
SCORE-BASED PARAMETER ESTIMATION FOR A CLASS OF
CONTINUOUS-TIME STATE SPACE MODELS

ALEXANDROS BESKOS∗, DAN CRISAN† , AJAY JASRA‡ , NIKOLAS KANTAS† , AND HAMZA
RUZAYQAT‡

Abstract. We consider the problem of parameter estimation for a class of continuous-time state space models
(SSMs). In particular, we explore the case of a partially observed diffusion, with data also arriving according to
a diffusion process. Based upon a standard identity of the score function, we consider two particle filter based
methodologies to estimate the score function. Both methods rely on an online estimation algorithm for the score
function, as described, e.g., in [13], of O(N2) cost, with N ∈ N the number of particles. The first approach employs
a simple Euler discretization and standard particle smoothers and is of cost O(N2 + N∆−1

l) per unit time, where
∆l = 2−l, l ∈ N0, is the time-discretization step. The second approach is new and based upon a novel diffusion
bridge construction. It yields a new backward type Feynman-Kac formula in continuous-time for the score function
and is presented along with a particle method for its approximation. Considering a time-discretization, the cost is
O(N2∆−1

l) per unit time. To improve computational costs, we then consider multilevel methodologies for the score
function. We illustrate our parameter estimation method via stochastic gradient approaches in several numerical
examples.

Key words. Score Function, Parameter Estimation, Particle Filter, Diffusion Bridges.

AMS subject classifications. 65C05, 65C35, 60G35, 60J60, 60J65, 60H10, 60H35, 91G60

1. Introduction. We consider the problem of parameter estimation for continuous-time SSMs.
These are models comprising stochastic differential equations (SDEs) describing a hidden dynamic
state and their observations. Such models are ubiquitous in a large number of practical applica-
tions in science, engineering, finance, and economics, see [11] for an overview. Inference in SSMs,
also known as hidden Markov models, hinges upon computing conditional probability distribu-
tions of the dynamic hidden state given the acquired observations and unknown static parameters.
This is referred to as the stochastic filtering problem, which is in general intractable, but reliable
numerical approximations are routinely available [1, 11]. The problem of inferring the unknown
parameters is more challenging. In this paper we focus on maximum likelihood inference and gra-
dient methods that are performed in an online manner. The offline or iterative case given a fixed
batch of observations can also be treated using our proposed methods. The approach considered
in this article is to make use of the gradient of the log-likelihood, commonly referred to as the
score function, within a stochastic gradient algorithm (see e.g. [13, 14]). Intrinsically, there are sev-
eral challenges arising with such an approach. Firstly, when one adopts a continuous-time model
and assumes access to arbitrarily high frequency observations, one does not observe in practice
truly in continuous-time, therefore some sort of time-discretization is required. Secondly, in both
discrete-time and continuous-time formulations, there are very few cases when the score function is
analytically available. Both these issues imply that numerical approximations are required.

We consider two different approaches for the numerical approximation of the score function.
The first is to simply time-discretize a representation of the score function and then apply discrete-
time numerical approximation schemes [13, 14, 23]. The second, is to develop a numerical approx-

∗Department of Statistical Science, University College London, London, WC1E 6BT, UK. (a.beskos@ucl.ac.uk).
†Department of Mathematics, Imperial College London, London, SW7 2AZ, UK. (d.crisan@imperial.ac.uk,

n.kantas@imperial.ac.uk).
‡Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science

and Technology, Thuwal, 23955, KSA. (ajay.jasra@kaust.edu.sa, hamza.ruzayqat@kaust.edu.sa).

1

mailto:a.beskos@ucl.ac.uk
mailto:d.crisan@imperial.ac.uk
mailto:n.kantas@imperial.ac.uk
mailto:ajay.jasra@kaust.edu.sa
mailto:hamza.ruzayqat@kaust.edu.sa

2 A. BESKOS, D. CRISAN, A. JASRA, N. KANTAS & H. RUZAYQAT

imation scheme directly on continuous-time path-space to estimate the score function and then
(necessarily) discretize the algorithm in time. The order of designing the estimation method and
time-discretization can be rather important. Often the second approach is preferable in terms of
both performance and robustness as the discretization mesh vanishes, see e.g. [25, 24]. We then
use the score estimate for implementing recursive maximum likelihood, where the parameters are
updated at unit time intervals ([21, 27]). The particular choice of time interval length is without
loss of generality, and allows the score to accumulate sufficient information from the observations
before updating the parameters.

In the first approach, we consider a well-known expression for the score function, for instance as
given in [8]. Given this formula, one can produce an Euler discretized version of the score and work
in discrete-time but with high frequency. The score is an expectation of an additive functional of
the hidden state path conditioned on the available observations, which is commonly referred to as
the smoothing distribution. In this context, many well-known particle smoothing schemes can now
be adopted, such as the ones described in [13, 23]. These latter approaches are simulation-based
schemes whose convergence is based upon the number of samples N ∈ N. We prove some technical
results for the discretized problem, which together with the work in [13] allow us conjecture that
to obtain a mean square error (MSE) of O(ε2), for given ε > 0, we require a computational cost
of O(ε−4) per unit time. The latter derives from an algorithmic cost of O(N2 + N∆−1

l) per unit
time, where ∆l = 2−l is the time-discretization. As we explain later in the article, this corresponds
to a best case scenario, due to the intrinsic nature of the algorithm. In particular, we start with
a continuous-time formula and time-discretize it, but the deduced numerical algorithm can be
problematic in terms of computational complexity as l → ∞. Whilst in some scenarios one does
not observe any issues, examples can be found where the variance of the method can explode as
l grows ([36]), thus putting into question the validity of the conjecture on the cost to achieve an
MSE of O(ε2).

This motivates the introduction of our second approach, where we build upon a change of
measure technique proposed in [29]. This latter approach has so far been used in very different
contexts than the present paper, namely related to discretely observed diffusions for Bayesian
inference and Markov chain Monte Carlo (MCMC) [34, 35] or smoothing for potentially non-linear
observation functions [22]. Our approach is a data augmentation scheme, whereby, at unit time
intervals, the end points for the hidden state are sampled and the path is connected using diffusion
bridges. Then, starting again from the formula for the score function in [8], we will use this change
of measure associated to a diffusion bridge and its driving Brownian noise; see also [36] where
a related approach is used for a different class of problems. Based upon this change of measure
we develop a new backward type Feynman-Kac formula in continuous-time. This new formula
facilitates an adaptation of the method in [13] in true continuous-time, albeit one cannot apply it
in practice. We time-discretize the algorithm and conjecture that to obtain a MSE of O(ε2), for
given ε > 0, we need a cost of O(ε−6) per unit time, which derives from an algorithmic cost of
O(N2∆−1

l) per unit time. We note however, that this computational complexity will not explode
with increasing l as may be the case in the first approach. To improve the cost required for a given
MSE, we develop a novel multilevel Monte Carlo extension that can, in some cases, achieve a MSE
of O(ε2) at a cost per unit time of O(ε−4). We remark that although our MSE-cost statements
are based upon conjectures, they are verified numerically. Direct proofs of these require substantial
technical results that will be the topic of future work.

1.1. Contributions and Organization. We conclude this introduction by emphasizing that
our contributions are aimed to deal with both continuous-time observations and hidden states.

PARAMETER ESTIMATION FOR A CLASS OF CONTINUOUS-TIME SSMS 3

As mentioned earlier this poses very particular challenges relative to earlier works that deal with
filtering and smoothing when discrete-time observations/models are used as in [7, 15, 16, 22, 35, 28].
None of these works look at continuous-time observations. Similarly online likelihood estimation of
the parameters using the score function is considered in [15, 16] only for the case of discrete-time
observations of hidden diffusions.

The contributions of this paper can be summarized as follows:
• We investigate the efficiency and accuracy of two fundamentally different numerical ap-

proximations of the score function on its own and when used for the purpose of recursive
maximum likelihood. Both methods rely on fairly standard tools such as changes of mea-
sure, particle smoothing and Euler time-discretization.

• We provide a detailed discussion on the computational complexity of each method. We
illustrate the performance and computational cost for several models in numerical examples
that consider estimation of the score function and parameter estimation.

• The second approach is a novel method that operates directly on the path-space. The
approach improves performance and is robust to arbitrarily small time-discretization at
the expense of additional computational cost. The latter is reduced using a new Multilevel
Particle Filter; see [17, 20] for some existing approaches.

This article is structured as follows. In Section 2 the basic problem is formulated in continuous-
time. In Section 3 we consider our first method for online score estimation and explain the various
features associated to it. In Section 4 our second method for online score estimation is developed.
In Section 5 our numerical results are presented.

1.2. Notation. Let (X,X) be a measurable space. We write Bb(X) for the set of bounded
measurable functions, ϕ : X → Rd, d ∈ N, and C(X) for the continuous ones. Let ϕ : Rd → R;
Lip‖·‖2(Rd) denotes the collection of real-valued functions that are Lipschitz w.r.t. the Euclidean
distance ‖ · ‖2 . That is, ϕ ∈ Lip‖·‖2(Rd) if there exists a C < +∞ such that for any (x, y) ∈ R2d,

|ϕ(x)− ϕ(y)| ≤ C‖x− y‖2.

Ns(µ,Σ) denotes an s-dimensional Gaussian law of mean µ and covariance Σ; if s = 1 we omit
subscript s. For a vector/matrix X, X∗ denotes the transpose of X. For A ∈ X , δA(du) denotes
the Dirac measure of A, and if A = {x} with x ∈ X, we write δx(du). For a vector-valued function
in d-dimensions ϕ(x) (resp. d-dimensional vector x) we write the ith-component, 1 ≤ i ≤ d, as
ϕ(i)(x) (resp. xi). For a d × q matrix x we write the (i, j)th-entry as x(ij). N = {1, 2, . . . } and
N0 = N ∪ {0}.

2. Problem Formulation.

2.1. Preliminaries. We consider the parameter space θ ∈ Θ ⊂ Rdθ , with Θ being compact,
dθ ∈ N. The stochastic processes {Yt}t≥0, {Xt}t≥0 of interest are defined upon the probability triple
(Ω,F ,Pθ), with Yt ∈ Rdy , Xt ∈ Rdx , dy, dx ∈ N, initial conditions X0 = x∗ ∈ Rdx , Y0 = y∗ ∈ Rdy ,
and are determined as the solution of the system of SDEs:

dYt = hθ(Xt)dt+ dBt;(2.1)
dXt = bθ(Xt)dt+ σ(Xt)dWt.(2.2)

Here, for each θ ∈ Θ, hθ : Rdx → Rdy , bθ : Rdx → Rdx , σ : Rdx → Rdx×dx , with σ being of
full rank, and {Bt}t≥0, {Wt}t≥0 are independent standard Brownian motions of dimension dy, dx
respectively.

