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 13 
Real-time rendering of closed-loop visual environments is important for next-generation 14 
understanding of brain function and behaviour, but is often prohibitively difficult for non-experts 15 
to implement and is limited to few laboratories worldwide. We developed BonVision as an easy-to-16 
use open-source software for the display of virtual or augmented reality, as well as standard visual 17 
stimuli. BonVision has been tested on humans and mice, and is capable of supporting new 18 
experimental designs in other animal models of vision. As the architecture is based on the open-19 
source Bonsai graphical programming language, BonVision benefits from native integration with 20 
experimental hardware. BonVision therefore enables easy implementation of closed-loop 21 
experiments, including real-time interaction with deep neural networks, and communication with 22 
behavioural and physiological measurement and manipulation devices. 23 

 24 

Introduction 25 

Understanding behaviour and its underlying neural mechanisms calls for the ability to construct 26 

and control environments that immerse animals, including humans, in complex naturalistic 27 

environments that are responsive to their actions. Gaming-driven advances in computation and 28 

rendering have driven the development of immersive closed-loop visual environments, but 29 

these new platforms are not readily amenable to traditional research paradigms. For example, 30 

they do not specify an image in egocentric units (of visual angle), sacrifice precise control of a 31 

visual display, and lack transparent interaction with external hardware. 32 

Most vision research has been performed in non-immersive environments with standard two-33 

dimensional visual stimuli, such as gratings or dot stimuli, using established platforms including 34 

PsychToolbox1 or PsychoPy2,3. Pioneering efforts to bring gaming-driven advances to 35 

neuroscience research have provided new platforms for closed-loop visual stimulus generation: 36 

STYTRA4 provides 2D visual stimuli for larval zebrafish in python, ratCAVE5 is a specialised 37 

augmented reality system for rodents in python, FreemoVR6 provides virtual reality in 38 

Ubuntu/Linux, and ViRMEn7 provides virtual reality in Matlab. However, these new platforms 39 

lack the generalised frameworks needed to specify or present standard visual stimuli. 40 

Our initial motivation was to create a visual display software with three key features. First, an 41 

integrated, standardised platform that could rapidly switch between traditional visual stimuli 42 

(such as grating patterns) and immersive virtual reality. Second, the ability to replicate 43 

experimental workflows across different physical configurations (for example, when moving 44 
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from one to two computer monitors, or from flat-screen to spherical projection). Third, the 45 

ability for rapid and efficient interfacing with external hardware (needed for experimentation) 46 

without development of complex multi-threaded routines. We wanted to provide these 47 

advances in a way that made it easier for users to construct and run closed-loop experimental 48 

designs. In closed-loop experiments stimuli are ideally conditioned by asynchronous inputs, 49 

such as those provided by multiple independent behavioural and neurophysiological 50 

measurement devices. Most existing platforms require the development of multi-threaded 51 

routines to run experimental paradigms (e.g. control brain stimulation, or sample from 52 

recording devices) without compromising the rendering of visual scenes. Implementing such 53 

multi-thread routines is complex. We therefore chose to develop a visual presentation 54 

framework within the Bonsai programming language8. Bonsai is a graphical, high-performance, 55 

and event-based language that is widely used in neuroscience experiments and is already 56 

capable of real-time interfacing with most types of external hardware. Bonsai is specifically 57 

designed for flexible and high-performance composition of data streams and external events, 58 

and is therefore able to monitor and connect multiple sensor and effector systems in parallel, 59 

making it easier to implement closed-loop experimental designs.  60 

 61 

We developed BonVision, an open-source software package that can generate and display well-62 

defined visual stimuli in 2D and 3D environments. BonVision exploits Bonsai’s ability to run 63 

OpenGL commands on the graphics card through the Bonsai.Shaders package. BonVision 64 

further extends Bonsai by providing pre-built GPU shaders and resources for stimuli used in 65 

vision research, including movies, along with an accessible, modular interface for composing 66 

stimuli and designing experiments. The definition of stimuli in BonVision is independent of the 67 

display hardware, allowing for easy replication of workflows across different experimental 68 

configurations. Additional unique features include the ability to automatically detect and define 69 

the relationship between the observer and the display from a photograph of the experimental 70 

apparatus, and to use the outputs of real-time inference methods to determine the position 71 

and pose of an observer online, thereby generating augmented reality environments. 72 

 73 

Results  74 

To provide a framework that allowed both traditional visual presentation and immersive virtual 75 

reality, we needed to bring these very different ways of defining the visual scene into the same 76 

architecture. We achieved this by mapping the 2D retino-centric coordinate frame (i.e. degrees 77 

of the visual field) to the surface of a 3D sphere using the Mercator projection (Fig 1A, Suppl. 78 

Fig 1). The resulting sphere could therefore be rendered onto displays in the same way as any 79 

other 3D environment. We then used “cube mapping” to specify the 360° projection of 3D 80 

environments onto arbitrary viewpoints around an experimental observer (human or animal; 81 

Fig 1B). Using this process, a display device becomes a window into the virtual environment, 82 

where each pixel on the display specifies a vector from the observer through that window. The 83 

vector links pixels on the display to pixels in the ‘cube map’, thereby rendering the 84 

corresponding portion of the visual field onto the display.  85 

 86 

Our approach has the advantage that the visual stimulus is defined irrespectively of display 87 

hardware, allowing us to independently define each experimental apparatus without changing 88 

the preceding specification of the visual scene, or the experimental design (Fig 1C-E, Suppl. Fig 89 

