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The Analytic Hierarchy Process (AHP) is one of the most widely used quantitative tools in multi-

criteria decision making problems. Despite its popularity and use due to its simple but systematic 

procedure, AHP has limitations especially in terms of the numerical comparison scale used in one of 

its core steps: pairwise comparisons. AHP is based on verbal comparisons of alternatives/criteria, 

which are, then, converted into quantitative scores with a one-to-one mapping between the verbal 

comparisons and a predetermined numerical scale. The choice of the numerical scale affects an 

essential characteristic of pairwise comparisons: consistency. In order to understand the intrinsic 

consistency propinquities, this study evaluates the most widely used numerical pairwise comparison 

scale (Fundamental Scale) and other numerical scales that have been proposed since the initial 

formulation of AHP. After identifying the limitations of known scales, a new scale based on Fibonacci 

series is developed considering these limitations, and further analysis is conducted through extensive 

simulations. The results show that the proposed scale performs well when compared to the other scales. 

Keywords: Numerical comparison; AHP; comparison scale; Fibonacci; exponential; consistency 

1.   Introduction 

Having flourished from the Operational Research discipline, Multi-Criteria Decision 

Making (MCDM) is concerned with providing verbal and/or computational tools to support 

a decision maker (DM) while he/she evaluates several alternatives with respect to multiple 

criteria. MCDM aims to propose a “satisfactory” solution to decision problems, as it is 

nearly impossible to have an optimal result in terms of all the existing criteria. 



2     B. C. Yıldırım et al. 

 

 

Within this scientific field, various techniques have been proposed to systematically 

approach complex decision problems. Out of the techniques, Analytic Hierarchy Process 

(AHP) is worthy of attention because of the following three main strengths: 

• representing the complex decision problem in hierarchical order that provides an 

overall view of the problem and helps DM to compare the items accurately1, 

• using pairwise comparison of elements rather than comparing every element at once,  

• providing means to systematically check DM’s consistency through pairwise 

comparisons. 

These strengths led to its widespread use in many real-life decision making applications, 

such as environmental management2, engineering3, and location selection4. This, in turn, 

stirred up plenty of interest in academia, yielding both proponents and opponents. The latter 

group criticizes AHP in various aspects. Some of them5, 6, 7, 8 focus on the scale used in 

pairwise comparisons, while some other studies elaborate on the weight extraction9, 10 and 

consistency of evaluations11, 12, 13. Among these, several studies6, 14, 15 analyzed what have 

already been proposed or is being widely used whereas only some studies16 proposed novel 

ideas for improvement.  

This study focuses on the consistency characteristics of existing numerical pairwise 

comparison scales. The study articulates consistency in a broader perspective rather than a 

narrow one that can be deduced from the findings of a few AHP applications. In order to 

capture the general tendency on consistency of existing numerical pairwise comparison 

scales, a comparative analysis and extensive experiments are conducted. To handle the 

limitations of known scales in terms of consistency characteristics, a new numerical 

pairwise comparison scale is proposed. The new scale and other existing major scales are, 

then, compared with the most commonly used numerical pairwise comparison scale: 

Saaty’s Fundamental Scale. These comparisons are performed through Monte Carlo 

simulations for various problem settings. Rather than using few exemplary AHP 

applications, an extensive analysis is performed considering different problem sizes and 

settings for consistency. To test the performances of the scales, different performance 

measures, some of which are newly defined in this paper, are used. The results show that 

the proposed scale performs well in almost all performance measures.   

The rest of this study is organized as follows: Section 2 gives an overall view of AHP 

procedure, numerical pairwise comparison scales, consistency concept in AHP, and the 

consistency-wise limitations of existing numerical pairwise comparison scales. Based on 

the initial analysis in Section 2, Section 3 introduces a new numerical pairwise comparison 

scale. In Section 4, the proposed scale and other known scales are compared with Saaty’s 

Fundamental Scale in terms of consistency characteristics. Furthermore, implications from 

initial analysis are tested with detailed simulations through multiple performance 

measures, and the results are presented. In Section 5, initial implications, simulation results, 

and concluding remarks are provided. Lastly, in Section 6, limitations and further possible 

study areas are discussed.  
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2.   Background and Motivation 

2.1.   Procedure of AHP 

The procedure of AHP consists of five main steps: 

• Definition and hierarchical representation: The main objective of the decision making 

problem is defined and the problem is divided into smaller manageable parts, in which, 

elements involved in the problem can be compared in pairs. Then, these smaller parts 

are grouped based on their common points and visualized on a hierarchical graph.  

• Pairwise comparisons: Quantitatively incomparable elements involved in the problem 

are verbally compared with all other elements in its respective hierarchy level. Then, 

these comparisons are transcribed to numerical values using a one-to-one mapping 

between the verbal pairwise comparison scale and the corresponding numerical scores. 

These numerical scores stand for the intensity of preference of each element over the 

others. 

• Weight derivation: Based on the numerical scores obtained in the previous steps, the 

“Pairwise Comparison Matrix” (PCM) is derived. Then, the PCM is processed to 

extract the respective weights of each criterion. 

