dk
∂ck
∂r

=
Jk
akF

, at r = Rk, (1c)

ck = ck,init, at t = 0, (1d)

with

Jn =
iapp

Ln
, Jp = − iapp

Lp
, (2)

where ck is the intercalated lithium concentration, Dk is the diffusion coefficient of intercalated lithium
(which may depend on ck), Rk is the particle radius, Jk is the reaction volumetric current density, ak is the
surface area density, F is the Faraday constant, ck,init is the initial concentration, iapp is the applied current
density, and Lk is the electrode thickness. Recall that the subscript k ∈ {n,p} denotes the negative and
positive electrode, respectively.

The electrolyte problem is given by

ε(x)
∂ce
∂t

=
∂

∂x

(
DeB(x)

∂ce
∂x

)
+


(1− t+)

iapp
FLn

, if 0 ≤ x < Ln,

0, if Ln ≤ x < L− Lp,

−(1− t+)
iapp
FLp

, if L− Lp ≤ x ≤ L,
(3a)

∂ce
∂x

= 0, at x = 0, L, (3b)

ce = ce,init, at t = 0, (3c)

where ce is the lithium-ion concentration in the electrolyte, ε(x) is the porosity (or electrolyte volume
fraction), De is the bulk diffusion coefficient of lithium ions (which may depend on ce), B(x) is the geometry
factor, t+ is the transference number, L is the total cell thickness, and ce,init is the initial concentration.

The spatially dependent porosity ε(x) and geometric factor B(x) are defined as

ε(x) =


εn, if 0 ≤ x < Ln,

εs, if Ln ≤ x < L− Lp,

εp, if L− Lp ≤ x ≤ L,
B(x) =


Bn, if 0 ≤ x < Ln,

Bs, if Ln ≤ x < L− Lp,

Bp, if L− Lp ≤ x ≤ L,
(4)

where the values in each subdomain εk and Bk are constant. The subscripts k ∈ {n, s,p} denote the values
for the negative electrode, separator and postive electrode, respectively.

The thermal problem is given by

θ
dT

dt
= −hacool(T − Tamb) +Qs +Qe +Qirr +Qrev, (5a)

T (0) = Tamb, (5b)
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with

Qs =
i2app

3L

(
Ln

σn
+
Lp

σp

)
, (5c)

Qe = −(1− t+)
2RT

F

iapp

L

(
1

Lp

∫ L

L−Lp

log (ce) dx− 1

Ln

∫ Ln

0

log (ce) dx

)
+

1

L

∫ L

0

ie(x, t)2

σe (ce(x, t))B(x)
dx,

(5d)

Qirr =
2RT

F

iapp

L

(
1

Ln

∫ Ln

0

arcsinh

(
iapp

anLnjn

)
dx+

1

Lp

∫ L

L−Lp

arcsinh

(
iapp

apLpjp

)
dx

)
, (5e)

Qrev =
iapp

L
(Πn −Πp) , (5f)

where T is the average temperature of the cell (assumed to be homogeneous in space), θ is the lumped
volumetric heat capacity of the cell, h is the heat exchange coefficient, acool is the cooling surface area
of the cell per unit of volume, Tamb is the ambient temperature, Qs is the heat source term due to the
electrode (Joule heating), Qe is the heat source term due to the electrolyte (both Joule heating and due to
concentration gradients), Qirr is the irreversible heat source term of the intercalation reaction and Qrev is
the reversible heat source term of the intercalation reaction. In addition, σk is the electronic conductivity
of the electrodes, σe is the ionic conductivity of the electrolyte, R is the universal gas constant, jk is the
reaction surface current density, and Πk is the Peltier coefficient (sometimes referred to as entropic term).
This coefficient is defined as Πk = T ∂Uk

∂T and describes the heat generated or sunk due to the entropy of the
intercalation reaction [4].

After solving (1), (3) and (5) numerically, we can use the values of ck, ce and T to calculate any other
variable of interest from explicit expressions.

For example, the potentials (Φn, Φp and Φe) and currents (in, ip and ie) in the electrodes and the
electrolyte can be calculated as

Φn = Un(cn|r=Rn
)− iapp(2Ln − x)x

2Lnσn
+
iappLn

3σn
− 1

Ln

∫ Ln

0

∫ x

0

ie(s, t)ds

σe (ce(s, t))B(s)
dx

+ (1− t+)
2RT

F

1

Ln

∫ Ln

0

log

(
ce(x, t)

ce(0, t)

)
dx+

2RT

F

1

Ln

∫ Ln

0

arcsinh

(
iapp

anLnjn

)
dx,

(6a)

Φp = Up(cp|r=Rp
)+

iapp(2(L− Lp)− x)x

2Lpσp
− iapp

(
2L2

p − 6LLp + 3L2
)

6Lpσp
− 1

Lp

∫ L

L−Lp

∫ x

0

ie(s, t)ds

σe (ce(s, t))B(s)
dx

+ (1− t+)
2RT

F

1

Lp

∫ L

L−Lp

log

(
ce(x, t)

ce(0, t)

)
dx− 2RT

F

1

Lp

∫ L

L−Lp

arcsinh

(
iapp

apLpjp

)
dx,

(6b)
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Φe = (1− t+)
2RT

F
log

(
ce(x, t)

ce(0, t)

)
−
∫ x

0

ie(s, t)

σe (ce(s, t))B(s)
ds, (6c)

in =
iapp

Ln
(Ln − x), (6d)

ip =
iapp

Lp
(x− (L− Lp)), (6e)

ie =


iapp

Ln
x, if 0 ≤ x < Ln,

iapp, if Ln ≤ x < L− Lp,
iapp

Lp
(L− x), if L− Lp ≤ x ≤ L,

(6f)

with the exchange current densities jn and jp defined as

jk = mk

√
ceck (cmax

k − ck)

∣∣∣∣
r=Rk

. (7)

Here, Uk is the open circuit potential, mk is the intercalation reaction rate, and cmax
k is the maximum

concentration in the electrode.
The output voltage is given by

Vout = Φp(L, t)− Φn(0, t) = Ueq + ηr + ηe + ∆Φe + ∆Φs, (8a)

where

Ueq = Up(cp|r=Rp
)− Un(cn|r=Rn

), (8b)

ηr = −2RT

F

(
1

Lp

∫ L

L−Lp

arcsinh

(
iapp

apLpjp

)
dx+

1

Ln

∫ Ln

0

arcsinh

(
iapp

anLnjn

)
dx

)
, (8c)

ηe = (1− t+)
2RT

F

(
1

Lp

∫ L

L−Lp

log (ce) dx− 1

Ln

∫ Ln

0

log (ce) dx

)
, (8d)

∆Φe = −
(

1

Lp

∫ L

L−Lp

∫ x

0

ie(s, t)ds

σe (ce(s, t))B(s)
dx− 1

Ln

∫ Ln

0

∫ x

0

ie(s, t)ds

σe (ce(s, t))B(s)
dx

)
, (8e)

∆Φs = − iapp

3

(
Ln

σn
+
Lp

σp

)
. (8f)

We can interpret these terms in the following way: Ueq is the equilibrium potential to which the terminal
voltage converges when no current is applied, while all the other terms are deviations from equilibrium due
to different effects. ηr is due to the reaction overpotentials, ηe is due to the concentration gradients in the
electrolyte, ∆Φe is due to Ohmic losses in the electrolyte, and ∆Φs is due to Ohmic losses in the (solid)
electrode.

The TSPMe is valid in a particular regime both in terms of electrochemical and thermal submodels, and
the physical intuition for them is discussed in Section 2. The electrochemical submodel is valid when the
deviations from the equilibrium potential are slow, which is equivalent to moderate to low C-rates. In terms
of the dimensionless parameters, this corresponds to the case when

λ =
FΦ0

RTamb
� 1, Σk =

RTamb

FLi0
σk & 1, Σe =

RTamb

FLi0
σe,typ & 1, (9)

where i0 and Φ0 are the typical current and electrode potential, respectively, and σe,typ is the typical value
of σe. The assumption λ� 1 (i.e. λ significantly larger than one) means that λ must be larger than one for
the assumption to hold and, the larger λ is, the better the reduced model works. On the other hand, the
assumption of Σk & 1 (and similarly for Σe) means that Σk must be of O(1) or larger (i.e. not significantly
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smaller than one). Further details on these dimensionless parameters, as well as the details of the asymptotic
reduction, can be found in Appendix B.

The thermal submodel is valid when the heat exchange with environment is much slower than the heat
transfer inside of the battery. In terms of dimensionless parameters, this corresponds to the case when

Bi =
hLbatt

κ
� 1, K =

κt0
L2

battθ
� 1, (10)

where Lbatt is the typical length scale of the battery, κ is the lumped thermal conductivity of the battery
and t0 is the typical discharge time.

To the best of our knowledge, the TSPMe presented here is the first instance of a formal derivation (i.e.
using asymptotic techniques) of a TSPM-type model for multi-layer batteries and including finite diffusion
effects in the particles. There are other instances of asymptotically derived thermal-electrochemical models
in the literature, but they focus on other aspects. The work in [17, 25] focuses on single layer pouch cells.
On the other hand, the analysis in [21] assumes infinitely fast diffusion, which does capture the relaxation
of voltage that we observe in the experimental data when the battery is switched off (see Section 4).

