Research Papers

No. 18

PALAEOECOLOGICAL EVALUATION OF THE RECENT ACIDIFICATION OF WELSH LAKES

2. Llyn Berwyn, Dyfed

A. Kreiser¹, A.C. Stevenson¹, S.T. Patrick¹, P.G. Appleby³ F. Oldfield², B. Rippey⁴, J. Darley¹ & R.W. Battarbee¹ (With appendices supplied by the WWA)

Editors: A.C. Stevenson & S.T. Patrick

Palaeoecology Research Unit Department of Geography University College London

Report to the DOE under Contract PECD 7/7/139

Palaeoecological Evaluation of the Recent Acidification of Welsh Lakes. II. Llyn Berwyn, Dyfed

A. Kreiser¹, A.C. Stevenson¹, S.T. Patrick¹, P.G. Appleby³, F. Oldfield², B. Rippey⁴, J. Darley¹ & R.W. Battarbee¹

-78

- ¹ Palaeoecology Research Unit Dept. Geography University College London 26 Bedford Way London W.C.1H OAP
- Dept. Geography University of Liverpool P.D. Box 147 Liverpool L69 3BX
- ³ Dept. Applied Mathematics & Theoretical Physics University of Liverpool P.O. Box 147 Liverpool L69 3BX
- ⁴ Freshwater Laboratory University of Ulster Traad Point Drumenagh Magherafelt N. Ireland.

<u>Contents</u>

16

ile.

w

Page

٩

3		Summary
4		Figures
5		Tables & Appendices
6		Explanation of Abbreviations
7	1.0	Introduction
10	2.0	Site details
10	2.1	Lake
10	2.1.1	Lake chemistry
10	2.1.2	Lake fauna and flora
10	2.1.3	Fishing history
13	2.2	Catchment
13	2.2.1	Geology
14	2.2.2	Soils
14	2.2.3	Present vegetation
16	3.0	Methods
16	3.1.1	Surveying
16	3.1.2	Core collection
17	4.0	Results
17	4.1	Lake history
17	4.1.1	Sediment description
17	4.1.2	²¹⁰ Pb dating
25	4.1.3	Diatoms
25	4.1.4	Core chemistry
34	4.1.5	Carbonaceous cenospheres
37	4.1.6	Pollen
41	4.2	Catchment history
41	4.2.1	Land use
42	4.2.2	Land management
46	5.0	Discussion
46	5.1	Inwash & hiatus
46	5.2	pH reconstruction
49	6.0	Notes
50	7.0	Bibliography
53	8.0	Acknowledgements
54	9.0	Appendices
55		Appendix A
59		Appendix B
60		Appendix C
67		Appendix D
69		Appendix E

Summary

i) The LOI and dry weight profiles demonstrate a period of soil inwash probably associated with catchment drainage in 1974.

ii) The ²¹⁰Pb inventory of the core is incomplete and indicates strong dilution and missing sediment below 20 cm. The data suggest a hiatus in the core occurs at about 30 cm representing a time gap of at least 150 years.

iii) The diatom flora shows distinct changes in the upper 30 cm of the core. The pre-hiatus part of the core contains a mainly acidophilous diatom flora indicating pH values between 5.4 and 6.0. The pH decrease from 30-20 cm is thought to be an artefact of the reworking of older sediments caused by the post-1974 inwash event. The more recent pH decrease starts 8-13 cm above the hiatus. This is characterised by a large expansion of <u>A.ralfsii</u> and <u>Cymbella perpusilla</u> and indicates a water pH of 4.5-4.7 and conditions similar to those observed for the lake immediately before liming in 1984.

iv) Although the problems of a hiatus in Llyn Berwyn core prevent a full and detailed interpretation of the last 150 years history of the lake, the trace metal, sulphur and "CP" results do provide firm evidence that the lake has been contaminated by material deposited from the atmosphere. This started sometime before 1974, probably some tens of years, but trends of atmospheric contamination cannot be assessed.

v) While the post-hiatus pollen record is obscured by the secondary reworking of pollen from eroding blanket peats, the pre-hiatus pollen profile shows an already open moorland landscape with a few relict woodland populations of oak and birch.

vi) The documentary land use study has shown no appreciable change in land use or management apart from the recent afforestation.

vii) A comparison of the pre and post-hiatus diatom assemblages show that the lake has been acidified by approximately 1 pH unit (prior to liming). However, because of the uncertain dating the timing of this acidification is unkown.

viii) A further, post-hiatus, acidification can also be identified that may be related to the effects of deep drainage of the catchment in 1974.

ix) The analysis of a core containing a complete sedimentary record of the 19th and 20th centuries would enable the impact of both episodes of catchment drainage to be assessed independently of both forest growth and atmospheric input, and new cores from more favourable areas of the lake (if such exist) are required.

<u>Figures</u>

~

₽

**

1	llvn Rarwyn Inration man
<u>,</u>	Average appual deposition of commaring substates for the U.V. (Dadrawn
din 9	Average annual deposition of non marine surpliate for the D.K. (Redrawn
+ 92	Trom parret et al. 1703/.
* ن	Average annual rainfall weighted hydrogen ion concentration
	deposition for the U.K. (Redrawn from Barret <u>et al.</u> 1983).
4.	Bathymetry and coring locations for Llyn Berwyn
5.	Bi-weekly lake chemistry results before and after liming (Data supplied
	by WWA)
6.	Catchment diagram showing forestry planting map, trackways &
	contours
7.	Stratigraphic profile of the Llyn Berwyn I core
8.	Profiles of core variation in dry weight, wet density and loss on
	ignition for the Llyn Berwyn I core.
9	Total ²¹⁰ Pb profile for the Llyn Berwyn I core
10	Unsupported ²¹⁰ Pb profile for the Llyn Berwyn I core
11	¹³⁷ Cs profile for the Llyn Berwyn I core
12	CRS and CIC ²¹⁰ Pb age/ depth chronology for the Llyn Berwyn I core
13	Diatom concentration diagram for the Llyn Berwyn I core
14	Diatom percentage summary diagram for the Llyn Berwyn I core
15a	Variations in Na gdw ⁻¹ for the Llvn Berwyn I core.
15b	Variations in Na per gram mineral dry weight for the Llyn Berwyn I core .
16a	Variations in Mg gdw ⁻¹ for the Llvn Berwyn I core
16b	Variations in Mg per gram mineral dry weight for the Llyn Berwyn I core.
17a	Variations in K odw ⁻¹ for the Llvn Berwyn I core
17b	Variations in K per gram mineral dry weight for the Llyn Berwyn I core.
18a	Variations in Ca odw ⁻¹ for the Llvn Berwyn I core
18b	Variations in Ca per gram mineral dry weight for the Llyn Berwyn I core.
19a	Variations in Ni odw ⁻¹ for the Llvn Berwyn I core
19h	Variations in Ni per gram mineral dry weight for the Llyn Berwyn I core.
20a	Variations in Zn odw ⁻¹ for the llvn Berwyn I core
20h	Variations in 7n ner gram mineral dry weight for the llyn Berwyn I core.
21a	Variations in Ph odw-1 for the llvo Rerwyn I core
21h	Variations in Ph per gram mineral dry weight for the llyn Rerwyn I core.
224	Variations in Cu. adw-1 for the llve Berwyn I core
22h	Variations in Fu per gram mineral dry weight for the llyn Berwyn I core
23	Variations in S odw ⁻¹ for the llvn Rerwyn I core
20	farhonacenue narticle record ddw-1 for the llup Berwyn I core
25	Carbonaceous particle record gaw for the clyn bernyn i tore Carbonaceous narticle record ner gram mineral dry weight for the
পদ উপ	Llvn Berwyn I core.
26	Total nollen concentration diagram for the llvn Rerwyn I core.
27	Summary percentage colleg diagram for the live Rereve I core. Trees
÷	expressed as a nerrentane of the Arboreal nollen. All other provinings
	expressed as a percentage of the Arboreal pollon 4 the arouning.
20	Summary norcentage on the Aldorean for the llyp Rereys I rore. Taya
4 U	evorecced as a nerrentane of those shown
29	Shoon numbers in farnn and farnn-is-flawdd Parishes - 1947-1997
τń	where howers in on on and only in the densities in Corner and Crude sheep/rough grazing storking densities in Corner and
ΨV	orwoe onceptrough yraciny scockiny uchsicies in berun and Caron-ie-Flawdd Parichae - 1995-1993
T 1	nd raronetriction of the llyn Barwon rora arrondian to three dilleged
ى تى،	anthodes. Index R. Index R. (Galloway) and Multiple Depression of pu
	mechowas, index p; index p (dailoway) and nutlifie vedleppinn ni hu Diotorovas, index p; index p (dailoway) and unitifie vedleppinn ni hu
	ere en

Tables and Appendices

Tables

- 1. Lake characteristics
- 2. Catchment characteristics
- 3. ²¹⁰Pb & ²²⁶Ra data for the Llyn Berwyn I core
- 4. 137Cs data for the Llyn Berwyn I core
- 5. Other radioisotope data from the Llyn Berwyn I core
- Comparison of ²¹⁰Pb & ¹³⁷Cs parameters for Llyn Berwyn with 6.
- corresponding parameters for Llyn Hir & Llyn Gynon 7.
- CRS dating model chronology of the Llyn Berwyn I core
- 8. CIC dating model chronology of the Llyn Berwyn I core 9. Flux data for selected elements for Llyn Berwyn (BER 1) and
- Loch Dee (DEE 1) sediment cores.
- 10. Carbonaceous cenosphere record for the Llyn Berwyn 1 core

Appendices

- Α. Bi-weekly chemistry data for Llyn Berwyn from November 1983-March 1986 (courtesy of WWA)
- Β. Invertebrate list from Llyn Berwyn (courtesy of WWA)
- С. Full diatom diagrams for the Llyn Berwyn I core
- Full physical and chemical characteristics of the Llyn Berwyn 1 D. core
- Ε. Full pollen diagrams for the Llyn Berwyn I core

Explanation of Abbreviations

8

*

ADAS	Agricultural and Development Advisory Service.
AERE	Atomic Energy Research Establishment
BGS	British Geological Survey
ITE	Institute of Terrestrial Ecology
LSE	London School of Economics
MAFF	Ministry of Agriculture, Fisheries and Food.
NCC	Nature Conservancy Council
NLW	National Library of Wales
PAH	Polyaromatic Hydrocarbons
PRO	Public Record Office
SSSI	Site of Special Scientific Interest
UCL	University College London
WWA	Welsh Water Authority

1.0 <u>Introduction</u>

Surface water acidification is recognised as one of the most important environmental problems in Europe and North America, yet despite the pioneering work of Gorham on precipitation chemistry in Cumbria (Gorham 1958) the extent of acidification in the UK is still not known. In earlier papers Flower and Battarbee 1983, Battarbee <u>et al.</u> 1985 & Jones <u>et</u> <u>al.</u> 1986) we established that both non-afforested and afforested lakes on granitic rocks in Galloway, South West Scotland, were strongly acidified, and that the most likely cause of the acidification in the non-afforested lakes was acid deposition. We have now extended our enquiry to other non-afforested acid lakes in Wales and other parts of Scotland to test the general hypothesis that non-afforested clearwater lakes with pH values less than 5.5 occurring within areas of high acid deposition are acidified due to an increase in acid deposition over recent decades. To date we have established that Llyn Hir in west Wales, a lake with a non-afforested catchment, has been strongly acidified in the same way and over a similar time period to the Galloway lakes (Fritz <u>et al.</u> 1986)

However, it has also been shown that in the case of Loch Fleet (Anderson <u>et al.</u> 1986) afforestation has played an important role in the acidification of the lake, supporting the observations of Harriman and Morrison (1982) and Stoner and Gee (1985) that afforested stream catchments are more acidic, have higher concentrations of SO₄ and Al, and poorer fisheries than moorland control streams.

Llyn Berwyn (Fig. 1) is one of two afforested sites selected to investigate the relationship between afforestation and lake water acidity in Wales. At present the catchment is 80% afforested and a marked fishery decline occurred shortly after the afforestation in 1963. The lake has been recently limed (Underwood <u>et al.</u> 1986) but the pre-liming pH was 4.5. The mean pH of precipitation is > 4.5 and the annual wet sulphate loading is 1.2 - 1.6 g m⁻² yr⁻¹ (Figs. 2 & 3).

Our approach involves the use of diatom analysis to reconstruct past pH values; ²¹⁰Pb analysis to establish a lake sediment chronology; geochemical and "soot" analysis to trace the history of atmospheric contamination; and pollen analysis and land-use history studies to evaluate the influence of catchment changes on the past ecology of the lake.

Fig. 1. Llyn Berwyn location map.

Fig. 2. Average annual deposition of non marine Sulphate for the U.K. (Redrawn from Barret et al.1983).

Fig. 3. Average annual rainfall weighted Hydrogen ion concentration deposition for the U.K. (Redrawn from Barret et al. 1983).

2.0 Site details

2.1 <u>Lake</u>

The lake lies at an altitude of 438 m in an area which receives rainfall of 2000 mm yr⁻¹. Llyn Berwyn is an oligotrophic lake draining a catchment of 0.96 km². The detailed bathymetry (Fig. 2) reveals that the lake is composed of a single basin, 14 m deep, surrounded by an extensive shallow rim. The lake has a mean depth of 3.25 m and a volume of 417,655 m³ and displays minimal variation in water level (Table 1 & Underwood <u>et al.</u> 1986). The former drainage network was poorly formed until deep forest drains were cut in 1974 (see section 4.2.2). The lake has two very small inflows and the outflow, Nant y Llyn, drains to the south east (mean flow 0.039 m³ s⁻¹, Underwood et al. 1986) (Fig. 6).

Table 1 Lake Characteristics

Area 130,350 m² Volume 417,655 m³ Maximum depth 14 m Mean depth 3.25 m

2.1.1 Water chemistry, pre & post-liming

Llyn Berwyn, together with Llyn Hir (see Fritz <u>et al.</u> 1986), were the subject of a detailed liming experiment by the WWA designed to ameliorate the acidity of the lake and provide conditions suitable for fish populations. Detailed results may be found in Underwood <u>et al.</u> (1986). Before liming, pH at Llyn Berwyn varied between 4.1 & 4.5 with very low levels of dissolved calcium (0.4 - 1.0 mg 1^{-1}). After liming on the 1 & 2 April 1985 pH, alkalinity and dissolved calcium all increased significantly, while dissolved metal concentrations, especially aluminium, decreased (Fig. 3, Appendix A). Subsequently, pH, alkalinity and dissolved calcium all decreased again as calcium rich lake water was replaced by acid surface and ground waters. The lake was re-limed on 29/10/85 to bring the pH back to 7.0 (Underwood <u>et al.</u> 1986) some two months earlier than predicted.

