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Summary 
 

Top-down, context-dependent modulation of visual processing has been a topic of wide interest 

including in mouse primary visual cortex (V1). However, the organization of feedback projections 

to V1 is relatively unknown. Here, we investigated inputs to V1 by injecting retrograde tracers. We 

developed a software pipeline that maps labelled cell bodies to corresponding brain areas in the 

Allen Reference Atlas. We identified over 24 brain areas that provide inputs to V1 and quantified 

the relative strength of their projections. We also assessed the organisation of the projections, 

based on either the organisation of cell bodies in the source area (topography), or the distribution 

of projections across V1 (bias). Projections from most higher visual and some non-visual areas to 

V1 showed both topography and bias. Such organization of feedback projections to V1 suggests 

that parts of the visual field are differentially modulated, which may have ethological relevance for 

a navigating animal. 

IntroductionIntroductionIntroductionIntroduction    

Neural activity in the mouse primary visual cortex (V1) is known to be modulated by a variety of 

contextual signals, including arousal, locomotion, spatial context, spatial attention, or navigation 

(Niell and Stryker, 2010; Keller et al., 2012; Saleem et al., 2013, 2018; Vinck et al., 2015; McGinley et 

al., 2015; Poort et al., 2015; Fiser et al., 2016; Jurjut et al., 2017; Pakan et al., 2018; Speed et al., 

2020). Perturbations of specific areas have been found to alter contextual modulations in V1. For 

example, optogenetic stimulation of mesencephalic locomotor region mimics the effects of 

locomotion in V1 (Lee et al., 2014), and optogenetic stimulation of  anterior cingulate cortical 

projections to V1 alter the sensorimotor signals in V1 (Leinweber et al., 2017). Such studies have 

been limited to investigating the involvement of specific areas projecting to V1. What are the other 

potential sources of the various contextual signals in V1? The first step towards addressing this 

question is knowing which areas of the brain project to V1. Here, we use an unbiased approach to 

quantitatively characterise brain-wide projections to V1 using retrograde tracing.  

 

Higher visual areas are known to provide feedback inputs to V1 and modulate receptive field 

properties, especially  in the surround field in mouse and other species (Nurminen et al., 2018; 

Vangeneugden et al., 2019; Keller et al., 2020). In mouse, around nine discrete cortical areas have 

been defined as higher visual areas (HVAs) based on architectonic signatures and functional 
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properties (Wang and Burkhalter, 2007; Garrett et al., 2014; Glickfeld and Olsen, 2017; Zhuang et 

al., 2017). The HVAs have been categorised into two distinct streams based on their anatomical 

connectivity and have different distributions of spatial and temporal response properties, proposed 

to be analogous to the ventral and dorsal streams of primates (Andermann et al., 2011; Marshel et 

al., 2011; Wang et al., 2011, 2012; Tohmi et al., 2014; Glickfeld and Olsen, 2017; Murakami et al., 

2017). Here, we investigated the organisation of inputs from all HVAs to V1.  

 

Continuous organizational patterns have been observed for receptive field position and various 

tuning properties in V1 and HVAs. Retinotopy across different HVAs has been shown to be biased: 

with HVAs medial to V1 generally biased to representing the peripheral visual field, while HVAs 

lateral to V1 biased to the central visual field (Garrett et al., 2014; Zhuang et al., 2017). Growing 

evidence points to additional functional properties being distributed topographically: including 

binocular disparity tuning, colour tuning, coherent motion processing, and orientation tuning across 

V1 and HVAs (Aihara et al., 2017; Fahey et al., 2019; La Chioma et al., 2019; Sit and Goard, 2020). 

How interconnections between V1 and HVAs contribute to these mesoscale topographies is not well 

understood. Patterns of connectivity between V1 and HVAs shed light on possible underlying 

mechanisms. Projection specific calcium imaging studies have revealed reciprocal connections at a 

single cell level: feedforward projection cells from V1 match tuning properties of recipient HVAs 

(Glickfeld et al., 2013; Huh et al., 2018), and in turn, V1 cells receive a large portion of their 

feedback inputs from the HVA they project to (Kim et al., 2020). Anatomical tracing of feedforward 

projections from V1 to HVAs are known to show striking topography (Wang and Burkhalter, 2007), 

and connectivity between V1 and thalamic regions, dLGN (Song et al., 2020) and LP (Bennett et al., 

2019; Juavinett et al., 2020), are known to be topographic. Compared to feedforward projections, 

feedback projections to mouse V1 have not been studied as comprehensively. Some studies using 

anterograde tracers and projection specific functional imaging have found topographic projections 

to V1 from a few HVAs (LM, AL)(Wang et al., 2011; Marques et al., 2018; Keller et al., 2020), and 

anterior cingulate cortex (Leinweber et al., 2017). However, the organisation of feedback inputs to 

V1 from across the brain have not been fully characterised.  

 
In this study, we investigated inputs to V1 using the retrograde tracer Cholera Toxin subunit B (CTB). 

To quantify the inputs to V1 from different brain areas, the first step was to detect labelled cells and 

identify the brain areas where they are present. As most existing software tools (Fürth et al., 2018; 

Song et al., 2020; Tyson et al., 2020)  require extensive setup and training, we developed a simple 

and modular software pipeline to quantify labelled cells across the brain. Our pipeline takes 2D 

images collected with a standard microscope, detects cells, and aligns the images to the Allen CCF, 

thereby allowing 3D reconstruction of cell positions. Using this software pipeline, we found inputs 

to V1 originating from visual thalamic nuclei, all HVAs, and over fourteen non-visual brain areas. The 

number of cells that project to V1 varied across different areas and was most prominent from the 

retrosplenial cortex and HVAs. Based on the distribution of cell bodies and projections in V1, we 

evaluated two organizational metrics, ‘topography’ and ‘bias’. Inputs from many areas tended to be 

topographically organised, that qualitatively matched retinotopy in HVAs. Biased inputs were 

observed in most HVAs, and some other cortical areas. 

 

Results Results Results Results     

To investigate inputs to V1, we injected a retrograde tracer, cholera toxin B subunit (CTB) 

conjugated with Alexa Fluor (488, 555 or 647), in 2 or 3 sites across the extent of V1 in each mouse 

(Fig 1A; Figure S1; Table S2). CTB is known to be taken up mainly by axon terminals at the injection 
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site, and primarily retrogradely labels neuronal cell bodies (Conte et al., 2009; Nassi et al., 2015). In 

addition to its robust uptake, transport and low toxicity, CTB was especially suitable to use for our 

multi-colour injections compared to some viral tracers that are known to exhibit superinfection 

interference (Ohara et al., 2009). Two weeks post-injection, we sectioned coronal brain slices, 

stained them with DAPI, and obtained images across the anterior-posterior extent of the brain using 

standard fluorescent light microscopes (Leica DMi8 or Zeiss Axio Scan). As expected, the retrograde 

tracer injected into V1 labelled cell-bodies of neurons across various areas of the brain, with 

additional labelling of some neuronal processes (Figs 1,2).  

