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Abstract 23 

High dimensional cytometry is an innovative tool for immune monitoring in health and disease, it has 24 
provided novel insight into the underlying biology as well as biomarkers for a variety of diseases. 25 
However, the analysis of large multiparametric datasets usually requires specialist computational 26 
knowledge. Here we describe ImmunoCluster (https://github.com/kordastilab/ImmunoCluster) an R 27 
package for immune profiling cellular heterogeneity in high dimensional liquid and imaging mass 28 
cytometry, and flow cytometry data, designed to facilitate computational analysis by a non-specialist. 29 
The analysis framework implemented within ImmunoCluster is readily scalable to millions of cells and 30 
provides a variety of visualization and analytical approaches, as well as a rich array of plotting tools that 31 
can be tailored to users’ needs. The protocol consists of three core computational stages: 1, data import 32 
and quality control; 2, dimensionality reduction and unsupervised clustering; and 3, annotation and 33 
differential testing, all contained within an R-based open-source framework.  34 

https://github.com/kordastilab/ImmunoCluster


Introduction 35 

Systems immunology approaches aim to explore and understand the complexity of the immune system. 36 
However, with 350 CD (‘cluster of differentiation’) antigens, over 100 cytokines and chemokines, and 37 
many different cell subsets this is a challenging task [1]. Liquid mass cytometry (LMC), imaging mass 38 
cytometry (IMC) and flow cytometry (FC) are powerful techniques applied to exploratory 39 
immunophenotyping and biomarker discovery, with the ability to profile over 40 markers on an 40 
individual cell these techniques have rapidly expanded our understanding of the immune system and its 41 
perturbations throughout disease pathogenesis [2, 3]. However, such comprehensive analyses produce 42 
large amounts of data and increased dimensionality, resulting in a demanding computational task to 43 
analyze [4]. Often, a limiting factor to these analyses are the requirement of an in-depth knowledge of 44 
computational biology. There is an unmet need for an easy-to-use flexible open-source computational 45 
framework, to explore a variety of high dimensional single-cell cytometry datasets such as LMC, IMC and 46 
FC within a single framework for non-specialists. A number of previous computational cytometry 47 
workflows have been proposed, including CyTOF workflow [5], Diggins et al. [6] and CapX [7]. 48 
Subsequently, some of these workflows have been incorporated into graphical user interfaces (GUI) or 49 
code-based workflow packages such as CATALYST [8], Cytofkit [9], diffcyt [10] and Spectre [11]. 50 
However, these approaches can be challenging to implement without significant computational 51 
knowledge. We have therefore developed ImmunoCluster, building on and extending the framework 52 
proposed in the CyTOF workflow [5] to create modular, flexible and easy-to-use implementations of 53 
cytometry analysis pipelines. The ImmunoCluster package is a framework which provides appropriate 54 
data structures and methods to increase the utility of these high-dimensional methods and make data 55 
analysis and interpretation accessible to all researchers to facilitate immune phenotyping projects, such 56 
as those associated with pre-clinical and clinical studies. 57 

Here, we present ImmunoCluster, an open-source computational framework for the analysis of high-58 
dimensional LMC, IMC, and FC datasets. ImmunoCluster is an R package and framework which focuses 59 
on the organization and visualization of data to help define biological identity of cells, construct a 60 
hierarchy of biologically meaningful cell populations, and detect significant changes between conditions, 61 
timepoints and groups, including serial samples from a clinical trial setting. The framework uses state-of-62 
the-art computational techniques in an easily amendable and flexible format. Users can manipulate 63 
figures and outputs to suit their specific needs. The computational approaches used to analyze high 64 
dimensional data are rapidly evolving and ImmunoCluster has the flexibility to incorporate these novel 65 
computational methods in dimensionality reduction, clustering and trajectory analysis within its 66 
framework. The computational framework is designed for ease-of-use and broad applicability, so that it 67 
is simple enough to be implemented by users with only a basic knowledge of R, as well as possessing the 68 
flexibility for more advanced users to incorporate additional new methodology and build on the 69 
framework. The framework relies on the SingleCellExperiment class [12], this means that the Flow 70 
Cytometry Standard (FCS) data is contained within a purpose-built object that stores all stages of 71 
analysis to permit multiple analysis paths to be performed in parallel. The framework incorporates 72 
methods for applying popular R packages (i.e. RPhenograph [13], Rtsne [14] and FlowSOM [15]) along 73 
with convenient ‘wrapper functions’ allowing for the use these popular dimensionality reduction and 74 
clustering algorithms in an easy format for non-specialists to rapidly produce interpretable data that are 75 
extendable to advanced experimental designs. ImmunoCluster also contains functionality for adaptive 76 
down-sampling at the import and dimensionality reduction stages of the pipeline to overcome 77 
significant increases in runtime associated with large datasets in dimensionality reduction algorithms 78 
like UMAP and tSNE. The outputs from ImmunoCluster are created using the ggplot package which 79 
generates ggplot graphical objects that are flexible, can be further modified and utilized directly into 80 



figures for reports and publications. The core of the visualization tool were developed using scDataviz, a 81 
Bioconductor package [16] for visualizing single cell data and influenced by the visual framework 82 
outlined in CyTOF workflow [5]. ImmunoCluster offers an alternative to the currently used frameworks 83 
such as CATALYST [8] and Cytofkit [9], with a focus on ease-of-use for biologists, as well as offering 84 
additional novel aspects for its users compared with other published frameworks. Importantly, and 85 
unique to ImmunoCluster, the scope of functionality in this package also enables the analysis of IMC 86 
data. Users are able to run IMC data in line with FC and LMC data analyses. Due to the lower resolution 87 
of IMC data (compared with FC and LMC) we specifically designed the ‘ranked expression heatmap’ 88 
function to work with IMC data, which allows users to rank markers measured to help identify cell 89 
populations. IMC provides a means to analyze the spatial dimension of the cells in situ within tissues, 90 
which can provide important insight when ascribing functionality to cell populations. Methods for 91 
analyzing large cytometry datasets, in particular IMC datasets, in an open-source computational 92 
environment are currently limited. ImmunoCluster has been designed for use by a non-specialist, 93 
however, would be useful to a range of users from wet-lab non-specialist experimentalists to 94 
experienced computational biologists with potential utility in day-to-day research through to large-scale 95 
studies involving multiple longitudinal serial biopsies where samples need to be analyzed and compared.  96 

Clinical immune monitoring is an area of increasing utilization [17]. In the current work we will present 97 
examples of ImmunoCluster’s ability to detect clinically relevant perturbations in immune cellular 98 
heterogeneity in LMC, IMC and FC datasets in human patient and/or healthy samples. ImmunoCluster is 99 
easily extensible to several arbitrary experimental designs and can be utilized to aid both discovery of 100 
novel subpopulations of cells within heterogeneous samples or as a foundation for monitoring 101 
longitudinal changes or responses to treatment. As such, ImmunoCluster provides a resource that will 102 
permit unsupervised high dimensional data analysis to be more widely adopted in immuno-biology and 103 
many other disciplines.  104 

Results 105 

This section aims to convey the scope of ImmunoCluster, its versatility, and applicability to complex 106 
datasets across a range of high dimensional approaches. We implemented the ImmunoCluster 107 
framework for three different types of high dimensional single cell data (LMC, IMC, and FC). 108 
ImmunoCluster also offers user-friendly flexibility throughout the framework, researchers can easily 109 
adapt all figures and outputs to suit their specific needs resulting in an abundance of tailored outputs for 110 
the user to assess and use in publications, reports and presentations. An example detailing a variety of 111 
tailor-made figures produced by ImmunoCluster can be found in Figure 1 – Figure supplement 1. 112 

We firstly used previously published and publicly available LMC data [18]. This dataset was chosen as it 113 
is representative of an intricate immunophenotyping project and would test the ability of 114 
ImmunoCluster to reproduce published results. Secondly, we investigated two novel IMC datasets, from 115 
HNSCC and DLBCL patients with the aim of demonstrating the applicability of the ImmunoCluster tool for 116 
IMC data analysis and cell cluster identification and visualization. Finally, FC data from the BM of 7 HDs 117 
during hip surgery were used to show the ability of the framework to analyze conventional FC data and 118 
identify rare immune cell populations.   119 