2.1.2 Lake flora and fauna

A survey before liming by the WWA showed that the leafy liverwort, <u>Nardia</u> <u>compressa</u>, was the dominant macrophyte in the littoral zone together with <u>Drepanocladus fluitans</u>, <u>Isoetes</u> <u>laZustris</u>* and <u>Fontinalis squamosa</u>. The only macrophyte recorded at depth was <u>Sphagnum acutifolium</u> a common plant of highly acidic, oligotrophic waters in Galloway (Raven 1986). Compared to Llyn Hir, Llyn Berwyn supported a more diverse macro-invertebrate population before liming with up to 63 species, but all characteristic of oligotrophic waters (Appendix B, WWA 1986, B. Morrison pers. comm.).

2.1.3 Fishing history

A rapid deterioration of the fishery was recognised in Llyn Berwyn from ca. 1974 (R. Hughes, G. Jones, M. Morgan pers. comm.). By the early 1980s the lake only supported a population of eels (Underwood <u>et al.</u> 1986).

LLYN BERWYN BATHYMETRY

contours in metres

Fig. 4. Bathymetry and coring locations for Llyn Berwyn.

T.S

Fig. 5. Bi weekly lake chemistry results before and after liming (Data supplied by WWA).

Before this decline Llyn Berwyn was noted as an excellent trout fishery. Cliffe (1860) described two fishing days during which 44 trout weighing upwards of six ounces were landed. Subsequent authors confirmed the health and viability of the fish stock (Morgan 1874, Bradley 1903, Ward 1931, Rees 1936). Ward (1931) noted that the fish averaged eight ounces in weight, many being much larger, and that their quality was 'excellent'.

Sea trout migrated up the outflow stream to the lake until that stream was diverted, sometime in the early 20th century, by a farmer wishing to encourage the fish to follow an adjacent watercourse (R. Hughes, M. Morgan pers. comm.). The diversion did not seem to affect the indigenous fish stock. Anglers recall good fishing with catches of brown trout weighing up to 1.5 pounds and sea trout up to three pounds through the 1950s (Underwood et al. 1986, R. Hughes, G. Jones, M. Morgan pers. comm.).

The Forestry Commission acquired the fishing rights in the late 1950's prior to the plantation of the catchment. Tregaron Angling Society leased the fishing from the Forestry Commission in the early 1960s. It is from this period that a gradual decline in fish catches was first noticed (M. Morgan pers. comm.).

Fish from the River Teifi were introduced to the lake in the mid 1960s {1}, but they did not establish themselves. An attempt to stock with fish from a neutral water hatchery in the late 1960s failed totally, with 100% mortality inside a week (M. Morgan pers. comm.).

Underwood <u>et al.</u> (1986) note that the demise in fishery status of Llyn Berwyn coincides with the period of increasing acidification, and ascribe the decline to low pH conditions. However, it should also be noted that the original decline from the early 1960s coincides with the preparation and planting of the catchment with conifers, and with easier access for anglers by the new forestry road. The major decline after ca. 1974 is coincidental with the deep drainage of the maturing forest (Section 4.2.2).

Following liming by the WWA in April 1985 the lake was successfully stocked with 600 brown trout (Underwood <u>et al.</u> 1986).

2.2 Catchment

Llyn Berwyn occupies an acidic, blanket peat covered, upland site of some 967,371 m² of which the lake occupies 130,351 m² (Table 2).

Table 2 Catchment Characteristics

	Total catchment ar	ea 967,371 m ²	2
Area	of land in catchme	ent 837,020 m ²	2
	Area of la	ike 130,351 m ²	2
	Catchment/lake rat	io 6.42	
	Maximum reli	ef 467 m	

2.2.1 Geology

Base poor, lower Palaeozoic, Silurian mudstones and shales dominate the geology (Rudeforth 1970). These largely impermeable rocks are resistant to

chemical weathering and the drainage waters are of low hardness (Underwood <u>et al.</u> 1986). Detailed geological mapping is not yet available but a survey by the BGS is in progress nearby (R. Bazley pers. comm.)

2.2.2 Soils

The dominant soil type of the catchment belongs to the Crowdy peat series (1013a). Typically, these are amorphous blanket peats often up to 2 m thick. Other soil types within the catchment are those belonging to the Hiraethog series of the Hafren association (654a) and are chiefly stagnopodzols and stagnohumic gleys (Rudeforth <u>et al.</u> 1984). Typically these soils are thin (30-40 cm) with a wet peaty surface horizon and bleached subsurface horizons, often with a thin ironpan.

2.2.3 Present Vegetation

Before afforestation in 1962-1963 Llyn Berwyn had a blanket peat catchment covered by extensive <u>Molinia caerulea</u> and <u>Eriophorum vaginatum</u> interspersed with small areas of <u>Nardus</u> grassland. <u>Sphagnum</u> (eg. <u>S.cuspidatum</u>, <u>S.papillosum & S.compactum</u>), <u>Polytrichum commune</u>, <u>Aulocomnium</u> <u>palustre</u> and <u>Tricophorum caespitosus</u> were also common. The catchment was afforested with sitka spruce (<u>Picea sitchensis</u>) and lodgepole pine (<u>Pinus</u> <u>contorta</u>) in 1962-1963 and these dominate the present catchment vegetation. A small area of Japanese larch (<u>Larix kaempferi</u>) was planted on the better drained hillsides to the west in 1960. Fig. 6 illustrates the planting regime of the forest. Remains of the former vegetation cover are restricted to areas around the edge of the present forest and to the south and northeast of the catchment (Fig. 6).

Fig. 6. Catchment diagram showing forestry planting map, trackways & contours.

3.0 <u>Methods</u>

3.1.1 Surveying

The lake bathymetry was surveyed using the techniques described in Stevenson <u>et al.</u> 1987. Shore surveying stations were located adjacent to the inflow and outflow.

3.1.2 <u>Collection of sediment cores and routine laboratory measurement of</u> sediment characteristics

Cores were taken using a Mackereth mini-corer (Mackereth 1969) operated from an inflatable boat. Sampling was carried out during July 1984 (Fig. 2). Core BER I was used for dating and analysis.

Core BER I (83 cm) was extruded in the laboratory and sliced into 1 cm slices. The top 50 cm of sediment was sub-sampled at 1 cm intervals for dry weight, loss on ignition (at 550°C), wet density measurements. The lithostratigraphy of the core was recorded using the Troels-Smith method of sediment description (Troels-Smith 1955). The remaining core was sampled at 2 cm intervals.

Analyses for dating, magnetics, chemistry, soot, diatoms and pollen were all conducted according to the standard methods set out in Stevenson <u>et</u> al. (1987).

4.0 <u>Results</u>

4.1 Lake history

4.1.1 Sediment Description

The core contains three stratigraphic units (Fig. 7); a black organic sediment containing fibrous bryophyte remains down to 20 cm, a gritty, grey-brown mottled band composed of mineral and organic material from 20-28 cm where there is a gradual change to a dark brown organic unit from 30 cm down to the base of the core at 81 cm. These changes are reflected in the percentage dry weight, loss on ignition and wet density profiles (Fig. 8). The dry weight and wet density graphs show increases in the 20-30 cm section, all indicative of rapid inwash of catchment materials. Loss on ignition decreases in this section but increases rapidly from 32% at 22 cm to a peak of 73% at 15 cm, followed by a decline to values around 50% at the surface.

4.1.2 210Pb dating

Sediments from BER 1 were analysed for ²¹°Pb, ²²°Ra at Harwell A.E.R.E. Additional measurements for ²¹°Pb, ²²°Ra and ¹³⁷Cs were carried out by gamma spectrometry at Liverpool University (Appleby <u>et al.</u> 1986). The ²¹°Pb and ²²⁶Ra results are given in Table 3, and shown graphically in Figs. 9 & 10. The ¹³⁷Cs results are given in Table 4 and Fig. 11. Table 5 gives values of a range of other radioisotopes determined from the gamma spectra. The tables also give results of the analysis of a single sample from a second core (BER 2).

Fig. 12, Tables 7 & 8 show the ²¹⁰Pb chronologies for BER I given by the CRS and CIC dating models (Appleby and Oldfield 1978), assuming that the ²¹⁰Pb inventory of the core is complete. The two models give results indicate 19th century dates for which differ in detail, but both sediments below ca, 13-14.5 cm. These results are incompatible with the sedimentary data, which indicate that sediments down to ca. 30 cm are mainly post-1970 inwash material. Sediments between 23 cm and 28 cm have a low organic matter content and high bulk density typical of minerogenic inwash. They also have high ²²⁶Ra concentrations, and high ²³⁰U and ⁴⁰K values Sediments above 21 cm have a high organic matter content, low (Table 5). bulk density, and low ²²⁶Ra, ²³⁸U and ⁴⁰K concentrations, and are assumed to derive largely from peat inwash. This can only be explained by supposing that the ²¹⁰Pb inventory is incomplete and that there is a hiatus in sediment accumulation.

Table 6 compares ²¹⁰Pb and ¹³⁷Cs parameters for Llyn Berwyn (BER I) with corresponding parameters from Llyn Hir (HIR I) (Fritz <u>et al.</u> 1986) and Llyn Gynon (GYN 3) (Stevenson <u>et al.</u> 1986). The measured ²¹⁰Pb inventory of 9.7 pCi cm⁻² in Llyn Berwyn (BER I) is lower than at the other two sites and so is not inconsistent with the supposition of a hiatus

The single measurement on material from 55.5-56 cm in core BER2 gives values typical of the inorganic sediments in BER1 below 20 cm.

Fig. 7. Stratigraphic profile of the Llyn Berwyn I core.

Fig. 8. Profiles of down core variation in dry weight, wet density and loss on ignition for the Llyn Berwyn I core.

Fig. 9. Total ²¹⁰Pb profile for the Llyn Berwyn I core.

x 1

χ 8

20

Table 3. Llyn Berwyn (BER I) 210Pb Data

Depth	Dry Mass	210ph	Conc.	Cumulative Unsupported	Std	. Error:	5	²²⁶ Ra Conc.	Std. Error
		Total	unsupported	zioph	Conc.		Cua.		
CØ	g ce ^{∞2}	pCi g ^{-ı}	pCi g ⁻¹	pCi cm ^{-₂}	Total	Uns.	Uns.	pCi g⁻¹	Total
1.50	0.1615	14.900	14.168	2.732	1.10	1.10	0.22		
3,50	0.3762	10.940	10.200	5.326	0.44	0.45	0.36	0.740	0.09
7,50	0.8477	2.610	2.140	7.781	0.20	0.21	0.41	0.470	0.05
10.50	1.1993	2.120	1.740	8,461	0.18	0.19	0.42	0.380	0.07
14.50	1.6270	1.780	1.350	9.119	0.17	0.18	0.43	0.430	0.07
16.50	1.8282	2.600	2.178	9.470	0.20	0.21	0.43		
18.50	2.0532	0.930	0.516	9.740	0.16	0.17	0.44	0.414	0.06
19.50	2.1855	0.980	0.203	9.760	0.10	0.12	0.44		
20.50	2.3382	0.860	-0.335	9.778	0.14	0.15	0.44	1,195	0.06
21.50	2.5170	0.660	-0.581	9.685	0.08	0.10	0.44		
23.50	2.9613	0.780	-0.576	9.437	0.12	0.13	0.44	1.356	0.05
24.50	3.2126	0.650	-0.604	9.349	0.07	0.09	0.44		
29.50	4.4008	0.650	-0.120	8.858	0.07	0.11	0.45	0.770	0.08
32.50	4.9341	0,820	-0,046	8.812	0.13	0.14	0.46	0,866	0.05
34.50	5.2921	0.560	-0.295	8.787	0.08	0.09	0.46		
40.50	6.4386	0.530	-0.290	8.548	0.0B	0.08	0.47		
48.50	8.0609	0.570	-0.201	8.219	0.08	0.08	0.48		
59.50	10.3826	0.500	-0.200	7.711	0.08	0.08	0.51		
69.50	12.3489	0.580	-0.080	7.290	0.08	0.08	0.54	0.640	0.06
70.00	12.4479			7.284					
BER 2 I	results								
55.50	6.5320	0.760	-0.167		0.15	0.16		0.927	0.06

-

....

.__

- 56.00 6.5912

Table 4. Llyn Berwyn (BER I) ¹³⁷Cs data.

Depth	Dry Mass	¹³⁷ Cs	Conc	Cumulative	¹³⁷ Cs	Fract
CØ	ġ ca−2	pCi g ⁻¹	+/-	pCi g ⁻¹	+/-	
3.50	0.3762	46.93	0.50	17.66	0.90	0.580
10.50	1.1993	1.60	0.11	28,70	1.39	0,943
14.50	1.6270	2.29	0.08	29.52	1.39	0.970
18.50	2.0532	0.72	0.06	30.10	1.39	0.989
20.50	2.3382	0.18	0.04	30.21	1.39	0.992
23.50	2.9613	0.19	0.03	30.33	1.39	0.996
32.50	4.9341	0.01	0.03	30.45	1.39	1.000
BER 2 r	esults					
55.50	6.5320	0.00	0.00	0.00	0.00	0.000

Depth cm	²²⁶ Ra	22 0 []	zsøy pCig-	²²⁶ Ac	sselfi	40K
3.50	0.74	0.19	0.00	0.90	1.02	22.03
10.50	0.38	0.00	0.00	0.35	0.37	11.27
14.50	0.43	0.00	0.13	0.33	0.99	11.70
18.50	0.41	0.18	0.04	0.66	0.54	11.13
20.50	1.20	0.43	0.12	1.29	2.02	26.38
23.50	1.36	0.84	0.15	1.42	2.36	30.61
32.50	0.87	0.27	0.11	0.87	1.45	19.16
BER 2 r	esults					
55.75	0.93	0.74	0.09	1.09	1.54	24.34

Table 5. Llyn Berwyn (BER I) Radioisotope Data.

Table 6. Liyn Berwyn (BER I), Gynon (GYN 3) and Hir (HIR 1) 210Pb and 137Cs Parameters.

	Surface unsupported ²¹⁰ Pb concentration pCi g ⁻¹	Unsupported ²¹⁰ Pb inventory pCi cm ⁻²	Mean ^{ziop} b flux pCi ce ^{-z} yr ⁻¹	²²⁶ Ra Conc pCi g ⁻¹	99% Equ. depth g cm ⁻²	Surface ¹³⁷ Cs concentration pCi g ⁻¹	¹³⁷ Cs Inventory pCi cm ⁻²
Llyn Berwyn Llyn Gynon Llyn Hir	14.2 22.1 45.9	9.7 29.7 12.2	0.38 0.38	0.77 1.16 0.88	1.51 2.58 0.46	46.9 34.0 22.0	30.5 40.5 10.9

82

....