Software pipeline for mapping labelled cell bodies to brain areas 
In order to identify cell bodies labelled by the tracer, and quantify their occurrence across various 

brain areas, we developed a software pipeline that maps each labelled cell body to its 

corresponding brain area, based on the Allen reference atlas (ARA) (Wang et al., 2020). First, we 

found the centroid locations of the cell-bodies in each brain slice by segmenting CTB labelled cell 

bodies in the corresponding fluorescent channel image, and extracting the centroids of these cell 

bodies (methods, Figure S2). We used the centroid locations to generate a binary mask image 

(centroid mask image, Figure 1B). Second, we converted centroid locations to the Allen CCF. For 

this, we used Sharp-track (Shamash et al., 2018) to transform our ‘DAPI image’ (DAPI stain) to fit the 

Allen CCF. Sharp-track allowed us to identify the particular slice (‘reference slice’) within the Allen 

CCF 3D model brain that corresponds to our DAPI image. Next, we manually selected corresponding 

anatomical landmarks in the DAPI image and reference slice (e.g. outer edge of slice, edge of 

ventricles, distinct features within hippocampus etc., Figure 1C (i-ii)), which were used to locally 

transform the DAPI image to fit the reference slice (Figure 1C (iii)). The same image transformations 

were then applied to the centroid mask image, thus converting the centroid positions into Allen 

CCF. Finally, we identified the corresponding brain area of each centroid based on the ARA (defined 

in Allen CCF). Through this semi-automated procedure, we obtained area identities of the cell 

bodies, which could be visualized on the Allen CCF 3D model brain (Figure 1E). 

 

Higher visual areas, Auditory cortex, and Retrosplenial cortex provide largest cortical inputs 

to V1 

We identified over 24 brain areas that provided inputs to V1 (Figure 2, Figure S3). As expected in the 

thalamus, we found a dense cluster of labelled cells in dorsal lateral geniculate nucleus (dLGN) and 

lateral posterior nucleus (LP), which are visual areas known to provide inputs to V1 (Figure 2B). In 

the cortex, we found labelled cells in 9 higher visual areas: namely lateromedial (LM), anterolateral 

(AL), rostrolateral (RL), anterior (A), anteromedial (AM), posteromedial (PM), laterointermediate 

(LI), posterolateral (PL) and postrhinal (POR) (Figure 2C shows examples from PM and LI). We also 

found labelled cells in other cortical areas including retrosplenial cortex (RSP), anterior cingulate 

cortex (ACA) and medial entorhinal cortex (MEC) (Figure 2D). In our samples with multiple injections 

in the same hemisphere, the spatial arrangement of the injections was reflected in LGN, LP and 

many HVAs (Figure 2B-C). We excluded LGN and LP from further analyses as higher resolution 

imaging was required to reliably detect cells, and their strong inputs to V1 are relatively well-

established. To quantify the relative number of cells that project from each brain area, we 

calculated the percentage of the cells in a given brain area labelled by each injection (normalizing by 

total number of labelled cells, excluding cells in V1, LGN and LP). We used percentage cells per 

injection (all sites are shown in Fig 3A) to quantify the distribution of inputs to V1 (single example 

injection shown in Fig 1E) while also considering the variation in injection volume and efficacy of 

CTB uptake (raw cell counts across all areas are listed in Table S3).  
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Higher visual areas together had the most inputs to V1, followed by the retrosplenial, cingulate and 

other sensorimotor cortices (Fig 3). The largest number of cells detected were in the HVAs (all HVAs: 

~59%; median across all injections). Within the HVAs, we found the largest inputs from the 

lateromedial visual area (LM: 14.6%), followed by postrhinal cortex (POR: 8.6%) and posteriormedial 

visual area (PM: 8.0%). In non-visual sensorimotor areas, we found highest cell counts in auditory 

areas (AUD: 6.6%), followed by somatosensory (SS: 2.7%) and motor (MO: 1.6%) areas. In non-

sensory areas, we found cells in the retrosplenial cortex (RSP: 16.5%), temporal association area 

(TEa: 5.3%), anterior cingulate area (ACA: 3.2%), medial entorhinal area (MEC: 1.8%), ectorhinal 

area (ECT: 0.6%) and lateral entorhinal area (LEC: 0.5%). In addition, we found labelled cells in non-

visual subcortical areas including the claustrum (CLA:2.3%) and the subicular complex 

(SUBcom:1.1%).  

 

The distribution of cells observed with our retrograde tracing methods was broadly consistent with 

results from anterograde tracing, and other brain atlases (Figure S4). To verify that our findings, that 

are based on retrograde tracing and CCFv3 boundaries, are not particular to these conditions, we 

performed three different controls. First, we used anterograde tracing data from the Allen Brain 

Connectivity Atlas to infer the strength of projections into V1. We found a similar distribution of 

projections, with HVAs being the dominant source of inputs to V1. Other areas providing inputs to 

V1 included non-visual sensorimotor areas, retrosplenial cortex and cingulate cortex (Figure S4A). 

Note that quantifying the strength of innervation (axon terminals) with anterograde tracing can be 

noisy due to axons of passage, or thin axons below detection threshold. In addition, there was 

limited sampling as we only considered areas that had injections localised to within the area (see 

Methods for criteria). As a second control, we used retrograde tracing data from a previous study 

that used area definitions based on PV cell density and immunofluorescence of several receptors on 

a flattened cortex (Gămănuţ et al., 2018). The distribution of projections across areas were broadly 

consistent within the available data (Figure S4C). The main difference was that HVAs and RSP 

provided a much larger proportion of the total input to V1 compared to other areas that was 

observed in our data. As a third control, we used the boundary definitions based on the Franklin 

and Paxinos atlas (FP), taking advantage of a recent unified atlas (Chon et al., 2019) to convert the 

cell labels from CCFv3 to FP labels, and recalculated the distribution of cells (Figure S4B). We found 

the general tendency for HVAs (V2), Auditory cortex (Au), Retrosplenial Cortex (A29, A30), and 

Temporal Association area (TeA) having the highest cell counts to be unchanged. However, due to 

the differences in border definitions, more cells were attributed to TeA than Retrosplenial areas in 

the FP atlas, and less than half of the cells assigned to TEa, POST, PAR, ENT, VISa and VISli in CCFv3, 

were assigned to a corresponding area in the FP atlas (Table comparing cell counts between CCFv3 

and FP atlas available on Figshare). Overall, while these results show a qualitative agreement, they 

also reflect how the results can be reliant on the definition of borders between areas, which will 

evolve with new information. However, similar to the approach we used to convert CCFv3 labels to 

FP labels, the distributions of cell-bodies across regions can be recalculated based on new area 

definitions with the 3D coordinates that we have made available online (see Methods for details).  

