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Abstract 

Objective: To develop and validate a tool for individualised prediction of Sudden 

Unexpected Death in Epilepsy (SUDEP) risk, we re-analysed data from one cohort and 

three case-control studies undertaken 1980-2005.  

Methods: We entered 1273 epilepsy cases (287 SUDEP, 986 controls) and 22 clinical 

predictor variables into a Bayesian logistic regression model. 

Results: Cross-validated individualized model predictions were superior to baseline 

models developed from only average population risk or from generalised tonic-clonic 

seizure frequency (pairwise difference in leave-one-subject-out expected log posterior 

density = 35.9, SEM +/-12.5, and 22.9, SEM +/-11.0 respectively). The mean cross-

validated (95% Credibility Interval) Area Under the Receiver Operating Curve was 0.71 

(0.68 to 0.74) for our model versus 0.38 (0.33 to 0.42) and 0.63 (0.59 to 0.67) for the 

baseline average and generalised tonic-clonic seizure frequency models respectively. 
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Model performance was weaker when applied to non-represented populations. 

Prognostic factors included generalized tonic-clonic and focal-onset seizure frequency, 

alcohol excess, younger age of epilepsy onset and family history of epilepsy. Anti-

seizure medication adherence was associated with lower risk.  

Conclusions: Even when generalised to unseen data, model predictions are more 

accurate than population-based estimates of SUDEP. Our tool can enable risk-based 

stratification for biomarker discovery and interventional trials. With further validation in 

unrepresented populations it may be suitable for routine individualized clinical decision-

making. Clinicians should consider assessment of multiple risk factors, and not only 

focus on the frequency of convulsions. 

 

 

Introduction 

Sudden Unexpected Death in Epilepsy (SUDEP) is the commonest category of 

epilepsy-related death1.  Diagnosis requires exclusion of other potential causes of death 

since there are no pathognomonic autopsy findings2. The incidence of 1.2 per 

1000/patient/years in adults3 is an underestimate because insufficient history and 

ambiguous pathological findings lead to misclassification4,5.  

Why do some people suffer SUDEP after their second seizure whilst others survive 

thousands of convulsive seizures? Ongoing convulsions are a major prognostic factor6,7 

but adjusted analyses are less consistent as to whether early age of epilepsy onset, 

long epilepsy duration, symptomatic aetiology, nocturnal convulsions, and a high 
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number or nonadherence of anti-seizure medications are independently predictive8,9. 

We cannot, however, accurately predict individualized SUDEP risk. 

This is critical for two reasons. Firstly, prospective research into 

electroencephalographic (EEG), cardiovascular and imaging biomarkers requires a 

large cohorts followed for long periods unless high-risk subpopulations are targeted10,11. 

A risk assessment tool based on heart-rate variability, the SUDEP-7 inventory11, failed 

to generalize even at the population level12. Predicting individualized risk would help 

identify SUDEP biomarkers.  

Secondly, most people with epilepsy and families desire information on SUDEP risk 

even if the probability is low13. Guidelines suggest informing all individuals of the 

average risk but do not specify how to assess personalized risk, leaving individuals 

poorly informed about their risk. A personalized prediction tool could provide 

reassurance, motivation to change, or feedback following a clinical intervention.  

We use a large SUDEP dataset 8 to develop and validate a personalized predictive tool 

optimized for clinical use requiring only routine clinical data. 

Methods 

OBSERVATIONAL STUDY DESCRIPTION 

We reanalysed one cohort (USA) and three case-controlled (England and Wales, 

Sweden, Scotland) studies8 (see Table 1). SUDEP diagnosis required (1) a history of 

epilepsy (>1 epileptic seizure within 5 years of study enrolment); and death that was (2) 

sudden, (3) unexpected, and (4) remained unexplained after investigative efforts, 

including autopsy. Definite SUDEP required all four criteria and probable required the 

first three criteria.  
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PREDICTOR INCLUSION STRATEGY 

We harmonised the source data to obtain 29 common clinical predictor variables – data 

available from Dryad at https://doi.org/10.5061/dryad.cfxpnvx4c (Additional Methods). 

Of these, five had greater than 50% missing data (abnormal imaging, epileptiform 

features on electroencephalography, psychiatric comorbidity, dementia, brain tumour) 

and were excluded from further analysis. Levetiracetam was removed from the analysis 

because it was rarely used in this dataset. Length of epilepsy, is merely the difference 

between Age of epilepsy onset and Age at endpoint  and so was not included to reduce 

co-linearity. Notably, we use Generalized Tonic-Clonic Seizures (GTCS) to refer to 

GTCS (previously known as primary GTCS) as well as focal to bilateral tonic clinic 

seizures (previously known as secondary GTCS), whilst focal seizures refers to the 

remaining focal onset seizures. 