• Consistency measure: Consistency of pairwise comparisons of the DM is checked 

using the PCMs. If an unacceptable level of inconsistency is detected, then, the DM is 

advised to revise the pairwise comparisons. 

• Aggregation (synthesis) of the local priorities (weights): Weights calculated using 

PCMs represent only the local priorities. Their contributions to the overall goal, 

however, still need to be determined. In the last step, previously calculated local 

priorities are combined to global priorities. 

2.2.   Pairwise Comparison Scales in AHP 

Besides rank reversal and eigenvalue method, one of the controversial areas of AHP has 

been the debate over the numerical scale used in pairwise comparisons. Fundamental 

Scale17, 18 is the first pairwise comparison scale used in AHP applications. The easy-to-

understand logic behind the scale and its numerical simplicity have earned it a wide 

acceptance by AHP users. According to Ref. 3, Fundamental Scale has become the most 

widely used ratio scale in AHP applications. 

Despite this popularity, Fundamental Scale has been criticized by researchers in many 

studies, and alternative scales have been proposed (Table 1). For instance, Ref. 11 points 

out that the scoring method’s simplicity and the coarseness of the scale are inseparable in 

Saaty’s Fundamental Scale. Although the verbal comparison part has not been a critical 

concern, different numerical scales have been proposed as alternatives to Fundamental 

Scale. Table 1 shows frequently compared scales, where, x values represent the digitized 

semantic part of the scales. These digitized part is used to convert verbal judgments to 

corresponding quantitative scale values (i.e., numerical scores) using the mathematical 

description of the respective scale.  
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Table 1 Pairwise comparison scales 

Scale Mathematical Description Parameters (x) Approximate Scale Values 

Fundamental17 𝑥 {1,2, … ,9} 
1; 2; 3; 4; 

5; 6; 7; 8; 9 

Power19 𝑥2 {1,2, … ,9} 
1; 4; 9; 16; 25; 

36; 49; 64; 81 

Root Square19 √𝑥 {1,2, … ,9} 
1; √2; √3; 2; 

√5; √6; √7; √8; 3 

Geometric20 2𝑥−1 {1,2, … ,9} 
1; 2; 4; 8; 16; 

32; 64; 128; 256 

Inverse Linear21 9 (10 − 𝑥)⁄  {1,2, … ,9} 
1; 1.13; 1.29; 1.5; 

1.8; 2.25; 3; 4.5; 9 

Asymptotic11, a 𝑡𝑎𝑛ℎ−1(√3(𝑥 − 1) 14⁄ ) {1,2, … ,9} 
0; 0.12; 0.24; 0.36; 

0.46; 0.55; 0.63; 0.7; 0.76 

Balanced22 𝑥 (1 − 𝑥)⁄  {0.5, 0.55, … ,0.9} 
1; 1.22; 1.5; 1.86; 

2.33; 3; 4; 5.67; 9 

Logarithmic23 𝑙𝑜𝑔𝑠(𝑥 + 1) {1,2, … ,9} 
1; 1.58; 2; 2.32; 

2.58; 2.81; 3; 3.17; 3.32 

a It should be noted that reciprocals (1/𝑎𝑖𝑗) of the scale members (𝑎𝑖𝑗) are 

greater than 1 for Asymptotic Scale, which implies a reversed comparison 

score characteristic (i.e., a verbally better alternative gets a lower score). This 

scale has not been included in our simulations as the reverse comparison score 

characteristic tends to amplify the inconsistency measured in simulations. 

 

Several other scales8, 24, 25 have been proposed based on the identified drawbacks of the 

aforementioned major scales. It should be noted that our analyses and experiments only 

involve comparisons with the most frequently cited scales for at least two reasons: First, 

many of the less commonly cited scales are quite contextual and dependent on case-specific 

parameters (e.g. the scores of the numerical scale vary with respect to the number of 

alternatives and the upper limit of the corresponding scale8), which make them hardly 

suitable for our comparisons and second, for brevity and overall compatibility with other 

studies involving scale comparisons.  

2.3.   Consistency in AHP 

By its definition, consistency in AHP requires complete transitivity in the pairwise 

comparison matrix. Ref. 9 mentions two kinds of transitivity: 

• Ordinal Transitivity: If A is preferred to B and B is preferred to C, then A must be 

preferred to C. 

• Cardinal Transitivity: If A is preferred to B three times and B is preferred to C twice, 

then A must be preferred to C six times. 

A consistent matrix is defined as a matrix for which each numerical pairwise comparison 

score between i and j is equal to the ratio of the final weights belonging to the 

corresponding two elements, i and j. That is, each numerical pairwise comparison score 𝑎𝑖𝑗  

in the pairwise comparison matrix is equal to 

 



Fibonacci Series-Based Pairwise Comparison Scale for Analytic Hierarchy Process 5       

 

 

𝑎𝑖𝑗 = 𝑤𝑖 𝑤𝑗⁄      (2.1) 

 

where 𝑤𝑖  and  𝑤𝑗  are the final weights of the elements denoted on the ith and the jth rows in 

the pairwise comparison matrix, respectively. Thus, for a perfectly consistent matrix, 

cardinal transitivity must be satisfied. 

