
J. Fluid Mech. (2021), vol. 920, A35, doi:10.1017/jfm.2021.449
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We present a numerical study of convection in a horizontal layer comprising a
fluid-saturated porous bed overlain by an unconfined fluid layer. Convection is driven
by a vertical, destabilising temperature difference applied across the whole system, as
in the canonical Rayleigh–Bénard problem. Numerical simulations are carried out using
a single-domain formulation of the two-layer problem based on the Darcy–Brinkman
equations. We explore the dynamics and heat flux through the system in the limit of
large Rayleigh number, but small Darcy number, such that the flow exhibits vigorous
convection in both the porous and the unconfined fluid regions, while the porous flow
still remains strongly confined and governed by Darcy’s law. We demonstrate that the heat
flux and average thermal structure of the system can be predicted using previous results of
convection in individual fluid or porous layers. We revisit a controversy about the role of
subcritical ‘penetrative convection’ in the porous medium, and confirm that such induced
flow does not contribute to the heat flux through the system. Lastly, we briefly study the
temporal coupling between the two layers and find that the turbulent fluid convection above
acts as a low-pass filter on the longer time-scale variability of convection in the porous
layer.

Key words: convection in porous media, Bénard convection

1. Introduction

Heat transfer driven by flow exchange between a fluid-saturated porous bed and an
overlying unconfined fluid arises in a variety of systems in engineering and geophysics.
This is the case, for example, in various industrial cooling systems found in nuclear power
generation, microelectronics or chemical engineering that require the circulation of fluid
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from an open channel into a fragmented medium (d’Hueppe et al. 2012; Chandesris et al.
2013; Su, Wade & Davidson 2015). A similar situation occurs during the progressive
solidification of multi-component fluids, which creates a mushy solid through which
liquid flows to transport heat and solute (Worster 1997). In geophysical contexts, this
phenomenon is encountered below sea ice (Wells, Hitchen & Parkinson 2019) and in the
Earth’s core (Huguet et al. 2016). This work is particularly motivated by the physics of
hydrothermal circulation, where a water-saturated, porous bed that is heated from below
exhibits thermal convection that, in turn, drives buoyant plumes and convective motion
in the overlying ocean. As well as being a well-known feature of the Earth’s ocean, there
is evidence of on-going hydrothermal activity under the ice crust of icy satellites such as
Jupiter’s moon Europa (Goodman 2004) or Saturn’s moon Enceladus (Hsu et al. 2015).
Unlike on Earth, the entire heat budget of these bodies is believed to be controlled by
hydrothermal convection and, in particular, by the manner in which heat is transported
through the rocky core and into the overlying oceans beneath their icy crusts (Travis,
Palguta & Schubert 2012; Travis & Schubert 2015; Nimmo et al. 2018). Most previous
works in this area have focussed on either the flow in the porous medium alone or on that
in unconfined fluid alone, with the coupling between them modelled by a parametrised
boundary condition. This is particularly the case for hydrothermal activity, for which
there are numerous studies focussed either on the structure of the flow in the porous
layer (see for instance Fontaine & Wilcock 2007; Coumou, Driesner & Heinrich 2008;
Choblet et al. 2017; Le Reun & Hewitt 2020, among others), or on the buoyant plumes
created in the ocean (Goodman 2004; Woods 2010; Goodman & Lenferink 2012), or
on the induced large-scale oceanic circulation (Soderlund et al. 2014; Soderlund 2019;
Amit et al. 2020). Travis et al. (2012) included both layers, but resorted to an enhanced
diffusivity to parametrise flows in the sub-surface ocean to make calculations tractable.
In all these cases, questions remain about how reasonable it is to use these parametrised
boundary conditions rather than resolve both layers, and about how the dynamics of flow
in each layer communicates and influences the flow in the other layer. Addressing these
questions is the focus of this paper. Works that explicitly focus on the coupled transport
across a porous and fluid layer are more numerous in engineering settings. However,
they tend to either be focused on situations where inertial effects in the interstices of
the porous layer play an important role (d’Hueppe et al. 2011; Chandesris et al. 2013),
or on regimes where heat is mainly transported by diffusion through the porous layer
(Poulikakos et al. 1986; Chen & Chen 1988, 1992; Bagchi & Kulacki 2014; Su et al. 2015)
or where restricted to the onset of convective instabilities (Chen & Chen 1988; Hirata
et al. 2007, 2009b; Hirata, Goyeau & Gobin 2009a). In general, these studies are difficult
to apply to geophysical contexts and particularly to hydrothermal circulation: here, the
large spatial and temperature scales and the typically relatively low permeabilities are
such that the porous region can be unstable to strong convection while the flow through
it remains inertia-free and well described by Darcy’s law. In such a situation, there can
be vastly different time scales of motion between the unconfined fluid, which exhibits
rapid turbulent convection, and the porous medium, where the convective flow through
the narrow pores is much slower. This discrepancy in time scales presents a challenge for
numerical modelling, which is perhaps why this limit has not been explored until now.

In this paper, we explore thermal convection in a two-layer system comprising a porous
bed overlain by an unconfined fluid. In particular, we focus on situations in which the
driving density difference, as described by the dimensionless Rayleigh number, is large
and heat is transported through both layers by convective flow, although for completeness
we include cases in which there is no convection in the porous layer. The permeability
of the porous medium, as described by the dimensionless Darcy number, is small enough
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Convection in porous–fluid layers

that the flow through the medium is always inertia free and controlled by Darcy’s law.
As in some previous studies of this set-up (Poulikakos et al. 1986; Chen & Chen 1988;
Bagchi & Kulacki 2014), we consider the simplest idealised system in which natural
convection occurs, that is, a two-layer Rayleigh–Bénard cell. In this set-up, the base of
the porous medium is heated and the upper surface of the unconfined fluid layer is cooled
to provide a fixed destabilising density difference across the domain. Flow in such a system
attains a statistically steady state, which allows for investigation of the fluxes, temperature
profiles and dynamics of the flow in each layer, and of the coupling between the layers.

We carry out numerical simulations of this problem in two dimensions using a
single-domain formulation of the two-layer problem based on the Darcy–Brinkman
equations (Le Bars & Worster 2006). Using efficient pseudo-spectral methods, we are
able to reach regimes where thermal instabilities are fully developed in both the porous
and fluid layers. We demonstrate how to use previous results on thermal convection in
individual fluid or porous layers to infer predictions of the heat flux and the temperature
at the interface between the layers in our system. In addition, we revisit a long-standing
controversy on the role of ‘penetrative convection’, i.e. flow in the porous medium that
is actively driven by fluid convection above, and confirm that it is negligible in the limit
where the pore scale is small compared with the size of the system. Lastly, we briefly
address the temporal coupling between both layers and explore how fluid convection
mediates the variability of porous convection.

The paper is organised as follows. The set-up and governing equations are introduced
in § 2, where we also outline the main approximations of our model and, importantly, the
limits on its validity. After presenting the general behaviour of the two-layer system and
how it changes when the porous layer becomes unstable to convection (§ 3), we show how
previous works on convection can be used to predict the thermal structure of the flow
and the heat it transports (§ 4). In § 5, we discuss the temporal variability of two-layer
convection, before summarising our findings and their geophysical implications in § 6.

2. Governing equations and numerical methods

2.1. The Darcy–Brinkman model
Consider a two-dimensional system comprising a fluid-saturated porous medium of depth
hp underlying an unconfined fluid region of depth hf . We locate the centre of the cell at
height z = 0, such that the whole system lies in the range −hp � z � hf , as depicted in
figure 1, and we introduce the length scale h = (hp + hf )/2. For the majority of this paper,
we focus on the case of equal layer depths, where hp = hf = h.

The fluid has a dynamic viscosity η and density ρ, and the porous medium is
characterised by a uniform permeability K0 and porosity φ0 < 1. We extend the definition
of the porosity – that is, the local volume fraction of fluid – to the whole domain by
introducing the step function

φ(z) =
{
φ0 z < 0,

1 z ≥ 0.
(2.1)

The flow is described by the local fluid velocity U� in the unconfined fluid layer and by
the Darcy or volume-averaged flux Ud = φ0U� in the porous medium. While the latter
quantity is, by necessity, coarse-grained over a larger scale (multiple pore scales) than
the former, for notational convenience we can nevertheless introduce a single quantity
U = φU� that reduces to each of these limits in the relevant domain. We will work in
terms of this mean flux U = (U, V) throughout the domain.
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Figure 1. Schematic cartoon of the set-up considered in this paper. In almost all cases considered here, we
take the layer depths to be equal, so hp = hf = h.