4 A. BESKOS, D. CRISAN, A. JASRA, N. KANTAS & H. RUZAYQAT

To minimize technical difficulties, the following assumptions are made throughout the paper:
(D1) (i) σ is continuous, bounded; a(x) := σ(x)σ(x)∗ is uniformly elliptic;

(ii) for each θ, hθ and bθ are bounded, measurable; h(i)
θ ∈ Lip‖·‖2(Rdx), 1 ≤ i ≤ dy;

(iii) the gradients ∇θhθ : Rdx → Rdy×dθ and ∇θbθ : Rdx → Rdx×dθ exist, and are continu-
ous, bounded, measurable; ∇θh(ij)

θ ∈ Lip‖·‖2(Rdx), 1 ≤ i ≤ dy, 1 ≤ j ≤ dθ;
(iv) let φθ(x) = (∇θbθ(x))∗ a(x)−1σ(x); for any θ, φ(ij)

θ ∈ Lip‖·‖2(Rdx), 1 ≤ i ≤ dθ,
1 ≤ j ≤ dx.

We introduce the probability measure Pθ, defined via the Radon-Nikodym derivative:

(2.3) Zt,θ :=
dPθ
dPθ

∣∣∣
Ft

= exp
{∫ t

0

hθ(Xs)
∗dYs − 1

2

∫ t

0

hθ(Xs)
∗hθ(Xs)ds

}
,

with Ft = σ({Xs, Ys}0≤s≤t). Henceforth, Eθ denotes expectation w.r.t. Pθ, so that under Pθ, the
process {Xt}t≥0 follows the dynamics in (2.2), whereas {Yt}t≥0 is a Brownian motion independent
of {Xt}t≥0. We define, for ϕ ∈ Bb(Rdx):

γt,θ(ϕ) := Eθ
[
ϕ(Xt)Zt,θ

∣∣Yt],
where Yt is the filtration generated by the process {Ys}0≤s≤t. Our objective is to produce estimates
of the gradient of the score function ∇θ log(γT,θ(1)).

Remark 2.1. To connect the changes of measures with standard likelihood derivations, notice
that – via Girsanov’s theorem – Zt,θ is the density (w.r.t. to a Wiener measure) of the distribution of
{Ys}0≤s≤t conditionally on {Xs}0≤s≤t. Then, γT,θ(1) integrates out {Xt}0≤t≤T , thus corresponds
to the marginal density – i.e., the likelihood – of the observations {Yt}0≤t≤T .

In our setting, the score function writes as (see e.g. [8]):

(2.4) ∇θ log(γT,θ(1)) =
Eθ [λT,θZT,θ | YT]

Eθ [ZT,θ | YT]
,

where we have defined:

λT,θ :=

∫ T

0

(∇θbθ(Xt))
∗a(Xt)

−1σ(Xt)dWt

+

∫ T

0

(∇θhθ(Xt))
∗dYt −

∫ T

0

(∇θhθ(Xt))
∗hθ(Xt)dt.

For completeness, a derivation of (2.4) can be found in [5, Appendix] and the supplementary material
of this article. We remark that one can derive a formula for the score function when σ depends
upon θ, which is given in Section 4. We will assume throughout that T ∈ N. Note also that an
application of Bayes’ rule gives that, almost surely:

(2.5)
Eθ [λT,θZT,θ | YT]

Eθ [ZT,θ | YT]
= Eθ [λT,θ | YT],

where Eθ denotes expectation w.r.t. Pθ.

PARAMETER ESTIMATION FOR A CLASS OF CONTINUOUS-TIME SSMS 5

2.2. Parameter Estimation. In the offline case suppose one has obtained data {Yt}0≤t≤T .
Then it is possible to perform standard gradient descent using (2.5) and updating θ iteratively:

θm+1 = θm + αm Eθm [λT,θm | YT],(2.6)

where αm ∈ R+, m ∈ N0, are decreasing step-sizes. Instead here we will mainly focus on an online
gradient estimation procedure. To obtain this one can aim to maximise the following limiting
average log-likelihood,

L(θ) = lim
t→∞

1

t

∫ t

0

log γs,θ(1)ds.

Let the filter be denoted as πt,θ(ϕ) = Eθ[ϕ(Xt)|Ys] and using standard arguments (e.g. Lemma
3.29 p. 67 [1]) one can re-write γt,θ(1) as

log γt,θ(1) =

∫ t

0

πs,θ(h)T dYs −
1

2

∫ t

0

πs,θ(h)Tπs,θ(h)ds.

Under appropriate stability and regularity conditions for both Yt and πt,θ (see [31] for more details),
then both L(θ) and ∇θL(θ) are ergodic averages. This means one can implement stochastic gradient
ascent using either ∇θ log γt,θ(1) or ∇θ log γtn,θ(1)−∇θ log γtn−1,θ(1) for any tn−1 < tn as estimates
of L(θ). Given an initial θ0 ∈ Θ, as we obtain the observation path continuously in time, we will
update θ at times T ∈ N using the following recursion:

θT = θT−1 + αT

(
∇θ log(γT,θT−1

(1))−∇θ log(γT−1,θT−1
(1))

)
(2.7)

where, for T ∈ N, αT ∈ R+ is a collection of step-sizes that satisfy
∑
T∈N αT =∞,

∑
T∈N α

2
T <∞ to

ensure convergence of the estimation as T →∞; see [3, 21] for details. This scheme can provide an
online estimate for the parameter vector as data arrive. Steps are performed at O(1) times to ensure
that enough information has accumulated to update the parameter. The adoption of unit times
is made only for notational convenience. As both recursions (2.6) and (2.7) cannot be computed
exactly, we focus upon methodologies that approximate the score function ∇θ log(γT,θ(1)).

3. Direct Feynman-Kac Formulation.

3.1. Discretized Model. In practice, we will have to work with a discretization of the model
in (2.1)-(2.2). We assume access to path of the data {Yt}0≤t≤T which is available up-to an (almost)
arbitrarily fine level of time discretization. This would be a very finely discretized path, as accessing
the actual continuous path of observation is not possible; this point is discussed later on. One could
focus on a time-discretization of either side of (2.5), however, as is conventional in the literature
(e.g. [1, 20]) we focus on the left hand side.

Let l ∈ N0 and consider an Euler-Maruyama time-discretization with step-size ∆l = 2−l. That
is, for k ∈ {1, 2, . . . , T/∆l}:

X̃k∆l
= X̃(k−1)∆l

+ bθ(X̃(k−1)∆l
)∆l + σ(X̃(k−1)∆l

)(Wk∆l
−W(k−1)∆l

), X̃0 = x∗.(3.1)

Note that the Brownian motion in (3.1) is the same as in (2.2) under both Pθ and Pθ. We set:

λlT,θ(x0,x∆l
, . . . , xT) :=

T/∆l−1∑
k=0

{
(∇θbθ(xk∆l

))∗a(xk∆l
)−1σ(xk∆l

)(W(k+1)∆l
−Wk∆l

)

+ (∇θhθ(xk∆l
))∗(Y(k+1)∆l

− Yk∆l
)− (∇θhθ(xk∆l

))∗hθ(xk∆l
)∆l

}
.(3.2)

6 A. BESKOS, D. CRISAN, A. JASRA, N. KANTAS & H. RUZAYQAT

We remark that λlT,θ is a function also of the observations, but this dependence is suppressed from
the notation. For k ∈ {0, 1, . . . , T/∆l − 1}, we define:

glk,θ(xk∆l
) := exp

{
hθ(xk∆l

)∗(y(k+1)∆l
− yk∆l

)− ∆l

2 hθ(xk∆l
)∗hθ(xk∆l

)
}
.

Note that:

ZlT,θ(x0, x∆l
, . . . , xT) :=

T/∆l−1∏
k=0

glk,θ(xk∆l
)

= exp
{ T/∆l−1∑

k=0

[
hθ(xk∆l

)∗(y(k+1)∆l
− yk∆l

)− ∆l

2 hθ(xk∆l
)∗hθ(xk∆l

)
]}

is a time-discretization of ZT,θ. We thus obtain the discretized approximation of the score function
∇θ log(γT,θ(1)):

∇θ log(γlT,θ(1)) :=
Eθ [λlT,θ(X̃0, X̃∆l

, . . . , X̃T)ZlT,θ(X̃0, X̃∆l
, . . . , X̃T) | YT]

Eθ [ZlT,θ(X̃0, X̃∆l
, . . . , X̃T) | YT]

.(3.3)

We have the following result which establishes the convergence of our Euler approximation.
Below ‖ · ‖2 is the L2−norm for vectors. The proof is given in the supplementary material of the
article.

Theorem 3.1. Assume (D1). Then for any (r, T) ∈ [1,∞) × N there exists a C < +∞ such
that for any l ∈ N0

Eθ
[∥∥∇θ log(γT,θ(1))−∇θ log(γlT,θ(1))

∥∥r
2

]1/r
≤ C∆

1/2
l .

The result is fairly standard, but we note it is not a simple application of results on SDEs in filtering
(e.g. [26, 32]) and this is reflected in the proof. The rate of convergence of the approximation will
be very relevant for some of our subsequent discussions.

3.2. Backward Feynman-Kac Model and Particle Smoothing. From herein the X̃ no-
tation is dropped for simplicity. Consider the time interval [k, k + 1] and the k-th update of (2.7).
We define the discrete-time approximation (at level l) as:

uk,l = (xk+∆l
, . . . , xk+1) ∈ El := (Rdx)∆−1

l , k ∈ N0.

Recall (2.3). A discrete-time approximation of pθ({Yt}k≤t≤k+1|{Xt}0≤t≤T) is:

Glk,θ(uk−1,l, uk,l) :=

∆−1
l −1∏
p=0

glk+p,θ(xk+p∆l
),

where we set u−1,l = x∗, for each l ∈ N0. We denote by ml
θ the Euler transition density induced by

time-discretisation (3.1), and then write the initial distribution and Markov transition kernel for
the discrete-time process with k ∈ N as follows:

ηl0,θ(du0,l) =

∆−1
l∏

p=1

ml
θ(x(p−1)∆l

, xp∆l
)dxp∆l

;

M l
θ(uk−1,l, duk,l) =

∆−1
l∏

p=1

ml
θ(xk+(p−1)∆l

, xk+p∆l
)dxk+p∆l

.

PARAMETER ESTIMATION FOR A CLASS OF CONTINUOUS-TIME SSMS 7

Remark 3.1. The definition of Glk,θ(uk−1,l, uk,l),M l
θ(uk−1,l, duk,l) implies: i) Glk,θ(uk−1,l, uk,l)

involves uk−1,l only via its very last element, xk; ii) the dynamics of uk,l conditionally on uk−1,l

depend only on the very last element, xk, of uk−1,l.

We can now state the discrete-time filtering distribution for k ∈ N0:

(3.4) πlk,θ
(
d(u0,l, . . . , uk,l)

)
:=

(∏k
p=0G

l
p,θ(up−1,l, up,l)

)
ηl0,θ(du0,l)

∏k
p=1M

l
θ(up−1,l, dup,l)∫

Ek+1
l

(∏k
p=0G

l
p,θ(up−1,l, up,l)

)
ηl0,θ(du0,l)

∏k
p=1M

l
θ(up−1,l, dup,l)

.