Depth	Dry Mass	Cumulative Unsupported ²¹⁰ Pb	Date	Age	Sediment accumu	lation rate	Standard
CØ	g ca~2	p Ci ca≃²	AD	yr	g corr yr 1	C@ yr~1	Z
0.00	0.0000	9.70	1984	0			
0.50	0.0538	8.34	1979	5	0.0142	0.133	6.8
1.50	0.1615	6.97	1973	11	0.0153	0.143	7.5
2.50	0.2689	5.52	1966	18	0.0143	0.130	6.6
3.50	0.3762	4.38	1958	26	0.0134	0.117	5.7
4.50	0.4941	3.56	1952	32	0.0170	0.147	7.2
5.50	0.6119	2.90	1945	39	0.0207	0.177	8.6
6.50	0.7298	2.36	1939	45	0.0243	0.208	10.1
7.50	0.8477	1.92	1932	52	0.0280	0.238	11.5
8.50	0.9649	1.66	1927	57	0.0261	0.225	12.2
9.50	1.0821	1.44	1923	61	0.0242	0.213	12.9
10.50	1.1993	1.24	1918	66	0.0222	0.200	13.6
11.50	1.3062	1.03	1912	72	0.0201	0.182	16.1
12.50	1.4131	0.85	1906	78	0.0179	0.164	18.6
13.50	1.5201	0.71	1900	84	0.0157	0.147	21.0
14.50	4.6270	0.58	1894	90	0.0135	0,129	23.5
15.50	1.7276	0.37	1879	105	0.0084	0.080	25.1
16.50	1.8282	0.23	1864	120	0.0033	0.031	26.7

Table 7: CRS model dating chronology for the BER I core assuming no hiatus

²¹⁰Pb flux = 0.30 +/- 0.01 pCi cm⁻² yr⁻¹ 90% Equilibrium Depth = 12.2 cm or 1.38 g cm⁻² yr⁻¹ 97% Equilibrium Depth = 17.5 cm or 1.94 g cm⁻² yr⁻¹

Table 8: <u>CIC dating model for the BER I core assuming no hiatus</u>

Depth	Dry Mass	Cumulative Unsupported ²¹⁰ Pb	Date	Age	Sediment accumula	ition rate
Ca	g c∞-2	p Ci ce∽≃	AD	٧r	g cm ^{-z} yr ⁻¹	ce yr ⁻¹
0.00	0.0000	20.95	1984	0		
1.50	0,1615	14.17	1972	12	0.0140	0.131
3.50	0.3762	10.20	1962	22	0.0140	0.123
7.50	0.8477	2.14	1912	72	0.0181	0.154
10.50	1.1993	1.74	1905	79	0.0296	0.266
14.50	1.6270	1.35	1897	87	0.0390	0.372
16.50	1.8282	2.18	1912	72	0.0162	0.152
18.50	2.0532	0.52	1866	118	0.0162	0.136
19.50	2.1855	0.20	1836	148	0.0162	0.114

90% Equilibrium Depth = 14.6 cm or 1.64 g cm⁻² 99% Equilibrium Depth = 19.4 cm or 2.18 g cm⁻²

LLYN BERWYN CS-137 CONC V DEPTH

Fig. 11. ¹³⁷Cs profile for the Llyn Berwyn I core.

24

». >

4.1.3 Diatom analysis

The concentration of total diatom cells per gram dry sediment is shown in Fig. 13. There is no major change in diatom concentration until 20 cm when there is a general decrease due to dilution by the inwash of organic material. However, from 30 - 20 cm the concentrations fluctuate, possibly due to dilution both by inwashed mineral material, and the large proportion of broken diatom frustules in some samples in this unit leading to inaccuracies in the total counts. At 5 cm the concentration increases to values higher than those found below 20 cm due to the decreasing sediment accumulation rate.

The major floristic changes can be seen in the summary diagram (Fig. 14). A full diagram of relative percentage abundance is given in Appendix C. The diatom flora throughout the core is dominated by periphytic acidophilous forms, increasing from 50%-60% from below 30 cm to 80%-90% in the upper organic unit. Conversely, circumneutral species decrease from 20%-30% below the mineral inwash to 5% in the upper organic unit.

A marked change in the diatom flora occurs at 25 cm when the percentages and concentrations of the circumneutral <u>Fragilaria</u> <u>virescens</u> and <u>Cymbella</u> <u>gracilis</u> and the alkaliphilous <u>Fragilaria</u> <u>construens</u> v. <u>venter</u> begin to decline as the acidophilous <u>Eunotia</u> <u>veneris</u> and <u>Frustulia</u> <u>rhomboides</u> become dominant in the percentage data but with unaltered concentrations in the sediment. At 20 cm the circumneutral species have almost disappeared and other acidophilous taxa, such as <u>Tabellaria</u> <u>flocculosa</u>, <u>Cymbella</u> <u>perpusilla</u>, <u>Eunotia</u> <u>exigua</u> and <u>Pinnularia</u> <u>hilseana</u> appear at this point. However, a major increase in the acidophilous species occurs at 15 cm including the rapid increase of <u>Asterionella</u> <u>ralfsii</u> which has the effect of depressing the percentage abundance of the previously dominant <u>Eunotia</u> <u>veneris</u>.

4.1.4 Sediment chemistry

Major Cations

The loss on ignition, dry weight and density profiles show that there is a major change in sediment constitution between 18 and 30 cm (Fig. 8). From the base of the core to 30 cm the sediment constitution is fairly constant but above this is a denser more inorganic layer from 30 to 23 cm, with a much more organic layer above this. This change is a result of catchment ploughing and afforestation (Section 4.2.2).

The sodium, potassium and magnesium profiles respond to this catchment disturbance (Figs. 15a, 16a, 17a). The concentrations increase in the more inorganic layer and decrease strongly in the organic layer. The strong negative correlation between these cation concentrations and LOI indicates that dilution of the sediment by the additional organic material delivered to the lake as a result of the disturbance is the main cause of the decrease in sedimentary concentrations in the upper 18 cm of sediment.

This is confirmed by the cation profiles when the concentrations are expressed per gramme of minerals in the sediment (Fig. 15b, 16b, 17b). In these profiles the concentration drop above 23 cm, which is striking in

Fig. 13. Diatom concentration diagram for the Llyn Berwyn I core.

Fig. 14. Diatom percentage summary diagram for the Llyn Berwyn I core.

ţ. ¢.

¢.

Fig. 17a. Variations in Mg gdw⁻¹ for the Llyn Berwyn I core.

Fig. 17b. Variations in Mg per gram mineral dry weight for the Llyn Berwyn I core.

÷

r

Figs. 15a-17a, is not noticeable with magnesium and sodium and is much subdued with potassium. When soil erosion rates increase in a catchment, the tendency is for the major cation concentration of the mineral material to be higher than when erosion rates are lower (Mackereth 1966, Engstrom & Wright 1984). Although the timescale is short in the upper part of this core, the concentrations of potassium and magnesium are higher than above 30 cm during the period of catchment disturbance. Magnesium is maintained at a higher concentration through the inorganic layer while potassium drops back to concentrations typical of the lower part of the core.

Calcium behaves very differently to the other three major cations (Fig. 18) and correlates strongly with LOI (Fig. 8) This was also found in Llyn Hir and the reasons are probably the same. Bivalent calcium ions are selectively complexed by dissolved humic material in the lake water and sediment (Stumm & Morgan 1981 pp. 640-647, Sayles and Mangelsdorf 1977) and so variations in the rate of incorporation of organic material into the sediment controls the sedimentary calcium concentration.

Trace metals

The nickel behaviour (Fig. 19) is similar to the major cations, sodium, magnesium and potassium (Figs. 15-17). As the nickel concentration in the mineral component of the sediment is fairly constant (Fig. 19b), the drop in nickel concentration in the whole sediment between 11 and 20 cm is due to dilution of the sediment by the addition of organic matter (Fig. 8). There is little if any atmospheric contamination of the sediment by nickel.

In the upper 20 cm of sediment, however, the zinc (Fig. 20), lead (Fig. 21) and copper (Fig. 22) concentrations increase. This increase is in spite of the sediment dilution by organic matter which causes the sodium, magnesium and potassium and nickel concentrations to fall. The sediment contamination is made clearer when the changes in organic content of the sediment are eliminated by expressing the results as per gramme minerals (Figs. 20b-22b).

Because of the hiatus in this core (Section 4.1.2) it is not possible to determine the date when trace metal contamination of the sediment started. As the sediments above 20 cm are post-1974, the contamination started sometime before this. Other lakes which have also received trace metals deposited from the atmosphere show a steady increase in sedimentary trace metal concentration from the depth when contaminated. As the zinc and lead concentrations rise very quickly above 20 cm (1974) in Llyn Berwyn, it is likely that the contamination started some tens of years before 1974. It is also not possible to determine reliably the size of this contamination flux. We can, however, use the trace metal results to check on the proposed sediment chronology above 20 cm.

We can use the proposed sediment chronology to calculate the sedimentary fluxes of the trace metals and other elements. If this gives values which are environmentally reasonable then there is indirect support for the dating. The mean sedimentary fluxes for the eight elements in the interval 0 - 20 cm are shown in Table 9. As this interval in the Llyn Berwyn core is during a period of catchment disturbance, we feel it is realistic to compare the results with those measured under catchment disturbance conditions elsewhere. In Loch Dee, in Galloway, the interval from 31 - 66 cm corresponds to a period of catchment disturbance (1859 - 1901). These

Fig. 19a. Variations in Ni gdw⁻¹ for the Llyn Berwyn I core.

Fig. 19b. Variations in Ni per gram mineral dry weight for the Llyn Berwyn I core.

Fig. 21a. Variations in Pb gdw⁻¹ for the Llyn Berwyn I core.

Fig. 21b. Variations in Pb per gram mineral dry weight for the LLyn Berwyn I core.

*

ķ

Fig. 22a. Variations in Cu gdw⁻¹ for the Llyn Berwyn I core.

Fig. 22b. Variations in Cu per gram mineral dry weight for the Llyn Berwyn I core.

r

ł.

mean values are averaged over their respective time intervals.

Table 9 indicates that the major element and trace metal fluxes in the upper 20 cm of the Llyn Berwyn core vary from roughly similar to three times those measured during the catchment erosion period in Loch Dee. As the dry mass accumulation rate in Llyn Berwyn is roughly three times that in Loch Dee, the sedimentary fluxes of metals in Berwyn, then, are environmentally realistic. As they are derived from the proposed sediment dating, this must also be reasonable.

We are not able to extract from the total sedimentary trace metal fluxes reliable values for the contamination component. Cumulative concentration-depth profiles, a comparison of the zinc flux behaviour with that of sodium and a flux calculated from the 'anthropogenic pollution term' as defined by Hilton <u>et al.</u> (1985) all suggest a zinc contamination flux of around 100 mg m⁻² yr⁻¹. This is a reasonable figure but it must be considered unreliable.

Table 9: Comparison of the element fluxes during erosive periods inLlyn Berwyn & Loch Dee

Element	Llyn Berwyn, 0 - 20 cm Mean (n=18)	Loch Dee 31 - 66 cm Mean (n=24)
Na q m ⁻² vr ⁻¹	7.4	5.3
$K q m^{-2} yr^{-1}$	18.1	6.0
Cag m ⁻² yr ⁻¹	5.2	6.2
Mg g m ⁻² yr ⁻¹	5.9	8.6
Zn mg m ⁻² yr ⁻¹	501	209
Pb mg m ⁻² yr ⁻¹	349	191
Cu mg m ⁻² yr ⁻¹	52	22
Ni mg m ⁻² yr ⁻¹	52	50
Dry mass accumulation		
rate mg m ⁻² yr ⁻¹	210	70

Sulphur

The sulphur behaviour (Fig. 23) is similar to that of lead (Fig. 21). The same limitations of interpretation apply as with lead and all we can say is that post-1974 sediments are contaminated by sulphur compounds deposited from the atmosphere.

PAH

Analyses are in progress but are not yet available.

4.1.5 Carbonaceous particles "CP"

The "CP" pattern for Llyn Berwyn, illustrating the number of particles per gramme dry sediment, is given in Fig. 24 and Table 10. It shows the presence of soot in small numbers at a depth of 28 cm. There is a slight peak at 10-12 cm and the onset of a trend of rapidly increasing counts commences at 6 cm, continuing to the surface.

The carbonaceous particle count in terms of the organic content of dry

Ķ

ę.

Fig. 23. Variations in S gdw^{-1} for the LLyn Berwyn I core.

ę.

麗.

Fig. 24. Carbonaceous particle record gdw⁻¹ for the Llyn Berwyn I core.

*

.×

Fig. 25. Carbonaceous particle record per gram mineral dry weight for the Llyn Berwyn I core.

ь

.
Table 10: "Soot" Analysis for Berwyn 1

€.:

₩

~

	No. Carbo	nacenus
	Partir	las
	3 633 6 6 6	163
Deoth	oer o	oer o
	drv sed	organic
(cm)	x 10 ⁻³	content
		x 10 ⁻³
0-1	16.38	32.34
1-2	15.84	30.64
2-3	17.38	37.20
4-5	6.40	12.61
6-7	4.58	7.13
7-8	2.26	3.76
8-9	1.72	3.07
9-10	1.07	1.70
10-11	1.77	2.46
11-12	1.37	1.98
13-14	0.68	1.00
15-16	0.58	0.80
17-18	0.51	0.71
19-20	0.34	0.71
20-21	0.37	0.79
21-22	0.41	1.25
22-23	0.10	0.36
23-24	0.04	0.20
24-25	0.05	0.20
25-26	-	yan.
26-27	0.06	0.30
28-29	0.06	0.25
29-30		-
31-32	<i>214</i>	inge.
35-36	-	0.00
39-40	851 1	670

sediment is given in Fig. 25. Normally, CP patterns in terms of the organic fraction of sediment (using LOI) are more precise as the supply of organic material to the sediment tends to be more uniform over time than the input of mineral matter which can vary widely. However, since both organic and inorganic fluxes to the lake vary widely only an expression of CP in terms of flux will enable an accurate assessment of CP influx into the lake basin. However, there are no reliable dates on which to make the calculation.

4.1.6 Pollen

Figs. 26, 27 & 28 present the total pollen concentration & summary percentage diagrams for the Llyn Berwyn core. Full details of the pollen record may be found in Appendix E.

Inspection of the concentration diagram (Fig. 26) reveals that the diagram can be divided into two major sections viz: the pre-inwash, undated, portion and the post-inwash, dated portion of the core. This division is shown by a halving of the pollen concentration from 28 cm to 24 cm and is firstly associated with a mineral inwash and then by a subsequent peat inwash.

The pre-inwash part of the percentage diagrams (Figs. 27 & 28) shows a stable pollen sequence with few major changes occurring relatively The only local change that appears to have occurred is the throughout. early peak in Pteridium, suggesting that the catchment may have been better drained at some period in the past. Within the regional pollen record most of the tree pollen is probably derived from small remnants of relict deciduous forest, dominated by Betula and Quercus, left over from the various clearance phases of upland Wales recorded in the many pollen diagrams of this area (Moore and Chater 1969a, Moore and Chater 1969b, Moore 1973). Small disturbance phases in these forests are recorded by the two Filipendula Plantago lanceolata and and associated peaks in regeneration peaks in Fraxinus.