1, 2). Consequently, BonVision makes it easy to replicate visual environments and experimental 90 

designs on various display devices, including multiple monitors, curved projection surfaces, and 91 
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head-mounted displays (Fig 1C-E). To facilitate easy and rapid porting between different 92 

experimental apparatus, BonVision features a fast semi-automated display calibration. A 93 

photograph of the experimental setup with fiducial markers9 measures the 3D position and 94 

orientation of each display relative to the observer (Fig 2 and Fig 2 – figure supplement 1). 95 

BonVision’s inbuilt image processing algorithms then estimate the position and orientation of 96 

each marker to fully specify the display environment.  97 

Virtual reality environments are easy to generate in BonVision. BonVision has a library of 98 

standard pre-defined 3D structures (including planes, spheres and cubes), and environments 99 

can be defined by specifying the position and scale of the structures, and the textures rendered 100 

on them (e.g. Figure 1 – figure supplement 2 and Fig. 5F). BonVision also has the ability to 101 

import standard format 3D design files created elsewhere in order to generate more complex 102 

environments (file formats listed in Methods). This allows users to leverage existing 3D drawing 103 

platforms (including open source platform ‘Blender’: https://www.blender.org/) to construct 104 

complex virtual scenes (see Appendix). 105 

BonVision can define the relationship between the display and the observer in real-time. This 106 

makes it easy to generate augmented reality environments, where what is rendered on a 107 

display depends on the position of an observer (Fig 3A). For example, when a mouse navigates 108 

through an arena surrounded by displays, BonVision enables closed-loop, position-dependent 109 

updating of those displays. Bonsai can track markers to determine the position of the observer, 110 

but it also has turn-key capacity for real-time live pose estimation techniques – using deep 111 

neural networks10,11 – to keep track of the observer’s movements. This allows users to generate 112 

and present interactive visual environments (simulation in Fig 3 - video 1 and Fig 3B-C).  113 

BonVision is capable of rendering visual environments near the limits of the hardware (Fig 4). 114 

This is possible because Bonsai is based on a just-in-time compiler architecture such that there 115 

is little computational overhead. BonVision accumulates a list of the commands to OpenGL as 116 

the program makes them. To optimise rendering performance, the priority of these commands 117 

is ordered according to that defined in the Shaders component of the LoadResources node 118 

(which the user can manipulate for high-performance environments). These ordered calls are 119 

then executed when the frame is rendered. To benchmark the responsiveness of BonVision in 120 

closed-loop experiments, we measured the delay (latency) between an external event and the 121 

presentation of a visual stimulus. We first measured the closed-loop latency for BonVision 122 

when a monitor was refreshed at a rate of 60Hz (Fig 4A). We found delays averaged 2.11 ± 0.78 123 

frames (35.26 ± 13.07ms). This latency was slightly shorter than that achieved by 124 

PsychToolbox13 on the same laptop (2.44 ± 0.59 frames, 40.73 ± 9.8ms; Welch’s t-test, p < 10-80, 125 

n=1000). The overall latency of BonVision was mainly constrained by the refresh rate of the 126 

display device, such that higher frame rate displays yielded lower latency (60Hz: 35.26 ± 127 

13.07ms; 90Hz: 28.45 ± 7.22ms; 144Hz: 18.49 ± 10.1ms; Fig 4A). That is, the number of frames 128 

between the external event and stimulus presentation was fairly constant across frame rate 129 

(60Hz: 2.11 ± 0.78 frames; 90Hz: 2.56 ± 0.65 frames; 144Hz: 2.66 ± 1.45 frames; Fig 4C). We 130 

used two additional methods to benchmark visual display performance relative to other 131 

frameworks (we did not try to optimise code fragments for each framework) (Fig 4B-C). 132 

BonVision was able to render up to 576 independent elements and up to 8 overlapping 133 

textures at 60Hz without missing (‘dropping’) frames, broadly matching PsychoPy2,3 and 134 

Psychtoolbox1. BonVision’s performance was similar at different frame rates - at standard 135 
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frame rate (60 Hz), and at 144Hz (Figure 4 - figure supplement 1). BonVision could achieve 136 

slightly fewer overlapping textures than PsychoPy, as BonVision does not currently have the 137 

option to trade-off the resolution of a texture and its mask for performance. BonVision also 138 

supports video playback, either by preloading the video or by streaming it from the disk. The 139 

streaming mode, which utilises real-time file I/O and decompression, is capable of displaying 140 

both standard definition (SD: 480p) and full HD (HD: 1080p) at 60Hz on a standard computer 141 

(Fig 4D). At higher rates, performance is impaired for Full HD videos, but is improved by 142 

buffering, and fully restored by preloading the video onto memory (Fig 4D). We benchmarked 143 

BonVision on a standard Windows OS laptop, but BonVision is now also capable of running on 144 

Linux.  145 

To confirm that the rendering speed and timing accuracy of BonVision is sufficient to support 146 

neurophysiological experiments, which need high timing accuracy, we mapped the receptive 147 

fields of neurons early in the visual pathway12, in the mouse primary visual cortex and superior 148 

colliculus. The stimulus (‘sparse noise’) consisted of small black or white squares briefly (0.1s) 149 

presented at random locations (Fig 5A). This stimulus, which is commonly used to measure 150 

receptive fields of visual neurons, is sensitive to the timing accuracy of the visual stimulus, 151 

meaning that errors in timing would prevent the identification of receptive fields. In our 152 

experiments using BonVision, we were able to recover receptive fields from 153 

electrophysiological measurements13 - both in the superior colliculus and primary visual cortex 154 

of awake mice (Fig 5B-C) - demonstrating that BonVision meets the timing requirements for 155 

visual neurophysiology. The receptive fields show in Fig 5C were generated using timing signals 156 

obtained directly from the stimulus display (via a photodiode). BonVision’s independent logging 157 

of stimulus presentation timing was also sufficient to capture the receptive field (Fig 5 – figure 158 

supplement 1).      159 

To assess the ability of BonVision to control virtual reality environments we first tested its 160 

ability to present stimuli to human observers on a head-mounted display14. BonVision uses 161 

positional information (obtained from the head-mounted display) to update the view of the 162 

world that needs to be provided to each eye, and returns two appropriately rendered images. 163 

