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ABSTRACT

Two Algorithms for Leader Election and Network Size

Estimation in Mobile Ad Hoc Networks. (December 2004)

Nicholas Gerard Neumann, B.S., Texas A&M University

Chair of Advisory Committee: Dr. Jennifer Welch

We develop two algorithms for important problems in mobile ad hoc networks

(MANETs). A MANET is a collection of mobile processors (“nodes”) which com-

municate via message passing over wireless links. Each node can communicate di-

rectly with other nodes within a specified transmission radius; other communication

is accomplished via message relay. Communication links may go up and down in a

MANET (as nodes move toward or away from each other); thus, the MANET can

consist of multiple connected components, and connected components can split and

merge over time.

We first present a deterministic leader election algorithm for asynchronous MANETs

along with a correctness proof for it. Our work involves substantial modifications

of an existing algorithm and its proof, and we adapt the existing algorithm to the

asynchronous environment. Our algorithm’s running time and message complexity

compare favorably with existing algorithms for leader election in MANETs.

Second, many algorithms for MANETs require or can benefit from knowledge

about the size of the network in terms of the number of processors. As such, we

present an algorithm to approximately determine the size of a MANET. While the

algorithm’s approximations of network size are only rough ones, the algorithm has

the important qualities of requiring little communication overhead and being tolerant

of link failures.
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CHAPTER I

INTRODUCTION

A. Mobile ad hoc networks (MANETs)

Problems such as leader election, mutual exclusion, and consensus, have been exten-

sively studied in many different traditional parallel and distributed computing models.

Many of the problems that have been extensively studied in parallel or distributed

computing models have natural analogs in a relatively new model: the mobile ad hoc

network (MANET).

A mobile ad hoc network (MANET) is a collection of mobile processors (“nodes”)

which communicate via message passing over wireless links. Each node can commu-

nicate directly with other nodes within a specified transmission radius; other commu-

nication is accomplished via message relay. For our work, we assume all nodes have

identical transmission radii; this immediately gives that communication links in our

MANETs will be undirected.

In a MANET, communication links may go up and down (as nodes move to-

ward or away from each other); thus, the MANET can consist of multiple connected

components, and connected components can split and merge over time. The ease

with which link changes may occur in a MANET can make developing algorithms for

MANETs significantly more involved than developing algorithms for similar problems

in more traditional distributed computing models.

A good deal of research has been done on solving the mobile ad hoc analogs

of distributed computing problems such as leader election, mutual exclusion, and

The journal model is IEEE Transactions on Automatic Control.
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consensus. However, these problems have not been studied as extensively as their

corresponding versions in more traditional parallel or distributed models. Rather,

much of the work on MANETs has focused on lower-level issues, such as routing

and media access control (MAC). As such, the study of the higher-level problems in

MANETs is still an active research area with several opportunities for contribution.

B. Leader election

Leader election is an extensively studied problem in distributed systems, and is a

useful building block in such systems, especially in environments (like mobile ad hoc

networks) where failures may occur. Leader election can be used to assist with mutual

exclusion, group communication, and other standard problems in distributed systems.

Additionally, solving leader election in MANETs is useful for other reasons, such as

assisting in complex motion planning algorithms ([6]) and serving as a building block

for creating particular tree communication structures ([1]).

The traditional definition of leader election in static distributed systems requires

that the processors in the system eventually elect a unique leader. In a MANET,

though, link changes are common and may cause the network to split into multi-

ple connected components or cause some components to become separated from the

leader. Additionally, two connected components, each with its own leader, may merge.

Thus, the definition of the leader election problem has to be adapted to the mobile

ad hoc environment. As in [17], we define the leader election problem in MANETs

as the problem of guaranteeing that “any component of the mobile ad hoc network

whose topology is static sufficently long will eventually have exactly one leader.”
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C. Network size estimation

Many algorithms to solve traditional distributed computing problems in the MANET

environment either require some sort of a priori knowledge about the number of nodes

in the MANET. For example, [10] develops a group communication algorithm and

uses knowledge about the number of nodes in a MANET to determine how long a

processor should wait for a token used by the algorithm to return.

[15] describes additional circumstances in which knowing an estimate of network

size is useful. It mentions a routing algorithm in which knowing network size allows

for “short-cutting” long distances, along with peer-to-peer network algorithms which

need only the size of the network and local information to operate.

Additionally, many algorithms for MANETs use data structures whose sizes are

functions of the number of nodes in the MANET. Such algorithms could benefit from

having an estimate of network size by using the estimate to more efficiently allocate

space for data structures.

Because of the relevance of network size to MANET algorithms, a mechanism to

provide information about the size of the network to its nodes is of obvious interest.
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CHAPTER II

DETERMINISTIC LEADER ELECTION IN ASYNCHRONOUS MANETS

A. Previous work

While the problem of leader election has not been studied as extensively in mobile ad

hoc systems as in more traditional settings, several algorithms have been developed

for the problem in various mobile ad hoc settings.

We should note that many of these algorithms were not explicitly developed

for the MANET setting, but rather as self-stabilizing1 leader election algorithms for

dynamic asynchronous networks. In a dynamic network, links may go up and down

arbitrarily, but nodes are not mobile. However, the models of dynamic networks and

MANETs are similar enough that algorithms for leader election in dynamic networks

can be applied to MANETs.

One such algorithm is presented in [9]. This algorithm, like many leader election

algorithms, constructs a spanning tree and selects its root as leader. The algorithm

employs randomization and uses shared memory (as opposed to the message passing

model used by most of the other works reviewed in this section). Its convergence

time (time from when the last link change or node failure/recovery occurs until every

component has a unique leader) is bounded by O(dD), where d is the maximal degree

of a node in the MANET and D is the largest diameter attained by some connected

1A self-stabilizing algorithm is one which can tolerate link and node failures, as
well as corruption of processor states or memory. Because a self-stabilizing algorithm
can tolerate memory corruption, it also has the property that it can be run on a
network started in an arbitrary state; as long as memory corruption and node/link
failures eventually cease, the algorithm will still “work” and converge to a correct
solution.
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component of the MANET during the algorithm’s execution.

In [2], the ideas of [9] are extended to improve the convergence time of the

leader election algorithm to O(D). A deterministic version of the algorithm is also

developed, but has the drawback that variables may grow arbitrarily long as links go

up and down and nodes leave and join the MANET.

The paper [5], which deals primarily with the maintenance of replicated informa-

tion, also develops an algorithm to maintain spanning trees. This algorithm uses the

message passing model and takes time O(n2) to converge to the spanning tree, where

n is the number of nodes in the MANET. This algorithm was later improved in [16]

to have convergence time O(A log3 A), where A is (roughly) the number of nodes in

the largest connected component of the MANET.2

Also, the algorithm in [16] merges trees to eventually obtain a spanning tree.

In this algorithm though, a node u must send a request to its neighbor v to join its

tree, and then this request must be sent to the root of the tree and the response sent

back through the tree. Our algorithm uses a similar “tree merging” approach, but

the decision of whether u can join v’s tree is made locally by v, which yields faster

recovery from many scenarios, including single link failures.

The algorithm of [17] maintains a directed acyclic graph with a single sink,

which is the leader, and adapts the ideas of [13, 19] to the MANET environment.

Unfortunately, [17] is only proved correct for a completely synchronous system with

a single link change.

The algorithm of [1] develops the innovative idea of “power supply” to perform

self-stabilizing leader election. Unlike other works on leader election in MANETs, this

2A may be substantially smaller than n in certain networks; A must actually be
carefully defined since the number of nodes in a connected component changes over
time in a MANET. For a formal definition of A, we refer the reader to [16].
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work allows for unidirectional communication links between nodes. The algorithm has

convergence time O(n), along with an extremely involved proof of correctness. Also,

the algorithm, unlike ours, requires nodes to periodically send certain messages to

their neighbors. While our algorithm is not self-stabilizing, it has the advantage that

it eventually stops sending messages (if the network topology stops changing).

Like several of those described above, the algorithm of Arora and Singhai ([3,

4]) is a rooted spanning tree maintenance algorithm for a dynamic network. This

algorithm uses the idea of coloring a node green or red to indicate whether or not it

has detected that its parent is red or no longer a neighbor; merging of trees by adding

a tree edge between neighboring nodes is only allowed when neighboring nodes are

both green. This coloring scheme allows for a relatively simple algorithm for tree

merging. The algorithm only works for a completely synchronous system where every

node has instantaneous read access to all of its neighbors’ variables.

The algorithm we develop in this paper is also a rooted spanning tree maintenance

algorithm. It is deterministic and works in asynchronous MANETs, with convergence

time O(A). More details are given in the following sections.

A quick summary of the features of the above algorithms is given in Figure 1.