 

Organisation of projections to V1  

As our injections into V1 spanned a range of positions in V1 (Figure 3A, Table S2), we asked if there 

was any organisation of the inputs across V1. We define two types of organisation metrics that we 

could evaluate with our retrograde tracing data, illustrated in Figure 4. The first measure is 

‘Topography’ – the organisation of the cell bodies at the source area. We consider an area to have 
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high topography when cell bodies labelled by different injections are localized to non-overlapping 

sections of the source area, and low topography when they are widely distributed across 

overlapping sections of the source area. The second measure is ‘Bias’ – the organisation of the 

projections at the target area (i.e. V1). We consider an area to have high bias when it selectively 

projects to one part of the target area, and low bias when it projects homogeneously across the 

target area. 

Organisation of cell bodies projecting to V1 within a source area 

Cell bodies in HVAs tended to be topographically organised. We binned the source area into 100µm 

voxels and calculated a measure of topographic selectivity in each voxel we term retinotopic 

projection selectivity (RPS). RPS is based on an estimate of the retinotopic projection target of a 

voxel. It is calculated by weighting the normalized retinotopic position of each injection site by the 

number of cells it labelled within the voxel (see Methods and Figure S5 for details). We then 

obtained a top-down map of retinotopic projection selectivity in cortical source areas, by 

calculating the mean along the depth (dorsoventral axis) of the 3D volume (Figure 5). We also 

calculated the azimuthal and elevation maps based on a dataset shared by the Allen Institute 

(Waters et al., 2019). In both azimuthal and elevation retinotopy, top-down maps of HVAs exhibited 

more retinotopically selective regions (non-grey regions) that resembled the retinotopic maps of 

the corresponding HVA, suggesting a topographic organisation of feedback projections. A similar 

organisation was visible in some multi-site injection images (Figure 2; Figure S2, S5). Interestingly, 

many non-visual areas, also showed some topography in their projections to V1 (Figure 5; Figure 

S6). However, the fraction of voxels that showed a significant projection selectivity was lower in 

most non-visual areas compared to HVAs (Table S4). This mild topography of projections found in 

non-visual areas may suggest hitherto unknown (except ACC (Leinweber et al., 2017)) functional 

topography in some of these areas. 

 

Projections to V1 from cortical areas were predominantly from deeper layers (L5, L6) compared to 

superficial layers (L1, L2/3) of the same area, based on CCFv3 layer definitions (Table S6). The 

relative percentage of supragranular (superficial layer) labelled neurons (%SLN) have been 

described to correlate with hierarchy of cortical areas in primates (Markov et al., 2014), where a 

%SLN below 50% is considered higher in hierarchy than the target region, and thus providing 

feedback inputs. For most cortical areas projecting to mouse V1, we found %SLN to be under 25% 

(Table S6), which is consistent with these areas providing feedback inputs to V1. The precise value 

of %SLN, however,  did not reflect the any of the proposed schemes of cortical hierarchy in mouse 

(Gămănuţ et al., 2018; Harris et al., 2019; D’Souza et al., 2020) and therefore the interpretation of 

%SLN for precise hierarchical order of cortical areas used in primates may need to be modified for 

mice. 

 

Organisation of projections within V1 
We next analysed the distribution of projections targets from a given source area, across anatomical 

space. For each source area, we calculated the percentage in the source area cells labelled by each 

injection, and analysed how this percentage varied with the anatomical locations of the injection 

sites (Figure 6). While the distribution of projections from some HVAs exhibited a clear bias (PM, 

LM, LI, POR), some areas’ projections appeared more homogeneous (Fig 6A). The areas that showed 

a bias tended to be biased towards the anatomical location of the source area, but LI was a notable 

exception that showed the reverse bias, away from the source area.  
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To quantify the organisation of inputs within V1, we assessed the relationship between the 

retinotopic location of injection sites and distribution of cell counts in each HVA by plotting the 

estimated azimuthal and elevation coordinates of all injection sites against their corresponding cell 

counts (Figure 6B). We observed significant correlations between the cell counts and azimuth and 

elevation retinotopy across many HVAs, with predominantly positive correlations for HVAs that 

were medial to V1 (PM, AM A), and negative correlations for most lateral areas (RL, POR, PL, with 

the exception of LI). Most non-visual areas were not significantly biased, with the exceptions of RSP, 

POST and ECT (Fig 6A; Table S4). 

 

In order to uncover potential grouping in the projection patterns, we clustered the injection sites 

based on the distribution of cell counts in HVAs (and no information regarding the injection 

location) by considering each injection site as an independent data point.  We used k-means 

clustering and classified the data into two clusters. The clustering resulted in the injection sites 

being grouped into roughly medial and lateral clusters in anatomical space, even though no 

information about the injection site was used for clustering (Figure S7A). The line of separation 

between the clusters can be seen when we plot the first two principal components of the 

distributions of HVA cells counts (Figure S7A). Splitting the data into additional clusters did not 

qualitatively reveal further segregation. Therefore, injection sites broadly clustered into two groups, 

based on the distribution of inputs from different HVAs.  

The grouping of injection sites based on distribution of cell counts in HVAs was consistent with a 

separation along retinotopy: into sites within the central visual field and the peripheral visual field. 

The separation into medial and lateral clusters was roughly along the 37.5° iso-azimuth line, which 

segregated the injection sites based on whether they were in the central or peripheral visual fields. 