The flow is assumed to be incompressible everywhere, so

∇ · U = 0. (2.2)

In the fluid layer, the flow is governed by the Navier–Stokes equation,

ρ[∂tU + U · ∇U] = −∇P + μ∇2U + ρg, (2.3)

where P is the pressure, while in the porous layer, the flux instead obeys Darcy’s law,

U = K
μ

(−∇P + ρg). (2.4)

We simulate the two-layer system using a one-domain approach in which both porous
and unconfined fluid regions are described by a single Darcy–Brinkman equation (Le Bars
& Worster 2006),

ρ

[
∂tU + U · ∇U

φ

]
= −φ∇P + μ∇2U + φρg − μ

K
φU, (2.5)

where 1/K(z) is a step function that goes from 1/K0 for z < 0 to zero for z > 0. As
shown by Le Bars & Worster (2006), the Darcy–Brinkman formulation of the two-layer
problem can be retrieved by carrying out a coarse-grained average of the flow over a few
typical pore scales

√
K0. As a consequence, any spatial variation must have a typical length

larger than
√

K for the model to remain valid. The Navier–Stokes equation and Darcy’s
law are retrieved from the Darcy–Brinkman equation (2.5) in the unconfined fluid and
porous layers, respectively. In the fluid layer, φ = 1 and 1/K = 0, which trivially gives
the Navier–Stokes equation, whereas in the bulk of the porous medium, the damping
term −μφU/K dominates over the inertial and viscous forces (provided K0 is sufficiently
small), leading to a balance between the damping, pressure and buoyancy terms that yields
Darcy’s law. Just below the interface, however, viscous effects become important in the
porous layer as the flow matches to the unconfined region above. Acceleration remains
negligible, and the equations reduce to

− φ∇P + μ∇2U + φρg − μ

K
φU ∼ 0. (2.6)

Balancing the viscous resistance and Darcy drag indicates that local viscous forces play a
role over a length �r = √

K0/φ0 below the the interface – i.e. a few times the pore scale.
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Convection in porous–fluid layers

These forces regularise the velocity profile between the unconfined fluid and the porous
medium through a boundary layer of typical length �r.

To conclude, we model the two-layer system with a one-domain formulation via the
Darcy–Brinkman equation. We note that this is not the only option: another classical
formulation of the problem, for example, is the one introduced by Beavers & Joseph
(1967) where the fluid and the porous layer are treated separately and their coupling is
accounted by a semi-empirical boundary condition linking vertical velocity gradients and
the velocity difference between the fluid and porous layers. These different models both
feature the regularisation boundary layer at the fluid-porous interface over a length ∼ √

K0
which is corroborated by many experiments, in particular those of Beavers & Joseph
(1967). There are, however, some known discrepancies between these two approaches that
may not be restricted to the interface (e.g. Le Bars & Worster 2006; Hirata et al. 2007,
2009b). As pointed out by Nield & Bejan (2017), there is ongoing debate on which of
these formulations is the most adequate to model flows in mixed porous-fluid layers, with
definitive empirical evidence still lacking.

2.2. Heat transport
We use the Boussinesq approximation to account for the effect of temperature-dependent
density in the momentum equations: variations in temperature affect the buoyancy force
but do not affect the fluid volume via conservation of mass. We further assume that any
changes in viscosity, diffusivity or permeability associated with temperature variation
are negligible. Although some of these assumptions may be questionable in complex
geophysical settings, they are made here to allow a focus on the basic physics of these
two-layer convecting systems.

In particular, we restrict our study to linear variations of density with temperature
according to

ρ = ρ0(1 − α(T − T0)), (2.7)

with T0 being a reference temperature. The momentum equation under the Boussinesq
approximation follows from substituting (2.7) into the buoyancy term of (2.5), while letting
ρ = ρ0 in the inertial terms. The temperature evolves according to an energy transport
equation (Nield & Bejan 2013)

φ̄∂tT + U · ∇T = κΛ∇2T, (2.8)

with

φ̄ ≡ (1 − φ)cmρm + φcρ
ρc

, κ ≡ λ

ρc
and Λ ≡ φ + (1 − φ)

λm

λ
, (2.9a–c)

where c and cm are the heat capacity per unit of mass of the fluid and the porous
matrix, respectively, ρm is the density of the porous matrix, and λ and λm are the thermal
conductivities of the fluid and the porous matrix, respectively. Equation (2.8) assumes
local thermal equilibrium between the porous matrix and the fluid.

2.3. Boundary conditions
We consider a closed domain with imposed temperature on the upper and lower
boundaries, as in a classical Rayleigh–Bénard cell (figure 1). Specifically, for the
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temperature we set

T(z = h) = T0, T(z = −h) = T0 + 
T, (2.10a,b)

where 
T > 0 is a constant. The upper and lower boundaries are rigid and impermeable,
so

U(z = ±h) = V(z = ±h) = 0. (2.11)

Note that Darcy’s law would only permit one velocity boundary condition on the boundary
of the porous region at z = −h, but the higher-order derivative in the viscous term in
(2.5) allows for application of the no-slip condition in (2.11) as well. This extra condition
will induce a boundary layer of thickness ∼ √

K0/φ0 at the base of the domain, just
like the boundary-layer region at the interface (see (2.6)). It is not clear whether such
a basal boundary layer should arise in experimental situations. Irrespective of whether
this boundary is a physically realisable feature, we find that it plays no dynamical role here
provided it is thinner than any dynamical lengthscale of the flow (and, in particular, thinner
than the thermal boundary layer that can form at the base of the domain, as discussed in
§ 2.6.)

The horizontal boundaries of the domain are assumed to be periodic with the width of
the domain kept constant at 4h.

2.4. Dimensionless equations and control parameters
To extract the dimensionless equations that govern the two-layer system, we use a
‘free-fall’ normalisation of (2.5) and (2.8), based on the idea that a balance between inertia
and buoyancy governs the behaviour of the fluid layer. Such a balance yields the free-fall
velocity in the unconfined layer,

U∗2 = α
Tgh (2.12)

and the associated free-fall time scale is T∗ = h/U∗. Scaling lengths with h, flux with
U∗, time with T∗, temperature with 
T and pressure with U∗, we arrive at dimensionless
equations

∂tu + u · ∇ u
φ

= −φ∇p +
√

Pr
Ra

∇2u + φθez − χ(z)
Da

√
Pr
Ra

φu, (2.13a)

φ̄∂tθ + u · ∇θ = Λ√
RaPr

∇2θ, (2.13b)

∇ · u = 0, (2.13c)

where u is the dimensionless flux, θ = (T − T0)/
T is the dimensionless temperature and
χ(z) is a step function that jumps from 1 in z < 0 to 0 in z > 0. In these equations, we have
introduced three dimensionless numbers:

Da ≡ K0

h2 , Pr ≡ ν

κ
and Ra ≡ αg
Th3

νκ
. (2.14a–c)

The Darcy number Da is a dimensionless measure of the pore scale
√

K0 relative to the
domain size h, and is thus typically extremely small. The Rayleigh number quantifies the
importance of the buoyancy forces relative to the viscous resistance in the unconfined fluid
layer, and the focus of this work is on cases where Ra � 1. The Prandtl number compares
momentum and heat diffusivities. The dimensionless layer depths ĥp and ĥf are also, in
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Convection in porous–fluid layers

general, variables; as noted above, in the majority of computations shown here, we set
these to be equal so that ĥp = ĥf = 1, but we include the general case in the theoretical
discussion in § 4.

