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Abstract

Dynamic time warping (DTW) is a useful
method for aligning, comparing and combin-
ing time series, but it requires them to live in
comparable spaces. In this work, we consider
a setting in which time series live on differ-
ent spaces without a sensible ground metric,
causing DTW to become ill-defined. To alle-
viate this, we propose Gromov dynamic time
warping (GDTW), a distance between time
series on potentially incomparable spaces that
avoids the comparability requirement by in-
stead considering intra-relational geometry.
We demonstrate its effectiveness at aligning,
combining and comparing time series living
on incomparable spaces. We further propose
a smoothed version of GDTW as a differen-
tiable loss and assess its properties in a variety
of settings, including barycentric averaging,
generative modeling and imitation learning.

1 Introduction

Data is often gathered sequentially in the form of a
time series, which consists of a sequence of data points
observed at successive time points. Elements of such
sequences are correlated through time, and comparing
time series requires one to take the direction of time
into account. To define a meaningful similarity measure
between time series, Sakoe and Chiba (1978) proposed
dynamic time warping (DTW), a distance over the
space of time series. DTW consists of a minimal-cost
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alignment problem and is solved efficiently via dynamic
programming.

Dynamic time warping enables one to tackle a large
range of temporal problems, including aligning, compar-
ing, and averaging time series. In particular, DTW can
be employed as a loss function within larger learning
frameworks: in this setting, Cuturi and Blondel (2017)
propose soft DTW, which consists of a smoothed DTW
objective possessing a differentiable gradient which
can result in better behavior when employing gradient-
based methods (Cuturi, 2011).

DTW and its variants require a sensible cost function
to be defined between samples from the two time series.
The specification of such cost functions is often hard,
and limits the applicability of DTW. For example, in
cases where the time series are invariant under sym-
metries, such as sequences of word embeddings which
are only identified up to a rotation of latent space, one
needs to solve a spatial alignment problem to compare
the two sequences sensibly.

Zhou and Torre (2009) propose an extension of DTW
that addresses this issue by jointly optimizing spatial
and temporal projections that align the time series.
Vayer et al. (2020) introduce a similar extension of
DTW that consists in making the cost invariant with
respect to specific sets of invariances, such as for ex-
ample rotations. In these approaches, one still requires
the definition of a cost function between samples from
the two time series, along with a potentially large pre-
defined set of transformations to optimize over. On
the other hand, in multi-modal settings, one considers
time series that live on incomparable spaces: for ex-

Code available at: https://github.com/samcohen16/
Aligning-Time-Series.
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ample, the configuration space of a robotic arm and
its representation as pixels of a video frame. In such
cases, defining a sensible distance between different
representations and a sensible space of symmetries is
impractical, as it would require detailed understanding
of the objects we wish to study.

In this work, we propose to tackle the incomparability
and invariance problems simultaneously by relaxing
our notion of equality in a manner inspired by recent
ideas from the optimal transport literature. Using con-
nections between DTW and the Wasserstein distance
(Kantorovich, 1958), we propose Gromov dynamic time
warping (GDTW), which compares two time series
by contrasting their intra-relational geometries, analo-
gously to the Gromov–Wasserstein distance of isometry
classes of metric-measure spaces (Mémoli, 2011). This
allows one to compare two time series without requiring
a similarity notion between their samples. The result-
ing procedure automatically incorporates invariances
into the distance, without requiring said invariances or
symmetry-specific constraints to be manually specified.

Contributions. (1) We introduce a new distance
between time series that is well-defined on incomparable
spaces with naturally built-in invariance to isometries,
and (2) a smoothed extension with better-behaved
gradients. (3) We propose an efficient Frank–Wolfe-
inspired algorithm for computing it, and (4) we apply
Gromov DTW as a loss function in a wide range of
settings, including barycentric averaging, generative
modeling and imitation learning.