All binary variables were represented by single terms where 1=presence and 

0=absence of the feature. Aetiology is an assignment into one of four categories and 

was modelled as four binary variables. Continuous predictor variables (age of epilepsy 

onset and age at endpoint) were standardized by removing the mean and dividing by 

the standard deviation to create a similar scale to the dummy-coded categorical data14 

facilitating specification of priors. GTCS and focal seizure frequency were standardised 

by dividing the frequency by an arbitrary number (10), again to put them on a similar 

scale to other data whilst keeping a meaningful value for zero.  

MODEL BUILDING STRATEGY 

All analysis was done using Rstudio v1.1447 (RStudio Team (2016). RStudio: 

Integrated Development for R. RStudio, Inc., Boston, MA http://www.rstudio.com/) and 

Matlab v2018a (The MathWorks, Inc., Natick, Massachusetts, United States). We used 
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Bayesian multiple logistic regression to develop a ‘Full’ model of SUDEP risk. SUDEP 

status (a binary variable) was entered as the dependent variable, whilst the remaining 

clinical variables were entered as predictors. A Bayesian model is specified by the 

likelihood and the priors. 

�1�           �� �� = 1, 
�, �, ��  ~  
1

1 + exp�−�� +  
�
����

     ��� � = 1, … , �                                

�2�           �� ~ ���� = 0,σ� = 1�      ���  = 1, … , ! 

�3�         �# ~ ���# = 0,σ# = 1�      ��� $ = 1, … , %     

The logistic regression likelihood is described in equation (1) above, where yi = 1 is the 

SUDEP status for subject i of N and, Xi  is a J-dimensional vector of predictors for each 

subject i. The intercept is modelled as  �# whilst �� represents the regression coefficient 

for the jth predictor. We specified a separate intercept �#  for each centre (% centres) to 

account for their differing case:control ratios. As these are apriori known to be different, 

we did not introduce pooling of these estimates via a further hierarchical term. The prior 

distribution for regression coefficients (equation 2) and the intercept (equation 3) were 

chosen to be normally distributed with a mean of zero and standard deviation of one. 

These values were chosen because prior predictive modelling revealed that this 

resulted in the broad but sensible prior assumption that 95% of standardised adjusted 

posterior log odds ratios would lie between -1.94 and +1.98. A sensitivity analysis was 

performed – data available from Dryad (Additional Results). In order to quantify the 

improvement in predictive power over current practice we also developed two 

comparator models. A ‘Baseline’ model which had the intercepts (a separate intercept 

�# for each centre) as predictors but with no other clinical information was used to 

represent current clinical guidance where only the average population risk is conveyed 
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to individuals with epilepsy. A ‘Baseline GTCS’ model which had the population 

intercepts and also GTC seizure frequency was also fitted to represent current research 

practice which relies on GTC seizure frequency as a surrogate for SUDEP risk. Due to 

the number of predictors involved and the complexity of the missing data analysis, we 

avoided modelling interactions within the linear term.  

POSTERIOR ESTIMATION 

Calculating the Bayesian posterior for such a model can be analytically intractable and 

therefore posterior parameter estimates were generated using a Markov Chain Monte 

Carlo (MCMC) procedure. We used RStan software (Stan Development Team (2018). 

RStan: the R interface to Stan. R package version 2.18.2. http://mc-stan.org/) which 

implements Hamiltonian Monte Carlo with No-U-Turn sampling14,15. Using the default 

recommendations, we ran four chains from random starting values . After discarding 

4000 warm-up samples (similar but not identical to ‘burn-in’ in other software), posterior 

estimates were derived from a further 4000 samples across all chains (no thinning) and 

were assessed for chain stability and convergence using visualisation of trace plots and 

standard Rhat metrics within the software14.  

MISSING DATA ANALYSIS 

Combining data across heterogeneous  studies inevitably results in missing data. 

Restricting analysis to observations with fully available predictors (a complete-case 

approach) can cause bias in addition to reducing study power16. We used a multiple 

imputation approach. Assuming that missingness was random conditioned on observed 

predictors, each variable with missing data was modelled with its own likelihood function 

and predictors. The benefit of this step is that the resulting regression coefficient 

estimates are relatively unbiased and that the appropriate uncertainty is propagated to 
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the posterior. The drawbacks are that it is slow - it requires the simultaneous fitting of 12 

different likelihood models at each step of the sampling procedure – and requires 

applied knowledge of the potential causal structure of the data. Continuous missing data 

were subsequently multiply imputed as part of the posterior sampling procedure, but 

Stan has the drawback of being unable to sample from discrete distributions17. 