In terms of the electrochemical model, our analysis is based on the same assumptions as the work by
Richardson et al. [16], but in our case we focus on the homogeneous electrodes case. Therefore, we are able
to write the electrolyte potential (6c) as an explicit expression rather than having to solve an elliptic PDE
for it. This allows us to write simpler expressions for all the potentials, while retaining all the features in
[16] for homogeneous electrodes. On the other hand, compared to the model by Marquis et al. [15], our
approach directly captures all the nonlinearities in the voltage expression, so there is no need to introduce
them a posteriori (see [17] for details).

3.1. Further simplifications

Notice that the TSPMe is already an SPM-type model, as defined in Section 2, which can be implemented
at a very low computational cost. Therefore, from the point of view of computational efficiency, there is
no need to further simplify the model. However, in the literature we find further simplifications to SPM-
type models. These further simplified models can also be helpful to understand the physical behaviour of
batteries and for applications where the available computational power is really low (such as in battery
management systems). In this section we present some further simplifications that can be done by taking
additional assumptions to show the links between the TSPMe model and other models found in the literature
[15, 16, 17, 18, 19, 20, 21]. The full details of the derivation can be found in Appendix C.

Here we present the dimensional form of three main different simplifications: quasi-steady-state elec-
trolyte concentration, constant electrolyte conductivity and fast lithium diffusion. For the first two we
consider as well a particular case of each that allows even further reduction of the model (small variation
of electrolyte concentration and large electrolyte conductivity). Notice that the three simplifications are
independent from each other, so we can choose to use a subset of them or all together.

3.1.1. Quasi-steady state electrolyte concentration

One simplification for the electrolyte concentration is to take the quasi-steady-state problem, which is a
valid assumption when the current varies over a larger time scale than the electrolyte diffusion and electrolyte
ion generation time scales. Mathematically, this corresponds to the case when

Ce =
L2

De,typt0
� 1, γe =

ce,init

cmax
n

� 1, (11)

where De,typ is the typical value of De and cmax
n is the maximum concentration in the negative electrode

particles.
The physical meaning of this limit is that electrolyte transient effects are negligible because they happen

at a much shorter time scale than variations in the applied current. This is a reasonable assumption for
constant-current discharge (or charge) experiments.
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With these assumptions, there is no time dependence in the electrolyte concentration equations so their
integration is a one-off step. Additionally, if the ion transport properties in the electrolyte (De and t+) are
assumed to be constant, we can find the following analytical expression for the concentration

ce = ce,init +
iapp(1− t+)

6FDevpore
∆c(x) (12a)

with

∆c(x) =



(
2εpL

2
p

Bp
+

3Ls(2εpLp+εsLs)
Bs

− 3
vpore
Ln

(L2
n−x

2)−2εnL
2
n

Bn

)
, if 0 < x < Ln,(

− 2εnL
2
n

Bn
+

2εpL
2
p

Bp
+

6
vpore

L (L−Lp−x)−6εnLnLs−3εsL
2
s

Bs

)
, if Ln < x < L− Lp,(

− 2εnL
2
n

Bn
− 3Ls(2εnLn+εsLs)

Bs
+

3
vpore
Lp

((L2−L2
p)−(2L−x)x)+2εpL

2
p

Bp

)
, if L− Lp < x < L,

(12b)

where the volume of pores per unit of electrode plate area is given by

vpore =

∫ L

0

ε(x)dx = εnLn + εsLs + εpLp, (13)

and Ls = L− Ln − Lp is the thickness of the separator.
An additional step to the previous simplification occurs when the variation in electrolyte concentration

is small. This corresponds to the limit

Ce =
L2

De,typt0
� 1, γe =

ce,init

cmax
n

∼ 1, (14)

and it yields the result ce = ce,init. Therefore, we obtain a Single Particle Model as we do not need to solve
for ce. Notice that this limit is the same to the one studied in [15] in terms of electrolyte concentration.
The only differences between that model and the one presented here are in the voltage expressions. In their
case they assumed large conductivity in the electrodes, while we assume small overpotentials (i.e. λ � 1),
but the results are analogous.

This assumption also helps simplify the expression for the electrolyte potential because we find that
σe(ce) is a constant, which is the case discussed in the next section.

3.1.2. Constant electrolyte conductivity

One assumption to simplify the electrolyte potential is to take that the electrolyte conductivity is a
constant. Then, the integrals involving σe in (5c), (6) and (8) can be computed analytically. This means a
slight reduction in the computational cost, which is negligible for a laptop but can be important for simpler
devices such as the processors in the battery management systems of the electric vehicles.

Hence, the potentials in both electrode and electrolyte can be calculated using

Φn = Un(cn|r=Rn
)− iapp(2Ln − x)x

2Lnσn
+
iappLn

3σn
− iapp

6σe

Ln

Bn

+ (1− t+)
2RT

F

1

Ln

∫ Ln

0

log

(
ce(x, t)

ce(0, t)

)
dx+

2RT

F

1

Ln

∫ Ln

0

arcsinh

(
iapp

anLnjn

)
dx, (15a)

Φp = Up(cp|r=Rp
) +

iapp(2(L− Lp)− x)x

2Lpσp
− iapp

(
2L2

p − 6LLp + 3L2
)

6Lpσp
− iapp

6σe

(
3Ln

Bn
+

6Ls

Bs
+

2Lp

Bp

)
+ (1− t+)

2RT

F

1

Lp

∫ L

L−Lp

log

(
ce(x, t)

ce(0, t)

)
dx− 2RT

F

1

Lp

∫ L

L−Lp

arcsinh

(
iapp

apLpjp

)
dx, (15b)
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Φe = (1− t+)
2RT

F
log

(
ce(x, t)

ce(0, t)

)
+
iapp

2σe


− x2

BnLn
, if 0 ≤ x < Ln,

− 2(x−Ln)
Bs

− Ln

Bn
, if Ln ≤ x < L− Lp,

(L−x)2

BpLp
−
(

Ln

Bn
+ 2Ls

Bs
+

Lp

Bp

)
, if L− Lp ≤ x ≤ L.

(15c)

Then, the Ohmic losses in the electrolyte can be written as

∆Φe = − iapp

3σe

(
Ln

Bn
+

3Ls

Bs
+
Lp

Bp

)
, (16)

and the electrolyte heat source term can be written as

Qe = −(1− t+)
2RT

F

iapp

L

(
1

Lp

∫ L

L−Lp

log (ce) dx− 1

Ln

∫ Ln

0

log (ce) dx

)
+

i2app

3Lσe

(
Ln

Bn
+

3Ls

Bs
+
Lp

Bp

)
. (17)

Note that, as mentioned in the previous section, these expressions for the potentials are very similar
to those obtained in the limit where the variation of electrolyte concentration is small. Therefore, we can
observe that the Ohmic losses in the electrolyte have the same form as those in [15].

If the electrolyte conductivity is assumed to be high, then an additional simplification can be done by
eliminating all the terms involving σ−1

e . Mathematically, this corresponds to the limit

Σe =
RTamb

FLi0
σe,typ � 1. (18)

3.1.3. Fast electrode diffusion

Finally, the last simplification that can be taken is fast electrode diffusion, which corresponds to the
limit

Ck =
R2

k

Dk,typt0
� 1. (19)

In this case, the particle problem (1) reduces to an ODE of the form

dck
dt

= − Jk
akRkF

, (20a)

ck(0) = ck,init, (20b)

and we find several instances of this model in the literature, such as [18, 19, 20, 21]. Note that this fast
electrode diffusion model does not capture the relaxation effects that we observe when the current is switched
off. These effects, mostly noticeable in the terminal voltage, are caused by the relaxation of the particle
concentration to its steady state and therefore require a finite diffusion in the particles.

4. Results

After presenting the TSPMe model, we now validate it to show its relevance and applicability. To show
the accuracy and performance of the reduced model, we start by comparing the TSPMe with the thermal
DFN (TDFN). Then, to show the applicability of the TSPMe in real applications we compare it against
experimental data on the LG M50 cell. This is a 21700 cylindrical cell, with a nominal capacity of 5 Ah, and
with an NMC811 positive electrode and a graphite and SiOx negative electrode (see [32] for further details).
In both cases, we perform comparisons at different C-rates (C/2, 1C and 2C) and ambient temperatures
(0 ◦C, 10 ◦C and 25 ◦C). The code to reproduce the simulations is publicly available in an online repository
(https://github.com/brosaplanella/TEC-reduced-model).
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4.1. Comparison between TSPMe and DFN

We first look at the comparison between the reduced model (the TSPMe) and a thermal DFN model
(using a lumped thermal model, see [17]) under different discharge conditions to assess how well does the
TSPMe approximate the TDFN. Here we use a lumped thermal model coupled to the DFN for simplicity, as
resolving the battery geometry would require a way heavier computational approach that is out of the scope
of this work. This increase of computational cost is because, as detailed in [33], we would have to define a
model over three scales (battery, cell and particle, see Figure 3) with the corresponding battery geometry,
which would also be challenging from the implementation point of view. The price we pay to use a lumped
model for the TDFN is that we do not capture the thermal gradients in the battery. Validating the TSPMe
model against a spatially resolved TDFN (like [33]) is an area for future work on this topic.