Notation. Let (X , dX ) be a compact metric space,
and let a time series x of length T ∈ N be an ele-
ment of X T . Let A(m,n) ⊆ {0, 1}m×n be the set of
alignment matrices, which are binary matrices contain-
ing a path of ones from the top-left to the bottom-
right corner, allowing only bottom, right or diagonal
bottom-right moves. Given a matrix A ∈ A(m,n)
and a 4-dimensional array L ∈ Rm×n×m×n, define
the matrix (L⊗A)ij =

(∑
kl LijklAkl

)
ij

. Denote the

Frobenius matrix inner product by 〈·, ·〉F. Define the
probability simplex ∆J = {q ∈ RJ , qj ≥ 0 for j =
1, . . . , J,

∑
j qj = 1}. Finally, x:i corresponds to the

first i time steps of x.

2 Dynamic Time Warping for Time
Series Alignment

Sakoe and Chiba (1978) consider the problem of align-
ing two time series x ∈ X Tx and y ∈ X Ty , where
potentially Tx 6= Ty. This is formalized as

DTW(x,y) = min
A∈A(Tx,Ty)

〈D,A〉F (1)

where Dij = dX (xi, yj) is the pairwise distance matrix.
This problem amounts to finding an alignment matrix
that minimizes the total alignment cost. The objective
(1) can be computed in O(TxTy) by leveraging the
dynamic programming forward recursion

DTW(x:i,y:j) = dX (xi, yj)

+ min(DTWi−1,j ,DTWi−1,j−1,DTWi,j−1),
(2)

where DTWi,j = DTW(x:i,y:j). The optimal align-
ment matrix A∗ can then be obtained by tracking the
optimal path backwards. DTW is a more flexible choice
for comparing time series than element-wise Euclidean
distances, because it allows one to compare time se-
ries of different sampling frequencies due to its ability
to “warp” time. In particular, two time series can be
close in DTW even if Tx 6= Ty. DTW has been used
in a number of settings, including time series averag-
ing, clustering (Petitjean and Gançarski, 2012; Schultz
and Jain, 2018) and feature extraction (Yi et al., 1998;
Kate, 2016).

A limitation of DTW is the discontinuity of its gradient,
which can affect the performance of gradient descent
algorithms. To address this, Cuturi and Blondel (2017)
introduced a soft version of DTW. The minimum in (1)
is replaced with a softened version, yielding

DTWγ(x,y) = −γ log
∑

A∈A(Tx,Ty)

exp
(
− 1
γ 〈D,A〉F

)
. (3)

DTW is recovered in the limit γ → 0. They also discuss
a softened version of the optimal alignment matrix A∗,
given by the softened argmin

arg minγ

A∈A(Tx,Ty)

〈D,A〉F = C−1
x,y

∑
A∈A(Tx,Ty)

exp
(
− 1
γ 〈D,A〉F

)
A, (4)

where γ ≥ 0 is a smoothing parameter and Cx,y is
the normalizing constant of the unnormalized density
P (A) ∝ e−

1
γ 〈D,A〉F . While they consider temporal

variability, DTW and soft DTW are not invariant under
transformations, such as translations and rotations,
which can limit their application to settings where time
series are obtained only up to isometric transformations,
such as word embeddings. To alleviate this, Vayer et al.
(2020) propose

DTW-GI(x,y) = min
f∈F

DTW(x, f(y)), (5)

which gives a distance between time series that is invari-
ant under a set of transformations F , where f is applied
elementwise to points of the time series; Vayer et al.
(2020) consider orthonormal transformations, such as
rotations. In more general settings, this requires one to
optimize over a potentially large space of transforma-
tions F , which becomes infeasible if x and y are too
different.
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Figure 1: Alignment of time series equivalent up to rotation by 180 degrees (top), and up to rotation and
translation (bottom). Node coloring represents time (dark purple: t = 0, yellow: t = T ), and edge coloring
represents alignment correctness (respectively green and purple for correct and incorrect matchings). The CTW
and DTW-GI (rotation, translation) baselines recover the correct alignment. GDTW also recovers the correct
alignments, but without needing to manually specify a cost function or symmetries. DTW-GI (rotation) fails in
the translational setting, and DTW fails in both.