The sediment post-inwash (28 cm - 0 cm) provides clear evidence for changes in the catchment vegetation. However, most of the changes can be misleading since most are directly related to the inwash of peats and the inevitable reworking of their older pollen component into the lake. The initial only appears to have had an effect on the pollen mineral inwash It is only with the marked increase in LOI, concentration diagram. resulting from catchment peat erosion, that changes can be identified in the pollen record. The most notable of these is the large reduction in values of the aquatic fern, <u>Isoetes</u>, from 20 cm onwards. As in previous studies, Isoetes appears to be very sensitive to turbidity changes associated with phases of peat inwash and general catchment disturbance (Anderson et al. 1986). The Calluna rise recorded at the same time is not the result of an increase in Calluna in the catchment but is merely a reflection of the inwash of large amounts of <u>Calluna</u> pollen-rich peats into the lake. The present afforestation of the lake does not appear to be reflected in the pollen diagram but may also be linked to the masking effect of the inwashed pollen-rich catchment peats.

The regional pollen flora suggests that <u>Quercus</u> expands during this zone but this rise is only caused because the dilution of the <u>Quercus</u> pollen rain by the peat inwash is relatively lower than that of <u>Pinus</u> and hence the

Fig. 26. Total pollen concentration diagram for the Llyn Berwyn I core

Fig. 27. Summary percentage pollen diagram for the Llyn Berwyn I core. Trees expressed as a percentage of the

8

z

υ Q

٤,

ŝ,

40

3

proportional construction of the diagram presents a misleading picture of events. The inwash, is also probably the reason why <u>Pinus</u> values take off relatively late since the concentration diagram reveals that <u>Pinus</u> concentrations were as high before the onset of the inwash as they were at the end of the period.

Regional changes in the amount of pastoral and arable land appear to be reflected in the pollen record as a peak of the pastoral indicator <u>Plantago lanceolata</u> is replaced by a cereal peak. Indicating a change from pastoral to arable in the vicinity of the lake.

4.2 Land use and management {2}

4.2.1 Land use

With the exception of small areas of <u>Molinia</u> dominated rough grazing to the north-east and south, the catchment is planted with Sitka spruce (<u>Picea</u> <u>sitchensis</u>), Lodgepole pine (<u>Pinus</u> <u>contorta</u>) and Japanese larch (<u>Larix</u> <u>kaempferi</u>) (Fig. 6).

The catchment was afforested between 1960-1963 (Fig. 6). Before that date documentary sources (Patrick 1986) indicate that the catchment comprised rough grazing land of the 'moorland core'. There is no evidence from air photographs or on the ground (of relict enclosures, drainage or cultivation features) to suggest that any improvement was ever attempted. There is no evidence for, nor rational expectation of, any attempt to improve the acid upland soils of the catchment with agricultural lime (cf Fritz <u>et al.</u> 1986).

The tithe map of the combined parish of Caron (3) (the lake and catchment lie predominantly within the parish of Caron-is-Clawdd, with a small section at the extreme south lying in Llanddewi Brefi -) indicates that in 1842 the catchment comprised the sheepwalk land belonging to three individual farms.

Successive editions of the Ordnance Survey six inch topographic coverage (4) from 1887 show the land adjacent to the lake to be 'marshy'. Further back marsh gives way to 'rough or heathy pasture'.

The first Land Utilisation Survey of 1933 (5) provides no specific information on vegetation distribution within the catchment. The area is described as 'typical sheepwalk' composed largely of <u>Molinia</u>, <u>Agrostis/Festuca</u> and <u>Nardus</u>.

The catchment lies in the area which Davies (1936) described as some of the most dense <u>Molinia</u> tussock land in Wales. The second Land Utilisation Survey of 1970 (6) shows <u>Molinia</u> dominating the unafforested part of the catchment as it does today.

Analysis of air photographs {7} and primary data of the 'Mid Wales uplands Survey' (Parry and Sinclair 1985) (8}, confirms the unimproved state of the catchment in 1946 and 1948 respectively.

Several contemporary descriptions attest to the unimproved nature and in particular the wetness of the catchment prior to afforestation (eg. Bradley 1903, Ward 1931). Cliffe (1860) described it as "a shelterless waste", "a more wild, dreary scene than that which surrounds the Llyn would be

difficult to conceive" (p.204).

The forest planted in the early 1960s is still maturing and no deforestation has taken place.

There is no evidence of the exploration for, or the exploitation of, any mineral within or in the vicinity of the catchment.

4.2.2 Land management

<u>Pastoralism</u>

At an altitude of over 400m and comprising wet and exposed land, it is unlikely that the Llyn Berwyn catchment ever supported a significant livestock population. Although a few cattle were grazed on the hills in the locality in summer up to ca. 1930 (R. Hughes pers. comm.), the grazing history of the catchment is dominated by sheep.

Annotated information on the First Land Utilisation Survey map (1933) indicates that sheep grazed the catchment in summer only. Davies (1936) reported that the tussocky <u>Molinia</u> of this region received virtually no grazing.

Evidence for the presence of sheep is indicated by a sheep wash, depicted on six inch Ordnance Survey maps, to the west of the lake.

Some areas of <u>Molinia</u> were cut for hay which until recently represented the only winter fodder in the region (R. Hughes pers. comm.). Other areas were frequently burnt to provide an early bite for the sheep (R. Hughes pers. comm.).

Apart from a boundary fence separating Cwm Berwyn and Diffwys sheepwalks there was no enclosure in the catchment.

The only evidence concerning sheep numbers comes from the annual parish agricultural returns (9). The interpretation of these data are subject to several constraints (Patrick 1986). In particular they cannot be catchment specific and take only limited account of changes in sheep type and no account of changes in grazing regime.

Parish returns are available for Caron-is-Clawdd from 1910 (Fig. 29). There was a gradual rise in sheep numbers up to the plantation of the catchment in 1960. From that period sheep numbers rose rapidly but the potential significance of that trend is limited to a small proportion of the catchment. By combining sheep numbers with the area of rough grazing (also drawn from the parish returns), a crude indication of stocking density on unimproved land may be obtained (Fig. 30). Again the increase in stocking density is most marked after the date of afforestation.

A major drovers road leading to the fattening pastures of England passed up Cwm Berwyn and to the north of the Llyn Berwyn catchment (Davies 1934). The passage of store cattle and wether sheep along this road reached a peak in 1860 before disappearing in the face of competition from the railway (Davies 1934, 1936). It is conceivable that the north-east of the catchment experienced an enhanced grazing pressure in summer months as the transient

Fig. 29. Sheep numbers in Caron-is-Clawdd Parish 1867-1983.

Fig. 30. Crude sheep/rough grazing stocking densities in Caron-is-Clawdd Parish 1895-1983.

herds and flocks passed along the drove road (cf. Fritz et al. 1986).

In the early 20th century the Cwm Berwyn drove road was utilised by shepherds from the eastern central Welsh mountains and the Brecon Beacons to drive their summer flocks to the wintering pastures of the Cardiganshire coastal plateau (Davies 1935).

Forestry

Fig. 6 illustrates the planting of the catchment by Forestry Commission compartment number, date and species. Planting was conducted down to the lake edge. Prior to planting the site was ploughed/drained. 2.5 ha of compartment 263 was hand spread with GMP prior to planting. Compartment 270 was similarly treated soon after planting at about 250 kg ha⁻¹. In 1964 and 1968 phosphate fertiliser was applied by hand to compartment 267. The catchment was spread with phosphate/potassium fertiliser from the air in 1973 at a loading of approximately 250 kg ha⁻¹ (R. Gattis pers. comm.).

By the early 1970s the shallow drains and furrows that had provided rooting and drainage for the young trees were proving inadequate for the needs of maturing trees. Consequently ca. 1974 deep drains, approximately 20 m apart were driven through the entire forested area (R. Hughes, M. Morgan pers. comm.).

Subsidiary management practices

There is no evidence that any part of the catchment has ever been managed for game.

Air photographs (10) show features in the north of the catchment (now under forest) which may represent old peat excavations. The proximity of the road at this point (Fig. 6) suggests that this would not be infeasible but there is no documentary evidence for the presence of a turbary.

5.0 Discussion

5.1 Inwash and hiatus

It is clear from the LOI, dry weight, diatom & pollen evidence that the BER 1 core is characterised by a distinct inwash phase. The most likely cause of this inwash is the result of ploughing and afforestation activities within the catchment. The presence of a mineral-rich sediment from 30-20 cm followed by an overlying black organic sediment suggests a significant amount of sub soil erosion followed by continued peat erosion. This inwash cannot be expected to have come from the rather superficial ploughing of the catchment that took place in 1962-63 (Section 4.2.2) but must derive from the extensive deep drains emplaced in 1974. Furthermore, the lack of any indication of the initial catchment ploughing in the sediment below 30 cm the lack of unsupported ²¹⁰Pb below 20 cm suggests that a hiatus must exist at 30 cm. This hiatus could have been caused by removal of sediment by the inwashed material or the absence of sedimentation in the cored area of the lake until the arrival of inwash material at that site.

Therefore, it is assumed that the sediments above 30 cm are post-1974. Those below the hiatus contain no unsupported ²¹⁰Pb and consequently pre-date ca. 1800.

5.2 pH_RECONSTRUCTION

The lake pH can be reconstructed from the core by including the diatom pH preference group percentage data into the three pH reconstruction models; Index B (Scandanavia), Index B (Galloway) and Multiple Regression of pH preference groups against pH (Galloway) (Flower 1986). All three models clearly show a decline in pH through time (Fig. 31) with values in the range pH 5.4-5.9 below 30 cm. Values decrease across the inwash band to pH 5.0 and below in the upper organic unit. Of the three pH models the multiple regression equation comes closest to predicting pH in the top sediments where water quality data are available for comparison. The Index B models show the same trend but with an extended range of values.

The pH history of Llyn Berwyn given by the sediment core can be divided into two units separated by the mineral inwash or hiatus boundary at 30 cm.

The diatom assemblages of the pre-hiatus sediment are dominated by acidophilous forms with circumneutral and alkaliphilous taxa contributing up to 40% of the total count. In this respect Llyn Berwyn is unusual. Pre-1800 sediments in other recently acidified lakes in Galloway (Flower & Battarbee 1983, Jones et al. 1986, Flower et al. 1987) and in nearby Llyn Hir (Fritz et al. 1986) have a more diverse circumneutral and alkaliphilous flora, with species such as <u>Achnanthes minutissima</u>, <u>Anomoeoneis vitrea</u> and planktonic <u>Cyclotella</u> in abundance. The Berwyn flora at this time is more acidophilous and the reconstructed pH gives a maximum value of pH 5.9 using Index B (Galloway) and pH 5.8 with the multiple regression model. Although we do not know how far back in time this core extends, it would seem unlikely that Llyn Berwyn had a mean pH greater than pH 6 in the recent

The interpretation of the upper 30 cm of sediment is more problematic. There can be little doubt that the mineral-rich band from 20-30 cm is inwash from the catchment drainage but the absence of unsupported ²¹⁰Pb in this

section cannot be the result of dilution by inwashed sediment alone since the diatom concentrations are not markedly reduced A possible explanation is that the sediment contains re-suspended older material rich in diatoms but lacking unsupported ²¹°Pb. In this case the diatom assemblages do not necessarily reflect a decline in lake pH during the period represented by the 20-30 cm inwash.

The 20 cm level is the lowest level with unsupported ²¹ °Pb but for reasons outlined above is thought to date from shortly after 1974. The reconstructed pH of this level is 4.7 and this declines to 4.5 with the increase in acidophiles at 15 cm including <u>A.ralfsii</u>, a species associated with the high humic acid concentrations resulting from catchment peat drainage (Liehu <u>et al</u>. in press). In general, the data show a clear post-afforestation acidification but it is not clear whether an earlier acidification prior to planting has occurred.

6.0 NOTES

1. The purpose of this exercise was to save riverine fish whose habitat was being destroyed by a drainage scheme.

2. For a definition of these terms see Patrick (1986).

3. Tithe map and schedule of Caron. PRO Kew, IR 30 46/10 (part 1) map A.

First edition surveyed 1887, published 1891.
Second edition surveyed 1904, published 1906
Provisional edition ammended 1948, published 1953.

5. Manuscript held at the LSE archive.

6. Manuscript six inch sheet no. 364, King's College London, Geography Department.

7. Air Photograph Office, Welsh Office, Cardiff. Plates 372 - 3188, 3189, 4192, 4193. Flown May 4th 1946, scale c.1:10,000.

8. 1:25,000 maps and computer files containing land use information held at the Countryside Commission, Newtown, Powys.

9. PRO (Kew) class list MAF 68.

10. See note 7.

7.0 <u>References</u>

Anderson, N.J.A., Battarbee, R.W., Appleby, P.G., Stevenson, A.C, Oldfield, F., Darley, J & Glover, G. (1986) Palaeolimnological evidence for the recent acidification of Loch Fleet, Galloway. Research Paper No 17. Palaeoecological Research Unit, Dept Geography, University College London.

- Appleby, P.G. & Oldfield, F. (1978) The calculation of ²¹⁰ Pb dates assuming a constant rate of supply of unsupported ²¹⁰Pb to the sediment. Catena, 5, 1-8.
- Appleby, P.G., Nolan, P., Gifford, D.W., Godfrey, M.J., Oldfield, F., Anderson, N.J. & Battarbee, R.W. (In Press) ²¹⁰Pb dating by low background gamma counting.
- Battarbee, R.W., Flower, R.J., Stevenson, A.C. & Rippey, B. (1985) Lake acidification in Galloway: A palaeoecological test of competing hypotheses. Nature 314 350-352.

Barret, C.F., Atkins, D.H.F., Cape, J.N., Fowler, D., Irwin, J.G., Kallend, A.S., Martin, A., Pitman, J.I., Scriven, R.A. & Tuck, A.F. (1983) Acid Deposition in the United Kingdom. Report of the United Kingdom Review Group on Acid Rain, Warren Spring Laboratory.

Bradley, A.C. (1903) Highways and byways in south Wales. Macmillan. London.

- Cliffe, J.H. (1860) Notes and recollections of an angler. Hamilton, Adams & Co, London.
- Davies, J.L. (1934) The livestock trade in West Wales in the nineteenth century. Aberwystwyth Studies. 8, 85-105.
- Davies, J.L. (1936) The livestock trade in West Wales. Aberystwyth Studies 9, 93-113.
- Davies, E. (1935) Seasonal movements of sheep in Wales. Journal of the Manchester Geographical Society. 45, 24-40.
- Engstrom, D. & Wright, H.E. (1984) Chemical stratigraphy of lake sediments In: Lake Sediments and Environmental History (eds. E.Y. Haworth & J.W.G. Lund), Leicester University Press.
- Flower, R.J. (1986) Relationships between surface sediment diatom assemblages and pH in 33 Galloway lakes: Some regression models for reconstructed pH & their application to sediment cores. Hydrobiologia in press.
- Flower, R.J. & Battarbee, R.W. (1983). Diatom evidence for the recent acidification of two Scottish lochs. Nature 305, 130-133.
- Flower, R.J., Battarbee, R.W. & Appleby, P.G. (1987) Palaeolimnological studies in Galloway: lake acidification & the role of afforestation. Journal of Ecology in press.