The original application of consistency measure17 is based on matrix perturbation theory. 

Ref. 17 defines consistency ratio (𝐶𝑅) in terms of consistency index (𝐶𝐼) and random index 

(𝑅𝐼) 

 

𝐶𝑅 = 𝐶𝐼 𝑅𝐼⁄         (2.2)     

 

where 

 

𝐶𝐼 = (𝜆𝑚𝑎𝑥 − 𝑛) (𝑛 − 1)⁄     (2.3) 

 

In Eq. (2.2) and (2.3), 𝜆𝑚𝑎𝑥 and 𝑛 are the maximum eigenvalue and the dimension of the 

corresponding PCM, respectively. 𝑅𝐼 is the average of 𝐶𝐼 values of randomly generated 

PCMs. 𝑅𝐼 is scale dependent and should be calculated for each scale separately. Ref. 17 

suggests that a PCM with a maximum CR of 0.10 can be regarded as acceptably consistent. 

2.4.   Limitations of Existing Pairwise Comparison Scales in Terms of Consistency 

The comparative nature of AHP needs a ratio scale for pairwise comparisons6. The known 

scales, however, have difficulties in supporting this ratio characteristic. In the commonly 

used ratios scale, Fundamental Scale, for instance, each adjacent major gradation in the 

verbal part of the scale follows an arithmetic progression. This phenomenon is named26 as 

“arithmetic progression rule of the verbal part”. Similarly, the numerical correspondents of 

the verbal scale (1, 3, 5, 7, 9) follow an arithmetic progression. Due to the reciprocity axiom 

of AHP, numerical correspondents below 1 (1/3, 1/5, 1/7, 1/9) form a harmonic function, 

which is criticized11 as it disturbs the ratio nature of AHP. Combining all of the numerical 

scores yields a piecewise numerical function (Fig. 1), in which the ratio between each pair 

of adjacent numerical scores is different. We refer to this characteristic as “partial function 

characteristic” of a pairwise comparison scale. Not only Fundamental Scale but also other 

proposed scales (except Geometric Scale) are affected by the same feature. 
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Figure 1 Piecewise numerical function for Fundamental Scale 

In addition to the partial function characteristic, all of the known scales are affected by 

their upper and lower scale limits. Recall that consistency requires cardinal transitivity 

between all pairwise comparisons in an AHP application. This implies that for all 𝑎𝑖𝑗 , 𝑎𝑗𝑘, 

and 𝑎𝑖𝑘 

𝑎𝑖𝑘 = 𝑎𝑖𝑗  ∙   𝑎𝑗𝑘        (2.4) 

 

The analysis of paired-combinations of numerical scores (𝑎𝑖𝑗 , 𝑎𝑗𝑘) shows that only 173 of 

289 possible pairs yield an 𝑎𝑖𝑘 within the upper and lower limits of Fundamental Scale. 

The remaining 126 pairs, on the other hand, lie beyond the upper or lower limits. This 

problem of Fundamental Scale is named as the “boundary problem” and criticized by 

researchers11, 26, 27. However, Ref. 26 notes that any limited scale would suffer from this 

type of inconsistency tendency. Table 2 shows the extent of the boundary problem for 

existing pairwise comparison scales. Please refer to Appendix A Table A1 for a detailed 

analysis on Fundamental Scale. For the sake of consistency with the past research, this 

study uses numerical scores of various scales as originally suggested by their respective 

studies, as well as their corresponding upper and lower limits indicated in those studies. 

According to Table 2, Fundamental, Logarithmic, Power, and Root Square scales are 

comparatively more susceptible to the boundary problem (i.e., percent multiplications 

within limits). While Balanced and Geometric scales seem to be better in terms of this 

metric, Inverse Linear scale has the highest percentage of paired combinations that fall 

within the upper and lower boundaries of the numerical scale. 
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Table 2 Boundary problem and scale discreteness analyses for different numerical scales 

Scale 

Number of 

possible 

combinations 

Number of 

multiplications 

within limits 

Percent 

multiplications 

within limits 

Number of 

combinations 

corresponding to 

exact members 

within the scale 

Percent combinations 

corresponding to 

exact members 

within the scale 

Balanced 289 231 79.93% 55 19.03% 

Fundamental 289 173 59.86% 85 29.41% 

Geometric 289 217 75.09% 217 75.09% 

Inverse Linear 289 249 86.16% 73 25.26% 

Logarithmic 289 167 57.79% 61 21.11% 

Power 289 173 59.86% 85 29.41% 

Root Square 289 173 59.86% 85 29.41% 

 

Another critical problem regarding the cardinal transitivity requirement is that the 

multiplication of pairs does not always result in a numerical value on the scale. Suppose 

𝑎𝑖𝑗  = 8 and 𝑎𝑗𝑘 = 1/3. This combination is transitive if and only if 𝑎𝑖𝑘 = 8/3. Note that the 

suggested value of 𝑎𝑖𝑘 is not a member within Fundamental Scale. Obviously, such 

combinations may never satisfy cardinal transitivity, giving the scale an inherent 

propensity for inconsistency. This limitation is mainly attributed to scale discreteness. 