Categorical missing data were, therefore, analytically marginalised over their likelihoods 

during model fitting instead. Further data available from Dryad (Additional Methods)  

MODEL EVALUATION AND INTERNAL/EXTERNAL VALIDATION 

Our strategy was to produce an optimally accurate and well-calibrated model with fully 

adjusted and unbiased parameter estimates.  A variable selection step is often used to 

reduce the size of clinical prediction models, however, in settings where there are a 

large number of candidate predictors, this procedure is liable to overfit the data (i.e. 

some variables are selected or removed by chance)18. Given these concerns and the 

desire to reduce the overall number of cross-validated model comparisons, we did not 

pursue predictor selection beyond the remaining 22 variables. 

The overall internal performance of the ‘Full’, ‘Baseline’ and the ‘Baseline GTCS’ 

models were assessed with their respective log loss rates19 - a proper scoring rule 

based on the residual error that takes into account the entire predictive distribution. 

Average internal discriminative performance was also assessed with an Area Under the 

Receiver Operating Curve (AUROC), whilst calibration of the ‘Baseline GTCS’  and ‘Full’ 

models were assessed with a calibration plot (the ‘Baseline’ model will inherently have 

poor calibration). Beyond internal validity, the question arises as to how well the model 

will generalise to external unseen data. Especially in scenarios where the model is 

developed using data from a single centre, one risk is that the model predictions will be 
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over-optimistic when applied to individuals from other centres (‘over-fitting’). Model 

generalisability (external validation) is optimally assessed by estimating the model’s 

accuracy on a completely external dataset from a different geographical population or 

time-period, but this was non-trivial in our case because different centres had different 

case numbers, matching ratios, clinical predictor definitions and degrees of missing 

data. Thus, we performed two types of external validation: approximate leave-one-

subject-out cross-validation and leave-one-centre-out cross-validation each with their 

strengths and weaknesses. Leave-one-subject-out cross-validation estimates how well 

the model would perform on new individuals originating from the heterogenous 

populations already represented (European and North American). In this scenario, 

external validation can be performed using hold out cross-validation where the data are 

repeatedly split into a training- and testing- datasets and model performance estimates 

are summarised on the held-out data over many runs17. This procedure is 

computationally prohibitive in the Bayesian MCMC setting (data available from Dryad 

(Additional Methods)) and information criterion are traditionally used as an alternative 

way to compare a predictive model’s generalisability. Bayesian leave-one-out cross-

validation is, however, now computationally tractable due to an approximate technique 

based on Pareto smoothed importance-sampling17. This approximation can be assumed 

to be reliable as long as the Pareto tail parameters (k) fall below 0.7. The resulting 

external validation metrics are the leave-one-out expected log posterior density (lower is 

better) and the leave-one-out information criterion (lower is better). The final comparison 

of how well the ‘Full’, the ‘Baseline’ and the ‘Baseline GTCS’ models generalised to new 

individuals was performed with the paired difference between their respective leave-

one-out expected log posterior densities (the worse model has a negative value relative 
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to the preferred model which has a reference value of 0). We also assessed cross-

validated discriminative power with approximate leave-one-subject-out AUROC.  

To determine how well the ‘FULL’ predictive model generalised to individuals from new 

source populations, we performed leave-one-centre-out cross-validation. Here, each of 

the smallest three datasets  (USA, Scotland, Sweden) was held out whilst the ‘FULL’ 

model was trained on the remaining data. The discriminative power of the model was 

then tested on data from the held-out  centre with leave-one-out AUROC.  The largest 

centre (England and Wales) included too many cases of SUDEP ( ~54% of the total) to 

hold out of the training procedure and so leave-one-centre-out cross-validation was only 

performed on the remaining three smaller datasets. We present our results in 

accordance to the TRIPOD criteria20 . 

CLINICAL UTILITY 

The model prediction can be interpreted as an estimate of the latent stochastic SUDEP 

risk for a given individual characterised by a given constellation of clinical features.  In 

order to demonstrate the utility of this risk prediction in clinical practice, we applied the 

model to ten individuals with epilepsy known to one of the authors (BD) from her recent 

clinics, and selected by her to demonstrate different clinical scenarios where a risk 

prediction may have been useful. This required adding a term to the intercept of the logit 

model (based on the sampling frequencies of cases and controls) which converts 

expected observed case-control risk to expected population risk21 assuming a 

background incidence of 1.2/1000-person-years. This assumption is also necessary to 

translate the unitless model output (a prediction from log odds ratios) into a prediction 

with meaningful units (risk of SUDEP per 1000-person-years). Model evaluations took 

place initially blinded to the fact that two of the individuals had suffered SUDEP. 
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STANDARD PROTOCOL APPROVALS, REGISTRATIONS, AND CONSENTS  

Ethical approval was previously obtained by the original source studies. No additional 

ethical approval was sought for this re-analysis of data that was de-identified prior to 

statistical analysis8. 

