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Abstract—Non-orthogonal multiple access (NOMA) is a 

promising scheme to improve the spectral efficiency, user 

fairness, and overall throughput in visible light communication 

(VLC) systems. However, the error propagation problem 

together with linear and nonlinear distortions induced by 

multipath, limited modulation bandwidth, and nonlinearity of 

light emitting diode significantly limit the transmission 

performance of NOMA-VLC systems. In addition, having an 

accurate channel state information, which is important in the 

recovery of the NOMA signal, in mobile wireless VLC is 

challenging. In this work, we propose a convolutional neural 

network (CNN)-based demodulator for NOMA-VLC, in which 

signal compensation and recovery are jointly realized. Both 

simulation and experiment results show that, the proposed 

CNN-based demodulator can effectively compensate for both 

linear and nonlinear distortions, thus achieving improved bit 

error ratio performance compared with the successive 

interference cancellation and joint detection-based receivers. 

Compared to SIC, the performance gains are 1.9, 2.7, and 2.7 

dB for User1 for the power allocation ratios (PARs) of 0.16, 

0.25, and 0.36, respectively, which are 4, 4, and 2.6 dB for 

User2 for PARs of 0.16, 0.25, and 0.36, respectively. 

 
Index Terms—visible light communications (VLC), non-

orthogonal multiple access (NOMA), convolutional neural 

network (CNN). 

I. INTRODUCTION 

ISIBLE light communications (VLC) is one of the possible 

contenders for short range communications and local area 

networks in the fifth generation networks [1]. Multiple 

access technologies can increase the data rates and reduce the 

cost significantly, thus contributing to the implementation and 

commercialization of VLC systems in a range of applications 

in indoor environments. To date, the used multiple access 

schemes in cellular networks are based on orthogonal multiple 

access (OMA) schemes including frequency division multiple 

access (FDMA), time division multiple access, code division 

multiple access, and orthogonal frequency division multiple 

access (OFDMA), in which users are allocated with orthogonal 

resources (i.e., distinct frequency channels, time slots, and 

signature codes). The orthogonality feature ensures low levels 
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of interference between user at the cost of imposing the upper 

limit on the number of supported users, achievable data rate and 

spectral efficiency. Recently, non-orthogonal multiple access 

(NOMA)-based schemes have attracted considerable attentions 

from academia, industry and standardization bodies (i.e., the 

3rd generation partnership project) due to their improved 

spectral efficiency and user fairness, low transmission latency, 

and higher cell-edge throughputs [2-6]. 

   Application of NOMA in VLC systems have been widely 

reported [7]. In [8], NOMA was shown to be particularly 

suitable for VLC due to high signal to noise ratio (SNR), 

whereas in [9-11], it was shown that for VLC downlinks 

NOMA could achieve improved transmisison performance 

(such as higher sum rates for a larger number of users) 

compared with OMA. Effective power allocation methods for 

NOMA-VLC have been extensively investigated in the litrature 

[8, 12-13]. In [8], a gain ratio power allocation (GRPA) strategy 

that considered users’ channel conditions to ensure efficient and 

fair power allocation was proposed, whereas in [12] optimal 

power allocation schemes for both static and mobile users were 

proposed. In [13], a user grouping and power allocation method 

was proposed for NOMA-VLC multi-cell networks and in [14] 

a downlink power allocation scheme was proposed to achieve a 

flexible tradeoff between the sum rate and user fairness. The 

experimental demonstration of NOMA-VLC links with higher 

system capacity were reported in [15-18]. In [15], a 

bidirectional NOMA-OFDMA VLC link with dynamic 

bandwidth allocation and higher system capacity for a larger 

number of users was experimentally investigated. In [16], a 

phase pre-distortion method to improve the symbol error rate 

performance of an uplink NOMA-VLC system was proposed 

and experimentally demonstrated. In [17], an offset quadrature 

amplitude modulation (OQAM)/OFDM combined with NOMA 

was proposed and experimentally demonstrated in a multi-user 

and asynchronous multi-cell VLC system. In [18], a real-time 

software reconfigurable dynamic power-and-subcarrier 

allocation scheme for OFDM-NOMA VLC was proposed and 

expeimenatlly investigated. In addtion, the use of NOMA in 

multiple inputs multiple outputs VLC were reported in [19, 20]. 