Ref. 26 shows that 44 of 81 possible paired-combinations are not members within 

Fundamental Scale. However, this analysis only examines the combinations of numerical 

scores between 1-9 with the numerical scores between 1/9-1. Extending the analysis to the 

entire numerical value range of Fundamental Scale shows that 204 of 289 possible paired-

combinations result in a numerical value that is not a member within the scale. Except for 

Geometric Scale, all scales appear to be highly susceptible to this inconsistency propensity 

due to scale discreteness. Columns 5 and 6 of Table 2 show the extent of this characteristic 

for existing pairwise comparison scales. 

According to Ref. 26, an AHP scale can uphold the transitivity if 

• its verbal part satisfies the arithmetic progression rule, and 

• its numerical part satisfies the geometric progression rule. 

Whether the verbal pairwise comparison scale satisfies an arithmetic progression or not is 

out of the scope of this study. Therefore, the discussion boils down to the geometric 

characteristics of numerical pairwise comparison scales. 

Geometric progression of the numerical pairwise comparison scale implies that for each 

element 𝑎𝑛 in a series 𝐴  

    𝑎𝑛/𝑎𝑛+1  =  𝑎𝑛+1 / 𝑎𝑛+2                         (2.5) 

 

Based on this requirement, a generalized geometric series can be formulated as 

 

𝑎𝑛 = 𝑎1 ∙ 𝑏(𝑛−1)       (2.6) 

where 𝑎𝑛 is the nth element of the series and 𝑏 is the common ratio between the successive 

elements. Note that Geometric Scale20 (𝑎𝑛 = 𝑎1 ∙ 2(𝑛−1)) satisfies the geometric 
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progression rule. Additionally, exponential series (𝑎𝑛 = 𝑎1 ∙ 𝑒(𝑛−1)) also satisfies the 

geometric progression. Although possible exponential series have been mentioned by Ref. 

20, to our knowledge none has been adapted for AHP applications. 

3.   The Proposed Method 

3.1.   The Idea 

An exponential pairwise comparison matrix is first proposed20 with the following 

generalized formula 

 

𝑎𝑖𝑗 = 𝑒𝜆𝛿𝑖𝑗     (3.1) 

 

where 𝑎𝑖𝑗  is the numerical score from the comparison between elements i and j, 𝛿𝑖𝑗 is an 

integer designating the gradation chosen by the DM to estimate the preference ratio 

between elements i and j, and 𝜆 is the scale constant. Each verbal comparison of a DM is 

converted to a numerical grade of 𝛿𝑖𝑗 by one-to-one mapping between the verbal 

comparisons and the numerical scale. Given the scale constant 𝜆 each verbal comparison 

has a numerical score 𝑎𝑖𝑗 . 

Ref. 20 notes that there is no unique value for scale constant 𝜆 and suggests that 𝜆 = 1 or 

𝜆 = 2 would be appropriate choices. This intuitive selection roots neither from a numerical 

formulation nor an experimental evidence that suggests the abovementioned values. The 

intuitiveness in this suggestion might be one of the main reasons for exponential scale 

being unable to become as popular as the other scales. 

3.2.   Exponential Scale Based on Fibonacci Series 

The Fibonacci series consists of integers where a number in the series is equal to the sum 

of the previous two numbers. This rule is mathematically formulated as 

 

𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2        (3.2) 

 

where the first two numbers in the series are initially defined as 𝐹1 = 1 and 𝐹2 = 1. Then, 

the elements of the series are as follows 

 

1    1    2    3    5    8    13    21    34    55    89 … 

 

If we disregard the initially defined first element, the elements in Fibonacci series have an 

exponential characteristic due to the nature of its formulation (Eq. 3.2). Reciprocity 

condition of AHP implies that for all i and j 

 

𝑎𝑖𝑗 = 1/𝑎𝑗𝑖     (3.3) 
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Parametrizing the mathematical function (Eq. 3.1) to satisfy this condition is possible by 

setting 𝛿𝑖𝑗 values to integers around 0. When 𝛿𝑖𝑗 = 0, the function yields a numerical score 

of 1, which is the numerical correspondent of “equal importance” in a verbal pairwise 

comparison. In order to represent the function in an easily understandable format, the one-

to-one mapping between the verbal scale and numerical grades is shown in Table 3. 

Table 3 One-to-one mapping between the verbal scale and numerical grades in exponential function 

Verbal Grades Numerical Grades (δij) 

Equally important 0 

Slightly more (less) important 2 (-2) 

Strongly more (less) important 4 (-4) 

Very strongly more (less) important 6 (-6) 

Extremely more (less) important 8 (-8) 

Compromises ±1, ±3, ±5, ±7 

 

Based on the given mapping, the elements of Fibonacci series fit very well on an 

exponential function as plotted in Fig. 2. 