Note that the clustering into two groups along the azimuth axis could potentially reflect the larger 

variance of injection sites along this axis, and more focal and varied injections might reveal more 

refined clustering. We grouped the injections based on being below (medial) or above (lateral) 

37.5°. Based on this grouping, we found that medial injections had preferentially higher cell counts 

in medial HVAs (A, AM, PM), and lateral injections had higher cell counts in lateral HVAs (LM, RL, PL, 

POR) (Figure S6B). We next analysed inputs to V1 from all brain areas using the split of injection 

sites into medial and lateral groups (Figure 7A-B). We found minor variations in input pattern across 

non-visual brain areas (Figure 7C). Only HVAs, specifically RL, AL, LM, POR and PL, showed a 

significant difference between medial and lateral injection groups (Figure 7C). Therefore, both 

correlation and clustering results indicate that there is a difference in the organisation of 

projections along the retinotopic axes of V1, which suggests that there is a biased organization of 

feedback inputs from HVAs to V1. 

 

Discussion Discussion Discussion Discussion     

In this study, we investigated cortex-wide inputs to mouse V1 using the retrograde tracer CTB. We 

first developed a simple and modular software pipeline for the quantification of labelled cell bodies 

in Allen CCF, which identifies the brain area of each labelled cell. Confirming previous reports, and 

also in agreement with anterograde data from the Allen Brain Institute, we observed cortex-wide 

inputs to V1, including higher visual areas, retrosplenial cortex, other sensory cortices, cingulate 

cortex and rhinal areas. We next quantified inputs from across the brain. The most inputs, 

approximately 60% of detected cells, were from higher visual areas (HVAs). Within HVA cells, we 

discovered a topographic source cell organization that matched well with retinotopy. In other areas 
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we found varying degrees of topography, but generally lower than that of HVAs. Biased projection 

across V1 was observed mainly from HVAs, but also from other cortical areas.  

Diverse areas projecting to the primary visual cortex 

We found fourteen unique brain areas that project to V1, which are not typically considered visual. 

These results suggest that top-down inputs associated with V1 activity might be routed directly 

from these areas rather than indirectly through HVAs. For example, we find inputs from the 

auditory areas (AUD), which might be involved in generating the multi-sensory integration observed 

in V1 (Iurilli et al., 2012). Inputs from the anterior cingulate cortex have been attributed to 

modulate locomotor signals (Fiser et al., 2016; Leinweber et al., 2017), and those from the 

claustrum could be involved in change detection or modulating the salience of visual cues (Brown 

et al., 2017; Atlan et al., 2018). Spatial signals modulating V1 activity (Pakan et al., 2018; Saleem et 

al., 2018; Fournier et al., 2019) could be routed through areas that are also known to have spatial 

signals, including the retrosplenial cortex (Mao et al., 2018; Nitzan et al., 2020) , or the entorhinal 

and subicular areas (Witter et al., 2017). 

We detected high cell counts in HVAs, especially LM, PM, AL and POR, dorsal retrosplenial cortex 

(RSPd) and auditory cortex (AUD). This ranking of inputs per area is consistent with previous studies 

using retrograde tracing in cortex, albeit minor differences (Figure S4) that may have been caused 

by use of different reference atlases (Zingg et al., 2014; Leinweber et al., 2017; Gămănuţ et al., 

2018).  

Relationship between topography, bias, and retinotopic maps  

Our results suggest a correlation between the mean retinotopy in HVAs and retinotopic projection 

selectivity based on visual comparison. However, we did not directly compare and quantify the 

relationship between retinotopic organisation of HVAs and the retinotopic selectivity index due to 

the potential for errors. The main reason for this is because we inferred retinotopy of each injection 

site based on a mean retinotopic map across multiple animals from an independent dataset 

(Waters et al., 2019). Furthermore, the retinotopic map can be variable between animals (Waters 

et al., 2019), and our injection site covers a range retinotopic positions. Therefore, to precisely 

compare the two measures, we would have to measure retinotopy within an area, and the 

retinotopy of projections from the HVAs. Using this methodology some previous studies using 

projection specific imaging found such correlations in LM and AL (Marques et al., 2018; Keller et al., 

2020). Our data qualitatively suggests that similar correlations are likely to be present across 

different HVAs. 

If feedback projection from HVAs to V1 followed a strict like-to-like rule (where HVA cells project 

only to the V1 region with matched retinotopy), we can expect to observe topography in feedback 

projections. Combined with the biased coverage of the visual field of HVAs, like-to-like connectivity 

can also lead to bias in feedback projection. Our results show that both topography and bias are 

present to some extent across HVAs and seem to be related to retinotopy. However, given the 

limitations of our method (see later section “Limitation of the study”), it is not possible to conclude 

whether feedback projections from HVAs to V1 follows a strict like-to-like rule from our study. 

Other work using functional imaging of specific feedback projections (Marques et al., 2018) 

observed that feedback projections from LM to V1 have a broader RF compared to that of V1, 

suggesting that retinotopic like-to-like connectivity might be a general but not a strict rule for 
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feedback projections. Moreover, while retinotopic like-to-like connection might explain bias in 

HVAs to some extent, there might be additional mechanisms underlying such bias, especially in 

non-visual areas, which do not have a clear retinotopic representation. 

Organization of feedback inputs from HVAs 
We observed that inputs from HVAs to V1 are topographically organized such that the distribution 

of inputs vary along the surface of V1. This is consistent with studies that investigated specific 

projections from HVAs to V1. For example, feedback projections from LM have matched receptive 

field centres to V1 cells in the vicinity of its projections (Marques et al., 2018). 

In mice, ferrets and primates, it is known that feedback from HVAs show retinotopic convergence, 

in which HVA feedback neurons represent a larger retinotopic area compared to the V1 region it 

provides feedback to (Angelucci et al., 2002; Cantone et al., 2005). These feedback projections are 

therefore likely to contribute to surround suppression in V1, which was shown to be the case using 

optogenetics in marmosets (Nurminen et al., 2018) and mice (Vangeneugden et al., 2019). From our 

data it was not possible to quantify how much of the topography we observed could be explained 

by the retinotopy of V1 recipient neurons and HVA feedback neurons. This was because we did not 

empirically measure the retinotopic location of the HVA cell body and terminals, but also because 

our injection volume in V1 was relatively large and spanned an extent of retinotopic space larger 

than receptive field sizes. Thus, it would be of interest for future studies to trace single cell inputs 

retrogradely to understand the precise topography of HVA inputs to V1 (Rancz et al., 2011). 

A feature defining higher visual areas is that each area has a retinotopic representation of the visual 

space, or retinotopic map. The retinotopic maps in mouse HVAs have been shown to represent 

visual space in a biased manner, with HVAs closer together having similar biases in their 

representations of visual space (Zhuang et al., 2017).  