That is, πlk,θ
(
d(u0,l, . . . , uk,l)

)
is a discrete-time approximation of the filtering distribution:

πk,θ
(
d({Xt}0≤t≤k)

)
:= Pθ(d{Xt}0≤t≤k|{Yt}0≤t≤k).

Expression (3.4) corresponds to a standard Feynman-Kac model (see e.g. [12]), thus one can ap-
proximate the involved filtering distributions via the corresponding Monte Carlo methodology.

We develop a Monte Carlo method for the approximation of the discretised score function in
(3.3). This is accomplished by presenting a backward formula for (3.3). We define for any p ∈ N0:

f lθ(xp∆l
, x(p+1)∆l

) :=(∇θbθ(xp∆l
))∗a(xp∆l

)−1σ(xp∆l
)(W(p+1)∆l

−Wp∆l
)

+ (∇θhθ(xp∆l
))∗(Y(p+1)∆l

− Yp∆l
)− (∇θhθ(xp∆l

))∗hθ(xp∆l
)∆l.

and let:
Λlk,θ(uk−1,l, uk,l) :=

∆−1
l −1∑
p=0

f lθ(xk+p∆l
, xk+(p+1)∆l

);

F lT,θ(u0,l, . . . , uT−1,l) :=

T−1∑
k=0

Λlk,θ(uk−1,l, uk,l)
(
≡ λlT,θ(x0, x∆l

, . . . , xT)
)
,(3.5)

for λlT,θ(x0, x∆l
, . . . , xT) as defined in (3.2) and used in the score function approximation (3.3).

Thus:

(3.6) ∇θ log(γlT,θ(1)) =

∫
ETl

F lT,θ(u0,l, . . . , uT−1,l)QlT−1,θ

(
d(u0,l, . . . , uT−1,l)

)
,

where QlT−1,θ

(
d(u0,l, . . . , uT−1,l)

)
is a time-discretisation of the smoothing law:

QT−1,θ(d{Xt}0≤t≤T) := Pθ(d{Xt}0≤t≤T |{Yt}0≤t≤T).

Now, by the time-reversal formula for hidden Markov models (see e.g. [13, 14]) one has:

QlT−1,θ

(
d(u0,l, . . . , uT−1,l)

)
:= πlT−1,θ(duT−1,l)

T−1∏
k=1

Blk,θ,πlk−1,θ
(uk,l, duk−1,l),

for the backward Markov kernel:

Blk,θ,πlk−1,θ
(uk,l,duk−1,l) :=

πlk−1,θ(duk−1,l)G
l
k,θ(uk−1,l, uk,l)m

l
θ(uk−1,l, uk,l)

πlk−1,θ(G
l
k,θ(·, uk,l)ml

θ(·, uk,l))
,(3.7)

8 A. BESKOS, D. CRISAN, A. JASRA, N. KANTAS & H. RUZAYQAT

under the standard notation:

πlk−1,θ(G
l
k,θ(·, uk,l)ml

θ(·, uk,l)) =

∫
El

πlk−1,θ(duk−1,l)G
l
k,θ(uk−1,l, uk,l)m

l
θ(uk−1,l, uk,l).

Remark 3.2. The model structure gives important cancellations in (3.7), so that:

Blk,θ,πlk−1,θ
(uk,l, duk−1,l) ≡

πlk−1,θ(duk−1,l)g
l
k,θ(xk)ml

θ(xk, xk+∆l
)∫

El
πlk−1,θ(duk−1,l)glk,θ(xk)ml

θ(xk, xk+∆l
)
.

The objective now is to approximate the right hand side of (3.6) using particle approximations.
Our online particle approximation of the gradient of the log-likelihood in (3.6), for a given l ∈ N0

is presented in Algorithm 3.1. Our estimates are given in (3.8) and (3.10) in Algorithm 3.1. The
approach is the method introduced in [13, 14].

Algorithm 3.1 Online Score Function Estimation for a given l ∈ N0.
1. For i ∈ {1, . . . , N}, sample ui0,l i.i.d. from ηl0,θ(·). The estimate of ∇θ log(γl1,θ(1)) is:

(3.8) ̂∇θ log(γl1,θ(1)) :=

∑N
i=1G

l
0,θ(x∗, u

i
0,l)Λ

l
0,θ(x∗, u

i
0,l)∑N

i=1G
l
0,θ(x∗, u

i
0,l)

.

Set k = 1, and for i ∈ {1, . . . , N}, ǔi−1,l = x∗.
2. For i ∈ {1, . . . , N} sample ǔik−1,l from:

N∑
i=1

Glk−1,θ(ǔ
i
k−2,l, u

i
k−1,l)∑N

j=1G
l
k−1,θ(ǔ

j
k−2,l, u

j
k−1,l)

δ{uik−1,l}(·).

If k = 1, for i ∈ {1, . . . , N}, set F l,Nk−1,θ(ǔ
i
0,l) = Λl0,θ(x∗, ǔ

i
0,l).

3. For i ∈ {1, . . . , N}, sample uik,l from M l
θ(ǔ

i
k−1,l, ·). For i ∈ {1, . . . , N}, compute:

(3.9) F l,Nk,θ (uik,l) =

∑N
j=1 g

l
k,θ(x̌

j
k)ml

θ(x̌
j
k, x

i
k+∆l

){F l,Nk−1,θ(ǔ
j
k−1,l) + Λlk,θ(ǔ

j
k−1,l, u

i
k,l)}∑N

j=1 g
l
k,θ(x̌

j
k)ml

θ(x̌
j
k, x

i
k+∆l

)
.

The estimate of ∇θ log(γlk+1,θ(1)) is:

(3.10) ̂∇θ log(γlk+1,θ(1)) :=

∑N
i=1G

l
k,θ(ǔ

i
k−1,l, u

i
k,l)F

l,N
k,θ (uik,l)∑N

i=1G
l
k,θ(ǔ

i
k−1,l, u

i
k,l)

.

Set k = k + 1 and return to the start of 2..

3.3. Discussion of Algorithm 3.1. There are several remarks worth making, before pro-
ceeding. Firstly, the cost of this algorithm per unit time is O(N∆−1

l + N2). In detail, the cost of
the particle filter is O(N∆−1

l). The cost of calculating F l,Nk,θ (uik,l), 1 ≤ i ≤ N , in (3.9), is O(N2);

PARAMETER ESTIMATION FOR A CLASS OF CONTINUOUS-TIME SSMS 9

∆l is not involved here due to cancellations – see Remark 3.2. The cost of (3.10) is O(N), given the
particle filter has already been executed. There are several implications of this remark. Based upon
the results in [13] and Theorem 3.1, in a sequel work we prove, under appropriate assumptions, we
will have the following MSE, for (k,N) ∈ N2:

(3.11) Eθ
[∥∥∥ ̂∇θ log(γlk,θ(1))−∇θ log(γk,θ(1))

∥∥∥2

2

]
≤ C

(1

N
+ ∆l

)
,

where C is a constant that does not depend on N or l. To achieve an MSE of O(ε2) for some
ε > 0 given, one sets l so that ∆l = ε2 (i.e. l = O(| log(ε)|)) and N = O(ε−2). The cost per unit
time of doing this is then O(ε−4). We note that to choose l as specified, one has to have access
to an appropriately finely observed data set and this is assumed throughout. Typically, one could
use a multilevel Monte Carlo method, as in [20], to reduce the cost to achieve an MSE of O(ε2).
However, in this case as the O(N2) cost dominates and does not depend on l, one can easily check
that such a variance reduction method will not improve our particle method. To understand this,
one can prove a bound on the MSE, for instance of the type conjectured later in this article (4.19),
and then try to minimize the cost, by selecting the appropriate number of samples on each level to
obtain a given MSE. This latter problem leads to a constrained minimization problem that can be
solved using Lagrange multipliers (as in e.g. [9]), but one can show that this yields that the order
of the cost to achieve an MSE of O(ε2) is still O(ε−4).

Secondly, it is important to note that the method in [23] can reduce the cost of online score
estimation to O(N∆−1

l) per unit time. However, in order to do so, one requires that ml
θ(x, x

′) is
uniformly lower-bounded in (x, x′), which does not typically occur for Euler-discretized diffusion
densities. As a result, we only use the approach shown in Algorithm 3.1. Note that [16], in a
different but related context, considers using unbiased and non-negative estimates of the transition
density in the approach in [23], but such estimates are not always available.

Thirdly and rather importantly, there is a potential issue related to the construction of the
algorithm. We have started with a continuous-time formula, discretized it and applied what are
essentially discrete-time methods for smoothing of additive functionals. A serious caveat is that
the algorithm is not well-defined as l → ∞, which is what we mean by saying it has no (Wiener)
path-space formulation. The source of the issue is related to using approximations of the transition
density ml

θ(x̌
j
k, x

i
k+∆l

) in (3.9), which can degenerate when l is high. This will result in increasing
Monte Carlo variance and computational cost and may mean that C in (3.11) explodes exponentially
in l. We refer the reader to [36, Figure 1.1] for a numerical example. This issue has manifested
itself in MCMC schemes for inferring fully observed SDEs (see e.g. [24]), but in the context of
particle smoothing and Algorithm 3.1 there are additional considerations. The resampling operation
introduces discontinuities. Often such terminology refers to the lack of continuity of the transition
density:

θ → ̂∇θ log(γlk,θ(1)),

but here we are interested in the behavior of ml
θ(x̌

j
k, x

i
k+∆l

) when we combine points x̌jk and xik+∆l

that are intrinsically not obtained in a continuous way as ∆l diminishes. This issue has not received
attention in earlier numerical studies, but remains a concern. As a result, we now consider defining
an algorithm that is robust to the size of the time-discretization mesh and hence has a path-space
formulation.

4. Path-Space Feynman-Kac Formulation.

10 A. BESKOS, D. CRISAN, A. JASRA, N. KANTAS & H. RUZAYQAT

4.1. Data Augmentation using Bridges. We begin this section with a review of the method
in [29, 34]. For simplicity we consider the case t ∈ [0, 1] and let X := {Xt}t∈[0,1], and W :=
{Wt}t∈[0,1]. Let also pθ(x, t;x′, 1) denote the unknown transition density from time t to 1 associated
to (2.2) and let also pθ(x, x′) := pθ(x, 0;x′, 1). Suppose one could sample from pθ to obtain (x, x′) ∈
R2dx . Then one can interpolate these points by using a bridge process which has a drift given by
bθ(x) + a(x)∇x log pθ(x, t;x

′, 1), as we will explain below. Let Pθ,x,x′ denote the law of the solution
of the SDE (2.2), on [0, 1], started at x∗ = x and conditioned to hit x′ at time 1.