Figure 2 The exponential function fit to the elements of Fibonacci series and their reciprocals 

Fig. 2 shows that the function formulated in Eq. 3.4 fits the points with an R-square value 

of “1.00”. However, the coefficient in the function results in an 𝑎𝑖𝑗  value of “1.166” even 

for equal importance situation, where 𝛿𝑖𝑗 = 0. The function is divided by the coefficient 

itself to achieve the final equation as 
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𝑎𝑖𝑗  = 1.166𝑒0.4818𝛿𝑖𝑗 / 1.166 = 𝑒0.4818𝛿𝑖𝑗         (3.4) 

 

The abovementioned formula yields a unique value for each verbal comparison and 

corresponding numerical grade. This mapping is shown in Table 4. 

Table 4 One-to-one mapping of numerical values for each verbal scale gradation and its 

corresponding numerical grade 

Verbal Scale Numerical Grade 

(δij) 

Approximate Numerical 

Value (𝑎𝑖𝑗) 

Extremely less important -8 0.021 

 -7 0.034 

Very strongly less important -6 0.056 

 -5 0.090 

Strongly less important -4 0.146 

 -3 0.236 

Slightly less important -2 0.382 

 -1 0.618 

Equally important 0 1.000 

 1 1.619 

Slightly more important 2 2.621 

 3 4.244 

Strongly more important 4 6.870 

 5 11.123 

Very strongly more important 6 18.008 

 7 29.154 

Extremely more important 8 47.200 

 

With the mapping between the verbal scale and the corresponding numerical values for 

pairwise comparisons, the function becomes a numerical pairwise comparison scale. This 

scale is referred to as “Fibonacci Series-Based Exponential Scale” (FSBES) in the rest of 

the study. 

The exponential characteristic of the new scale brings several advantages. The first 

advantage is that the function is not a piecewise function and the ratio between each 

adjacent pair of elements is constant, as shown in Eq. 3.5. AHP, by its nature, makes use 

of ratio scales for numerical score assessments. FSBES may be more compatible to AHP 

as a ratio scale than those with partial functions and variable ratios.  

 

𝑒0.4818 ∙ (𝑛+1) / 𝑒0.4818 ∙ 𝑛 = 𝑒0.4818     (3.5) 

 

Secondly, FSBES is extendable without deforming the constant ratio property, mainly 

because it is defined as a continuous function with geometric progression. However, one 

should still keep in mind that the boundary problem exists for all pairwise comparison 

scales with upper and lower bounds. Table 5 exhibits the extent of the boundary problem 

and inherent inconsistency due to scale discreteness for FSBES as well as Fundamental 
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Scale as a benchmark. FSBES performs well in terms of both boundary problem and scale 

discreteness. The reader is referred to Table 2 for the performances of other scales. 

Table 5 Possible paired-combination results within limits of the scale and/or defined by the scale 

(Fundamental Scale vs. FSBES) 

Scale 

Number of 

possible 

combinations 

Number of 

multiplications 

within limits 

Percent 

multiplications 

within limits 

Number of 

combinations 

corresponding to 

exact members 

within the scale 

Percent combinations 

corresponding to 

exact members 

within the scale 

Fundamental 289 173 59.86% 85 29.41% 

FSBES 289 217 75.09% 217 75.09% 

 

Another advantage is that the multiplication of each paired-combination (𝑎𝑖𝑗 ,𝑎𝑗𝑘) is an 

element of the main function, as shown in Eq. 3.6. 

 

𝑎𝑖𝑘 =  𝑎𝑖𝑗 ∙  𝑎𝑗𝑘 =  𝑒0.4818(𝛿𝑖𝑗+𝛿𝑗𝑘)   (3.6) 

Multiplication results being elements of the main function eliminate the inherent 

inconsistency tendency due to scale discreteness. Especially in large PCMs, the likelihood 

of satisfying cardinal transitivity decreases due to scale discreteness, even if ordinal 

transitivity is completely satisfied. In this regard, a numerical scale with a constant ratio 

between successive elements may be more likely to generate a higher consistency than that 

of variable ratios. 

It is also worth mentioning that Geometric Scale has a relatively high performance in 

inherent inconsistency tendency, just as FSBES. This indication can be attributed to the 

continuous functions and constant ratios that reside under the bases of these scales.  

4.   Computational Experiments 

AHP has been extensively discussed since its initial formulation. However, most of these 

discussions were either confined within theoretical borders or based only on a practical 

application of AHP to a selected decision problem. The conclusions on the general 

consistency characteristics drawn from such studies, thus, remain highly limited and 

narrow in scope.  