B. Our leader election algorithm

Our algorithm adapts the strategy of Arora/Singhai to an asynchronous system. At

any point during the algorithm’s execution (even after link changes and node fail-

ures/recoveries occur), the graph formed by drawing all nodes along with directed

edges from each node to its parent node, consists of a forest of rooted trees. We per-

form leader election by generating a single rooted tree for each connected component

of the communication graph, and selecting the root of each such tree as the leader of
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Algorithm Deterministic/ Synchronous/ Self-stabilizing? Convergence Miscellaneous
Randomized? Asynchronous Time

[9] Randomized Asynchronous Yes O(dD) Uses shared mem-
ory model

[2] Both Asynchronous Yes O(D) Variables can grow
without bound

[5] Deterministic Asynchronous No O(n2)

[16] Deterministic Asynchronous No O(A log3 A) Complicated tree
merging

[17] Deterministic Synchronous No O(D) Only proved cor-
rect for a single link
change

[1] Deterministic Asynchronous Yes O(n) Unidirectional
links; never stops
sending messages

[3, 4] Deterministic Synchronous No O(n) Assumes immedi-
ate read access to
neighbor’s variables

Our work Deterministic Asynchronous No O(A)

Fig. 1. Summary of leader election algorithms for MANETs

the component.

In addition to modifying [3, 4] to deal with asynchrony, we add some further

modifications, in the vein of ideas from [13, 17, 19] to improve the time to converge to

a single rooted tree for each component after a link change or node failure/recovery.

The basic strategy behind the algorithm is as follows. Each node has a parent

variable, which is a pointer to another node. Consider a graph H with a vertex for

each processor and a directed edge from vertex u to vertex v if v is the parent of u.

Even when link changes and/or node failures/recoveries occur during the execution of

the algorithm, we want the graph H to remain a forest of rooted trees. We maintain

this forest of rooted trees, and once link changes and node failures/recoveries have

stopped, the algorithm converges to a state where H consists of a single rooted tree

for each connected component of the MANET. Once this stable state is reached, each

node considers its leader to be the root of the tree in which it finds itself.

A color is assigned to each node from the set {red, green}. The color red indicates

that the process has detected that its parent is red or no longer a neighbor. Green
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nodes may petition green neighbors for adoption or may themselves adopt green

neighbors.

Our algorithm for leader election, while inspired by [3, 4], is significantly different

due to asynchrony. Additionally, while the proofs of correctness for both our algorithm

and [3, 4] use the idea that an invariant is preserved during algorithm execution, our

invariant and the proof of its invariance are notably different due to the asynchrony

being dealt with and our modifications to improve our algorithm’s convergence time.

We now give an outline of the rest of the paper. In section 2, we present necessary

definitions. Section 3 contains a description of the algorithm. Section 4 contains

correctness proofs for the algorithm. Section 5 contains performance analysis, and we

conclude the paper in section 6. Detailed pseudocode for the algorithm is presented

at the end of the paper.

C. Preliminaries

1. System Assumptions

We consider a completely asynchronous mobile ad hoc system. The system consists

of mobile nodes, and each node has a (possibly changing) set of neighbors. Each

node u has a unique integer identifier that is fixed throughout the node’s lifetime.

Also, every node has in-order reliable message delivery to its current set of neighbors.

However, if a link fails while messages are in transit on it, then these messages are

lost. Additionally, complete asynchrony in our system means that while a message

sent between two nodes will be delivered if the link it is traveling on does not fail,

the delay between the sending and receiving of the message can be arbitrarily long.

We assume that the communication channels are bidirectional. That is, for two

nodes u and v, u is a neighbor of v iff v is a neighbor of u.
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For our correctness proofs, we need to carefully formalize how u and v are notified

of the failure of one of their bidirectional communication channels. We do this as

follows. If u and v cease to be neighbors, then both u and v are informed via a

link-down(u, v) message that their communication link has ceased to exist. Due to

asynchrony, u may receive this message before or after v does.

If u and v become neighbors, then they are both informed via a link-up(u, v) mes-

sage that a communication link has been established. However, we require that if the

link between u and v has previously failed, then neither u nor v receives link-up(u, v)

until both u and v have processed the link-down(u, v) message associated with this

failure. (This sort of behavior of the link notification system could be achieved by

requiring both u and v to communicate before agreeing to reestablish the link between

each other as being “up.”)

In addition, any given node may fail; we view such a failure as the failure of the

links between the node and each of its neighbors. Node recovery is also allowed and

requires that the recovering node initialize itself with a particular state (discussed

later).

2. Definitions

During the execution of the algorithm, it is important that in following the chain of

parent pointers from one node to the next, a cycle does not occur. With this in mind,

we define what it means for the system’s state to have property NC (no cycle).

Consider the directed graph H = (V,E) where V is a set corresponding to the

nodes of the system, and an edge (u, v) ∈ E if and only if v is u’s parent and v believes

u is a neighbor. (It is possible, if v receives link-down(u, v) before u, that u has v as

parent even though v no longer believes u is one of its children.) If H = (V,E) is

a forest of rooted trees, then we say that the system’s state has property
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NC.

We also define G = (V,C) to be the undirected graph with an edge (u, v) ∈ C if

and only if u and v both believe they are neighbors of each other. That is, G, in a

sense, is a rough snapshot of the processors’ communication graph.

Next, we define a special constant φ which nodes can use as “parent” if the link to

their current parent goes down. φ is special in that for any node j, φ is not considered

to be an adjacent node by j. (That is, saying a node’s parent is φ is a convenient

way of saying that a node’s parent is undefined because the node lost its link to its

parent and has not yet recovered from this loss.) For technical convenience, we also

say that φ’s leader id is ∞.

We say that a node has an “invalid parent” if its parent is red or φ, or the link

between it and its current parent is in the process of failing. (We say a link is in the

process of failing if a link-down message is in transit between it and its parent (in

either direction).)

Finally, we define an asynchronous round of algorithm execution in order to

be able to quantify the convergence time of our algorithm. Given an execution of

an algorithm by nodes in a MANET as a sequence of processors taking steps (e.g.,

pi1 , pi2 , . . .), we define the first asynchronous round of the execution to be the smallest

prefix of this sequence such that every processor in the MANET executes every step

of its algorithm at least once in the prefix. We define the next asynchronous round

as the first asynchronous round of the execution with its first asynchronous round

removed.
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D. The algorithm

1. Intuition and code description

The general idea behind the algorithm is that, even when link changes and/or node

failures/recoveries occur, the graph H should remain a forest of rooted trees. The

forest is maintained in such a way that (eventually) the root of each tree is the node

in the tree with the largest identifier. Once link changes and node failures/recoveries

have ceased, the algorithm converges to a state where H consists of a single rooted tree

for each connected component of the communication graph G. Each node considers

its leader id to be the root of the tree in which it is located in H. Thus, each connected

component of G will eventually have the node with the largest identifier (henceforth,

the largest node) as its leader.

There are two issues that must be addressed in maintaining parent pointers to

accomplish leader election. First, there may be more than one rooted tree corre-

sponding to some connected component of G. In this case, we need a mechanism

with which we can merge trees. Second, a node’s parent may fail, move away and

cease to be a neighbor, or color itself red (since the parent may also have an issue

with its own parent). To deal with this issue, we must devise a mechanism to correct

the parent pointer. In [3, 4], if j was informed that it had an invalid parent, j would

immediately color itself red and inform all of its neighbors of the change. Instead of

directly adapting the mechanism proposed by [3, 4] to deal with this issue, we do the

following, in the vein of part of the strategy in [13, 17, 19].

Every node j is given a distance field which is an estimate of its distance, through

parent relations, to its current root. When a green node j learns that its parent is

invalid, it first checks whether it has some neighbor k that has the same leader id and

is currently “closer” (has smaller distance field) to this leader than j is. If such a k
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exists, j will NOT color itself red, but instead try to set its parent to be k. If j does

not succeed in finding a new parent, it will give up and color itself red.

When a red node j finds out that it no longer has any neighbors as children,

it colors itself green, makes itself its own parent, and adopts its own id as its root

value. The net effect of this is that when a node colors itself red, eventually all of its

children either are adopted by a new parent or also color themselves red. Eventually,

every descendant of j either is adopted by a new parent or colors itself red. When a

red node finds out it no longer has any children, it will color itself green, make itself

its own parent, and adopt its own id as its root value. Eventually, all descendants of

j either adopt a new parent or become their own parent, and then j is able to recover

as well. Once j recovers, it can again participate in tree merging.

The detailed pseudocode for the algorithm is presented in Figure 2. We now

describe the steps of the algorithm depicted in Figure 2.

• Steps 1-2: Process j sends any updates and receives any messages. The

request.j and response.j variables are used to communicate the fact that join-

request or join-response messages have just been received, along with relevant

parts of these messages, to later steps of the algorithm.