As pθ is intractable in general, we consider a user-specified auxiliary process {X̃t}t∈[0,1] follow-
ing:

dX̃t = b̃θ(t, X̃t)dt+ σ̃(t, X̃t)dWt, t ∈ [0, 1], X̃0 = x,(4.1)

where for each parameter value θ ∈ Θ, b̃θ : [0, 1] × Rdx → Rdx and σ̃ : Rdx → Rdx×dx is such
that ã(1, x′) := σ̃(1, x′)σ̃(1, x′)∗ ≡ a(x′). Most importantly, (4.1) is chosen so that its transition
density is available. To avoid confusion – as the specification of process (4.1) can involve parameter
θ and a given ending position x′ – we note that the transition density of (4.1) from time t to time 1
corresponds to a mapping z → p̃θ,x′(x, t; z, 1). We also use the notation p̃θ,x′(x, z) := p̃θ,x′(x, 0; z, 1).
One possible choice is to use an Ornstein-Uhlenbeck process (e.g. obtained using linearizations or
variational inference with (2.2) [29, Section 1.3]); see also [29, Section 2.2] for technical conditions on
b̃θ, ã, p̃θ,x′ . The main purpose of {X̃t}t∈[0,1] is to construct another process {X◦t }t∈[0,1] conditioned
to hit a given x′ at t = 1. The latter will form an importance proposal for {Xt}t∈[0,1]. Let:

dX◦t = b◦θ(t,X
◦
t ;x′)dt+ σ(X◦t)dWt, t ∈ [0, 1], X◦0 = x,(4.2)

where:
b◦θ(t, x;x′) = bθ(x) + a(x)∇x log p̃θ,x′(x, t;x

′, 1),

and denote by P◦θ,x,x′ the probability law of the solution of (4.2). The SDE in (4.2) gives rise to a
function:

(4.3) W→ Cθ(x,W, x′),

mapping the driving Wiener noise W to the solution of (4.2), so we have effectively reparameterized
the problem from X to (W, x′).

Now, following [29], the two measures Pθ,x,x′ and P◦θ,x,x′ are absolutely continuous w.r.t. each
other, with Radon-Nikodym derivative:

(4.4)
dPθ,x,x′
dP◦θ,x,x′

(X) = exp
{∫ 1

0

Lθ(t,Xt)dt
}
× p̃θ,x′(x, x

′)

pθ(x, x′)
,

where:

Lθ(t, x) :=
(
bθ(x)− b̃θ(t, x)

)∗∇x log p̃θ,x′(x, t;x
′, 1)

− 1
2Tr

{ [
a(x)− ã(t, x)

][
−∇2

x log p̃θ,x′(x, t;x
′, 1)−∇x log p̃θ,x′(x, t;x

′, 1)∇x log p̃θ,x′(x, t;x
′, 1)

∗] }
with Tr(·) denoting the trace of a squared matrix. Note that, in the case when σ = σ(x) is not
a constant function, then, typically, x′ → p̃θ,x′(x, x

′) will not integrate to 1 and will give rise to

PARAMETER ESTIMATION FOR A CLASS OF CONTINUOUS-TIME SSMS 11

a non-trivial distribution to sample from. As the complete algorithm will require being able to
sample from the transition density, we rewrite:

(4.5)
dPθ,x,x′
dP̃θ,x,x′

(X) = exp
{∫ 1

0

Lθ(t,Xt)dt
}
× p̃θ,x′(x, x

′)

pθ(x, x′)p̂θ(x, x′)
× p̂θ(x, x′),

where an arbitrary, tractable and easy to sample density p̂θ(x, x′) is used to sample x′.

4.2. Estimation of Score in Continuous-Time. We return to the expression of the score
function in (2.4) and use the alternative change of measure described above. Consider the processes:

Xk := {Xt}t∈[k,k+1], Yk := {Yt}t∈[k,k+1], k ∈ N0.

We introduce the following notation:

Ψθ(Xk) =

∫ k+1

k

Lθ(t,Xt)dt;

Jk,θ(Xk,Yk) =

∫ k+1

k

hθ(Xt)
∗dYt − 1

2

∫ k+1

k

hθ(Xt)
∗hθ(Xt)dt;

Λk,θ(Xk,Yk) =

∫ k+1

k

(∇θbθ(Xt))
∗a(Xt)

−1(dXt − bθ(Xt)dt)

+

∫ k+1

k

(∇θhθ(Xt))
∗dYt −

∫ k+1

k

(∇θhθ(Xt))
∗hθ(Xt)dt;

Φk,θ(Xk,Yk) = Jk,θ(Xk,Yk) + Ψθ(Xk) + log
p̃θ,xk+1

(xk, xk+1)

p̂θ(xk, xk+1)
.

Note all the integrands can be computed point wise.

Remark 4.1. The Wiener process in (4.3) is defined on the time interval [0, 1], thus so is the
transform Cθ(x,W, x′). In the derivations below, one needs to calculate Jk,θ(Cθ(xk,Wk, xk+1),Yk)
and Λk,θ(Cθ(xk,Wk, xk+1),Yk), for Wk’s that correspond to samples from the Wiener measure on
[0, 1]. With some abuse of notation, it is to be understood that the path Cθ(xk,Wk, xk+1) is ‘shifted’
from [0, 1] to [k, k + 1], so all quantities below agree with the notation introduced above. Also, the
calculation of Ψθ(Cθ(xk,Wk, xk+1)) will be required, but this should create no confusion.

Under these definitions, for any T ∈ N the score function in (2.4) can be rewritten as:

∇θ log(γT,θ(1)) ≡
Eθ
[(∑T−1

k=0 Λk,θ(Xk,Yk)
)

exp
{∑T−1

k=0 Jk,θ(Xk,Yk)
} ∣∣YT]

Eθ
[

exp
{∑T−1

k=0 Jk,θ(Xk,Yk)
} ∣∣YT] .

Making use of the transform (4.3) and the density expression in (4.4), we can equivalently write:

∇θ log(γT,θ(1)) =(4.6)

=
Ẽθ
[(∑T−1

k=0 Λk,θ(Cθ(xk,Wk, xk+1),Yk)
)

exp
{∑T−1

k=0 Φk,θ(Cθ(xk,Wk, xk+1),Yk)
} ∣∣YT]

Ẽθ
[

exp
{∑T−1

k=0 Φk,θ(Cθ(xk,Wk, xk+1),Yk)
} ∣∣YT] ,

12 A. BESKOS, D. CRISAN, A. JASRA, N. KANTAS & H. RUZAYQAT

where, the expectation Ẽθ [· | YT] is considered under the probability measure:

P̃θ
(
d(W0, x1, . . . ,WT−1, xT)

)
:=

T−1⊗
k=0

[
W(dWk)⊗ p̂θ(xk, xk+1)dxk+1

]
,(4.7)

independently of YT ; here, W is the standard Wiener measure on [0, 1] and x0 = x∗.

Remark 4.2. The approach that has been adopted here can also be used if σ depends upon θ.
Assuming the formula is well-defined, one would have a score function with an expression of the
type:

Ẽθ
[(∑T−1

k=0 Ξk,θ(Cθ(xk,Wk, xk+1)
)

exp
{∑T−1

k=0 Φk,θ(Cθ(xk,Wk, xk+1),Yk)
} ∣∣YT]

Ẽθ
[

exp
{∑T−1

k=0 Φk,θ(Cθ(xk,Wk, xk+1),Yk)
} ∣∣YT] ,

where:

Ξk,θ(Cθ(xk,Wk, xk+1) = {∇θΦk,θ(Cθ(xk,Wk, xk+1),Yk)}+∇θ log{p̂θ(xk, xk+1)},

and with an appropriate modification of the approach to allow σ to depend on θ. To keep consistency
with the ideas in Section 3 we do not consider the formula from herein, but remark that extension
of the forthcoming methodology to this case is straightforward.

Remark 4.3. Recent advances in [6] have extended the construct of the auxiliary bridge process
– developed via (4.1), (4.2) herein – to the setting of hypoelliptic SDEs. Though we do not pursue
this direction here for the purpose of easing the exposition, we remark that, given these new develop-
ments, one can now, in principle, obtain score function estimates – thus, also carry out parameter
inference – in the hypoelliptic regime along the same steps we follow in the current work.

The expression in (4.6), together with the (trivially) Markovian dynamics for the process in
(4.7) allow one to construct a backward Feynman-Kac type formula as in (3.6). To better connect
the approach here and that in Section 3, define uk = (Wk, xk+1) for k ∈ N0, u−1 = x∗ and:

ΛCk,θ(uk−1, uk) = Λk,θ(Cθ(xk,Wk, xk+1),Yk);

ΦCk,θ(uk−1, uk) = Φk,θ(Cθ(xk,Wk, xk+1),Yk);

FT,θ(u0, . . . , uT−1) =

T−1∑
k=0

ΛCk,θ(uk−1, uk).

Superscript C is motivated by the well-posedness of the formula in continuous-time path-space.
Set:

πk,θ
(
d(u0, . . . , uk)

)
:=

(∏k
p=0 exp{ΦCp,θ(up−1, up)}

)
P̃θ
(
d(u0, . . . , uk)

)
∫
Ek+1

(∏k
p=0 exp{ΦCp,θ(up−1, up)}

)
P̃θ
(
d(u0, . . . , uk)

) ,
with E = C([0, 1],Rdx). Then, we have the representation:

(4.8) ∇θ log(γT,θ(1)) =

∫
ET

FT,θ(u0, . . . , uT−1)QT−1,θ

(
d(u0, . . . , uT−1)

)
,

PARAMETER ESTIMATION FOR A CLASS OF CONTINUOUS-TIME SSMS 13

where:

QT−1,θ

(
d(u0, . . . , uT−1)

)
= πT−1,θ(duT−1)

T−1∏
k=1

Bk,θ,πk−1,θ
(uk, duk−1),

and:

Bk,θ,πk−1,θ
(uk, duk−1) :=

πk−1,θ(duk−1) exp{ΦCk,θ(uk−1, uk)}p̂θ(xk, xk+1)

πk−1,θ(exp{ΦCk,θ(·, uk)}p̂θ(·, xk+1))
.

We remark that formula (4.8) is a type of backward Feynman-Kac formula in continuous-time,
which to our knowledge is new.

As in the case of Algorithm 3.1, an effective Monte Carlo approximation of such a smoothing
expectation (4.8) is given in Algorithm 4.1. The estimates of the score function are given in
equations (4.9)-(4.10) in Algorithm 4.1.

Algorithm 4.1 Online Score Function Estimation on Path-Space
1. For i ∈ {1, . . . , N}, sample ui0 i.i.d. from W(·) ⊗ p̂θ(x∗, ·). The estimate of ∇θ log(γ1,θ(1))

is:

(4.9) ̂∇θ log(γ1,θ(1)) :=

∑N
i=1 exp{ΦC0,θ(x∗, ui0)}ΛC0,θ(x∗, ui0)∑N

i=1 exp{ΦC0,θ(x∗, ui0)}
.

Set k = 1 and for i ∈ {1, . . . , N}, ǔi−1 = x∗.
2. For i ∈ {1, . . . , N} sample ǔik−1 from:

N∑
i=1

exp{ΦCk−1,θ(ǔ
i
k−2, u

i
k−1)}∑N

j=1 exp{ΦCk−1,θ(ǔ
j
k−2, u

j
k−1)}

δ{uik−1}(·).