DATA AVAILABILITY 

Requests for data should be directed to the authors of the four source studies7,22–24. We 

suggest that this model be restricted to clinical researchers pending external validation 

in different source populations. We aim to use the model as a basis for a freely available 

online risk calculation tool for use by clinical researchers only. In the interim, those 

interested should contact the first author who will provide analytic support. 

Results 

DEMOGRAPHICS 

We included 1273 cases (287 SUDEP, 986 controls). Baseline demographic data and 

sampling frequency of all considered 29 predictor variables are available from Dryad 

(Table e1). There were significant missing data (data available from Dryad (Table e1)), 

and so only 22 predictors with <50% missing data were taken forward for analysis. The 

main sources of dataset heterogeneity reflected variation in aetiology (an excess of 

Symptomatic cases in Sweden (77.6%) and an excess of Cryptogenic cases in Scotland 

(75.4%) possibly representing overlapping classification criteria across these two 

categories) focal seizure frequency (higher in the USA (4/month) than England and 

Wales (0.2/month) and Sweden (1.2/month), missing in Scotland) and epilepsy surgery 

(more frequent in the USA (23.7%) compared with other datasets(1.4% in England and 
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Wales, 0.4% in Sweden), reflecting the variable availability of this treatment across the 

world).  

PREDICTIVE PERFORMANCE 

Internal validation 

All MCMC chains converged adequately with Rhat=1 for all relevant model parameters 

and no reported divergences14. Internal validation model performance metrics are 

provided in tables 2 and e4 and figure 1. The ‘Full’ model had better predictive 

performance than either the ‘Baseline GTCS’ or the ‘Baseline’ model having the lowest 

log loss rate. Overall performance metrics combine evaluation of model calibration and 

discriminative power, but these aspects were also separately evaluated.   

Model calibration evaluates the degree to which model predictions fit the observed data 

across different stratifications. Cases were spilt into deciles ranked by their posterior 

model risk estimates. The observed SUDEP rate for each decile is plotted against the 

model prediction in Figure 1a and confirms excellent calibration for the ‘Full’ model, 

compared to poor calibration for the ‘Baseline GTCS’ model -data available from Dryad 

(Figure e1). Calibration for the ‘Baseline’ model is inherently poor as every decile 

receives the same prediction regardless of the observed rate of SUDEP. Discrimination 

is the ability of the model to separate observed SUDEP from Control cases based on 

their predicted risk. The risk distributions for both case types are shown in Figure 1b, 

whilst the sensitivity and specificity of the model is shown across all thresholds as a 

Receiver Operating Curve in Figure 1c. The mean internal (95% Credibility Interval) 

AUROC  for the ‘Full’ model (0.72 (0.71 to 0.74)) was better than the ‘Baseline GTCS’ 

(0.69 (0.68 to 0.71) and ‘Baseline’ model (0.57 (0.57 to 0.57))(see tables 2 and e4).  

External Validation 
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The approximate leave-one-subject-out cross-validation technique was reliable with only 

one out of 1273 observations being associated with a Pareto K > 0.7 (0.1%). This 

showed that the ‘Full’ model generalised to new individuals better than either the 

‘Baseline GTCS’ or ‘Baseline’ models. (paired difference in leave-one-out expected log 

posterior density Full v Baseline GTCS = -22.9, SEM +/-11.0; Full v Baseline = 35.9, 

SEM +/-12.5). Further model comparison measures supported this conclusion (see 

tables 2 and e5). Reweighting model predictions by their Pareto smoothed importance 

sampling weights also allowed us to approximate the leave-one-subject-out AUROC, as 

a measure of how well the discriminative power of the model generalises. The ‘Full’ 

model generalises better than the ‘Baseline GTCS’ model or the ‘Baseline’ model to 

new subjects in terms of AUROC also(see tables 2 and e5). 

We performed leave-one-centre-out cross-validation of the ‘Full’ model for the smaller 

three datasets (see table e6). When trained on a significantly reduced amount of data 

and generalised to a sample from an unseen source population, model performance in 

terms of the AUROC (95% bootstrap CI), was more uncertain but remained on average 

reasonable for Scotland (0.66 (0.57 to 0.74)) and Sweden (0.61 (0.52 to 0.69)). Cross-

validated model AUROC (95% bootstrap CI) for the USA, was highly uncertain and poor 

on average (0.55 (0.41 to 0.69)), but the interpretation of this is difficult as it was also 

the smallest centre (including only 20 cases of SUDEP) with the highest degree of data 

imbalance (see Discussion). 