Note that with this choice of scalings, the dimensionless velocity scale in the fluid layer
is O(1), compared with O(

√
Ra Da/

√
Pr) in the porous layer. Given these scales, we can

also introduce a porous Rayleigh number Rap to describe the flow in the porous layer. The
porous Rayleigh number is the ratio between the advective and diffusive time scales in the
porous medium, which, from the advection–diffusion ratio in (2.13b), gives

Rap = Ra Da
Λ

= αg
TK0h
νΛκ

. (2.15)

2.5. Further simplifying assumptions
We simplify the complexity of (2.13) by noting that in the bulk of either the fluid or the
porous regions, φ cancels out of the equations (see for example (2.3) and (2.4)).
The porosity only affects (2.13) in the narrow boundary-layer region immediately below
the interface and at the base of the domain, where it controls the regularisation length√

Da/φ (as shown by (2.6)). In the following, we thus take φ = 1 in (2.13a); the only
effect of this is to change the regularisation length at the interface, a regularisation that
must anyway be smaller than any dynamical lengths for the model to remain valid, as
discussed in more detail in § 2.7.

In the heat transport equation (2.13b), we reduce the number of control parameters by
taking φ̄ = Λ = 1. For hydrothermal systems, water flows through a silicate rock matrix.
The thermal diffusivity is typically a factor of two larger in the matrix than in the fluid,
while ρmcm ∼ ρc. The parameters φ̄ and Λ are thus order-one constants that do not vary
substantially from one system to another. This is perhaps less true in some industrial
applications like the transport of heat through the metallic foam (Su et al. 2015), where
the thermal conductivity can be at least a hundred times larger in the matrix than in
the fluid. This would lead to a large value of Λ and thermal diffusion would be greatly
enhanced in the porous medium, which would reduce its ability to convect. We do not
consider such cases here, although we will find that cases where the porous medium is
dominated by diffusive transport can be easily treated theoretically, and the theory could
be straightforwardly adapted to account for varying Λ. Finally, to reduce the complexity of
this study and maintain a focus on the key features of varying the driving buoyancy forces
(i.e. Ra) and the properties of the porous matrix (i.e. Da), we set the Prandtl number to be
Pr = 1 throughout this work.

2.6. Limits on the control parameters
Several constraints must be imposed on the control parameters Ra and Da to ensure that
the Darcy–Brinkman model remains valid. We give these constraints in their most general
form here, but recall from the previous section that all solutions in this work take Pr =
Λ = 1. First, the inertial terms must vanish in the porous medium, which demands that

√
Ra Da√

Pr
	 1; (2.16)

that is, the velocity scale in the porous medium must be much less than the O(1) velocity
in the unconfined fluid layer. Second, the continuum approximation that underlies Darcy’s
law requires that any dynamical length scale of the flow in the porous layer must be larger

920 A35-7

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 8
2.

26
.4

3.
19

2,
 o

n 
07

 O
ct

 2
02

1 
at

 1
3:

59
:4

2,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

44
9

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.449


T. Le Reun and D.R. Hewitt

10−7 10−6 10−5 10−4

Darcy number Da

105

107

109

1011

R
ay

le
ig

h
 n

um
be

r 
R

a

Stable porous

UnconfinedUnconfined

RaDa = 2 7.1

RaDa3/2 = 5 0

√RaDa = 1

Figure 2. Domain of existence and validity of the two-layer model with respect to the control parameters Ra
and Da, given Pr = Λ = 1. Each dot represents a simulation. The line

√
RaDa = 1 marks the limit beyond

which inertial terms affect the flow in the porous medium, while the line RaDa3/2 = 50 gives an estimate of
the point at which the smallest flow structures in the porous medium become comparable to the pore scale. The
line RaDa = Rac

p = 27.1 corresponds to the threshold of thermal convection in a porous Rayleigh–Bénard cell
with an open-top boundary as discussed in § 3.1.

than the pore scale
√

Da; equivalently, the Darcy drag term must always be larger than
local viscous forces in the bulk of the medium. We expect the smallest dynamical scales
to arise from a balance between advection and diffusion in (2.13b): such a balance, given
typical velocity ∼ √

RaDa/
√

Pr, yields a length scale ∼ Ra−1
p . In fact, simulations carried

out in a porous Rayleigh–Bénard cell (Hewitt, Neufeld & Lister 2012) indicate that the
narrowest structures of the flow, which are thermal boundary layers, have a thickness of
at least 50Ra−1

p . For these structures to remain larger than the pore scale
√

Da, we thus
require

Ra Da3/2 � 50Λ. (2.17)

Note that the effect of violating this constraint is to amplify the importance of viscous
resistance ∇2u within the porous medium in (2.13a), which would no longer reduce to
Darcy’s law.

Figure 2 provides an overview of the space of control parameters Ra and Da, where these
various limits are identified and the parameter values in our numerical simulations are
indicated. This plot also shows a line that approximately marks the threshold of convective
instability in the porous medium, whose importance is discussed in § 3.2 and which is
theoretically quantified in § 4.2.2.

2.7. Numerical method
The one-domain Darcy–Brinkman equations (2.13) are solved using the pseudo-spectral
code DEDALUS (Burns et al. 2020; Hester, Vasil & Burns 2021). The flow is decomposed
into N Fourier modes in the horizontal direction, while a Chebyshev polynomial
decomposition is used in the vertical direction. Because the set-up is composed of two
layers whose interface must be accurately resolved, each layer is discretised with its
own Chebyshev grid, with [Mp, Mf ] nodes for the porous and fluid layers, respectively.
This ensures enhanced resolution close to the top and bottom boundary as well as at
the interface where the

√
Da regularisation length must be resolved. Time evolution
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Convection in porous–fluid layers

of the fields is computed with implicit-explicit methods (Wang & Ruuth 2008):
the nonlinear and Darcy terms in (2.13) are treated explicitly while viscosity and diffusion
are treated implicitly. The numerical scheme for time evolution uses second-order
backward differentiation for the implicit part and second-order extrapolation for the
explicit part (Wang & Ruuth 2008). The stability of temporal differentiation is ensured via
a standard CFL criterion evaluating the limiting time step in the whole two-layer domain,
with an upper limit given by

√
Ra Da, which is never reached in practice. Rather, with the

control parameters and resolution considered here, the time step is limited by the non-zero
vertical velocity at the z = 0 interface where the vertical discretisation is refined. The
range of Rayleigh and Darcy numbers in our simulations is shown in figure 2. Note, with
reference to this figure, that we carried out a systematic investigation of parameter space
where the porous layer is unstable by varying Ra and Da for various fixed values of the
porous velocity scale

√
Ra Da.

We use a C∞-smooth step function for χ(z) in (2.13). The smoothing of the step is
performed over a length 0.75

√
Da which is slightly smaller than the regularisation length

to ensure that the smoothing does not play any dynamical role. We note that a sharp
step function could also be used directly without changing the statistical properties of
the simulated flows.

The majority of simulations were carried out in a set-up where the heights of both the
porous and the fluid layers were equal ĥp = ĥf = 1, with resolutions N × [Mp, Mf ] =
1024 × [128, 256] below Ra = 108 and 1024 × [256, 512] above. As discussed in the
following sections, we find that the porous layer in general absorbs more than half of
the temperature difference, and so the effective Rayleigh number in the fluid layer is
typically somewhat smaller than Ra. We used two methods to initiate the simulations.
In a few cases, the initial condition was simply taken as the diffusive equilibrium state
throughout the domain, perturbed by a small noise. In most cases, however, we proceeded
by continuation, using the final output of a previous simulation similar control parameters
as an initial condition for a new simulation.

Comparison between the two methods showed that they yielded the same statistically
steady state, but the continuation approach reached it in the shortest time. In all cases, we
ran simulations over a time comparable to the diffusive time scale

√
Ra, to ensure that the

flow had reached a statistically steady state.

3. An overview of two-layer convection

In this section, we describe the results of a series of simulations carried out at a fixed Darcy
number, Da = 10−5.5, and equal layer depths ĥp = ĥf = 1, but with varying Ra in the
range 104 � Ra � 109. We use these to illustrate the basic features of high-Ra convective
flow in the two-layer system.

3.1. Two different regimes depending on the stability of the porous medium
Figure 3 shows snapshots of the temperature field taken for different simulations that
have reached a statistically steady state. The corresponding profiles of the horizontally
and temporally averaged temperature, θ̄ (z), are shown in figure 4(a), while the mean
interface temperature θi = θ̄ (0) is shown in figure 4(b). The fluid layer is convecting in
all simulations, as attested by the presence of plumes and by the mixing of the temperature
field that tends to create well-mixed profiles of θ̄ in the bulk of the fluid. The porous
layer, however, exhibits two different behaviours depending on the size of Ra. At low
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Figure 3. Snapshots of the temperature field at different Rayleigh numbers in two stable (top panels) and two
convective (bottom panels) cases for the porous medium. The Darcy number is kept at Da = 10−5.5. The colour
scale is cut at 0.8 to enhance the contrast in the fluid layer.
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Figure 4. Temporally averaged quantities for Da = 10−5.5. (a) Horizontally averaged temperature θ̄ (z) for
values of Ra below (dashed) and above (solid) the threshold of porous convection; and (b) mean interface
temperature θi. The red dashed line is the diffusive prediction of (4.8) and the black lines are asymptotic
predictions obtained by solving (4.7) using Cp = 0.85 and the marked values Cf , as detailed in § 4.2.