If k = 1, for i ∈ {1, . . . , N}, set F̃Nk−1,θ(ǔ
i
0) = ΛC0,θ(x∗, ǔ

i
0).

3. For i ∈ {1, . . . , N}, sample uik from W(·)⊗ p̂lθ(x̌ik, ·). For i ∈ {1, . . . , N}, compute:

F̃Nk,θ(u
i
k) =

∑N
j=1 exp{ΦCk,θ(ǔ

j
k−1, u

i
k)}p̂θ(x̌jk, xik+1){F̃Nk−1,θ(ǔ

j
k−1) + ΛCk,θ(ǔ

j
k−1, u

i
k)}∑N

j=1 exp{ΦCk,θ(ǔ
j
k−1, u

i
k)}p̂θ(x̌jk, xik+1)

.

The estimate of ∇θ log(γk+1,θ(1)) is:

(4.10) ̂∇θ log(γk+1,θ(1)) :=

∑N
i=1 exp{ΦCk,θ(ǔik−1, u

i
k)}F̃Nk,θ(uik)∑N

i=1 exp{ΦCk,θ(ǔik−1, u
i
k)}

.

Set k = k + 1 and return to the start of 2.

4.3. Time-Discretization. Whilst conceptually important, path-space valued Algorithm 4.1
can seldom be implemented directly in practice; unbiased methods e.g. [4] may be possible, but
would be cumbersome. We develop a time-discretization procedure, in a similar manner to that
considered in Section 3.2.

14 A. BESKOS, D. CRISAN, A. JASRA, N. KANTAS & H. RUZAYQAT

We will discretize on the uniform grid with increment ∆l = 2−l. Let k ∈ N0 and define:

uk,l = (zk+∆l
, zk+2∆l

, . . . , zk+1−∆l
, xk+1) ∈ (Rdx)∆−1

l = El,

where zk+∆l
, zk+2∆l

, . . . , zk+1−∆l
will represent increments of Brownian motion and u−1,l = x∗.

Define the Markov kernel on El, for k ∈ N:

M̃ l
θ(uk−1,l, duk,l) =

(∆−1
l −1∏
s=1

φl(zk+s∆l
)dzk+s∆l

)
p̂θ(xk, xk+1)dxk+1,

where φl(zk+s∆l
) is the density associated to the Ndx(0,∆lIdx) distribution. We denote the density

of M̃ l
θ as Q̃lθ. Set:

η̃l0,θ(du0,l) =
(∆−1

l −1∏
s=1

φl(zs∆l
)dzs∆l

)
p̂θ(x∗, x1)dx1.

Now set, for (k, s) ∈ {0, 1, . . . , T − 1} × {0, 1, . . . ,∆−1
l − 2}:

X(s+1)∆l+k = Xs∆l+k + b◦θ(s∆l, Xs∆l+k;xk+1)∆l + σ(Xs∆l+k)Z(s+1)∆l+k.(4.11)

Define for k ∈ N0:

Ψl
θ(uk−1,l, uk,l) =

∆−1
l −1∑
p=0

Lθ(p∆l, xk+p∆l
)∆l;

J lk,θ(uk−1,l, uk,l) =

∆−1
l −1∑
p=0

hθ(xk+p∆l
)∗(Yk+(s+1)∆l

− Yk+s∆l
)− 1

2

∆−1
l −1∑
p=0

hθ(xk+p∆l
)∗hθ(xk+p∆l

)∆l;

Φlk,θ(uk−1,l, uk,l) = J lk,θ(uk−1,l, uk,l) + Ψl
θ(uk−1,l, uk,l) + log

p̃θ,xk+1
(xk, xk+1)

p̂θ(xk, xk+1)
;

G̃lk,θ(uk−1,l, uk,l) = exp{Φlk,θ(uk−1,l, uk,l)}.

Now, for k ∈ N0:

Λ̃lk,θ(uk−1,l, uk,l) =

∆−1
l −1∑
p=0

(∇θbθ(xk+p∆l
))∗a(xk+p∆l

)−1(xk+(p+1)∆l
− xk+p∆l

− bθ(xk+p∆l
)∆l)

+

∆−1
l −1∑
p=0

(∇θhθ(xk+p∆l
))∗(Yk+(p+1)∆l

− Yk+p∆l
)−

∆−1
l −1∑
p=0

(∇θhθ(xk+p∆l
))∗hθ(xk+p∆l

)∆l.

Set:

F̃ lT,θ(u0,l, . . . , uT−1,l) =

T−1∑
k=0

Λ̃lk,θ(uk−1,l, uk,l).

PARAMETER ESTIMATION FOR A CLASS OF CONTINUOUS-TIME SSMS 15

Writing expectations w.r.t. η̃lθ(du0,l)
∏T−1
k=1 M̃

l
θ(uk−1,l, duk,l) as Ẽlθ[· |YT], our discretized approxi-

mation of ∇θ log(γT,θ(1)) is:

∇θ log(γ̃lT,θ(1)) :=
Ẽlθ
[
F̃ lT,θ(U0,l, . . . , UT−1,l)

∏T−1
k=0 G̃

l
k,θ(Uk−1,l, Uk,l)

∣∣YT]
Ẽlθ
[∏T−1

k=0 G̃
l
k,θ(Uk−1,l, Uk,l)

∣∣YT] .

We note that, whilst terms ∇θ log(γ̃lT,θ(1)), ∇θ log(γlT,θ(1)) should both converge to ∇θ log(γT,θ(1)),
as l→∞, they will in general be different for any fixed l.

One can also easily develop a discretized time reversal formula such as (3.6) which will converge
precisely to (4.8) as l→∞. Define, for k ∈ N0:

π̃lk,θ
(
d(u0,l, . . . , uk,l)

)
:=

(∏k
p=0 G̃

l
p,θ(up−1,l, up,l)

)
η̃l0,θ(du0,l)

∏k
p=1 M̃

l
θ(up−1,l, dup,l)∫

Ek+1
l

(∏k
p=0 G̃

l
p,θ(up−1,l, up,l)

)
η̃l0,θ(du0,l)

∏k
p=1 M̃

l
θ(up−1,l, dup,l)

.

Then, we have that:

(4.12) ∇θ log(γ̃lT,θ(1)) =

∫
ETl

F̃ lT,θ(u0,l, . . . , uT−1,l) Q̃lT−1,θ

(
d(u0,l, . . . , uT−1,l)

)
,

where we have defined:

Q̃lT−1,θ

(
d(u0,l, . . . , uT−1,l)

)
:= π̃lT−1,θ(duT−1,l)

T−1∏
k=1

B̃lk,θ,πlk−1,θ
(uk,l, duk−1,l)

and:

B̃lk,θ,π̃lk−1,θ
(uk,l,duk−1,l) :=

π̃lk−1,θ(duk−1,l)G̃
l
k,θ(uk−1,l, uk,l)Q̃

l
θ(uk−1,l, uk,l)

π̃lk−1,θ(G̃
l
k,θ(·, uk,l)Q̃lθ(·, uk,l))

.

We remark that, due to the structure of the model:

B̃lk,θ,π̃lk−1,θ
(uk,l, duk−1,l) =

π̃lk−1,θ(duk−1,l)G̃
l
k,θ(uk−1,l, uk,l)p̂θ(xk, xk+1)∫

El
π̃lk−1,θ(duk−1,l)G̃lk,θ(uk−1,l, uk,l)p̂θ(xk, xk+1)

.

Remark 4.4. It is important to note that – in contrast to Remark 3.2 – there is no cancellation
of terms of G̃lk,θ(uk−1,l, uk,l) in the numerator and denominator of this backward kernel. This is
precisely due to recursion (4.11) which leads to a path-dependence of the future coordinates of the
discretized bridge on the terminal position xk+1.

4.4. Particle Approximation. Our online particle approximation of the gradient of the log-
likelihood in (4.12), for a given l ∈ N0 is presented in Algorithm 4.2. Our estimates are given in
(4.14) and (4.16) in Algorithm 4.2.

Algorithm 4.2 is simply the time-discretization of the procedure presented in Algorithm 4.1.
A number of remarks are again of interest. Firstly, the cost of the algorithm per unit time is now
O(N2∆−1

l). The increase in computational cost over Algorithm 3.1 is the fact that when computing
Λ̃lk,θ(ǔ

j
k−1,l, u

i
k,l) in (4.15), one must solve the recursion (4.11) for each (i, j) ∈ {1, . . . , N}2, which

16 A. BESKOS, D. CRISAN, A. JASRA, N. KANTAS & H. RUZAYQAT

has a cost O(∆−1
l) and it is this cost that dominates. Secondly, following the discussion in Section

3.3, we have proved in a companion work that, under appropriate assumptions, the MSE for (k,N) ∈
N2:

(4.13) Eθ
[∥∥∥ ̂∇θ log(γ̃lk,θ(1))−∇θ log(γk,θ(1))

∥∥∥2

2

]
≤ C

(1

N
+ ∆l

)
,

for constant C that does not depend on N , l. To achieve an MSE of O(ε2) for some ε > 0 given, one
sets l = O(| log(ε)|) and N = O(ε−2). The cost per unit time of doing this, is then O(ε−6). This
is significantly worse than the approach in Algorithm 3.1, but we remark that when discussing the
cost of Algorithm 3.1, in the bound (3.11), we have assumed that the constant C does not depend
upon l. However, in a sequel work we will show that under assumptions that this afore-mentioned C
explodes exponentially in l. Conversely, C in (4.13) can be proved to be independent of l, precisely
due to the path-space development we have adopted. We remark, however, that one can use an
MLMC method to reduce this cost of O(ε−6) per unit time of Algorithm 4.2 and this algorithm is
presented in the next section.

Algorithm 4.2 Modified Online Score Function Estimation for a given l ∈ N0.
1. For i ∈ {1, . . . , N}, sample ui0,l i.i.d. from η̃l0,θ(·). The estimate of ∇θ log(γ̃l1,θ(1)) is:

(4.14) ̂∇θ log(γ̃l1,θ(1)) :=

∑N
i=1 G̃

l
0,θ(x∗, u

i
0,l)Λ̃

l
0,θ(x∗, u

i
0,l)∑N

i=1 G̃
l
0,θ(x∗, u

i
0,l)

.

Set k = 1 and for i ∈ {1, . . . , N}, ǔi−1,l = x∗.
2. For i ∈ {1, . . . , N} sample ǔik−1,l from:

N∑
i=1

G̃lk−1,θ(ǔ
i
k−2,l, u

i
k−1,l)∑N

j=1 G̃
l
k−1,θ(ǔ

j
k−2,l, u

j
k−1,l)

δ{uik−1,l}(·).

If k = 1, for i ∈ {1, . . . , N}, set F̃ l,Nk−1,θ(ǔ
i
0,l) = Λ̃l0,θ(x∗, ǔ

i
0,l).