INFERENCE 

The adjusted posterior log odds ratios of the fitted logistic regression model are 

presented in Figure 2. Example relations have been transposed onto their natural 

scales in Figure 3, to simplify clinical interpretation. Bayesian models have no arbitrary 

 

Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.  

 



significance threshold, so we assessed the strength of associations based on the mean 

effect-size (odds ratio) and surrounding uncertainty. Several variables were strongly 

independently associated with SUDEP, however, the observational nature of 

observational  studies limit causal interpretations (see Discussion).  

INDIVIDUALISED PREDICTION 

Over and above the power of the model to discriminate SUDEP cases from controls 

within an observation period, we can also view the model output as an estimate of latent 

stochastic SUDEP risk. Variation in this risk across individuals may be clinically useful, 

even if does not cross a discriminatory threshold. We illustrated the model’s potential 

clinical and research utility by personally forecasting absolute SUDEP risk for ten 

individuals with epilepsy (see Figure 4). The resulting figures show a quantification of 

risk with uncertainty that may be of benefit in clinical studies aiming to stratify individuals 

based on risk and potentially in clinical discussions between individuals with epilepsy 

and their medical team.  

Discussion 

Our model predicted individual risk more accurately than either a model based on 

GTCS frequency alone or one based on the population-level average even when 

generalised to unseen subjects. Its ability to discriminate SUDEP from controls was 

reasonable (leave-one-subject-out AUROC=0.71 (0.68 to 0.74). When a version of the 

model with access to limited training data was generalised to a sample from an unseen 

source population, the model’s discriminative capability was reasonable for Scotland 

and Sweden, and less certain for the USA possibly because of its small size, inclusion 

of children or distinct data definition and collection procedures (see table e6).  Use of 

the model in non-represented populations should, therefore, be cautious.  The AUROC 

 

Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.  

 



and prediction risk distributions (see Figure 1b and 1c) show that predictions are 

uncertain. This suggests that risk is a stochastic latent process and categorising it in 

binary terms – high-risk versus low-risk – may be misleading; risk should be conveyed 

as a probability distribution. Our model can stratify individuals based on their risk (see 

figure 4), which may be useful for research studies and has the potential to enhance 

clinical decision-making and communication. . Our model also identified a novel 

association of focal-onset seizure frequency with SUDEP risk and confirmed previously 

reported associations with increased GTCS frequency, younger age of epilepsy onset 

and male sex. We also found evidence that lamotrigine, benzodiazepines and 

carbamazepine are associated with increased SUDEP risk, although the potential 

causal role of these medications remains undetermined by our current analysis. 

Combining heterogeneous datasets with different case ascertainment procedures, origin 

and risk periods inevitably requires careful harmonisation of clinical variables where it is 

possible and accounting for missing data  where it is not (data available from 

Dryad(Additional Methods)). Some clinical predictors were more consistently defined 

across individual datasets than others8. Anti-seizure medications and seizure types 

were the most consistently defined. Family history was obtained from primary care 

records in England and Wales as opposed to secondary care records in Scotland. 

Alcohol use, respiratory and cardiac comorbidities and learning difficulties had strongly 

overlapping but distinct definitions in each individual dataset. Adherence was defined 

according to serum levels of anti-seizure medications in the USA sample, and primary 

care evaluation of clinical records in the England and Wales sample.  These 

discrepancies may increase the uncertainty of their respective odds-ratios and 

subsequently impair generalisability between datasets. In spite of this, adherence, 

family history and co-morbidities all remain individually influential in our model. The 
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combined effect of these inconsistencies between datasets was also tested by the 

leave-one-centre-out analysis. The most uncertain performance was seen when 

predicting the out-of-sample USA outcomes. A finding that may be partly explained by 

the different definitions used in the USA dataset as compared to the others.  

Missing data were multiply imputed to reduce bias and appropriately reduce the 

confidence of subsequent predictions as compared to single imputation or a complete 

case approach16. Potential bias due to heterogeneity in case-control matching ratios 

and population sampling distributions of each centre21 was accounted for by explicitly 

including an intercept for each centre. Lastly, any Bayesian approach may be criticized 

because of the need for prior distributions for the model parameters. We used weakly 

informative priors consistent with expert knowledge 25, and altering the prior did not alter 

the model performance substantially. 