• Steps 3-4: Process j updates its root.j and dist.j variables if necessary. root.j

is the leader id of j (the root of j’s tree), and dist.j is an estimate of the distance

from j to root.j in the tree
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1. Send values of all updated col.j,root.j,par.j, and dist.j variables to neighbors

2. Receive messages {E1, E2, . . . , Em}

for each message Ei do

• if Ei = link-down(j, k) then

– if par.j = k then par.j := φ

– adj.j := adj.j − {k}
– kids.j := kids.j − {k}

• if Ei = link-up(j, k) then

– adj.j := adj.j ∪ {k}

• if Ei is an update of k’s local variables then

– update each propk.j accordingly

• if Ei is an update of k’s parent so that park.j 6= j then

– kids.j := kids.j − {k}

• if Ei = join-request(k, color, root, dist, type) then

– request.j := request.j ∪ {(k, type)}
– colork.j, rootk.j, distk.j := color, root, dist

• if Ei = join-response(k, color, root, dist, type, accept) then

– response.j := (k, type, accept)

– colork.j, rootk.j, distk.j := color, root, dist

3. if col.j = green ∧ par.j ∈ adj.j ∧ rootpar.j .j > root.j ∧ ¬waiting.j then

• root.j := rootpar.j .j

• dist.j := distpar.j .j + 1

4. if col.j = green ∧ colpar.j .j = green ∧ par.j ∈ adj.j ∧ dist.j > distpar.j .j + 1 ∧ ¬waiting.j then

• dist.j := distpar.j .j + 1

5. if col.j = green∧ (par.j /∈ adj.j∪{j}∨ colpar.j .j = red)∧ (|tried.j| = 0∧∃k : k /∈ tried.j∧k ∈ adj.j∧ colk.j =
green ∧ distk.j < dist.j ∧ root.j = rootk.j) ∧ ¬waiting.j then

• Send to k: join-request(j, color.j, root.j, dist.j, 1)

• tried.j := tried.j ∪ {k}

• response.j := (k, 0, 0)

• waiting.j := true

6. if waiting.j ∧ (response.j = (k, type, answer) ∧ type = 1) ∨ k /∈ adj.j) then

• waiting.j := false

• response.j = (0, 0, rejected)

• if answer = accepted then

– root.j, par.j, dist.j = rootk.j, k, distk.j + 1

– tried.j := {}

Fig. 2. The algorithm code
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7. if col.j = green∧(par.j /∈ adj.j∪{j}∨colpar.j .j = red)∧(|tried.j| > 0∨(@k : k /∈ tried.j∧k ∈ adj.j∧colk.j =
green ∧ distk.j < dist.j ∧ root.j = rootk.j)) ∧ ¬waiting.j then

• col.j := red

• tried.j = {}

8. if col.j = red ∧ (∀k : k /∈ adj.j ∨ k /∈ kids.j) ∧ ¬waiting.j then

• col.j, root.j, par.j, dist.j := green, id.j, j, 0

9. if (col.j = green) ∧ (k ∈ adj.j) ∧ (colk.j = green) ∧ (root.j < rootk.j) ∧ (∀h ∈ adj.j : rootk.j ≥ rooth.j) ∧
(¬waiting.j) then

• Send to k: join-request(j, color.j, root.j, dist.j, 2)

• response.j := (k, 0, 0)

• waiting.j := true

• tried.j := {}

10. if waiting.j ∧ (response.j = (k, type, answer) ∧ type = 2) ∨ k /∈ adj.j) then

• waiting.j := false

• response.j = (0, 0, rejected)

• if answer = accepted then

– root.j, par.j, dist.j := rootk.j, k, distk.j + 1

11. for each (k, type) ∈ request.j with type = 1 do

• request.j = request.j − {(k, type)}

• if col.j = green ∧ root.j = rootk.j ∧
dist.j < distk.j then

– Send to k:
join-response(j, color.j, root.j, dist.j, 1, accepted)

– kids.j := kids.j ∪ {k}

• else

– Send to k:
join-response(j, color.j, root.j, dist.j, 1, rejected)

12. for each (k, type) ∈ request.j with type = 2 do

• request.j = request.j − {(k, type)}

• if col.j = green ∧ root.j > rootk.j then

– Send to k:
join-response(j, color.j, root.j, dist.j, 2, accepted)

– kids.j := kids.j ∪ {k}

• else

– Send to k:
join-response(j, color.j, root.j, dist.j, 2, rejected)

Fig. 2. Continued
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• Steps 5-7: These steps help j resolve the issue of having an invalid parent.

Step 5 is an attempt to recover from an invalid parent by petitioning a neighbor

for adoption. The variable tried.j is a set of neighbors j has already tried to

have adopt it, and is used to limit the number of petitions for adoption j can

issue to correct an invalid parent. (The pseudocode actually limits the number

of petitions to 1, but this limit is easily adjusted.) waiting.j ensures j has no

more than one petition for adoption outstanding at a time. Step 6’s body is

performed by j when it receives a response to the request it issued in step 5 in a

previous iteration of the algorithm. Step 7’s body is executed by j when it finds

out it has an invalid parent and it can no longer issue new parent petitions. In

this case, the node simply colors itself red.

• Step 8: If process j is red and has no children, it disowns its parent and colors

itself green.

• Steps 9-10: These steps help resolve the situation where there is more than

one rooted parent relation tree corresponding to some connected component of

G. Step 9 is an attempt to merge trees with different roots as described above.

This step’s body executes for process j whenever j is green and has a green

neighbor k with larger leader id. Also, j must not have any other adoption

petitions outstanding.

• Steps 11-12: These steps send responses to those nodes that have petitioned

to become children of node j. Step 11 is the response to a petition sent in step

5 by another node k; the request is accepted by step 11 as long as j is green

and really does have the same root and lower distance than k. Step 12 is the

response to a petition sent in step 8 by another node j, and j accepts such a

request from a node k if j is green and really does have higher root than k.
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2. Variables and messages

a. Variables

Each process or node j has several variables, which are depicted in Figure 3.

Name Description Size Updates sent
adj.j the set of current neighbors of j, initially empty O(n logn) No
id.j the id of node j, fixed throughout j’s execution O(logn) No
color.j the color of the processor j, taken from the set {red, green};

initially green
O(1) Yes

par.j the process that j currently considers to be its parent; initially
j

O(logn) Yes

root.j the id of the process j believes to be its leader; initially id.j O(logn) Yes
kids.j the set of neighbors of j which have j as parent; initially empty O(n logn) No
waiting.j a boolean indicating that j is waiting for a neighbor’s response

to a request to have the neighbor become its parent; initially
false

O(1) No

dist.j the distance j believes itself to be from the process it considers
to be its leader; initially 0

O(logn) Yes

tried.j a set used to store those neighbors of j which have already been
contacted in trying to get a new parent to replace its invalid
parent; initially the empty set

O(n logn) No

request.j a set of pairs corresponding to those nodes currently trying
to get j to accept them as children; each pair is of the form
(k, type) and corresponds to node k trying to become a child of
j through a request of type type; type = 1 if the merge request
was issued by j in step 5, and type = 2 if the request was issued
by j in step 9; initially the empty set

O(n logn) No

response.j a triple corresponding to the response node j receives from a
node it petitions to become a child of; the triple is of the form
(k, type, answer) where node j is petitioning for adoption by
k through a request of type type; answer = accepted if the
request was accepted, and answer = rejected if the request
was rejected; initially (0, 0, rejected)

O(logn) No

propk.j variables for each k ∈ adj.j, prop ∈ {color, par, root, dist}; rep-
resents node j’s view of the relevant variable of neighbor k

O(n logn) No

Fig. 3. Processor variables

Node j sends out updates of color.j, par.j, root.j, and dist.j to all nodes in adj.j

whenever these values change. Also, whenever a node k becomes a new neighbor of j,

these values are sent to k. These are the only variable values that are exchanged in

update messages, so an update message is of maximum size O(log n). For neighbors j

and k, we denote by propk.j j’s most recent view of k’s variable prop.k. For example,

colk.j is the last value of col.k received by j from k. This notation is designed to

be consistent with local variable notation, i.e., to indicate that propk.j is a variable
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stored by j, just like prop.j. Finally, we require that when a node starts executing or

recovers from a crash, it must initialize itself with the default variable values given in

Figure 3.

b. Messages

Aside from the update messages and link-up and link-down messages, there are two

additional messages that can be sent between neighbors. These are:

• join-request(j, color, root, dist, type); this is the message sent by node j with

color := color.j, root := root.j, dist := dist.j and type the type of join request

being sent; type = 1 if the request is sent by j in step 5, and type = 2 if the

request is sent by j in step 9.

• join-response(j, color, root, dist, type, answer); this is the message sent by node

j to a node k’s join-request message; when sent, color := color.j, root := root.j,

dist := dist.j, type is the type of request being responded to, and answer =

accepted if the request was accepted, answer = rejected otherwise.

Finally, we note that when a processor starts, it is not aware of any of its neigh-

bors. It will be notified by link-up events of those processors which are within its

communication radius.

E. Proof of correctness

We now show that the algorithm is correct; that is, that after the last link change or

node failure/recovery has occurred, the algorithm will eventually reach a state where

every up node is green, and the forest of rooted trees consists of a single tree for each

connected component of G. Without loss of generality, once link changes and node
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failures/recoveries have ceased, we can consider the algorithm’s execution when G

has a single connected component.

The strategy behind the proof is to specify a property T and show that if the

algorithm starts in a state where T holds, then every step taken by the algorithm

preserves T . It is then shown that the property NC is similarly preserved. It is

important to note that we need invariance of T to prove preservation of NC, but NC

is not required to show preservation of T . We also show that both T and NC are

preserved by every node and link failure and recovery.

We then show that after the last link change or node failure/recovery, the algo-

rithm progresses towards a state S where every up node is green and each connected

component of G corresponds to a single tree in the parent relation forest H. Addi-

tionally, every node in a particular component will have the same root value. Thus,

as long as our algorithm starts in a state where T and NC hold (which is true if all

processors start with initial values given in the variables section), the algorithm will

converge to S.