   In NOMA-VLC systems, there are two issues: (i) error 

propagation (EP) due to the use of successive interference 

cancellation (SIC)-based receiver (Rx) for decoding the 

multiplexed signal [21]; (ii) link performance being susceptible 
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to multipath induced linear and nonlinear distortions, limited 

modulation bandwidth BLED and nonlinearity of LEDs, etc. A 

SIC-free NOMA scheme was proposed in [22] to mitigate the 

EP, thus improving the user’s fairness and the bit error rate 

(BER) performance. To mitigate the linear and nonlinear 

distortions, accurate channel state information (CSI) is required, 

which is challenging to achieve under the user’s mobility and 

driving bias drift. The channel estimation (CE) technologies 

adopted in radio frequency (RF)-based communication systems, 

such as pilot adied CE may also be applicable to VLC, but 

suffer from a notable residual error floor and not adapting to 

CSI variations [23-24]. As shown in [15], the CE error degraded 

the link performance. However, linear and hybrid equalizers 

based on an adaptive finite impulse response (FIR) filter with 

and without Volterra series and look-up table schemes, 

respectively have been widely studied to mitigate the linear and 

nonlinear distortions in VLC systems [25-28]. In [29], a 

singular value decomposition-based Chebyshev precoding 

method was proposed for nonlinear compensation in NOMA-

VLC. 

   Recently, machine learning (ML) techniques especially the 

neural networks (NNs) have been introduced in VLC to make 

them become more efficient by addressing many problems in 

the physical layer. In [30] and [31], a clustering algorithm-based 

perception decision method and a nonlinear compensation 

scheme based on K-means clustering algorithm were proposed 

for multi-cap and Nyquist pulse amplitude modulation (PAM) 

VLC systems, respectively. In [32], a memory controlled deep 

long short-term memory (LSTM)-based post-equalizer was 

proposed to mitigate transmission impairments in PAM-VLC. 

In [33], a deep-learning (DL)-based multi-colored VLC link 

using red, green, and blue LEDs was reported. In [34], the 

design and implementation of a VLC link with ML-based signal 

demodulation method was investigated. 

In this work, we propose a convolutional NN (CNN)-based 

signal demodulator to mitigate both linear and nonlinear 

distortions in NOMA-VLC. The captured NOMA signals are (i) 

used to train the CNN in the offline mode; and (ii) directly 

applied to the CNN-based demodulator for signal compensation 

and recovery in the online mode. Note that, there is no need for 

the free-space channel response in detecting the NOMA signal. 

Using simulation and experiment results, we show that the 

proposed CNN-based demodulator can effectively mitigate 

linear and nonlinear distortions, thus improving the system 

performance.       

The rest of the paper is organized as follows. Section II 

describes the proposed CNN-based demodulation method in 

detail. Section III presents the simulation setup and results for 

the CNN-based NOMA-VLC system. Section IV presents the 

experiment setup and results for the CNN-based NOMA-VLC 

system followed by the concluding remarks in Section V.   

II. CNN-BASED SIGNAL DEMODULATION METHOD 

Figure 1 shows the schematic diagram of NOMA-VLC with a 

CNN-based demodulator. At the transmitter (Tx), the data 

streams from the source data modules mapped into 4-

quadrature amplitude modulation (QAM) are applied to the 

OFDM modulators, the output of which are passed through 

power allocation modules prior to being combined.  The 

generated NOMA signal is direct current (DC) biased prior to  
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Fig. 1. Block diagram of NOMA-VLC system employing a CNN-based 

demodulator. 