On each trial, we asked observers to identify the larger of two non-overlapping cubes that were 164 

placed at different virtual depths (Fig 5D-E). The display was updated in closed-loop to allow 165 

observers to alter their viewpoint by moving their head. Distinguishing objects of the same 166 

retinal size required observers to use depth-dependent cues15, and we found that all observers 167 

were able to identify which cube was larger (Fig 5E).  168 

We next asked if BonVision was capable of supporting other visual display environments that 169 

are increasingly common in the study of animal behaviour. We first projected a simple 170 

environment onto a dome that surrounded a head-fixed mouse (as shown in Fig 1E). The 171 

mouse was free to run on a treadmill, and the treadmill’s movements were used to update the 172 

mouse’s position on a virtual platform (Fig 5F). Not only did mouse locomotion speed increase 173 

with repeated exposure, but the animals modulated their speed depending on their location in 174 

the platform (Fig 5F-G). BonVision is therefore capable of generating virtual reality 175 

environments which both elicit, and are responsive to animal behaviour. BonVision was also 176 

able to produce instinctive avoidance behaviours in freely-moving mice (Fig 5H-I). We displayed 177 

a small black dot slowly sweeping across the overhead visual field. Visual stimuli presented in 178 

BonVision primarily elicited a freezing response, which similar experiments have previously 179 
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described10 (Fig 5I). Together these results show that BonVision provides sufficient rendering 180 

performance to support human and animal visual behaviour. 181 

Discussion  182 

BonVision is a single software package to support experimental designs that require visual 183 

display, including virtual and augmented reality environments. BonVision is easy and fast to 184 

implement, cross-platform and open source, providing versatility and reproducibility.  185 

BonVision makes it easier to address several barriers to reproducibility in visual experiments. 186 

First, BonVision is able to replicate and deliver visual stimuli on very different experimental 187 

apparatus. This is possible because BonVision’s architecture separates specification of the 188 

display and the visual environment. Second, BonVision includes a library of workflows and 189 

operators to standardize and ease the construction of new stimuli and virtual environments. 190 

For example, it has established protocols for defining display positions (Suppl. Fig 3), mesh-191 

mapping of curved displays (Fig 1E), and automatic linearization of display luminance (Suppl. 192 

Fig 4), as well as a library of examples for experiments commonly used in visual neuroscience. 193 

In addition, the modular structure of BonVision enables the development and exchange of 194 

custom nodes for generating new visual stimuli or functionality without the need to construct 195 

the complete experimental paradigm. Third, BonVision is based on Bonsai8, which has a large 196 

user base and an active developer community, and is now a standard tool for open-source 197 

neuroscience research. BonVision naturally integrates Bonsai’s established packages in the 198 

multiple domains important for modern neuroscience, which are widely used in applications 199 

including real-time video processing16,17, optogenetics16–18, fibre photometry19,20, 200 

electrophysiology (including specific packages for Open Ephys13,21 and high-density silicon 201 

probes22,23), and calcium imaging (e.g. UCLA miniscope24,25). Bonsai requires researchers to get 202 

accustomed to its graphical interface and event-based framework. However, it subsequently 203 

reduces the time required to learn real-time programming, and the time to build new 204 

interfaces with external devices (see Appendix). Moreover, since Bonsai workflows can be 205 

called via the command line, BonVision can also be integrated into pre-existing, specialised 206 

frameworks in established laboratories.    207 

In summary, BonVision can generate complex 3D environments and retinotopically defined 2D 208 

visual stimuli within the same framework. Existing platforms used for vision research, including 209 

PsychToolbox1, PsychoPy2,3, STYTRA7, or RigBox26, focus on well-defined 2D stimuli. Similarly, 210 

gaming-driven software, including FreemoVR4, ratCAVE5, and ViRMEn6, are oriented towards 211 

generating virtual reality environments. BonVision combines the advantages of both these 212 

approaches in a single framework (Supplementary file 1), while bringing the unique capacity to 213 

automatically calibrate the display environment, and use deep neural networks to provide real-214 

time control of virtual environments. Experiments in BonVision can be rapidly prototyped and 215 

easily replicated across different display configurations. Being free, open-source and portable, 216 

BonVision is a state-of-the-art tool for visual display that is accessible to the wider community. 
217 

Code availability 218 

BonVision is an open-source software package available to use under the MIT license. It can be 219 

downloaded through the Bonsai (bonsai-rx.org) package manager, and the source code is 220 

available at: github.com/bonvision/BonVision. All benchmark programs and data are available 221 

https://github.com/bonvision/BonVision
about:blank
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at https://github.com/bonvision/benchmarks. Installation instructions, demos and learning 222 

tools are available at: bonvision.github.io/.  223 
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Figures 295 

 296 

 297 

Figure 1: BonVision adaptable display and render configurations. A. Illustration of how 298 

two-dimensional textures are generated in BonVision using Mercator projection for sphere 299 

mapping, with elevation as latitude and azimuth as longitude. The red dot indicates the 300 

position of the observer. B. Three-dimensional objects were placed at the appropriate 301 

positions and the visual environment was rendered using cube-mapping. C-E. Examples of 302 

the same two stimuli, a checkerboard + grating (middle row) or four three-dimensional 303 

objects (bottom row), displayed in different experimental configurations (top row): two 304 

angled LCD monitors (C), a head-mounted display (D), and demi-spherical dome (E). 305 