Overall, the biases we observed in HVAs were consistent with a general principle of medial areas 

preferentially projecting to medial V1 and lateral areas to lateral V1, with the exception of the area 

LI. This is particularly interesting given recent evidence of some functional properties of LI, 

specifically the preference for low temporal and high spatial frequencies, being similar to medial 

area PM (Han et al., 2018). 

Functional implications of biased organization of feedback inputs 

Growing evidence points to functional diversity within the mouse V1 population. Binocular disparity 

tuning, colour tuning, and coherent motion processing have recently been shown to differ along the 

retinotopic elevation axis of V1 (Aihara et al., 2017; La Chioma et al., 2019; Sit and Goard, 2020). In 

a mouse performing a task in virtual reality, task related variables were also observed to be 

represented continuously across visual areas (Minderer et al., 2019). These studies argue for a 

topographic organization of mouse visual areas at the functional level.  

A diversity of functional properties across the visual field have also been observed in the primate 

visual system. Visual acuity and contrast sensitivity reduce with increased eccentricity in human 

subjects (Virsu and Rovamo, 1979; Banks et al., 1991; Duncan and Boynton, 2003), and neurons 

with receptive fields in the periphery have preferences for higher temporal frequencies and lower 

spatial frequencies in non-human primates (Schiller et al., 1976; De Valois et al., 1982; Foster et al., 

1985; Tootell et al., 1988; Yu et al., 2010). While some of the functional differences can be 

explained by differential feedforward retinal input such as cortical magnification factor (Banks et 

Jo
urn

al 
Pre-

pro
of



  

 

 

 

9 

al., 1991; Yu et al., 2010), some functional properties such as spatial integration (Nurminen et al., 

2018) are perhaps controlled by differential feedback projections in primates (Federer et al., 2020). 

The biased organization of feedback projections we observed between medial and lateral V1 might 

mean that V1 cells representing peripheral vs central visual fields are differentially modulated by 

HVAs. Ethologically, animals encounter different types of visual information in different portions of 

the visual field. In the case of a navigating mouse, its peripheral vision might be more frequently 

used for detecting optic flow, whereas the central vision might be used for landmarks to orient to. 

This has led to the proposal for a central and peripheral stream of processing for mouse vision 

(Saleem, 2020). The current finding for biased organization of HVA feedback projections to V1 is 

consistent with this notion. This view is further supported by recent findings that different HVA 

projections convey different information to V1 cells (Huh et al., 2018), and that these feedback 

projections follow a ‘like-to-like’ rule in their reciprocal connection to V1 cells (Malach, 1989; 

Marques et al., 2018; Kim et al., 2020; Siu et al., 2020). 

Conclusion 

In this study, we quantified the distribution of projections to mouse V1 using a novel software 

pipeline. This establishes candidate brain areas and their sub-regions from which mouse V1 

receives topographic feedback inputs, which can be targeted for observing or manipulating neural 

activity during various contexts. Furthermore, we found that the distribution of feedback 

projections from HVAs are different between the central and peripheral visual fields, consistent 

with the hypothesis that different portions of the visual field have different ethological demands for 

visual processing. 

Limitations of the studyLimitations of the studyLimitations of the studyLimitations of the study    

We developed a software pipeline to quantify and annotate cells based on the now standard mouse 

brain map, ARA (Wang et al., 2020). While other software has recently been developed for this 

purpose (Fürth et al., 2018; Song et al., 2020; Tyson et al., 2020), our strategy is simple and 

modular, with little learning curve. It is semi-automated, and requires human curation for cell 

detection and alignment to the Allen CCF. Our software takes advantage of sharp-Track (Shamash 

et al., 2018) and has been developed as an extension of that framework, so that the same software 

package can be used for tracking electrode positions and detecting cell-bodies. 

The definition of brain areas in our study was based on the ARA, co-registered to our brain images 

in Allen CCFv3. There are two potential errors in our methodology. The first is related to area 

definitions, as the precise definition of brain regions can be dependent on the atlas used 

(Supplemental Fig 4). We can assess the atlas dependent errors by recalculating of the distribution 

based on updated future atlases using coordinates of all detected cells (available online). The other 

error is related to the alignment of our slices to the Allen CCF. The accuracy of the alignment 

method was previously shown to be more reliable than localizing ROIs in an atlas by eye (Shamash 

et al., 2018). While Sharp-Track can account for a certain degree of variation in the sample 

preparation (for example, distortions from sectioning), there is a manual component to its 

alignment where anatomical landmarks are used to align slices. As these are subjective assessments 

based on the experimenter identifying anatomical landmarks in the DAPI images, they can lead to 

additional errors. However, we did verify whether known architectonic signatures in the DAPI 

images matched our area annotations, such as rapid thinning of layer 4 as the transition between 

retrosplenial cortex and HVAs, and found them to be consistent with each other.  
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FigureFigureFigureFigure    LegendsLegendsLegendsLegends    

 

Figure 1: Software pipeline for mapping cell body locations to brain regions through 

alignment with Allen CCF.  

A) Example injection site of CTB in V1. White dotted line denotes V1 boundary based on the 

Allen Reference Atlas (ARA). Scale bar: 1 mm B) Demonstration of the steps used to detect 

labelled cells: cells were segmented from the raw image and their centroids were extracted. 

Scale bar: 1 mm C) Images of brain slices were registered to the ARA using SHARP-track. We 

illustrate an example of this procedure, where transformation points on DAPI image ((i), 

green) were transformed to fit a Reference slice (from ARA) transformation points ((ii), red). 

Overlay of (i) and (ii) shown in (iii). D) The registration was carried out across all brain slices 

along the anterior-posterior axis. E) An example visualization of cell body locations on the 3D 

brain model with cells color-coded by area identity. (see also Figure S1, S2) 

Figure 2: Retrogradely labelled cells detected in various brain regions.  

A) Example of multiple CTB injections in V1 (CTB-488 (cyan), CTB-647 (yellow) and CTB-555 

(magenta)). B-D) Example areas showing retrogradely labelled cells. Retinotopic organization 

of cells can be seen in LGN (B), and higher visual areas (PM and LI shown) (C). Some neural 

processes were also labelled in these areas. Cells were observed in other cortical areas such 

as RSP, ACA, and MEC (D).  Right side panels correspond to red rectangle regions on the left 

panel. Scale bars: A-B: 1 mm, C-D: 100 µm. B-C are from the injections shown in A, and 

images in D are from different injections. (area name abbreviations are in Table S1) (see also 

Figure S3, Table S1) 

 

Figure 3: Distribution of inputs to V1.  