On this regard, this study utilizes an inherently more generalizable, empirical analysis 

based on simulations of randomly generated scenarios. The analyses were carried out by 

generating large numbers of random PCMs to compare consistency tendencies of pairwise 

comparison scales with that of Fundamental Scale. Fig. 3 shows the flow of the algorithm 

starting from the generation of random PCMs to performance measurements and 

generalization phases. It is also worth mentioning that this approach can be used in various 

combinations of local weight calculation methods and error approximation methods. 
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Figure 3 Basic algorithm representing the process of performance measurement 

Each scale is tested through this algorithm for various matrix dimensions (3x3 to 7x7) and 

different CR acceptance limits (0.15, 0.10, 0.05). Each scale is compared against 

Fundamental Scale, as it is the most widely used pairwise comparison scale28. Then, the 

results were compared and evaluated via multiple performance metrics: 

• CR Comparison: These metrics represent the percentages of PCMs, where the 

measured scale or Fundamental Scale generated a more consistent PCM, or the cases 

with equal CR values. 

• Measured Scale Lower CR: The percentage of successful trials for which the use 

of measured scale resulted in a lower CR value 

• Fundamental Scale Lower CR: The percentage of successful trials for which the 

use of Fundamental Scale resulted in a lower CR value 

• Equal CR: The percentage of successful trials for which both measured scale and 

Fundamental Scale resulted in the same CR value 

• Inconsistency Percentages: The simulation algorithm was formulated such that even if 

one of the compared scales generates an acceptably consistent PCM, then the trial is 

successful. This limit is used in order to avoid data disturbance resulting from 

unacceptably inconsistent matrices for both scales. Once the trial is successful, then it 

is assigned to one of the below-mentioned categories in order to give the reader a more 

detailed understanding of the consistency tendencies of different scales. 

• Fundamental Scale Inconsistent: The percentage of successful trials where 

Fundamental Scale generated intolerably inconsistent PCMs 

• Measured Scale Inconsistent: The percentage of successful trials where measured 

scale generated intolerably inconsistent PCMs 

• Both Scales Consistent: The percentage of successful trials where both scales 

generated consistent PCMs 
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• Choosing the Same Best/Worst: This group of metrics represents the respective 

percentages of the successful trials, in which, both of the compared scales point out 

the same alternative as the best/worst. These percentages indicate how close the results 

would be if the aim was only to select one of the alternatives as the best/worst. 

• Same Best Chosen: The percentage of successful trials where both scales selected 

the same item as the best choice 

• Same Worst Chosen: The percentage of successful trials where both scales 

selected the same item as the worst choice 

• Overall Ranking Similarity: In case the DM is not only looking for the single best 

option but aims to divide the resources based on the weights, all of the individual 

weights become important. Therefore, it is also valuable to see how much the weight 

vectors differ based on the selected scale. The metrics in this group helps the reader 

see how close the entire set of resultant weights to those generated by Fundamental 

Scale.  

• Kendall’s Tau Mean: The average ranking correlation of weight vectors obtained 

from the same PCM generated by different scales (Fundamental Scale and 

measured scale), in terms of Kendall’s Tau correlation coefficient 

• Kendall’s Tau Standard Deviation: Standard deviation of Kendall’s Tau values 

for all successful trials 

Abovementioned performance metrics are reported as the average results of 1000 

successful trials for each “measured scale – matrix dimension – CR limit” combination. 

For each scale, RI values are calculated by simulations and respective RIs are used for CR 

calculations. Table 6 shows the performance results of FSBES in 3x3 PCMs against 

Fundamental Scale. The first column represents the dimension of PCMs. For each 

dimension, three different acceptable CR limits are used in order to assess the CR limit 

sensitivity of the results. The results of each CR limit have been tabulated on the 

corresponding row. Columns 3 and 4 show the percentage of the PCMs where the measured 

scale and Fundamental Scale resulted in a lower CR value, respectively, and column 5 

shows the percentage of the PCMs where CRs were equal for both scales. Columns 6 and 

7 show the percentages where one scale was consistent while the other one was 

inconsistent. Column 8 shows the percentage successful trials, where both scales generated 

acceptably consistent PCMs. According to Table 6, FSBES shows better consistency 

characteristics as it resulted in lower CR values. Moreover, it can also be deduced that 

FSBES tends to create more consistent PCMs even when the PCM formed by Fundamental 

Scale is inconsistent. This trend is observed more evidently with increasing PCM 

dimensions. 

Although FSBES results in lower CR values in general, it should still be checked if it 

actually creates irrelevant PCMs. Therefore, not only the CRs but also the final rankings 

pointed by both scales have been checked. Columns 9 and 10 show percentages of PCMs 

that pointed the same best and worst elements for both numerical comparison scales. 

Columns 11 and 12 show the comparison results of entire rankings in all successful PCM 

pairs. For these comparisons, Kendall’s Tau rank correlation coefficients29 have been 

calculated. Kendall’s Tau rank correlation coefficient (τ) takes values between -1 (complete 
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disagreement between two rankings) and +1 (complete agreement between two rankings). 

Simulation results indicate that the average Kendall’s Tau values are very close to +1 for 

FSBES, which shows that the rankings with FSBES do not differ significantly from those 

with Fundamental Scale. Although ranking preservation has been observed to decrease 

with increasing matrix dimension, the percentages still remain well above 85% showing a 

high correspondence rate with Fundamental Scale results. Detailed results regarding all 

scales can be seen in Appendix B. 