3. For i ∈ {1, . . . , N}, sample uik,l from M̃ l
θ(ǔ

i
k−1,l, ·). For i ∈ {1, . . . , N}, compute:

(4.15)

F̃ l,Nk,θ (uik,l) =

∑N
j=1 G̃

l
k,θ(ǔ

j
k−1,l, u

i
k,l)p̂θ(x̌

j
k, x

i
k+1){F̃ l,Nk−1,θ(ǔ

j
k−1,l) + Λ̃lk,θ(ǔ

j
k−1,l, u

i
k,l)}∑N

j=1 G̃
l
k,θ(ǔ

j
k−1,l, u

i
k,l)p̂θ(x̌

j
k, x

i
k+1)

.

The estimate of ∇θ log(γ̃lk+1,θ(1)) is:

(4.16) ̂∇θ log(γ̃lk+1,θ(1)) =

∑N
i=1 G̃

l
k,θ(ǔ

i
k−1,l, u

i
k,l)F̃

l,N
k,θ (uik,l)∑N

i=1 G̃
l
k,θ(ǔ

i
k−1,l, u

i
k,l)

.

Set k = k + 1 and return to the start of 2..

PARAMETER ESTIMATION FOR A CLASS OF CONTINUOUS-TIME SSMS 17

4.5. Multilevel Particle Filter. We now present a new multilevel particle filter along with
online estimation of the score-function. We fix l ∈ N for now and for (k, s) ∈ N0 × {l, l− 1} define:

uk,s = (zk+∆l,s, zk+2∆l,s, . . . , zk+1−∆l,s, xk+1,s) ∈ (Rdx)∆−1
s = Es.

We give the approach in Algorithm 4.3. Before explaining how one can use Algorithm 4.3
to provide online estimates of the score function, several remarks are required to continue. The
first is related to the couplings mentioned in Algorithm 4.3 point 2. and point 3. bullet 1. The
coupling in point 2, requires a way to resample the indices of the particles so that they have the
correct marginals. This topic has been investigated considerably in the literature, see e.g. [19, 30],
and techniques that have been adopted include sampling maximal coupling, e.g. [17], or using the
L2-Wasserstein optimal coupling [2]; in general the latter is found to be better in terms of variance
reduction, but can only be implemented when dx = 1. We rely upon the maximal coupling in this
paper, which has a cost of O(N) per unit time. For point 3. bullet 1, one again has a considerable
degree of flexibility. In this article we sample the maximal coupling which can be achieved at a cost
which is at most O(N) cost per-unit time using the algorithm of [33]. The second main remark of
interest is that the basic filter that is sampled in Algorithm 4.3 is an entirely new coupled particle
filter for diffusions (i.e. different to [17, 20]). The utility of the approach relative to [20] is of great
interest, in the context of filtering.

Set (l∗, L) ∈ N2 with l∗ < L. The idea is to run Algorithm 4.3, independently, for l ∈ {l∗, . . . , L}
each with Nl particles and, independently, Algorithm 4.2 for l = l∗ − 1 with Nl∗−1 particles. We
then consider the estimate, for k ∈ N

̂∇θ log(γ̃Lk,θ(1))
ML

:=

L∑
l=l∗

{
̂∇θ log(γ̃lk,θ(1))− ̂∇θ log(γ̃l−1

k,θ (1))
}

+ ̂∇θ log(γ̃l∗−1
k,θ (1)),

where the summands on the right hand side are defined in (4.17) and (4.18) and the last term on
the right hand side is as either (4.14) or (4.16) (depending on k). Now, we show in an on-going
companion work, under appropriate assumptions, one has the following result for (k,Nl∗−1:L) ∈
NL−l∗+2:

(4.19) Eθ
[∥∥∥ ̂∇θ log(γ̃Lk,θ(1))

ML
−∇θ log(γk,θ(1))

∥∥∥2

2

]
≤ C

(L∑
l=l∗−1

∆β
l

Nl
+ ∆L

)
,

for constant C that does not depend on N , l; also, β = 1 if σ is a constant function, else β = 1/2.
Choose: i) L so that ∆L = O(ε2), for ε > 0 given; ii) if β = 1, Nl = O(ε−2∆

1/2+ρ
l) for some

0 < ρ < 1/2. These selections yield an MSE of O(ε2) for a cost of O(ε−4). If β = 1/2, one can set
Nl = O(ε−2∆

1/2+ρ
l ∆−ρL) for some ρ > 0. This will yield an MSE of O(ε2) for a cost of O(ε−4(1+ρ)).

Such results are at least as good as the method in Section 3.3, assuming that latter approach does
not collapse with l.

We remark that it is possible to produce an almost-surely unbiased estimator of the score
function, when θ is the true parameter, using a combination of the multilevel method that has been
developed here and the approach in [18]. This is left for future work.

5. Numerical Results. In this section, we consider four models to investigate the various
properties of our algorithms. The score function is estimated using both Algorithms 3.1 and 4.2 for
a fixed θ. We will show, as expected, that they are equivalent for a large number of particles N and

18 A. BESKOS, D. CRISAN, A. JASRA, N. KANTAS & H. RUZAYQAT

Algorithm 4.3 Coupled Online Score Function Estimation for a given l ∈ N.
1. • For i ∈ {1, . . . , N}, sample ui0,l i.i.d. from η̃l0,θ(·).

• For (i, p) ∈ {1, . . . , N}× {1, . . . ,∆−1
l−1− 1}, set zip∆l−1,l−1 = zip∆l−1,l

+ zip∆l−1−∆l,l
and

xi1,l−1 = xi1,l.
The estimate of ∇θ log(γ̃l1,θ(1))−∇θ log(γ̃l−1

1,θ (1)) is:

̂∇θ log(γ̃l1,θ(1))− ̂∇θ log(γ̃l−1
1,θ (1)) :=

(4.17)
∑N
i=1 G̃

l
0,θ(x∗, u

i
0,l)Λ̃

l
0,θ(x∗, u

i
0,l)∑N

i=1 G̃
l
0,θ(x∗, u

i
0,l)

−
∑N
i=1 G̃

l−1
0,θ (x∗, u

i
0,l−1)Λ̃l−1

0,θ (x∗, u
i
0,l−1)∑N

i=1 G̃
l−1
0,θ (x∗, ui0,l−1)

.

Set k = 1 and for i ∈ {1, . . . , N}, ǔi−1,l = ǔi−1,l−1 = x∗.
2. For i ∈ {1, . . . , N}, sample (αl(i), αl−1(i)) ∈ {1, . . . , N}2 from a coupling of:

N∑
i=1

G̃lk−1,θ(ǔ
αl(i)
k−2,l, u

αl(i)
k−1,l)∑N

j=1 G̃
l
k−1,θ(ǔ

j
k−2,l, u

j
k−1,l)

and
N∑
i=1

G̃l−1
k−1,θ(ǔ

αl−1(i)
k−2,l−1, u

αl−1(i)
k−1,l)∑N

j=1 G̃
l−1
k−1,θ(ǔ

j
k−2,l−1, u

j
k−1,l−1)

,

and set (ǔik−1,l, ǔ
i
k−1,l−1) = (u

αl(i)
k−1,l, u

αl−1(i)
k−1,l−1). If k = 1, for i ∈ {1, . . . , N}, s ∈ {l, l − 1},

set F̃ s,Nk−1,θ(ǔ
i
0,s) = Λ̃s0,θ(x∗, ǔ

i
0,s).

3. • For i ∈ {1, . . . , N}, sample (xik+1,l, x
i
k+1,l−1) from a coupling of p̂θ(x̌ik,l, ·) and

p̂θ(x̌
i
k,l−1, ·).

• For i ∈ {1, . . . , N} sample zik+∆l,l
, . . . , zik+1−∆l,l

i.i.d. from
∏∆−1

l −1
s=1 φl(·).

• For (i, p) ∈ {1, . . . , N}×{1, . . . ,∆−1
l−1−1} set zik+p∆l−1,l−1 = zik+p∆l−1,l

+zik+p∆l−1−∆l,l
.

• For (i, s) ∈ {1, . . . , N} × {l.l − 1}, compute:

F̃ s,Nk,θ (uik,l) =

∑N
j=1 G̃

s
k,θ(ǔ

j
k−1,s, u

i
k,s)p̂θ(x̌

j
k,s, x

i
k+1,s){F̃

s,N
k−1,θ(ǔ

j
k−1,s) + Λ̃sk,θ(ǔ

j
k−1,s, u

i
k,s)}∑N

j=1 G̃
s
k,θ(ǔ

j
k−1,s, u

i
k,s)p̂θ(x̌

j
k,s, x

i
k+1,s)

.

The estimate of ∇θ log(γ̃lk+1,θ(1))−∇θ log(γ̃l−1
k+1,θ(1)) is:

̂∇θ log(γ̃lk+1,θ(1))− ̂∇θ log(γ̃l−1
k+1,θ(1)) :=

(4.18)

∑N
i=1 G̃

l
k,θ(ǔ

i
k−1,l, u

i
k,l)F̃

l,N
k,θ (uik,l)∑N

i=1 G̃
l
k,θ(ǔ

i
k−1,l, u

i
k,l)

−
∑N
i=1 G̃

l−1
k,θ (ǔik−1,l−1, u

i
k,l−1)F̃ l−1,N

k,θ (uik,l−1)∑N
i=1 G̃

l−1
k,θ (ǔik−1,l−1, u

i
k,l−1)

.

Set k = k + 1 and return to the start of 2..

a high level of descritization l. We then compare the cost of Algorithm 4.2 and its multilevel version
Algorithm 4.3. As an application of our methods, we use Algorithms 3.1 and 4.3 for parameter
estimation via stochastic gradient. The code is written in MATLAB and it can be downloaded from

PARAMETER ESTIMATION FOR A CLASS OF CONTINUOUS-TIME SSMS 19

https://github.com/ruzayqat/score_based_par_est.
We remark that we will not use Algorithm 4.2 for parameter estimation because it is ‘slow’

compared to the algorithms as illustrated in the previous section and in Figure 1. In Figure 1 we
consider the Model 1, as described in the next section, with T = 40, l = 10, θ = (−0.4,−0.5), κ = 2
and x∗ = 0.2. Figure 1 provides a comparison between the cost of Algorithms 3.1 and 4.2 , which
is the average machine time measured in seconds needed per each simulation, versus the number of
particles N . As predicted by our theoretical conjectures, we see that the cost of Algorithm 3.1 is
significantly lower than that of Algorithm 4.2.

0.01

0.1

1

10

100

1000

10000

100000

10 30 90 270 810 2430 7290

Co
st
	(S
ec
)

Number	of	Particles		N

Alg 3.1

Alg 4.2

Figure 1: Comparison between the cost of Algorithms 3.1 and 4.2 per each simulation versus the
number of particles N . We run both algorithms on Model 1.

5.1. Models. In the following, parameters (κ, σ) are fixed.
Model 1: Let dx = dy = 1, dθ = 2 and consider the following linear SDEs:

dXt = θ1Xtdt+ σdWt;

dYt = θ2(κ−Xt)dt+ dBt.