Rayleigh numbers (Ra ≤ 106 in figure 3), the porous layer is dominated by diffusive
heat transport: there are no hot or cold plumes in the temperature field in z < 0 (see
figure 3a,b), while the horizontally averaged temperature profiles θ̄ (z) appear to be linear
(figure 4a). The corresponding interface temperature monotonically decreases with Ra
(figure 4b). As the Rayleigh number is increased beyond Ra ∼ 107, the behaviour of
the flow in the porous layer changes as it also becomes unstable to convection. This is
attested by the visible presence of plumes in figure 3(c,d) and by the flattening of the
horizontally averaged temperature profiles in figure 4(a). The signature of this transition
is also very clear in the evolution of the interface temperature θi, which reverses from
decreasing to increasing with Ra around Ra ∼ 107 (figure 4b). The value of the Rayleigh
number at which porous convection emerges can be roughly estimated from the stability
of a single porous layer. In a standard Rayleigh–Bénard cell with an open-top boundary,
convection occurs if the porous Rayleigh number Rap = RaDa exceeds a critical value
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Convection in porous–fluid layers

Rac
p � 27.1 (Nield & Bejan 2017). At Da = 10−5.5, the critical Rayleigh number Ra such

that RaDa = Rac
p is Ra � 8.6 × 106, which is reported in figure 4(b) and agrees well with

the inversion of trend in θi. We will return to a more nuanced form of this argument
in § 4.2.2. Lastly, as the Rayleigh number is increased beyond the threshold of porous
convection, the porous plumes become thinner and more numerous, a behaviour that is
similar to standard Rayleigh–Bénard convection in porous media (Hewitt et al. 2012). In
addition, the porous plumes become increasingly narrower at their roots in the thermal
boundary layer, which causes a local minimum in the temperature profiles (see figure 4a)
that has also been observed in previous works on porous convection at large Rayleigh
numbers Hewitt et al. (2012).

Lastly, as the Rayleigh number is increased beyond the threshold of porous convection,
the porous plumes become thinner and more numerous, a behaviour that is similar to
standard Rayleigh–Bénard convection in porous media (Hewitt et al. 2012). In addition,
the porous plumes become increasingly narrow at their roots above the thermal boundary
layer, which causes a local minimumin in the temperature profiles (see figure 4a) that has
also been observed in previous works on porous convection at large Rayleigh number
(Hewitt et al. 2012). Finally, note that the temperature contrast across the interface
decreases as the Rayleigh number is increased; this is because the contrast between
velocities in the porous and unconfined layers decreases as

√
RaDa increases. At fixed

Da, the model assumption that there is a separation of scales between these velocities
must break down if Ra is made sufficiently large (see the discussion in § 2.6).

3.2. Characteristics of heat transport
The transition between the porous-stable and the porous-unstable cases can be further
identified by the analysis of global heat transport across the system. Heat transport
is characterised by the horizontally averaged heat flux J(z) ≡ wθ − Ra−1/2θ̄ ′, which
is constant with height in a statistically steady state. As is standard in statistically
steady convection problems, we measure the time-averaged enhancement of the heat
flux, compared with what it would be in a purely diffusive system, Ra−1/2/2, via the
Nusselt number Nu ≡ 2

√
Ra〈J〉, where the angle brackets indicate a long-time average.

The Nusselt number (figure 5a) is strongly influenced by the transition to instability in the
porous layer. In the porous-stable case (Ra � 107), Nu appears to approach a horizontal
asymptote Nu = 2, but once the porous layer is unstable, Nu increases much more steeply
beyond this value.

The behaviour below the threshold of convection arises from the flux being
predominantly diffusive in the porous layer. The total flux through the system is thus
bounded above by a state in which all of the temperature contrast is taken up across the
porous layer and the interface temperature θi tends to zero. In this limit, 〈J〉 → 1/

√
Ra and

Nu → 2. The decreasing θi in figure 4(b) as Ra increases towards the threshold reflects the
approach to this limit. In fact, we find that despite the porous medium appearing to be
stable to convection below the threshold, small amplitude flows still exist in this regime,
as can be seen from the non-zero root-mean-squared vertical velocity in the porous layer
for all Ra, shown in figure 5(b). Nevertheless, by computing the relative diffusive and
advective contributions to the flux through the porous medium, we confirm that these flows
have a negligible impact on heat transport below the threshold (figure 5c). We interpret
the weak secondary porous flows in the porous-stable regime as a consequence of the
horizontal variations in the interface temperature imposed by fluid convection, which are
clearly visible in figure 3(a,b). As shown in figure 5(b,c), the strength of the porous flow
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Figure 5. (a) Nusselt number Nu = 2
√

Ra〈J〉 characterising heat transport across the two-layer system,
together with predictions from § 4 for the porous-stable case (4.8) (red dashed) and porous-unstable (4.7)
(black dotted and dot–dashed, with Cp = 0.85 and Cf as marked). The horizontal line marks Nu = 2. (b)
Root-mean-squared vertical velocity amplitude wrms in the porous and fluid layers. The two grey lines indicate
a scaling of

√
RaDa (the characteristic speed in the porous layer). (c) Ratio of the diffusive (Jd,p) and advective

(Ja,p) fluxes to the total depth-averaged flux 〈J〉 in the porous layer. In all three panels, Da = 10−5.5 and the
vertical line marks the threshold of porous convection estimated using (4.9).

increases dramatically as the porous layer becomes unstable, and it is only then that the
advective contribution to the flux in the porous medium becomes significant. We return to
discuss this induced flow below onset in the porous layer in § 4.3, and defer more detailed
discussion and prediction of the behaviour of Nu(Ra, Da) until the following section.

3.3. Time scales, variability and statistically steady state
The governing equations (2.13) reveal three different time scales that govern the variability
of the two-layer system considered here. The first is the turnover time scale in the fluid
layer, which is O(1) in our free-fall normalisation. The second is given by diffusion, τdiff =√

Ra, and the third is the turnover time scale in the porous layer τp ∼ (
√

RaDa)−1, which
scales with the inverse of the porous speed scale. Because τp and τd measure advection and
diffusion in the porous medium, these time scales are in a ratio τp = τdiff /Rap. In addition,
we recall that τp � 1 is required for the porous layer to be in the confined limit and for
the Darcy–Brinkman model to hold (see (2.16)). The turnover time scales should scale
with the inverse of wrms in each layer, as can be observed in figure 5(b): in the fluid layer,
wrms ∼ O(1) with no systematic variation with Ra, while in the porous layer, wrms ∝ √

Ra
at constant Da in agreement with the scaling above. These two very different time scales
are also clearly visible in the time series of the heat flux difference across the two-layer
system, as shown in figure 6. Fast oscillations driven by the fluid convection variability are
superimposed onto longer time variations owing to flow in the porous layer. Such a time
series also illustrates how the two-layer set-up reaches a statistically steady state, the latter
being characterised by the flux difference averaging to 0 over long times. In the particular
case of figure 6, the simulation is initiated from the diffusive equilibrium plus a small
noise and we observe the equilibration to occur after ∼0.2τdiff . Although the equilibration
time is largely reduced by the use of continuation, we run all simulations over times that
are similar to τdiff to ensure they are converged.

4. Modelling heat transport and interface temperature

4.1. Predicting heat transport from individual layer behaviour
As observed in figure 4(a), when both layers are convecting, the temperature profiles in
each layer are characterised by thin boundary layers at either the upper or lower boundaries
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Figure 6. (a) Time series of the flux difference between top and bottom at Ra = 107.75, Da = 10−5.5. The
flux difference is normalised by the volume and temporal average of the flux 〈J〉 and time is normalised by
τdiff = √

Ra. The insets show zooms to make clearer the different levels of temporal variations, with horizontal
segments indicating the porous turnover time scale τp and the free-fall time scale. Note that this simulation has
been started from a diffusive state with a small noise.

