

1

Creating and controlling visual environments 1

using BonVision 2

 3

Gonçalo Lopes1, Karolina Farrell2,‡, Edward A. B. Horrocks2,‡, Chi-Yu Lee2,‡, Mai M. Morimoto2,‡, 4

Tomaso Muzzu2,‡, Amalia Papanikolaou2,‡, Fabio R. Rodrigues2,‡, Thomas Wheatcroft2,‡, Stefano 5

Zucca2,‡, Samuel G. Solomon2,*, Aman B. Saleem2,* 6

 7
1NeuroGEARS Ltd., London; 2UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, 8
University College London, London, WC1H 0AP. 9
‡These authors are listed alphabetically. 10
*These authors jointly supervised this work. 11
Lead Contact: Aman B Saleem (aman.saleem@ucl.ac.uk) 12

 13
Real-time rendering of closed-loop visual environments is important for next-generation 14
understanding of brain function and behaviour, but is often prohibitively difficult for non-experts 15
to implement and is limited to few laboratories worldwide. We developed BonVision as an easy-to-16
use open-source software for the display of virtual or augmented reality, as well as standard visual 17
stimuli. BonVision has been tested on humans and mice, and is capable of supporting new 18
experimental designs in other animal models of vision. As the architecture is based on the open-19
source Bonsai graphical programming language, BonVision benefits from native integration with 20
experimental hardware. BonVision therefore enables easy implementation of closed-loop 21
experiments, including real-time interaction with deep neural networks, and communication with 22
behavioural and physiological measurement and manipulation devices. 23

 24

Introduction 25

Understanding behaviour and its underlying neural mechanisms calls for the ability to construct 26

and control environments that immerse animals, including humans, in complex naturalistic 27

environments that are responsive to their actions. Gaming-driven advances in computation and 28

rendering have driven the development of immersive closed-loop visual environments, but 29

these new platforms are not readily amenable to traditional research paradigms. For example, 30

they do not specify an image in egocentric units (of visual angle), sacrifice precise control of a 31

visual display, and lack transparent interaction with external hardware. 32

Most vision research has been performed in non-immersive environments with standard two-33

dimensional visual stimuli, such as gratings or dot stimuli, using established platforms including 34

PsychToolbox1 or PsychoPy2,3. Pioneering efforts to bring gaming-driven advances to 35

neuroscience research have provided new platforms for closed-loop visual stimulus generation: 36

STYTRA4 provides 2D visual stimuli for larval zebrafish in python, ratCAVE5 is a specialised 37

augmented reality system for rodents in python, FreemoVR6 provides virtual reality in 38

Ubuntu/Linux, and ViRMEn7 provides virtual reality in Matlab. However, these new platforms 39

lack the generalised frameworks needed to specify or present standard visual stimuli. 40

Our initial motivation was to create a visual display software with three key features. First, an 41

integrated, standardised platform that could rapidly switch between traditional visual stimuli 42

(such as grating patterns) and immersive virtual reality. Second, the ability to replicate 43

experimental workflows across different physical configurations (for example, when moving 44

2

from one to two computer monitors, or from flat-screen to spherical projection). Third, the 45

ability for rapid and efficient interfacing with external hardware (needed for experimentation) 46

without development of complex multi-threaded routines. We wanted to provide these 47

advances in a way that made it easier for users to construct and run closed-loop experimental 48

designs. In closed-loop experiments stimuli are ideally conditioned by asynchronous inputs, 49

such as those provided by multiple independent behavioural and neurophysiological 50

measurement devices. Most existing platforms require the development of multi-threaded 51

routines to run experimental paradigms (e.g. control brain stimulation, or sample from 52

recording devices) without compromising the rendering of visual scenes. Implementing such 53

multi-thread routines is complex. We therefore chose to develop a visual presentation 54

framework within the Bonsai programming language8. Bonsai is a graphical, high-performance, 55

and event-based language that is widely used in neuroscience experiments and is already 56

capable of real-time interfacing with most types of external hardware. Bonsai is specifically 57

designed for flexible and high-performance composition of data streams and external events, 58

and is therefore able to monitor and connect multiple sensor and effector systems in parallel, 59

making it easier to implement closed-loop experimental designs. 60

 61

We developed BonVision, an open-source software package that can generate and display well-62

defined visual stimuli in 2D and 3D environments. BonVision exploits Bonsai’s ability to run 63

OpenGL commands on the graphics card through the Bonsai.Shaders package. BonVision 64

further extends Bonsai by providing pre-built GPU shaders and resources for stimuli used in 65

vision research, including movies, along with an accessible, modular interface for composing 66

stimuli and designing experiments. The definition of stimuli in BonVision is independent of the 67

display hardware, allowing for easy replication of workflows across different experimental 68

configurations. Additional unique features include the ability to automatically detect and define 69

the relationship between the observer and the display from a photograph of the experimental 70

apparatus, and to use the outputs of real-time inference methods to determine the position 71

and pose of an observer online, thereby generating augmented reality environments. 72

 73

Results 74

To provide a framework that allowed both traditional visual presentation and immersive virtual 75

reality, we needed to bring these very different ways of defining the visual scene into the same 76

architecture. We achieved this by mapping the 2D retino-centric coordinate frame (i.e. degrees 77

of the visual field) to the surface of a 3D sphere using the Mercator projection (Fig 1A, Suppl. 78

Fig 1). The resulting sphere could therefore be rendered onto displays in the same way as any 79

other 3D environment. We then used “cube mapping” to specify the 360° projection of 3D 80

environments onto arbitrary viewpoints around an experimental observer (human or animal; 81

Fig 1B). Using this process, a display device becomes a window into the virtual environment, 82

where each pixel on the display specifies a vector from the observer through that window. The 83

vector links pixels on the display to pixels in the ‘cube map’, thereby rendering the 84

corresponding portion of the visual field onto the display. 85

 86

Our approach has the advantage that the visual stimulus is defined irrespectively of display 87

hardware, allowing us to independently define each experimental apparatus without changing 88

the preceding specification of the visual scene, or the experimental design (Fig 1C-E, Suppl. Fig 89

1, 2). Consequently, BonVision makes it easy to replicate visual environments and experimental 90

designs on various display devices, including multiple monitors, curved projection surfaces, and 91

3

head-mounted displays (Fig 1C-E). To facilitate easy and rapid porting between different 92

experimental apparatus, BonVision features a fast semi-automated display calibration. A 93

photograph of the experimental setup with fiducial markers9 measures the 3D position and 94

orientation of each display relative to the observer (Fig 2 and Fig 2 – figure supplement 1). 95