Liquid mass cytometry  120 

The chosen dataset [18] includes mass cytometry data from 15 patients with leukemia who all received 121 
BMT, three of these patients developed acute GvHD. Samples were taken at 30 and 90 days post-BMT. 122 



Thirty-three cell markers, both lineage and functional were analyzed using mass cytometry (Helios™ 123 
CyTOF® system). Prior to uploading into the ImmunoCluster framework the FCS files were normalized 124 
and gated as described in the methods section. We observed that a typical pipeline run on the full 2.3 125 
million cell LMC GvHD dataset (with UMAP down-sampling to 500k cells) would take approximately 110 126 
minutes on a 2.9 GHz Intel Core i7 Macbook pro with 16 GB RAM (Figure 1 – Figure supplement 2).     127 

An initial visualization of the data was first carried out using MDS plots, these were overlaid with 128 
metadata to identify the similarity of patients by condition and day of measurement (Figure 1A and 1B). 129 
A heatmap was also created to give an overview of marker expression for each patient and annotated 130 
with the metadata provided (Figure 1C). The UMAP algorithm was used for dimensionality reduction of 131 
data. There was a difference in the distribution of cells from GvHD and ‘none’ across the cell islands 132 
between both timepoints, 30 and 90 days after BMT (Figure 2A).  133 

The mass cytometry panel used in this experiment was specifically designed to identify all major human 134 
immune cell lineages [18], the marker expression across cell islands were visualized and indicated cell 135 
types present within the cell islands (Figure 2B) (expression of all markers measured Figure 2 – Figure 136 
supplement 1). To further distinguish the cell types that were present in the cell islands and visible from 137 
the dimensionality reduced UMAP plots (Figure 2B) the FlowSOM clustering algorithm with consensus 138 
clustering metaclustering was applied, which has been demonstrated to scale well to large cytometry 139 
datasets [19]. The number of clusters input into the FlowSOM algorithm was slightly higher than the 140 
number of expected cell clusters (n=56) (Figure 2 – Figure supplement 2). The SingleCellExperiment 141 
object stored the data for each K meta-clustering (K1-K56), therefore further downstream data 142 
exploration was carried out looking at different numbers of K clusters. A heatmap showing the 143 
expression of the 33 markers measured were used to identify cluster cell types (Figure 2 – Figure 144 
supplement 2), ImmunoCluster was successfully able to replicate the findings from Hartmann et al. [18], 145 
with 24 of the cell populations being identified (Figure 2C and 2D). Selecting the correct number of 146 
clusters to input into the clustering algorithm can be a challenging aspect of these analyses, but the 147 
framework provides the user with multiple parameters to aid this decision. We recommend that users 148 
should always overestimate the number of cell populations as data for each K number of clusters will be 149 
stored in the SingleCellExperiment object and can therefore be explored and refined later using the 150 
different visualization techniques available within the framework. Additionally, the elbow plot 151 
generated by the ConsensusClusterPlus package can be examined alongside the clustering algorithm 152 
output to guide the decision on the best number of clusters for downstream analysis (Figure 8 – Figure 153 
supplement 6). Over-clustering can allow for the identification of rare cell types within a dataset, at the 154 
expense of often generating several clusters of highly prevalent cell types that likely represent the same 155 
biological cell type. ImmunoCluster provides the tools to manually and reproducibly merge clusters of 156 
the same biological cell identity into one group after over-clustering. These clusters can additionally be 157 
merged into each other to use a less granular, higher-level population annotation (see Figure 2 – Figure 158 
supplement 3 for an example of higher-level clustering).  159 

The abundance of all cell types across all samples was measured, and CD14+CD16- monocytes were 160 
identified as the most abundant population, correlating with the Hartmann et al. data [18] (Figure 2E). 161 
Individually displaying patient’s cell type abundance means that we could identify variation within a 162 
group of interest, for example we observed that although there is variation within the GvHD and none, 163 
overall, they appear to follow the same trends in cell type abundance (Figure 3A). Additionally, 164 
significant differences between memory B-cells (False Discovery Rate (FDR) p=4.38 x 10-3), naïve B-cells 165 
(FDR p=1.35 x 10-2), and naïve CD4+ T-cells (FDR p=3.47 x 10-2) were identified between the GvHD and 166 
none (Figure 3B and C) using a t-test. A difference in number of naïve B-cells was previously reported by 167 



Hartmann et al. [18] in this dataset and can be seen in Figure 2A (using Figure 2D for cell island 168 
identification), where there is a noticeable reduction of these cells in the GvHD patients. In addition, a 169 
reduction in naïve CD4+ T-cells can also be seen, which was also previously reported, but to a lesser 170 
extent. A volcano plot can be used to highlight the differentially abundant cell clusters between GvHD 171 
and none (GvHD logFC+ve and none LogFC-ve), where cell types with FDR p< 0.05 are shown in red 172 
(Figure 3D), which is also in line with the previously published data [18]. We compared ImmunoCluster’s 173 
differential abundance testing output (stat_test_clust), run in the t-test mode, with the Hartmann et al. 174 
data [18] into the diffcyt computational framework [10], which is a state-of-the-art tool for differential 175 
discovery analyses. Diffcyt identified the same three cell clusters (memory B-cells, naïve B-cells and 176 
naïve CD4+ T-cells) as differentially abundant (FDR p<0.05) between the GvHD and none conditions. This 177 
demonstrates concordance with ImmunoCluster’s statistical output that identified naïve B-cells and 178 
naïve CD4+ T-cells as one of the principle differentially abundant populations, which was also identified 179 
in the original analysis of the data (Supplementary file 4). Additionally, we explored the expression of 180 
checkpoint-related molecules, and their receptors, markers of proliferation, and invariant natural killer T 181 
(iNK T) cells in CD8+ T-cells and compared the expression of these in the patients with GvHD and none 182 
(Figure 3E). These markers help assess the functional states of cells, and the checkpoint-related 183 
molecules and proliferative activity markers such as PD-1, PD-L1, TIM3, Ki-67, and TCRVa24-Ja18; the 184 
expression of these antigens have been proposed previously as candidate biomarkers for 185 
immunotherapy [18]. Visually, GvHD patients had a higher expression of PD-1 and a noticeable 186 
difference in the Ki-67 proliferation marker, as expected for these patients (Figure 3E).  187 

Imaging mass cytometry  188 

We utilized two different IMC datasets to demonstrate how ImmunoCluster would handle IMC data 189 
from two different tumor microenvironments which possess, a) a biological image with clear 190 
boundaries, such as HNSCC, where clear tumor and stroma regions were evident; b) a biological image 191 
which was more heterogeneous and diffuse, such as the DLBCL lymph node section. ImmunoCluster’s 192 
ability to explore IMC data adds an important element to the framework and demonstrates the 193 
flexibility and applicability of the tool. Researchers can explore IMC data easily, and in-line with LMC and 194 
FC data. After data pre-processing (see methods and Figure 8 – Figure supplement 2), the transformed 195 
gated FCS files were uploaded into the ImmunoCluster framework. Generally, the same workflow which 196 
was applied to the LMC and FC data was applied to the IMC data from a section of tissue from patients 197 
with HNSCC and DLBCL (lymph node), as a proof of principle application of the ImmunoCluster tool for 198 
IMC data analysis (Figures 6 and 7). The only difference with the IMC data was the use of a rank 199 
heatmap (Figure 4 – Figure supplement 1), this ranks the order of each marker for each sample, (1- total 200 
number of samples). The reason for this was clarity and ease of cell identification across clusters as IMC 201 
produces lower resolution data compared to the data output of LMC or FC, this makes manual 202 
assignments of populations more difficult to interpret. Therefore, a rank of expression was used as an 203 
easy means to facilitate the assignment of cell identity through defining the highest and lowest 204 
expression of markers between clusters. 205 