Model 2: Let dx = dy = 1, dθ = 3 and consider a nonlinear diffusion process along with a linear
diffusion process of observations:

dXt =
(
θ1
Xt

+ θ2Xt

)
dt+ σdWt;

dYt = θ3(κ−Xt)dt+ dBt.

Model 3: Let dx = dy = 1, dθ = 3 and consider a nonlinear signal along with a nonlinear diffusion
process of observations. The first SDE is a Cox-Ingersoll-Ross process after an 1-1 transform. Thus:

dXt =
1

2

(
θ1θ2−σ2

Xt
− θ2Xt

)
dt+ σdWt;

dYt = θ3(κ−X2
t)dt+ dBt.

This model has a solution if and only if θ1θ2 > 2σ2.
Model 4: Let dx = dy = 1, dθ = 3 and consider a type of Black-Scholes model with a stochastic
volatility:

dXt = θ1(θ2 −Xt)dt+ σ(Xt)dWt;

dYt = (θ3 −
1

2
X2
t)dt+ dBt.

https://github.com/ruzayqat/score_based_par_est

20 A. BESKOS, D. CRISAN, A. JASRA, N. KANTAS & H. RUZAYQAT

where σ(Xt) = β/
√
X2
t + 1 and β is fixed. In the hidden process, θ1 and θ2 are the speed and

level of mean reversion and θ3 is a mean type level for the observation process, We will apply our
methodology (see Figure 8 later on) on the log mid-price of Tesla Inc. stock in 2018. The dataset
shown in Figure 2 represents the log mid-price at every second during a trading day for a total of
250 trading days.

Ja
n

20
18

Feb
 2

01
8

M
ar

 2
01

8

Apr
 2

01
8

M
ay

 2
01

8

Ju
n

20
18

Ju
l 2

01
8

Aug
 2

01
8

Sep
 2

01
8

O
ct
 2

01
8

N
ov

 2
01

8

D
ec

 2
01

8
5.5

5.55

5.6

5.65

5.7

5.75

5.8

5.85

5.9

5.95

Figure 2: The log of mid-price for every second of Tesla stock in 2018. The dataset contains
5.85× 106 data points.

5.2. Simulation Results. In all our results data are generated from the model under the
finest discretization considered except in model 4, where we use a real data. In Algorithm 4.2, we
consider the auxiliary linear process following:

dX̃t = σdWt

in models 1-3 and in model 4 it follows:

dX̃t = σ(x′)dWt

In models 1-3, p̃θ,x′(x, t;x′, 1) = N (x′;x, (1−t)σ2), hence p̃θ,x′(x, x′) = N (x′;x, σ2), which is easy to
sample x′ from, and therefore, p̂θ(x, x′) = p̃θ,x′(x, x

′). But in model 4, p̃θ,x′(x, x′) = N (x′;x, σ2(x′))
which is not easy to sample x′ from. Therefore, we take p̂θ(x, x′) = N (x′;x, σ2(x)).

5.2.1. Estimation of the Score Function. For each model, we fix parameter θ and estimate
the score function using Algorithms 3.1 and 4.2. In Algorithm 3.1, N ∈ {3000, 7000, 4000, 5000}
in the 1st, 2nd, 3rd & 4th models, respectively. In Algorithm 4.2, N ∈ {1000, 2000, 1000, 1500} in
the 1st, 2nd, 3rd & 4th models, respectively. In both algorithms, we set the discretization level
to l = 10. In Models 1, 2 and 3, we set κ = 2, 2.2, 1.5, x∗ = 0.2, 1, 2 and σ = 0.3, 0.25, 0.25,
respectively. While in model 4, we set x∗ = 1.3 and β = 2; T = 50 for all 4 models (T = 50 in
model 4 corresponds to 14.22 hours of trading).

Figure 3 summarizes the results of 56 replications of estimates of the score function for each
model and for each unit time point. These simulations are implemented in parallel using 8 CPUs.
The figure illustrates that both algorithms are equivalent for large N and l as one would expect.

PARAMETER ESTIMATION FOR A CLASS OF CONTINUOUS-TIME SSMS 21

-32

-27

-22

-17

-12

-7

-2

3

0 10 20 30 40 50

Sc
or
e	
fu
nc
tio
n	
at
			𝜃

=
	(−

	0
.4
,	−
	0
.5
)

Time

1st	Model

Alg	3.1	- 𝜃₁
Alg	4.2	- 𝜃₁
Alg	3.1	- 𝜃₂
Alg	4.2	- 𝜃₂

-4.5

-3.5

-2.5

-1.5

-0.5

0.5

1.5

2.5

0 10 20 30 40 50Sc
or
e	
fu
nc
tio
n	
at
			
𝜃
=
		(
1.
16
,	−
	0
.5
8,
	0
.1
8)

Time

2nd	Model

Alg 3.1 - 𝜃₁

Alg 4.2 - 𝜃₁

Alg 3.1 - 𝜃₂

Alg 4.2 - 𝜃₂

Alg 3.1 - 𝜃₃

Alg 4.2 - 𝜃₃

-1

0

1

2

3

4

5

6

0 10 20 30 40 50

Sc
or
e	f
un
ct
io
n	
at
			𝜃

=
	(2
	,	
0.
9	
,	0
.2
)

Time

3rd	Model

Alg 3.1 - 𝜃₁
Alg 4.2 - 𝜃₁
Alg 3.1 - 𝜃₂
Alg 4.2 - 𝜃₂
Alg 3.1 - 𝜃₃
Alg 4.2 - 𝜃₃

-1

-0.5

0

0.5

1

1.5

0 10 20 30 40 50Sc
or
e	f
un
ct
io
n	
at
			𝜃

=
	(3
	,	
0.
03
	,	
0.
25
)

Time

4th	Model

Alg 3.1 - 𝜃₁

Alg 4.2 - 𝜃₁

Alg 3.1 - 𝜃₂

Alg 4.2 - 𝜃₂

Alg 3.1 - 𝜃₃

Alg 4.2 - 𝜃₃

Figure 3: Trajectories from the execution of Algorithms 3.1 and 4.2 for the estimation of the score
function in Models 1-4.

5.2.2. Cost Comparison. We now consider comparing the costs of Algorithms 4.2 and 4.3.
We take l∗ to be 7 in the models 1, 2 & 3 and 8 in the 4th model. The parameters of the model
are as in the previous section. The ground truth is computed at level 11 with N = 2000 using
Algorithm 4.2. We run 56 simulations of both algorithms for L ∈ {l∗ − 1, · · · , 10}. For each L,
the number of particles are carefully chosen to give similar MSE values from both algorithms.
Particularly, the number of particles in Algorithm 4.2 is NL =

⌊
C12L

⌋
and for each level l in

Algorithm 4.2. In Figure 4 the number of particles is Nl =
⌊
C22L(L− l∗ + 2)∆

1/2+ρ
l

⌋
(in models

1 to 3) and Nl =
⌊
C22L(L− l∗ + 2)∆

1/2+ρ
l ∆−ρL

⌋
(in model 4), where C1 and C2 are constants. In

we can observe the cost against MSE curve, that appear to follow our conjectures over algorithmic
costs earlier in the article.

5.2.3. Parameter Estimation. We use Algorithms 3.1, 4.3 to estimate the parameters in
each model. In Algorithm 3.1, the level of discretization, l, is 10 for models 1-3 and 9 for model 4,
and the number of particles, N , is 2,000 for models 1-3 and 2500 for model 4. In Algorithm 4.3, we
use l∗ = 7, L = 10 and the number of particles on each level l ∈ {l∗− 1, · · · , L} is Nl = 2L(L− l∗+

2)∆
1/2+ρ
l , where ρ ∈ {0.14, 0.09, 0.11} in Models 1, 2 and 3, respectively. In model 4, l∗ = 8, L = 9

and the number of particles on each level l ∈ {l∗−1, · · · , L} is Nl = 1.4×2L(L− l∗+ 2)∆
1/2+ρ
l ∆−ρL

where ρ = 0.1.
Figure 5 considers Model 1. We fix x∗ = 0.2, σ = 0.3, κ = 2, T = 20, 000. The parameter

values used to generate the data are (θ?1 , θ
?
2) = (−0.7,−0.5). For the stochastic gradient algorithm,

22 A. BESKOS, D. CRISAN, A. JASRA, N. KANTAS & H. RUZAYQAT

0.1

1

10

100

1000

10000

100000

0.03 0.3
Co
st
	(s
ec
)

MSE

1stModel	

Alg 4.2

Alg 4.3

𝞞(𝜖⁻⁶)

𝞞(𝜖⁻⁴)
0.001

0.01

0.1

1

10

100

1000

0.03 0.3

Co
st
	(s
ec
)

MSE

2ndModel	

Alg 4.2

Alg 4.3

𝞞(𝜖⁻⁶)

𝞞(𝜖⁻⁴)

1

10

100

1000

10000

0.03 0.3

Co
st
	(s
ec
)

MSE

3rdModel	

Alg 4.2

Alg 4.3

𝞞(𝜖⁻⁶)

𝞞(𝜖⁻⁴)
0.01

0.1

1

10

100

0.003 0.03

Co
st
	(s
ec
)

MSE

4thModel	

Alg 4.2

Alg 4.3

𝞞(𝜖⁻⁶)

𝞞(𝜖–(4+𝜌))

Figure 4: Cost per each simulation versus MSE on a log-log scale for Algorithms 4.2 and 4.3. The
dashed lines are for reference.

we used an initial value (−0.05,−1.5) and step-size αk = k−0.85. Figure 6 considers Model 2.
We fix x∗ = 1.8, σ = 0.25, κ = 2.2, T = 20, 000. The parameter values used to generate the
data are (θ?1 , θ

?
2 , θ

?
3) = (1.3,−0.5, 0.18). For the stochastic gradient algorithm, we used initial value

(0.8,−1, 0.8) and step-size αk = k−0.95. Figure 7 considers Model 3. We fix x∗ = 1.5, σ = 0.25, κ =
2, T = 20, 000. The parameter values used to generate the data are (θ?1 , θ

?
2 , θ

?
3) = (2, 1, 0.45). For

the stochastic gradient algorithm, we used an initial value (1.24, 0.6, 1.11) and step size αk = k−0.9.
Figure 8 considers Model 4 applied to the data in Figure 2. We fix x∗ = 1.3, β = 2, T = 11425 (there
is a rescaling of the time parameter). For the stochastic gradient algorithm, we used an initial value
(2.4, 0.5, 0.4) and step size αk = k−0.82. In all cases considered (Figures 5-8) our selected settings
allow for an accurate estimation of the parameter values over long time periods.

Acknowledgements. AJ & HR were supported by KAUST baseline funding. AB acknowl-
edges support from a Leverhulme Trust Prize. DC was partially supported by EU Synergy project
STUOD - DLV-856408. NK acknowledges funding by a JP Morgan A.I. Faculty award. We thank
two referees and an associate editor for their comments which have greatly enhanced the article.