We begin by specifying T . T is similar to the T used in [3, 4]; one difference is

that col.par.j (the color of node par.j) is replaced with colpar.j.j, since sometimes a

node j may believe its parent has a certain color when the node has actually changed

its color but the message notifying j of the change has not yet reached j. Also, part

(v) of T is added because of the modifications we made to improve convergence time.

Additionally, [3, 4] includes NC in T . Asynchrony forces us to develop a substantially

different proof that T and NC hold, and in our different proof strategy that our T

does not include NC. Rather, we prove invariance of T without NC and then use

the invariance of T to prove the invariance of NC.
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Let us now present T .

Let T ≡ (∀j : j is up ⇒

(col.j = red ⇒(par.j /∈ adj.j ∪ {j} ∨ colpar.j .j = red))∧ (i)

(par.j = j ⇒root.j = id.j)∧ (ii)

(par.j 6= j ⇒root.j > id.j)∧ (iii)

(par.j ∈ adj.j ⇒(root.j ≤ root.par.j∨
link between j, par.j has failed but only par.j

has processed link-down(j, par.j)))∧ (iv)

(par.j ∈ adj.j ∧ root.j = root.par.j ⇒(dist.j > dist.par.j∨
link between j, par.j has failed but only par.j

has processed link-down(j, par.j)))) (v)

The ideas behind the conjuncts of T are as follows. The first conjunct guarantees

that if a node is red, it is because it has an invalid parent. The second and third

conjuncts are simple consistency conditions on what a node j can believe its leader to

be. The fourth conjunct says that if par.j is still considered by j to be j’s neighbor,

then the parent must have a leader at least as big as j’s leader, unless par.j no longer

believes j to be a neighbor. This implies that following edges from node to parent

in H yields monotonically nondecreasing leader values. Likewise, the fifth conjunct

implies that following edges from node to parent in H will yield decreasing distance

values as long as the leader values of the nodes do not change along the path.

1. Algorithm preserves T

We first prove that each step of the algorithm preserves T .

We proceed using a standard proof by induction on each step of the algorithm

and each conjunct of T . We go through each conjunct and look at the effects the

different steps of the algorithm can have on the specific conjunct. We show that if

the conjunct of T holds before the step is executed, then it will also hold after the

step is executed. By showing this is true for each conjunct and step, we have that if
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T holds before any step, it will hold after any step. Note that steps 1, 5, 9, 11, and

12 have no effect on T so we need not consider them for any of the conjuncts.

Theorem 1. T is preserved by each step of the algorithm.

Before proceeding with the proof of this theorem, we need a few lemmas to help

simplify some steps in the proof.

Lemma 1. If a processor has waiting.j = true, the variables col.j, root.j, and dist.j

cannot be changed by the processor.

Proof. The proof is by inspection of the detailed psuedocode in Figure 2.

Lemma 2. The only step of the algorithm that can decrease root.j is step 8. Further,

execution of the body of step 3 or step 10 with answer = accepted increases root.j.

Proof. The only steps of the algorithm that can change root.j are steps 3, 6, 8, and

10. Step 3 clearly can only increase root.j.

For step 6, there are two important things to note. First, step 6 will only find

answer = accepted if k, in step 11, had rootj.k = root.k. Second, root.j cannot

change between j’s execution of the body of step 5 and corresponding execution of

step 6 (by Lemma 1, since waiting.j = true). Combining this yields that step 6, if it

receives answer = accepted, will not change root.j.

For step 10, a similar argument as that for step 6 gives that execution of the

body of step 10 with answer = accepted will increase root.j.

Lemma 3. The variable dist.j can only increase after a step of the algorithm executes

if the variable root.j also increases.

Proof. The only steps of the algorithm that can change dist.j are steps 3, 4, 6, 8,

and 10. Step 3 increases root.j so the lemma holds for step 3 trivially. Step 4 can
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only decrease dist.j, so the lemma holds for step 4. Step 6 can only affect dist.j if

it receives an accept, in which case distk.j < dist.j when step 6 executes, so dist.j

cannot increase. Step 8 sets dist.j to 0 so it never increases dist.j. Step 10 will only

affect dist.j if it receives an accept, in which case root.j is increased. So the lemma

holds.

Lemma 4. par.j ∈ adj.j unless par.j = φ.

Proof. This can be seen by simply examining the code. If par.j is removed from adj.j

in step 2, then immediately before step 2 sets par.j = φ. And when any step of the

algorithm changes par.j, it is always changed to some processor in adj.j.

Proof of Theorem 1. We know by 6 that no conjunct of T We go through each con-

junct of T and show that no conjunct is violated by any step of the algorithm. More

specifically, for the statements which are for or if statements (all but step 2), we

need only consider what happens if the body of the if or for statement is executed.

• Conjunct (i): col.j = red⇒ (par.j 6= j ∧ (par.j /∈ adj.j ∨ colpar.j.j = red))

The only steps of the algorithm that could violate (i) are the steps of j.

– Step 2 by j could only violate (i) if it caused the right side of the implica-

tion to be false. Since step 2 cannot result in par.j = j, it could only make

the right side false by changing the values of par.j, adj.j, and/or colpar.j.j.

If it sets par.j (in the first bullet of the step), then it sets par.j to φ and

by definition colpar.j = colφ = red, so the conjunct is still satisfied.

Step 2 cannot change the truth value of par.j ∈ adj.j from false to true,

since if it did we would have par.j 6= φ and par.j /∈ adj.j before step 2

executes, contradicting Lemma 4.
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Finally, suppose step 2 changes colpar.j.j from red to green. We will argue

that this can never happen. By way of contradiction, suppose it does. Let

k be the node that j has as par.j before step 2 executes. At some point

before step 2 executes, colk.j is green, since j can only set par.j = k if in

the same step it sets colk.j = green. (This follows by inspecting the code.)

Call the last point in time before step 2 when colk.j = green by α. At

some point after α, colk.j is set to red. Call the time when this happens by

β. colk.j is set to red because k sends j a message indicating that its color

has changed to red. Call the time when k sends this message by γ. Now,

in order for j to receive an update in step 2 to change colk.j to green, k

must send an update of its color to j at some point after γ; call this time

δ. Now, k is red at time γ and green at time δ. The only way k can change

color from red to green is by executing step 8, which means that at some

time τ between γ and δ, k had j /∈ kids.k. Thus, a link-down(j, k) message

must be sent to j between time γ and τ . So j receives this link-down(j, k)

at some time after β (by FIFO message delivery). This causes j to set

par.j = φ at some time ν after α but before step 2 executes. Now, j must

have par.j = k immediately before step 2 executes, but this necessitates

that colk.j be set to green at some point between ν and execution of step

2. But ν > α, so this contradicts α being the last point in time before step

2’s execution when colk.j = green.

– Step 4 by j cannot violate (i).

– Step 6 by j can only set col.j = green. (This can be seen by examining

the code of step 11, which sends the message from k that step 6 of j

processes.) Setting col.j = green causes (i) to be trivially satisfied.
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– Step 7 by j can only set col.j = red if the right side of (i) is true, since

this is a precondition for the execution of step 7’s body. Thus, (i) will not

be violated.

– Step 8 by j can only affect (i) if it sets col.j := green, which trivially

satisfies (i).

– Step 10 by j can only set col.j = green. (This can be seen by examining

the code of step 12, which sends the message from k that step 10 of j

processes.) Setting col.j = green causes (i) to be trivially satisfied.

Thus, (i) will not be violated.

• Conjuncts (ii) and (iii): par.j = j ⇒ root.j = id.j and par.j 6= j ⇒

root.j > id.j

The only steps of the algorithm that can violate (ii) or (iii) are steps of node

j.

– Step 2 by j can only affect (ii) or (iii) by assigning par.j := φ, which

can only happen if par.j 6= j previously. So (ii) and (iii) will both be

preserved.

– Step 3 by j can only increase a node’s root value if the node is not its

own parent, thus satisfying (iii) (and trivially satisfying (ii)).

– Step 4 by j has no effect on (ii) or (iii).

– Step 6 by j can only affect (ii) or (iii) if its body is executed. For the

body to be executed, par.j 6= j (since step 6 only occurs after the body

of step 5 executes, and step 5 has the precondition that par.j 6= j and

sets waiting.j = true. par.j cannot be set back to j by any step except

step 8, which cannot execute while waiting.j = true.) Since par.j 6= j
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immediately before step 6 executes, T guarantees that root.j > id.j at

this time. Step 6 never decreases root.j (by Lemma 2), and can only

change par.j if par.j 6= j before the step is executed. So (iii) will be

preserved and (ii) will not be affected if the body of step 6 executes, and

neither (ii) or (iii) will be affected if it does not.

– Step 7 by j has no effect on (ii) or (iii).

– Step 8 by j, if the if,then body executes, satisfies (ii) and trivially makes

(iii) true (since par.j = j afterwards).

– Step 10 by j, if the request to become a child is granted, increases the

root of j (see Lemma 2), and since before step 10 was executed we had

T ⇒ root.j ≥ id.j, we then have root.j > id.j if the request to become a

child is granted. Thus, if the request is granted, par.j 6= j ⇒ root.j > id.j,

and (ii) and (iii) will be satisfied. If the request is not granted, (ii) and

(iii) are not affected.

Thus, (ii) and (iii) will not be violated.