The models have been implemented in PyBaMM (Python Battery Mathematical Modelling) package, a
Python-based open-source package to simulate battery models [34]. The code and data are available online
(see “Data and code availability”). Both models are solved using a finite volumes method for the spatial
discretisation using the same number of points in both methods for a given domain. For the results here,
we used 30 points in the electrode particles and 20 points for each electrode and separator. With this
number of points in the discretisation the model yields accurate results, and we do not observe a significant
improvement in the solution when increasing the number of points in the mesh. The code to compare the
different mesh sizes can be found in the online repository.

After spatial discretisation, we obtain a system of 122 ODEs for the TSPMe model and a system of 1262
ODEs and 100 algebraic equations for the TDFN model, which is an index one DAE [15]. Observe that, for
the same mesh size, the TDFN model requires solving a system over 10 times larger than the TSPMe, and
much more complex due to the algebraic constraints. In order to solve the models we used the SciPy ODE
solver [35] for the TSPMe, while for the TDFN we needed a DAE solver, so we used the CasADI solver [36].

For the simulations we used the parameter values shown in Table 1. The electrochemical parameters
are for the LG M50 cell and have been taken from [32], while the thermal parameters (θ, κ and h) have
been taken from [37]. For the thermal parameters, given that they are lumped parameters for the whole
battery, we took from [37] the values for each part and calculated the lumped value using the thicknesses
from [32]. For the heat exchange coefficient, we took the intermediate value from the range discussed in [37].
Note that two of the parameters in Table 1 (Lbatt and κ) do not directly appear in the TSPMe model, but
their values have been used to calculate the dimensionless parameters in Table A.6, which are needed in the
asymptotic analysis presented in Appendix B. These parameters are identified with an asterisk in Table 1.
To capture the microstructure effects on the macroscopic transport, we use the Bruggeman correlation, so
we set Bk = ε1.5

k . We also do not include the reversible heat generation effects Qrev because the Peltier
coefficient Πk = T ∂Uk

∂T needs to be consistent with the open-circuit potential Uk and this would require a
careful and exhaustive experimental analysis that is out of the scope of this work. This is an aspect that
will be addressed in future work.

The comparison between the TDFN model and TSPMe is shown in Figures 5-7, with the error data
in Table 2 and the computational times in Table 3. We observe that the TSPMe does a very good job
representing the voltage and the cell temperature compared to the TDFN model, and that the discrepancy
increases with the C-rate. This could be expected as, from the asymptotic analysis in Appendix B, we know
that some of the assumptions on the parameter sizes break down if the applied current is too large. The data
in Table 2 shows a slight trend that the agreement between models improves as the temperature decreases,
which could be caused because lower temperatures yield lower values of the thermal potential, which is one
of the assumptions in the asymptotic analysis.

Meanwhile, the computational time to solve each model shows that the TSPMe is between approximately
10 times (2C) and 40 times (C/2) faster than the TDFN model. We also notice that, for the TSPMe, the
computational time does not vary much with the C-rate, but for the TDFN model the computational time
is inversely proportional to the C-rate. This is due to the way PyBaMM handles solver events (e.g. stopping
the solver when the critical discharge voltage is reached). The parameters of the solver could be changed to
reduce the solving time of the TDFN, but they would need to be adjusted in a case by case basis given that
the solver is very sensitive to the parameter values and the experimental conditions. On the other hand,
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Symbol Units Description Pos. Sep. Neg.
Lk m Thickness 75.6 · 10−6 12 · 10−6 85.2 · 10−6

Rk m Radius of electrode particles 5.22 · 10−6 - 5.86 · 10−6

ak m−1 Particle surface area density 3.82 · 105 - 3.84 · 105

Dk m2 s−1 Lithium diffusivity in particles 4 · 10−15 - 3.3 · 10−14

σk S m−1 Electrode conductivity 0.18 - 215
ck,init mol m−3 Initial particle concentration 17038 - 29866
cmax
k mol m−3 Max. particle concentration 63104 - 33133
Uk V Open circuit potential Fig. D.12 - Fig. D.12

mk A m−2
(
mol m−3

)−1.5
Reaction rate 3.42 · 10−6 - 6.48 · 10−7

εk - Electrolyte volume fraction 0.335 0.47 0.25
De m2 s−1 Electrolyte diffusivity see [32]
σe S m−1 Electrolyte conductivity see [32]
t+ - Transfer number 0.2594
ce,init mol m−3 Initial electrolyte concentration 1000
iapp A m−2 Applied current density 48.69C

F C mol−1 Faraday constant 96485

R J K−1 mol−1 Gas constant 8.314
acool m−1 Cooling surface area density 219.42
Lbatt m Length scale of the battery* 1 · 10−2

Tamb K Ambient temperature 298
θ J K−1 m−3 Volumetric heat capacity 2.85 · 106

κ W m−1 K−1 Thermal conductivity* 1.05
h W m−2 K−1 Heat exchange coefficient 20

Table 1: Dimensional parameters for the LG M50 cell. The electrochemical parameters are taken from [32] and the thermal
parameters are taken from [37]. The parameters marked with an asterisk indicate that they are not directly used in the TSPMe
but have been used to evaluate the dimensionless grouping for its derivation (see Appendix B). The C in the definition of iapp
corresponds to the C-rate of the experiment. The open-circuit potentials of the electrodes are taken from [32] as well, and they
are plotted in Figure D.12.
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Figure 5: Comparison between the TDFN and TSPMe solutions at 25 ◦C and different C-rates. The plots on the left column
compare the terminal voltage and cell temperature, where the solid colour lines represent the TSPMe and the black dashed
lines represent the TDFN. The plots on the right column show the absolute error between the two models for voltage and
temperature, respectively.
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Figure 6: Comparison between the TDFN and TSPMe solutions at 10 ◦C and different C-rates. The plots on the left column
compare the terminal voltage and cell temperature, where the solid colour lines represent the TSPMe and the black dashed
lines represent the TDFN. The plots on the right column show the absolute error between the two models for voltage and
temperature, respectively.
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Figure 7: Comparison between the TDFN and TSPMe solutions at 0 ◦C and different C-rates. The plots on the left column
compare the terminal voltage and cell temperature, where the solid colour lines represent the TSPMe and the black dashed
lines represent the TDFN. The plots on the right column show the absolute error between the two models for voltage and
temperature, respectively.
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0.5C 1C 2C
25 ◦C 2.10 (5.87) 5.59 (16.35) 23.95 (63.61)
10 ◦C 1.72 (5.10) 4.97 (14.62) 22.58 (60.71)
0 ◦C 1.64 (4.98) 4.82 (14.05) 22.10 (59.15)

(a) Voltage (mV)

0.5C 1C 2C
25 ◦C 0.03 (0.05) 0.15 (0.29) 1.14 (1.92)
10 ◦C 0.02 (0.04) 0.13 (0.24) 1.07 (1.75)
0 ◦C 0.02 (0.03) 0.13 (0.23) 1.04 (1.70)

(b) Temperature (◦C)

Table 2: Error between TSPMe and DFN models for different temperatures and C-rates. The first values are the root-mean-
squared-error (RMSE) and the second values (in brackets) are the peak error.

0.5C 1C 2C
25 ◦C 0.44± 0.02 0.43± 0.03 0.47± 0.03
10 ◦C 0.44± 0.02 0.44± 0.04 0.47± 0.03
0 ◦C 0.44± 0.02 0.43± 0.03 0.47± 0.05

(a) TSPMe

0.5C 1C 2C
25 ◦C 19.03± 0.19 9.25± 0.23 9.02± 0.14
10 ◦C 18.81± 0.06 9.01± 0.04 8.44± 0.04
0 ◦C 18.64± 0.13 9.09± 0.09 8.39± 0.06

(b) TDFN

Table 3: Computational time (in seconds) for the TSPMe and the TDFN model. The times shown here are the solving times
only (they do not include the system assembly time). To obtain reliable measurements each simulation has been run 20 times
and the values shown here are the mean and standard deviation of the samples.

there is no significant effect of the experiment temperature on the computational time. The computational
times have been calculated on a laptop with an Intel Core i7-7660U (2.50Ghz) processor and 16 GB RAM.
To eliminate the artefacts caused by other background processes, each model has been solved 20 times and
the values shown in Table 3 are the mean and standard deviation of the different runs for each C-rate and
temperature.

This huge difference in the computational speed is because the PDEs arising in the TSPMe are discretised
into a system of ODEs which is well-behaved, while the discretised TDFN model gives a DAE system which is
ill-posed and, therefore, solving this system requires very specific numerical schemes that are computationally
expensive [38]. Specialised techniques to speed up solving both systems of equations are available (like the
reduction methods of residue grouping [29] or balanced truncation [30] for systems of ODEs). However, given
that the TSPMe is intrinsically simpler than the TDFN, under equivalent conditions the former should always
be faster. From this comparison, we conclude that the TSPMe provides a very good approximation to the
thermal DFN model at a much lower computational cost. In the next section we assess if this model can be
used to obtain meaningful predictions of experimental data.