Table 6 Performance results of FSBES in comparison to Fundamental Scale (3x3 matrices) 

n CR 

Limit 

Measured 

Scale 

Lower 

CR 

Fund. 

Scale 

Lower 

CR 

Equal 

CR 

Fund. 

Scale 

Incons. 

Measured 

Scale 

Incons. 

Both 

Scales 

Consistent 

Same 

Best 

Chosen 

Same 

Worst 

Chosen 

Kendall's 

Tau 

Mean 

Tau 

Standard 

Deviation 

3x3 0.15 67.00% 32.90% 0.10% 25.00% 15.40% 59.60% 96.40% 97.30% 0.9555 0.1643 

 0.10 68.90% 31.10% 0.00% 41.00% 11.90% 47.10% 97.40% 97.00% 0.9608 0.1540 

 0.05 65.50% 34.40% 0.10% 54.70% 17.40% 27.90% 100.00% 99.80% 0.9961 0.0367 

 

Fig. 4 shows the CR performances of different scales for each matrix dimension from 3x3 

to 7x7. Data points represent the percentage of trials for which the PCM generated by the 

measured scale resulted in a lower CR value than that of Fundamental Scale. Apparently 

Logarithmic and Root Square scales have very poor performance in terms of CR when 

compared to Fundamental Scale. The other scales tend to have better CR characteristic with 

increasing matrix dimension. While Power Scale appears to be the top performer in this 

measure, Geometric Scale and FSBES reach Power Scale’s performance. Balanced and 

Inverse Linear scales seem to be somewhat slow to catch up with the others. For the sake 

of simplicity, only the performances for CR limit of 0.10 are visualized in Fig.4. 

 

Figure 4 Performances of different scales in terms of generating lower CR PCMs (CR Limit=0.10) 
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Averaging the directly measurable five performance criteria of each scale over all matrix 

dimensions from 3x3 to 7x7 results in an overall performance of the scales for the 

corresponding CR limit. Fig. 5 shows the map chart that illustrates the results for each 

scale. Apparently, all measured scales are somewhat aligned with Fundamental Scale in 

terms of weight vector related measures (Kendall’s Tau Mean, Same Best/Worst Chosen). 

In terms of consistency, on the other hand, FSBES, Geometric, and Power scales appear to 

be the ones with the highest performance. 

 

Figure 5 Comparison of scales based on averaged performance scores (CR Limit=0.10) 

Although Fig. 5 demonstrates the results for CR=0.10 case, the performances are also 

similar for CR limits of 0.05 and 0.15. 

 

5.   Discussion and Concluding Remarks 

Despite being the most widely used pairwise comparison scale in AHP applications, our 

study indicates that Fundamental Scale tends to introduce large inconsistencies into PCMs. 

First, although numerical comparisons in AHP are based on ratio comparisons in theory, 

the ratios between successive elements vary in Fundamental Scale, which can be 

considered as impedimentary.  

Fundamental Scale also tends to bring along two types of different inconsistency 

characteristics to PCMs. The first inconsistency introduced by Fundamental Scale is related 

to the boundary problem. This issue has previously been addressed26 in the literature, 

however, the analysis was somewhat limited in terms of possible scenarios. This study 

extends the boundary problem analysis in a more generalized way with further 

improvement possibilities. Our analysis also indicates that all of the evaluated scales are 

eventually vulnerable to the boundary problem, while some scales (including Fundamental 

Scale) are significantly more susceptible than others.  
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The second and more critical inconsistency characteristic roots from scale discreteness, 

which means that the multiplication of some of the possible numerical score pairs are not 

actually members within the scales themselves. This characteristic is particularly important 

as cardinal transitivity is ultimately necessary for perfect consistency in an ideal case. The 

multiplications of pairs not being members within the scale, on the other hand, contradicts 

with cardinal transitivity. It is expected that the scales with geometric progression (or 

similar to geometric progression) eliminate this inconsistency propensity.  

Geometric and exponential type series satisfy the geometric progression rule, thus, they 

may bring an advantage to decrease the unwittingly introduced inconsistencies based on 

the nature of the numerical pairwise comparison scale. An earlier proposal for an 

exponential type scale did not attract much attention. The very first idea of an exponential 

type scale has been formulated on an intuitive basis, which may have played a role in its 

unpopularity.  

One of the most famous series that largely satisfy the exponential progression rule is the 

Fibonacci series. With slight adjustments, Fibonacci series can be formulated on 

exponential basis and used as a numerical pairwise comparison scale in AHP. This new 

scale is called FSBES. 

When compared with Fundamental Scale, proposed FSBES has three main advantages: 

• Ratios between successive elements of the scale are constant. 

• Possible paired combination multiplications are more likely to be within the upper and 

lower limits. 

• Possible paired combination multiplications are more likely to correspond to the 

existing values within the scale. 

Considering these advantages, FSBES is expected to result in generating more consistent 

PCMs, when the same verbal comparisons are used as inputs. 