Fluid

θ̄
10

Porous

δf

Θf = Cf θi

θi

Θp = Cp(1 – θi)

δp

Figure 7. A schematic of the temporal and horizontal average of the temperature in the two-layer system,
with a focus on the fluid and porous boundary layers.

of the domain, through which heat must diffuse. This structure is a generic feature of
convection problems, and suggests that we may be able to generalise previous results
and approaches used in standard Rayleigh–Bénard convection problems to predict the
behaviour here.

4.1.1. An asymptotic approach based on boundary-layer marginal stability
Following the seminal approach of Malkus (1954) and Howard (1966), we posit that in
the asymptotic limit of large Rayleigh and small Darcy numbers such that

√
RaDa 	 1,

the thermal boundary layers at the upper and lower boundaries of the domain are held at
a thickness that is marginally stable to convection. To apply this idea, let us consider a
general region with a Rayleigh number R (i.e. R = Ra in the fluid layer and R = RaDa in
the porous layer). If the boundary layer has mean thickness δ, then we can also introduce
a local boundary-layer Rayleigh number Rδβ , where β = 1 in the porous layer or β =
3 in the fluid layer to account for the different dependence on the height scale in the
corresponding Rayleigh number (see (2.14c) and (2.15)). Let the temperature difference
across the boundary layer be Θ (figure 7), and, for completeness, suppose that the region
has an arbitrary dimensionless height ĥ.
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Suppose further that we want to rescale lengths and temperatures to compare this
general case more directly with the standard Rayleigh–Bénard cell of unit dimensionless
height and unit temperature difference. In such a cell, the temperature contrast across
the boundary layers is 1/2, which suggests that we need to rescale temperatures by 2Θ

and lengths by ĥ, to give a new Rayleigh number R̂ = 2Θ ĥR and boundary-layer depth
δ̂ = δ/ĥ. Having rescaled thus, the Malkus–Howard approach would suggest that

R̂δ̂β = Rc, (4.1)

for some critical value Rc, or δ̂ = (Rc/R̂)1/β . The corresponding Nusselt number N for
this rescaled system, given that the scaled temperature drop across the layer is 1/2, is

N = 1
2δ

= 1
2

(
R̂
Rc

)1/β

. (4.2)

Note that the actual, unscaled flux 〈J〉 across the boundary layer is 〈J〉 = Ra−1/2Θ/δ,
which can thus be related to N from (4.1) and (4.2) by

〈J〉 = 2Θ

ĥ
√

Ra
N. (4.3)

Thus, specification of the critical value Rc yields a prediction of the flux through
the system in terms of Θ and ĥ. We can extract values of Rc from previous works
that have determined experimentally or numerically the relation between N and R̂ in
either a fluid or a porous Rayleigh–Bénard cell. For porous convection, Hewitt et al.
(2012) found that (2R1/β

c )−1 � 6.9 × 10−3. For unconfined fluid convection, the host of
historical experiments reported by Ahlers, Grossmann & Lohse (2009) and Plumley &
Julien (2019), as well as more recent studies for instance by Urban et al. (2014) or Cheng
et al. (2015), suggest that (2R1/β

c )−1 ∼ 6–8 × 10−2, although no definitive observation
of a well-developed Ra1/3 law has been made so far and the ‘true’ asymptotic form of
N(R̂) remains a hotly contested question. Nevertheless, these values provide an estimate
for the heat flux in both the porous and the fluid layer in the asymptotic limit Ra � 1 and√

RaDa 	 1 that can be compared with our simulations, as discussed in the next section.

4.1.2. Generalising the flux estimate using Rayleigh–Nusselt laws
Our simulations remain limited to moderate Rayleigh numbers, mainly because of the
flows through the interface that need to be accurately resolved, and so the asymptotic
arguments outlined in the previous section may not be accurate. However, it is
straightforward to generalise the asymptotic approach of the previous section to a case
where the Nusselt number is some general function N (R̂) of the rescaled Rayleigh
number, rather than the asymptotic scaling. To achieve this, we simply replace (4.2) by
the relationship

N = N (R̂). (4.4)

(Equivalently, one could generalise the asymptotic results above to allow Rc to vary with
R̂ in the manner necessary to recover (4.4).) Over the range of fluid Rayleigh numbers
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Convection in porous–fluid layers

considered here, Cheng et al. (2015) determined an approximate fit to the fluid Nusselt
number function Nf of

Nf (R̂f ) = 0.162 R̂0.284
f . (4.5)

In the porous layer, Hewitt et al. (2012) and Hewitt (2020) considered the equivalent
porous Nusselt number Np and found a correction to the asymptotic relationship of the
form Np(R̂p) = 6.9 × 10−3 R̂p + 2.75, which recovers the asymptotic relationship in the
limit R̂p → ∞. In fact, we also carried out additional simulations of porous convection
in a layer of height ĥ = 1 submitted to a maintained temperature difference of 1, but in
which the top boundary is open as it allows the fluid to flow in and out. An affine fit of the
Nusselt number against the porous Rayleigh number in these simulations provided us with
the law

Np(R̂p) = 6.99 × 10−3 R̂p + 1.56. (4.6)

Note that in such a cell, the temperature difference across the bottom boundary layer is
not 1/2 as in a classical Rayleigh–Bénard cell, but rather approximately Θ ∼ 0.8. Note
also that the linear coefficient of the fit in (4.6) is effectively the same as that found in
the classical cell, which indicates that for a sufficiently large porous Rayleigh number, the
mechanisms controlling the lower boundary layer are the same regardless of the nature of
the interface condition.

Figure 8 shows a comparison of the predictions of this theory and various flux laws
with our numerical data. We show the Nusselt number N, calculated in our simulations
using (4.3), as a function of the rescaled Rayleigh number R̂ in both the fluid layer (index
f ) and in the porous layer (index p), with the temperature drop across boundary layers Θ

determined from numerical simulations. We have indicated for reference the single-layer
laws (4.5) and (4.6), which are in close agreement with our data. We also include two
simulations with different layers depths ĥp and ĥf to demonstrate the generality of the
theory. In figure 8(a), we observe that the points lie slightly below the law (4.5) found by
Cheng et al. (2015), but we note that our values of Nf lie within the range of the scatter in
the data upon which that fit is based in the paper by Cheng et al. (2015). Overall, the figure
indicates that flux laws extracted from individual layers can be used to predict the flux in
the two-layer system, after careful rescaling.

4.2. The interface temperature
We can use the laws governing the heat flux to determine the interface temperature θi,
which is important for applications as it gives an order of magnitude of the average fluid
temperature. The interface temperature must be set by the constraint of flux conservation
between the two layers, which implies that the flux in (4.3) must be the same in both
porous and fluid layers, in a statistically steady state. The caveat is that it is not clear
how to relate the temperature difference Θ across the boundary layers to the interface
temperature θi. We overcome this issue by saying that the temperature difference across
the boundary layer is a fraction of the difference across the whole layer, and so introduce
O(1) coefficients Cf ,p such that Θf = Cf θi and Θp = Cp(1 − θi) (see figure 7). In single
classical Rayleigh–Bénard cells, Cf ,p = 0.5 because both boundary layers are symmetric
and diffusive. This is not true in the two-layer system where the transport across the
interface includes contributions from diffusion and advection, and Cf ,p may take any value
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R̂f  = Ra × 2Θf ĥf
3 R̂p = RaDa × 2Θp ĥp
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N
f =

√ R
a 

〈J〉
ĥ f/

(2
Θ

f)

N
p 

=
√ R

a 
〈J〉

ĥ p/
(2

Θ
p)

√
RaDa

10−1.0

10−1.5
10−1.75

10−2.0

N̂f = 0.162R̂f
0.284

N̂f = 0.06R̂f
1/3

ĥp = 0.5

ĥp = 1.5

102 103
100

101

102

Single layer

N̂p = 6.99 × 10−3R̂p + 1.56

Hewitt et al. (2012)

(b)(a)

Figure 8. The Nusselt number N, extracted from the measured flux 〈J〉 and temperature contrast across the
boundary layers via (4.3), as a function of the rescaled Rayleigh number R̂ = R 2Θ ĥβ in the fluid layer (panel a
with subscript f ) and in the porous layer (panel b with subscript p). The values of Θ , the temperature difference
across the boundary layers, are extracted from numerical data. Numerical data are sorted by equal values of
the damping factor

√
RaDa. In each panel, fits from studies of the single-layer case (4.5) or (4.6) are included

(dashed grey) together with asymptotic predictions for R̂ → ∞ as discussed in § 4.1.1 (red dots). Panel (b)
also includes data from simulations of a single porous Rayleigh–Bénard cell with an open-top boundary on
which the fit (4.6) is based (red stars). All but two simulations had ĥp = ĥf = 1; the values of ĥp for these two
simulations are given in the legend.