BonVision’s inbuilt image processing algorithms then estimate the position and orientation of 96

each marker to fully specify the display environment. 97

Virtual reality environments are easy to generate in BonVision. BonVision has a library of 98

standard pre-defined 3D structures (including planes, spheres and cubes), and environments 99

can be defined by specifying the position and scale of the structures, and the textures rendered 100

on them (e.g. Figure 1 – figure supplement 2 and Fig. 5F). BonVision also has the ability to 101

import standard format 3D design files created elsewhere in order to generate more complex 102

environments (file formats listed in Methods). This allows users to leverage existing 3D drawing 103

platforms (including open source platform ‘Blender’: https://www.blender.org/) to construct 104

complex virtual scenes (see Appendix). 105

BonVision can define the relationship between the display and the observer in real-time. This 106

makes it easy to generate augmented reality environments, where what is rendered on a 107

display depends on the position of an observer (Fig 3A). For example, when a mouse navigates 108

through an arena surrounded by displays, BonVision enables closed-loop, position-dependent 109

updating of those displays. Bonsai can track markers to determine the position of the observer, 110

but it also has turn-key capacity for real-time live pose estimation techniques – using deep 111

neural networks10,11 – to keep track of the observer’s movements. This allows users to generate 112

and present interactive visual environments (simulation in Fig 3 - video 1 and Fig 3B-C). 113

BonVision is capable of rendering visual environments near the limits of the hardware (Fig 4). 114

This is possible because Bonsai is based on a just-in-time compiler architecture such that there 115

is little computational overhead. BonVision accumulates a list of the commands to OpenGL as 116

the program makes them. To optimise rendering performance, the priority of these commands 117

is ordered according to that defined in the Shaders component of the LoadResources node 118

(which the user can manipulate for high-performance environments). These ordered calls are 119

then executed when the frame is rendered. To benchmark the responsiveness of BonVision in 120

closed-loop experiments, we measured the delay (latency) between an external event and the 121

presentation of a visual stimulus. We first measured the closed-loop latency for BonVision 122

when a monitor was refreshed at a rate of 60Hz (Fig 4A). We found delays averaged 2.11 ± 0.78 123

frames (35.26 ± 13.07ms). This latency was slightly shorter than that achieved by 124

PsychToolbox13 on the same laptop (2.44 ± 0.59 frames, 40.73 ± 9.8ms; Welch’s t-test, p < 10-80, 125

n=1000). The overall latency of BonVision was mainly constrained by the refresh rate of the 126

display device, such that higher frame rate displays yielded lower latency (60Hz: 35.26 ± 127

13.07ms; 90Hz: 28.45 ± 7.22ms; 144Hz: 18.49 ± 10.1ms; Fig 4A). That is, the number of frames 128

between the external event and stimulus presentation was fairly constant across frame rate 129

(60Hz: 2.11 ± 0.78 frames; 90Hz: 2.56 ± 0.65 frames; 144Hz: 2.66 ± 1.45 frames; Fig 4C). We 130

used two additional methods to benchmark visual display performance relative to other 131

frameworks (we did not try to optimise code fragments for each framework) (Fig 4B-C). 132

BonVision was able to render up to 576 independent elements and up to 8 overlapping 133

textures at 60Hz without missing (‘dropping’) frames, broadly matching PsychoPy2,3 and 134

Psychtoolbox1. BonVision’s performance was similar at different frame rates - at standard 135

4

frame rate (60 Hz), and at 144Hz (Figure 4 - figure supplement 1). BonVision could achieve 136

slightly fewer overlapping textures than PsychoPy, as BonVision does not currently have the 137

option to trade-off the resolution of a texture and its mask for performance. BonVision also 138

supports video playback, either by preloading the video or by streaming it from the disk. The 139

streaming mode, which utilises real-time file I/O and decompression, is capable of displaying 140

both standard definition (SD: 480p) and full HD (HD: 1080p) at 60Hz on a standard computer 141

(Fig 4D). At higher rates, performance is impaired for Full HD videos, but is improved by 142

buffering, and fully restored by preloading the video onto memory (Fig 4D). We benchmarked 143

BonVision on a standard Windows OS laptop, but BonVision is now also capable of running on 144

Linux. 145

To confirm that the rendering speed and timing accuracy of BonVision is sufficient to support 146

neurophysiological experiments, which need high timing accuracy, we mapped the receptive 147

fields of neurons early in the visual pathway12, in the mouse primary visual cortex and superior 148

colliculus. The stimulus (‘sparse noise’) consisted of small black or white squares briefly (0.1s) 149

presented at random locations (Fig 5A). This stimulus, which is commonly used to measure 150

receptive fields of visual neurons, is sensitive to the timing accuracy of the visual stimulus, 151

meaning that errors in timing would prevent the identification of receptive fields. In our 152

experiments using BonVision, we were able to recover receptive fields from 153

electrophysiological measurements13 - both in the superior colliculus and primary visual cortex 154

of awake mice (Fig 5B-C) - demonstrating that BonVision meets the timing requirements for 155

visual neurophysiology. The receptive fields show in Fig 5C were generated using timing signals 156

obtained directly from the stimulus display (via a photodiode). BonVision’s independent logging 157

of stimulus presentation timing was also sufficient to capture the receptive field (Fig 5 – figure 158

supplement 1). 159

To assess the ability of BonVision to control virtual reality environments we first tested its 160

ability to present stimuli to human observers on a head-mounted display14. BonVision uses 161

positional information (obtained from the head-mounted display) to update the view of the 162

world that needs to be provided to each eye, and returns two appropriately rendered images. 163

On each trial, we asked observers to identify the larger of two non-overlapping cubes that were 164

placed at different virtual depths (Fig 5D-E). The display was updated in closed-loop to allow 165

observers to alter their viewpoint by moving their head. Distinguishing objects of the same 166

retinal size required observers to use depth-dependent cues15, and we found that all observers 167

were able to identify which cube was larger (Fig 5E). 168

We next asked if BonVision was capable of supporting other visual display environments that 169

are increasingly common in the study of animal behaviour. We first projected a simple 170

environment onto a dome that surrounded a head-fixed mouse (as shown in Fig 1E). The 171

mouse was free to run on a treadmill, and the treadmill’s movements were used to update the 172

mouse’s position on a virtual platform (Fig 5F). Not only did mouse locomotion speed increase 173

with repeated exposure, but the animals modulated their speed depending on their location in 174

the platform (Fig 5F-G). BonVision is therefore capable of generating virtual reality 175

environments which both elicit, and are responsive to animal behaviour. BonVision was also 176

able to produce instinctive avoidance behaviours in freely-moving mice (Fig 5H-I). We displayed 177

a small black dot slowly sweeping across the overhead visual field. Visual stimuli presented in 178