• Conjunct (iv): (par.j ∈ adj.j ⇒ root.j ≤ root.par.j∨ link between j, par.j

has failed but only par.j has received/processed link-down(j, par.j))

The only steps of the algorithm that can violate (iv) are steps of j and par.j.

– Step 2 by j can only affect (iv) by resulting in par.j = φ, which makes

(iv) trivially hold.

– Step 3 by j could only violate (iv) if root.par.j had decreased prior to

3’s execution but j had not been informed of such a decrease. This could

only happen if par.j executed the body of step 8, which requires either

j /∈ adj.par.j or j /∈ kids.par.j, which can only happen if the link between

j, par.j has failed but only par.j has received/processed link-down(j, par.j).
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Thus, if step 3 violates the first disjunct of (iv) the second disjunct of (iv)

must be satisfied, so (iv) will not be violated.

– Step 4 by j has no effect on (iv).

– Step 6 by j could only violate (iv) if root.par.j had decreased but j had

not been informed of such a decrease. By the same argument as that for

step 3, (iv) cannot be violated.

– Step 7 by j has no effect on (iv).

– Step 8 by j, if the body is executed, will yield par.j = j so that (iv) is

satisfied.

– Step 10 by j could only violate (iv) if root.par.j had decreased but j had

not been informed of such a decrease. By the same argument as that for

step 3, (iv) cannot be violated.

– Step 2 by par.j can only affect (iv) by making the second disjunct of

(iv) true.

– Step 3 by par.j serves only to increase root.par.j, so (iv) will not be

violated.

– Step 4 by par.j has no effect on (iv).

– Step 6 by par.j does not change root.par.j so (iv) is not violated.

– Step 7 by par.j has no effect on (iv).

– Step 8 by par.j can only have its body executed if j /∈ adj.par.j or

j /∈ kids.par.j, which can only happen if the link between j, par.j has failed

but only par.j has received/processed link-down(j, par.j). Thus, execution

of the body of step 8 will occur only if the second conjunct of (iv) holds

and thus (iv) will be satisfied after execution.
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– Step 10 by par.j serves only to increase root.par.j, so (iv) will not be

violated.

Thus, (iv) will not be violated.

• Conjunct (v): (par.j ∈ adj.j ∧ root.j = root.par.j ⇒ dist.j > dist.par.j∨

link between j, par.j has failed but only par.j has received/processed link-

down(j, par.j))

The only steps that can violate (v) are the steps of j and par.j.

– Step 2 by j can only affect (v) by resulting in par.j = φ, which makes

(v) trivially hold.

– Step 3 by j cannot violate (v) unless par.j has increased its distance and

j has not processed the message from par.j about the increased distance.

By Lemma 3, the only way par.j can increase its distance is by increasing

its root. There are two possibilities:

1. If par.j increased its root to be root.j before j executed step 3, then

root.par.j < root.j before 3 executed, which in combination with

(iv) means the link between j, par.j has failed but only par.j has re-

ceived/processed link-down(j, par.j). Thus, (v) will hold when step 3

executes.

2. If par.j increased its root to be bigger than root.j before j executed

step 3, then root.par.j > root.j at some point before 3 executes. If

par.j does not decrease its root between this point and immediately

before 3 executes, then the root.par.j > root.j immediately after 3

executes so (v) is satisfied. If par.j does decrease its root, then it exe-

cutes step 8, and j /∈ adj.par.j or j /∈ kids.par.j which again means the

link between j, par.j has failed but only par.j has received/processed
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link-down(j, par.j). So (v) is again satisfied.

– Step 4 by j cannot violate (v) by the same argument made for step 3.

– Step 6 by j cannot violate (v) by the same argument made for step 3.

– Step 7 by j does not affect (v).

– Step 8 by j, if the body of the if,then executes, yields par.j = j so

par.j /∈ adj.j and (v) is trivially satisfied.

– Step 10 by j cannot violate (v) by the same argument made for step 3.

– Step 2 by par.j can only affect (v) by making the second disjunct of (v)

true.

– Step 3 by par.j could only violate (v) if it increased root.par.j to be equal

to root.j. But this would mean, before step 3 executed, that root.j >

root.par.j. Thus, to violate (v), we would have to have par.j ∈ adj.j

when 3 executed, which combined with (iv) holding before 3 and (v) not

holding after yields that the first conjunct of (iv) must hold before 3, or

root.j ≤ root.par.j. This contradicts root.j > root.par.j. So step 3 cannot

violate (v).

– Step 4 by par.j serves only to decrease dist.par.j so it will not violate

(v).

– Step 6 by par.j cannot increase dist.par.j. This can be seen by combin-

ing the fact that step 6 does not change root.par.j (Lemma 2) and the fact

that dist.par.j can only increase if root.par.j increases (Lemma 3). Thus,

step 6 will not violate (v).

– Step 7 by par.j does not affect (v).

– Step 8 by par.j cannot increase dist.par.j, so it will not violate (v).
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– Step 10 by par.j could only violate (v) if it increased root.par.j to be

equal to root.j. By the same argument as for when par.j executes step 3,

this cannot happen, so step 10 cannot violate (v).

Thus, (v) will not be violated

We now have that each step of the algorithm preserves T .

2. Algorithm preserves NC

We next show that the algorithm preserves the no cycle property NC.

Lemma 5. NC is preserved by the algorithm.

Proof. Suppose to the contrary that NC is violated at some point during algorithm

execution. Then some node j is the last node to execute step 6 or 10 and form the

cycle in H, and does so by setting par.j = k when there exists a chain of parent

pointers in H from k to j. So there are two cases: either the cycle is formed by j’s

execution of step 6 or the cycle is formed by j’s execution of step 10. We present the

argument for step 10 first since it can be used in the argument for step 6:

• Step 10: By property (iv) of T , following the chain of parent pointers from k

to j, we have root.k ≤ root.j immediately before j executes step 10. Before j

executes step 10, k executes step 12, at which point root.k > root.j. So between

k’s execution of step 12 and j’s execution of step 10, either root.k decreases or

root.j increases. By Lemma 1, root.j cannot increase during this time, since

waiting.j = true. The only way root.k can decrease after execution of step 12 is

through k’s execution of step 8, which can only occur if j /∈ adj.k or j /∈ kids.k.

But this happens only if link-down(j, k) has been processed by k and not j. But
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then by the definition of H, even though j may have par.j = k, the edge (j, k)

is not in H when step 10 completes execution, contradicting the assertion that

it is the execution of step 10 by j that forms the cycle in H.

• Step 6: By property (iv), following the chain of parent pointers from k to j,

we have root.k ≤ root.j immediately before 6 executes. Before 6 executed, k

executed step 11, and then root.k = root.j.

There are two possibilities for immediately before j executed step 6. Either

root.k = root.j or root.k < root.j. By argument similar to the proof for step

10, the case root.k < root.j is impossible. So then root.k = root.j immediately

before 6 executes, and thus immediately after 6 executes (since 6 doesn’t change

root.j). Then root.u = root.par.u for every node on the cycle incident on k and

j right after 6 executes. By (v), dist.j > dist.k but also dist.k < dist.j, the

necessary contradiction.

3. Link and node failures and recoveries preserve T and NC

We next note that both T and NC are preserved whenever a link comes up or goes

down, or a node fails or recovers. While the proof is fairly trivial, this fact is needed

to guarantee that the MANET stays in a state where T and NC hold while the

algorithm is executing, even if link and node failures and recoveries occur.

Lemma 6. Failures and recoveries of nodes and links preserve T and NC.

Proof. That link changes preserve T and NC follows immediately by the fact that the

algorithm processes such link changes and we have already shown that the algorithm’s

actions do not violate T or NC.
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The failure of a node j when T and NC hold can only fragment the graph of

the parent relation. Thus, node failure preserves NC, and since T is trivially true

for any node not up, node failure preserves T . Failures of links are handled by our

algorithm, which we already showed preserves T and NC.

When a process j repairs itself, it sets its variables to the initial values listed in

the previous section. Simple inspection reveals that this too does not violate T or

NC.

4. Convergence to a fixed point

The next step of the correctness proof is to show that, starting from a state in

T∩NC, the algorithm (if not interrupted by link changes and node failures/recoveries)

eventually converges to a fixed point in which the graph of the parent relation yields

a single rooted spanning tree for each connected component of G, every up node is

colored green, and every up node in a given connected component of G has the same

value for its root. The proof is structured as follows. We first show that eventually

every up node is permanently colored green, and then show that once this happens,

eventually (for each connected component of G) the algorithm will converge to the

desired rooted spanning tree with every node having the largest id as root. Putting

these facts together yields the correctness of our algorithm.

(Unlike our proofs that T and NC hold, this is fairly similar to the proof of

convergence in [3, 4]. The main difference is the construction of the set F which

actually allows two steps of the proof in [3, 4] to be combined into one.)

Lemma 7. If the algorithm starts in a state in T∩NC and link changes and node fail-

ures/recoveries eventually stop, then eventually every up node is permanently colored

green.
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Proof. Consider the set F ≡ {j : j is up ∧ col.j = red ∧ par.j /∈ adj.j ∪ {j}}.

At some point, link changes and node failures/recoveries will cease to occur. Once

this happens, examination of the code reveals that after every link-down message has

been processed and every node has completed its attempts to recover from any invalid

parents caused by these link-down messages, the size of the set F can never increase.