A) Coordinates of all injection sites registered to the Allen Reference Atlas (21 injections; 9 

animals). The colour of the dots represents which animal each injection belongs to. B) 

Distribution of percentage cell counts per area pooling all injections. (16 injections; 7 animals; 

mean: black line, median: red line). Gray fill indicates areas with significantly higher cell count 

than 7 other areas (kruskalwallis, multiple comparison of mean ranks, p<0.05). HVA names are 

highlighted in bold. Area name abbreviations are listed in Table S1. Violin plots show estimated 

distribution of the data using normal kernels. Mean shown in Black line, median shown in Red 

line. C) Data in B) illustrated as a tree diagram. Thickness and grayscale of lines relate to the 

median of percentage cell counts (%) as shown in legend. LGN and LP were excluded in 

analyses. In most areas (except RSP), results are pooled across all sub-area categories (e.g. 

MO=MOs + MOp, ACA=ACAd + ACAv etc.). (see also Figure S4 and Tables S1-S3) 

Figure 4: Possible organizations of projections to V1 that can be inferred from retrograde 

tracing.  Description of organization of projections based on ‘topography’ (x-axis) and ‘bias’ (y-

axis).  We consider an area to have high topography when cell bodies labelled by different 

injections are localized to non-overlapping sections of the source area, and low topography 

when they are widely distributed across overlapping sections of the source area. We consider 

an area to have high bias (indicated by the thicker red arrow and thinner blue arrow) when the 

fraction of cells projecting to different portion of the target area (i.e. V1) are very different, and 
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low bias when the fraction of cells projecting to different portions of the target area are similar 

(indicated by equal thicknesses of red and blue arrows). 

Figure 5: Organization of source area cell bodies projecting to V1.  

Normalized (z-scored, see Methods) “retinotopic projection  selectivity” of cell bodies were 

binned into 100µm voxels, averaged across the depth of cortex, shown for all higher visual 

areas (top), and auditory (AUD), retrosplenial (RSP) and anterior cingulate (ACA) cortices. The 

voxels have been colour-coded based on their mean normalized selectivity along A) azimuth or 

B) elevation retinotopy. The colormap (dark blue-gray- dark red) in the centre image in top 

panels correspond to retinotopy in azimuth (0° to 60°) and elevation (-10° to 15°). All areas are 

shown in left hemisphere orientation. (see also Figure S5, S6, Table S4) 

 

Figure 6: Organization of projections within the target area (V1).  

A) Injection sites in V1 colour-coded based on normalized cell counts (% cell count) from 

example source areas (the range of % cell counts for each area is reported in Figure3B). The 

corresponding source area is shaded in light yellow (except for ACA).  B-C) Correlation of 

normalized cell counts to retinotopic axes for assessing projection bias. B) Example correlation 

plot for area PM. PM showed significant correlation along both azimuth and elevation axes. C) 

Correlation coefficients for all higher visual areas. Filled bars indicate significant correlations 

(p<0.05). Top schematics illustrate the retinotopy (blue-red colormap) and projection bias 

(black arrows) within V1. (see also Table S5, S6) 

 

Figure 7: Differential inputs to Medial vs Lateral V1.  

A) Grouping of injections into medial and lateral groups based on retinotopic coordinates (16 

injections; 7 animals). Lateral group indicated in cyan (azimuth 0° to 37.5°), medial group 

indicated in magenta (azimuth 37.5° to 100°). B) Example 3D reconstruction of cells labelled 

with double injections (M19117) to one hemisphere (except V1, LGN & LP). Cells labelled by 

the lateral V1 injection are shown in cyan, while those labelled by the medial V1 injection are 

shown in magenta. C) Median of normalized cell counts (%), medial and lateral injection groups 

plotted against each other. Error bars indicate median +/- S.E.M.. Gray dotted line indicates the 

unity line. Lateral HVAs in cyan, medial HVAs in magenta. Names of areas with significant 

difference between medial and lateral injection groups are in black (Wilcoxon rank sum test, 

p<0.05). Shaded region (0 to 5) enlarged in inset. (see also Figure S7) 

 

Supplemental Video 1: Animation of 3D brain model with labelled cells from an example injection, 

color-coded by area identity (see also Figure 1) 

Excel format table S2 (related to Figure 3):  List of all injections in the study: including injection 

coordinates, injectate, and total number of cells detected      
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STAR MethodsSTAR MethodsSTAR MethodsSTAR Methods    
 

KEY RESOURCES TABLEKEY RESOURCES TABLEKEY RESOURCES TABLEKEY RESOURCES TABLE    

REAGENT or RESOURCE SOURCE IDENTIFIER 
Bacterial and virus strains  

Cholera toxin subunit B (CTB) 
conjugated with Alexa Fluor 488 

Thermo Fisher Cat#C34775 

Cholera toxin subunit B (CTB) 
conjugated with Alexa Fluor 555 

Thermo Fisher Cat#C34776 

Cholera toxin subunit B (CTB) 
conjugated with Alexa Fluor 647 

Thermo Fisher Cat#C34778 

Deposited data 

Retrograde tracing data This paper  

https://figshare.com/projects/Organi
zation_of_feedback_projections_to_
mouse_V1_-
_data_and_supplementary_tables/9
8237 

Mouse retinotopic maps Waters et al. 2019, 
supplemental material 

https://journals.plos.org/plosone/articl
e?id=10.1371/journal.pone.0213924 

Anterograde tracing data Allen Brain Institute https://connectivity.brain-
map.org/projection 

Retrograde tracing data Gamanut et al. 2018, 
supplemental material 

https://www.cell.com/neuron/fulltext/S
0896-6273(17)31185-6 

Experimental models: organisms/strains 

M. musculus; C57BL/6J Charles River  

Software and algorithms 

FeedbackProjections2V1 This paper https://github.com/SaleemLab/Feedba
ckProjections2V1 

SHARP-Track Shamash et al. 2018 https://github.com/cortex-
lab/allenCCF/tree/master/SHARP-
Track 

MATLAB R2017-R2020 Mathworks https://uk.mathworks.com/ 
 

RESOURCE AVAILABILITYRESOURCE AVAILABILITYRESOURCE AVAILABILITYRESOURCE AVAILABILITY 

Lead Contact 

Aman B Saleem (aman.saleem@ucl.ac.uk) 

Materials availability 

No new material was produced during this project. 

Data and code Availability 

The processed data and software are available at:  

Data: FigShare ( 
https://figshare.com/projects/Organization_of_feedback_projections_to_mouse_V1_-
_data_and_supplementary_tables/98237),  

Code: Github (https://github.com/SaleemLab/FeedbackProjections2V1).  