4.2. Comparison with experimental data

Now we compare the TSPMe model with experimental data to assess if the model can be used in
real applications. The experimental data is for a commercial cell, the LG M50. For the rate tests, cells
were placed inside an Espec thermal chamber and, for accuracy, thermocouples were used to record the
temperature inside the chamber. Cell temperature was monitored on the cell mid surface and four cells were
used for each C-rate and ambient temperature. One of these cells had two additional thermocouples: one
on the positive tab and one on the negative tab. A 10 A Digatron battery cycler was used for the tests. For
the temperature measurements, K-type thermocouples from RS components were used, which is accurate
up to a standard deviation of ±0.75%. Three temperature settings 0 ◦C, 10 ◦C and 25 ◦C were used and
for each cycle. The cycle consisted of a constant current (CC) charge step of C/3 to a cut-off voltage of
4.2 V, followed by a constant voltage (CV) step at 4.2 V until the charge current dropped to C/20, then a
two-hour long rest period, before a constant current discharge step to 2.5 V and a final two-hour long rest
before repeating it but for a different discharge C-rate. Different discharge C-rates were explored: C/10,
C/2, 1C and 2C, running two cycles for each discharge rate. To reduce the data size, a variable time step
combined with a voltage difference condition was used. For C/10 and C/2 discharge rates we used 60 s or
10 mV sampling and for 1C and 2C discharge rates we used 1 s or 10 mV sampling. Data was recorded
once one of the two conditions was satisfied. Note that one of the cells cycled at 1C (cell 791) has not
been included in the validation data because it gave faulty temperature measurements. However, the data
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0.5C 1C 2C
25 ◦C 0.9 2 6
10 ◦C 0.4 1 3
0 ◦C 0.22 0.55 1.5

(a) Dn (10−14 m2 s−1)

cp,init

25 ◦C 17150
10 ◦C 17750
0 ◦C 18150

(b) cp,init (mol m−3)

0.5C 1C 2C
25 ◦C 24.45 24.68 24.30
10 ◦C 9.80 10.10 9.60
0 ◦C 0.02 0.35 -0.30

(c) Tamb (◦C)

Table 4: Values for the parameters that have been tuned for the comparison with experimental data.

for that cell is available in the online repository. We would like to highlight here that the purpose of this
work is not to parameterise the thermal model for a specific cell, but to derive and validate a reduced
thermal-electrochemical model. Therefore, in the simulations presented in this section we have used existing
parameter sets and calibrated and validated them against the experimental data.

Still, there are some aspects to discuss about the parameters before we continue. We have used as a
starting point the parameters shown in Table 1, but some of them needed to be adjusted. The parameters
related to the electrochemistry are taken from [32]. These parameters are assumed to not depend on tem-
perature, except for the reaction rates, which follow an Arrhenius relation. Note that in Table 1 the diffusion
coefficient in the particles is assumed constant, however in real-life it depends on lithium concentration and
temperature. Therefore, the diffusion coefficient used in the model is taken as an “effective coefficient”, and
adjusted for each experimental set-up (i.e. each combination of C-rate and temperature), so the constant
value mimics the nonlinear dynamics for that particular set-up. That is, for each combination of C-rate and
temperature, we change the value of Dn until we get a reasonable qualitative agreement with experimental
data, leaving Dp unchanged. This assumption is discussed in detail in [32]. In addition, for each tempera-
ture we have adjusted the initial concentration in the positive electrode, so the initial equilibrium potential
matches the rest potential before starting the discharge.

The parameters for the thermal model have been taken from [37] and then tuned to match the data (in
particular they were tuned for 1C at 25 ◦C) obtaining the values of θ = 2.32 · 106 J K−1 m−3 and h = 16
W m−2 K−1. Recall that we have neglected the reversible heat generation term Qrev. However, for the
moderate C-rates in the experimental data its contribution should be relatively small. Finally, the value used
for both the cell initial temperature and the ambient temperature (which as a modelling assumption we take
them to be the same) is taken to be the average value of the final cell temperature of each experiment. This
is because the measured temperature of the thermal chamber might not match the equilibrium temperature
of the batteries due to experimental limitations in the chamber temperature controller. The parameters
that were adjusted for the comparison with experimental data are shown in Table 4.

The comparison between TSPMe, TDFN and experimental data for voltage and temperature is shown
in Figures 8-10, with the error metrics for TSPMe shown in Table 5. The first thing we notice is that, in
all cases, the TDFN and TSPMe perform very similarly, therefore the errors with experimental data do
not arise from the model reduction process. Looking at Figure 8, we observe a very good agreement of the
voltage at 25 ◦C at all C-rates. This could be expected, given that the parameters in [32] were measured at
room temperature. On the other hand, we observe that temperature shows very good agreement with data
during the relaxation, which shows that the tuned value of the heat exchange coefficient is a good estimation.
The discrepancies observed during the discharge phase, especially at C/2, point out that the discrepancy
arises from the heat source terms. It is possible that the issue arises from the irreversible heat source term.
If that is the case, given that from (5) we know that the irreversible heating scales like iapp log(iapp) while
the heating due to Ohmic losses scale like i2app, as the C-rate increases the Ohmic heating dominates and
the discrepancy due to the irreversible heat becomes less apparent. The discrepancy could also arise from
the reversible heat source term which has not been included in the simulations. In both cases, further work
is required to validate these hypotheses.

Looking at the voltage comparison at lower temperatures, we notice that they show worse agreement
as the temperature decreases. This is reasonable given that, again, the parameters were measured at room
temperature. And even the reaction rates, which have a temperature dependence, were measured in the
range between 25 ◦C and 60 ◦C and therefore the values at 10 ◦C and 0 ◦C are an extrapolation. Moreover,
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Figure 8: Comparison between TSPMe, TDFN and experimental data at 25 ◦C. The colour solid lines represent the experi-
mental data for the different cells studied (with the cell number matching that of the dataset), the black solid line represents
the TSPMe and the grey dotted line represents the TDFN model. The black cross represents the initial equilibrium potential
of the model.

for temperature, we notice a slight increase in the goodness of fit as the ambient temperature decreases,
which is not what we expected. This could also be a side-effect of a discrepancy in the heat source terms,
as discussed previously.

After comparing the TSPMe and TDFN against experimental data we conclude that the TSPMe can
provide an accuracy similar to the TDFN but at a much lower computational cost. The discrepancies
observed between the models and the data do not arise from the model reduction, as they are observed
in the TDFN as well, so they most likely come from the parameter set. It is well-known that an accurate
parameter set is required to obtain reliable predictions, and the parameter set from [32] does not take into
account the temperature dependence of the parameters. Therefore, future work is required to obtain a more
accurate parameter set for thermal-electrochemical models so we can validate the model against the LG
M50 experimental data.
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Figure 9: Comparison between TSPMe, TDFN and experimental data at 10 ◦C. The colour solid lines represent the experi-
mental data for the different cells studied (with the cell number matching that of the dataset), the black solid line represents
the TSPMe and the grey dotted line represents the TDFN model. The black cross represents the initial equilibrium potential
of the model.

5. Conclusions

In this work, we have derived a reduced thermal-electrochemical model that can be used to simulate the
behaviour of lithium-ion batteries in a fast and accurate way (compared to the thermal Doyle-Fuller-Newman
model). The reduced model, which we refer to as Thermal Single Particle Model with electrolyte (TSPMe),
is a SPM-type model (Single Particle Model) but, as opposed to many of the SPM-type models found in
the literature, the TSPMe has been derived systematically using asymptotic techniques. This systematic
method allows us to determine in advance the range of validity of the model and the accuracy of the reduced
model.

Before presenting the TSPMe, we discussed the concept of the Single Particle Model (SPM), both for
pure electrochemical models and coupled thermal-electrochemical models (Section 2). From that analysis
we concluded that the fundamental feature of SPM-type models is that they split the model into two steps:
the first step involves solving a system of partial differential equations (PDEs) to determine the intercalated
lithium and electrolyte ion concentrations, while the second step involves finding any other variable of interest

23



Figure 10: Comparison between TSPMe, TDFN and experimental data at 0 ◦C. The colour solid lines represent the experi-
mental data for the different cells studied (with the cell number matching that of the dataset), the black solid line represents
the TSPMe and the grey dotted line represents the TDFN model. The black cross represents the initial equilibrium potential
of the model.

from closed form expressions. This is a crucial distinction because the computationally expensive part when
solving the model is solving the PDEs. Moreover, when comparing the different SPM-type models in the
literature we find that the main differences between them are in the second step, thus the system of PDEs is
the same across most of the models. The same idea naturally extends when a thermal-electrochemical model
is considered. The reduction of the thermal DFN model to the TSPMe was based on only two assumptions:
the deviations from the open-circuit potential are small and the heat transfer of the battery is limited by
the heat exchange with the environment. With only these assumptions, we can already perform the model
reduction, as any other assumption usually taken in other reduced models came as a consequence of the
assumptions and the governing equations.