Now, after this point (once the size of F can’t increase), suppose F is nonempty and

thus there is some j ∈ F . We have that col.j = red and par.j /∈ adj.j ∪ {j}.

Now, all of j’s children eventually find out about j being colored red, and either

color themselves red or disown their parent when they are adopted by a new parent.

This propagation continues until nodes with no children discover that their parents

are red. These nodes color themselves green and disown their parents, and then their

parents color themselves green and disown their parents, and so on, until eventually

node j no longer has any children and can color itself green. When this happens, j is

no longer in F , and thus the size of F has decreased. Thus, eventually, F will have

no members. Combining this with the fact that T holds, we will eventually have that

if a node j is up and col.j = red, then colpar.j.j = red. Further, once F is empty,

we know that for every node j, par.j 6= φ, since if par.j = φ then col.j = red and

par.j /∈ adj.j ∪ {j}, or j ∈ F .

Now, if a node j believes its parent to be colored red, then its parent must truly

be colored red, for par.j cannot change its color from red to green until j disowns

par.j as its parent. Thus, we have that, eventually, if a node j is up and col.j = red,

then col.par.j = red. Since col.j = red⇒ par.j 6= j, we have that par.k 6= k for any

node k colored red.

Following this logic, once we have reached a state where F is empty, we know if

a node is red, then it cannot be its own parent and its parent (a real node, not φ) is

also red. If some node were red, then by following the chain of parent pointers, since



32

NC holds, we would eventually reach a node which was red but had no red node as

a parent. From this contradiction, we can conclude that eventually we reach a state

where every up node is colored green and remains green as long as no link changes or

node failures/recoveries occur.

Now that we know that eventually every up node is colored green, we can use

this in proving convergence to the single rooted spanning tree.

Lemma 8. If the algorithm starts in a state in T ∩ NC, eventually (for each con-

nected component of G) every up node has the up node with largest id in its connected

component as its root and is a member of the tree rooted at this largest up node.

Proof. By the previous lemma, if the algorithm starts in a state in T ∩NC, eventually

all up nodes will be green. We must show that eventually every up node adopts the

maximum value of id.j among all up nodes as its root value, and that every up node

becomes a member of the tree rooted at this largest up node.

Let us denote by m the node for which id.m is maximum among all up nodes.

Note that (ii) and (iv) together guarantee that root.j ≤ id.m for all up nodes j.

Further, by simply following parent relations, we can get, using (ii), that if root.j =

id.m, then m is an ancestor of j in the graph of the parent relation.

From these facts, once all nodes are green, we can see that all nodes j ∈ adj.m will

have root.j = id.m after one asynchronous round (defined in Section 2). Further, all

nodes adjacent to those nodes in adj.m will have root.j = id.m after two asynchronous

rounds. A simple inductive argument gives us that eventually all up nodes j will have

root.j = id.m and thus will have m as an ancestor. Thus, we will eventually have

reached the desired state where we have a single leader and every node acknowledges

this leader as its leader.

Putting these facts together we have the correctness of our algorithm.



33

Theorem 2. Our algorithm solves the leader election problem in asynchronous MANETs.

Proof. If T and NC hold in the MANET when the algorithm starts executing, then

by preservation of T and NC and the previous two lemmas, the algorithm solves the

leader election problem in asynchronous MANETs. Since the initial values specified

for the nodes satisfy T and NC, the algorithm solves leader election in MANETs.

F. Performance

1. Convergence time and message complexity

The analysis of the performance of our algorithm is fairly straightforward. First, we

note that our algorithm converges to a single rooted spanning tree, and thus performs

the task of leader election, in time O(A), where A is the maximum size of a connected

component of G throughout the algorithm’s execution. (The formal definition of A

given in [16] is more complex, but reduces to the above in our system model.)

Lemma 9. The convergence time of the algorithm is O(A).

Proof. To see why this holds, we first argue that once a node becomes red, it takes

at most O(A) time for all of its children to disown it. Note that a node u must wait

for all of its children to disown it before u can disown its own parent and color itself

green, so that if u is red, it may have to wait for all of its children’s descendants to

disown their children as parents before it no longer has any children. Once all of a

node’s children have disowned it, the node can become green and make itself its own

parent. Combining this with the fact that it takes a leaf node in a tree of H O(1)

time to color itself green, a simple inductive argument yields the O(A) time bound.

Thus, every node is green within O(A) time of the algorithm’s execution.

Now, once all nodes in a connected component are green, let us look at the node

with the largest id. Call this node v. Within 1 round, all neighbors of v will have
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v as leader. Within 2 rounds, all neighbors of neighbors of v that have not already

taken on v as leader will take on one of adj.v as a parent. Thus, within O(Dcomp)

rounds, where Dcomp is the maximum diameter of the connected components of G,

every node in v’s connected component will have v as leader. So the total time to

converge to the solution of the leader election problem is O(A+Dcomp) = O(A).

We note that if the algorithm is started in a state where all nodes are green,

then it will converge to a solution in time O(Dcomp). However, if the algorithm is

started in an arbitrary state (where some nodes are red due to link or node failures

that occurred), convergence may take as long as O(A).

Next we note that our algorithm, in many cases, can deal with link failures in

O(1) time. Specifically, if the link between j and par.j fails, j might be able to

reestablish a path to par.j in O(1) time. This can happen as long as j has another

neighbor at a shorter distance from root.j or all of j’s children have another neighbor

closer to root.j than j was.

We also note that the messages sent by our algorithm are of size O(log n). This

can be seen by inspecting the messages and variables sent in the code.

2. A heuristic to improve performance

Finally, we briefly discuss a heuristic to improve the performance of our algorithm.

When a node j discovers it has an invalid parent, it will petition a suitable neighbor

for adoption, if one exists. The variable tried.j is used to keep track of which nodes

j has petitioned for adoption to deal with the current invalid parent. In the current

pseudocode, if j’s first request for adoption is denied, j immediately colors itself red.

The code can be modified so that if j’s first petition fails, it petitions a different

neighbor, repeating until it finds a new parent or runs out of neighbors.
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While this modification yields improved running time in many cases, in some

situations it may take O(A2) time to converge. (Such convergence time could occur,

for example, if a number of nodes petition each neighbor for adoption, but have every

such petition rejected.) For this reason we did not include the modification in the

pseudocode. Experiments might be useful to see if the worst case convergence time

occurs frequently enough to counteract the advantages of the modification, or to tune

this modification by finding the number of allowed failed petitions that would yield

the best performance.
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CHAPTER III

MANET SIZE ESTIMATION VIA RANDOMIZATION

A. The mobile ad-hoc setting and randomization

Before proceeding any further, let us more carefully formalize our MANET system

assumptions for studying the network size estimation problem. Each node pi in the

network has a unique identifier denoted by idi. Again, given a state of a MANET, we

can create a corresponding undirected communication graph G. We assume that each

node pi automatically maintains a set adji which consists of those nodes it believes

are in its communication zone.

We note that G can consist of more than one connected component. Many

problems, in their MANET specification, require that the problem be solved for each

connected component. While we have previously spoken of estimating the size of the

MANET, we really mean and are interested in estimating the size of (equivalently,

number of nodes in) a particular connected component of the MANET. We will

elaborate on this further in the problem statement below.

1. Randomization

Because of the dynamic nature of MANETs, mechanisms must be created to deal

with their unpredictability. Using algorithms that are themselves unpredictable due

to randomization seems like a natural method to deal with such unpredictability.

Indeed, several papers employ randomization in specific ways in the MANET setting.

Random walks are used for group communication and token circulation in [10],[8]

respectively. Randomization is used both to break symmetry and deal with link state
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changes while constructing spanning trees in [2]. Randomization is also sometimes

used to model the mobility and link status changes involved in a MANET ([7]).

B. Problem statement

We now provide an explicit statement of the problem we wish to study and solve. We

would like to provide to each node pi in the MANET an estimate of the number of

nodes in its connected component in G. We are concerned with the size of the

connected component (CC) rather than the size of the MANET because

the MANET may consist of several connected components unaware of

the existence of each other. Throughout we will only be concerned with

a particular connected component of the MANET, and this connected

component will have size n.

Additionally, we define the underlying communication graph corresponding to

node pi’s connected component. Gi is the subgraph obtained from G by removing all

nodes not in pi’s CC and any edges incident on such nodes. If two nodes pi and pj

are in the same CC, then Gi = Gj.

C. Quick and dirty solutions to the problem

One could easily provide the size of a connected component (CC) of a MANET to

every node in the CC via several methods. For example, all nodes could simply peri-

odically broadcast lists of their neighbors, and these lists could be flooded throughout

the network. Every node would just periodically count the number of nodes in its

“view” of the network obtained via these broadcast messages.

Alternatively, one could use any of a number of algorithms for constructing rooted

spanning trees in MANETs (e.g., [1, 2]). Each node could propagate up to its parent
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its number of descendants in the rooted spanning tree, and then the root would

eventually know the total number of nodes in its CC of the MANET. This number

could then be distributed to all nodes.

While both methods discussed above provide information about CC size to the

nodes of the CC, they have notable drawbacks. The first method incurs a large com-

munication overhead which makes it impractical and unscalable to large networks.