102 103

RaDa

0.6

0.8

1.0

0.6

0.8

1.0

Cp Cf√
RaDa

10–1.0

10–1.5
10–1.75

10–2.0

Single layer

106 107 108 109

Ra
0 0.5 1.0

θ̄(z)

–1

0

1

z

√
RaDa � 1
Cf = 1.0√

RaDa � 1
Cf = 0.5

RaDa � 1

Cp � 0.85

(b)(a) (c)

Figure 9. (a,b) Values of Cp and Cf (see figure 7) extracted from simulations for a different porous velocity
scale

√
RaDa. ( f ) Schematic representation of two limiting temperature profiles in the limit of large Rayleigh

numbers based on panel (a) and (b). The porous Rayleigh number is large so that Cp = 0.85 whereas Cf varies
from 1 in the weakly confined limit (

√
RaDa � 1) to 0.5 in the strongly confined limit (

√
RaDa 	 1).

ranging from 0.5 to 1. Given these coefficients, flux conservation between the layers yields

2Cf θi

ĥf
Nf (2Cf θiĥ3

f Ra) = 2Cp(1 − θi)

ĥp
Np(2Cp(1 − θi)ĥpRaDa), (4.7)

which determines the interface temperature θi. In general, the fractions Cf ,p depend on the
control parameters Ra and Da, as shown in figure 9.

4.2.1. The porous-convective regime
We first address the case where both layers are unstable to convection. Although Cp and
Cf may take any value between 0.5 and 1, we can still make qualitative predictions on
their values depending on the control parameters. Because these coefficients describe the
temperature difference between the bulk and the boundary layers, they are also a proxy
for the temperature drop at the interface. In the case where the porous turnover time scale
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Convection in porous–fluid layers

τp = √
RaDa is very small compared with the free-fall time scale (=1 in dimensionless

units), the porous flow is strongly confined and heat transfer is purely diffusive at the
interface so that Cp = Cf = 0.5. In the opposite, weakly confined limit where

√
RaDa is

brought up to 1, the porous and fluid velocities become similar and the interface heat
transfer becomes advective, which forces the interface temperature drop to vanish (see, for
instance, the Ra = 109 temperature profile in figure 4(a) for which

√
RaDa = 10−1). In

such a limit, Cp = Cf = 1. The values of Cp and Cf extracted from numerical simulations
are shown in figures 9(a) and 9(b), respectively. The qualitative picture described above
seems to be in agreement with the numerical observation in the fluid coefficient: as shown
in figure 9(b), although Cf varies with Ra, it is also larger for larger values of

√
RaDa.

Given there is not a clear collapse of this data, we consider in the following discussion on
the interface temperature two extreme limits in the asymptotic limit Ra → ∞, as sketched
in figure 9(c), Cf = 0.5 in the strongly confined limit (

√
RaDa 	 1) and Cf = 1 in the

weakly confined limit (
√

RaDa � 1).
In the porous layer, the coefficient Cp is found to be mainly a function of Rap = RaDa

and appears to be reaching an asymptote Cp � 0.85 (see figure 9b). Cp follows a trend that
is similar to the case of a single porous layer with an open-top boundary (the red stars
in figure 9b), and only weakly depends on

√
RaDa. This similarity with the single-layer

case suggests that the turnover and mixing in the fluid is sufficiently rapid (compared to the
motion in the porous medium) so that, from the point of view of the porous layer, the upper
layer behaves like a reservoir of fluid at an approximately constant temperature. Given this,
some departure from the observed insensitivity to

√
RaDa is expected when

√
RaDa → 1;

indeed, some suggestion of this might be be visible at
√

RaDa = 10−1 (see figure 9b).
However, despite following similar trends the values of Cp appear to be larger in the
two-layer system than they are in the single porous medium where the asymptotic value is
somewhat lower (Cp � 0.78). This is presumably a consequence of the temperature being
imposed as a constant at every point on the upper boundary in the case of a single porous
layer. This is a stronger constraint than in the two-layer system where hot porous plumes
can locally heat the bottom of the fluid layer, hence reducing the interface temperature
drop and resulting into larger values of Cp.

Before showing the asymptotic predictions based on these limiting values of Cp,f , we
first use the actual extracted values to verify the accuracy of (4.7) in predicting the interface
temperature (figure 10). We find the agreement between both to be within 10 % relative
error. This figure also shows the predicted interface temperature for Ra � 1 for the two
limiting cases Cf = 0.5 and Cf = 1.0 with Cp = 0.85 as discussed above. Apart from
values close to the threshold of porous convection, all the numerical data lies between
them. Moreover, the weakly confined simulations with larger

√
RaDa show interface

temperatures approaching the limit Cf = 1 (figure 10a), while the more strongly confined
simulations with

√
RaDa 	 1 draw closer to Cf = 0.5 as Ra is increased (figure 10d),

which suggests that these limits will become increasingly accurate for increasingly large
Ra.

4.2.2. The porous-diffusive regime
If the porous layer remains stable, dominated by diffusive heat transfer, then the expression
for the flux in the fluid layer is still given by (4.3), but in the porous layer, it is simply 〈J〉 =
Ra−1/2(1 − θi)/ĥp. A balance of these expressions should then replace (4.7) to determine
θi. Moreover, we know a priori that Cf = 0.5 because the flux is entirely diffusive at the
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Ra

0

0.1

0.2

0.3

0.4

θi

107 109

Ra
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Ra
107 108 109

Ra

√
RaDa = 10–2.0

√
RaDa = 10–1.75

√
RaDa = 10–1.5

√
RaDa = 10–1.0

Cf = 0.5

Cf = 1.0

Porous stable

(b)(a) (c) (d )

Figure 10. Plot of the interface temperature θi as a function of the Rayleigh number Ra for different values of√
RaDa. The filled symbols are the numerical data and the empty symbol represent is the predicted θi using

(4.7) with the values of Cp,f extracted from the simulation and shown in figure 9(a,b). The black lines show
the law expected for the interface temperature in the two limiting cases of strongly confined porous medium
(
√

RaDa → 0, Cp = 0.85 and Cf = 0.5) and the weakly confined case (
√

RaDa � 1, Cp = 0.85 and Cf = 1.0).
The red line is the interface temperature in the case where the porous medium remains diffusive, the plus sign
highlights the value at threshold of porous convection based on the prediction (4.9).

interface z = 0. Flux conservation thus reduces to

θi

ĥf
Nf (θiĥ3

f Ra) = 1 − θi

ĥp
, (4.8)

which we solve numerically. The predicted interface temperature from this model
is shown in figure 4(b) and gives reasonably good agreement with the numerical
data. Given θi, we can also extract the Nusselt number for the two-layer system,
Nu = 2

√
Ra〈J〉 = 2(1 − θi)/ĥp (see § 3), which was also shown to give good agreement

with numerical data in figure 5(a) for the particular case ĥp = 1. Note that this prediction
also agrees with an earlier result of Chen & Chen (1992) that the two-layer Nusselt number
is bounded above by 2/ĥp when the porous layer remains stable.

In fact, prediction of θi allows for a more accurate prediction of the threshold of
convection in the porous medium. Neglecting any temperature variations induced by fluid
convection above, we expect that porous convection sets in when RaDa ĥp(1 − θi) reaches
a critical value Rac

p � 27.1 (Nield & Bejan 2017). Because θi → 0 at large Rayleigh
numbers while the porous layer remains stable, this condition may be recast as

Ra = Rac
p

Da ĥp
[1 + θi + O(θ2

i )] (4.9)

at the threshold of porous convection. To leading order, the threshold is given by Ra =
Rac

p/(Daĥp), as already noted in § 3.1. For the value of Da used in § 3 where ĥp = 1,
including the first-order correction increases the predicted threshold value of Ra by
approximately 10 %.