- Fritz, S.C., Stevenson, A.C., Patrick, S.T., Appleby, P.G., Oldfield, F. Rippey, B. & Darley, J. (1986) Palaeoecological evaluation of the acidification of Welsh lakes. I: Llyn Hir, Dyfed. Research Paper No. 16, Palaeoecological Research Unit, Dept Geography, University College London.
- Gorham, E. (1958) The influence and importance of daily weather conditions in the supply of chloride, sulphate and other ions to fresh waters from atmospheric precipitation. Phil. Trans. Royal Soc. London, B. 241 147
- Harriman, R. & Morrison, B.R.S. (1982) Ecology of streams draining forested and non-forested catchments in an area of Central Scotland subject to acid precipitation. Hydrobiologia 88, 251-63
- Hilton, J., Davison, W. & Ochsenbeim, U. (1985) A mathematical model for analysis of sediment core data: implications for enrichment factor calculations and trace-metal transport mechanisms. Chemical Geology. 48, 281-291.
- Jones, V., Stevenson, A.C. & Battarbee, R.W. (1986) Lake acidification and the "land-use" hypothesis: a mid-postglacial analogue Nature 322 157-158.
- Liehu, A., Sandman, O. & Simola, H. (In Press) Effects of peatbog ditching in lakes: Problems in palaeolimnological interpretation. Hydrobiologia.
- Mackereth, F.J.H. (1966) Some chemical observations on post-glacial sediments. Phil. Trans. Royal Soc B. 250, 165-213.
- Mackereth, F.J.H. (1969) A short core sampler for sub-aqueous deposits. Limnol. Oceanogr. 14, 145-151.
- Moore, P.D. (1973) The influence of prehistoric cultures upon the initiation and spread of blanket bogs in Upland Wales. Nature. 241 350-354.
- Moore, P.D. & Chater, E.H. (1969a) Studies in the vegetation history of mid-Wales. I. The postglacial period in Cardiganshire. New Phytol. 68, 183-196.
- Moore, P.D. & Chater, E.H. (1969b) The changing vegetation of West-Central Wales in the light of human history. J. Ecol. 57, 361-379.
- Morgan, J. (1874) New Guide to Aberwystwyth and Neighbourhood. Morgan, Aberwystwyth.
- Parry, M & Sinclair, G. (1985) Mid Wales Upland Study. Countryside Commission Report ICP 177.
- Patrick, S.T. (in press) Evaluation of the recent acidification of Welsh lakes: land use and land management change.

- Raven, P.J. (1986) Occurance of <u>Sphagnum</u> moss in the sublittoral of several Galloway locks with particular reference to Lock Fleet. Research Paper No. 13 (Palaeoecology Research Unit, University College London)
- Rees, T. (1936) The beauties of England and Wales. Vol 18 South Wales London.
- Rudeforth, C.C. (1970) Soils of North Cardiganshire. Memoirs of the Soil Survey of Great Britain. Agricultural Research Council, Harpenden.
- Rudeforth, C.C., Hartnup, R., Lea, J.W., Thompson, T.R.E. & Wright, P.S. (1984) Soils and their use in Wales. Soil Survey of England and Wales, Bulletin No. 11. Harpenden
- Sayles, F.L. & Mangelsdorf, P.C. (1977) The equilibration of clay minerals with seawater:exchange reactions. Beochemica et Cosmochimica Acta. 41, 951-960.
- Stevenson, A.C., Patrick, S.J., Kreiser, A., Rippey, B., Darley, J. & Battarbee, R.W. (1987) Palaeoecological evaluation of the recent acidification of Welsh Lakes: Methods. Research Paper No. ** (Palaeoecology Research Unit, University College London.)
- Stevenson, A.C., Patrick, S.J., Fritz, S.C., Rippey, B., Appleby, P.G., Dldfield, F., Darley, J. & Battarbee, R.W. (1986) Palaeoecological evaluation of the recent acidification of Welsh Lakes: IV. Llyn Gynon, Dyfed. Research Paper No. 20 (Palaeoecology Research Unit, University College London.)
- Stoner, J.S. & Gee, A.S. (1985) Effects of forestry on water quality and fish in Welsh rivers and lakes. J. Water Engineers & Scientists 39, 27-45.
- Stumm, W. & Morgan, J.J. (1981) Aquatic Chemistry, Wiley, London.
- Troels-Smith, J (1955) Karakterisering af lose jordarter. Characterisation of unconsolidated sediments. Danm. geol. Unders. Ser. 3(10) 73pp

Tutin, T.G., Heywood, V.H., Burges, N.A., Moore, D.M., Valentine, D.H., Walters, S.M. & Webb, A.A. (1964,1968,1972,1976,1980). Flora Europaea volumes 1-5. Cambridge University Press. London.

Underwood, J., Donald, A.P. & Stoner, J.H. (In Press) Investigations into the use of limestone to combat acidification in two lakes in West Wales.

Ward, F. (1931) The lakes of Wales. Jenkins, London.

8.0 <u>Acknowledgments</u>

We would like to thank N.J. Anderson, R.J. Flower, S.J. Phethean, D.M. Monteith and A.J. Nicholson for their invaluable help in the field and in the laboratory; Mrs. K. Phethean for typing and A. Newman for diagram production; & in particular the staff of WWA: J. Underwood, N.Milner, R. Hemsworth, M.Mills, J.Stoner and A.Gee are thanked for allowing us access to unpublished data and their comments on an earlier draft of this manuscript. Furthermore, the following people are thanked for allowing us to discuss the local history of the area with them: G. Jones, M.Morgan (Tregaron Angling Society), Mr C. Evans and J.R. Davies of ADAS (Trawscoed and Lampeter), Mr R. Hughes (Cwm Berwyn Farm, Tregaron), Mr R. Gattis (Forestry Commision, Llandovery) Dr L. Sinclair (Environmental Information Services, Narbeth) and Dr. M.Parry (Dept Geography, University of Birmingham). Appendices

-

Date	pH	Conductivity	Total Oxidised Nitrogen	Total Hardness	Free Carbon dioxide	Total Alkalinity	Chloríde
		20°C us cm ⁻¹	ng l ⁻¹	mg 1-1	ag l-1	mg 1-1	ng 1-1
05/10/83	4.2	59	0.1	6.0	3.4	<u>*</u>	9.0
21/11/83	4.4	59	0.1	5.1	3.7	874	8.0
13/12/83	4.3	50	0.1	5.8	4.2	00r	9.0
04/01/84	4.1	63	0.2	5.1	5.0	***	8.0
23/01/84	4.1	64	0.1		4.8		10.0
02/02/84	4.3	62	0.1	4.6	6.3	***	9.0
14/02/84	4.3	59	0.1	4.6	4.8	2 3	10.0
06/03/84	4.3	59	0.1	5.0	6.1	-	9.0
06/04/84	4.4	60	0.1	2.7	5.2	M2+	10.0
18/04/84	4.4	60	0.1	4.5	wii	-	10.0
30/04/84	4.3	58	0.1	4.3	60	~	10.0
18/05/84	4.4	59	0.1	4.8	5.4	***	10.0
31/05/84	4.4	57	0.1	5.2	Les	-	10.0
12/06/84	4,4	59	0.1	5.6	5.9	~	10.0
28/06/84	4.5	57	0.1	4.3			10.0
04/07/84	4.5	59	0.1	4.5	6.9	++0	10.0
18/07/84	4.4	57	0.1	4.1	7.8	ine .	10.0
03/08/84	4.4	59	0.1	5.1	44 4		10.0
10/08/84	4.4	59	0.1	4.4	-	~	10.0
07/09/84	4.5	56	0.1	5.5	6.2	0.2	10.0
01/10/84	4.4 1 2	64	V.1	5.2	6.J		10.0
17/10/84	4,4	62	0.1	3.1	7.0	att.	10.0
10/12/84	4.2	2X 2	V.1	4.4	3.8	-	8.0
28/01/85	4.Z	36 47	0.1	3.0 7.0	4.7	. 7	8.V 8.V
29/01/83	3.J # #	4) 51	V.1	/ . 7	2.0 4 n	1.	- /.0
2//VZ/BJ	، 100 من	े के के के का	V. I 	49) 	ᅅᅇᄣ ᆕᆕᅘᇷᇛᇛᇐ ᇗᇩᄡᇖᇖᇮᅇᄡᄿᇔᇔᇤ	647 , 449 ML 448 449 451 441 555 477 487 587 498 496 596 596 596 596	0.V
07/04/05	L 7	4 L	A 1	0 0	7 T	7 0	6 A
10/04/05	6,5 6 Q	70 57	0,1	U:U 11 £	2 e u 7 (3.7 L Q	8 A
10/04/03	6.6	57 57	ο.i	17 0	د. ۱ ۲ ۲	0./	9.V 9 A
72/05/85	۵., ۲. ۵	54	Λ 1	, , , , , , , , , , , , , , , , , , , ,	2 7 1	7.5	8.0
11/06/85	6.5	67 T	Δ.1	17.4	2.3	5.9	R.A
20/06/85	6.3	49	0.1	13.3	2.9	5.5	8.0
04/07/85	6.7	45	0.2	12.1	2.5	5.1	7.0
18/07/85	6.4	42	0.1		4.0	94 F G	7.0
01/08/85	907 B (42	0.1	10.1	~	~	6.0
15/08/85	6.0	40	0.1	8.7	**		6.0
05/09/85	5.6	38	0.1	7.8	4.1	2.5	7.0
19/09/85	5.6	40	0.1	7.6	3.4	2.4	6.0
19/09/85	5.7	39	0.1	7.8	2.8	2.7	6.0
03/10/85	5.7	39	0.1	8.1	3.0	2.4	6.0
04/10/85	5.6	40	0.1	9.3	2.8	2.1	6.0
17/10/85	5.5	40	0.1	7.6	3.7	1.7	7.0
29/10/85	5.5	48	0.2	7.4	6.4	3.7	7.0
07/11/85	6.3	49	0.1	12.9	4. 1	6.6	7.0
21/11/85	6.3	53	0.2	Court Bills	4.2	7.1	7.0
05/12/85	6.2	47	0.1	11.3	3.1	5.6	6.0
18/12/85	6.0	47	0.1	9.8	3.6	3.6	7.0
18/01/86	5.7	43	0.2	8.5	2.9	2.8	7.0
12/02/86	5.7	49	0.2	8.7	3.1	2.0	7.0
27/02/86	5.7	50	0.2	8.6	3.9	2.5	9.0
12/03/86	5.2	44	0.1	7.7	3.4	1.5	8.0
26/03/86	4.8	53	0.1	7.6	6.9	1.1	7.0

....

Appendix A: <u>Bi-weekly lake chemistry data for Llyn Berywn (before and after liming)</u> (Courtesy of WWA)

Date	Orthophosphate	Dissolved Silica	Dissolved Sulphate (mg 1	Dissolved Sodiua	Dissolved Potassium	Dissolved Calcium	Dissolved Zinc
				6 m			
05/10/83	0.02	en A 64	10.0	4,9	0.17	1.10	
21/11/85	0.02	0.8	8.5	4.5	0.15	0.90	0.014
13/12/83	0.02	0.6	10.0	4.4	0.18	1.00	0.015
04/01/84	0.02	0.7	8.0	4.6	0.15	0.90	0.031
23/01/84	0.02	0.7	9.0	-	100 000	4ezh limi	
02/02/84	0.02	0.6	8.0	4.6	0.13	0.70	0.013
14/02/84	0.02	0.6	8.5	5.1	0.40	0.70	0.024
06/03/84	0.02	0.6	8.0	4.1	0.17	0.70	0.015
05/04/84	0.02	0.5	7.5	3.0	0.19	0.43	0.021
18/04/84	0.02	0.5	8.0	5.0	0.36	0.65	0.022
30/04/84	0.02	0.5	8.0	4.1	0.60	0.74	0.020
18/05/84	0.02	0.2	7.5	4.1	0.36	0.67	0.023
31/05/84	0.02	0.3	7.0	4.6	0.51	0.78	0.025
12/06/84	0.02	0.2	7.0	5.3	0.58	0,94	0.016
28/06/84	0.02	0.2	7.0	4.0	0.23	0.58	0.021
04/07/84	0.02	0.2	6.5	5.4	0.19	0.65	0.027
18/07/84	0.02	0.2	7.0	3.8	0.14	0.66	0.016
03/08/84	0.02	0.2	6.5	4.7	40 E=	0.89	0.014
10/08/84	0.02	0.2	8.5	5.0	0.16	0.60	0.021
07/09/84	0.02	0.3	10.5	5.1	0.78	0.88	0.076
01/10/84	0.02	0.4	9.5	4.8	0.26	0 97	0.010
19/10/R4	0.07	0.5	13.5	A_ A	0.24	0.71	0.017
10/12/84	0.02	0.7	5.0	4.5	0,29 0.28	0,73 Λ 97	0.007
29/01/85	0.02 0.07	0., A 7	5.4	τ <u>ι</u>	0 IT	0.00	0.014
20/01/05	0.02	0.7	δ.0 & Λ	7 L	0.10	7 78	0.019
27/07/05	0.02 A A7	0.0	7.0	77	0.10	L. 37 A 77	0.007
& / / V& / Hb/		₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩		्रेस्ट के के कि के के के के के के कि के	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	V812	V+V&/
02/04/85	0.02	0.7	6.5	3,9	0.10	2.52	0.017
10/04/85	0.02	0.6	6.2	4.1	0.05	3.65	0.013
01/05/85	0.02	0.7	6.5	4.3	0.10	4,16	0,015
22/05/85	0.02	0.5	6.2	4.0	0.24	4.32	0.014
11/06/85	0.02	0.3	6.3	4.1	0.18	4.12	0.011
20/06/85	0.02	0.2	6.3	4.0	0.71	4.33	0.009
04/07/85	0.02	0.7	6.5	4.2	0.24	3.84	0.021
18/07/85	0.07	0.7		eat t is and	~~~~	~~~	
01/08/85	0.07	0.7	6.1	4.0	0.10	3.23	0.017
15/08/85	0.02	0.3	5.2	4.7	0.21	7 67	ñ 017
05/00/95	0.02	0.3	4. Q	τ.1	ń 2ñ	7 46	0.017
10/00/05	0.02	0.0 A	5 0	7 7	0,20 0 11	2,70 7 £0	0,010
19/09/85	0.01 0 02	0 A	4 L	2.2	0.17	2.7V 7 AQ	0.007
17/07/05 A7/1A/95	0.02 0.07	0.7 A	4 A	2 T A	0.10 N 10	2,70 7 80	0.012
03/10/05	0.V2 0.V2	0.4 A A	1.7 A L	7 5 7 5	0.10	1 60	0.010
17/10/05	0,02	V.7 A 5	0.T 4 0	010 7 L	0,17	2,00	01012
1// LV/ DJ 70/10/75	V.V2 A A9	V.J A E	7 e L 7 m	J.0 7 n	V. I.J A 1A	4.LV 72.76	V. UZZ
27/1V/03	V+V2 A AD	V.J A 5	5.B	302	U.1V	2.31	0.043
07711783	U. UZ	V.3	3.6		~~ ^ ^ ~	4,14	0.015
21/11/85	0.02	0.5	4.4 	5.6	0.05	ana ang *aja ana -	0.009
05/12/85	0.02	0.6	4,4	5.4	0.12	5.70	0.012
18/12/85	0.02	0.6	4.7	3.5	0.12	3,10	0.014
18/01/86	0.02	0.6	4.1	3.5	0.12	2.57	0.016
12/02/86	0.02	0.7	4.4	3.8	0.21	2.65	0.013
27/02/86	0.02	0.7	4,4	3.6	0.23	2.62	0.021
12/03/86	0.03	0.5	5.0	3.7	0.29	2.27	0.028
26/03/86	0.02	0.6	3.1	3.7	0.21	2.20	0.020

.