We developed and evaluated the model to optimise its predictive capabilities but the 

potential inferential findings require further discussion particularly as they may be 

interpreted as challenging previous reports8,9. We highlight two broad principles. Firstly, 

due to the impracticability of interventional trials, risk factors are generally derived from 

observational data and are therefore prognostic rather than causal factors derived from 

clinical trial data1,3,8,26,27. Secondly, odds ratios are difficult to meaningfully compare 

when adjusted by different variable sets – we adjust for an extended set of variables as 

compared to previous studies. Given such caveats, we confirmed that those with a 

younger age of epilepsy onset had a higher risk, and that risk increases slowly with age. 

Men had a slightly higher risk of SUDEP as previously suggested8, but learning 

disability did not independently increase risk. This finding is important, as unlike earlier 

studies7, we adjusted for the effect of multiple factors including aetiology, medication 

 

Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.  

 



adherence and seizure frequency. Thus, those with those with learning disabilities have 

similar risk to other individuals all other things being equal and may equally benefit from 

risk factor modification. A history of epilepsy in 1st degree relatives increased SUDEP 

risk and was present in ~4% of our dataset. This may be partially explained by 

mutations that cause epileptic encephalopathies and treatment resistant epilepsies such 

as SCN1A and SCN8A but other more highly prevalent (e.g., DEPDC5) and possibly 

non-mendelian mechanisms may also contribute1. 

We found that an increased frequency of both convulsions (including GTCS and focal to 

bilateral tonic-clonic seizures) and non-generalising focal-onset seizures conferred a 

higher risk of SUDEP. This is a departure from previous reports that estimate a higher 

average relative risk from GTCS frequency8,9, and have found no significant association 

between focal-onset seizures and SUDEP7,9. These differences could be explained by 

variation in the data themselves or the strategies used for analysis. No significant 

relation was found between focal-onset seizures and SUDEP from analyses not only of 

the most recent and homogeneously ascertained data9 but also of one of our source 

studies7. In fact stratified relative risk from convulsions was higher in a previous analysis 

of the same combined source data as ours8, suggesting that differences in data can 

only partially explain the conflicting results. An alternative reason is that, uniquely, our 

analysis aimed to provide individualised predictions, whereas others aimed to infer 

average effects over a population8,9. Subsequently, we include as many data features 

as possible in the same single model (22 clinical factors), rather than seeking to 

interpret the output of multiple smaller models8,9.  We also removed arbitrary seizure 

frequency cut-offs (e.g. <3 per year) to improve individualization and inter-study 

comparability but assumed a monotonic relation between seizure frequency and 

outcome. We sought to identify prognostic rather than causal risk factors and within 
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these constraints convulsion frequency was not the only metric of SUDEP risk10, and 

indeed performs poorly if used as the sole predictive factor (see Table 2). The novel 

finding that non-generalising focal-onset seizure frequency is prognostic conflicts with 

other major analyses9, and requires further investigation as it has potentially  wide-

ranging implications for clinical practice.  Whether non-generalised focal seizures can 

directly cause SUDEP or may be proxies for breakthrough tonic-clonic seizure risk in 

individuals who were previously free of convulsions also remains uncertain.  Lastly, 

some predictors were variably clinically defined and so our interpretations must be 

cautious. Even so, medication adherence was  associated with reduced risk, whilst 

alcohol/drug abuse was associated with increased risk. This highlights two modifiable 

behaviours that, if causal, could reduce risk if addressed. 

The independent associations between various treatments and SUDEP risk also require 

further explanation. Whilst our results support  prior studies that have found a protective 

role for epilepsy surgery28, almost all anti-seizure medications are independently 

associated with slightly increased SUDEP risk. This needs to be interpreted cautiously 

since adjusted odds ratios represent the effect of adding anti-seizure medications 

without any benefit on seizure control – a situation which may either represent 

increased risk due to the medication, or increased risk due to selection of those with 

treatment-resistance. Excluding vigabatrin which is rarely used and probably falls into 

the second category, lamotrigine, benzodiazepines and carbamazepine were 

associated with increased SUDEP risk compared to other medications, but 

interventional trials would be needed to determine whether this association is causal or 

not. Similarly, although cardiac and respiratory comorbidity is associated with reduced 

risk, this observation may be confounded by a competing risk (these individuals are 

more likely to die from a non-epilepsy related cause) or by increased prevalence of co-
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existent pathological findings associated with SUDEP misclassification (e.g., 40% left 

anterior descending coronary artery occlusion)5. 