4.2.3. Asymptotic predictions
These relationships for θi, and thus for the flux, simplify in the asymptotic regime of very
large Rayleigh numbers and extremely low Darcy numbers that is relevant for geophysical
applications (RaDa � 1 while

√
RaDa 	 1). In such a regime, the Rayleigh–Nusselt

relations in convecting sub-layers follow the asymptotic scalings discussed at the
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Convection in porous–fluid layers

10−1 100

Ra2/3Da

0

0.1

0.2

0.3

0.4

θi

√
RaDa

10−1.0

10−1.5

10−1.75

10−2.0

Cf = 0.5

Cf = 1.0

Figure 11. Plot of the interface temperature θi found in simulations (symbols) and predicted with the
asymptotic model (4.13) as a function of Ra2/3Da. The two lines materialise the two limiting cases of a strongly
confined porous medium (

√
RaDa → 0, Cp = 0.85 and Cf = 0.5) and the weakly confined case (

√
RaDa � 1,

Cp = 0.85 and Cf = 1.0). Note that Ra2/3Da must remain smaller than ∼10 to ensure that the constraint (2.17)
is satisfied.

end of § 4.1.1:

Np = 6.9 × 10−3R̂p ≡ αpR̂p and Nf � 7 × 10−2R̂1/3
f ≡ αf R̂1/3

f . (4.10a,b)

In the case of a stable porous medium, the flux balance (4.8) reduces to

αf Ra1/3θ
4/3
i = 1 − θi

ĥp
, (4.11)

with an asymptotic upper bound

θi ∼ 7.3

ĥp Ra1/4
, (4.12)

for Ra � 1. In the case where both layers are convecting, (4.7) instead reduces to

θ
4/3
i = (2Cp)

2

(2Cf )4/3
αp

αf
Ra2/3Da (1 − θi)

2, (4.13)

which shows that the interface temperature is a function of the grouping Ra2/3Da alone
in this limit. The height of the layers ĥp and ĥf do not appear in (4.13) because the heat
flux is controlled by boundary layers whose widths are asymptotically independent of the
depth of the domain (Priestley 1954).

The predictions of (4.13) are shown in figure 11 for the two limiting values of Cf ,
along with the simulation data for reference. There is rough agreement between data and
prediction, although the prediction slightly underestimates the data, presumably owing to
the finite values of Ra and Rap in the simulations. The figure demonstrates that θi decreases
with decreasing Ra2/3Da: at constant Rayleigh number, decreasing the Darcy number
decreases the efficiency of heat transport in the porous medium and, as a consequence,
the porous layer must absorb most of the temperature difference, forcing a decrease in θi.
In the asymptotic limit of large Ra but very small Da, such that Ra2/3Da remains small,
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the interface temperature from (4.12) satisfies

θi ∼
√

RaDa3/2, (4.14)

for Ra2/3Da 	 1. Conversely, θi increases with increasing Ra2/3Da but evidently cannot
increase without bound, which reflects the fact that the grouping Ra2/3Da cannot take
arbitrarily large values. For Ra2/3Da � O(10), the flow structures in the porous medium
will become smaller than the pore scale, breaking the assumption of Darcy flow there (see
(2.17)).

4.3. Penetrative convection in the porous-diffusive regime
We end this discussion of fluxes with a brief consideration of the issue of so-called
‘penetrative convection’ – significant subcritical flow in the porous layer – which has been
a contentious subject in some previous studies. For instance, Poulikakos et al. (1986) and
more recently Bagchi & Kulacki (2014) reported numerical simulations of porous flows
forced by fluid convection despite the porous Rayleigh number being sub-critical, but Chen
& Chen (1992) found that convection should be confined to the fluid layer only. In the
simulations detailed in § 3, we found that while weak flows do exist in the porous-stable
case, they do not enhance heat transport compared with diffusion, in opposition to the
results of Bagchi & Kulacki (2014) (see, for example, their figure 3.3). We argue here that
provided the Darcy number is not too large, this is a general result: it is not possible to
induce subcritical flow in the porous layer that has a significant impact on the heat flux
through the layer, without violating the limitations of the model outlined in § 2.6.

While the lower boundary condition on the porous layer is uniform, θ(z = −ĥp) = 0,
the temperature at the the interface will, in general, display horizontal variations owing to
fluid convection above. Because the temperature cannot be smaller than 0, the amplitude
of these horizontal variations is, at most, of the order of the interface temperature θi.
Any penetrative flow must be driven by these horizontal variations, and so will have an
amplitude w ∼ √

RaDaθi. The heat transported on average by the penetrative flow scales
with wθ ∼ √

RaDaθ2
i , and so its contribution to the Nusselt number Nu is ∼ RaDaθ2

i . The
contribution of the penetrative flow thus becomes significant, relative to the O(1) diffusive
flux through the layer, when RaDaθ2

i ∼ O(1). However, according to the upper bound in
(4.12), RaDaθ2

i � 50
√

RaDa for Ra � 1. The assumption that penetrative flows do not
transport appreciable heat is therefore accurate, as long as 50

√
RaDa � 1 or Rap � 4 ×

10−4Da−1. Provided Da < O(10−5), this value of the porous Rayleigh number is always
larger than the critical value Rac

p for the onset of convection in the porous layer, and there
will be no enhanced penetrative convection in the porous layer at subcritical values of
Rap. Given that in most geophysical systems we expect Da 	 10−5, we conclude that, in
general, diffusion controls the heat flow through the medium and penetrative convection
plays a negligible role. In general, for Ra � 1 penetrative convection can only occur if the
Darcy number is such that either the constraint

√
RaDa 	 1 (2.16) – which enforces that

the flow in the porous medium remains confined with negligible inertial effects – or the
constraint RaDa3/2 � 50 (2.17) – which enforces that the flow length scales are larger than
the pore scale – are violated.

5. Temporal coupling between the layers

In this two-layer set-up, heat is transported through two systems with very different
response time scales while carrying the same average heat flux. The dynamics in the
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Figure 12. Time series of the x-averaged flux J(z, t) = wθ − Ra−1/2θ̄ ′ at different heights in a simulation
carried out at Ra = 108 and Da = 10−5.5. The heat flux is normalised by its averaged value over the whole
domain and over time. Note that the scale of the y axis is larger at mid-height in the fluid layer (z = 0.5). Time
is normalised by the free-fall time scale. The present simulation spans over more than one diffusive time scale
because τdiff = 104.

unconfined fluid layer must, therefore, exhibit variability on both a slow time scale imposed
by the porous layer below and on a rapid time scale inherent to turbulent fluid convection.
In turn, as heat is transported to the top of the two-layer cell, fluid convection must mediate
and possibly filter the long variations of the porous activity in a manner that remains to be
quantified.

5.1. Heat-flux variations with height
The contrast between imposed and inherent variability of fluid convection is first illustrated
by time series of the horizontally averaged heat flux J(t, z) = wθ − Ra−1/2θ̄ ′ at different
heights, shown in figure 12. The flux in the porous layer experiences long-lived bursts
of activity that can amount to up to a 50 % increase of the flux compared with its
average value, with a duration that is controlled by the porous turnover time scale
τp ∼ (

√
RaDa)−1. In figure 12, the signature of these long-time variations can be traced

up to the top of the fluid layer, where they are superposed on much faster variations in heat
flux associated with the turbulent convective dynamics, which evolve on the O(1) free-fall
time scale. However, comparison between the time series at z = 0 and z = 1 in figure 12
reveals that the typical intensity of the bursts is notably weaker at the top of the fluid layer
than at the interface. Therefore, fluid convection is not a perfect conveyor of the long-time,
imposed variability, which it partially filters out.