BonVision primarily elicited a freezing response, which similar experiments have previously 179

5

described10 (Fig 5I). Together these results show that BonVision provides sufficient rendering 180

performance to support human and animal visual behaviour. 181

Discussion 182

BonVision is a single software package to support experimental designs that require visual 183

display, including virtual and augmented reality environments. BonVision is easy and fast to 184

implement, cross-platform and open source, providing versatility and reproducibility. 185

BonVision makes it easier to address several barriers to reproducibility in visual experiments. 186

First, BonVision is able to replicate and deliver visual stimuli on very different experimental 187

apparatus. This is possible because BonVision’s architecture separates specification of the 188

display and the visual environment. Second, BonVision includes a library of workflows and 189

operators to standardize and ease the construction of new stimuli and virtual environments. 190

For example, it has established protocols for defining display positions (Suppl. Fig 3), mesh-191

mapping of curved displays (Fig 1E), and automatic linearization of display luminance (Suppl. 192

Fig 4), as well as a library of examples for experiments commonly used in visual neuroscience. 193

In addition, the modular structure of BonVision enables the development and exchange of 194

custom nodes for generating new visual stimuli or functionality without the need to construct 195

the complete experimental paradigm. Third, BonVision is based on Bonsai8, which has a large 196

user base and an active developer community, and is now a standard tool for open-source 197

neuroscience research. BonVision naturally integrates Bonsai’s established packages in the 198

multiple domains important for modern neuroscience, which are widely used in applications 199

including real-time video processing16,17, optogenetics16–18, fibre photometry19,20, 200

electrophysiology (including specific packages for Open Ephys13,21 and high-density silicon 201

probes22,23), and calcium imaging (e.g. UCLA miniscope24,25). Bonsai requires researchers to get 202

accustomed to its graphical interface and event-based framework. However, it subsequently 203

reduces the time required to learn real-time programming, and the time to build new 204

interfaces with external devices (see Appendix). Moreover, since Bonsai workflows can be 205

called via the command line, BonVision can also be integrated into pre-existing, specialised 206

frameworks in established laboratories. 207

In summary, BonVision can generate complex 3D environments and retinotopically defined 2D 208

visual stimuli within the same framework. Existing platforms used for vision research, including 209

PsychToolbox1, PsychoPy2,3, STYTRA7, or RigBox26, focus on well-defined 2D stimuli. Similarly, 210

gaming-driven software, including FreemoVR4, ratCAVE5, and ViRMEn6, are oriented towards 211

generating virtual reality environments. BonVision combines the advantages of both these 212

approaches in a single framework (Supplementary file 1), while bringing the unique capacity to 213

automatically calibrate the display environment, and use deep neural networks to provide real-214

time control of virtual environments. Experiments in BonVision can be rapidly prototyped and 215

easily replicated across different display configurations. Being free, open-source and portable, 216

BonVision is a state-of-the-art tool for visual display that is accessible to the wider community.
217

Code availability 218

BonVision is an open-source software package available to use under the MIT license. It can be 219

downloaded through the Bonsai (bonsai-rx.org) package manager, and the source code is 220

available at: github.com/bonvision/BonVision. All benchmark programs and data are available 221

https://github.com/bonvision/BonVision
about:blank

6

at https://github.com/bonvision/benchmarks. Installation instructions, demos and learning 222

tools are available at: bonvision.github.io/. 223

Acknowledgements 224

We are profoundly thankful to Bruno Cruz and Joe Paton for sharing their videos of mouse 225

behaviour. This work was supported by a Wellcome Enrichment award: Open Research 226

(200501/Z/16/A), Sir Henry Dale Fellowship from the Wellcome Trust and Royal Society 227

(200501), Human Science Frontiers Program grant (RGY0076/2018) to A.B.S., an International 228

Collaboration Award (with Adam Kohn) from the Stavros Niarchos Foundation / Research to 229

Prevent Blindness to S.G.S., Medical Research Council grant (R023808), Biotechnology and 230

Biological Sciences Research Council grant (R004765) to S.G.S. and A.B.S. 231

Author Contributions 232

This work was conceptualised by G.L., S.G.S. and A.B.S., the software was developed by G.L., 233

methodology and validation were by all authors, writing – original draft was by G.L., S.G.S. and 234

A.B.S., and writing – review & editing was by G.L., K.F., M.M.M., T.M., F.R.R., T.W., S.Z., S.G.S. & 235

A.B.S, and supervision and funding acquisition was by S.G.S. and A.B.S. 236

 237

References 238

1. Brainard, D. H. The Psychophysics Toolbox. Spat. Vis. 10, 433–436 (1997). 239

2. Peirce, J. W. PsychoPy-Psychophysics software in Python. J. Neurosci. Methods 162, 8–13 240

(2007). 241

3. Peirce, J. W. Generating stimuli for neuroscience using PsychoPy. Front. Neuroinform. 2, 242

(2009). 243

4. Stowers, J. R. et al. Virtual reality for freely moving animals. Nat. Methods 14, 995–1002 244

(2017). 245

5. Del Grosso, N. A. & Sirota, A. Ratcave: A 3D graphics python package for cognitive 246

psychology experiments. Behav. Res. Methods 51, 2085–2093 (2019). 247

6. Aronov, D. & Tank, D. W. Engagement of Neural Circuits Underlying 2D Spatial 248

Navigation in a Rodent Virtual Reality System. Neuron 84, 442–456 (2014). 249

7. Štih, V., Petrucco, L., Kist, A. M. & Portugues, R. Stytra: An open-source, integrated 250

system for stimulation, tracking and closed-loop behavioral experiments. PLOS Comput. 251

Biol. 15, e1006699 (2019). 252

8. Lopes, G. et al. Bonsai: an event-based framework for processing and controlling data 253

streams. Front. Neuroinform. 9, 7 (2015). 254

9. Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F. J. & Marín-Jiménez, M. J. 255

Automatic generation and detection of highly reliable fiducial markers under occlusion. 256