Head and neck squamous cell carcinoma tissue section 206 

Cell segmented regions were annotated in Figure 4A, regions 1-3 were selected as tumor regions and 3-207 
6 as stroma regions. The ImmunoCluster tool was able to distinguish between the stroma and tumor 208 
regions of the tissue section from the HNSCC tumor (Figure 4B), and with additional markers could 209 
provide more in-depth analysis of the cell phenotypes in each respective region of the tumor. 210 
Dimensionality reduction of the data clearly separated the cell islands belonging to the stroma and 211 



tumor regions of the tissue (Figure 4C), suggesting different cell phenotypes between the regions. The 212 
FlowSOM algorithm was applied to cluster the cells and identify cell populations. The rank heatmap was 213 
used to show the ranked expression of each marker (ranked 1-10, with 10 being high) for each cluster 214 
(1-10) (Figure 4 – Figure supplement 1), identified cell types were then used to annotate the heatmap 215 
(Figure 4D). High expression of E-cadherin can be used as a marker of cancerous tissue in HNSCC, and its 216 
expression correlates with the cancer regions selected for analysis (Figure 4D). We focused on CD8+ T-217 
cell, B-cell, and macrophage cell clusters [20, 21]. Regions 2 and 3 of the tumor mostly consist of 218 
proliferating (Ki-67+) tumor cells and macrophages (tumor-associated and PD-L1+), Region 1 was a mix of 219 
immune cells, B-cells, and PD-L1+ CD8+ T-cells (Figure 4E). Stromal regions 5 and 6 are mostly PD-L1+ 220 
macrophages and CD8+ T-cells. Region 4 has a cluster of mixed immune cells, and from the IMC image 221 
(Figure 4A) we can see this region looks like the tumor is encroaching into the stromal region. The 222 
stroma seems to be mostly non-proliferating cells (Ki-67-compared to the tumor region) and CD8+ T-223 
cells, including a CD20+ CD8+ cytotoxic subset [22]. 224 

Diffuse large B-cell lymphoma lymph node section 225 

The IMC DLBCL lymph node section was split by high and low Ki-67 expression to identify the highly 226 
proliferative tumor cells (Figure 5A); Ki-67 is used as a prognostic marker in DLBCL [23]. The FlowSOM 227 
algorithm was applied to the data to split the IMC data into clusters, these clusters were projected onto 228 
the UMAP plot to visualize how these clusters were split between the Ki-67 high and low (Figure 5B). 229 
The marker expression ranking tool was applied to the clustered data and used to identify cell types 230 
(Figure 5C and Figure 5 – Figure supplement 1). The majority of Ki-67 high population were proliferating 231 
tumor cells (84%), and the Ki-67 low population consisted of a heterogeneous collection of immune cell 232 
populations, such as CD4+ T-cells, CD8+ T-cells, B-cells, macrophages and dendritic cells (DCs) that were 233 
successfully identified using the ImmunoCluster tool (Figure 5D). 234 

Flow cytometry  235 

The HD BM taken during hip surgery was gated for the CD3+CD4+ population before analysis within the 236 
ImmunoCluster framework, with the aim of testing ImmunoCluster’s ability to identify minor populations 237 
such as Tregs and their subpopulations [24]. The FlowSOM algorithm was applied to the data resulting in 238 
40 clusters (Figure 6 – Figure supplement 1), and a heatmap was created with median expression of 239 
markers to identify cell types (Figure 6B). Due to the markers used and the low prevalence of Tregs the 240 
majority of cells were identified as CD4+ T-cells. Additionally, three populations of Tregs were identified 241 
by the ImmunoCluster tool; Tregs (CD25+CD127low) (3.6%, 1.3-5.5), Treg A (CD25+CD127low CD45RA+) 242 
(0.7%, 0.1-2.0) and Treg B cells (CD25+CD127lowCCR4+CD95high) (0.9%, 0.2-2.4) (Figure 6C). The 243 
abundance of Treg A and B for all healthy donors is shown in Figure 6D and their distribution was as 244 
expected [24].    245 

Discussion 246 

Here we provide an overview of the flexibility and scope for utilizing ImmunoCluster, an open-access 247 
easy-to-use framework for LMC, IMC and FC dataset analyses. The ImmunoCluster package emphasizes 248 
ease-of-use in the generation of flexible and modular cytometry analysis pipelines for applications such 249 
as clinical immune monitoring studies. Explanations of the functions and workflow have been provided 250 
and an in-depth step-by-step protocol and tutorial are available on the GitHub site 251 
(https://github.com/kordastilab/ImmunoCluster). 252 

https://github.com/kordastilab/ImmunoCluster


The purpose for creating the ImmunoCluster framework was to support non specialist researchers to 253 
carry out complex immunophenotyping experiments. The dawn of ‘cytometry big data’ and its ever-254 
growing utilization has surpassed the number of experimental parameters that a researcher can feasibly 255 
analyze as a collective. The ImmunoCluster framework was designed in collaboration between wet lab 256 
and computational biologists, with the purpose of creating a tool which enables state-of-the-art 257 
analysis, yet easy to use in its application. We provide sufficient detail and explanation for the non-258 
specialist researcher to understand the need for each analysis step as well as how to confidently execute 259 
the process; with an aim of performing transparent and reproducible analyses. 260 

ImmunoCluster has been built with an emphasis on generalizability and scalability to facilitate a broad 261 
use and is an advance over other open-source tools as it provides an integrated framework to uniquely 262 
perform a complete computational pipeline on high-dimensional LMC, IMC and FC data. The inclusion of 263 
IMC data analysis brings a unique element to the ImmunoCluster framework and differentiates it from 264 
other published protocols. ImmunoCluster was built to easily leverage many popular R packages for 265 
cytometry data (i.e. RPhenograph [25], Rtsne [26, 27] and FlowSOM [28]), selected because they are 266 
open-source and regularly maintained with extensive documentation. All methods prioritize 267 
customizable, and attractive visualizations designed to be used by both dry- and wet-lab 268 
researchers/clinicians. The inclusion of adaptive down-sampling of cells for the running of 269 
computationally intensive dimensionality reduction steps, using tools such as UMAP and tSNE, allows 270 
ImmunoCluster to generate cytometry analysis pipelines that readily scalable to a dataset of millions of 271 
cells across several samples and a variety of experimental or phenotypic conditions. ImmunoCluster can 272 
also be used on a local desktop/laptop computer with standard configuration, depending on the number 273 
of cells, adaptive down-sampling settings and selection of clustering algorithms can usually be run within 274 
a day end-to-end (Figure 1 – Figure supplement 2). Whilst the PhenoGraph clustering method does not 275 
readily scale, the FlowSOM-based clustering method can be implemented on much larger datasets.  276 

The limitations of this computational framework are important to take into consideration when 277 
designing an experiment. Unsupervised Clustering (Stage 2) of samples is the most important stage of 278 
the framework and its ability to accurately define populations across all samples is critical to all later 279 
stages of investigation. The number of k clusters to generate (cluster resolution) can significantly affect 280 
the ability to identify or determine a change in a biologically relevant population. Merging two 281 
subpopulations due to low resolution of clustering may mask an important experimental observation. 282 
Determining the precise number of clusters that are relevant for a given dataset is an important step. In 283 
our step-by-step guide we provide complete documentation and clear user-friendly approaches to 284 
optimally define this. 285 

Technical inter-sample marker signal variability due to batch effects may impact the ability of 286 
unsupervised analysis to reliably detect certain populations, if significant batch effects are present. MDS 287 
plots created in Stage 1 of the framework can be used to detect batch effects and as well as other 288 
technical artifacts such as antibody staining anomalies. An approach commonly employed in mass 289 
cytometry to overcome this is to use sample barcoding, reducing the variability between each sample, 290 
allowing all samples to be exposed to the same antibody mixture [29]. Another regularly employed 291 
approach is the inclusion of a shared control sample in each independent batch, e.g. the same cell type 292 
as the experimental samples but all from the same healthy donor. Statistical methods for batch 293 
correction may also be applied, in recent years a class of methods called Remove Unwanted Variation 294 
(RUV) have been developed, and CytofRUV [30] is a recently developed package specifically designed for 295 
CyTOF dataset batch correction. If there are significant differences in the total number of cells recovered 296 
between samples, samples with many more cells may bias the clustering. Samples with very few cells 297 



recovered may result in information loss and missing populations that are in fact present. The 298 
ImmunoCluster framework provides users with two opportunities (creating the SingeCellExperiment and 299 
running the dimensionality reduction) to down-sample, which means the same number of samples will 300 
be used for each sample, rectifying the problem of varying cell numbers. If a particular sample has very 301 
few cells they may need to be excluded from the analysis as they may not be a representative sample. 302 
Although channel spillover is diminished in mass cytometry, it still exists in fluorescence-based FC, and 303 
should be considered when designing antibody panels to reduce the effects on introducing cell 304 
phenotype artifacts in downstream unsupervised analysis. As such, initial exploratory data analysis (e.g. 305 
MDS plots) is key to determining if any of these confounding factors might be present in the data. 306 
Additionally, users may want to introduce fluorescence‐minus‐one (FMO) controls, where cells are 307 
stained with all fluorescently-tagged antibodies except for the one of interest [31]. 308 