Regardless of the inferential findings and uncertainties, our model’s predictive power 

remains valid. Its potential ability to either reassure or to motivate individuals by 

forecasting their current risk (see Figure 4) will focus discussions on prevention, rather 

than dwelling on an abstract population estimate of death. Improving anti-seizure 

medication adherence and sleep hygiene, eliminating excess alcohol, employing 

strategies to reduce seizures in specific settings (e.g. malabsorption of medications due 

to vomiting or diarrhoea), and avoiding seizure-provoking factors in those susceptible 

(e.g., decongestants, environmental stimuli such as flashing lights) may be emphasised 

in those at moderate risk. Whilst, those with highest risk may consider the use of 

monitoring (e.g., intermittent observation, seizure detection devices to alarm 

caretakers), especially with nocturnal convulsions. Lifestyle modifications and 

monitoring strategies are commonly recommended but remain unproven in reducing 

SUDEP risk partly due to the logistical challenges of large interventional studies. Our 

tool could help identify high-risk groups, thereby reducing the number of enrolled 

individuals to establish a treatment effect.  

Conclusion  

We developed and validated an individualised SUDEP prediction model, which relies on 

information available during a clinical consultation. This will be developed into an online 

risk prediction calculator for clinical research use. This prediction remains uncertain, but 

has potential utility in clinical and research settings. Future prospectively acquired large 

longitudinal studies are required to improve the model, and to establish its accuracy in 

non-represented populations. Beyond this, a granular understanding of the 
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pathophysiological factors contributing to SUDEP may contribute towards a mechanistic 

model which may have even higher accuracy.  
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Figure Legends 

Figure 1: Internal evaluation of SUDEP model performance. Panel a is a calibration 

plot, where the observed cases are sorted into deciles based on the predicted risk from 

the model. For each subsequent decile, the observed rate of SUDEP in the dataset is 

plotted against the model prediction (black circle = average, red line = 80% Credibility 

Interval, black line 95% Credibility Interval). The model shows excellent calibration – 

perfect calibration would be aligned along the dotted line where both values are equal. 

Panel b shows the predicted risk probability distribution functions for SUDEP cases 

(red) and controls (black). Perfect discrimination would be illustrated by complete 

separation of the two distributions along the x axis, chance discrimination would be 

illustrated by complete alignment. Discrimination is reasonable but there is still a degree 

of overlap suggesting a remining degree of uncertainty at risk estimates around 0·2-0·4. 

This is consistent with the ROC curve underneath (Panel c) which shows the specificity 

and sensitivity of predicting SUDEP in this dataset based on model output (red line = 

mean, red patch = 80% Credibility Interval, grey patch = 95% Credibility Interval 

Interval) The internal AUROC is 0·72 (95% Credibility Interval 0·71 to 0·74) which is 

reasonable. 
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Figure 2: Adjusted Log odds ratios from Bayesian Logistic regression model. The 

adjusted log odds ratios are shown. Values less than 0 are associated with a reduced 

risk of SUDEP, whilst values greater than 0 are associated with an increased risk of 

SUDEP, relative to the average population sample (black circle = average, red line = 

80% Credibility Interval, black line 95% Credibility Interval). See main text for 

interpretation noting that the associations shown are not causal. 
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Figure 3: Marginal adjusted risk. Panel a: the marginal (average) predicted non-

causal effect of GTCS frequency (top left), Focal seizure frequency (top right), Age of 

Epilepsy onset (bottom left) and Current Age (bottom right) on the odds of SUDEP ratio 

on their natural scales is shown. These values are relative to a seizure frequency of 0, 

and to the sample average Age of Epilepsy Onset and Current Age (red line = mean, 

red patch = 80% Credibility Interval, grey patch = 95% Credibility Interval). Note that the 

y axis is a log scale. Panel b: the combined non-causal effect of Age of Epilepsy Onset 

and Current Age on SUDEP risk is shown as a grid of values represented by a colour 

scale. Warmer colours represent increased risk and imply that those with a younger Age 

of Epilepsy Onset have the highest risk and that this risk increases as Current Age 

increases.  
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Figure 4: Individualised model predictions of SUDEP. To demonstrate the potential 

research and clinical utility of this tool the individualised risk predictions of ten 

individuals with epilepsy are shown. These individuals are not known to the model, were 

drawn from recent practice and were selected as their SUDEP risk was of clinical 

interest. The risk is presented on the y axis a as summary measure of a probability 

distribution (black circle = mean, red line = 80% Credibility Interval, black line 95% 

Credibility Interval) for individuals A-J specified on the x axis and ordered by mean risk. 

Note the y axis is a log scale with risk quantified a ratio for ease of interpretation. The 

dotted horizontal line represents the average population risk of 1·2/1000-patient-years. 