Pattern Recognit. 47, 2280–2292 (2014). 257

10. Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts 258

with deep learning. Nat. Neurosci. 21, 1281–1289 (2018). 259

11. Pereira, T. D. et al. Fast animal pose estimation using deep neural networks. Nat. 260

Methods 16, 117–125 (2019). 261

12. Yeh, C. I., Xing, D., Williams, P. E. & Shapley, R. M. Stimulus ensemble and cortical layer 262

determine V1 spatial receptive fields. Proc. Natl. Acad. Sci. U. S. A. 106, 14652–14657 263

(2009). 264

13. Siegle, J. H. et al. Open Ephys: An open-source, plugin-based platform for multichannel 265

https://github.com/bonvision/benchmarks
https://bonvision.github.io/

7

electrophysiology. J. Neural Eng. 14, 045003 (2017). 266

14. Scarfe, P. & Glennerster, A. Using high-fidelity virtual reality to study perception in freely 267

moving observers. J. Vis. 15, 3–3 (2015). 268

15. Rolland, J. P., Gibson, W. & Ariely, D. Towards Quantifying Depth and Size Perception in 269

Virtual Environments. Presence Teleoperators Virtual Environ. 4, 24–49 (1995). 270

16. Zacarias, R., Namiki, S., Card, G. M., Vasconcelos, M. L. & Moita, M. A. Speed dependent 271

descending control of freezing behavior in Drosophila melanogaster. Nat. Commun. 9, 1–272

11 (2018). 273

17. Buccino, A. P. et al. Open source modules for tracking animal behavior and closed-loop 274

stimulation based on Open Ephys and Bonsai. J. Neural Eng. 15, (2018). 275

18. Moreira, J. M. et al. Optopad, a closed-loop optogenetics system to study the circuit 276

basis of feeding behaviors. Elife 8, (2019). 277

19. Soares, S., Atallah, B. V. & Paton, J. J. Midbrain dopamine neurons control judgment of 278

time. Science (80-.). 354, 1273–1277 (2016). 279

20. Hrvatin, S. et al. Neurons that regulate mouse torpor. Nature 1–7 (2020). 280

doi:10.1038/s41586-020-2387-5 281

21. Neto, J. P. et al. Validating silicon polytrodes with paired juxtacellular recordings: 282

Method and dataset. J. Neurophysiol. 116, 892–903 (2016). 283

22. Jun, J. J. et al. Fully integrated silicon probes for high-density recording of neural activity. 284

Nature 551, 232–236 (2017). 285

23. Dimitriadis, G. et al. Why not record from every channel with a CMOS scanning probe? 286

bioRxiv 275818 (2018). doi:10.1101/275818 287

24. Aharoni, D., Khakh, B. S., Silva, A. J. & Golshani, P. All the light that we can see: a new era 288

in miniaturized microscopy. Nature Methods 16, 11–13 (2019). 289

25. Cai, D. J. et al. A shared neural ensemble links distinct contextual memories encoded 290

close in time. Nature 534, 115–118 (2016). 291

26. Bhagat, J., Wells, M. J., Harris, K. D., Carandini, M. & Burgess, C. P. Rigbox: An Open-292

Source Toolbox for Probing Neurons and Behavior. eneuro ENEURO.0406-19.2020 293

(2020). doi:10.1523/ENEURO.0406-19.202 294

8

Figures 295

 296

 297

Figure 1: BonVision adaptable display and render configurations. A. Illustration of how 298

two-dimensional textures are generated in BonVision using Mercator projection for sphere 299

mapping, with elevation as latitude and azimuth as longitude. The red dot indicates the 300

position of the observer. B. Three-dimensional objects were placed at the appropriate 301

positions and the visual environment was rendered using cube-mapping. C-E. Examples of 302

the same two stimuli, a checkerboard + grating (middle row) or four three-dimensional 303

objects (bottom row), displayed in different experimental configurations (top row): two 304

angled LCD monitors (C), a head-mounted display (D), and demi-spherical dome (E). 305

 306

9

 307

 308

Figure 2: Automated calibration of display position. A. Schematic showing the position of 309

two hypothetical displays of different sizes, at different distances and orientation relative to 310

the observer (red dot). B. How a checkerboard of the same visual angle would appear on 311

each of the two displays. C. Example of automatic calibration of display position. Standard 312

markers are presented on the display, or in the environment, to allow automated detection 313

of the position and orientation of both the display and the observer. These positions and 314

orientations are indicated by the superimposed red cubes as calculated by BonVision. D. 315

How the checkerboard would appear on the display when rendered, taking into account the 316

precise position of the display. E-F. Same as C-D, but for another pair of display and 317

observer positions. The automated calibration was based on the images shown in C and E. 318

10

 319

Figure 3: Using BonVision to generate an augmented reality environment. A. Illustration of 320

how the image on a fixed display needs to adapt as an observer (red dot) moves around an 321

environment. The displays simulate windows from a box into a virtual world outside. B. The 322

virtual scene (from: http://scmapdb.com/wad:skybox-skies) that was used to generate the 323

example images and Figure 3 - Video 1 offline. C. Real-time simulation of scene rendering in 324

augmented reality. We show two snapshots of the simulated scene rendering, which is also 325

shown in Figure 3 - video 1. In each case the inset image shows the actual video images, of a 326

mouse exploring an arena, that were used to determine the viewpoint of an observer in the 327

simulation. The mouse’s head position was inferred (at a rate of 40 frames/s) by a network 328

trained using DeepLabCut6. The top image shows an instance when the animal was on the 329

left of the arena (head position indicated by the red dot in the main panel) and the lower 330

image shows an instance when it was on the right of the arena. 331

 332

http://scmapdb.com/wad:skybox-skies
http://scmapdb.com/wad:skybox-skies

11

 333

Figure 4: Closed-loop latency and performance benchmarks. A. Latency between sending a 334

command (virtual key press) and updating the display (measured using a photodiode). (A.i - 335

A.ii) Latency depended on the frame rate of the display, updating stimuli with a delay of 1-3 336

frames. (A.iii - A.iv). B-C. Benchmarked performance of BonVision with respect to 337

Psychtoolbox and PsychoPy. B. When using non-overlapping textures BonVision and 338

Psychtoolbox could present 576 independent textures without dropping frames, while 339

PsychoPy could present 16. C. When using overlapping textures PsychoPy could present 16 340

textures, while BonVision and Psychtoolbox could present 8 textures without dropping 341

frames. D. Benchmarks for movie playback. BonVision is capable of displaying standard 342

definition (480p) and high definition (1080p) movies at 60 frames/s on a laptop computer 343

with a standard CPU and graphics card. We measured display rate when fully pre-loading 344

the movie into memory (blue), or when streaming from disk (with no buffer: orange; 1-345

frame buffer: green; 2-frame buffer: red; 4-frame buffer: purple). When asked to display at 346

rates higher than the monitor refresh rate (>60 frames/s), the 480p video played at the 347