 

intensity modulation (IM) of the LED. Following free space 

transmission, the optical NOMA signal is detected using an 

optical Rx (i.e., a photodiode (PD) and a transimpedence 

amplifier), the output of which is given by: 

,ty Ph w= +                   (1) 

where   is the responsibility of the PD, Pt is the transmit 

optical power, and w is the additive white Gaussian noise 

(AWGN), which is the sum of contributions from the shot noise 

(induced by the signal and the ambient light) and the thermal 

noise. h is the channel gain from LED to the optical Rx as given 

by: 

2

( 1)
cos ( )cos( ),

2
LmL PDm A

h TG
d

 


+
=          (2) 

where mL is Lambertian emission order, APD is the active area 

of the PD and d is the distance between the LED and the PD. T 

and G are the gains of the filter and lens at the Rx, respectively. 
  and   are the emission and the incident angles, 

respectively. Note, the optical gain will be zero if the incident 

light is outside the Rx’s field of view. Following optical 

detection, the regenerated electrical NOMA signal is applied to 

the frame synchronization module. Note, at the Tx we have 

inserted two Chu sequences in each frame header of the NOMA 

signal. At the Rx, following correlation operation the frame 

head is readily detected and following frame synchronization 

the NOMA signal is decoded directly using the CNN-based 

demodulator, where distortion compensation and signal 

demapping are jointly realized.  In the SIC-based Rx, each 

user will decode its own message following decoding of the 

messages from relatively weaker users Uw (i.e., allocated with 

higher power), while treating messages from the stronger users 

Us (i.e., allocated with lower power) as the noise signal. In the 

meanwhile, for Uw the decoded messages are subtracted from 

the received signal. However, if the message of Uw cannot be 

decoded without an error, the generated error will propagate to 

Us, which is known as the EP problem. In addition, in SIC-

based Rxs accurate channel estimation is a requirement to 
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achieve an improved performance. Note, in VLC systems with 

the user’s mobility and driving bias drift, it becomes 

challenging to obtain the channel responses. In this work, the 

minimum mean square error (MMSE)-based CE [15] is used to 

calculate the CSI in the SIC-based Rx, which performs better 

than other conventional CE methods. However, the 

transmission performance is affected by high correlation among 

the channel responses of users due to the lack of small-scale 

effects when the transmit precoding schemes are applied. In the 

proposed CNN based demodulator, we have performed channel 

equalization implicitly with signal demodulation, therefore it 

suffers from less influence from the high correlation among the 

channel responses of users. In addition, no pilot overhead and 

CSI is required in CNN based Rx.  
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Fig. 2. The structure of CNN-based demodulator. 
    

Figure 2 shows the structure of the CNN-based demodulator, 

which comprises of the input layer, two convolutional layers, 

and output layer. The input layer with a dimension of N×2 

corresponds to the real and imaginary parts of signals 

modulated on N-subcarrier (i.e., XR and XI). In the first 

convolutional layer (Conv-1), X1 = [XR, XI] convolutes with M- 

kernel, the output of which is given as: 
1 1

1, 1,i i ib=  +Y X K ,            (3) 

where K1,i denotes the i-th kernel of Conv-1, i = 1, 2, …, M and 

b1,i is the bias of K1,i. To prevent overfitting and improve the 

training speed as well as speed-up the convergence process, we 

have added batch normalization (BN), which can be expressed 

as: 

E[ ]

Var[ ]
BN

x x
x

x
 



−
=  +

+
,          (4) 

where x is the input, xBN is the normalized output, and   and 

  are the learnable parameters. The activation function of the 

convolutional layer is the leaky rectified linear unit (Relu), 

which is a piecewise linear function performing a threshold 

operation, where any input value less than zero is multiplied by 

a fixed scalar. Relu has been adopted as the default activation 

function in many types of NNs because it is easier to train and 

often achieves improved performance. The final output of 

Conv-1 is given as: 
1

1, max(0,BN( ))i i=Z Y .           (5) 

The input of the 2nd convolutional layer (Conv-2) is X2 = [Z1,1, 

Z1,2, …, Z1,M]. Conv-2 contains 2U-kernel (i.e., K2,i, i = 1, 2, …, 

2U), where U is the number of users. X2 is first convoluted with 

K2,i as follow: 
2 2

2, 2,i i ib=  +Y X K ,              (6) 

where b2,i is the bias of K2,i. Sigmoid function is used as the 

output activation function, and the final output of Conv-2 is 

given as: 

( )2

2, sigmoid  ( ) ( )i ij j=Z Y .         (7) 

Note, as for the non-linearity there are several options, with the 

simplest being the threshold operation, which is adopted here.  