Other data and code used in this study were publicly available (also see Key Resources Table): 

Mouse retinotopic maps data (Waters et al. 2019, 
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https://doi.org/10.1371/journal.pone.0213924), Anterograde tracing data (Allen Brain Institute, 

https://connectivity.brain-map.org/projection), Retrograde tracing data (Gamanut et al. 2018, 

https://doi.org/10.1016/j.neuron.2017.12.037), SHARP-Track code (Shamash et al. 2018, 

https://github.com/cortex-lab/allenCCF/tree/master/SHARP-Track) 

EXPERIMENTAL MODEL ANEXPERIMENTAL MODEL ANEXPERIMENTAL MODEL ANEXPERIMENTAL MODEL AND SUBJECT DETAILSD SUBJECT DETAILSD SUBJECT DETAILSD SUBJECT DETAILS 
All procedures were conducted in accordance with the UK Animals Scientific Procedures Act 

(1986). Experiments were performed at University College London under personal and project 

licenses released by the Home Office following appropriate ethics review. We used 9 adult male 

and female wild-type mice (C57BL/6J, aged 13–30 weeks) for this study. All mice were kept on 

12-h light: 12-h dark cycle, with food and water available ad libitum. Mice were singly housed 

after the surgical procedures. 

METHOD DETAILSMETHOD DETAILSMETHOD DETAILSMETHOD DETAILS 
Surgery and injection 
Mice were anaesthetised with 2% isoflurane delivered with oxygen (0.5 l/min), and placed on a 

heating pad to maintain body temperature. An incision was made to the scalp along the midline 

to expose the injection area, and injection coordinates for V1 (listed in Supplementary Table 2) 

were marked using a stereotaxic software (Robot Stereotaxic, Neurostar). Small craniotomies 

were made at these sites and cholera toxin subunit B (CTB) conjugated with Alexa Fluor (CTB-

488, -555, -647, Thermo Fisher cat#C34775, C34776, C34778) was injected using glass 

micropipettes. CTB was injected in 2 to 3 sites in V1 bilaterally (7 mice) or unilaterally (2 mice) 

in V1, at depths of 250μm or 750μm below the pia (unilateral: M19118, M19119, bilateral 

double: M19114, M19115, M19121, M19122, M19123 bilateral triple: M19116, M19117, see 

Supplementary Table 2 and Supplementary Fig. 1 for more details). Multiple injections within a 

hemisphere were made with unique fluorophores (CTB-488, -555, and -647). At each site, we 

infused 200-300nl at a flow rate of 20-40nl/min. For some injections (see Supplemental Table 2 

for details), an anterograde tracer (spaghetti monster, AAV1-smFP (addgene #98928)) was co-

injected, but data from this tracer was not used for this study. The micropipette was left at the 

injection site for 5 minutes after the infusion completed, before being withdrawn slowly. We 

covered the craniotomies with KwikCast (World Precision Instruments), sutured the scalp, and 

allowed the animals to recover for 3 days while orally administering analgesics. 

Histology and imaging 
10-14 days post-injection, mice were anesthetized with 5% isoflurane and injected with 

pentobarbital intraperitoneally. Mice were transcardially perfused with 0.9% NaCl in 0.1M 

phosphate buffer (PB), followed by 4% paraformaldehyde (PFA). The brain was extracted and 

placed in 4% PFA overnight at 4
o
C, and subsequently cryoprotected with 30% sucrose solution. 

The olfactory bulb and cerebellum were cut away, and brains were frozen in O.C.T. Compound 

(Sakura FineTek). Coronal sections of 50μm thickness were sliced on a cryostat (Leica, CM1850 

UV), on average between AP-coordinates of bregma 0.64±0.30 (S.E.M.) to -4.55±0.08 (S.E.M.). 

Slices were mounted using Vectorshield with DAPI (Vector Labs) or ProLong Diamond Antifade 

Mountant with DAPI (Invitrogen) and slices 150μm apart were imaged with a standard 

fluorescence microscope (Leica DMi8 or ZEISS Axio Scan.Z1) using a 10x objective and standard 

filter sets. The contrasts of individual channels were adjusted in figures to optimise 

visualisation.  
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QUANTIFICATION AND STATISTICAL ANALYSISQUANTIFICATION AND STATISTICAL ANALYSISQUANTIFICATION AND STATISTICAL ANALYSISQUANTIFICATION AND STATISTICAL ANALYSIS 
Detection and quantification of labelled cells 
Our analysis pipeline consisted of a cell detection procedure followed by alignment to the Allen 

CCF using SHARP-Track (Shamash et al., 2018). Our cell detection algorithm steps (implemented 

using the image processing toolbox in MATLAB, R2017; function names in italic) were: 1) 

background subtraction using morphological top-hat filter imtophat (structural element:‘disk’, 

size: 4), 2) binarization by imbinarize using a percentile threshold (typically 99.5 to 99.8 

percentile of the fluorescence intensity histogram) 3) selecting objects larger than 25 pixels in 

the binary image using bwareaopen, 3) erode and dilate edges of objects using 

imerode/imdilate (structural element: ‘disk’; size: 1) 4) fill holes in the objects through imfill 

followed by 5) watershed to isolate connected objects, and finally 6) extract centroids of 

objects using regionprops (property: area > 20). The automatic segmentation results were 

checked by visual inspection for each processed slice (Supplementary Fig. 2). The cell-detection 

process segmented the cells from neuropil that were occasionally labelled using CTB. Using the 

centroids from the final step, we generated a centroid mask (an image that has a value of 1 at 

the centroid locations and 0 elsewhere) of the same size as the original image and used this and 

DAPI channels as input to SHARP-Track. As SHARP-Track was originally developed to analyse 

electrode tracks, we adapted some functions for the purpose of quantifying cells in different 

brain regions. The GUI in SHARP-Track allows for the user to scroll through slices of the ARA 3D 

brain model, and visually identify the slice that best corresponds to the imaged brain slice (DAPI 

image). The selected ARA slice (reference slice) can be micro-adjusted in the AP-, ML- and DV-

axes, to account for any asymmetry introduced during histological procedures. Subsequently, 

transformation points were selected by clicking on corresponding anatomical landmarks 

between the DAPI image and reference slice. These points are used to morph the DAPI image to 

fit the reference slice, using local transformations (Shamash et al., 2018). We placed more 

transform points around our areas of interest (e.g. where we found cells) such that the fit 

would be more accurate around the areas of interest. We then used the same transformation 

on the centroid mask image to map cell body centroids to the ARA. This generated a table of all 

detected cells with coordinates and area identities in Allen CCF (based on the ARA). We 

analysed each of the imaged slices through this pipeline and calculated the cell counts from 

each injection site. These cell counts were generally consistent with results from manual 

counting of cells performed on a subset of samples. Absolute cell counts were normalized by 

the total number of cells per injection (excluding cells in V1, LGN and LP). Cell counts from 

individual injection sites were considered independent samples for subsequent analyses. For 

estimating the centroid of injection sites in Allen CCF, we first used image processing methods 

almost identical to cell detection described above. For each injection, we identified the 

injection site in the slice with the strongest fluorescence signal (Supplementary Fig. 1), then 

after segmenting the injection site as a single object, centroids were extracted using 

regionprops (property: area > 5000). Subsequent steps to align the centroid to ARA was 

identical to the method described above. The processed data is available to download at 

FigShare, and the code for the analysis pipeline described above, at Github.    