12

maximum frame rate of 60fps in all conditions, while the 1080p video reached the 348

maximum rate when pre-loaded. Using a buffer slightly improved performance. A black 349

square at the bottom right of the screen in A-C is the position of a flickering rectangle, which 350

switches between black and white at every screen refresh. The luminance in this square is 351

detected by a photodiode and used to measure the actual frame flip times. 352

 353

 354
Figure 5: Illustration of BonVision across a range of vision research experiments. A. Sparse 355

noise stimulus, generated with BonVision, is rendered onto a demi-spherical screen. B-C. 356

Receptive field maps from recordings of local field potential in the superior colliculus (B), 357

and spiking activity in the primary visual cortex (C) of mouse. D. Two cubes were presented 358

at different depths in a virtual environment through a head-mounted display to human 359

subjects. Subjects had to report which cube was larger: left or right. E. Subjects 360

predominantly reported the larger object correctly, with a slight bias to report that the 361

object in front was bigger. F. BonVision was used to generate a closed-loop virtual platform 362

that a mouse could explore (top: schematic of platform). Mice naturally tended to run faster 363

along the platform, and in later sessions developed a speed profile, where they slowed 364

down as they approached the end of the platform (virtual cliff). G. The speed of the animal 365

at the start of the platform and at the end of the platform as a function training. H. 366

BonVision was used to present visual stimuli overhead while an animal was free to explore 367

an environment (which included a refuge). The stimulus was a small dot (5° diameter) 368

moving across the projected surface over several seconds. I. The cumulative probability of 369

Freeze and Flight behaviour across time in response to moving dot presented overhead. 370

 371

 372

 373

 374

13

Supplementary file 1: Features of visual display software✓✓ easy and well-supported 375

 376
 377

 378

 379

 380

 381

14

Supplementary Figures 382

 383

 384

Figure 1 - figure supplement 1: Mapping stimuli onto displays in various positions. 385

A. Checkerboard stimulus being rendered. B. Projection of the stimulus onto a sphere using 386

Mercator projection. C. Example display positions (dA-dF) and (D) corresponding rendered 387

images. Red dot in C indicates the observer position. 388

 389

15

 390
Figure 1 - figure supplement 2: Modular structure of workflow and example workflows. 391

A. Description of the modules in BonVision workflows that generate stimuli. Every BonVision 392

stimuli includes a module that creates and initializes the render window, shown in 393

“BonVision window and resources”. This defines the window parameters in Create Window 394

(such as background colour, screen index, VSync), and loads predefined (BonVision 395

Resources) and user defined textures (Texture Resources, not shown), and 3D meshes (Mesh 396

16

Resources). This is followed by the modules: “Drawing region”, where the visual space 397

covered by the stimuli is defined, which can be the complete visual space, 360° x 360°. 398

“Draw stimuli” and “Define scene” are where the stimulus is defined, “Map Stimuli”, which 399

maps the stimuli into the 3D environment, and “Define display”, where the display devices 400

are defined. B-C. Modules that define the checkerboard + grating stimulus (B) shown in the 401

middle row of Fig 1, and 3D world (C) with 5 objects shown in the bottom row of Fig 1. The 402

display device is defined separately and either display can be appended at the end of the 403

workflow. This separation of the display device allows for replication between experimental 404

configurations. D. The variants of the modules used to display stimuli on a head-mounted 405

display. The empty region under “Define scene” would be filled by the corresponding nodes 406

in B and C. 407

 408

 409

 410
Figure 2 - figure supplement 1: Automated workflow to calibrate display position. The 411

automated calibration is carried out by taking advantage of ArUco markers5 that can be 412

used to calculate the 3D position of a surface. Ai. We use one marker on the display and one 413

placed in the position of the observer. We then use a picture of the display and observer 414

position taken by a calibrated camera. This is an example where we used a mobile phone 415

camera for calibration. Aii. The detected 3D positions of the screen and the observer, as 416

calculated by BonVision. Aiii. A checkerboard image and a small superimposed patch of 417

grating, rendered based on the precise position of the display. B-C. same as A-C for different 418

screen and observer positions: with the screen tilted towards the animal (B), or the observer 419

17

shifted to the right of the screen (C). The automated calibration was based on the images 420

shown in Ai, Bi and Ci, which in this case were taken using a mobile phone camera. 421

 422

 423

 424

 425
 426

Figure 2 - figure supplement 2: Automated gamma-calibration of visual displays. BonVision 427

monitored a photodiode (Photodiode v2.1, https://www.cf-hw.org/harp/behavior) through 428

a HARP microprocessor, to measure the light output of the monitor (Dell Latitude 7480). The 429

red, green and blue channels of the display were sent the same values (i.e. grey scale). A. 430

Gamma calibration. The input to the display channels was modulated by a linear ramp 431

(range 0-255). Without calibration the monitor output (arbitrary units) increased 432

exponentially (blue line). The measurement was then used to construct an intermediate 433

look-up table that corrected the values sent to the display. Following calibration, the display 434

intensity is close to linear (red line). Inset at top: schematic of the experimental 435

configuration. B. Similar to A, but showing the intensity profile of a drifting sinusoidal 436

grating. Measurements before calibration resemble an exponentiated sinusoid (blue dotted 437

line). Measurements after calibration resemble a regular sinusoid (red dotted line). 438

 439

 440

Figure 3 – video 1: Augmented reality simulation using BonVision. This video is an example 441

of a deep neural network, trained with DeepLabCut, being used to estimate the position of a 442

mouse’s head in an environment in real-time, and updating a virtual scene presented on the 443

monitors based on this estimated position. The first few seconds of the video display the 444

online tracking of specific features (nose, head, and base of tail) while an animal is moving 445

around (shown as a red dot) in a three-port box (as in Soares, Atallah & Paton, 2016). 446

Subsequently the inset shows the original video of the animal’s movements, which the 447

simulation is based on. The rest of the video image shows how a green field landscape 448

(source: http://scmapdb.com/wad:skybox-skies) outside the box would be rendered on 449

three simulated displays within the box (one placed on each of the three oblique walls). 450