Date	Dissolved Copper	Dissolved Cadnium	Dissolved Alusinius	Dissolved Lead	Dissolved Chronium	Dissolved Manganese	Dissolved Iron
			1884 à				
05/10/83	0.007	0.0009	0.070	0.002	40 ML	0.515	0.230
21/11/83	an se ian	0.0004	0.140	0.002	50 MK 45-	0.530	0,258
13/12/83	60 10	0.0004	0.130	0.002	ngine water states	0.435	0.198
04/01/84	alian alian dan	0.0004	0.070	0.002	تنعق جين	0.316	0.190
23/01/84	** #* B	** = *	500 MC	detta aletta detta	an wa oar	ins sile an	1400 M22 BAN
02/02/84		0.0004	0.110	0.002	-64 565 66E	0.335	0.212
14/02/84	NOV AND MNA	0.0004	0.160	0.002	446 per 105	0.340	0.212
06/03/84	400 Geo Geo	0.0008	0.150	0.004	ani 640 1400	0.340	0.192
06/04/84	Bart (00) 600	0.0008	0.078	0.005	نه ۲۵ نه	0.311	0.827
18/04/84	0.001	0.0008	0.180	0.005	0.001	0.437	0.184
30/04/84	0.001	0.0008	0.162	0.005	0.001	0.425	0.172
18/05/84	0.001	0.0008	0.090	0.010	0.001	0.531	0.111
31/05/84	0.001	0.0008	0,153	0.005	0.001	0.551	0.099
12/06/84	0.001	0.0008	0.123	0.005	0.001	0.553	0.124
28/06/84	0.001	0.0008	0.161	0.006	0.001	0.648	0.104
04/07/84	0.001	0,0008	0.117	0.005	0.001	0,564	0.088
18/07/84	0.001	0.0008	0.093	0.005	0.001	0.497	0.158
03/08/84	0.001	0.0008	0.090	0.005	0.001	0.627	0.167
10/08/84	0.003	0.0014	0.082	0.022	0.001	0.579	0.111
07/09/84	0.001	0.0008	0.116	0.005	0.001	0.808	0.258
01/10/84	0.002	0.0010	0.108	0.013	0.003	0.582	0.245
19/10/84	0.001	0.0008	0.106	0.016	0.001	0.728	0.266
10/12/84	0.002	0.0010	0.159	0.015	0.003	0.495	0.311
28/01/85	0.002	0.0010	0.152	0.020	0.003	0.375	0.299
29/01/85	0.002	0.0010	0.113	0.002	0.003	0.030	0.380
27/02/85	0.003	0.0010	0.221	0.005	0,003	0.477	0.339
	- w) éé: ex m) éé vé vé m) es ac as as as as as ar		四 때 28 40 년 29 10 10 10 10 10 10 10 10 10 10 10 10 10	ac ann ann na mai ann mir ann ann rinn ant iad Me agu eg	- 62 44 46 80 94 94 96 96 96 90 90 90 90 90 90 90 90 90	و على ويه الله عن في في حود عنه الله عن الله الله عنه الله عن عن الله عن الله الله الله الله الله ال	E 46 EE 10 460 470 4E 94 440 94° 474 98° 479 D2
AD 164 10E	0.000	A 444A	A 6 * 7	A AAE	0 007	A 40%	A976
02/04/00	U.UVZ	0.0010	V.11/	V.VUJ A AAC	0.003	V.42/	*V237 0 951
10/04/03	0.002	0.0010	U.114	0.003	0.003	0.331	V. 234
01/03/83	0.002	0.0010	0.09/	0.003	0.003	0.270	0.310
22/03/85	0.002	0.0010	0.100	C1010	0.003	0.259	0.243
11/06/85	0.002	0.0010	0.074	0.008	0.003	U.138	0.541
20/06/85	0.003	0.0010	0.090	0.000	0.003	0.0/8	0,343
04/0//85	0.002	0.0010	0.080	0.000	0.003	0.046	0,202
18/0//85			ан Х хаа	~~~ ^ ^^?	~~~ ^ ^^7		~~~ ^ \$91
01/08/85	0.002	0.0010	0.092	0.002	0.003		0.421
13/08/85	0.002	0.0010	V, V86	0.002	0.003	0.013	0.410
03/09/85	0.004	0.0002	0.102	0.002	C.U.U	0.030	U. 341
19/09/85	0.010	0.0010	0,110	0.002	0.003	0.040	0.047
14/04/85	0.002	0.0010	0.060	0.002	0.003	0.052	0.34/
03/10/85	0.002	0.0010	0.100	0.002	0.003	0.004	0.620
04/10/85	0.002	0.0010	0,110	0.002	0.003	0.040	0.636
1//10/85	0.002	0.0010	0.110	0.002	0.003	0.050	0.600
29/10/85	0.002	0.0010	0.100	0.005	0.003	0.054	0.5/0
07/11/85	0.002	0.0010	0.15/	0.002	0.003	0.021	0.673
21/11/85	0.002	0.0010	0.100	0.006	0.003	0.032	U.606
V3/12/85	0.002	0.0010	0.079	0.002	0.005	0.029	0.5/0
18/12/85	0.002	0.0010	0.110	0.002	0.005	0.029	0.511
18/01/86	0.002	0.0010	0.111	0.001	0.005	0.022	0.248
12/02/86	0.002	0.0010	0.113	0.002	0.003	0.028	0.400
2//02/86	0.002	0.0010	0.129	0.002	0.003	0.023	0.459
12/03/86	0.002	0.0010	0.105	0.002	0.003	0.035	0.313
26/03/86	0.002	0.0010	0.116	0.018	0.003	0.032	0.151

-

Date	Dissolved	Humic
	Nickel	arid
	MANNES BA 1-1	ar 1-1
	mār.	nd t .
A# 112 154		
02/10/82		and tool and
21/11/83		
13/12/83		500 TO 100
04/01/84	10. Det et-	ده مه به
23/01/84		any shy any
V0/V0/04		
V£/VZ/04		-00 300 ees
14/02/84		100 MK 81-
06/03/84	en in un	dec 140 dec
06/04/84		800 AD-
18/04/84	0.001	0.8
30/04/84	0.001	1.0
10/05/08	0 003	1.V A 7
10/03/84	V. UU2	V./
31/05/84	0.002	0.4
12/06/84	0.001	0.3
28/06/84	0.002	0.3
AL/07/08	0 001	0.4
V4/V//04	0.001	V. 4
18/07/84	0.001	0.7
03/08/84	0.001	1,4
10/08/84	0.007	j.
07/00/01	0 001	, c
N//V//07	V+VV1 A AAT	204 19 7
01/10/84	0.003	2.5
19/10/84	0.002	2.7
10/12/84	0.003	4.1
28/01/85	0.005	8 . A
20171100 70171100	0 1 V V U	7677 1 M
24/01/85	0.003	6.V
27/02/85	0.004	3.1
0% are and 40 MM are are an are an are an are are	ويد بقد علم علم المراجع علم المراجع علم علم المراجع المراجع علم المراجع المراجع المراجع المراجع	due and and into the and day and may one also a
07/04/85	0.007	3-7
10/08/08	0 007	ωε? β. έ.
10/04/83	0.003	4.0
01/05/85	0.003	5.0
22/05/85	0.009	6.1
11/06/85	0.003	5.3
20110L10C	0 007	いっか た そ
20/00/03	0.003	0.1
04/07/85	0.003	6.4
18/07/85	and also and	4.8
01/08/85	700.0	A. 9
1011V0/00 101NC	V 8 V 8 2 A AA7	site f ny p∾
13/08/83	0.003	1.5
05/09/85	0.002	7.3
19/09/85	0.004	7.5
19/09/85	0 007	7 6
11111100 17111100	V; VV/ A AA7	/ 6 G ** *
02110182	0.003	1.1
04/10/85	0.003	7.3
17/10/85	0.003	8.3
29/10/85	700 0	Ω T
1/11/100 11/11/100	V:VVJ A AA*	0.3
0//11/85	0.003	8.8
21/11/85	0.003	8.3
05/12/85	0.003	7.7
18/17/95	0 00T	77
10/12/03	0.000	1.1
18/01/86	0.003	6.4
12/02/86	0.003	6.1
27/02/86	0.003	6.2
17/07/01	ρ ορτ	
32100700	V: VVU A AA7	ž L
20103100	v.000	49 z ⁶⁶ 9

Log	abundance rating		Log abundance rating
Tricladida		<u>Diptera</u> ctd	
Polycelis nigra/tenuis	3	Chaetocladius	ţ.
Phagocata vitta	é	Coryneura lacustris	2
Nollusca		Cryptochironomus sp.	2
Pisidiua sp.	1	Glyptotendipes sp. A gp.	3
Olioochaeta		Dicrotendipes sp.	2
Nais communis/variablis	1	Nicrotendioes opdellus	3
Vidnyskyella ronnata	2	Tantvtarsus sn.	3
Enchutrandaa	1	o marcon ≩ nienot en tricent seguro	v
lumberine værigestne	τ τ		
Cimperitus veriegerus Céulodrilus herionismus	*	Abundance rebonaries	
Scylourius neringianus	4	Hnningurg refeântiez	
	<i>r</i> s	6 8 × A	
Leptophiedia vespertina	£ 7		
L. vespertina	2	2 = 11 - 100	
<u>Plecoptera</u>	-	3 = 101 - 1000	
Nemoura cinerea	2		
Nemoura cambrica	2000		
Leuctra hippopus	1		
L. nigra	2		
<u>Hemiptera</u>			
Notonecta glauca	1		
Glaencoríxa propingua	-		
Callicorixa praeusta	queet.		
C. woolastoni	Prove and a second s		
Arctocorisa dermari	2		
Sigara doraslis	1		
S. distincta	*		
Coleontera	-		
Potamonertes plenans	2		
Chichotorene duodorienuctulatue	1		
Undernaris polictric Undernaris polictric	1		
nyu upu us patusti is Asshir antistis	3 7		
Ayavus yulalus A ligustuistus	<u>د</u>		
A. Dipustulatus	1		
Ullanius tuderculatus	2		
Negaloptera	~		
Sialis lutaria	2		
Trichoptera			
Plectrocnemia conspersa	2		
P. geniculata	1		
Polycentropus flavomaculatus	2		
P. kingi	3		
Cyrnus flavidus	2		
Agtypnia obsoleta	2		
Limnemephilus centralis	2		
Cingulatus latipennis	Breek		
Halesus radiatus	2		
H, digitatus	stand		
Diptera			
Ceratopogonidae	2		
Atrichopogon so.	1		
Hacropelopia so.	2		
Procladius sp.	2		
Ablabesveia so.	3		
Natarsia so.	-		
Hotorntrisenrladius earridus	2		
liannnhvas sn.	-		
zzmnopnycz zpo Zaluterhia huenkrociae	X		
LULULULULE HUMPH COLSC Deartractative tishallatur ar	ur 1		
racululadium iimudiidius yp. D neitontorie	ž		
r, parrokreiga D. octoaschister	3		
r, ulluseluidius	<u>لا</u>		
r, octomacusatus/ ilmoatessus qp.	3		

P. octomaculatus P. octomaculatus/ limbatellus gp.

LLYN CERWYN SPECIES LIST

ACCOZA ACHNANTHES LINEARIS W. CAITH AC013A ACHPAHIPES MINULISSIKA KUIZ. ACTIVA ACHNANIHES AUSTRIACA HUS1. ACADOA ACREANTHES MARGINULATA GFUN. ACIDA ACHNANTHES DEPRESSA (CLEVE) HUS1, AN9999 ANPHORA SP ANNUSA ANDAGEDHEIS SERIANS (BRER.) CLEVE ANDDAA ANDMUEUNEIS VIIREA (GRUN.) R055 ANNOSS ANOAUEUNEIS PRACHYSIRA V INERMALIS NUPL COAB. ASPOJA ASTERICHELLA RALFSII W. SMITH CANOZA CALONEIS EACILLUM CHARZA CYMPELLA INFELDA GREGURY CHNIGA CYMPELLA PERFUSILLA A. CLEVE (GREGURY) GPUM. CN017A CYNEELLA HEERIDICA CHAISA CYNCELLA GRACILIS (RACH.) CLEVE HEISIEP. CHOOJA CYREELLA GAELPANNI CM9977 CYNEELLA SP. CY9999 CYCLOFELLA SP. EUNNIA EUROTIA VENERIS EUGDZA EUNOTIA PECTINALIS (KUTZ.) FAEH. EU1428 EUHOTIA PECTINALIS V MINUR (KUTZ.) RACH. EUDIC EUROTIA PECTINALIS V VENISALIS (EER.) FUST. ENNOZE EUHOTTA FECTIMALIS V NIMUR F INPRESSA (EHR.) PUS1. EUMAJA ELMOTIA FRAEKUPTA EHK. EUROAA EIMOTTA TENELLA (GRUN), HUST, EUROSA EUROTIA ALPINA (MAEGELI) HUST. EU106A EDMOTIA LUNARIS (EHR.) GRIER. EUNDRA EUNOTIA KOHLCOM EHR, EU1088 EUNOTIA NONCON V NATOR F BIDENS W. SAITH EUROPA EUNDIIA EXIGUA (EREB.) RABH. EUTICA EUNOTIA FABA (EHR.) GRUN. HUST. EU011A EUNDIIA RHONEOICEA EU112A EUNOTIA ROBUSTA RALFS (EHR.) PALFS EU012C EUPOTIA ROEUSTA V TETRACOON EU113A EUNUTIA ARCUS EHR. EURISA EUROFIA DIOGON EHR. EU121A EUNOTTA SUDELTCA (O. MILLER) HEST. EU1276 EUNDIIA TRIVACRIA KRASSKE EU0288 EUROTIA MICECCEPHALA V IRIDENTATA (A. HAYER) HUST. EU129A EUNOTIA VALIDA HUST. EUI3IA EUNOTIA SEPTENTRIONALIS **OSIRUP** EU9999 EUMOTTA SP EHR. FRIGIA FRAGILARIA PINHAJA FR002C FRAGIALRIA CONSTRUENS V VENTER (EHR.) GRUM. FRUISA FRAGILARIA VIRESCENS RALFS EHR. FRUIDA FRAGILARIA CONSTRICTA GRUN. FR019A FRAGILARIA INTERHEDIA FR9999 FRAGILARIA SP FUNDIA FRUSTULIA RHUMBOIDES (EHR.) DE 10MI FUND28 FRUSTULIA RHOMBOIDES V SAXUNICA (RABH.) OF JUNI GONDIA GOMPHONEMA ANGUSTATUM (KUTZ,) RASH. GOVO4A GONFHONENA GRACILE EHR. GORREA GONPHONENA ACUMINATUM EHR. GODD&C GONPHONERA ACUNINATUM V CURCHATA (EHR,) W. SMITH GO9999 GOMPHUNENA SP OSTRUP NEDIDA HELOSIRA PERGLASRA MEDIOB MELOSIRA PERGLABRA V FLORINIAE CANEURH

.