Thus, if Z2,i (j) > 0.5, the received i-th data bit on the j-th 

subcarrier is 1, otherwise it is 0. There are many functions, 

which could be used to estimate the error of a set of weights in 

NNs. A loss function is chosen in determining the error of the 

model during the optimization process, which is defined as the 

MSE. The network is trained with backpropagation and 

gradient descent with Rmsprop optimization. In general, NNs 

with more hidden layers or more network nodes per layer are 

potentially more powerful to express complex functions at the 

cost of increased computation complexity [35]. In addition, 

simple NNs would perform better than complex NNs in solving 

relatively simple problems [35]. In the convolutional layers, we 

have adopted a higher number of kernels, but with the reduced 

size for the ease of computation complexity. We have verified 

that, increasing the number of convolutional layers and the size 

of kernel will not improve the performance of NN-based 

demodulator as shown in the simulation results. Note, other 

NNs, such as fully connected NN (FNN), LSTM network, and 

hybrid networks (e.g., one convolutional layer plus one FNN) 

can also be used to decode the NOMA signal. However, the 

convergence speed of LSTM is much slower compared with the 

FNNs and CNNs. Due to its characteristic of sparse connections 

and weight sharing, convolutional layer-based NNs can use 

fewer training parameters to achieve the same performance 

compared with FNNs [36]. As such, convolutional layer-based 

NNs have the advantages of lower complexity, higher 

convergence speed and improved optimization of the network 

model, thus being adopted as the decoder in this work. In 

addition, we have verified that LSTM and FNN cannot achieve 

improved performance compared with the convolutional layer-

based NNs as shown in the simulation results. 

 

 
Fig. 3. P-U characteristic of the LED. 
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III. SIMULATION RESULTS 

In this section, we investigate the transmission performance of 

the proposed CNN-based Rx using Matlab and Python. At the Tx 

as shown in Fig. 1, two random binary data streams are converted 

into 4-QAM symbols prior to generation of OFDM signals. The 

sizes of inverse discrete Fourier transform (IDFT) and the cyclic 

prefix (CP) are 64 and 6, respectively. Note, the baseband OFDM 

signals are up-converted to a 3.75 MHz radio frequency (RF) 

carrier signal to ensure that OFDM signals are real. For OFDM 

signals the Baud rates are 5 M. Next, the two OFDM signals with 

different power levels are combined and DC-biased prior to IM 

of the LED. Note, the transmission performance of VLC systems 

is affected by the frequency response (i.e., BLED) and the power-

voltage (P-U) characteristic of the LED, see Fig. 3. In the 

simulation, we have assumed that, BLED is about 10 MHz. Here, 

we have used the experimental sampling data to fit the P-U curve, 

which can be expressed as: 

1

max

0                               <

=
       >=

(1 ( ) )

t

k k

b
U

a

aU b bP
U

aaU b

P





−
 −

+


,       (8) 

where a, b, k and Pmax are the fitting parameters, which are set to 

119.17, 215.18, 10, and 48 mW, respectively. As shown in Fig. 

3, the linear range is from 1.85 to 2.2 V, beyond which the 

transmitted signal will experience clipping (i.e., nonlinear 

distortion), which is more problematic in OFDM-based NOMA 

with a high peak to average power ratio. Following transmission 

over the free space channel, an optical Rx is used to regenerate 

the electrical NOMA signal for further processing. The NOMA 

signal is first frame synchronized and then down-converted to the 

baseband signal. Following CP removal, the NOMA signal is 

converted back to the frequency domain using discrete Fourier 

transform (DFT). The CNN-based demodulator is then used to 

decode the NOMA signal directly. In the simulation, both data 

sets for offline training and online deployment are generated 

randomly using the random function of Matlab, so that the 

proposed NN-based Rx is unable to characterize the random 

sequences used [37]. Here, we have used data sets of 128000- and 

128000-bit for training and testing, respectively. Finally, the 

performance of the link is evaluated in terms of the BER. All the 

key system parameters are provided in Table I.  