  306 
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 307 

 308 

Figure 2: Automated calibration of display position. A. Schematic showing the position of 309 

two hypothetical displays of different sizes, at different distances and orientation relative to 310 

the observer (red dot). B. How a checkerboard of the same visual angle would appear on 311 

each of the two displays. C. Example of automatic calibration of display position. Standard 312 

markers are presented on the display, or in the environment, to allow automated detection 313 

of the position and orientation of both the display and the observer. These positions and 314 

orientations are indicated by the superimposed red cubes as calculated by BonVision. D. 315 

How the checkerboard would appear on the display when rendered, taking into account the 316 

precise position of the display. E-F. Same as C-D, but for another pair of display and 317 

observer positions. The automated calibration was based on the images shown in C and E. 318 
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 319 

Figure 3: Using BonVision to generate an augmented reality environment. A. Illustration of 320 

how the image on a fixed display needs to adapt as an observer (red dot) moves around an 321 

environment. The displays simulate windows from a box into a virtual world outside. B. The 322 

virtual scene (from: http://scmapdb.com/wad:skybox-skies) that was used to generate the 323 

example images and Figure 3 - Video 1 offline. C. Real-time simulation of scene rendering in 324 

augmented reality. We show two snapshots of the simulated scene rendering, which is also 325 

shown in Figure 3 - video 1. In each case the inset image shows the actual video images, of a 326 

mouse exploring an arena, that were used to determine the viewpoint of an observer in the 327 

simulation. The mouse’s head position was inferred (at a rate of 40 frames/s) by a network 328 

trained using DeepLabCut6. The top image shows an instance when the animal was on the 329 

left of the arena (head position indicated by the red dot in the main panel) and the lower 330 

image shows an instance when it was on the right of the arena. 331 

 332 

http://scmapdb.com/wad:skybox-skies
http://scmapdb.com/wad:skybox-skies
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 333 

Figure 4: Closed-loop latency and performance benchmarks. A. Latency between sending a 334 

command (virtual key press) and updating the display (measured using a photodiode). (A.i - 335 

A.ii) Latency depended on the frame rate of the display, updating stimuli with a delay of 1-3 336 

frames. (A.iii - A.iv). B-C. Benchmarked performance of BonVision with respect to 337 

Psychtoolbox and PsychoPy. B. When using non-overlapping textures BonVision and 338 

Psychtoolbox could present 576 independent textures without dropping frames, while 339 

PsychoPy could present 16. C. When using overlapping textures PsychoPy could present 16 340 

textures, while BonVision and Psychtoolbox could present 8 textures without dropping 341 

frames. D. Benchmarks for movie playback. BonVision is capable of displaying standard 342 

definition (480p) and high definition (1080p) movies at 60 frames/s on a laptop computer 343 

with a standard CPU and graphics card. We measured display rate when fully pre-loading 344 

the movie into memory (blue), or when streaming from disk (with no buffer: orange; 1-345 

frame buffer: green; 2-frame buffer: red; 4-frame buffer: purple). When asked to display at 346 

rates higher than the monitor refresh rate (>60 frames/s), the 480p video played at the 347 
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maximum frame rate of 60fps in all conditions, while the 1080p video reached the 348 

maximum rate when pre-loaded. Using a buffer slightly improved performance. A black 349 

square at the bottom right of the screen in A-C is the position of a flickering rectangle, which 350 

switches between black and white at every screen refresh. The luminance in this square is 351 

detected by a photodiode and used to measure the actual frame flip times. 352 

 353 

 354 
Figure 5: Illustration of BonVision across a range of vision research experiments. A. Sparse 355 

noise stimulus, generated with BonVision, is rendered onto a demi-spherical screen. B-C. 356 

Receptive field maps from recordings of local field potential in the superior colliculus (B), 357 

and spiking activity in the primary visual cortex (C) of mouse. D. Two cubes were presented 358 

at different depths in a virtual environment through a head-mounted display to human 359 

subjects. Subjects had to report which cube was larger: left or right. E. Subjects 360 

predominantly reported the larger object correctly, with a slight bias to report that the 361 

object in front was bigger. F. BonVision was used to generate a closed-loop virtual platform 362 

that a mouse could explore (top: schematic of platform). Mice naturally tended to run faster 363 

along the platform, and in later sessions developed a speed profile, where they slowed 364 

down as they approached the end of the platform (virtual cliff). G. The speed of the animal 365 

at the start of the platform and at the end of the platform as a function training. H. 366 

BonVision was used to present visual stimuli overhead while an animal was free to explore 367 

an environment (which included a refuge). The stimulus was a small dot (5° diameter) 368 

moving across the projected surface over several seconds. I. The cumulative probability of 369 

Freeze and Flight behaviour across time in response to moving dot presented overhead.  370 

 371 

 372 

 373 

  374 
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Supplementary file 1: Features of visual display software✓✓ easy and well-supported 375 

 376 
 377 

 378 

 379 

 380 

  381 
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Supplementary Figures 382 

 383 

 384 

Figure 1 - figure supplement 1: Mapping stimuli onto displays in various positions.  385 

A. Checkerboard stimulus being rendered. B. Projection of the stimulus onto a sphere using 386 

Mercator projection. C. Example display positions (dA-dF) and (D) corresponding rendered 387 

images. Red dot in C indicates the observer position. 388 

 389 
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 390 
Figure 1 - figure supplement 2: Modular structure of workflow and example workflows.  391 

A. Description of the modules in BonVision workflows that generate stimuli. Every BonVision 392 

stimuli includes a module that creates and initializes the render window, shown in 393 

“BonVision window and resources”. This defines the window parameters in Create Window 394 

(such as background colour, screen index, VSync), and loads predefined (BonVision 395 