These three displays simulate windows onto the world beyond the box. The position of the 451

animal was updated by DeepLabCut at 40 frames/s, and the simulation was rendered at the 452

same rate. 453

 454

http://scmapdb.com/wad:skybox-skies
https://www.cf-hw.org/harp/behavior#h.p_uMPRuA1sNnEB

18

 455
Figure 4 - figure supplement 1: BonVision performance benchmarks at high frame rate. A. 456

When using non-overlapping textures BonVision was able to render 576 independent 457

textures without dropping frames at 60Hz. At 144Hz BonVision was able to 256 non-458

overlapping textures, with no dropped frames, and seldom dropped frames with 576 459

textures. BonVision was unable to render 1024 or more textures at the requested frame 460

rate. B. When using overlapping textures BonVision was able to render 64 independent 461

textures without dropping frames at 60Hz. At 144Hz BonVision was able to render 32 462

textures, with no dropped frames. Note that these tests were performed on a computer 463

with better hardware specification than that used in Fig 4, which led to improved 464

performance on the benchmarks at 60 Hz. A black square at the bottom right of the screen 465

in A-B is the position of a flickering rectangle, which switches between black and white at 466

every screen refresh. The luminance in this square is detected by a photodiode and used to 467

measure the actual frame flip times. 468

19

 469

Figure 5 – figure supplement 1: BonVision timing logs are sufficient to support receptive 470

field mapping of spiking activity in superior colliculus of awake mouse. Top row in each 471

case shows the receptive field identified using the timing information provided by a 472

photodiode that monitored a small square on the stimulus display that was obscured from 473

the animal. Bottom row in each case shows the receptive field identified by using the timing 474

logged by BonVision during the stimulus presentation (a separate timing system was used to 475

align the clocks between the computer hosting BonVision and the Open EPhys recording 476

device). (A) Average OFF- and ON receptive field maps for 33 simultaneously recorded units 477

in a single recording session. (B) Individual OFF- receptive field maps for three 478

representative units in the same session. 479

 480

20

Material and Methods 481

 482

Benchmarking 483

We performed benchmarking to measure latencies and skipped (“dropped”) frames. For 484

benchmarks at 60Hz refresh rate, we used a standard laptop with the following 485

configuration: Dell Latitude 7480, Intel Core i7-6600U Processor Base with Integrated HD 486

Graphics 520 (Dual Core, 2.6GHz), 16GB RAM. For higher refresh rates we used a gaming 487

laptop ASUS ROG Zephyrus GX501GI, with an Intel Core i7-8750H (6 cores, 2.20GHz), 16GB 488

RAM, equipped with a NVIDIA GeForce GTX 1080. The gaming laptop built-in display 489

refreshes at 144Hz, and for measuring latencies at 90Hz we connected it to a Vive Pro 490

SteamVR head-mounted display (90Hz refresh rate). All tests were run on Windows 10 Pro 491

64-bit. 492

To measure the time from input detection to display update, as well as dropped frames 493

detection, we used open-source HARP devices from Champalimaud Research Scientific 494

Hardware Platform, using the Bonsai.HARP package. Specifically we used the HARP Behavior 495

device (https://www.cf-hw.org/harp/behavior), which is a low latency DAQ, to synchronise 496

all measurements with the extensions: ‘Photodiode v2.1’ to measure the change of the 497

stimulus on the screen, and ‘Mice poke simple v1.2’ as the nose poke device to externally 498

trigger changes. To filter out the infrared noise generated from an internal LED sensor inside 499

the Vive Pro HMD, we positioned an infrared cut-off filter between the internal headset 500

optics and the photodiode. Typically, the minimal latency for any update is 2 frames: one 501

which is needed for the VSynch, and one is the delay introduced by the OS. Display 502

hardware can add further delays if they include additional buffering. Benchmarks for video 503

playback were carried out using a trailer from the Durian Open Movie Project (© copyright 504

Blender Foundation | durian.blender.org). 505

All benchmark programs and data are available at 506

https://github.com/bonvision/benchmarks. 507

File Formats 508

We tested the display of images and videos using the image and video benchmark 509

workflows. We confirmed the ability to use the following image formats: PNG, JPG, BMP, 510

TIFF, GIF. Movie display relies on the FFmpeg library (https://ffmpeg.org/), an industry 511

standard, and we confirmed ability to use the following containers: AVI, MP4, OGG, OGV 512

and WMV; in conjunction with standard codecs: H264, MPEG4, MPEG2, DIVX. Importing 3D 513

models and complex scenes relies on the Open Asset Importer Library (Assimp | 514

http://assimp.org/). We confirmed the ability to import and render 3D models and scenes 515

from the following formats: OBJ, Blender. 516

Animal Experiments 517

All experiments were performed in accordance with the Animals (Scientific Procedures) Act 518

1986 (United Kingdom) and Home Office (United Kingdom) approved project and personal 519

licenses. The experiments were approved by the University College London Animal Welfare 520

https://ffmpeg.org/
http://assimp.org/
http://durian.blender.org/
https://www.cf-hw.org/harp/behavior#h.p_uMPRuA1sNnEB
https://github.com/bonvision/benchmarks

21

Ethical Review Board under Project License 70/8637. The mice (C57BL6 wild-type) were 521

group-housed with a maximum of five to a cage, under a 12-hour light/dark cycle. All 522

behavioural and electrophysiological recordings were carried out during the dark phase of 523

the cycle. 524

Innate Defensive Behaviour 525

Mice (5 male, C57BL6, 8 weeks old) were placed in a 40cm square arena. A dark refuge 526

placed outside the arena could be accessed through a 10cm door in one wall. A DLP 527

projector (Optoma GT760) illuminated a screen 35cm above the arena with a grey 528

background (80 candela/m2). When the mouse was near the centre of the arena, a 2.5cm 529

black dot appeared on one side of the projection screen and translated smoothly to the 530

opposite side over 3.3s. 10 trials were conducted over 5 days and the animal was allowed to 531

explore the environment for 5-10 minutes before the onset of each trial. 532

Mouse movements were recorded with a near infrared camera (Blackfly S, BFS-U3-13Y3M-C, 533

sampling rate: 60Hz) positioned over the arena. An infrared LED was used to align video and 534

stimulus. Freezing was defined as a drop in the animal speed below 2cm/s that lasted more 535

than 0.1s; flight responses as an increase in the animal running speed above 40cm/s. 536

Responses were only considered if they occurred within 3.5s from stimulus onset. 537