   
TABLE I. SIMULATION PARAMETERS 

Parameter Value 

• Modulation bandwidth of LED 

• Power allocation ratios 

• Number of users 

10 MHz 
0.16, 0.25, 0.36 

2 

NOMA-OFDM 

• DFT 

• CP 

• RF carrier frequency 

• Symbol rate 

• Modulation format 

• Total bit rate 

 

64 
6 

3.75 MHz 

5 M 
4-QAM 

18.3 Mbps 

    

Table II shows the BER performances as a function of the 

kennel size with power allocation ratio (PAR) of 0.25 under the 

received signal to noise ratio (SNR) of 13. The DC bias and the 

peak to peak voltage Vpp of the driving signal are set to 2.1 and 

0.6 V, respectively. The numbers of kernel in Conv-1 and 

Conv-2 are set to 64 and 4, respectively. As shown in Table II, 

the best kernel size is 1×2 considering the BER performance 

and complexity of CNN. Table III shows the BER 

performances as a function of the number of convolutional layer 

with the PAR of 0.25 under the received SNR of 13. The DC 

bias and tVpp of the driving signal are set to 2.1 and 0.6 V, 

respectively. The number of kernels for the last convolutional 

layer and other layers are 4 and 64, respectively. The BER 

performances do not improve as the number of convolutional 

layer increases, but the complexity of CNN significantly 

increases. Based on the above simulation investigations, the 

kernel size and the number of convolutional layer are set to 1×
2 and 2, respectively considering the BER performance and the 

complexity of NN.  

     
TABLE II. BER PERFORMANCE VERSUS KERNEL SIZE 

Kernel size BER of User1 BER of User2 Average BER 

1×2 1.2e-5 7.3e-5 4.3e-5 

2×2 0 9.2e-5 4.6e-5 

3×2 0 1e-4 5e-5 

    
TABLE III. BER PERFORMANCE VERSUS CONVOLUTIONAL LAYER 

NUMBER 

Layer number BER of User1 BER of User2 Average BER 

2 1.2e-5 7.3e-5 4.3e-5 

3 1.3e-5 7.3e-5 4.3e-5 

4 1.2e-5 7.6e-5 4.4e-5 

   
TABLE IV. COMPLEXITY COMPARISON FOR CNN, FNN AND LSTM 

Network Type CNN FNN LSTM  

Number of 

parameters 

3M+2MU+

2U 

2N(M+UM+U)

+M 

4(M2+3M+4U2+2U

M+2U) 

Complexity of 

Network 

(2U+2)NM 2NM(U+1) N(4M2+11M+16U2

+8UM+6U) 

M is the number of kernel of Conv-1 for CNN, or the number of nodes in the 

hidden layer for LSTM and FNN. U is the number of users and N is the number 
of subcarriers. 

 

 
Fig. 4 BER performance comparison for CNN, FNN, and LSTM. 

  

FNN and LSTM networks are also considered here. The 

comparison of BER performances and complexities with the 

PAR of 0.25 for CNN, FNN, and LSTM are shown in Fig. 4 
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and Table IV, respectively. The DC bias and Vpp of the driving 

signal are set to 2.1 and 0.6 V, respectively. The numbers of 

hidden layer for FNN and LSTM are both 1, which contains M 

nodes (M = 64). As shown in Table IV are the expression for 

the number of parameters and the computational complexity of 

LSTM, FNN and CNN. As shown in Fig. 4, CNN offers 

improved performance than both FNN and LSTM particularly 

at higher values of SNR. 

 

 
Fig. 5. The BER performances with and without nonlinear distortion for SIC, 

JD, and CNN-based Rxs for PAR of 0.25. 

 

   As part of efficiency evaluation of the proposed CNN-based 

Rx, we have considered the SIC and joint detection (JD)-based 

Rx for comparison. The JD algorithm can be expressed as:  

1 2 1 2

1 2

{ , } arg max Prob( / , )

              { , }

x x y x x

x x

=
,         (9) 

where (
1 2,x x ) is the detected signal-pair output by the JD 

algorithm. JD is a maximum-likelihood (ML) estimation 

method, which performs better than SIC at the cost of higher 

computational complexity [38]. The computational complexity 

to decode the NOMA signal in (9) is N×4U. Note, channel 

estimation and equalization is also required for JD-based Rx.  