In terms of performance, we found that the TSPMe approximates very well the thermal DFN model,
especially at low C-rates, but it is significantly faster. At high C-rates (2C) it is over ten times faster while
at low C-rates (C/2) the TSPMe is over forty times faster. Moreover, despite all the limitations of the model
(due to the assumptions taken to derive it) and the parameters used in the simulations (which were estimated
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0.5C 1C 2C
25 ◦C 72.99 (0.97) 49.94 (0.96) 35.99 (0.96)
10 ◦C 116.32 (0.89) 73.89 (0.87) 61.83 (0.80)
0 ◦C 99.39 (0.91) 102.41 (0.65) 100.81 (0.30)

(a) Voltage (mV)

0.5C 1C 2C
25 ◦C 0.75 (0.67) 1.46 (0.83) 2.05 (0.96)
10 ◦C 0.98 (0.67) 1.50 (0.88) 1.56 (0.98)
0 ◦C 1.09 (0.72) 1.46 (0.92) 1.11 (0.99)

(b) Temperature (◦C)

Table 5: Error between TSPMe and experimental data for different temperatures and C-rates. The first values are the root-
mean-squared-error (RMSE) and the second values (in brackets) are the coefficient of determination R2. Note that the latter
is dimensionless and the closer it is to one, the better the fit is.

at room temperature), the TSPMe showed good agreement with experimental data on a commercial cell.
This good accuracy and low computational time make the TSPMe model (with other models of the same
family) a very good candidate for battery design and control.

There are two main lines to explore as possible extensions of this work. On one side, a full thermal
parameterisation, including thermal parameters and thermal dependence of electrochemical parameters in
the relevant temperature range (0 ◦C to 25 ◦C), is required for a better comparison between the TSPMe
and experimental data. This will allow us to rule out discrepancies due to the parameters rather than the
model, and thus obtain a more critical validation of the model. On the other side, the model should also be
validated against models resolving the full jellyroll structure of the cylindrical battery (e.g. [33]) to assess the
discrepancies between the TSPMe, which assumes a lumped thermal model, and the fully resolved model.
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Appendix A. Derivation of the non-dimensional model

In order to perform the asymptotic analysis we write the full model in dimensionless form. Therefore, we
start stating the dimensional version of a thermal DFN model and proceed to non-dimensionalise it. More
details in the derivation of this model can be found in [4].

The geometry of the model is shown in Figure A.11. There are three scales involved in the problem. The
thermal model is posed at the largest scale y, which corresponds to the battery. The battery is defined in
the domain y ∈ Ωbatt. In turn, the battery is composed of multiple cells and it is at the cell level, defined
by 0 ≤ x ≤ L, where we pose the electrochemical model. We choose a DFN model and, therefore, in each
electrode we have an array of particles in which lithium diffuses. Then, the particles are defined to have the
same size and thus the particle domains are 0 ≤ r ≤ Rk for k ∈ {n,p}.

Usually, the DFN model defines the effective properties in the porous media using the Bruggeman
correlation [8]. However, here we introduce a generic geometric factor B that accounts for the variation
in the bulk transport properties. In this article, the factor is assumed to be a scalar as we consider a
one-dimensional model, but it is related to the tensor B introduced in [9], which arises from the asymptotic
homogenisation of the microscale model. Then, we can choose B to be the Bruggeman correlation to retrieve
the classic DFN model [5], or use other approaches, such as Rayleigh’s expressions for lattice-arranged
spheres [39], numerical computations from tomography imaging [40] or direct experimental estimation using
impedance spectroscopy [41]. For a critical discussion of these approaches see [42, 43]. Our model is based on
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Ωbatt

x

x = 0 x = Lx = Ln x = L− Lp

r
Rn

r
Rp

positive particlesnegative particles

negative electrode separator positive electrode

Figure A.11: Geometry for the thermal DFN model. The battery is the domain y ∈ Ωbatt which can have an arbitrary
geometry (here, for example, it is depicted as a cylindrical domain). It is composed of multiple cells which are considered to
be one-dimensional in the spatial coordinate x. In turn, porous electrode is modelled as an array of spherical particles, which
are described by a one-dimensional spherically symmetric model in the spatial coordinate r.
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the standard formulation of the DFN model [5, 6] and therefore we do not include double-layer capacitance
effects in the model, but the same reduction framework would hold if they were included (see [19] for details).

Then, the electrochemical model reads as follows. In each particle, the lithium concentration is governed
by

∂ck
∂t

=
1

r2

∂

∂r

(
r2Dk

∂ck
∂r

)
, in 0 < r < Rk, (A.1a)

∂ck
∂r

= 0, at r = 0, (A.1b)

−Dk
∂ck
∂r

=
Jk
akF

, at r = Rk, (A.1c)

ck = ck,init, at t = 0, (A.1d)

and the potential in each electrode is described by

∂ik
∂x

= −Jk, (A.1e)

ik = −σk
∂Φk

∂x
, (A.1f)

In both cases, the x domain is defined to be 0 ≤ x ≤ Ln if k = n, and L− Lp ≤ x ≤ L if k = p.
The electrolyte equations, which are defined in the domain 0 ≤ x ≤ L, are

ε(x)
∂ce
∂t

= −∂Ne

∂x
+
J

F
, (A.1g)

∂ie
∂x

= J, (A.1h)

with

Ne = −DeB(x)
∂ce
∂x

+ t+
ie
F
, (A.1i)

ie = −σeB(x)

(
∂Φe

∂x
− 2(1− t+)

RT

F

∂ log ce
∂x

)
. (A.1j)

The intercalation reaction between the electrode and the electrolyte is given by

J =


Jn, if 0 ≤ x ≤ Ln,

0, if Ln < x ≤ L− Lp,

Jp, if L− Lp < x ≤ L,
(A.1k)

Jk = akjk sinh

(
1

2

F

RT
ηk

)
, (A.1l)

ηk = Φk − Φe − Uk

(
ck|r=Rk

)
, (A.1m)

jk = mk

√
ceck (cmax

k − ck)

∣∣∣∣
r=Rk

. (A.1n)

The boundary conditions are the following. At the current collector ends we impose

in = iapp, Ne = 0, Φe = 0, at x = 0, (A.2a)

ip = iapp, Ne = 0, ie = 0, at x = L, (A.2b)

and using conservation of charge in the electrolyte we can derive the additional condition ie = 0 at x = 0,
which can be helpful in some situations.
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At the electrode-separator interfaces, we impose zero current in the electrodes

in = 0, at x = Ln, (A.2c)

ip = 0, at x = L− Lp. (A.2d)

Finally, we impose the initial condition for the electrolyte concentration

ce = ce,init, at t = 0. (A.2e)

The heat equation at the macroscale is given by

θ
∂T

∂t
= κ∇2T +Q, in y ∈ Ωbatt, (A.3a)

−κ∇T · n = h(T − Tamb), at y ∈ ∂Ωbatt, (A.3b)

T = Tamb, at t = 0, (A.3c)

with

Q = −
∫ L

0
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∂Φk

∂x
dx−

∫ L

0

ie
∂Φe

∂x
dx+

∫ L

0

Jkηkdx+

∫ L

0

JkΠkdx. (A.3d)

To simplify the notation, when integrating an electrode variable over the domain 0 ≤ x ≤ L we imply
splitting the integral, taking for k = n the domain 0 ≤ x ≤ Ln and for k = p the domain L− Lp ≤ x ≤ L.

We allow some of the parameters in the model to depend on certain variables. In particular, we take
Dk to depend on the lithium concentration ck, and De and σe to depend on the ion concentration ce. Here,
we take t+ to be a constant, which is a common modelling assumption. However, the results in this work
can be generalised to account for a variable t+. The rest of the parameters are taken to be constant, unless
stated otherwise.

We define the following scalings of the problem

t = t0t̂, ck = cmax
k ĉk, Φk = Φ0Φ̂k, ik = i0îk, Jk =

i0
L
Ĵk,

x = Lx̂, ce = ce,initĉe, Φe =
RTamb

F
Φ̂e, ie = i0îe jk =

i0
akL

ĵk,

rk = Rkr̂k, Dk = Dk,typD̂k, ηk =
RTamb

F
η̂k, iapp = i0îapp, T =

RTambc
max
n

θ
T̂ + Tamb,

σe = σe,typσ̂e, De = De,typD̂e, Uk = Φ0Ûk, Ne =
De,typce,init

L
N̂e, Q =

i0RTamb

LF
Q̂,

y = Lbattŷ, Ωbatt = LbattΩ̂batt, Πk =
RTamb

F
Π̂k,

(A.4)
and we choose the time scale t0 to be the discharge time scale

t0 =
Fcmax

n L

i0
. (A.5)

The parameters i0 and Φ0 are the typical current and electrode potential, respectively, and the subscript
typ denotes the typical value of that parameter.