Summary 309 

The ImmunoCluster package increases the accessibility of advanced computational methods for users 310 
tasked with generating high-quality analysis of high-dimensional LMC, IMC, and FC data. More advanced 311 
users can leverage ImmunoCluster’s data structures, methods and suitability for scripted analysis to 312 
integrate our work with other R analysis tools and build on the package’s foundation. In our clinically 313 
relevant immune monitoring case study setting, the ImmunoCluster framework successfully identified 24 314 
phenotypically distinct cell clusters, and their abundance across all samples, and highlighted 315 
differentially represented cells between GvHD and none patients, all of which were consistent with the 316 
Hartmann et al. data [18]. We also applied the framework to two sets of IMC data, showing the broad 317 
applicability of ImmunoCluster as well as the ease of being able to analyze the IMC data in-line with LMC 318 
data, helping compare these types of data, which will be useful in future studies where multiple 319 
technologies are being applied within one study. Finally, we implemented FC data into ImmunoCluster, 320 
confirming that it was able to analyze conventional FC data and identify rare immune cell populations. 321 
Currently the pre-processing of raw files is carried out prior to implementation into the ImmunoCluster 322 
framework, but due to the flexibility and design of the tool, future implementations may include IMC 323 
data pre-processing within the ImmunoCluster R package. This versatile framework provides an 324 
opportunity to include all researchers with varying knowledge and experience in computational biology 325 
to be involved in the experimental project from experimental design, wet lab/clinical trial, all the way 326 
through the data analysis process and visualization. 327 

Materials and Methods 328 

Data file pre-processing and preparation for implementation into the ImmunoCluster framework 329 

Liquid mass cytometry data 330 

Here we describe an example of the ImmunoCluster package analyzing previously published LMC data 331 
(CyTOF®) from 15 patients with leukemia 30 and 90 days after bone marrow transplantation (BMT), 332 
previously published by Hartmann et al. [18]. After BMT three of these patients suffered acute graft 333 
versus host disease (GvHD) and 12 had no evidence of GvHD (noted as ‘none’ herein). For systems-level 334 
biomarker discovery within this trial, a panel of 33 antibodies were incorporated into the 335 
immunophenotyping panel (Supplementary file 1). The panel was designed to cover all major immune 336 
cell lineages and several functional subsets including; T-, B-, NK  and myeloid cells and granulocytes 337 
(detailed in [18]). The marker panel also included a variety of immune-regulatory proteins, such as PD-1, 338 
PD-L1 and TIM3. The publicly available dataset from the Hartmann et al. study was extracted for the 339 



current study from the FlowRepository (http://flowrepository.org/id/FR-FCM-Z244) [32]. Raw FCS files 340 
for the LMC dataset which were collected on the Helios™ CyTOF® system (Fluidigm, UK) machine were 341 
first normalized using the free CyTOF® 6.7 system control software (files can also be concatenated using 342 
the same software if necessary). These files were gated using FlowJo™ (version: 10.5.3) (Becton, 343 
Dickinson and Company, UK) to remove beads, doublets, dead cells, and non-CD45+ cells as well as 344 
erythrocytes (CD235αβ/CD61+) and neutrophils (CD16+) (Figure 8 – Figure supplement 1), as described 345 
by Hartmann et al. [18], before implementation into the ImmunoCluster framework. There are various 346 
alternative open-access tools which can be used to gate these files, such as OpenCyto [33], CytoExploreR 347 
[34] and Cytoverse (https://cytoverse.org/).  348 

Imaging mass cytometry data 349 

Two different examples of IMC datasets were implemented into the framework. One IMC dataset was 350 
from a human tissue section taken from a patient with head and neck squamous cell carcinoma 351 
(HNSCC). Consent was attained by the Guy’s & St Thomas’ Research Biobank, within King’s Health 352 
Partners Integrated Cancer Centre. The second IMC dataset was from a lymph node section from a 353 
patient with diffuse large B-cell lymphoma (DLBCL). Formalin-fixed paraffin-embedded (FFPE) DLBCL 354 
tumor tissue was obtained from King’s College Hospital, in accordance with the Declaration of Helsinki 355 
and approved by the UK National Research Ethics Committee (reference 13/NW/0040). A detailed 356 
protocol is available for both datasets as a Supplementary File (Appendix 1 and 2, respectively). The raw 357 
HNSCC IMC data from 12 channels (10 markers + 2 intercalator-Ir channels (Supplementary file 2), and 358 
the raw DLBCL IMC data from 20 channels (19 markers + nuclei channel) (Supplementary file 3), were 359 
processed with Python scripts and CellProfiler pipelines according to Schulz et al. [35] to segment the 360 
image data into individual cells (Figure 8 – Figure supplement 2). The mean marker intensity for each 361 
segmented cell was exported (comma-separated values (CSV) file) and either divided into 6 regions of 362 
equal area (HNSCC, 3 tumor and 3 stroma regions) or divided by Ki-67 expression (DLBCL, Ki-67 high or 363 
low). The mean marker intensity for each segmented cell was multiplied by 65,535 to recover the image 364 
intensities (Fluidigm IMC machine = 16-bit, the dynamic range of the measurements are 0 to (216)-1) and 365 
asinh (co-factor 0.8) transformed in R Studio. These CSV files were converted into FCS files and gated in 366 
Cytobank [36], functions are also available within the ImmunoCluster package to convert SCE or CSV 367 
data files into FCS format.  368 

Flow cytometry data 369 

FC data from the BM of 7 healthy donors (HDs) were used to demonstrate the ability of the framework 370 
to analyze conventional FC data and identify rare immune cell populations. BM samples from HDs were 371 
obtained by extraction of the bone marrow cells from the bone of the femoral head. This non-372 
interventional study was approved by the ethical committee of Cochin-Port Royal Hospital (Paris, 373 
France) (CLEP Decision N°: AAA-2020-08039). Femoral heads were obtained after informed consent, 374 
during hip replacement surgery. These were cut in half and collected in a conservation medium (Hanks 375 
balanced salt solution with NaHCO3, Eurobio ™), supplemented with heparin (7%) and then transported 376 
to the laboratory at room temperature (RT). These were scraped with a spatula, ground in a mortar, and 377 
washed with a PBS solution supplemented with 100 ug/ml DNAse (Sigma Aldrich). The FCS files were 378 
gated for singlets using a FSCint/FSCpeak dot plot, and dead cells were removed using a forward scatter 379 
(FSC) and side scatter (SSC) dot plot. Leukocytes were gated on a CD45/SSC dot plot. Finally, they were 380 
gated to identify the CD3+CD4+ population of cells for analysis in the ImmunoCluster framework (gated in 381 
Cytobank [36]).  382 
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Workflow overview 383 

The ImmunoCluster package is accessible via GitHub (https://github.com/kordastilab/ImmunoCluster), 384 
where a detailed step-by-step walkthrough of the tool, and R Markdown files (RMD) for LMC/FC and 385 
IMC data analysis are available. The RMD files permit users to logically work through the framework in 386 
sections in a ‘click and play’ manner. Additionally, all scripts to replicate figures published here are 387 
available via GitHub. Users will need to have R downloaded to run the ImmunoCluster tool. The 388 
ImmunoCluster framework provides tools and support allowing researchers to follow a workflow which 389 
guides them through experimental design, data analyses, interpretation, and statistical significance 390 
testing, to publishable graphics identifying differences in phenotype and abundance of cells between 391 
conditions analyzed (Figure 7 and 2). The framework comprises three core computational stages which 392 
are conducted by the ImmunoCluster tool:  393 