Fig. 5 show the average BER performance as a function of Vpp 

for the PAR of 0.25. The noise power in (1) is 32 dBm. Both 

JD and CNN-based Rx show improved BER performances 

compared with the SIC-based Rx. With no nonlinear distortion, 

the BER performances improves with increasing Vpp, because 

of increasing SNR. With nonlinear distortion, the BER 

improves with Vpp, reaching the minimum values at Vpp of 0.8, 

0.7, and 0.7 V for SIC, JD, and CNN, respectively, beyond 

which the BER increases due to nonlinear distortions. Note, 

OFDM can effectively combat the linear distortion, thus the 

BER performances with and without nonlinear distortion are 

similar at lower Vpp. Fig. 6 shows the BER performance as a 

function of the received SNR for Vpp of 0.6V, and a range of 

power allocation ratios (PARs) of 0.16, 0.25, and 0.36 for CNN, 

JD, and SIC-based Rxs, respectively. For the PAR of 0.16, the 

required SNRs to achieve a BER of 3.8e-3 are about 6.6, 6.3, 

and 4.7 dB for User1 for SIC, JD, and CNN, respectively, which 

are 14, 13, and 10 dB for User2 for SIC, JD, and CNN, 

respectively. Compared with SIC, the performance gains are 0.3 

and 1.9 dB for User1 for JD and CNN, respectively, which are 

1 and 4 dB for User2 for JD and CNN, respectively. With the 

PAR of 0.25, the required SNRs to achieve a BER of 3.8e-3 are 

about 9.3, 8.5, and 6.6 dB for User 1 for SIC, JD, and CNN, 

respectively, which are 12, 11.6, and 8.1 dB for User2 for SIC, 

JD, and CNN, respectively. Thus, for Users 1 and 2 the 

performance gains are 0.8 and 2.7 dB; and  0.4 and 3.9 dB for 

JD and CNN, respectively. For the PAR of 0.36 and for Users 

1 and 2, the required SNRs are {12, 11.2, and 9.3 dB} and {12.6, 

12.3, and 10 dB} for  JD and CNN, respectively. 

 

 
       (a) 

 
       (b) 

 
      (c) 

Fig. 6. The BER performance as a function of SNR for the SIC, JD, and CNN-

based Rxs for PAR of: (a) 0.16, (b) 0.25, and (c) 0.36. 
 

TABLE V. SNR @ BER OF 3.8e-3  

 SIC JD CNN 

PAR=0.16 User1 6.6 dB 6.3 dB 4.7dB 
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User2 14 dB 13 dB 10 dB 

PAR=0.25 

 

User1 9.3 dB 8.5 dB 6.6 dB 

User2 12 dB 11.6 dB 8 dB 

PAR=0.36 User1 12 dB 11.2 dB 9.3 dB 

User2 12.6 dB 12.3 dB 10 dB 

. So the performance gains for JD and CNN are 0.8 and 2.7 dB, 

and 0.3 and 2.6 dB for Users 1 and 2, respectively. The results 

indicate that, the proposed CNN-based Rx can effectively 

compensate for both the linear and nonlinear distortions, thus 

improving the BER performances compared with the SIC and 

JD-based Rxs. All the key simulation results are summarized as 

shown in Table V.  
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Fig. 7. Experiment setup for CNN-based NOMA-VLC. 

 

 

Fig. 8. Frequency response of the VLC system. 

 

 

Fig. 9. The measured BER as a function of Vpp for the CNN, JD, and SIC-based 

Rxs. 
 

IV. EXPERIMENT SETUP AND RESULTS  

In this section, we evaluate the performance of the CNN-

based Rx by experimental investigation using the setup shown 

in Fig. 7. At the Tx, the generated baseband NOMA signal with 

two users is up sampled by three and then up-converted to a RF 

carrier via digital I-Q modulation. This ensures the NOMA 

signal being real value for IM of the LED. The frequency 

response of the LED in the low frequency (0-1MHz) is not good 

as shown in Fig. 8. The NOMA signal would suffer from less 

distortion after up-conversion. The sizes of IDFT and the CP 

are 64 and 6, respectively. The modulation format is 4-QAM 

for each user. The digital NOMA signal is uploaded onto an 

arbitrary waveform generator (Tektronix AWG 70002A), the 

output of which is applied to an amplifier with a gain of 20 dB. 