Resources) and user defined textures (Texture Resources, not shown), and 3D meshes (Mesh 396 
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Resources). This is followed by the modules: “Drawing region”, where the visual space 397 

covered by the stimuli is defined, which can be the complete visual space, 360° x 360°. 398 

“Draw stimuli” and “Define scene” are where the stimulus is defined, “Map Stimuli”, which 399 

maps the stimuli into the 3D environment, and “Define display”, where the display devices 400 

are defined. B-C. Modules that define the checkerboard + grating stimulus (B) shown in the 401 

middle row of Fig 1, and 3D world (C) with 5 objects shown in the bottom row of Fig 1. The 402 

display device is defined separately and either display can be appended at the end of the 403 

workflow. This separation of the display device allows for replication between experimental 404 

configurations. D. The variants of the modules used to display stimuli on a head-mounted 405 

display. The empty region under “Define scene” would be filled by the corresponding nodes 406 

in B and C. 407 

 408 

 409 

 410 
Figure 2 - figure supplement 1:  Automated workflow to calibrate display position. The 411 

automated calibration is carried out by taking advantage of ArUco markers5 that can be 412 

used to calculate the 3D position of a surface. Ai. We use one marker on the display and one 413 

placed in the position of the observer. We then use a picture of the display and observer 414 

position taken by a calibrated camera. This is an example where we used a mobile phone 415 

camera for calibration. Aii. The detected 3D positions of the screen and the observer, as 416 

calculated by BonVision. Aiii. A checkerboard image and a small superimposed patch of 417 

grating, rendered based on the precise position of the display. B-C. same as A-C for different 418 

screen and observer positions: with the screen tilted towards the animal (B), or the observer 419 
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shifted to the right of the screen (C). The automated calibration was based on the images 420 

shown in Ai, Bi and Ci, which in this case were taken using a mobile phone camera. 421 

 422 

 423 

 424 

 425 
 426 

Figure 2 - figure supplement 2: Automated gamma-calibration of visual displays. BonVision 427 

monitored a photodiode (Photodiode v2.1, https://www.cf-hw.org/harp/behavior) through 428 

a HARP microprocessor, to measure the light output of the monitor (Dell Latitude 7480). The 429 

red, green and blue channels of the display were sent the same values (i.e. grey scale). A. 430 

Gamma calibration. The input to the display channels was modulated by a linear ramp 431 

(range 0-255). Without calibration the monitor output (arbitrary units) increased 432 

exponentially (blue line). The measurement was then used to construct an intermediate 433 

look-up table that corrected the values sent to the display. Following calibration, the display 434 

intensity is close to linear (red line). Inset at top: schematic of the experimental 435 

configuration. B. Similar to A, but showing the intensity profile of a drifting sinusoidal 436 

grating. Measurements before calibration resemble an exponentiated sinusoid (blue dotted 437 

line). Measurements after calibration resemble a regular sinusoid (red dotted line). 438 

 439 

 440 

Figure 3 – video 1: Augmented reality simulation using BonVision. This video is an example 441 

of a deep neural network, trained with DeepLabCut, being used to estimate the position of a 442 

mouse’s head in an environment in real-time, and updating a virtual scene presented on the 443 

monitors based on this estimated position. The first few seconds of the video display the 444 

online tracking of specific features (nose, head, and base of tail) while an animal is moving 445 

around (shown as a red dot) in a three-port box (as in Soares, Atallah & Paton, 2016). 446 

Subsequently the inset shows the original video of the animal’s movements, which the 447 

simulation is based on. The rest of the video image shows how a green field landscape 448 

(source: http://scmapdb.com/wad:skybox-skies) outside the box would be rendered on 449 

three simulated displays within the box (one placed on each of the three oblique walls). 450 

These three displays simulate windows onto the world beyond the box. The position of the 451 

animal was updated by DeepLabCut at 40 frames/s, and the simulation was rendered at the 452 

same rate. 453 

 454 

http://scmapdb.com/wad:skybox-skies
https://www.cf-hw.org/harp/behavior#h.p_uMPRuA1sNnEB
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 455 
Figure 4 - figure supplement 1: BonVision performance benchmarks at high frame rate. A. 456 

When using non-overlapping textures BonVision was able to render 576 independent 457 

textures without dropping frames at 60Hz. At 144Hz BonVision was able to 256 non-458 

overlapping textures, with no dropped frames, and seldom dropped frames with 576 459 

textures. BonVision was unable to render 1024 or more textures at the requested frame 460 

rate. B. When using overlapping textures BonVision was able to render 64 independent 461 

textures without dropping frames at 60Hz. At 144Hz BonVision was able to render 32 462 

textures, with no dropped frames. Note that these tests were performed on a computer 463 

with better hardware specification than that used in Fig 4, which led to improved 464 

performance on the benchmarks at 60 Hz. A black square at the bottom right of the screen 465 

in A-B is the position of a flickering rectangle, which switches between black and white at 466 

every screen refresh. The luminance in this square is detected by a photodiode and used to 467 

measure the actual frame flip times.  468 
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 469 

Figure 5 – figure supplement 1: BonVision timing logs are sufficient to support receptive 470 

field mapping of spiking activity in superior colliculus of awake mouse. Top row in each 471 

case shows the receptive field identified using the timing information provided by a 472 

photodiode that monitored a small square on the stimulus display that was obscured from 473 

the animal. Bottom row in each case shows the receptive field identified by using the timing 474 

logged by BonVision during the stimulus presentation (a separate timing system was used to 475 

align the clocks between the computer hosting BonVision and the Open EPhys recording 476 

device). (A) Average OFF- and ON receptive field maps for 33 simultaneously recorded units 477 

in a single recording session. (B) Individual OFF- receptive field maps for three 478 

representative units in the same session.   479 

  480 
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Material and Methods 481 