Similarly to DTW-GI, Canonical Time Warping (CTW)
(Zhou and Torre, 2009) consists of aligning the data
temporally via DTW and spatially via canonical corre-
lation analysis (CCA). CTW is defined as

CTW(x,y) = min
Wx,Wy

Vx,Vy

‖VxxWx + VyyWy‖2F (6)

with constraints on matrices Wx,Wy,Vx,Vy, which
make CTW invariant to translations, rotations and
scaling at optimality. Optimization is performed by
alternation on Vx,Vy via DTW, and on Wx,Wy via
CCA. In particular, the former matrices align x and
y temporally whilst the latter ones align the time se-
ries spatially by projecting the temporally-aligned time
series onto a common subspace on which they are
maximally correlated. Zhou and De la Torre (2016)
generalize CTW to allow for the alignment of multiple
time series, and Trigeorgis et al. (2018) allow for non-
linear projections. Gong and Medioni (2011) leverage
manifold learning to align the time series spatially in
conjuction with DTW for temporal alignment.

2.1 Connecting DTW and Optimal Transport

Optimal transport (Peyré and Cuturi, 2019) allows
one to compare and average measures in a way that
incorporates the geometry of the underlying space on
which they are defined. Such approaches can be in-
tuitively connected to DTW by observing that time
series are essentially discrete measures equipped with
an ordering. This allows one to view the alignment ma-
trices in the DTW objective as analogues of coupling
matrices that appear in the Kantorovich formulation
of the classical optimal transport problem (Villani,
2008). To formalize this, consider the Wasserstein dis-
tance between discrete measures. Let µx =

∑m
i=1 piδxi ,

µy =
∑n
i=1 qiδyi be discrete probability measures with

p ∈ ∆m, q ∈ ∆n, and set Dij = dX (xi, xj). Define the
Wasserstein distance between discrete measures µx and
µy as

W(µx, µy) = min
T∈Π(p,q)

〈D,T〉F, (7)

where Π(p, q) is the set of coupling matrices with
marginals p and q. Equation (7) clearly resembles
(1), and in both cases the objective consists of the min-
imization of the element-wise dot product between a
distance matrix and another matrix, which we term the
plan. In the DTW case, the plan consists of an align-
ment matrix, and in the Wasserstein case it consists of
a coupling matrix. Moreover, the optimal coupling T ∗ij
describes the optimal amount of probability mass to
move from point xi to yj , whilst the optimal alignment
A∗ij describes whether or not xi and yj are aligned
at optimality. While tightly connected, DTW and
the Wasserstein distance between time series’ support
points are still different. For example, if we consider
two time series with the same points but reversed or-
dering, these would be far away under DTW, but equal
under Wasserstein.

The Wasserstein distance is limited by the requirement
for a sensible ground metric dX to be defined between
samples xi ∈ X and yj ∈ Y, which is impossible if
there does not exist an explicit correspondence be-
tween samples from the compared measures (Solomon
et al., 2016). The Wasserstein distance is also not
invariant under isometries, such as rotations and trans-
lations, and generally leads to a large distance between
measures equivalent up to such transformations. To
relax these requirements, Mémoli (2011) propose the
Gromov–Wasserstein (GW) distance between isome-
try classes of metric-measure triples (X , dX , µx) and
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(Y, dY , µy). It is defined as

GW(µx, µy)

= min
T∈Π(p,q)

∑
ijkl

L
(
dX (xi, xk), dY(yj , yl)

)
TijTkl,

(8)

where L is typically squared error loss, and does not rely
on a cost or metric to compare xi with yj . Instead, GW
compares the intra-relational metric geometries of the
two measures by comparing the distributions of their
pairwise distances. This only requires the definition of
metrics dX and dY on X and Y , respectively, which can
be arbitrarily different. GW has been used as a tool for
comparing measures on incomparable spaces, notably
for training generative models (Bunne et al., 2019),
graph matching (Xu et al., 2019b), and graph averaging
(Xu et al., 2019a). Vayer et al. (2019) also propose fused
Gromov–Wasserstein to deal with structured objects
such as graphs and time series, which consists of a
mixture of Wasserstein distance on the node features
(for example, time ordering), and GW on the spatial
structure, which illustrates how these concepts can be
mixed and matched as needed in the specific use case.