Then, we can write the dimensionless model as follows. The model for concentration in the particles
reads

Ck
∂ĉk

∂t̂
=

1

r̂2

∂

∂r̂

(
r̂2D̂k

∂ĉk
∂r̂

)
, in 0 < r̂ < 1, (A.6a)

∂ĉk
∂r̂

= 0, at r̂ = 0, (A.6b)

−D̂k
∂ĉk
∂r̂

=
Ck
αkγk

Ĵk, at r̂ = 1, (A.6c)

ĉk = µk, at t̂ = 0, (A.6d)
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and the potential in each electrode is given by

∂îk
∂x̂

= −Ĵk, (A.6e)

îk = −λΣk
∂Φ̂k

∂x̂
, (A.6f)

Now, the x̂ domain is defined to be 0 ≤ x̂ ≤ `n if k = n, and 1− `p ≤ x̂ ≤ 1 if k = p.
The electrolyte equations, which are defined in the domain 0 ≤ x̂ ≤ 1, are

Ceγeε(x̂)
∂ĉe

∂t̂
= −γe

∂N̂e

∂x̂
+ CeĴ , (A.6g)

∂îe
∂x̂

= Ĵ , (A.6h)

with

N̂e = −D̂eB(x̂)
∂ĉe
∂x̂

+ t+
Ce
γe
îe, (A.6i)

îe = −Σeσ̂eB(x̂)

(
∂Φ̂e

∂x̂
− 2(1− t+)(1 + γT T̂ )

∂ log ĉe
∂x̂

)
. (A.6j)

The intercalation reaction between the electrode and the electrolyte is given by

Ĵ =


Ĵn, if 0 ≤ x̂ ≤ `n,
0, if `n < x̂ ≤ 1− `p,
Ĵp, if 1− `p < x̂ ≤ 1,

(A.6k)

Ĵk = ĵk sinh

(
1

2

η̂k

1 + γT T̂

)
, (A.6l)

η̂k = λ
(

Φ̂k − Ûk ( ĉk|r̂=1)
)
− Φ̂e, (A.6m)

ĵk =
γk
Cr,k

√
ĉeĉk (1− ĉk)

∣∣∣
r̂=1

. (A.6n)

The boundary conditions at current collector ends are

în = îapp, N̂e = 0, Φ̂e = 0, at x̂ = 0, (A.7a)

îp = îapp, N̂e = 0, îe = 0, at x̂ = 1, (A.7b)

and at the electrode-separator interfaces are

în = 0, at x̂ = `n, (A.7c)

îp = 0, at x̂ = 1− `p. (A.7d)

Finally, the initial condition for the electrolyte is

ĉe = 1, at t̂ = 0. (A.7e)

The dimensionless heat equation reads

∂T̂

∂t̂
= K∇̂2T̂ + Q̂, in ŷ ∈ Ω̂batt, (A.8a)

−∇̂T̂ = BiT̂ , at ŷ ∈ ∂Ω̂batt, (A.8b)

T̂ = 0, at t̂ = 0. (A.8c)
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Symbol Description Pos. Sep. Neg.
Ck Ratio of solid diffusion to discharge time scales 0.60C - 9.17 · 10−2C
Ce Ratio of electrolyte diffusion to discharge time scales 1.49 · 10−2C
Cr,k Radius of active material particles 0.21C - 1.08C
Σk Ratio of thermal voltage to typical ohmic drop in the solid 0.55C−1 - 656C−1

Σe Ratio of thermal voltage to typical ohmic drop in the elec-
trolyte

2.90C−1

γk Ratio of maximum lithium concentrations in electrode to
maximum concentration in negative electrode

1.90 - 1

γe Ratio of typical electrolyte concentration to maximum con-
centration in negative electrode

3.01 · 10−2

γT Ratio of temperature variation to reference temperature 9.67 · 10−2

µk Initial stoichiometry 0.2700 - 0.9014
λ Ratio of electrode thickness to cell thickness 38.94
`k Ratio of electrode thickness to cell thickness 0.44 0.07 0.49
αk Product of particle radius and surface area density 2.00 - 2.25
K Ratio of thermal diffusion to discharge time scales 41.8C−1

Bi Ratio of external convection to internal conduction 0.19

Table A.6: Dimensionless parameters for the LG M50 cell calculated from the dimensional parameters in Table 1. The parameter
C is the applied C-rate.

with

Q̂ = −λ
∫ 1

0

îk
∂Φ̂k

∂x̂
dx̂−

∫ 1

0

îe
∂Φ̂e

∂x̂
dx̂+

∫ 1

0

Ĵkη̂kdx̂+

∫ 1

0

ĴkΠ̂kdx̂. (A.8d)

The dimensionless parameters of the model are

Ck =
R2

k

Dk,typt0
, Ce =

L2

De,typt0
, Cr,k =

F

mkak
√
ce,initt0

, Σk =
RTamb

FLi0
σs,k, Σe =

RTamb

FLi0
σe,typ,

γk =
cmax
k

cmax
n

, γe =
ce,init

cmax
n

, γT =
Rcmax

n

θ
, µk =

ck,init

cmax
k

, λ =
Φ0F

RTamb
,

`k =
Lk

L
, αk = akRk, K =

κt0
L2

battθ
, Bi =

hLbatt

κ
.

(A.9)

From [32, 37] we find typical values of the dimensionless parameters, which are shown in Table A.6.

Appendix B. Derivation of the base TSPMe

We now consider the asymptotic limits for the analysis. We take the limits

λ� 1, K � 1, and Bi� 1, (B.1)

and we assume all the other parameters to be O(1).
The reasoning behind these limits is the following. The limits K � 1 and Bi � 1, as shown in Ap-

pendix B.1, give that the temperature is homogeneous in space, which highly simplifies the temperature
contributions in the DFN model. This corresponds to the scenario in which the bottleneck in heat transfer
is the heat dissipation to the environment. On the other hand, the limit λ � 1 is the only assumption
needed to break the DFN model into an SPMe as, combined with the implicit assumption that Σk and Σe

are not small (i.e. O(1) or larger), implies that any deviations from the equilibrium potential are small.
Note that at large C-rates this assumption is no longer true because Σk and Σe become much smaller than
one, but it holds for moderate and low C-rates.

In order to simplify the analysis, we now drop hats from the dimensionless variables as for the rest of
the appendix we work with the dimensionless model.
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Appendix B.1. Derivation of the reduced thermal model

We start by considering the reduction of the thermal model (A.8), as the results of this analysis are
helpful in the reduction of the electrochemical model in Appendix B.2. We use the limits λ � 1, K � 1
and Bi� 1. For simplicity, we define δ = λ−1 as our small parameter, so we scale K = δ−1K̃ and Bi = δB̃i.
Then, we can introduce these scalings into (A.8) which, dropping hats, gives

δ
∂T

∂t
= K̃∇2T + δQ, in y ∈ Ωbatt, (B.2a)

−∇T = δB̃iT, at y ∈ ∂Ωbatt, (B.2b)

T = 0, at t = 0, (B.2c)

with

Q = −δ−1

∫ 1

0

ik
∂Φk

∂x
dx−

∫ 1

0

ie
∂Φe

∂x
dx+

∫ 1

0

Jkηkdx+

∫ 1

0

JkΠkdx. (B.2d)

We now expand the temperature and the heat source term in powers of δ as

T = T0 + δT1 + δ2T2 +O
(
δ3
)
, (B.3a)

Q = Q0 + δQ1 + δ2Q2 +O
(
δ3
)
. (B.3b)

We find that, at leading order, the governing equation is

∇2T0 = 0, in y ∈ Ωbatt, (B.4a)

−∇T0 = 0, at y ∈ ∂Ωbatt, (B.4b)

so we conclude that T0 = T0(t). We now look at the O(δ) equations to determine T0, which are

dT0

dt
= K̃∇2T1 +Q0, in y ∈ Ωbatt, (B.5a)

−∇T1 = B̃iT0, at y ∈ ∂Ωbatt, (B.5b)

T0 = 0, at t = 0. (B.5c)

We can now average (B.5a) over the whole domain Ωbatt. Applying the divergence theorem and using (B.5b)
we find

dT0

dt
= −acoolK̃B̃iT0 + Q̄0, (B.6a)

T0(0) = 0, (B.6b)

where

Q̄0 =
1

‖Ωbatt‖

∫
Ωbatt

Q0dV, acool =
‖∂Ωbatt‖
‖Ωbatt‖

, (B.6c)

which represent, respectively, the battery averaged heat source term and the surface area per unit volume
of the battery.

We finally need to write down the leading order source term Q0. If we expand (B.2d) we find that there
might be an O

(
δ−1
)

term given by

Q−1 = −
∫ 1

0

ik0
∂Φk0

∂x
dx, (B.7)

however, as we will see in Appendix B.2, the analysis shows that ∂Φk0

∂x = 0 so this term vanishes. Then, we
have that the leading order heat source term is

Q0 = −
∫ 1

0

ik0
∂Φk1

∂x
dx−

∫ 1

0

ie0
∂Φe0

∂x
dx+

∫ 1

0

Jk0η0dx+

∫ 1

0

Jk0Πk(ck0)dx. (B.8)

After simplifying the electrochemical model in the next section we can provide more detailed expressions
for each of the terms that compose Q0.
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Appendix B.2. Derivation of the reduced electrochemical model

We now reduce the electrochemical model to the base SPMe model just considering the limits λ� 1 and
using the fact that at leading order the temperature is homogeneous in space, as derived in Appendix B.1.
We use again δ = λ−1 � 1 as our small parameter and rewrite the dimensionless model accordingly.