The NOMA signal is DC biased using a bias tee prior to IM of 

a phosphorescent red LED having a 10-dB bandwidth of ~10 

MHz, see Fig. 8. At the Rx, a lens is used to focus the optical 

signal into the optical Rx (THORLABS PDA36A), which is 

composed of a PIN PD and a transimpedance amplifier, with a 

responsivity of 0.65 A/W, gain of 0.75×103 V/A and NEP of 

7.7×1011 W/Hz0.5. The regenerated NOMA signal is captured 

using a real-time digital oscilloscope (DPO 71604) for further 

offline processing. The detected NOMA signal is decoded using 

the proposed CNN, SIC and JD-based demodulators. Note, we 

have used a data set of 64000-bit for both training and testing.     

Fig. 9 shows the average BER performances as a function 

of Vpp of the driving signal for IM of the LED for CNN, JD, and 

SIC-based Rxs. The distance between the Tx and the Rx is 1 m 

and the total data rate Rb is 13.3 Mb/s. The DC bias is 2.1 V and 

the PAR is 0.25. As shown in Fig. 3, the signal suffers from 

high nonlinear distortion outside the range of 1.8  to 2.4 V (i.e., 

Vpp of 0.6 V). We can observe that, the BER improves with Vpp, 

reaching the minimum values at Vpp of 0.65 V for all the Rxs, 

beyond which the BER increases due to nonlinear distortions. 

The experimental results coincide with the simulation results 

shown in Fig. 5. The proposed CNN-based Rx outperform the 

SIC and JD-based Rxs due to its improved robustness against 

both linear and nonlinear distortions. 

Fig. 10 shows the BER performances as a function of  Rb 

for CNN, JD, and SIC-based Rxs. The distance between the Tx 

and the Rx is 1.2 m and the PAR is 0.25. The DC bias and Vpp 

of the driving signal are 2.1 and  0.65 V, respectively. At the 

BER of 3.8e-3, the achievable  Rb are 20.6, 21.4, and 24.9 

Mbps for User1 for SIC, JD, and CNN-based Rxs, respectively, 

which are 6, 11, and 19.4 Mbps for User2 for SIC, JD and CNN, 

respectively. Therefore, compared with the SIC-based Rx, the 

proposed CNN-based Rx can increase Rb  by up to 323 and 

121% for User2 and User1, respectively. It should be pointed 

out that, it is challenging to increase the modulation format 

order and the number of multiplexing layer in the power domain 

due to the limited SNR in practical applications. To increase the 

number of users, we can combine the NOMA scheme with 

OMA schemes, such as OFDMA so that each user can utilise 

all the subcarrier frequencies or a set of subcarriers to transmit 

its data. The users with similar channel gains from the Tx to the 

Rx are allocated in the same power domain layer, otherwise 

they are allocated in different power domain layers. 
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IV. CONCLUSION 

For the first time, we investigated the ML-based signal 

demodulation method in NOMA-VLC for joint signal 

compensation and recovery. We showed that, using offline 

training of NN channel characteristics and signal mapping 

could be achieved simultaneously. We carried out both 

simulation and experiment investigations to demonstrate the 

feasibility of the proposed CNN-based Rx in NOMA-VLC. 

Results showed that, the proposed CNN-based Rx could 

effectively compensate for both the linear and nonlinear 

distortions induced by multipath dispersion, limited modulation 

bandwidth and nonlinearity of LEDs, thus offering improved 

transmisison perofrmance compared with SIC and JD-based 

Rxs. Compared with the SIC-based Rx, the performance gains 

were 1.9, 2.7 and 2.7 dB for User1 for PARs of 0.16, 0.25, and 

0.36, respectively increasing by 2.1, 1.3, and 0 dB for User2 for 

the same PARs, respectively. For the PAR of 0.25, the 

increased data rates at the 7% FEC BER limit were 4.3 and 13.4 

Mbps for User1and User2, respectively. 

 

 
Fig. 10. The measured BER as a function of data rate for the CNN, JD, and SIC-

based Rxs. 
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