3 Gromov Dynamic Time Warping

Motivated by the connections between DTW and op-
timal transport described in Sections 2 and 2.1, re-
spectively, we introduce a distance between time series
x ∈ X Tx and y ∈ YTy defined on potentially incompa-
rable compact metric spaces. We define the Gromov
dynamic time warping distance between metric-time-
series triples (X , dX ,x) and (Y, dY ,y) as

GDTW(x,y)

= min
A∈A(Tx,Ty)

∑
ijkl

L
(
dX (xi, xk), dY(yj , yl)

)
AijAkl,

(9)

where L : R2 → R+ is a loss function measuring the
alignment of the pairwise distances. The first two
elements of the metric-time-series triples are omitted to
ease notation. We think of L as a proxy for measuring
the alignment of the time series (e.g., the square error
loss L(a, b) = (a− b)2). Under the optimal alignment,
for any two pairs (xi, yj) and (xk, yl), if xi is close to
xk then yj will tend to be close to yl.

Provided L is a pre-metric and so induces a Hausdorff
topology, GDTW possesses the following properties:

(a) GDTW(x,y) ≥ 0, and GDTW(x,x) = 0,

(b) GDTW(x,y) = 0 if and only if there exists an
isometry φ : X → Y such that φ(x) = y,

Algorithm 1 Frank–Wolfe-inspired algorithm for Gro-
mov DTW

Initialize A ∈ A(Tx, Ty) arbitrarily, and compute
Lijkl = L

(
dX (xi, xk), dY(yj , yl)

)
.

while iter < max iter and has not converged do
Update A ← arg minγA′∈A(Tx,Ty)〈L⊗A,A′〉F us-

ing (2) if γ = 0 or (17) if γ > 0.
end while
return A

(c) GDTW(y,x) = GDTW(x,y) if and only if L is
symmetric.

Mirroring DTW, GDTW does not generally satisfy the
triangle inequality. Thus, GDTW is a pre-metric over
equivalence classes of (X , dX ,x) triples, up to metric
isometry. A formal treatment is given in Appendix A.

Some optimal alignments are given in Figure 1. The
original version of DTW-GI (rotationally invariant)
fails in the translational case, while its translational
extension, obtained by subtracting a bias from both
time series, works in both cases—here, invariances
have to be manually specified. CTW works in both
settings, but invariances are also manually specified
by the constraints imposed in the optimization of the
learned spatial projections. GDTW recovers the correct
alignments in both cases without explicitly specifying
the symmetries.

3.1 A Frank–Wolfe-inspired Algorithm

We now present a straightforward and efficient algo-
rithm for computing GDTW. Following ideas proposed
in the optimal transport setting for computing the
Gromov–Wasserstein distance, one can introduce a
4-dimensional array Lijkl = L

(
dX (xi, xk), dY(yj , yl)

)
and express GDTW as

GDTW(x,y) = min
A∈A(Tx,Ty)

Gx,y(A), (10)

Gx,y(A) = 〈L⊗A,A〉F. (11)

This expression is similar to the DTW objective in (1),
but with a cost function D that now depends on the
alignment matrix A.

The Frank–Wolfe (FW) method is an algorithm for
solving constrained optimization problems without re-
quiring projections onto the constraint set. While FW
optimization on convex domains has been deeply stud-
ied for both convex (Frank and Wolfe, 1956; Jaggi,
2013) and non-convex (Lacoste-Julien, 2016) objec-
tives, FW on non-convex domains is largely unexplored.
Inspired by the non-convex Frank–Wolfe algorithm in-
troduced in Balashov et al. (2020), we propose a variant
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Figure 2: Evolution of the Gromov DTW objective
with respect to iteration number for the time series of
Figure 1. We plot mean and standard deviation across
10 runs with randomly initialized alignment matrices.

that enforces feasibility of proposals by setting the step
size to 1. Our algorithm consists of the following steps.
First, we (i) solve a linear minimization oracle

S(t) = arg min
A∈A(Tx,Ty)