We expand all the variables and derived quantities in powers of δ, using the notation

Φk = Φk0 + δΦk1 +O
(
δ2
)
, (B.9a)

ik = ik0 + δik1 +O
(
δ2
)
, (B.9b)

and so on.
We expand first (A.6f) which at leading order gives

− Σk
∂Φk0

∂x
= 0, (B.10)

from which we conclude that the potential in the electrodes is spatially homogeneous so Φk0 = Φk0(t). Then,
from the leading order term in (A.6m) we conclude

Φk0(t) = Uk (ck0|r=1) . (B.11)

Therefore, if the open circuit potential Uk is invertible, we have

ck0|r=1 = U−1
k (Φk0(t)) , (B.12)

and thus the concentration at the boundary of the particles does not depend on x, i.e. it is the same for all
the particles. Note that, if the open circuit potential Uk is not invertible, then this method no longer works
because particles with different concentrations could have the same potential. This is the case of lithium
iron phosphate (LFP) electrodes which have very flat open circuit potentials [16].

If the concentration is initially homogeneous in x, it must remain homogeneous at all times so we
conclude that ck0 = ck0(t, r). Using (A.6c) we conclude as well that Jk0 = Jk0(t). The assumption that the
concentration is initially homogeneous in x is reasonable, as that should be the case if the battery is left to
rest for long enough.

We now take the leading order expansion of (A.6e) with the boundary conditions (A.7). Integrating in
each electrode separately we find

Jn0 =
iapp

`n
and Jp0 = − iapp

`p
. (B.13)

This is a key result because Jk were the terms coupling the four PDEs together. Now that they can be
determined a priori the system of PDEs decouples and thus it is a much simpler problem to deal with.

Now we can write write the leading order equations for ck and ce. For the electrode particles we have

Ck
∂ck0

∂t
=

1

r2

∂

∂r

(
r2Dk(ck0)

∂ck0

∂r

)
, in 0 < r < 1, (B.14a)

∂ck0

∂r
= 0, at r = 0, (B.14b)

−Dk(ck0)
∂ck0

∂r
=
Ck
αkγk

Jk0, at r = 1, (B.14c)

ck0 = µk, at t = 0, (B.14d)

while for the electrolyte we have

Ceγeε(x)
∂ce0

∂t
= γe

∂

∂x

(
De(ce0)B(x)

∂ce0

∂x

)
+ (1− t+)CeJ0, in 0 < x < 1, (B.15a)

∂ce0

∂x
= 0, at x = 0, 1, (B.15b)

ce0 = 1, at t = 0, (B.15c)
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where, to obtain the boundary conditions (B.15b), we have combined the boundary conditions for molar
flux and current in (A.7).

Having the concentration equations that compose the SPMe, we now focus on the potentials. We want
to calculate the leading order term of Φe and the first order term of Φk so the potentials, in dimensional
form, are accurate up to O

(
RTamb

F

)
.

We focus first on the leading order electrolyte potential Φe0. We start calculating ie0, and expanding
(A.6h) jointly with the boundary conditions (A.7) and integrating we obtain

ie0 =


iapp

`n
x, for 0 ≤ x ≤ `n,

iapp, for `n < x ≤ 1− `p,
iapp

`p
(1− x), for 1− `p < x ≤ 1.

(B.16)

Now we can use the leading order expansion of (A.6j) to determine the leading order potential. We have

ie0 = −Σeσe (ce0)B(x)

(
∂Φe0

∂x
− 2(1− t+)(1 + γTT0)

∂ log ce0

∂x

)
. (B.17)

Integrating and using the reference of potential boundary condition in (A.7a) we obtain

Φe0 = −
∫ x

0

ie0(s)

Σeσe (ce0(s))B(s)
ds+ 2(1− t+) log

ce0(x, t)

ce0(0, t)
. (B.18)

Finally, we calculate Φk1 taking the O(δ) equation of (A.6e) combined with the O(1) term in (A.6f),
which give

− Σk
∂2Φk1

∂x2
= −Jk0, (B.19)

so we find

Φk1 =
Jk0

2Σk
x2 +Akx+Bk, (B.20)

where Ak and Bk are integration constants that need to be determined. These constants are different for
each electrode so we determine them separately. Applying the boundary conditions (A.7a) and (A.7b) we
find

Φn1 = − iapp(2`n − x)x

2`nΣn
+Bn, (B.21a)

Φp1 =
iapp(2(1− `p)− x)x

2`pΣp
+Bp. (B.21b)

We use (A.6l) and (A.6m) to determine the values of Bk. Combining them we have

Jk0 = jk0 sinh

(
1

2(1 + γTT0)
(Φk1 − Φe0 − ck1U

′
k(ck0)|r=1)

)
, (B.22)

which can be transformed into

Φk1 − Φe0 − ck1U
′
k(ck0)|r=1 = 2 arcsinh

(
Jk0

jk0

)
. (B.23)

We could determine Bk directly from the expression above, but that would require calculating ck1. Instead,
and given that Bk are homogeneous in space, we average (B.23) over each electrode as this approach does
not require calculating ck1.
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We first show that the averaged ck1 over each electrode is zero. Here we show it for the negative electrode
only, but the analysis for the positive electrode is analogous. The concentration cn1 follows the problem

Cn
∂cn1

∂t
=

1

r2

∂

∂r

(
r2 ∂cn1

∂r

)
, in 0 < r < 1, (B.24a)

∂cn1

∂r
= 0, at r = 0, (B.24b)

−αnγn

Cn
∂cn1

∂r
= Jn1, at r = 1, (B.24c)

cn1 = 0, at t = 0. (B.24d)

We now define the x-averaged concentration as c̄n1 = 1
`n

∫ `n
0
cn1dx and we average (B.24) over x to obtain

the governing equations for c̄n1

Cn
∂c̄n1

∂t
=

1

r2

∂

∂r

(
r2 ∂c̄n1

∂r

)
, in 0 < r < 1, (B.25a)

∂c̄n1

∂r
= 0, at r = 0, (B.25b)

−αnγn

Cn
∂c̄n1

∂r
= 0, at r = 1, (B.25c)

c̄n1 = 0, at t = 0. (B.25d)

where we have used the fact that 1
`n

∫ `n
0
Jn1dx = 0, which can be shown in the same way that we determined

Jk0 in (B.13). From (B.25) we find that c̄n1 ≡ 0 and following a similar argument we can show that c̄p1 ≡ 0.
We now average (B.23) over each electrode and isolate Bn and Bp, which gives

Bn =
iapp`n
3Σn

− 1

`nΣe

∫ `n

0

∫ x

0

ie0(s, t)ds

σe (ce0(s, t))B(s)
dx

+ 2(1− t+)(1 + γTT0)
1

`n

∫ `n

0

log
ce0(x, t)

ce0(0, t)
dx+

2

`n
(1 + γTT0)

∫ `n

0

arcsinh

(
iapp

`njn0

)
dx, (B.26a)

Bp = − iapp(2`2p − 6`p + 3)

6`pΣp
− 1

`pΣe

∫ 1

1−`p

∫ x

0

ie0(s, t)ds

σe (ce0(s, t))B(s)
dx

+ 2(1− t+)(1 + γTT0)
1

`p

∫ 1

1−`p
log

ce0(x, t)

ce0(0, t)
dx− 2

`p
(1 + γTT0)

∫ 1

1−`p
arcsinh

(
iapp

`pjp0

)
dx, (B.26b)

so we can now write the expressions for Φn1 and Φp1. They are given by

Φn1 = − iapp(2`n − x)x

2`nΣn
+
iapp`n
3Σn

− 1

`nΣe

∫ `n

0

∫ x

0

ie0(s, t)ds

σe (ce0(s, t))B(s)
dx

+ 2(1− t+)(1 + γTT0)
1

`n

∫ `n

0

log
ce0(x, t)

ce0(0, t)
dx+

2

`n
(1 + γTT0)

∫ `n

0

arcsinh

(
iapp

`njn0

)
dx, (B.27a)

Φp1 =
iapp(2(1− `p)− x)x

2`pΣp
− iapp(2`2p − 6`p + 3)

6`pΣp
− 1

`pΣe

∫ 1

1−`p

∫ x

0

ie0(s, t)ds

σe (ce0(s, t))B(s)
dx

+ 2(1− t+)(1 + γTT0)
1

`p

∫ 1

1−`p
log

ce0(x, t)

ce0(0, t)
dx− 2

`p
(1 + γTT0)

∫ 1

1−`p
arcsinh

(
iapp

`pjp0

)
dx. (B.27b)
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Appendix B.3. Summary of the TSPMe

Then, the dimensionless version of the TSPMe is composed of the PDEs (B.14) and (B.15), with the
following expressions for the electrode potentials

Φn ≈ Φn0 + λ−1Φn1, (B.28a)

Φp ≈ Φp0 + λ−1Φp1, (B.28b)

where the expressions for Φk0 and Φk1 are given by (B.11) and (B.27). From the potentials we can calculate
the terminal voltage of the cell.

The thermal model is given by (B.6). However, with the reduced version of the electrochemical model we
can find more explicit expression for the heat source terms. Note that, because the cell problem is the same
across the battery domain Ωbatt, the leading order heat source term Q0 is homogeneous in y and therefore
the volume averaging is trivial.