 482 

Benchmarking 483 

We performed benchmarking to measure latencies and skipped (“dropped”) frames. For 484 

benchmarks at 60Hz refresh rate, we used a standard laptop with the following 485 

configuration: Dell Latitude 7480, Intel Core i7-6600U Processor Base with Integrated HD 486 

Graphics 520 (Dual Core, 2.6GHz), 16GB RAM. For higher refresh rates we used a gaming 487 

laptop ASUS ROG Zephyrus GX501GI, with an Intel Core i7-8750H (6 cores, 2.20GHz), 16GB 488 

RAM, equipped with a NVIDIA GeForce GTX 1080. The gaming laptop built-in display 489 

refreshes at 144Hz, and for measuring latencies at 90Hz we connected it to a Vive Pro 490 

SteamVR head-mounted display (90Hz refresh rate). All tests were run on Windows 10 Pro 491 

64-bit.  492 

To measure the time from input detection to display update, as well as dropped frames 493 

detection, we used open-source HARP devices from Champalimaud Research Scientific 494 

Hardware Platform, using the Bonsai.HARP package. Specifically we used the HARP Behavior 495 

device (https://www.cf-hw.org/harp/behavior), which is a low latency DAQ, to synchronise 496 

all measurements with the extensions: ‘Photodiode v2.1’ to measure the change of the 497 

stimulus on the screen, and ‘Mice poke simple v1.2’ as the nose poke device to externally 498 

trigger changes. To filter out the infrared noise generated from an internal LED sensor inside 499 

the Vive Pro HMD, we positioned an infrared cut-off filter between the internal headset 500 

optics and the photodiode. Typically, the minimal latency for any update is 2 frames: one 501 

which is needed for the VSynch, and one is the delay introduced by the OS.  Display 502 

hardware can add further delays if they include additional buffering. Benchmarks for video 503 

playback were carried out using a trailer from the Durian Open Movie Project (© copyright 504 

Blender Foundation | durian.blender.org). 505 

All benchmark programs and data are available at 506 

https://github.com/bonvision/benchmarks. 507 

File Formats 508 

We tested the display of images and videos using the image and video benchmark 509 

workflows. We confirmed the ability to use the following image formats: PNG, JPG, BMP, 510 

TIFF, GIF. Movie display relies on the FFmpeg library (https://ffmpeg.org/), an industry 511 

standard, and we confirmed ability to use the following containers: AVI, MP4, OGG, OGV 512 

and WMV; in conjunction with standard codecs: H264, MPEG4, MPEG2, DIVX. Importing 3D 513 

models and complex scenes relies on the Open Asset Importer Library (Assimp | 514 

http://assimp.org/). We confirmed the ability to import and render 3D models and scenes 515 

from the following formats: OBJ, Blender.  516 

Animal Experiments 517 

All experiments were performed in accordance with the Animals (Scientific Procedures) Act 518 

1986 (United Kingdom) and Home Office (United Kingdom) approved project and personal 519 

licenses. The experiments were approved by the University College London Animal Welfare 520 

https://ffmpeg.org/
http://assimp.org/
http://durian.blender.org/
https://www.cf-hw.org/harp/behavior#h.p_uMPRuA1sNnEB
https://github.com/bonvision/benchmarks
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Ethical Review Board under Project License 70/8637. The mice (C57BL6 wild-type) were 521 

group-housed with a maximum of five to a cage, under a 12-hour light/dark cycle. All 522 

behavioural and electrophysiological recordings were carried out during the dark phase of 523 

the cycle. 524 

Innate Defensive Behaviour 525 

Mice (5 male, C57BL6, 8 weeks old) were placed in a 40cm square arena. A dark refuge 526 

placed outside the arena could be accessed through a 10cm door in one wall. A DLP 527 

projector (Optoma GT760) illuminated a screen 35cm above the arena with a grey 528 

background (80 candela/m2). When the mouse was near the centre of the arena, a 2.5cm 529 

black dot appeared on one side of the projection screen and translated smoothly to the 530 

opposite side over 3.3s. 10 trials were conducted over 5 days and the animal was allowed to 531 

explore the environment for 5-10 minutes before the onset of each trial. 532 

Mouse movements were recorded with a near infrared camera (Blackfly S, BFS-U3-13Y3M-C, 533 

sampling rate: 60Hz) positioned over the arena. An infrared LED was used to align video and 534 

stimulus. Freezing was defined as a drop in the animal speed below 2cm/s that lasted more 535 

than 0.1s; flight responses as an increase in the animal running speed above 40cm/s. 536 

Responses were only considered if they occurred within 3.5s from stimulus onset.  537 

Surgery 538 

Mice were implanted with a custom-built stainless-steel metal plate on the skull under 539 

isoflurane anaesthesia. A ~1mm craniotomy was performed either over the primary visual 540 

cortex (2mm lateral and 0.5mm anterior from lambda) or superior colliculus (0.5mm lateral 541 

and 0.2mm anterior from lambda). Mice were allowed to recover for 4-24 hours before the 542 

first recording session. 543 

We used a virtual reality apparatus similar to those used in previous studies (Schmidt-Hieber 544 

& Hausser, 2013; Muzzu, Mitolo, Gava & Schultz, 2018). Briefly, mice were head-fixed above 545 

a polystyrene wheel with a radius of 10cm. Mice were positioned in the geometric centre of 546 

a truncated spherical screen onto which we projected the visual stimulus. The visual 547 

stimulus was centred at +60° azimuth and +30° elevation and had a span of 120° azimuth 548 

and 120° elevation. 549 

Virtual reality behaviour 550 

5 male, 8-week old, C57BL6 mice were used for this experiment. One week after the 551 

surgery, mice were placed on a treadmill and habituated to the Virtual Reality (VR) 552 

environment by progressively increasing the number of time spent head fixed: from ~15 553 

mins to 2 hours. Mice spontaneously ran on the treadmill, moving through the VR in 554 

absence of reward. The VR environment was a 100cm long platform with a patterned 555 

texture that animals ran over for multiple trials. Each trial started with an animal at the start 556 

of the platform and ended when it reached the end, or if 60s had elapsed. At the end of a 557 

trial, there was a 2 second grey interval before the start of the next trial. 558 