¢

NA012A NAVICULA JARNEFELIII KIST. NA1034 NAVILULA RADIOSA XUTZ. NA905A NAVICULA SEATNELLIM GRUN. NA906A NAVICULA NEDIDERIS REASSNE NAMIJA NAVICULA PSEUDOSCULIFORNIS HUST. HADIAG HAVICULA PUPULA KUTZ, NA\$32A NAVICULA COCCUNEIFURAIS GREGURY NA8376 NAVICULA ANEUSIA GRIEV. NAGAGA NAVICULA HUFLFRI CHOLNUNY PA345A NAVICULA ERYOPHILA FETEFSEN NA048A NAVICULA SOHREHSIS KRASSKE (GRUN.) WERESCHMUNSKY MANSIA NAVICULA CARI EhS. NA475A PAVICULA SUBBARULATA GRIJH. NACESA NAVICULA TANTULA HUST. NA0009 HAVICULA SP NEODIA NEIDIUN IRIDIS (EHF.) CLEVE NE003A NEIDIUM AFFINE (E)茶。) CLEVE HE9999 MEIDIUN SP NI105A NI1ZSCHIA PERNIMITA (KUTZ.) 6. MULLER GRUN, PIDOCA PINNULARIA ACUNINATA SNITH PICOSA PINHULARIA MAIUR KUN7. PIDOTA PINNULARIA VIRIDIS (NITZSCH) EHP. PISOBA PINNULARIA DIVERGENS V. SMITH PIDIIA PINNULARIA MICROSTAURON (EFR.) CLEVE PINIGA PINNULARIA DIVERGENTISSINA (GPUFI,) CLEVE -IO18A PINMALARIA BICEPS GPEGERY PINZIA PINNULARIA HILSEANA (JANISCH) HELL. PIOCCA PINNULARIA SUSCAPITATA GREGURY PIN23A PINNULARIA IEROBATA (GRUN. HMIST. PISSOS PINFULARIA SP SANNA STAURONEIS PHUENICENTERON (NITZSCH) EHR. SA9999 STAURUNEIS SP SU205A SURIRELLA LIMEARIS W. SMITH SUDAGA SURIRELLA DELICATISSINA LEWIS SY9977 SYNEDRA SP TADDIA TABELLARIA FLOCCULOSA (FOTH) KUTZ.

SYN, PIODIA

ų...

8-

LLYN BERWYN DIATOM PERCENTAGE PROFILES

8

5

8

ą.

£.

LLYN BERWYN DIATON PERCENTAGE PROFILES

2

ģ

Appendix C

£.

LLYN BERWYN DIATON PERCENTAGE PROFILES

a,

£

Ц.

Ÿ.,

LLYN BERWYN DIATOM PERCENTAGE PROFILES

ŵ.

ę

Appendix C

Appendix C

66 HD

11	T	180	1 * Y C		10.7	00: 52	11 54	12.1.5	10.70	3 S	80	51	1 - A	133	1.1	202	219	2.5	2	17	21)	202	210	20%	215	214	210	213	25	52	2.36	241	2.2	2.80	2.4	2.61	26	276	253	2.4	25	122	254	2.40	251	2.6.3	2.63	2.56	2.47.2	2.69	256	3.0.5
3.63	253	100	828	8.23	0.20	3.63	491	22	0 03 0 31	4 19	0, 10	9.69	M 50	1.74	17.78 14.18	12 M	05 C	5.71	450	3.34	29.03		7 72	3.65 2.13	38	2.41	2.64	9.24	7 45	a.17	11	0.02	3 2 8	5.53	493	151	1 92	1. S	101	5.24	0.43	1.64	2.78	424	2.00	53	2.02	2	1.14	58	2	100
24		5 40 A			40					10	5	4	200	4	n un	0	47 H		er u				5	50 gr		with with		16	5	n in	9		5	5	\$	876	2	5	7 24		XV	\$	5	3	N is	4	5	ŝ	35	15	19 19	01
79.1	450	42.6	310	36.4	82.1	000	149.0	202	1 20	26 &	7.4	19.1	(0.5 2 2 2 2	20.1	4 C.	241	102	6.9	801 1	125	403	140	201	55	40	41	10	42	N.	11.0	11.11	915 72 11	0.0	16.97	7.04	42	120	0.7	1402	2.8	3.40	1.1	5.71	2.76	2852	21.40	27 a d	17.27	02.41	18.63	25.73	4
\$2253	250.81	266.26	505.50	325.74	115.71	552 72 562 46	1007 49	800.52	278 31	21133	76 57 16 51	13 56	10 55	10 8-4	50.20 50.20	50.07	15.45	39.00	24 50 14 13	53.66	88	20 CR	43.56	54 65 54 65	3401	8 8 8	62.33	59.24	5613	12.47	25.00	20.01	13.64	2411	16 90	10 JG	14 65	56 51	5453	32.56	N 21	8753	203	87.78	24 22	143.92	106.94	80.8	A 10	141.03	20.34	Η
57.61	38.46	1765	0303	35.51	60.71	\$7.39 27.44	44 94	125	17.50	19.29	11.62	1205	58.46 * 7 = 0	46.90	00 90 P0 08	35.61	11.13	18:06	0163 Ared	1952	77.20	01.19	0169	75.01	63.99	72.41	100	0054	60.54 51	80.00	77.78	60.0A	66.44	78.54 67.54	56.54	61.03	61.63	50.41	0.93	12.80	15.01	213	\$2.63	29.94	55.71	17.54	5.16	200	N 5.	173	1.0.3	
5	1575		1078		1		1 10		2 2 2 2 2	5 50	۲ • •	5	518	1	arta	121	5 C		1	1	77 2	1	87	ទាទ	-			181	27.12	101	-		T T		-				- = 1			1	5	34.8			21				410	2
							1	5	1	20	2		A CONTRACTOR OF A CONTRACT	24		2	XF	R	2		X:	14	*7	ষর	4	8	8	8	3.	1	23	X #3	55	285	65	200	97	1 9	59	29	10	59	10	17	22	74	75	10.	25	79.	8	22
423	5.74	4.01		412	467	56-6	606	5.94	402	244	1.74	51	124	1.69	1.64	N 1	222	65'1	101	1.60	204	151	1.74	1.1	25	1.4	1.72	121	30	191	223	24	223	227	111	2.44	250	264	220	212	225	263	203		21	208	218	200	41	1,66	3	
2	0.73	054	0.48	0.48	148	052	0 87 0	0.44	0.42	57 C	3	20		P & C	errn	-	1.13		94		0.03		0.78		0.78		K.0		0.73		0.63		0.67	+-+	0.63		0.6		0.67								+					1
8 0	051	0.79	0.99	100	1.38	1.49	1.0	06.1	1 42	101	0.0	0.66	100	0.83	1.03	124	1.30	5.4.8	53	N	36	1	5	23	15	29	53	28	12	. 39	1	s	51	46	23	1	5.	28	51	40 100	15	47	9		52	5	23	49	8	40	63	53
\$																-						1																							1			j.		*		
152	22.15	21.5	20.8	290 290	21.85	20 42	20.20	22 13	26.	11 42	51.57	20.22	A0	1 Z	38.64	8	41.5	42.76	37.13	37 44		19		37.01	10 10 10 10	16.45	20.13 20.13	2901	222	4154	10 00	59.6	10 0 0	20.65	01.01	57.82	20.54	29.73	39 85	39.92	29.55	378%	19.93	21.65	20.04	265	DO AS	10.01	X8.74	5953 2953	41.03	41.03
9.47	10.4	959	13.50	1057	1.26	88	573	153	10.53	5.55	18.81	20.24	20.32	18.97	18.36	[£.3	14.73	15.16	15.197	16.03	15.93	16.57	16.72	10.39	17 22	1111	10.92	1757		17.83	1921	10 43	16.91	16 50	12.03	15.43	15.74	100 F	16.19	61 91 1 1	13.73	15 99	16.58	15.23	15.68	201	22	16.02	52 51	15.42	10.1	10.8
5 F	25	5 51 57 51	515	50	105	135	14.5 15.4	17 5	55	20.5	225	23.9	22.1	26.5	28.5	29.9	313	13.5	222	57.5	29.2	8 03	41.1	63 -	5 7 7	9	5.9	6 1	200	52.5	520	22.1	8	58.5	24.2	513	52.4	543	53.49	26.5	20.3	593	101	22	73.5	14.		2.0	18.9	5.61	515	23
AIT	476	101		112	2.6.2	2.85	269	188	4.59	\$53	6.73	11	6.9	90 4	6.76	6.13	105	69	5.53	a a	3	202	<u>6.13</u>	623	0.27	6 <u>7</u>	636	6.33	6.2%	2	5.55	120	2. 42	527	534	8	545	8.	4 4 4	5.23	5.14	22	5.54	8.16 2	0.0	6.13	5.75	200		0.01	6.1B	
5.12	5.12	283	<u> 419</u>	2.03	2.40	2.39	258	213	3.43	80	17 12 12 12 12 12 12 12 12 12 12 12 12 12	5.8%	5.64	6.58	5.43	501	9.20	450	475	403	4 001	501	452	403	8	8 4 %	5.28	5.03	5.79	497	49	4.84	400	478	4.3	458	473	474	461	5.64	5.53	4.0	479	427	404	5.59	448	4.06	404	434	473	
			103		3 10	87 8C	40			-	4	11	4	79.4	1 1	6	TEST.	9		a a		חית	1	ৰ) হ	8		-	- 0*	***	1	5		5					5	1		5	5	1		40			4	1 1 1 1			- All and a second s
2	101	24		2.9	5.0	2.9	11	S. S. Sandara and S. S. Sandara and S. S. Sandara and S. S. Sandara and S	2.4	2.5			279		2.5	, , , , , , , , , , , , , , , , , , ,	1.6		1.	5	5,1	1.51	*	9 	1	- 	1.5	1.1		· · · · · · · · · · · · · · · · · · ·	5 S	5.5 6.1	1.6	6.	9 -			1.7	11	0.1	21		1.7	g. 1	1. B	9.	1.3		2.5 8	0.1	2.4	Contraction of the local division of the loc
ļģ.	107	5	a a a	22	14 1 1 1 1 1	17	3	54	211	12	15	41	<u>8</u> 5	42	411	28	28	40	21	2E	X	202	374	<u>R</u> 0	R	Q Q	2	8	21	2	415	39	23	Б Г	41	41	2 =	30	101	X	8	315	30	35	37	28	X	36	XX	32	22	
277	4 A 2 2 2	12	× *	55	<u>30</u>	22	<u>s</u> y	18	20 70	5	ह्य इ.	14	n z	311	S.E	14	A		mie	9. TBS	102	छ छ -	4	5.72	P.	r a	(p, 1	द≈	7X 8	5 85	F.	តនា	2	4	k	0	6	4	3	3	8010	4	22	5	Q E	101	Z,	*		21	4	
1050			5	121	ner	15	1971 5	. 61	चाव	1	275		8 -10	1 84	5	12	2 70	1	61 6	ng	80	रा र	5	र इ		ei e	811	- 51	5		w I	nar		1	5	5		8	1	1			6	1	u s	BT	1	271		-	U B	
21-16	កណ្ដ			0107		212	- and	199	218	ine	25	321	50 K	121	20	18	100	12		18		8	A	44	4	83	8	58	27	16	2	26	15	50 50	90	9	0	0	8	67	99 	10	11	72		155	36	4	07 07	00	5 6 7	
	25	8 81 V				And in the second second second				VINISH VINISH VINISH			and the second second										and the second second					-					11	1000				E. E.		11		. i	1.1	- 1	1	_		Ric				
121	138		104	176	193	210	249	147	143	and a second	26		1		100	13		0 4		200		28	47	4 8) 34	56	8 8 8		204			12	20	1		1	52				12	4		8		101	14	Ś		- 00	\$0 \$	27 1-1	
290 181	219 138 25	272 154 154 275	223 104	232 170 272	244 193	294 210	262 249	129 147	201 1.13	142 58	132 24	51	121 54	id	137 18	151 12	146	137 40	132 11	129 28	114 million 20	134 28	126 47	128 40	124 28	126 38	126 29	144 42	144 32	120	116 21	123 10	129 43		114 13		13 11 11		123 23	125 23	119 011		115 34		102 102	113 74	109 33	211	208	104 40	108 43 108 43	
			223 104	232 176	243 208	3 294 210	202 248	122	201 121		132 26	511	24 121 24	a 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	x 137 39			137 40		20 129 20		8 138 278	1.28 47	1 126 40	124 23	26 30 L	126 28	144 42	144	120 12	116 21		E21		114 13		131 131		123 23	123 23			34			11 11	100 100	12	505 SOS	1 104 40	103 43	ar an
201 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40.6 219 123 23 23 40.8 219 138 35	21. 1. 27. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	60,3 2,3 104	232 122 124 124 124 124 124 124 124 124 12	<u>59.4</u> 2.44 193	58.3 294 210	72.8	71.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	47.9 109 149 47 204 113	229 142 March 68	27.4 132 26	249 119 8	19.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1	20.4 (44 27)	24.3 13.7 56	27.1 154 151	25.8 140 34.7 3.5 140	25.0 137 40	28.2 13.3 11	27.3 129 28		27.3 154 279 2 258 154 311	27.2 27.2 27.2	27.4 124 40	53.3 [23] 52.2	27.3 126 38	1 27 3 124 28	27.4 144 42	26.4 144 32	20 120 120	28.6 118 21	201 E21 E21	29,1 125 43	23 111 12	29.2 114 13	28.4 13 13	31.2 1.31 1.1		29 4 123 231 F	28.6 129 23	<u>30.0 1150 411</u>	29.9	20.1 115 320		20. 110 102	30.6 115 7.4	30-1 103 30	EII 502	3	31.3 1.04 40	32.6 108 43 31.6 10A 43	y
101 112 112 112 112 112 112 112 112 112	11 400 713 123 23 11 40 4 219 130 33 10 50 10 10 10 10			10.3 65 233 14 10.3 65 233	10.6 59.4 244 199	9.7 68.3 29.4 210 9.4 75.4 75.0	9.1 72.9 262 248	12 12 12 12 12 12 12 12 12 12 12 12 12 1	12.3 47.8 109 109 109 109 109 109 100 100 100 100	172 329 142 58	19.5 27.4 13.2 26	216 249 119 0	21 X 19 19 12 12 12 12 12 12 12 12 12 12 12 12 12	209 204 (44 27	18.6 24.3 13.7 36 1 137 75 7 176 7.8 1	16 27.1 154 12	15.7 25.8 140 7	15.1 25.0 137 40	164 282 132 11	17 4 27.3 129 28		17.2 27.3 15.4 274 1 17.4 258 154 11	174 47 47	17.6 27.4 12.6 40 13.4 36.4 123 34		10.0 27.2 27.2 200 10 10 10 10 10 10 10 10 10 10 10 10 1	10.0 · 1 · 27.9 · · · · · · 28	19. 27.4 124 42	19 25.4 144 37	12.3 20 1.20 1.6	10 311 32 31	16.3 26.4 12.4 12.4	16.2 29.4 129 45		17.0 29.2 11.4 13	7.5 28.4 11.5	17.4 37.2 131 1	1 2 23 X 123	17.6 29.4 129	17.6 20.8 123 23	17.4 30.4 119 41	202 231 232	16.2 20.1 20.1 2.0 1	-12. 20 20 20 20 20 20 20 20 20 20 20 20 20	16.5 50.8 110 102	17.9 30.6 115 74	10 20-2 100 21	18.4 28.3 11.2 18.4 28.8 1.64	100 100 100 100 100 100 100 100 100 100	10.3 31.3 10.4 40	18.4 52.6 108 45 18.3 51.6 108 45	9
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	2.2 12 12 12 12 12 12 12 12 12 12 12 12 12				0/3 10 0 29 4 24 19	056 9.7 58.3 294 210 645 8.4 73 73 750 740	259 9.1 72.9 283 283 284 284 284 284 284 284 284 284 284 284		057 113 47.9 189 149 149 1	129 122 329 142 55	148 19.5 27.4 13.2 26	101 21 21 21 21 11 10 11 10 11 10 10 10 10 10 10 10 10	171 21 21 21 22 21 22 22 22 22 22 22 22 22	159 209 204 (44 21)	147 18.6 24.3 15.7 36 1 44 1.3 25.7 1.96 1.9	19 16 27.1 154 154	117 157 157 15 181 181 181 181			129 17 27.2 129 28	153 173 20.0	1.124 17.2 27.3 154 254 1 1.24 17.4 254 174 171	128 174 273	123 17 27.4 126 40	23 13. 12. 27.3	1.1Xd 10.9 27.3 126 38	132	135 10 27.4 124 44	25 4 144 32	3.2 12.4 2.0 12.0 12	10.0 20.6 20.6 11.6 21		127 16.2 29.1 129 45	124 1) 1 28 11 13 12 18 19 19 19 19 19 19 19 19 19 19 19 19 19	17.8 29.2 11.4 13	-124 17,5 28,4 17,5 78,4 17,5 17,5 17,5 17,5 17,5 17,5 17,5 17,5	11 15.1 51.2 1.1	2 X 122	114 112 29 4 129 400 121 123 400 1	23 23 23 23 23 23 23 23 23 23 23 23 23 2	134 134 30A 119 41		1.12 18.2 28.7 28.7 115		101 102 201 110 102 101 102 102 102 102	123 (7.9 30.6 115 74	20 T 100 20 T 100	211 222 19 19 101 101	132 103	101 313 104 40		
101 021 0.00 EUI 0.01 101 022 7.1 1.1 101 00 1.1 101 00 1.1 101 0.01 101 0.01 10	22 121 121 120 120 120 121 121 121 121 1				1.013 10.18 59.4 204 19.4	1.056 9.7 503 294 210 1.055 9.4 73 503 294 210	1 0.69 9.11 12.9 2.62 2.62 2.63 2.63	<u>[[[]]]]]]]]]]]]]]]]]</u>	1.057 1.3 47.9 189 149 149	1,129 17.2 32.9 1.42 65	1,148 195 27.4 15.2 26 1.148 1	1.184 216 249 119 0		N. 159 209 204 (44 21)	1.147 18.0 24.3 157 58	1,119 16 27.1 154 27.1	1117 151 151 151 150 150 150 150 150 150 150	1.124 1.03 25.0 137 40		1.124 17 4 27.2 124 28		1.124 17.2 27.3 15.4 274 17.4 254 154 31	1 23 1 21 21 21 21 21 21 21 21 21 21 21 21 2	1,123 171 27,4 129 40		1.150 10.9 27.3 126 30	1.122 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1.135 19, 23, 1, 121 44 40	11.79	1,33 10,84 20 10,94 10	25.5 11		1.127 16.2 29.1 123 43		17.8 29.2 11.4 13	17.58 2.8.4 17.59 2.8.4 1.5.5 2.8.4 1.5.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	11. 12. 21.2 12.1		1.14 1.24 2.04 1.24 400 1.24 400 1.24 400 1.24 400 1.24 400 1.24 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25		1124 124 304 119 41		1.12 18.2 20.1 (15 3.0 4)		1,113 1,113	1.123 (7.9 30.6 115 7.4	204 103 31	211 22 19 19 10 11 10 10 10 10 10 10 10 10 10 10 10		104 40	1.124 13.4 32.6 100 43	