Retinotopic location of injection sites 
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To estimate the retinotopic position of our injection sites post hoc, we followed a procedure 

similar to a previous study (Minderer et al., 2019), and used intrinsic imaging data published by 

the Allen Institute (Waters et al., 2019). This dataset contained mean azimuth and elevation 

maps in Allen CCF from 60 mice, generated using horizontal and vertical sweeping bars 

(Kalatsky and Stryker, 2003). Using the injection site coordinates in Allen CCF, obtained using 

the software pipeline above, we directly read out values from the mean azimuthal map and 

used these as estimated retinotopic positions of our injection sites. While we did not 

experimentally confirm the individual retinotopic location of each injection site, previous work 

has shown that the difference in the retinotopic maps across animals is comparable to 

measurement error across trials within individual animals, due to the underlying variability in 

the estimation of the receptive field using wide-field intrinsic imaging  (Waters et al., 2019). 

Analysis of anterograde tracing data  
We used anterograde tracing data from the publicly available connectivity repository of the 

Allen Brain Institute (https://connectivity.brain-map.org/projection). Specifically, we used the 

‘target search’ functionality in the GUI provided at the website. We selected specific brain areas 

(shown in Supplementary Fig. 4) as ‘source’, and V1 (‘VISp’) as the ‘target’ and analysed all 

resulting injections from all mouse strains. The data contained measured values such as the 

volume of fluorescent pixels (mm
3
) in the target area, and injection specificity. We adopted a 

criterion to filter these injections: selecting for further analyses only those with injection 

volumes over 0.1 mm
3
, and injection specificity over 70%. We then normalized the fluorescent 

volume of the target area by the injection volume to account for the variability in injection 

volumes. This allowed us to assess the amount of specific projections from ‘source’ areas to 

‘target’ area V1 using anterograde tracing data. 

Other Analyses 
To cluster injections based on the distribution of inputs connections, we used k-means 

clustering (Supplementary Fig. 6). For this clustering, we used two seeds, one in medial V1 and 

another in lateral V1. This was necessary because seeds randomly selected from within the 

same group led to variable results. For correlation analysis, we used the Pearson’s correlation 

coefficient r. 

Paired t-tests, Kruskal-Wallis, and Wilcoxon ranksum tests were used to test for statistical 

significance. For all comparisons, we used a significance level of p < 0.05. 

For statistical comparison in Fig. 3B, we performed a non-parametric multiple comparison 

procedure, comparing the mean rank of areas as groups, using the Kruskal-Wallis test. No single 

area had significantly larger mean rank than all other 21 areas. To highlight areas with higher 

mean rank, we chose a criterion of ‘larger than 7 other areas’. The complete results of multiple 

comparison for Fig. 3B was as follows: AUD>7, MO<11, SS<4, ACA<2, ECT<13, LEC<13, MEC<10, 

RSPagl>5, RSPd>8, RSPv>2&<1, Tea>4, CLA<7, SUBcom<11, PM>8, AM>5, A<7, RL>2 & <2, AL>7, 

L>11, LI>5, POR>10, PL>7 (area>X: larger than X other areas, area<X: smaller than X other 

areas).  

For visualizing source cell distribution, we first calculated “retinotopic projection selectivity”. 

Each cell was assigned a weighted retinotopic value, based on properties of the injection site 

from which it was retrogradely labelled. The retinotopic value was obtained by locating our 

injection sites within the mean retinotopic map from the Allen Brain Institute (Waters et al. 

2019), then normalized to values -1 to 1 (azimuth range: 0° to 60°, elevation range: -10° to 15°). 
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The weight was % cells labelled by that injection in the source area, used as a means to control 

for the injection size (to avoid larger injections with higher labelled cell counts being 

overrepresented). We then summed this weighted retinotopic value from all cells found in each 

100 µm cubic bin (voxel) to obtain the “retinotopic projection selectivity” per voxel. Thus, 

retinotopic projection selectivity (RPS) for each voxel, �, can be written as: 

���(�) =	
�(�)��


���
�� 

Where �� is the weight given to the ���	injection site from which the cell was retrogradely 

labelled, �� is the normalized retinotopic value for that ��� injection site, 
�(�) is the number of 

cells found in a given voxel � (100 µm cubic bin) corresponding to the ��� injection site, and � 

are the total number of injection sites. 

We next normalized this RPS using a shuffled distribution to obtain the z-score for each 100 µm 

cubic bin. To calculate the shuffled distribution, we recalculated the selectivity value in each 

voxel by shuffling the injection identity 100 times to get a shuffled selectivity distribution. We 

then used the shuffled selectivity distribution to calculate a z-scored selectivity per voxel. The 

2D maps in Fig. 5 were created by taking the mean of the 3D volume of the source area along 

the dorsoventral axis. For Supplementary table 4 we used mean absolute z-score > 1.65 and 

mean absolute z-score > 1.96 as criteria for p<0.1 and p<0.05, respectively. Note that absolute 

values close to zero can mean either: there is no (or unreliable) retinotopic selectivity in the 

specific voxel; or the voxel is selective for an intermediate retinotopic value. Therefore, RPS is 

only used as an assessment for the existence of topography, rather than a precise quantitative 

description.  

All analyses were performed in MATLAB. 
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Highlights 

• We built a software pipeline for aligning cell bodies to the 

standardized brain atlas 

• Using the pipeline, we quantified brain wide inputs to V1 using 

retrograde tracers 

• Projections from higher visual and many non-visual areas are 

topographic and biased 

• Differential feedback inputs may be relevant for visual processing 

during navigation 
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