 

22 
 

 

Neural Recordings 559 

To record neural activity, we used multi-electrode array probes with two shanks and 32 560 

channels (ASSY-37 E-1, Cambridge Neurotech Ltd., Cambridge, UK). Electrophysiology data 561 

was acquired with an Open Ephys acquisition board connected to a different computer from 562 

that used to generate the visual stimulus. 563 

The electrophysiological data from each session was processed using Kilosort 1 (Pachitariu, 564 

Steinmetz, Kadir, Carandini & Harris, 2016). We synchronised spike times with behavioural 565 

data by aligning the signal of a photodiode that detected the visual stimuli transitions 566 

(PDA25K2, Thorlabs, Inc., USA). We sampled the firing rate at 60Hz, and then smoothed it 567 

with a 300ms Gaussian filter. We calculated receptive fields as the average firing rate or 568 

local field potential elicited by the appearance of a stimulus in each location (custom 569 

routines in MATLAB). 570 

Augmented reality for mice 571 

The mouse behaviour videos were acquired by Bruno Cruz from the lab of Joe Paton at the 572 

Champalimaud Centre for the Unknown, using methods similar to Soares, Atallah & Paton, 573 

2016. A ResNet-50 network was trained using DeepLabCut (Mathis et al, 2018). We 574 

simulated a visual environment in which a virtual scene was presented beyond the arena, 575 

and updated the scenes on three walls of the arena that simulated how the view of these 576 

objects changed as the animal moved through the environment. The position of the animal 577 

was updated from the video file at a rate of 40 frames/s on a gaming laptop: ASUS ROG 578 

Zephyrus GX501GI, with an Intel Core i7-8750H (6 cores, 2.20GHz), 16GB RAM, equipped 579 

with a NVIDIA GeForce GTX 1080, using a 512x512 video. The performance can be improved 580 

using a lower pixel resolution for video capture, and we were able to achieve up to 80 581 

frames/s without noticeable decrease in tracking accuracy using this strategy. Further 582 

enhancements can be achieved using a MobileNet network. The position inference from the 583 

deep neural network and the BonVision visual stimulus rendering were run on the same 584 

machine. 585 

Human Psychophysics 586 

All procedures were approved by the Experimental Psychology Ethics Committee at 587 

University College London (Ethics Application EP/2019/002). We obtained informed 588 

consent, and consent to publish from all participants. 4 male participants were tested for 589 

this experiment. The experiments were run on a gaming laptop (described above) 590 

connected it to a Vive Pro SteamVR head-mounted display (90Hz refresh rate). BonVision is 591 

compatible with different headsets (for example Oculus Rift, HTC Vive). BonVision receives 592 

the projection matrix (perspective projection of world display) and the view matrix (position 593 

of eye in the world) for each eye from the head set. BonVision uses these matrices to 594 

generate two textures, one for the left eye and one for the right eye. Standard onboard 595 

computations on the headset provide additional non-linear transformations that account for 596 

the relationship between the eye and the display (such as lens distortion effects).   597 

Methods References 598 

Mathis, A., Mamidanna, P., Cury, K.M., Abe, T., Murthy, V.N., Mathis, M.W., & Bethge M 599 
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Appendix 612 

Basic workflow structure 613 

Each BonVision workflow starts by loading the basic Shaders library (this is BonVision’s 614 

implementation of OpenGL) and then creating a window in which stimuli are to be 615 

displayed. Bonsai is an event-based framework, so the visual stimulus generation and 616 

control are driven by events from the RenderFrame or UpdateFrame nodes, which are in 617 

turn activated when a screen refresh occurs. An event broadcast from the RenderFrame or 618 

UpdateFrame node then activates the cascade of nodes that load, generate or update the 619 

different visual stimuli. 620 

Closed-loop control 621 

Parameters of stimuli can also be updated, asynchronously and in parallel, by other events. 622 

Parameters of any Bonsai node can be controlled by addressing the relevant property within 623 

that node – all parameters within a node can be made visible to the external caller of that 624 

node. This is particularly useful for generating closed loop stimuli where the value of these 625 

parameters can be linked to external IO devices (for example, position sensors) that are 626 

easily accessible using established Bonsai drivers and packages. A major advantage of the 627 

Bonsai framework is that the visual stimulus generation does not need to pause to poll 628 

those I/O devices, and the values from those devices can be retrieved any time up to the 629 

rendering of the frame, creating opportunities for low-lag updating of the visual stimulus.  630 

Considerations while using BonVision 631 

Client control 632 

Some experimental designs may rely on complex experimental control protocols that are 633 

already established in other software, or are challenging to implement in a reactive 634 

framework. For such applications, BonVision’s rendering platform can be used as a client to 635 

create and control calibrated visual stimuli. This can be implemented using Bonsai’s inbuilt 636 

IP communication protocols to interact with the independent controller software (for 637 

example, Python or MATLAB). BonVision workflows can also be executed from the 638 

command-line using standard syntax, without opening the graphical interface of Bonsai.  639 

Mercator projection  640 

A key motivation in developing BonVision was the ability to present 2D and 3D stimuli in the 641 

same framework. To enable this, we chose to project 2D stimuli onto a 3D sphere, using the 642 