Substituting the expressions for the potential found in Appendix B.2 we can rewrite each contribution
to the heat source term as

Qs0 = −
∫ 1

0

ik0
∂Φk1

∂x
dx =

i2app

3

(
`n
Σn

+
`p
Σp

)
, (B.29a)

Qe0 = −
∫ 1

0

ie0
∂Φe0

∂x
dx =

∫ 1

0

ie0(x)2

Σeσe(ce0)B(x)
dx− 2(1− t+)(1 + γTT0)

∫ 1

0

ie0(x)
∂ log ce0

∂x
dx, (B.29b)

Qirr0 =

∫ 1

0

Jk0ηk0dx = 2iapp(1 + γTT0)

(
1

`n

∫ `n

0

arcsinh

(
iapp

`njn0

)
dx+

1

`p

∫ 1

1−`p
arcsinh

(
iapp

`pjp0

)
dx

)
,

(B.29c)

Qrev0 =

∫ 1

0

Jk0Πk0dx = iapp (Πn0 −Πp0) . (B.29d)

In particular, we can reduce the second integral in Qe0 using integration by parts

Qe0 =

∫ 1

0

ie0(x)2

Σeσe(ce0)B(x)
dx− 2(1− t+)(1 + γTT0)

∫ 1

0

ie0(x)
∂ log ce0

∂x
dx

=

∫ 1

0

ie0(x)2

Σeσe(ce0)B(x)
dx− 2(1− t+)(1 + γTT0)

(
ie0 log ce0]

1
0 −

∫ 1

0

∂ie0

∂x
log ce0dx

)
=

∫ 1

0

ie0(x)2

Σeσe(ce0)B(x)
dx+ 2(1− t+)(1 + γTT0)iapp

(
1

`n

∫ `n

0

log ce0dx− 1

`p

∫ 1

1−`p
log ce0dx

)
.

(B.30)

The dimensional version of these equations is presented in Section 3.

Appendix C. Further simplifications

In this section we provide the derivation for the further simplifications to the model presented in Section
3.1. The three main simplifications considered are: quasi-steady-state electrolyte concentration, constant
electrolyte conductivity and fast lithium diffusion.

Appendix C.1. Quasi-steady state electrolyte concentration

One simplification for the electrolyte concentration is to take the quasi-steady state problem, which
is a valid assumption when the current varies over a larger time scale than the electrolyte diffusion and
electrolyte ion generation time scales. This corresponds to the asymptotic limit Ce = O(δ) and γe = O(δ).
In order to obtain analytical solutions to this problem, we also assume that the diffusion coefficient in the
electrolyte De does not depend on the concentration.
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Introducing the scalings Ce = δC̃e and γe = δγ̃e into (A.6g), (A.6i) and (A.7) we find that the problem
at leading order is given by

∂

∂x

(
DeB(x)

∂ce0

∂x

)
+
C̃e
γ̃e

(1− t+)J0 = 0, in 0 < x < 1, (C.1a)

∂ce0

∂x
= 0, at x = 0, 1. (C.1b)

Even though this problem seems well-posed as it has two boundary conditions, from conservation of charge
in the electrolyte we find that they are equivalent. Therefore, we need an extra piece of information, which
comes from imposing that the total ion concentration must be conserved and can be formally derived from
an early time asymptotic analysis. Hence, using the value for the initial concentration, we find∫ 1

0

ε(x)ce0dx = εn`n + εs`s + εp`p, (C.2)

where `s = 1− `p − `n is the dimensionless separator thickness.
To integrate (C.1) we split the integral into three domain (negative electrode, separator and positive

electrode) so B(x) and ε(x) are constants and we use continuity of concentration and flux to match the
solutions in each domain, which are given by

ce]
+
− = 0, B(x)

∂ce
∂x

]+

−
= 0, at x = `n, 1− `p, (C.3)

where ]+− denotes the difference between the limit from the right and the limit from the left at a given point.
Then, we find

ce0 = 1 +
Ceiapp(1− t+)

6γeDevpore


2εp`

2
p

Bp
+

3`s(2εp`p+εs`s)
Bs

+
3

vpore
`n

(`2n−x
2)−2εn`

2
n

Bn
, if 0 ≤ x < `n,

− 2εn`
2
n

Bn
+

2εp`
2
p

Bp
+

6vpore(1−`p−x)−6εn`n`s−3εs`
2
s

Bs
, if `n ≤ x < 1− `p,

− 2εn`
2
n

Bn
− 3`s(2εn`n+εs`s)

Bs
+

3
vpore
`p

((1−`2p)−(2−x)x)+2εp`
2
p

Bp
, if 1− `p ≤ x ≤ 1.

(C.4)
The dimensional form is presented in (12). An additional simplification to the previous model is to take

γe = O(1) instead, which gives a small variation to the electrolyte concentration. Then, we can take ce0 = 1.

Appendix C.2. Constant electrolyte conductivity

Another assumption to simplify the electrolyte potential is to take the electrolyte conductivity σe(ce0) =
σe to be a constant. Then, we can obtain analytical expressions for the integrals involving σe.

The first term to consider is the integral arising in the definition of Φe0. We can use the fact that B(x)
is piecewise constant and split the integral into integrals over each domain. Then we find

1

Σeσe

∫ x

0

ie0(s, t)

B(s)
ds =

1

Σeσe


iapp

2`nBn
x2, if 0 ≤ x < `n,

iapp`n
2Bn

+
iapp
Bs

(x− `n), if `n ≤ x < 1− `p,
iapp`n
2Bn

+
iapp`s
Bs

+
iapp`p
2Bp

+
iapp

2`pBp
(1− x)2, if 1− `p ≤ x ≤ 1.

(C.5)

We can now use these expressions to calculate the integrals in Φn1 and Φp1, which give

1

`nΣeσe

∫ `n

0

∫ x

0

ie0(s, t)ds

B(s)
dx =

iapp`n
6Σeσe

, (C.6a)

1

`pΣeσe

∫ 1

1−`p

∫ x

0

ie0(s, t)ds

B(s)
dx =

iapp

6Σeσe

(
3`n
Bn

+
6`s
Bs

+
2`p
Bp

)
. (C.6b)
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Finally we need to calculate the integral that appears in Qe0, which is

1

Σeσe

∫ 1

0

ie0(x, t)2

B(x)
dx =

i2app

3Σeσe

(
`n
Bn

+
3`s
Bs

+
`p
Bp

)
. (C.7)

Then, the simplified TSPMe can be written as detailed in Appendix B.3 but with the new definitions of
potential and heat source term

Φe0 = 2(1− t+)(1 + γTT0) log
ce0(x, t)

ce0(0, t)

− 1

Σeσe


iapp

2`nBn
x2, if 0 ≤ x < `n,

iapp`n
2Bn

+
iapp
Bs
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iapp`n
2Bn

+
iapp`s
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+
iapp`p
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+
iapp

2`pBp
(1− x)2, if 1− `p ≤ x ≤ 1.

(C.8a)

Φn1 = − iapp(2`n − x)x

2`nΣn
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iapp`n
3Σs,n

− iapp`n
6Σeσe

+ 2(1− t+)(1 + γTT0)
1
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0

log
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dx+

2

`n
(1 + γTT0)

∫ `n

0

arcsinh

(
iapp

`njn0

)
dx, (C.8b)
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arcsinh

(
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dx, (C.8c)

Qe0 = −2(1− t+)(1 + γTT0)iapp

(
1

`p

∫ 1

1−`p
log ce0dx− 1

`n

∫ `n

0

log ce0dx

)
+

i2app

3Σeσe

(
`n
Bn

+
3`s
Bs

+
`p
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)
.

(C.8d)
The dimensional form of these equations is shown in Section 3.1.2. A further simplification to this model

is the case where the dimensionless electrolyte conductivity is large (i.e. Σe � 1). Then, we can simply
eliminate the terms with a Σ−1

e factor from Φe0, Φn1, Φp1 and Qe0 (which are the ones we just calculated).

Appendix C.3. Fast electrode diffusion

The last simplification is to take the limit Ck = O(δ), which corresponds to fast diffusion in the electrode
particles. Then, introduction the scaling Ck = δC̃k into (A.6a)-(A.6d) and expanding, the leading order
equation is given by

1

r2

∂

∂r

(
r2Dk(ck0)

∂ck0

∂r

)
= 0, in 0 < r < 1, (C.9a)

∂ck0

∂r
= 0, at r = 0, 1, (C.9b)

which yields ck0 = ck0(t).
At O(δ) the problem reads

C̃k
dck0

dt
=

1

r2

∂

∂r

(
r2Dk(ck0)

∂ck1

∂r

)
, in 0 < r < 1, (C.10a)

∂ck1

∂r
= 0, at r = 0, (C.10b)

−Dk(ck0)
∂ck1

∂r
=
C̃k
αkγk

Jk0, at r = 1, (C.10c)

ck0 = µk, at t = 0. (C.10d)
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Figure D.12: Open-circuit potentials as a function of the electrode stoichiometry for the positive electrode (left) and negative
electrode (right). The values have been taken from [32].

Averaging over the domain 0 ≤ r ≤ 1 and applying the divergence theorem we conclude that

dck0

dt
= − Jk0

αkγk
, (C.11a)

ck0(t) = µk, (C.11b)

and the dimensional version of this equation is provided in Section 3.1.3.

Appendix D. Open-circuit potentials

In the simulations in Section 4 we used the parameter sets from [32], and we defined the open-circuit
potentials by interpolating the experimental data sets. A plot of the data is shown in Figure D.12. For the
analytical expressions that fit the curves see [32].
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