Stage 1. Data import and quality control 394 

a. We provide tools designed primarily for computational pre-processing of FCS data files for 395 
downstream applications including parameter renaming and transformation. The generated 396 
high dimensional data are imported into the computational framework as FCS file formats or 397 
summarized feature expression values in CSV tabular format.  398 

b. Associated metadata files need to be completed by the researcher in the experimental design 399 
stage (Figure 7). This includes a sample_metadata file, in which all metadata relating to samples 400 
will need to be input, such as timepoints, response to treatments and patient status (Figure 8 – 401 
Figure supplement 3A). For simplicity in executing this step, the panel_metadata file allows 402 
users to rename parameters, such as the markers used in the analysis as well as select the 403 
markers which are to be used for different analyses stages (all markers may not need to be 404 
included in the following steps) (Figure 8 – Figure supplement 3B).  405 

c. All of the above mentioned data is stored within a SingleCellExperiment object [12]. The 406 
SingleCellExperiment is an S4 class object that is implemented into the ImmunoCluster 407 
framework and is in essence a data container in which you can store and retrieve information 408 
such as metal-barcoding for sample multiplexing, metadata, dimensionality reduction 409 
coordinates and more (outlined in Figure 7). FCS files can also be exported from the 410 
SingleCellExperiment using the write_sce_to_fcs function. 411 

d. After the data and metadata files have been imported and stored in the SingleCellExperiment 412 
object, we provide several approaches for initial exploratory visualization of the data. One 413 
example of this is the Multidimensional scaling (MDS) plots. The median marker expression data 414 
from each sample are used to create MDS plots, and therefore allow for an initial visualization of 415 
data points (labelled with metadata) and show the similarity and differences between samples 416 
in two-dimensions. Additionally, these plots can be used to detect batch effects and other 417 
technical artifacts such as antibody staining anomalies. Moreover, a heatmap of expression of 418 
markers measured for each patient can be created and metadata can be used to annotate the 419 
heatmap.    420 

Stage 2. Dimensionality reduction and unsupervised clustering 421 

a. Dimensionality reduction is a key component of high-dimensional single-cell data analyses and 422 
enables researchers to view high-dimensional data. For example, the 33 protein markers 423 
analyzed by Hartmann et al. [18] can be reduced to lower dimensional embedded coordinates 424 
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per cell. Nonlinear dimensionality reduction techniques can avoid overcrowding and represent 425 
data in distinct cell islands (Figure 8).  426 

b. The framework offers users three nonlinear statistical methods for representing high 427 
dimensional single-cell data in low-dimensional space (Figure 8 – Figure supplement 4). MDS 428 
(utilized in stage 1 for initial data exploration), uniform manifold approximation and projection 429 
(UMAP) [37], and t-Distributed Stochastic Neighbor Embedding (tSNE) [26] algorithms are 430 
available to generate a 2 dimension (2D) embedding of the data. However, the 431 
SingleCellExperiment object can store any other form of arbitrary dimensionality reduction, such 432 
as principle component analysis (PCA) [38] or DiffusionMaps [39], amongst others. 433 

c. The density of cells within the distinct cell islands produced by the 2D embedding of 434 
multidimensional data can be viewed using the density_plot function (Figure 2 – Figure 435 
supplement 1).  436 

d. After the data has been visualized in dimensionality reduced space, clustering algorithms can be 437 
used to identify cell communities within the data, which allows the identification of phenotype 438 
and abundance of cell clusters within populations/groups being analyzed. A number of 439 
clustering algorithms are available within the framework to define cell populations of interest in 440 
an unbiased manner. Firstly, an ensemble (use of multiple algorithms) clustering method of 441 
FlowSOM [28] and Consensus clustering (ConsensusClusterPlus R package [40]), which tests the 442 
stability of the clusters, leading to better results than applying a basic hierarchical clustering 443 
algorithm [19]. Additionally, the PhenoGraph clustering algorithm is available, this uses K-444 
nearest neighbors and a Euclidean distance metric [41]. Lastly, k-means clustering, which 445 
classifies cells into clusters with high intra-class similarity and low inter-class similarity, each 446 
cluster is represented by its center (centroid) which corresponds to the mean of points (e.g. 447 
markers) assigned to the cluster. Either or all clustering algorithms can be applied at the users’ 448 
discretion.   449 

e. The aim of the clustering algorithms is to assign all cells to K clusters (K1, K2, …) resulting in 450 
clusters corresponding to true cell types. Typically, a K larger than the number of expected cell 451 
types is chosen at this stage as the ImmunoCluster framework allows users to explore all K 452 
clusters (Figure 8 – Figure supplement 5), as well as collapsing clusters of the same cell type into 453 
one cluster if the user feels over clustering has occurred. Over clustering may enable the 454 
clustering identification of rare cell types, sometimes at the expense of creating several 455 
‘artificial’ clusters of the more prevalent cell types. Additionally, the workflow allows the 456 
generation of an elbow plot which is created to help the user to select an appropriate number of 457 
clusters (Figure 8 – Figure supplement 6). 458 

Stage 3. Annotation and differential testing 459 

a. After dimensionality reduction and clustering the next step is to annotate each cluster based on 460 
marker expression. If over-clustering has occurred, multiple clusters of the same cell type can be 461 
present, and either a lower number of K clusters can be used, additionally clusters of the same 462 
cell type can be collapsed into each other to create one cluster.  463 

b. Clusters containing multiple cell types may also be identified, this could mean the user has 464 
under-clustered, or occasionally a group of different cells are clustered together by the 465 
algorithms. 466 

c. Expression of each marker analyzed can be projected onto the dimensionality reduced data by 467 
the researcher, aiding with the identification of cell types or phenotypically distinct clusters.  468 



d. Outputs such as heatmaps showing the expression of all markers for each cluster can be used to 469 
identify the clusters of interest (Figure 2 – Figure supplement 2). These can be used to annotate 470 
figures produced in Stage 3.  471 

e. Biaxial dot plots with contouring of the SCE data can be produced using the biaxial_plot 472 
function, the expression of markers can be explored in the entire dataset or a subset of the data, 473 
i.e. a particular cell cluster. A clustering option within biaxial_plot allows users to see the spread 474 
of data across two selected markers for different conditions (any metadata from the 475 
sample_metadata file), as well as different clusters (e.g. K1-60) (Figure 3 – Figure supplement 1). 476 

f. Due to the type of data produced from IMC (lower resolution compared to LMC and FC) a novel 477 
function called imc_rank was specifically designed for the IMC data, this creates a heatmap in 478 
which the expression of each marker is ranked. This rank heatmap can be used to facilitate the 479 
identification of clusters which are ‘high’ or ‘low’ for particular markers to distinguish and 480 
logically assign cell populations manually. 481 

g. These tools help define biological identity of cell clusters from Stage 2 and construct a hierarchy 482 
of biologically meaningful cell populations based on marker expression and similarity. 483 

h. The metadata added to the SingleCellExperiment can be used to annotate the dimensionality 484 
reduced (i.e. UMAP) and clustered (FlowSOM, Phenograph, or K-means) data, allowing for 485 
visualization of the distribution of cell islands between different condition/timepoints (Figure 8). 486 

i. The above-mentioned metadata is also used to annotate all differential testing outputs, 487 
meaning the user can make many comparisons and explore multiple parameters all within the 488 
ImmunoCluster framework. 489 

j. A variety of differential testing outputs can be created, such as median marker expression for 490 
each sample (using clustered data) can be used to produce a hierarchical clustered heatmap, 491 
and box plots of cell cluster abundance between different conditions at different time points 492 
(any metadata can be used to annotate these figures). 493 

k. Statistically significant differences in the annotated populations between conditions are 494 
identified and displayed throughout the framework to the user for ongoing investigation and 495 
interpretation. Data from the ImmunoCluster generated SingleCellExperiment object can be 496 
easily extracted for downstream analysis with differential analysis packages such as diffcyt [10] 497 
and cydar [42] for differential discovery, which is based on a combination of high-resolution 498 
clustering and empirical Bayes moderated tests. In addition, the ImmunoCluster framework 499 
offers the stat_test_clust and stat_test_expression functions which use the Wilcox rank sum or 500 
Welch’s T-test to identify which cell clusters are significantly different between conditions (any  501 
two-way comparison  can be made using metadata input by user), and which markers are 502 
significantly different within cell clusters between different conditions, respectively.  503 
 504 
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 623 