The second method has the drawbacks of taking significant amounts of time and

communication resources to construct the rooted tree, and possibly requiring adjust-

ments to the tree structure when link changes occur. We are interested in a method to

compute CC size with extremely low overhead and high adaptability to link changes.

D. Previous work

In surveying the literature, we were able to find two algorithms which propose inter-

esting and efficient solutions to estimating the size of MANET CCs.

1. Horowitz and Malkhi

Horowitz and Malkhi, in [15], present an algorithm to estimate CC size in dynamic

wired networks using only local information. Their algorithm requires a node to only

perform an action upon entering a CC or leaving a CC.

Upon joining a CC, a node uses randomization to uniformly at random pick any

of the other nodes in the CC as its “successor.” The successor and the joining node

then communicate some information so that both nodes have an updated estimate

of the size of the CC. This simple strategy has surprisingly good performance, as

its expected accuracy is within the range n/2 to n2, where the CC for which we are

estimating size has size n.
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Unfortunately, the algorithm also has some drawbacks. It requires that a joining

node be able to pick any existing node in the CC as its successor with equal probabil-

ity. This requires the joining node to communicate with nodes besides its neighbors,

and forces the development of a routing algorithm to allow a node and its successor

to communicate. Nodes may be as far as O(n) hops apart, so each node joining

or leaving the CC can incur high communication costs. These drawbacks can make

the algorithm unsuitable for a MANET environment where frequent link changes can

occur or communication limits may exist.

2. Dolev, Schiller, and Welch

Dolev, Schiller, and Welch, in [10], develop a random walk technique for group com-

munication in MANETs. As a quick aside, [10] mentions a method to approximate

the size n of the CC. The strategy is as follows.

The procedure uses a parameter l which can be varied to make the estimate of

n more accurate. The algorithm starts a token circulating around the CC using a

standard random walk. Whenever the token encounters a previously unvisited node,

say the t’th node, the token will continue walking for an additional 2lt3 log t steps. If

no new node is encountered during this process, then the total number of new nodes

encountered by the token during its walk is reported as the estimate of n.

To examine the accuracy of this algorithm, we need to recall that the expected

cover time for a random walk on a connected undirected graph is 4n3/27 + o(n3)

[11]. Let us assume that the graph’s topology is static during the execution of the

algorithm so that n remains constant.

For large enough l, the probability that some processor is not visited during lt3

token steps is less than 1/2, since the expected cover time for a connected component

of t nodes is O(t3). So the probability that some processor is not visited during
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2lt3 log t token steps is < (1/2)2 log t = 1/t2, and the probability of not visiting a node

of the CC during the entire estimation procedure is bounded by
∑n−1

i=2 1/i2 < 1/2.

Thus, the algorithm, if not interrupted by link changes, will give an exact count

of the number of nodes in the CC with probability > 1/2. This result is simple

and rather impressive, and a candidate for solving the problem we are studying in a

MANET with infrequent link changes.

However, if some nodes are continuously leaving and joining a CC, one could

imagine a scenario where the token, during its random walk, repeatedly encounters

unvisited nodes, and so may never yield an estimate of n. For example, consider a CC

which contains some location-fixed nodes which are always part of the CC, but also

allows nodes passing by to temporarily join the CC. Even if we impose the restriction

that a node is not allowed to leave the CC while it has the token, we can have the

following situation. If a steady stream of nodes join and leave the CC, the token may

continue to encounter new nodes even though the size of the CC is roughly constant.

Another drawback of this algorithm is its possibly large running time. It takes

expected time Θ(n3) to report the size of the CC.

While both algorithms presented in this section address the problem of approx-

imating CC size, each has drawbacks which make it impractical in the presence of

frequent link changes and/or communication limits. With this in mind, we present

the following ideas for obtaining a rough estimate of CC size in a MANET.

E. Basic ideas of our algorithm

We propose a strategy in the vein of [10] which is more tolerant of link changes and

does not take as long to give an estimate of CC size, but trades these advantages

for the drawback of providing a less exact estimate of CC size. (Theorem 3 will
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characterize how precise our estimate is and how long our algorithm must run to

obtain the estimate.) Our strategy is as follows.

Each node pk in our CC maintains a counter tokensk which is initialized to 0 and

is the number of tokens pk has generated during its existence. If some node pi in the

CC lacks recent information about the size of its network, it generates a new token

(idi, tokensi, steps, 0). The third entry of this token, steps, is the number of steps the

token has taken. The fourth entry simply indicates that the token is being circulated

on Gi. (Later we will introduce another token that is circulated on a modified version

of Gi, and has 1 as its fourth entry.) This token is then circulated throughout pi’s CC

using a traditional random walk on the underlying undirected communication graph

Gi of the CC. (We require that each node in Gi has a self-loop to itself so that we can

guarantee that the random walk (Markov chain) is aperiodic and will have a unique

stationary distribution.)

As this token is circulated throughout the CC via the random walk, it carries

a running sum of the number of steps it has taken during its walk. Assuming the

underlying communication graph Gi is static, we know by the Fundamental Theorem

of Markov Chains ([18]) that the token will visit each node in the CC infinitely often

(with probability 1).

Now, let hij denote the expected number of steps a token takes in its random

walk to travel from node pi to node pj. If i = j then we define this as the time for

the token to leave pi and return to pi. Let m be the number of edges in the CC and

d(k) be the degree (number of edges incident on pk in Gk) of pk.

Define the random variable Rk to be the number of steps a token takes in a

random walk in Gk to leave pk and return again to pk. The theory of random walks

tells us that E[Rk] = 2m/d(k), so we know that by simply observing the random walk

of a token, we can gain some information about the global structure of Gk. (Namely,
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we have a random variable whose expected value is a function of the number of edges

in Gk, or m.)

With this in mind, define Xk = Rkd(k)/2. (Xk is simply Rk multiplied by a

constant to force E[Xk] = m, the number of edges in Gk.) We have the following

lemma.

Lemma 10. E[Xk] = m.

Proof. By Lemma 6.3 of [18], we have that for any node pk in the CC

hkk =
2m

d(k)
.

Thus,

E[Xk] =
d(k)

2
E[Rk] =

d(k)

2
hkk =

d(k)

2

2m

d(k)
= m,

and the result holds.

Note that each node pk in the CC, by simply observing how many steps it takes

the token to make a round trip starting and ending at pk, can obtain some global

information about the graph. Namely, multiplying this number of steps by d(k)/2

will yield a random variable Xk whose expected value is m. By simply averaging

the number of steps for repeated round trips starting and ending at pk, node pk can

obtain an estimate of the number of edges in the graph. We will use this estimate of

the number of edges in Gk to obtain an estimate of the number of nodes in Gk.

1. How to estimate n given an estimate of m

We have (at least informally) presented a simple method to provide an estimate of m

to each node pk in the CC. Now we present two simple ideas for obtaining an estimate

of n by using similar ideas.
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a. Adding self loops

The first idea is to, in addition to performing the random walk outlined above, also

simultaneously perform a random walk with another token (idi, tokensi, steps, 1).

However, this random walk is done on the graph G′k obtained by adding an additional

self-loop to each node in Gk. (There are now two self-loops on each node in G′k.) For

a random walk on this modified graph, we let h′ij denote the expected number of steps

the random walk will take to travel from node pi to node pj.

Analogous to before, define the random variable R′k to be the number of steps

a token takes in a random walk in G′k to leave pk and return again to pk. Define

d′(k) = d(k) + 1 to be the degree of node k in G′k. Further, let X ′k = R′(k)d′(k)/2.

We have the following lemma.

Lemma 11. E[X ′k] = m+ n.

Proof. Note that the number of edges in G′k is m+ n. Then, just as before,

E[X ′k] =
d′(k)

2
E[R′k] =

d′(k)

2
h′kk =

d′(k)

2

2(m+ n)

d′(k)
= m+ n,

and the result holds.

Thus, multiplying the number of steps for a round trip of this token starting and

ending at pk by (d(k) + 1)/2 yields a random variable X ′k whose expected value is

(m+ n).

Now, define Zk = X ′k − Xk. Simple linearity of expectations (E[X ′k − Xk] =

E[X ′k]− E[Xk]) gives the following.

Lemma 12. E[Zk] = n.

Thus, by performing two random walks and observing their local behavior, each

node pk samples a random variable Zk = X ′k−Xk with expected value n. As long as we



44

sample this value enough times (i.e., allow the random walk to execute long enough),

each node pk will eventually have a reasonable estimate of n. We will quantify “long

enough” and “reasonable estimate” with Theorem 3.

b. Employing average degree

The second approach to using the estimate of m to gain an estimate of n assumes some

method of determining (at least approximately) the average degree of the nodes in

pi’s CC. Let davg be the average node degree in pi’s CC. By definition, davg = 2m/n.

Let Y be a random variable with expected value davg/2. Assume Xk and Y are

independent. (This will be true as long as the methods used to obtain Xk and Y do

not depend on each other.) Then setting Z ′k = Xk/Y , we can show the following.

Lemma 13. E[Z ′k] = n

Proof.

E[Z ′] = E[Xk/Y ] = E[Xk]/E[Y ] =
m

davg/2
= n.