Surgery 538

Mice were implanted with a custom-built stainless-steel metal plate on the skull under 539

isoflurane anaesthesia. A ~1mm craniotomy was performed either over the primary visual 540

cortex (2mm lateral and 0.5mm anterior from lambda) or superior colliculus (0.5mm lateral 541

and 0.2mm anterior from lambda). Mice were allowed to recover for 4-24 hours before the 542

first recording session. 543

We used a virtual reality apparatus similar to those used in previous studies (Schmidt-Hieber 544

& Hausser, 2013; Muzzu, Mitolo, Gava & Schultz, 2018). Briefly, mice were head-fixed above 545

a polystyrene wheel with a radius of 10cm. Mice were positioned in the geometric centre of 546

a truncated spherical screen onto which we projected the visual stimulus. The visual 547

stimulus was centred at +60° azimuth and +30° elevation and had a span of 120° azimuth 548

and 120° elevation. 549

Virtual reality behaviour 550

5 male, 8-week old, C57BL6 mice were used for this experiment. One week after the 551

surgery, mice were placed on a treadmill and habituated to the Virtual Reality (VR) 552

environment by progressively increasing the number of time spent head fixed: from ~15 553

mins to 2 hours. Mice spontaneously ran on the treadmill, moving through the VR in 554

absence of reward. The VR environment was a 100cm long platform with a patterned 555

texture that animals ran over for multiple trials. Each trial started with an animal at the start 556

of the platform and ended when it reached the end, or if 60s had elapsed. At the end of a 557

trial, there was a 2 second grey interval before the start of the next trial. 558

22

Neural Recordings 559

To record neural activity, we used multi-electrode array probes with two shanks and 32 560

channels (ASSY-37 E-1, Cambridge Neurotech Ltd., Cambridge, UK). Electrophysiology data 561

was acquired with an Open Ephys acquisition board connected to a different computer from 562

that used to generate the visual stimulus. 563

The electrophysiological data from each session was processed using Kilosort 1 (Pachitariu, 564

Steinmetz, Kadir, Carandini & Harris, 2016). We synchronised spike times with behavioural 565

data by aligning the signal of a photodiode that detected the visual stimuli transitions 566

(PDA25K2, Thorlabs, Inc., USA). We sampled the firing rate at 60Hz, and then smoothed it 567

with a 300ms Gaussian filter. We calculated receptive fields as the average firing rate or 568

local field potential elicited by the appearance of a stimulus in each location (custom 569

routines in MATLAB). 570

Augmented reality for mice 571

The mouse behaviour videos were acquired by Bruno Cruz from the lab of Joe Paton at the 572

Champalimaud Centre for the Unknown, using methods similar to Soares, Atallah & Paton, 573

2016. A ResNet-50 network was trained using DeepLabCut (Mathis et al, 2018). We 574

simulated a visual environment in which a virtual scene was presented beyond the arena, 575

and updated the scenes on three walls of the arena that simulated how the view of these 576

objects changed as the animal moved through the environment. The position of the animal 577

was updated from the video file at a rate of 40 frames/s on a gaming laptop: ASUS ROG 578

Zephyrus GX501GI, with an Intel Core i7-8750H (6 cores, 2.20GHz), 16GB RAM, equipped 579

with a NVIDIA GeForce GTX 1080, using a 512x512 video. The performance can be improved 580

using a lower pixel resolution for video capture, and we were able to achieve up to 80 581

frames/s without noticeable decrease in tracking accuracy using this strategy. Further 582

enhancements can be achieved using a MobileNet network. The position inference from the 583

deep neural network and the BonVision visual stimulus rendering were run on the same 584

machine. 585

Human Psychophysics 586

All procedures were approved by the Experimental Psychology Ethics Committee at 587

University College London (Ethics Application EP/2019/002). We obtained informed 588

consent, and consent to publish from all participants. 4 male participants were tested for 589

this experiment. The experiments were run on a gaming laptop (described above) 590

connected it to a Vive Pro SteamVR head-mounted display (90Hz refresh rate). BonVision is 591

compatible with different headsets (for example Oculus Rift, HTC Vive). BonVision receives 592

the projection matrix (perspective projection of world display) and the view matrix (position 593

of eye in the world) for each eye from the head set. BonVision uses these matrices to 594

generate two textures, one for the left eye and one for the right eye. Standard onboard 595

computations on the headset provide additional non-linear transformations that account for 596

the relationship between the eye and the display (such as lens distortion effects). 597

Methods References 598

Mathis, A., Mamidanna, P., Cury, K.M., Abe, T., Murthy, V.N., Mathis, M.W., & Bethge M 599

23

DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. 600

Nat. Neurosci. 21, 1281–1289 (2018). 601

Muzzu, T., Mitolo, S., Gava, G. P., & Schultz, S. R.. Encoding of locomotion kinematics in the 602

mouse cerebellum. PLoS ONE, 13(9) (2018). 603

Pachitariu, M., Steinmetz, N., Kadir, S., Carandini, M., & Harris, K. Fast and accurate spike 604

sorting of high-channel count probes with KiloSort. Advances in Neural Information 605

Processing Systems 29. NIPS Proceedings: Barcelona, Spain (2016) 606

Soares, S., Atallah, B., & Paton, J.. Midbrain dopamine neurons control judgement of time. 607

Science, 354(6317), 1273-1277 (2016). 608

Schmidt-Hieber, C., & Hausser, M.. Cellular mechanisms of spatial navigation in the medial 609

entorhinal cortex. Nat Neurosci, 16(3), 325–331 (2013). 610

 611

24

Appendix 612

Basic workflow structure 613

Each BonVision workflow starts by loading the basic Shaders library (this is BonVision’s 614

implementation of OpenGL) and then creating a window in which stimuli are to be 615

displayed. Bonsai is an event-based framework, so the visual stimulus generation and 616

control are driven by events from the RenderFrame or UpdateFrame nodes, which are in 617

turn activated when a screen refresh occurs. An event broadcast from the RenderFrame or 618

UpdateFrame node then activates the cascade of nodes that load, generate or update the 619

different visual stimuli. 620

Closed-loop control 621

Parameters of stimuli can also be updated, asynchronously and in parallel, by other events. 622

Parameters of any Bonsai node can be controlled by addressing the relevant property within 623

that node – all parameters within a node can be made visible to the external caller of that 624

node. This is particularly useful for generating closed loop stimuli where the value of these 625

parameters can be linked to external IO devices (for example, position sensors) that are 626

easily accessible using established Bonsai drivers and packages. A major advantage of the 627