Figure Legends  624 

Figure 1. Initial exploration of LMC data from patients with leukemia who received bone marrow 625 
transplants. (A-B) Multidimensional scaling (MDS) of data, median marker expression data from each 626 
sample were used to create plots, annotated with condition (GvHD or none) (A), and time after bone 627 
marrow transplant (BMT) treatment (B). C) Heatmap showing the median marker expression for each 628 
patient. 629 

Figure 1 – Figure supplement 1. Customizable figure outputs. A) Expression of four selected lineage 630 
markers projected onto UMAP plot. B) UMAP annotated with FlowSOM clusters. C) UMAP annotated 631 
with cell types. D) UMAP plot colored by GvHD and none. E) UMAP plots colored by GvHD and none and 632 
split by time point (30 and 90 days after BMT treatment). F) UMAP plots colored and split by GvHD and 633 
none. G) Visualize the density of cells within cell islands of dimensionality reduced data. 634 

Figure 1 – Figure supplement 2. ImmunoCluster typical pipeline run time. 2.3M cell LMC GvHD dataset 635 
(with UMAP downsampling to 500k cells) on a 2.9 GHz Intel Core i7 Macbook pro with 16 GB RAM. QC- 636 
quality control.  637 

Figure 2. Dimensionality reduced LMC CyTOF data and marker expression: A) UMAP plots colored by 638 
GvHD and none and split by time point (30 and 90 days after BMT treatment). B) Expression of eight 639 
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selected lineage markers projected onto UMAP plot. Identifying cell types and abundance of clusters. C) 640 
Heatmap showing median marker expression across all identified cell types. D) UMAP annotated with 641 
cell types. E) Distribution of immune cell frequencies, abundance (%) of each cell type across all samples 642 
measured.  643 

Figure 2 – Figure supplement 1. Expression of all markers measured projected onto cell islands 644 
produced by UMAP.  645 

Figure 2 – Figure supplement 2. Heatmap showing the marker expression of 56 FlowSOM clusters. This 646 
heatmap was used to identify the cell type of each cluster. 647 

Figure 2 – Figure supplement 3. Heatmap showing higher-level cluster of cell types. 648 

Figure 3. LMC CyTOF data cluster and cell type abundances. A) Percentage of each cell type shown for 649 
each patient numbered across the bottom of the plot. B and C) Box plots portray IQR with the horizontal 650 
line representing the median percentage of cell types in both GvHD and none patients for B-cell and 651 
CD4+ T-cell populations, respectively. D) Differential abundance analysis; volcano plot showing the 652 
significantly differentially expressed cell abundances (FDR P < 0.05) between GvHD and none (GvHD 653 
logFC+ve and none LogFC-ve). E) Comparison of checkpoint-related molecules (PD-1, and TIM3), 654 
receptors (PD-L1), proliferative (Ki-67), and iNK T-cells (TCRVa24-Ja18) marker expression between 655 
GvHD and none patients in the CD8+ T-cell cluster.  656 

Figure 3 – Figure supplement 1. Biaxial plots. (A-B) Biaxial contour plots showing distribution of CD3+ 657 
and CD19+ cells in GvHD (A). and none (B). C) Biaxial dot plot showing distribution of CD4+ and CD8α+ 658 
cells in the identified CD8+ T cell and CD4+ T cell clusters. 659 

Figure 4. HNSCC IMC data: Immunophenotyping the tumor microenvironment with IMC data using 660 
ImmunoCluster. A) IMC image showing an example 5 channels: PD-L1 (green), CD4 (yellow), E-Cadherin 661 
(red), CD20 (magenta) and CD8α (blue). Images with the segmented cell borders highlighted. The tumor 662 
and stroma areas are clear to the eye and 3 regions were selected from each as shown (regions 1-6). B) 663 
MDS plot of stroma and tumor regions. C) Dimensionality reduced data (UMAP algorithm applied) 664 
annotated with FlowSOM clusters and split by region type. D) Rank heatmap: ranked expression (1-8, 665 
where 8 is high) of 9 markers (CD20, CD8α, CD4, E-Cadherin, Ki-67, PD-L1, CD68, and PD-1) and 666 
identified cell type. E) Proportion of cell types for each tissue region.  667 
 668 
Figure 4 – Figure supplement 1. Rank heatmap for the HNSCC patient IMC data. 669 

Figure 5. Diffuse large B-cell lymphoma IMC data: Immunophenotyping the lymph node 670 
microenvironment with IMC data using ImmunoCluster. A) IMC image showing an example 4 channels: 671 
DNA (red), CD20 (green), CD8α (dark blue), and CD45RA (light blue). The image was split by high and low 672 
Ki-67 expression to identify highly proliferative cells (tumor). B) Dimensionality reduced data (UMAP 673 
algorithm applied) annotated with FlowSOM clusters and split by Ki-67 high or low. C) Rank heatmap: 674 
ranked expression (1-8, where 8 is high) of 12 markers (CD8, CD68, CD4, CD3, CD45, CD20, CD45RA, Ki-675 
67, CD74, CD16, PD-L1, and CD11c) and identified cell type. E) Proportion of cell types for Ki-67 high and 676 
Ki-67 low cell populations. 677 

Figure 5 – Figure supplement 1. Rank heatmap for the DLBCL patient IMC data. Clusters 1 and 2 were 678 
not used for down-stream analysis as they were deemed to represent minor populations of cells that 679 



were non-specifically binding the antibodies as they ranked highly for all markers (including lineage 680 
markers) of interest. 681 
Figure 6. Healthy donor bone marrow flow cytometry data: identification of rare CD4+ T-cell immune cell 682 
subsets. A) MDS plot of each healthy donor (1-7). B) Heatmap showing marker expression across 683 
clusters of identified cell types. C) Dimensionality reduced data (UMAP algorithm applied) annotated 684 
with cell type. D) Proportion of Treg A and B from total cells from healthy donors.  685 
 686 
Figure 6 – Figure supplement 1. Heatmap showing the marker expression of 40 FlowSOM clusters. This 687 
heatmap was used to identify the cell type of each cluster. 688 

Figure 7. ImmunoCluster workflow stages and SingleCellExperiment structure. A) Schematic outlining 689 
the typical cytometry workflow and its interactions with the SingleCellExperiement ImmunoCluster 690 
object. B) SingleCellExperiment structure in ImmunoCluster. The SingleCellExperiment class is a data 691 
container, storing multiple layers of data to create the SingleCellExperiment object which holds all 692 
relevant data for an experiment.  Feature Metadata: imported by the user in the form of a 693 
panel_metadata file, which is a table containing all markers measured, each annotated with either 694 
lineage or functional information for downstream analysis. Primary and Transformed data: the 695 
imported expression data is stored in an assay, additionally the scaled data (arcsinh transformed) is also 696 
stored in an assay, meaning both can be easily accessed. Cell Metadata: the first metadata added to this 697 
element of the structure will be a sample_metadata file imported by the user, containing any relevant 698 
metadata for the experiment i.e., days after treatment and GvHD or none. Throughout the 699 
ImmunoCluster tool more layers of metadata are added to Cell Metadata, i.e., cell cluster identification 700 
(FlowSOM and Phenograph). Dimension Reductions: dimensionality reduction coordinates, such as 701 
UMAP and tSNE are stored and can be easily accessed throughout the ImmunoCluster tool for 702 
downstream analyses.  703 
 704 
Figure 8. ImmunoCluster workflow overview. 0) Samples are stained/treated and measured, for IMC 705 
the tissue is segmented, and regions selected for further downstream analysis. After measurement the 706 
raw data is normalized, concatenated (combining FCS files from the same samples which may have been 707 
split due to large sample volume or technical issues) and gated, before importing into ImmunoCluster. 1) 708 
Quality control of data is carried out before analysis. 2) Data is reduced to two dimensions using either 709 
UMAP or tSNE algorithm, and data are clustered using the FlowSOM or Phenograph algorithms (these 710 
algorithms were selected as they are both high performing unsupervised clustering algorithms, an in-711 
depth comparison has previously been described by Weber and Robinson, 2016 [43]). 3) Data is 712 
visualized, and metadata, clusters and cell type labels are used to explore differences between 713 
samples/conditions. *A detailed step-by-step guide for using the ImmunoCluster tool is available: 714 
https://github.com/kordastilab/ImmunoCluster.  715 

Figure 8 – Figure supplement 1. Gating strategy for mass cytometry data in FlowJo. Calibration beads, 716 
doublets, dead cells, non-CD45+ cells, erythrocytes (CD235αβ/CD61+), and neutrophils (CD16+) were 717 
removed. 718 