Thus, having an estimate of davg can provide an estimate of n, given an estimate

of m.

F. Technical details

Thus far, the description of our approach to solving the CC size estimation problem

has ignored some important technical details, including how close our estimate of n

gets to the actual value of n. We now address these issues.
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1. Link changes

Up to this point, our algorithm has assumed that the underlying communication

graph G is static during the random walks the tokens take. We note that as long as

link changes do not remove a token from a CC, the link changes will simply modify

transition probabilities for the random walks for those nodes incident on links going up

or coming down. At least intuitively, one can expect that over time these link changes

will only have a significant impact upon the random walks if they significantly change

the size of a CC. It is precisely when the size of a CC changes drastically that we

want the behavior of the random walks to change to yield a better estimate of CC

size. When round trip times (on the average) start to change drastically, we may

wish to discard all previously observed round trip times and start gathering round

trip times anew. This will give us a new and better estimate of the new CC size.

For the remainder of the section on technical details, we assume G is static.

2. Token generation

In developing our algorithm so far, we have assumed that a specific node generated

a token and that this token walked around the node’s connected component forever.

However, a general MANET poses some issues that we need to address. For example,

the token generated by a node pi may be lost from node pi’s CC due to link changes

and/or node failures. Unfortunately, pi will not be able to distinguish this scenario

from the situation in which pi’s component is so large that the token is taking an

unusually large amount of time to return to pi.

One method to handle this is to have pi generate tokens with decreasing frequency

until the tokens start returning to pi. For example, pi could generate tokens, doubling

the time interval between each token generation, until tokens start to return to pi.
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When a node pk received a token from pi, it would ignore and destroy any tokens

previously generated by pi encountered. (Previously created tokens can be identified

by having a lower tokensi entry in the token.) This method could be used to give

pi a good idea of an appropriate timeout period at which to decide that the token

is likely lost and a new token should be generated. If later pi discovered that it

generated a new token even though an old token still existed in the network, it could

appropriately increase the timeout. Occasionally pi might want to repeat this entire

process to obtain a new timeout value so that the timeout value would not become

excessively large.

Another issue we need to handle is determining which node(s) should be respon-

sible for token generation. The problem of deciding upon a single node for token

generation is equivalent to leader election, which is a well-studied and surprisingly

complicated problem. One solution to the issue of deciding responsibility for token

generation is to allow all nodes to generate tokens. To reduce the number of tokens

present in the system, we assume that each node has access (via GPS or some other

mechanism) to a synchronized clock, and have each node timestamp its tokens. Nodes

only continue the random walk for a token with most recent timestamp, and destroy

any tokens with “outdated” timestamps. By using this mechanism, eventually only

one token (the last generated token) will exist in the CC, and this token will be used

by all nodes in the CC to estimate n.

3. Goodness of estimate via adding self-loops

In the previous section, we presented a method to sample a random variable Zk with

expected value n. An important question is how wildly this random variable can vary.

If we sample Zk a certain number of times and average the values obtained, then

we will get a better estimate of n. In particular, let Zk,1, Zk,2, . . . , Zk,a be identical
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and independently distributed random variables with distribution identical to Zk, and

let Z∗k be the average of these random variables. The following theorem answers our

question about how wildly our estimates vary.

Theorem 3. There is a polynomial p(n) such that by setting a = d8p(n)/n2e,

Pr[|Z∗k − n| ≥ n/2] ≤ 1
2
.

Proof. As [12] notes, the variance of the time C it takes a token to visit every node

in a graph during a random walk is bounded by a polynomial function of n. Since

the time it takes for a token to return to a particular node is necessarily less than the

time it takes for the token to visit all nodes (and thus also return to the particular

node), we get that the variances of Xk and X ′k are bounded by polynomial functions

of n. So there is a polynomial p(n) such that Var[Zk] < p(n). Let a = d8p(n)/n2e.

Then by the law of large numbers ([20]),

Var
[
Z∗k =

∑a
c=1 Zk,c
a

]
=

Var[Zk]

a
≤ p(n)

8p(n)/n2
=
n2

8
.

We have, by Chebyshev’s inequality ([18]),

Pr[|Z∗k − n| ≥ n/2] ≤ 1

2

Thus, given an upper bound N on the CC size, by allowing the random walks

to visit each node d8p(N)/N2e times we obtain a probability greater than 1/2 of

obtaining a “good” estimate on n. (Here, “good” means within n/2 of n.) This

number of visits may be quite large, but may be feasible in networks which can send

tokens between nodes quickly. Additionally, for many graphs, it may be the case that

far fewer node visits are necessary before a reasonable estimate of n is obtained.
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4. Goodness of estimate using average node degree

Next we examine the goodness of the estimate on n that is obtained by using an

estimate of average node degree. Let p′(n) be an upper bound on Var[Xk], and N be

an upper bound on the CC size. If we have the exact average node degree of nodes in

pi’s CC, then analysis similar to that in the analysis of adding self-loops yields that

allowing the random walk to visit each node d32p′(N)/(N2d2
avg)e yields probability

greater than 1/2 of obtaining a “good” (within n/2 of n) estimate on n. (This makes

use of the fact that Var[Xk/(davg/2)] = Var[Xk]/(davg/2)2.)

For some MANETs, the average degree of a node may somehow be constrained,

and one can make use of this information in obtaining an estimate on n. The con-

straints on average degree would need to be sufficiently strong to be of significant

use.

Additionally, assuming that the average degree of a MANET is fairly constant

over a MANET’s lifespan, we could provide for a simple distributed algorithm that

runs very occasionally to obtain an estimate of davg. Nodes would simply propagate

their degrees to their neighbors, neighbors would collect this information and pass it

on to their neighbors, and this would continue for a fixed number of “hops.” Eventu-

ally all nodes would have average node degree for those nodes within a certain number

of hops from them.

Finally, we can also use the token and its random walk to get an estimate of

average node degree. We know that the Markov chain for the random walk converges

to a stationary distribution (assuming no link changes), and also know the relative

pairwise probabilities in this distribution. Let πj be the probability the random walk

is at node pj in this stationary distribution. πj = d(j)/2m, so
πj
πk

= d(j)
d(k)

.

We can attach to the token two counters sum degrees and num degrees. When
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the token visits a node pj, it with probability 1/d(j) increments sum degrees by d(j)

and num degrees by 1. (This is done so that each node’s degree has equal probability

of being included in the sample.) It readily follows that, assuming the Markov chain

is rapidly mixing and that the random walk continues for a long enough period of

time, that sum degrees
num degrees

will be an estimate of davg. This estimate can then be used along

with the estimate for m to obtain an estimate of n. Examining the accuracy of this

estimate is quite complicated and beyond the scope of this work.

G. Advantages and disadvantages of our algorithm

The greatest advantage of our algorithm lies in its simplicity. It requires little effort

from each node to carry out the token circulation to perform the random walk and

eventually provides every node in the MANET with an estimate of CC size.

Additionally, our algorithm is more resilient than other algorithms to link failures.

If we impose the restriction that a link can only fail if neither of its endpoint nodes

currently holds a token, then tokens will never be lost and an estimate of CC size will

be provided to each node.

Our algorithm also has disadvantages worth noting. Its main disadvantage is

that it provides only a rough estimate of network size, and we were only able to

prove (Theorem 3) that for some polynomial p(N), if each node observes numerous

(d8p(N)/N2e) round trips of tokens it can obtain a reasonable (within n/2) estimate

of n with probability ≥ 1/2.
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CHAPTER IV

CONCLUSIONS

We have developed two new algorithms to solve two important problems in mobile

ad hoc networks.

First, we have developed a deterministic leader election algorithm for asyn-

chronous MANETs. The algorithm has good convergence time, relatively simple

code and correctness proofs, and no need for randomization. It has at least one ad-

vantage (which varies with the algorithm it is being compared to) over each of the

other leader election algorithms developed for MANETs.

The algorithm, among other things, shows that there is still room for improve-

ment in developing leader election algorithms for MANETs. No single leader election

algorithm developed so far can make the claim of being the “best” leader election

algorithm, as each one has its advantages and disadvantages. Future work could

address this issue and attempt to combine the advantages while eliminating the dis-

advantages.

Second, we have examined the problem of estimating connected component size

in MANETs, surveyed existing algorithms for the problem, and presented our own

algorithm for the problem. While our algorithm definitely has some drawbacks that

make it impractical in certain situations, its flexibility and low overhead make it a

candidate for estimating connected component size in MANETs with frequent link

changes.

One thing to be addressed in future work is the polynomial p(n) used in the

results on the accuracy and running time of our algorithm. While we know that

such a polynomial (which bounds the variance of Zk) exists, our algorithm cannot
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be implemented without knowing what this polynomial actually is. Future work

could investigate the nature of this polynomial variance bound so that a constructive

network size estimation algorithm could be produced.

Future work could also focus on the accuracy of our sampling method for deter-

mining an estimate of davg. Towards the end of our work, we began to find research

that could provide better bounds on how long our algorithm (using the davg estimate)

has to run to get a good estimate on network size([14]), and we plan to look into

this. Additionally, simulations would be useful to examine the performance of our

algorithm and compare it to the algorithm in [10]. It may be the case that, for many

MANETs, our algorithm has accuracy significantly better than the bounds obtained

in this work.
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