Mercator projection. The Mercator projection, however, contracts longitude coordinates 643 

around the two poles, and the consequence is that 2D stimuli presented close to the poles 644 

are deformed without compensation. Experiments that require 2D-defined stimuli to be 645 

presented near the default poles therefore need particular care. There are a few options to 646 

overcome this limitation. One option is to rotate the sphere mapping so that the poles are 647 

shifted away from the desired stimulus location. A second option is to present the texture 648 

on a 3D object facing the observer. For example, to present a grating in a circular aperture, 649 

we could have the grating texture rendered on a disk presented in 3D, and the disk is placed 650 

in the appropriate position. Finally, the user can present stimuli via the NormalisedView 651 
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node, which defines stimuli in screen pixel coordinates, using manual calibrations and 652 

precomputations to ensure the stimuli are of the correct dimensions. 653 

Constructing 3D environments  654 

There are many well-established software packages with excellent graphical interfaces that 655 

are capable of creating 3D objects and scenes, and users are likely to have their preferred 656 

method. BonVision therefore focuses on providing easy importing of a wide variety of 3D 657 

model formats. BonVision offers three options for building 3D environments: 658 

1. BonVision (limited capability). Inbuilt BonVision processes allow for the rendering of 659 

textures onto simple planar surfaces. The user defines the position and orientation of each 660 

plane in 3D space, and the texture that is to be drawn onto that plane, using the 661 

DrawTexturedModel node. 662 

2. Import (load) 3D models of objects (including cubes, spheres, and more complex models). 663 

Common 3D models (such as those used in Fig 1) are often freely available online. Custom 664 

models can be generated using standard 3D software, including Blender and CAD programs. 665 

The user defines the position of each object, and its dynamics, within BonVision, and can 666 

independently attach the desired texture(s) to each of the different faces of those objects 667 

using the DrawTexturedModel Node. 668 

3. Import a full 3D scene (with multiple objects and camera views). BonVision is able to 669 

interact with both individual objects and cameras defined within a 3D scene. A particular 670 

advantage of this method is that specialised software (e.g. Blender) provide convenient 671 

methods to construct and visualise scenes in advance; BonVision provides the calibrated 672 

display environment and capacity for interaction with the objects.  673 

Once the 3D scene is created, the user can then control a camera in the resultant virtual 674 

world that can move and rotate, with BonVision computing the effects of this movement 675 

(i.e. without any additional user code) to render what the camera should see onto a display 676 

device. 677 

Animation lags and timing logs 678 

While BonVision expends substantial effort to eliminate interruptions to the presentation of 679 

a visual stimulus, these can occur, and solutions may be beyond the control of the 680 

experimenter. To avoid the potential accumulation of timing errors, the UpdateFrame node 681 

uses the current time to specify the current location in an animation sequence. The actual 682 

presentation time of each frame in an animation can be logged using the standard logging 683 

protocols in BonVision. The log can also include the user predefined or real-time updated 684 

parameters that were used to generate the corresponding stimulus frame. 685 

 686 
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Customised nodes and new stimuli 687 

Bonsai’s modular nature and simple integration with C# and Python scripting means 688 

BonVision can be extended by users. The BonVision package is almost entirely implemented 689 

using the Bonsai visual programming language, showcasing its power as a domain-specific 690 

language. Custom BonVision nodes can be easily created in the graphical framework, or 691 

using C# or Python scripting with user-defined inputs, outputs, properties and operations 692 

can be generated by users to create novel visual stimuli, define interactions between 693 

objects, and enable visual environments which are arbitrarily responsive to experimental 694 

subjects.   695 

Physics engine 696 

BonVision is able to calculate interactions between objects using the package 697 

Bonsai.Physics, including collisions, bouncing off surfaces or deformations.   698 

Spatial calibration 699 

BonVision provides automatic calibration protocols to define the position of display(s) 700 

relative to the observer. A single positional marker is sufficient for each flat display 701 

(illustrated in Fig 2; a standard operating procedure is described on the website). An 702 

additional marker is placed in the position of the observer, to provide the reference point.  703 

When the observer’s position relative to the display varies (for example, in the augmented 704 

reality example in Fig 3 and Supplementary Video 1), the easiest solution is to calibrate the 705 

position of the displays relative to a fixed point in the arena. The observer position is then 706 

calculated in real-time, and the vector from the observer to the reference point is added to 707 

that from the reference to the display. The resultant vector is the calibrated position of the 708 

display relative to the observer’s current position. 709 

In the case of head-mounted displays (HMDs), BonVision takes advantage of the fact that 710 

HMD drivers can provide the calibrated transform matrices from the observer’s eye centre, 711 

using the HMDView node.  712 

When the presentation surface is curved (for example, projection onto a dome) a manual 713 

calibration step is required as in other frameworks. This calibration step is often referred to 714 

as mesh-mapping and involves the calculation of a transformation matrix that specifies the 715 

relationship between a (virtual) flat display and position on the projection surface. A 716 

standard operating procedure for calculating this mesh-map is described on the BonVision 717 

website.  718 

Performance optimisation 719 

We recommend displaying stimuli through a single graphics card, even when multiple 720 

displays are used, that is, multiple displays appear to the OS as an extended single display.  721 

Learning to use BonVision 722 

We provide the following learning materials (which will continue to be updated): 723 

Tutorials & Documentation: https://bonvision.github.io 724 

Video tutorials: https://www.youtube.com/channel/UCEg-3mfbvjIwbzDVvqYudAA 725 

Demos & Examples: https://github.com/bonvision/examples 726 

https://github.com/bonvision/examples
https://bonvision.github.io/
https://www.youtube.com/channel/UCEg-3mfbvjIwbzDVvqYudAA
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Community forum: https://groups.google.com/forum/#!forum/bonsai-users 727 

https://groups.google.com/forum/#!forum/bonsai-users
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