Bonsai framework is that the visual stimulus generation does not need to pause to poll 628

those I/O devices, and the values from those devices can be retrieved any time up to the 629

rendering of the frame, creating opportunities for low-lag updating of the visual stimulus. 630

Considerations while using BonVision 631

Client control 632

Some experimental designs may rely on complex experimental control protocols that are 633

already established in other software, or are challenging to implement in a reactive 634

framework. For such applications, BonVision’s rendering platform can be used as a client to 635

create and control calibrated visual stimuli. This can be implemented using Bonsai’s inbuilt 636

IP communication protocols to interact with the independent controller software (for 637

example, Python or MATLAB). BonVision workflows can also be executed from the 638

command-line using standard syntax, without opening the graphical interface of Bonsai. 639

Mercator projection 640

A key motivation in developing BonVision was the ability to present 2D and 3D stimuli in the 641

same framework. To enable this, we chose to project 2D stimuli onto a 3D sphere, using the 642

Mercator projection. The Mercator projection, however, contracts longitude coordinates 643

around the two poles, and the consequence is that 2D stimuli presented close to the poles 644

are deformed without compensation. Experiments that require 2D-defined stimuli to be 645

presented near the default poles therefore need particular care. There are a few options to 646

overcome this limitation. One option is to rotate the sphere mapping so that the poles are 647

shifted away from the desired stimulus location. A second option is to present the texture 648

on a 3D object facing the observer. For example, to present a grating in a circular aperture, 649

we could have the grating texture rendered on a disk presented in 3D, and the disk is placed 650

in the appropriate position. Finally, the user can present stimuli via the NormalisedView 651

25

node, which defines stimuli in screen pixel coordinates, using manual calibrations and 652

precomputations to ensure the stimuli are of the correct dimensions. 653

Constructing 3D environments 654

There are many well-established software packages with excellent graphical interfaces that 655

are capable of creating 3D objects and scenes, and users are likely to have their preferred 656

method. BonVision therefore focuses on providing easy importing of a wide variety of 3D 657

model formats. BonVision offers three options for building 3D environments: 658

1. BonVision (limited capability). Inbuilt BonVision processes allow for the rendering of 659

textures onto simple planar surfaces. The user defines the position and orientation of each 660

plane in 3D space, and the texture that is to be drawn onto that plane, using the 661

DrawTexturedModel node. 662

2. Import (load) 3D models of objects (including cubes, spheres, and more complex models). 663

Common 3D models (such as those used in Fig 1) are often freely available online. Custom 664

models can be generated using standard 3D software, including Blender and CAD programs. 665

The user defines the position of each object, and its dynamics, within BonVision, and can 666

independently attach the desired texture(s) to each of the different faces of those objects 667

using the DrawTexturedModel Node. 668

3. Import a full 3D scene (with multiple objects and camera views). BonVision is able to 669

interact with both individual objects and cameras defined within a 3D scene. A particular 670

advantage of this method is that specialised software (e.g. Blender) provide convenient 671

methods to construct and visualise scenes in advance; BonVision provides the calibrated 672

display environment and capacity for interaction with the objects. 673

Once the 3D scene is created, the user can then control a camera in the resultant virtual 674

world that can move and rotate, with BonVision computing the effects of this movement 675

(i.e. without any additional user code) to render what the camera should see onto a display 676

device. 677

Animation lags and timing logs 678

While BonVision expends substantial effort to eliminate interruptions to the presentation of 679

a visual stimulus, these can occur, and solutions may be beyond the control of the 680

experimenter. To avoid the potential accumulation of timing errors, the UpdateFrame node 681

uses the current time to specify the current location in an animation sequence. The actual 682

presentation time of each frame in an animation can be logged using the standard logging 683

protocols in BonVision. The log can also include the user predefined or real-time updated 684

parameters that were used to generate the corresponding stimulus frame. 685

 686

26

Customised nodes and new stimuli 687

Bonsai’s modular nature and simple integration with C# and Python scripting means 688

BonVision can be extended by users. The BonVision package is almost entirely implemented 689

using the Bonsai visual programming language, showcasing its power as a domain-specific 690

language. Custom BonVision nodes can be easily created in the graphical framework, or 691

using C# or Python scripting with user-defined inputs, outputs, properties and operations 692

can be generated by users to create novel visual stimuli, define interactions between 693

objects, and enable visual environments which are arbitrarily responsive to experimental 694

subjects. 695

Physics engine 696

BonVision is able to calculate interactions between objects using the package 697

Bonsai.Physics, including collisions, bouncing off surfaces or deformations. 698

Spatial calibration 699

BonVision provides automatic calibration protocols to define the position of display(s) 700

relative to the observer. A single positional marker is sufficient for each flat display 701

(illustrated in Fig 2; a standard operating procedure is described on the website). An 702

additional marker is placed in the position of the observer, to provide the reference point. 703

When the observer’s position relative to the display varies (for example, in the augmented 704

reality example in Fig 3 and Supplementary Video 1), the easiest solution is to calibrate the 705

position of the displays relative to a fixed point in the arena. The observer position is then 706

calculated in real-time, and the vector from the observer to the reference point is added to 707

that from the reference to the display. The resultant vector is the calibrated position of the 708

display relative to the observer’s current position. 709

In the case of head-mounted displays (HMDs), BonVision takes advantage of the fact that 710

HMD drivers can provide the calibrated transform matrices from the observer’s eye centre, 711

using the HMDView node. 712

When the presentation surface is curved (for example, projection onto a dome) a manual 713

calibration step is required as in other frameworks. This calibration step is often referred to 714

as mesh-mapping and involves the calculation of a transformation matrix that specifies the 715

relationship between a (virtual) flat display and position on the projection surface. A 716

standard operating procedure for calculating this mesh-map is described on the BonVision 717

website. 718

Performance optimisation 719

We recommend displaying stimuli through a single graphics card, even when multiple 720

displays are used, that is, multiple displays appear to the OS as an extended single display. 721

Learning to use BonVision 722

We provide the following learning materials (which will continue to be updated): 723

Tutorials & Documentation: https://bonvision.github.io 724

Video tutorials: https://www.youtube.com/channel/UCEg-3mfbvjIwbzDVvqYudAA 725

Demos & Examples: https://github.com/bonvision/examples 726

https://github.com/bonvision/examples
https://bonvision.github.io/
https://www.youtube.com/channel/UCEg-3mfbvjIwbzDVvqYudAA

27

Community forum: https://groups.google.com/forum/#!forum/bonsai-users 727

https://groups.google.com/forum/#!forum/bonsai-users

	Article File