Figure 8 – Figure supplement 2. IMC data pre-processing work flow. 1) The imctools Python package 719 
[35] was used to convert raw IMC files (.mcd, .txt) into intermediatory .tiff files which were used as input 720 
files for the following tools. 2) .tiff files were imported into CellProfiler for regions of interest (ROI) 721 
selection for classifier training. 3) IIastik was used for pixel classification, pixels were identified as 722 
nuclear, cytoplasmic, or background and these class probabilities were exported as RGB (red, green, 723 

https://github.com/kordastilab/ImmunoCluster


blue) .tiff images. 4) The iIastik RGB probablilities and the original images were imported into CellProfiler 724 
for single-cell segmentation, mask generation and marker quantification. 725 

Figure 8 – Figure supplement 3. Metadata files created in the experimental design stage. A) Sample 726 
metadata file containing all metadata the researcher would like to explore throughout the data analysis 727 
stage. B) Panel metadata files allows the researcher to re-name parameters and select the markers 728 
which will be used for the dimensionality reduction of the data. 729 

Figure 8 – Figure supplement 4. Dimensionality reduction. Examples taken from the Github page 730 
(https://github.com/kordastilab/ImmunoCluster) highlighting the three different types of dimensionality 731 
reduction algorithms available for the users. MDS is part of the initial data exploration step followed by 732 
UMAP and tSNE dimensionality reduction in Stage 2 of the ImmunoCluster framework.  733 

Figure 8 – Figure supplement 5. Selecting K clusters for visualization and downstream anlysis. The 734 
ImmunoCluster tool saves all K clusters selected for the FlowSOM algorithm (e.g. 1-60 K clusters), 735 
therefore reserachers can view different numbers of K clusters for downstream analysis by changing the 736 
Flowsom_cc_K number (highlighted above). 737 

Figure 8 – Figure supplement 6. Elbow plot criterion to help determine optimal number of clusters for 738 
K-means clustering (FlowSOM). The figure shows K clusters 2-60, for each value of K the sum of squared 739 
errors (SSE) were plotted, the aim was to detect the “elbow”, which is the point where the variance 740 
stops decreasing sharply and the line flattens on the plot, representing the optimal value of K. 741 
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Appendix 1

Staining protocol for a human tissue section taken from a patient with head and neck 
squamous cell carcinoma (HNSCC)

Equipment Consumables Reagents Reagent 
Initial 

Concentration

Reagent Final
Concentration

Humidified slide 
chamber (Sigma 
Aldrich, #H6644-1EA)*

Sterile 3ml pastettes 
(Alpha Labs, #LW112)

DPBS, Ca and Mg free 
(Gibco, #14190-094)

Dedicated glassware, 
coplin jars (Fisher, 
#10264732) **

Superfrost PlusTM 
slides (Fisher, #ES-
325)

Tween-20 (Sigma 
Aldrich, #P7949-
100ml)*

100% 0.1%

Orbital shaker Kimberly-Clark™  
Precision Wipers 
(Fisher, #10623111)*

Antigen retrieval 
solution pH 9.0
(R&D Systems, 
#CTS013)

1:10 
in milli-Q water

Water bath 0.2 syringe filter 
(TripleRed, 
#FPE204030)

SuperblockTM 
(Thermo Fisher, 
#37515)**

Fridge 50ml syringes (Fisher, 
#10636531)

Iridium (Fluidigm, 
#201192B)***

500 µM 0.5 µM in DPBS

Milli-Q water 
purification system 
(18.2MΩ.cm)

Filter pipette tips Metal tagged 
antibodies (Fluidigm)

Require 
optimization 

for your tissue 
type

Hard slide box for 
storage in -80°C (VWR  
#631-1504)

PAP pen (Abcam, 
#ab2601)

FcR block (Trustain, 
Biolegend, # 422302)

100% 5%

Pipettes Xylene (Acros, 
#180862500)

Plastic tweezers, to 
handle slides 
(Farlamedical, 
#400200)

Ethanol (Sigma 
Aldrich, #32221-2.5L)

Plastic coplin (Thermo 
Fisher,#E9611) 
 ****

BSA (Sigma Aldrich, 
#A9647)

20%
To prepare on 
the same day 

freshly

10%

Kiovin Hu IgG
Provide by Hospital’s 
pharmacy 

10%
100 mg/ml 5 mg/ml

* Alternatively, use a 
pipette tip box with 
moist towel at the 
bottom and piece of 
parafilm on the tray 
(this prevents 
evaporation and stops 
condensation 
gathering at the back 
of the slide, which can 
pool around edges and  

*Normal laboratory 
hand towels and blue 
roll are fine to tip 
excess buffer off slide 
surface or to place in 
the bottom of the 
humidified slide 
chamber. However,  
they should not be 
used to wipe the back 
of the slides or draw 

*Permeabilization 
can also be 
conducted with Triton  
X100 or saponin

** Alternative 
blocking solutions
include: BSA, human 
albumin, human 
immunoglobulin 
(KIOVIG from 



dilute antibodies).
**Rinse in water, do 
not clean with 
detergent or in 
laboratory dishwasher 
(source of barium 
contamination)
**** Plasticware is 
required for 96°C 
water bath, used when  
dedicated histological 
autoclave or 
decloaking chamber is 
not available; you can 
also use a 50ml 
centrifuge tube, 
loosely capped (Falcon 
or Corning)

off excess buffer from 
front – as can transfer  
lint to the slides.

Pharmacy), serum 
same species as 
antibodies (mouse 
serum, Sigma Aldrich,  
# M5905-10ML).

*** DNA stain use 
alternative histone 3 
antibody #3176023D

STAINING PROTOCOL DAY 1: SECTION CUTTING

- Cut a 5 µm section from the block at, and place in an incubation oven overnight (o/n) at 
37°C. 

- Cut a 3 µm section for Hematoxylin and Eosin (H&E) staining.

STAINING PROTOCOL DAY 2:

1. PREPARATION

- Prepare xylene and ethanol at 50:50 ratio ~50ml of final volume.

- Prepare the following ethanol dilutions, with milli-Q water:  96%, 90%, 80% and 70% (~50ml 
of final volume for each).

- Dilute the 10X basic antigen retrieval buffer in milli-Q water in 50ml falcon tube (leaving the 
cap loose) and heat to 96°C in a water bath.

- *BSA (Sigma Aldrich, #A9647): prepare a 20% solution fresh using, 0.4g BSA in a plastic tube. 
Add 1ml of superblock solution and incubate in the water bath for 1h. Once it is fully 
dissolved, top up to 2ml (final volume).

- Prepare the wash buffer using Dulbecco’s phosphate buffered saline (DPBS) 
(calcium/magnesium  free) and 0.1% Tween-20 (500µl of Tween-20 (Sigma Aldrich, #P7949-
100ml) in the 500ml DPBS bottle). Filter the wash buffer every time you use it with a 0.2µm 
filter. Store at room temperature.

1. Notes for wash steps

Always conduct washes in ~50ml of buffer, in coplin jars on an orbital mixer. 

Never wash in laboratory dishwasher, or with detergent, as this can represent a source of barium 
contamination. Also, do not use metal slide holders or forceps.

2. STAINING

- Heat the 1X antigen retrieval solution (1:10 dilute in milli-Q water) to 96°C in a water bath.



- Heat a coplin jar and a bottle of wah buffer (0.1% Tween-20 in DPBS) to 37°C in a water bath. 

- Prepare the humidified slide chamber (box with a damp tissue in the bottom and lid or piece 
of parafilm to cover).

- Prepare blocking and antibody incubation buffer fresh: 10% BSA, 0.1% Tween-20, 1/20 
dilution of FcR block (Trustain, Biolegend, # 422302) and 1/20 dilution of KIOVIG (Kiovin Hu 
IgG) in SuperblockTM (Thermo Fisher, #37515) solution. Use SuperblockTM to top up to final 
volume. Avoid mixing, filtering or centrifugation of the Superblock buffer prior to pipetting, 
let solution settle at 4°C and pipette from top of the solution to avoid any aggregate material 
(that will have sunk to the bottom).