APPENDIX D

APPENDIX D

Depthcm	mg Mg/g min	mg Ne/g min	mg K/g min	mgFe/gmin	mg Hn/gmin	Depthcm	Fø/Mn	mg 5/g min
<u>^</u>	EEG	R CC	10.21	60.76	081	0,5	74.28	8.58
1.5	6.46	B.63	22.96	52.05	1.04	1.5	50.28	0.00
2.5	5.91	7.50	19.51	41.58	0.98	2.5	42.62	7.02
3.5	6.14	9.22	21.16	41.98	1.16	3.5	35.51	0.00
4.5	6.06	8.01	19.49	43.80	1.61	4.3	27.20	8.98
5.5	0.57	0.41	20.20	40.37	2.14	65	2108	
7 8	1053	1284	<u>₹4.33</u> ₹4.33	70.30	2.14	7.5	32.07	0.00
8.5	8.18	9.73	2431	59.32	2.41	8.5	24.57	9.36
9.5	7.70	8.51	21.76	61.97	3.66	9.5	16.60	14.35
10.5	8.57	10.68	25.93	78.04	4.93	10.5	15.83	16.68
11.5	<u>6.10</u>	9.71	22.35	76.47	4.84		13.01	10.24
13.3	1.34	8.86	21.96	64.42	4.70	14,5	1128	<u>00.0</u>
16.1	879	203	21.34	70.0.3	5.74 5 0 A	15.5	13 37	22.36
17.5	0.84	8.09	19.96	79.86	7.15	17.5	11.17	21.44
18.5	7.40	10.00	22.88	81.35	6.46	18.5	12.69	<u> </u>
19.5	6.58	8.43	20.44	51.63	2.73	20 8	10.94	1.19
20.5	9.00	10.91	30.57	59.30	1.91	21.3	3851	238
225	50. « ۲ ۲ ۱	7.75	29.00	49.30	1.20	22.5	37.08	2.36
23.5	6.93	857	2514	d1 96	107	23.5	39.20	1.86
245	7.74	9.51	27.35	45.50	1.11	24.5	41.17	1.45
25.5	7.01	8.61	25.27	43.07	1.08	25.5	39.80	1.54
26.5	6.82	8.84	23.83	43.94	1.04	27 4	42.14 38.84	0.40
27.5	0.10	U.59 8 6 7	23.79	45.88	1.2	28,5	37.55	2.17
29 5	6.22	<u></u>	24.23	53.60	1.20	29.5	32.35	1.74
30.5	6.89	B.41	23.16	58.70	1.80	<u> </u>	32.66	2.54
31,5	7.32	7.84	20.5	57.86	1.92	्रा.व रर स	20.14	3.13
33.5	6.57	8.26	21.11	59.58	2.05	34.5	29 25	1.76
24,3	0.21 6.62		20,44	54.99	1.00	35.5	26.73	2.69
37.5	6.62	8.27	22.40	52.51	1.91	37.9	27.53	2.36
38.5	6.77	8.16	21.95	52.39	1.87	<u>20.5</u> 70.8	26.02	2.60
39.5	6.61	8.32	22.63	53.74	1.89	40.5	28.63	217
40.5	6.93 A 80	8.20	23.00	53.07	1.03	41.5	29.98	2.52
42.5	6.62	8.43	22.76	53.47	1.77	42.5	30.13	2.43
43.5	6.61	8.37	22.48	51.59	1.77	43.5	29.16	1.87
44,5	6.38	8.48	23.43	53.28	1.86	44.3 <u>र</u> ूष	28.30	2.13
45.5	7.59	8.65	23.35	54.63	1.89	46.5	30.33	2.01
40.5	6.91	8 20	23.50	51.67	1.74	47.5	27.83	2.33
48.5	7.30	6.82	24.76	53.90	1.80	48.5	29.69	1.84
49.5	7.45	0.91	24.78	55.02	1.76	49.3 50 द	50.90 20 90	1.76
50.5	7.01	8.71	23.95	51.71	1.83	51.5	28.92	48
576	6.86	D.44	24.15	57 57	104	52.5	29.88	2.73
53.5	6.90	7.63	23 03	56.40	2.07	53.5	27.26	3.15
54.5	6.86	7.83	23.88	55.49	2.03	<u> </u>	27.50	3.08
55.5	7.07	7.5	23.00	55.40	2.10	56.5	20,40	<u></u>
20.5	D.53	1.52	23.07	55.77	2.06	57.5	25.94	2.41
585	6.84	7 01	23.30	<u> </u>	207	58.5	26.76	3.22
595	6.70	7.42	22.34	54.26	2.04	59.5	26.58	2.48
60.5	6.07	7.54	23.30	55.64	2.15	<u>60.5</u>	25.91	<u> </u>
61.5	6.40	7.1	21.55	52.82	2.01		26.28 25 78	5.4 * 7 4
62.5	<u>6.71</u>	7.39	1 22.7	<u>55.67</u>	2.19	63.4	25 40	<u>, 7 4</u> 3 60
b3.5	0.00 2 7 2	7.85	23.33	20.17 ERE	2.28	64.5	26,32	3.76
<u>04.3</u> 55.5	6.76	750	22.7	55 00	210	65.5	26.57	3.10
66.5	6.53	76	22.80	56.54	2.07	66.5	27.34	3.00
67.5	7.86	7.34	20.04	55.77	2.04	D/.5	27.27	2.96
68.5	7.98	7.4	22.79	<u>56.60</u>	2.20	69.5	26.12	<u></u>
59.5	<u> </u>	7.62	22.9	54.33	2.00	70.5	26.90	2.98
715	6.66	7.30	22.4	55.44	2.00	71.5	26.58	2.91
72.5	6.18	0.9	22.9	56.63	2.10	72.5	26.99	<u> </u>
73.5	7.03	9.4	22.40	57.19	2.17	744	20.34	00.c
74.5	<u>6.65</u>	0.63	22.9	56.67	223	75.5	26.07	3.19
76	0.02 6.39	8.0	23.60	1 <u>57.0.</u> 55.5,		26.5	26.99	2.95
77.5	6.77	8.34	22.3	55 56	2.03	77.5	27.34	2.88
78.5	6.50	i <u>8.2</u> (219	53.80	2.07	78.5	26.00	1.96
79.5	<u> </u>	<u> </u>	22.09	<u> 56 6</u>	2.12		26.67	2.30
BU.5	0.03	0./	22.7	a <u>556</u> 8 3 600	2.09	81.5	25.18	0.00
82.5	6.90	9.04	23.5	4 60.0	2.30	82.5	25.18	0.00

ġ

33 10

窝

ġ

Appendix E

÷.

1.2

~
PALAEDECOLOGY RESEARCH UNIT RESEARCH PAPERS

- No. 1 Patrick, S. & Battarbee, R.W. 1981 The influence of sanitary and other social changes on the eutrophication of Lough Erne since 1850: Project introduction and a consideration of the potential role of metabolic wastes. 43 pp.
- No. 2 Battarbee, R.W. 1983 Diatom analysis of River Thames foreshore deposits exposed during the excavation of a Roman waterfront site at Pudding Lane, London. 18 pp.
- No. 3 Patrick, S. & Battarbee, R.W. 1983 Rural sanitation in the Lough Erne catchment: History and influence on phosphorous loadings. 26 pp.
- No. 4 Patrick, S. 1983 The calculation of per capita phosphorous outputs from detergents in the Lough Erne catchment. 23 pp.
- No. 5 Patrick, S. 1983 Phosphorous loss at sewage works in the Lough Erne region. 36 pp.
- No. 6 Flower, R.J. & Battarbee, R.W. 1983 Acid lakes in the Galloway uplands, South West Scotland: catchments, water quality and sediment characteristics. 56 pp.
- No. 7 Patrick, S. 1984 The influence of industry on phosphorous loadings in the Loch Erne region. 46 pp
- No. 8 Battarbee, R.W. & Flower, R.J. 1985 Palaeoecological evidence for the timing and causes of lake acidification in Galloway, South West Scotland. 79 pp.
- No. 9 Raven, P.J. 1985 The use of aquatic macrophytes to assess water quality changes in some Galloway lochs: an exploratory study. 76 pp.
- No. 10 Anderson, N.J. & Battarbee, R.W. 1985 Loch Fleet: bathymetry and sediment distribution. 18 pp.
- No. 11 Battarbee, R.W. <u>et al.</u> 1985 Diatoms and acid lakes: proceedings of a workshop.
- No. 12 Battarbee, R.W. and Renberg, I. 1985 Royal Society Surface Water Acidification Project (SWAP) Paleeolimnology Programme. 18 pp.

- No. 13 Raven, P.J. 1986 Occurrence of <u>Sphagnum</u> moss in the sublittoral of several Galloway lochs, with particular reference to Loch Fleet. 40 pp.
- No. 14 Flower, R.J., Rippey, B. & Tervet, D. 1986 34 Galloway Lakes: Bathymetries, Water quality & Diatoms.

÷

şi.

- No. 15 Flower, R.J. & Nicholson, A. 1986 Batymetries, water quality and diatoms of lochs on the island of South Uist, The Outer Hebrides, Scotland. 42pp
- No. 16 Fritz, S.C., Stevenson, A.C., Patrick, S.T., Appleby, P.G., Oldfield, F., Rippey, B. & Darley, J. 1986 Palaeoecological evaluation of the acidification of Welsh lakes. I: Llyn Hir, Dyfed.
- No. 17 Anderson, N.J.A., Battarbee, R.W., Appleby, P.G., Stevenson, A.C, Oldfield, F., Darley, J & Glover, G. (1986) Palaeolimnological evidence for the recent acidification of Loch Fleet, Galloway.
- No. 18 Kreiser, A., Stevenson, A.C., Patrick, S.T. Appleby, P.G., Oldfield, F., Rippey, B., Darley, J. & Battarbee, R.W. (1986) Palaeoecological evaluation of the acidification of Welsh lakes. II. Llyn Berwyn, Dyfed.

For copies of Research Papers or further information, please contact Dr. R.W. Battarbee, Palaeoecology Research Unit, Department of Geography, University College London, 26 Bedford Way, London WC1H OAP.