REFERENCES

[1] Bain, A. & Crisan, D. (2009). Fundamentals of Stochastic Filtering. Springer: New York.
[2] Ballesio, M., Jasra, A., von Schwerin, E. & Tempone, R. (2020). A Wasserstein coupled particle filter for

multilevel estimation. arXiv:2004.03981.
[3] Benveniste, A., Métivier, M. & Priouret, P. (1990). Adaptive Algorithms and Stochastic Approximation.

New York: Springer-Verlag.
[4] Beskos, A., Papaspiliopoulos, O., Roberts, G., Fearnhead, P. (2006). Exact and computationally efficient

likelihood-based estimation for discretely observed diffusion processes (with discussion). J. R. Statist. Soc.

PARAMETER ESTIMATION FOR A CLASS OF CONTINUOUS-TIME SSMS 23

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

0 5000 10000 15000 20000

𝜃₁

Time

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

0 5000 10000 15000 20000

𝜃₁

Time

-1

-0.8

-0.6

-0.4

-0.2

0 5000 10000 15000 20000

𝜃₂

Time

-1

-0.8

-0.6

-0.4

-0.2

0 5000 10000 15000 20000

𝜃₂

Time

Figure 5: Trajectories from the execution of Algorithm 3.1 (left panel) and Algorithm 4.3 (right
panel) for the estimation of (θ1, θ2) from Model 1. The horizontal dashed lines in the plots show
the true parameter values (θ?1 , θ

?
2) = (−0.7,−0.5).

Ser. B, 68, 333-382.
[5] Beskos, A., Crisan, D., Jasra, A., Kantas, N. & Ruzayqat, H. (2020). Score-Based Parameter Estimation

for a Class of Continuous-Time State Space Models. arXiv:2008.07803v1
[6] Bierkens, J., Van Der Meulen, F., Schauer, M. (2020). Simulation of elliptic and hypo-elliptic conditional

diffusions, Advances in Applied Probability, 52, 173-212.
[7] Botha, I., Kohn, R., & Drovandi, C. (2020). Particle methods for stochastic differential equation mixed

effects models. Bayes. Anal. (to appear).
[8] Campillo, F. & Le Gland, F. (1989). Maximum likelihood estimation for partially observed diffusions: Direct

Maximization vs The EM algorithm. Stoch. Proc. Appl., 33, 245–274.
[9] Cliffe, K. A., Giles, M. B., Scheichl, R., & Teckentrup, A. L. (2011). Multilevel Monte Carlo methods

and applications to elliptic PDEs with random coefficients. Comput. Vis. Sci., 14, 3–15.
[10] Crisan, D. (2011). Discretizing the continuous-time filtering problem: Order of Convergence. In [11], 572–597.
[11] Crisan, D., & Rozovskii, B. (2011). The Oxford Handbook of Nonlinear Filtering. Oxford University Press.
[12] Del Moral, P. (2004). Feynman-Kac Formulae. Springer.
[13] Del Moral, P., Doucet, A., & Singh S. S. (2010). A backward particle interpretation of Feynman-Kac

formuale. M2AN, 44, 947–975.
[14] Del Moral, P., Doucet, A., & Singh S. S. (2010). Forward smoothing using sequential Monte Carlo,

arXiv:1012.5390
[15] Etienne, M. P., Gloaguen, P., Corff, S. L., & Olsson, J. (2020). Backward importance sampling for

partially observed diffusion processes. arXiv:2002.05438.
[16] Gloaguen, P., Etienne, M. P. & Le Corff, S. (2018). Online sequential Monte Carlo smoother for partially

observed diffusion processes. EURASIP J. Adv. Sig. Proc, article 9.
[17] Jasra, A., Kamatani, K., Law K. J. H. & Zhou, Y. (2017). Multilevel particle filters. SIAM J. Numer. Anal.,

55, 3068-3096.
[18] Jasra, A., Law, K. J. H., & Yu, F. (2020). Unbiased filtering of a class of partially observed diffusions.

arXiv:2002.03747.
[19] Jasra, A., & Yu, F. (2020). Central limit theorems for coupled particle filters. Adv. Appl. Probab. 52, 942–1001.
[20] Jasra, A., Yu, F. & Heng, J. (2020). Multilevel particle filters for the nonlinear filtering problem in continuous

time. Stat. Comp. 30, 1381–1402.
[21] Le Gland, F. and Mevel, M. (1997). Recursive identification in hidden Markov models. Proc. 36th IEEE

Conf. Dec. Contr., 3468-3473.
[22] Mider, M., Schauer, M. & van der Meulen, F. (2020). Continuous-discrete smoothing of diffusions.

arXiv:1712.03807.
[23] Olsson, J. & Westerborn, J. (2017). Efficient particle-based online smoothing in general hidden Markov

24 A. BESKOS, D. CRISAN, A. JASRA, N. KANTAS & H. RUZAYQAT

0.8
0.9
1

1.1
1.2
1.3
1.4
1.5
1.6

0 5000 10000 15000 20000

𝜃₁
Time

0.8
0.9
1

1.1
1.2
1.3
1.4
1.5
1.6

0 5000 10000 15000 20000

𝜃₁

Time

-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0 5000 10000 15000 20000

𝜃₂

Time

-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0 5000 10000 15000 20000

𝜃₂

Time

0

0.1

0.2

0.3

0.4

0.5

0 5000 10000 15000 20000

𝜃₃

Time

0

0.1

0.2

0.3

0.4

0.5

0 5000 10000 15000 20000

𝜃₃

Time

Figure 6: Trajectories from the execution of Algorithm 3.1 (left panel) and Algorithm 4.3
(right panel) for the estimation of (θ1, θ2, θ3) of the second model. We used an initial value
(0.8,−1, 0.8). The horizontal dashed lines in the plots show the true parameter values (θ?1 , θ

?
2 , θ

?
3) =

(1.3,−0.5, 0.18).

models: The PaRIS algorithm. Bernoulli, 23, 1951-1996.
[24] Papaspiliopoulos, O., Roberts, G. O., & Stramer, O. (2013). Data augmentation for diffusions. J. Comp.

Graph. Stat., 22, 665-688.
[25] Papaspiliopoulos, O. & Roberts, G. (2012). Importance sampling techniques for estimation of diffusion

models. Stat. Meth. Stoch. Diff. Eq., 124, 311-340.
[26] Picard, J. (1984). Approximation of nonlinear filtering problems and order of convergence. In Filtering and

control of random processes, 219-236, Springer, Berlin, Heidelberg.
[27] Poyiadjis, G., Doucet, A., & Singh, S. S. (2011). Particle approximations of the score and observed infor-

mation matrix in state space models with application to parameter estimation. Biometrika, 98, 65-80.
[28] Särkkä, S., & Sottinen, T. (2008). Application of Girsanov theorem to particle filtering of discretely observed

continuous-time non-linear systems. Bayes. Anal., 3, 555-584.
[29] Schauer, M., van der Meulen, F. & van Zanten, H. (2017). Guided proposals for simulating multi-

dimensional diffusion bridges. Bernoulli, 23, 2917–2950.
[30] Sen, D., Thiery, A., Jasra, A. (2018). On coupling particle filters. Statist. Comp., 28, 461-475.
[31] Surace, S. C., & Pfister, J. P. (2018). Online Maximum-Likelihood Estimation of the Parameters of Partially

Observed Diffusion Processes. IEEE Transactions on Automatic Control, 64(7), 2814-2829.
[32] Talay, D. (1984). Efficient numerical schemes for the approximation of expectations of functionals of the

solution of a SDE, and applications. In Filtering and control of random processes, 294-313, Springer,
Berlin, Heidelberg.

[33] Thorisson, H. (2000). Coupling, stationarity, and regeneration. Springer:New York.
[34] van der Meulen, F., & Schauer, M. (2017). Bayesian estimation of discretely observed multi-dimensional

diffusion processes using guided proposals. Elec. J. Stat., 11, 2358-2396.
[35] Whitaker, G. A., Golightly, A., Boys, R. J., & Sherlock, C. (2017). Improved bridge constructs for

stochastic differential equations. Stat. Comp., 27, 885-900.
[36] Yonekura, S. & Beskos, A. (2020). Online smoothing for diffusion processes observed with noise. arXiv:

200312247.

PARAMETER ESTIMATION FOR A CLASS OF CONTINUOUS-TIME SSMS 25

1
1.2
1.4
1.6
1.8
2

2.2
2.4

0 5000 10000 15000 20000

𝜃₁

Time

1
1.2
1.4
1.6
1.8
2

2.2
2.4

0 5000 10000 15000 20000

𝜃₁

Time

0.6
0.7
0.8
0.9
1

1.1
1.2

0 5000 10000 15000 20000

𝜃₂

Time

0.6
0.7
0.8
0.9
1

1.1
1.2

0 5000 10000 15000 20000

𝜃₂

Time

0.35

0.45

0.55

0.65

0 5000 10000 15000 20000

𝜃₃

Time

0.35

0.45

0.55

0.65

0 5000 10000 15000 20000
𝜃₃

Time

Figure 7: Trajectories from the execution of Algorithm 3.1 (left panel) and Algorithm 4.3 (right
panel) for the estimation of (θ1, θ2, θ3) from Model 3. The horizontal dashed lines in the plots show
the true parameter values (θ?1 , θ

?
2 , θ

?
3) = (2, 1, 0.45).

2.4
2.5
2.6
2.7
2.8
2.9
3

3.1
3.2

0 1500 3000 4500 6000 7500 9000 10500

𝜃₁

Time

2.4
2.5
2.6
2.7
2.8
2.9
3

3.1
3.2

0 1500 3000 4500 6000 7500 9000 10500

𝜃₁

Time

-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

0 1500 3000 4500 6000 7500 9000 10500

𝜃₂

Time

-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

0 1500 3000 4500 6000 7500 9000 10500

𝜃₂

Time

0.2

0.25

0.3

0.35

0.4

0 1500 3000 4500 6000 7500 9000 10500

𝜃₃

Time

0.2

0.25

0.3

0.35

0.4

0 1500 3000 4500 6000 7500 9000 10500

𝜃₃

Time

Figure 8: Trajectories from the execution of Algorithm 3.1 (left panel) and Algorithm 4.3 (right
panel) for the estimation of (θ1, θ2, θ3) from Model 4.

	Introduction
	Contributions and Organization
	Notation

	Problem Formulation
	Preliminaries
	Parameter Estimation

	Direct Feynman-Kac Formulation
	Discretized Model
	Backward Feynman-Kac Model and Particle Smoothing
	Discussion of Algorithm 3.1

	Path-Space Feynman-Kac Formulation
	Data Augmentation using Bridges
	Estimation of Score in Continuous-Time
	Time-Discretization
	Particle Approximation
	Multilevel Particle Filter

	Numerical Results
	Models
	Simulation Results
	Estimation of the Score Function
	Cost Comparison
	Parameter Estimation

	References