1. CLEAR WAX FROM SLIDES (You sequentially remove the  
wax, with each wash in fresh xylene)

- Incubate slide 1 h at 60⁰C.

- Agitate slides (up and down motion) by hand, 3 washes at 
RT:

- Xylene 100% for 5 min.             

- Xylene 100% for 5 min.     

- 50:50 xylene:ethanol mix for 10 min.     

1. REHYDRATE TISSUE (outside hood, use plastic tweezers)

- Remove slides from xylene:ethanol mix in the hood, transfer to 100% ethanol for  5 min and 
remove from cabinet.

- Transfer slides to 90% ethanol – mix on orbital shaker for 5 min.                                

- Transfer slides to 80% ethanol – mix on orbital shaker for 5 min.                                

- Transfer slides to 70% ethanol – mix on orbital shaker for 5 min.                               

- Remove slides and transfer to DPBS - mix orbital shaker for 10 min.   

- Slide can stay in DPBS until the antigen retrieval solution is ready.

1. RETRIEVE ANTIGEN

Fluidigm have validated all their FFPE antibodies using 30 min antigen retrieval, with basic buffer, in 
a 96°C water bath.

- Heat 1X antigen retrieval solution to 96°C in the water bath (in plastic coplin jar or closed 
falcon 50ml centrifuge tube).

- When the slides are added the temperature may drop - do not start the timer until the 
probe indicates the temperature in the tube has returned to 96°C.

- Incubate slides in 1X antigen retrieval solution to 96°C in the water bath (in closed 50ml 
falcon centrifuge tube) and incubate for 30 min.

- Cool down closed 50ml falcon tube to around RT under cold running water.

- Transfer slides to DPBS and wash on orbital shaker for 5 min.                             

- Dry slides with tissue wipers (Thermo Fisher) and leave to dry for 10 sec. 

- Draw a wax ring around the tissue. 

-Conduct xylene washes in a safety 
cabinet. 

-Use separate coplin jars. 

-The xylene should be changed regularly, 
especially the first coplin jar in the 
sequence, which will have the most wax 
dissolved in it (readily become cloudy and 
less efficient).



- Wash twice with filtered wash buffer (0.1% Tween-20 in DPBS on the orbital shaker for 8 
min. Filter it every time you use the wash buffer with 0.2µm filter and store at room 
temperature.  

- Leave slides in the wash buffer until the block solution is ready.

1. BLOCK

- While sections are in permeabilization buffer (0.1% Tween-20), prepare sufficient blocking 
buffer to cover the tissue, within the wax ring.

- For a very small diameter wax ring 50µl will suffice, however, a large piece of tissue (>1cm 
diameter) will require ~250µl.

Blocking buffer preparation

Solution Dilute in Initial 
Concentration

Final 

Concentration

Dilution  

Factor 

Per 
100 
µL

Per 

300 
µL

Tween-20 (Sigma 
Aldrich, #P7949-
100ml)*

Superblock 
Solution

Prepared first 
at 10%

Then at 1%

0.1% 10 10 30

Kiovin Hu IgG Superblock 
Solution

10% 

100 mg/ml

5 mg/ml 20 5 15

FcR block (Trustain, 
Biolegend, # 422302)

Superblock 
Solution

100% 5% (1/20) 20 5 15

BSA (Sigma Aldrich, 
#A9647)

Superblock 
Solution

20%

(10 g in 100 
ml=10%)

10% 2 50 150

SuperblockTM 
(Thermo Fisher, 
#37515)**

To top up 

Until your final volume

30 90

When you add the buffer to the inside of the wax circle, it should be contained and fully cover the 
tissue.

- Remove slides from DPBS and remove excess buffer by tipping slide.

- Use a lint-free tissue to dry the back of the slide thoroughly and to gently draw excess buffer 
away from the front, without touching the tissue or wax ring.

- Transfer to humidified box, cover tissue with blocking buffer.



- Incubate at room temperature for 90 min.

1. PREPARE ANTIBODY MIX AND INCUBATE

Antibody mix

Cat# Supplier Tag Target/

Solution

Dil 
Factor

(1:X)

Initial 
Conc.

Final 
Conc.

3170019D Fluidigm 170 CD3 
(Polyclonal, 
C-Terminal)

400

3156033D Fluidigm 156 CD4 100

3152016D Fluidigm 152 CD45 1000

3162035D Fluidigm 162 CD8-alpha 800

3161029D Fluidigm 161 CD20 250

MAB1561 R&D 
Systems

150 PD-L1 50

3158029D Fluidigm 158 E-
CADHERIN

1000

3159035D Fluidigm 159 CD68 400

3165039D Fluidigm 165 PD-1 50

3168022D Fluidigm 168 Ki-67 400

#A9647 Sigma 
Aldrich

BSA

Prepare 
fresh

2 20% 10%

# 422302 Biolegend FCR 20 100% 5%

Provide by 
Hospital’s 
pharmacy

IgG Hu 
Kiovig

20 100 mg/ml 5 mg/ml

 #P7949 Sigma 
Aldrich

Tween-20 10 1% 0.1%

#37515** Thermo 
Fisher

Superblock
TM

To top up

to the required volume

You will require the same volume of antibody mix used for blocking solution and tip off excess 
blocking buffer onto tissue paper.



Use a lint-free tissue to dry the back of the slide thoroughly and to gently draw excess buffer away 
from the front, without touching the tissue or wax ring.

- Incubate slide o/n with antibody mix at 4⁰C in humidified chamber.

STAINING PROTOCOL DAY 3:

1. WASH IN PERMEABLIZATION BUFFER

- Tip off the antibody mix onto tissue paper.

- Flush the slide surface gently but thoroughly with a pastette and permeabilization buffer 
(DPBS with added 0.1% Tween-20) at RT.

- Wash in the same RT buffer approximately 50ml in coplin jar on the mixer for 8 min.

- Repeat wash step for another 8 min.

1. WASH IN DPBS

- In the same jar, decant 0.1% Tween-20 DPBS wash buffer and add further wash buffer at RT 
and then place on the mixer for 8 min.            

- Repeat wash step for another 8 min.

1. DNA STAIN

For initial testing, prepare iridium (Fluidigm) in DPBS at a final concentration of 0.5 µM (may require 
some optimization for your tissue type).

Dilute 125µM iridium stock (Fluidigm 201192A) 1/250 with DPBS.

- Tip off excess DPBS onto tissue paper.

- Use a lint-free tissue to dry the back of the slide thoroughly and to gently draw excess buffer 
away from the front, without touching the tissue or wax ring.

- Place slide in humidified chamber and load iridium solution into the wax ring so that it 
covers the tissue. 

- Incubate at room temperature for 30 min.                

- Flush the slide surface thoroughly with RT DPBS gently using a pastette.

- Wash in RT DPBS on the mixer for 5 min.                

- Wash in milli-Q water approximately 50ml in a clean coplin jar on the mixer for 5 min.              

- Air dry.

Slides can be stored for several months at room temperature in a cool, dry, dust-free storage 
container. 



Appendix 2 1 

Protocol for sectioning and staining of diffuse large B-cell lymphoma lymph node section 2 
  3 

1. A 5m tissue section was deparaffinized with xylene and sequentially rehydrated in graded 4 
ethanol. Heat-induced antigen retrieval was performed in an automated pressure cooker 5 
(Menapath Antigen Access Unit, Menarini) at 125oC for 2 min in Antigen Retrieval Reagent-6 
Basic (R&D Systems).   7 

2. The tissue was then permeabilized with Dulbecco’s PBS (DPBS), 0.1% Tween-20 for 15 mins 8 
and blocked with Superblock (Thermo Fisher Scientific), 0.1% Tween-20, Fc Receptor 9 
Blocking solution (1:20;Biolegend;blocking buffer) for 2 h at RT.  10 

3. Antibodies were diluted together as according to  Supplementary file 3 in blocking buffer 11 
and applied to the tissue overnight at 4 oC.  12 

4. After washing, the slide was incubated with the DNA intercalator (Cell-ID Intercalator-Ir, 13 
Fluidigm) for 30 min at RT.  14 

5. The slide was then briefly washed with milli-Q water and air dried.  15 
6. Acquisition of 1 mm2 tissue region was carried out using the Hyperion imaging system 16 

(Fluidigm) at 200 Hz, with resolution of 1 m/pixel.  17 
 18 

 19 
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