5.2. Spectral content of the heat flux at different heights
We use spectral analysis of the heat flux time series to better quantify the inherent
and imposed variability of fluid convection and the latter’s filtering effect on imposed
variability. Figure 13(a) shows the power spectra |Ĵ(ω, z)|2 of the signals displayed
in figure 12. First, the spectral content that is inherent to fluid convection is easily
distinguished from that imposed by porous convection. The variability of the flux in the
fluid layer (z = −0.5 in figure 13a) is almost entirely contained in harmonics smaller
than ∼10−2. The energy of lower harmonics in the fluid layer (z ≥ 0) closely follows the
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Figure 13. (a) Power spectrum |Ĵ(ω, z)|2 of the heat flux time series shown in figure 12 and normalised by
〈J〉2. (b) Spatial variations of the power spectrum |Ĵ(ω, z)|2 in (a) with depth through the fluid layer, shown
for several frequencies, the lower two being typical of porous convection and the larger two typical of fluid
convection. (c) Vertical decay rate r of the energy of low frequency harmonics of the heat flux, for Ra = 108

with Da varied by an order of magnitude from 10−6 to 10−5 as indicated in the legend. The dotted line gives
the power law ω0.75 for reference.

spectral content in the porous layer, which confirms that it is primarily imposed by the
porous flow. Higher harmonics are therefore controlled by fast fluid convection. This is
particularly well illustrated by the spectra at the fluid boundaries (z = 0 & z = 1) being
effectively identical above ω = 5 × 10−2: we retrieve the top-down symmetry of classical
Rayleigh–Bénard convection with imposed uniform temperature at the boundaries for
these larger harmonics. The filtering effect of the fluid layer is visible at lower frequencies
where the energy decays as z increases. It is further quantified in figure 13(b), where we
show the energy at particular frequencies as a function of depth through the fluid layer.
We find that at low frequency, the energy decays exponentially with z and with a rate that
seems to increase with ω. The spatial decay is lost for higher harmonics, which are driven
directly by fluid convection; instead, the energy is maximised in the bulk of the fluid layer
and decays at the boundaries.

5.3. Spatial decay rate of low-frequency variability
We attempt to quantify the filtering effect of fluid convection on the long-time variations
by systematically measuring the spatial decay rate of the low-frequency harmonics.

By linear fitting of ln(|Ĵ(ω, z)|2) with z ∈ [0, 0.6], we extract the decay rate r for all
frequencies below ω = 10−2, above which temporal variations become partially imposed
by fluid rather porous convection. The result of this process is shown in figure 13(c).
Despite some spread in the extracted values, they all appear to follow the same trend:
below ω � 5 × 10−3, the energy decay rate roughly increases like ω0.75, and above this
value, the decay rate saturates, presumably because the harmonics are increasingly driven
by fluid convection. That is, sufficiently slow variations imposed by the porous layer
decay very slowly through the fluid layer, but more rapid variations decay faster. The
exponential decay of the flux harmonics with z is reminiscent of the problem of diffusion
in a solid submitted to an oscillating temperature boundary condition. In that classical
problem, the decay rate has a diffusive scaling, r ∼ ω1/2, for oscillation frequency ω.
Here, our results instead suggest that fluid convection acts as a sub-diffusive process on the
low-frequency flux variations imposed by the porous medium. A quantitative explanation
for such behaviour remains elusive. It does, however, at least seem reasonable that the
decay rate should increase with ω. As ω → 0, the decay rate must vanish, because the
average heat flux through the system is conserved with height, but higher frequency
variations in the porous layer will lead to localised bursts of plumes that are quickly
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mixed into the large-scale circulation of the fluid convection; the extra flux momentarily
increase the temperature of the fluid but is not transmitted up to the top of the layer.
Additional work, possibly with more idealised models of fluid convection submitted to
flux variations, is required to fully understand the phenomenology that we have outlined
here. Although our results on the filtering effect remain preliminary, we can still predict
the typical porous turnover time scale τp needed to ensure that the decay of the variability
in the fluid layer is negligible. The power spectrum of the flux at z = 0 and z = ĥf is in
a ratio ∼ exp(−r(ω)ĥf ). The cut-off frequency of such a low-pass filter, reached when
exp(−rĥf ) ∼ 1/2, is roughly located at ω = ωc = 10−3 in the particular case of ĥf = 1,
according to figure 13(c). Therefore, using r ∼ ω3/4, we predict in general that when
1/τp = √

RaDa is smaller than ∼ĥ−4/3
f ωc, the temporal variability imposed by porous

convection is sufficiently slow that it will be entirely transmitted across the fluid layer.

6. Conclusion

In this article, we have explored heat transport in a Rayleigh–Bénard cell composed
of a fluid-saturated porous bed overlain by an unconfined fluid layer, using numerical
simulations and theoretical modelling. The focus of the work has been on the geologically
relevant limit of large Rayleigh number, Ra, and small Darcy number, Da, such that
heat is transported through the system by vigorous convection but the flow within the
porous medium remains inertia-free and well described by Darcy’s law. To the best of our
knowledge, this is the first study of porous–fluid two-layer systems in this limit.

Having identified suitable limits on the parameters, we demonstrated that the dynamics
and heat flux through the two-layer system are strongly dependent on whether the flow
in the porous layer is unstable to convection, which we demonstrated should occur
if Ra � 27/(ĥpDa). By suitably rescaling, we showed that flux laws from individual
convecting fluid or porous layers could be used to predict both the flux through the
two-layer system and the mean temperature at the interface between the two layers. In
the asymptotic limit of large Ra, we find that while flow in the porous layer remains stable
(RaDaĥp � 27), the interface temperature θi satisfies θi ∼ Ra−1/4, whereas if the porous

layer becomes unstable to convection, θi ∼
√

RaDa3/2, provided Da remains sufficiently
small that RaDa3/2 	 1.

We briefly investigated the role played by ‘penetrative convection’ (Bagchi & Kulacki
2014), i.e. subcritical flows in the porous medium driven by fluid convection above. If
the fluid above is convecting, then some weak flow will always be driven in the porous
layer by horizontal temperature variations imposed at the interface; but we show that
they are always too weak to contribute significantly to heat transport, unless some of
the model assumptions about flow in the porous medium are violated. Interestingly, the
laws governing or limiting heat transport and the interface temperature in porous–fluid
convection have been derived from the behaviour of each layer considered separately.
They do not rely on the details of the flow at the interface, in particular, on the pore-scale
boundary layer at the transition between the porous and the pure fluid flows. Therefore,
the laws that we have identified here should only weakly depend on the choice of the
formulation of the two-layer convection problem (see the discussion in § 2.1).

Lastly, we also briefly explored the manner in which rapid fluid convection mediates
the long-time variations of activity in the porous layer. The amplitude of low-frequency
temporal variations of flux imposed by porous convection decay exponentially through the
unconfined fluid layer in a way that is reminiscent of a diffusive process. As a result, fluid
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convection acts as a low-pass filter on the bursts of activity in the porous layer. We predict
that for

√
RaDa < 10−3ĥ−4/3

f , the decay of low-frequency variations in the fluid layer are
negligible and the variability of porous convection is entirely transmitted to the top of the
two-layer system.

Before ending, we return to consider the question of how important it is to resolve
both porous and fluid layers when studying these coupled systems in astrophysical or
geophysical settings, rather than using parametrised boundary conditions. Our results in
the limit of strong convection suggest that, while the details of convection in each layer
are important for controlling the interface temperature and heat flux through the system,
there is very little coupling in the dynamical structure of the flow between each layer. As
may be noticed in figure 3, for example, fluid convection remains organised in large-scale
rolls even if it is forced by several hot plumes from the porous medium below. Therefore,
a localised ‘hot spot’ at the interface associated with, say, a strong plume in the porous
medium, does not, in general, lead to any associated hot spot at the surface of the fluid
layer.

This observation helps to justify the approach of various studies which neglect the
dynamics of flow in the porous medium altogether (e.g. Soderlund 2019 and Amit et al.
2020 in the context of convection in icy moons). It is also an interesting point in the
context of Enceladus, which is well known for sustaining a strong heat-flux anomaly at its
South Pole that is believed to arise from hydrothermal circulation driven by tidal heating
in its rocky porous core (Spencer et al. 2006; Choblet et al. 2017; Spencer et al. 2018; Le
Reun & Hewitt 2020). While models predict that tidal heating does drive a hot plume in
the porous core at the poles (Choblet et al. 2017), our results suggest that this hot spot
is unlikely to be transmitted through the overlying ocean to the surface without invoking
other ingredients such as rotation (Soderlund et al. 2014; Soderlund 2019; Amit et al. 2020)
or topography caused by melting at the base of the ice shell (Favier, Purseed & Duchemin
2019).
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