In line with the preliminary expectations, our simulations show that FSBES has superior 

performance in terms of consistency when compared to Fundamental Scale. Another 

notable finding is that FSBES has better consistency properties without deviating 

significantly from Fundamental Scale’s results. We note that despite the abovementioned 

issues, Fundamental Scale is still the most commonly used numerical pairwise comparison 

scale, thus an important benchmark. FSBES provides very similar results to those of the 

common and proven practice, i.e., Fundamental Scale. Additionally, more consistent PCMs 

ultimately mean that FSBES relieves the burden of revising PCMs for multiple times, thus 

improving AHP’s practical applicability. 

Our results also indicate that FSBES’s comparative consistency performance becomes 

much better with increasing PCM dimensions. The change in the CR limits for the same 

matrix dimension, on the other hand, does not have a significant effect on the consistency 

performance indicators. Based on ranking comparisons, it is observed that the increasing 

PCM dimensions slightly decreased the ranking correlations of the PCMs generated by 

Fundamental Scale and FSBES. Keeping the matrix dimension constant, decreasing the 

CR limit led to higher correlations between the PCMs generated by Fundamental Scale and 

FSBES. 
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Similar to FSBES, Geometric and Power scales have good consistency performance scores. 

Yet, it should be noted that the most important problem for the Geometric Scale20 is that 

the upper limit of 256 severely violates26 the homogeneity axiom of AHP. Although not as 

much as for Geometric Scale, the upper limit of 81 in Power Scale also violates the same 

axiom. FSBES, on the other hand, is more acceptable with respect to the homogeneity 

axiom, when compared to the other scales with geometric progression. Therefore, it may 

be more preferable to use FSBES when computational limitation of the human mind is 

considered.  

6.   Limitations and Future Research 

Our study is limited to the comparison of the most frequently discussed numerical scales 

with Saaty’s Fundamental Scale. Therefore, the results do not necessarily indicate the 

performances of all of the scales against one another. Further research may be focused on 

more detailed analysis on paired comparisons of the scales to investigate their overall 

performances. Additionally, further research can be extended to include more numerical 

pairwise comparison scales including the recently developed and less frequently used ones. 

In our simulations, the weight vectors of PCMs are calculated through Eigenvalue Method 

(EVM). According to Ref. 30, Mean of Normalized Values is frequently used to 

approximate the EVM in many practical applications. Similarly, Row Geometric Mean 

Method31 is seen as a strong alternative to EVM. Future research may examine the effects 

of the use of different weight extraction methods on scale-wise consistency performances. 

Similarly, consistency performances are calculated through EVM. For these calculations, 

RI values for each scale have been generated through Monte Carlo simulations in line with 

literature32. Future research may make use of alternative consistency measure techniques, 

such as Geometric Consistency Index (GCI). 

Another important point to consider is the behavior of a DM against variation of numerical 

scale. Does a DM change the verbal judgement if the numerical scale changes? A rational 

DM, who knows what numerical value corresponds to his/her verbal judgements may not 

use the same verbal evaluations for different scales. In such a case, the DM may adjust the 

verbal evaluations so that the numerical judgements represent his/her actual idea of the 

ratio weights. Thus, we believe that the use of the same verbal scale should be carefully 

considered in numerical scale comparisons.  

The above-mentioned limitation applies to our study, as well. In our simulations, PCMs 

are generated based on Fundamental Scale, and then, numerical scores in the PCMs are 

converted to the corresponding numbers in other scales. Effectively, this means the use of 

same verbal scale for both Fundamental and the measured scale. Further research may 

investigate the DM’s perception of the verbal scale when different numerical scales are 

used.  

Another limitation worth mentioning is that simulation durations significantly increased 

with increasing PCM dimensions and decreasing CR limits. For the sake of time and 

simplicity, our simulations were run up to 7x7 PCMs. Further study may focus on 
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generating a larger mapping to see if the patterns found in our study would change for 

larger PCMs. In order to preserve the randomness of the PCM generation, we did not 

introduce any bias in the selection of scores. However, several existing methods introduce 

bias on the random selection based on the choice of the first comparison score. Simulation 

durations may be decreased by introducing bias towards the first selection, yet, it may 

disturb the overall randomness of PCMs, and thus, the results may differ from ours’. 

It is also worth mentioning that the base parameter “𝑒0.4818” in Eq. 3.4 has an approximate 

value of 1.619, which is very close to the so-called “Golden Ratio” (~1.618). Future 

research can also focus on the analysis of the Golden Ratio in strength of preference 

between alternatives. 

Finally, the current study adopted an inductive approach where major scales were first 

analyzed based on initial findings with regards to their consistency characteristics. Then, 

these findings have been thoroughly tested through wide-encompassing and extensive 

simulations. This, in our opinion, brings along more universal and agreeable results 

compared to generalizing from a single case study based on a unique AHP application. 

Arguably, even in this form, the results remain fairly limited in scope and cannot be used 

to derive a theory nor improve an existing one. Thus, future studies should embrace a 

deductive approach where they start from an existing theory and employ a top-down 

approach to design specific methods and techniques to improve the theory and practice of 

AHP. 
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Appendix A.   Consistency Characteristics Analysis 
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Appendix B.   Computational Experiment Results 
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