The predictions are probabilistic, intuitive and help focus discussions in a time-limited 

setting such as a clinical consultation. Important prognostic factors vary between the 

individuals and so multiple factors need to be considered together. For example in those 

five with the highest risk, focal seizure frequency is particularly important in F, H and J; 

GTCS frequency in G, and poor adherence in I. Two of the individuals with highest risk 

(marked with a red circle next to their names) have died of SUDEP. Abbreviations: 

ASM: anti-seizure medications, GTCS: Generalised Tonic-Clonic Seizures. *The 

influence of Levetiracetam was not modelled. 
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Tables 

Popula
tion 

Age 
rang
e 
(yea
rs) 
 

Risk 
perio
d 

No. 
cas
es  

No. 
contr
ols  

Case 
ascertain
ment 
criteria 

Control 
sampling 
populatio
n 

Match
ing 
ratio 
(Case: 
Contr
ol) 

Matchi
ng 
criteria 

Signific
ant risk 
factors 

Englan
d and 
Wales 

16-
50 

1989 
-1998 
(9 
years) 

154
** 

616  Retrospec
tive from 
coroners, 
neurologis
ts and 
bereaved 
families/ 
charity. 

General 
practice 
database, 
1 seizure 
in last 5 
years, or 
taking 
AED and 
in 
remission 

1:4 Age and 
geograp
hic 
location 

frequent 
convulsi
ons,   
polyther
apy 

USA 0-
80+ 

June 
1 
1991 
– Dec 
31/19
96 
(5.5 
years) 

20 80 Prospectiv
e from 3 
hospital-
based 
upper 
Midwester
n epilepsy 
centres 

Same as 
cases 

1:4 Calenda
r 
matchin
g (same 
month), 
and 
geograp
hic 
centre 

Convulsi
on 
frequen
cy, 
epilepsy 
duration
, 
mental 
retardati
on, 
polyther
apy 

Scotlan
d 

18-
85 

1982-
2005 
(23 
years) 

64 119 Retrospec
tive from 
hospital 
centre 
registry 

Same as 
cases 

1:2 Year of 
birth, 
sex, 
and 
aetiolog
y 

Epilepsy 
duration
,  
recent 
convulsi
ons (1 
year) 

Swede
n 

15-
70 

1980- 
1989/
91* 
(11 
years) 
 

57 171 Hospital 
discharge
s with a 
diagnosis 
of 
epilepsy 

Hospital 
discharge
s receiving 
one year 
of 
valproate, 
phenytoin 
or 
carbamaz
epine 

1:3 Year of 
birth, 
sex, 
assess
ment 
period 

>50 
convulsi
ons per 
year,  
polyther
apy,  
early 
onset,  
frequent 
changes 
to 
medicati
ons  
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Table 1: Observational study descriptions. Four observational studies were analysed 

with a combined risk period extending from 1980-2005. All studies were case-control 

designs apart from the USA study which was a cohort study. The England and Wales 

data21 were sampled from a community population, whilst the Swedish22, Scottish23 and 

American7 data were sampled from secondary care. All samples were open (dynamic) 

and therefore provide incident rate ratios given the steady state assumption. We 

included all available records regardless of matching and so total numbers may differ 

from those in the original studies slightly. *Cases were recruited from discharges from 

1980-1989, but SUDEP Case status was determined 1991. **8 Cases without anti-

seizure medication data were excluded (see missing data analysis). 
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 Baseline Model Baseline + GTCS 

Model 

Full model 

 Internal validation 

Area Under the Receiver 

Operating Curve (95% CI) 

0.57 (0.57 to 

0.57) 

0.69 (0.68 to 0.71) 0.72 (0.71 to 

0.74)* 

 Approximate external cross-validation 

Leave-one-subject-out area 

Under the Receiver 

Operating Curve (95% 

bootstrap CI) 

0.38 (0.33 to 

0.42) 

0.63 (0.59 to 0.67) 0.71 (0.68 to 

0.74)* 

Pairwise difference in leave-

one-subject-out expected 

log posterior density (+/-

SEM) 

-35.9 (12.5) -22.9 (11.0) 0.0 (0.0)* 

Table 2: Model Performance. The overall performance of the ‘Full’ model (with all 

clinical predictors) is compared to the ‘Baseline GTCS’ model (with only centre mean 

and GTCS frequency as predictors) and the Baseline model (with centre mean 

predictors only) with a number of metrics. Internal performance of the ‘Full’ model is 

better than either of the other two models with a higher Area Under the Receiver 

Operating Curve. External validation performed with approximate leave-one-subject-out 

cross-validation  also confirmed that the ‘Full’ model is better than either of the other two 

models when predicting SUDEP in new patients within the same population. Formal 
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model comparison, based on the pairwise difference in leave-one-subject-out expected 

log posterior density preferred the ‘Full’ model (higher is better), and comparisons of the 

leave-one-subject-out Area Under the Receiver Operating Curve also highlighted the 

improved generalisability of the ‘Full’ model. CI = Credibility Interval. SEM = standard 

error of the mean. *Better model performance.  
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