〈
∇AGx,y(A(t)),A

〉
(12)

= arg min
A∈A(Tx,Ty)

〈
L⊗A(t),A

〉
, (13)

which can be performed exactly in O(TxTy) by a DTW
iteration, noting that L ⊗ A(t) can be computed in
O(T 2

xTy + TxT
2
y ) time in the case L = L2 (Peyré et al.,

2016). Then, we (ii) updates the iterates. For the step
size η(t) = 1, the update is

A(t+1) = A(t) + η(t)(S(t) −A(t))) = S(t). (14)

Keeping step sizes η(t) in {0, 1} remediates the non-
convexity of the constraint set, as iterates are guaran-
teed to remain in A(Tx, Ty) in spite of non-convexity.

In Figure 2, we plot the objective Gx,y(A(k)) at each
iteration k across various initializations of alignment
matrices, for the time series illustrated in the top row
of Figure 1. We observe that in this example, the
algorithm recovers the optimal alignment with loss
value 0 in a handful of iterations and is robust with
respect to to initialization.

Due to the discrete nature of alignment matrices in the
GDTW objective, providing convergence guarantees is
non-trivial. We thus focus on empirical evaluation in
Section 5 across various settings (such as barycentric
averaging, generative modeling, and imitation learning)
to demonstrate that the method works well in practice,
and defer convergence analysis to future work. In
practice, we terminate Algorithm 1 if it converges,
potentially to a limit cycle, or if the number of iterations
reaches a fixed threshold. A number of alternative
algorithms are possible and could be developed, for
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A
∗ )

Soft GDTW
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γ

Figure 3: Evolution of (soft) GDTW(x,xλ), where xλ
is obtained by distorting the first T/2 points of x by
λ. As γ →∞, soft GDTW becomes smoother and the
jumps disappear. As γ → 0, it converges to GDTW.

instance through solving the inner minimization oracle
on the convex hull of A and projecting the results onto
the constraint set—we defer these to future work.

3.2 Gromov DTW as a Loss Function

Gromov DTW can be itself used as a differentiable loss
function. Here, we apply the envelope theorem (Carter,
2001; Milgrom and Segal, 2002) to (10) and obtain

∇x,y GDTW(x,y) = ∇x,y〈L(x,y)⊗A∗,A∗〉F, (15)

A∗ = arg min
A(Tx,Ty)

Gx,y(A). (16)

Similarly to DTW, GDTW suffers from unpredictabil-
ity when the time series is close to a change point of
the optimal alignment matrix because of the discon-
tinuity of derivatives. To remediate this, we describe
how GDTW can be softened analogously to soft DTW,
to obtain smoother derivatives. A smoother landscape
also helps robustify GDTW with respect to alignment
initialization. The algorithm for computing Gromov
DTW consists of successive DTW iterations. Follow-
ing ideas from the Gromov–Wasserstein literature, we
replace the DTW operation in the iterations with a
softened version, by replacing the argmin by the soft
argmin in (4). A priori, it may seem that computing
this is significantly more involved. However, Cuturi
and Blondel (2017) observe that

arg minγ

A∈A(Tx,Ty)

〈D,A〉F = ∇D DTWγ(D), (17)

where arg minγ is the softened arg min defined in (4).
Hence, (4) can be computed by reverse-mode automatic
differentiation in quadratic time, and soft GDTW itera-
tions can be performed by plugging in D = L⊗A. We
approximate the derivatives of soft GDTW by using
the optimal soft alignment matrix and applying (15)
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Time series DTW DTW-GI
(rotation)

DTW-GI
(rot., trans.)

GDTW

(a) Rotation

Time series DTW DTW-GI
(rotation)

DTW-GI
(rot., trans.)

GDTW

(b) Rotation and translation

Figure 4: Barycenters of times series with DTW, DTW-GI, and GDTW. In (a) random rotations are applied to
the time series, while in (b) random rotations and translations are applied. DTW fails in both settings, DTW-GI
(rotation) fails in the translational setting, while DTW-GI (rotation, translation) and GDTW average sensibly in
both as they are invariant to both rotations and translations.

and (16): by the envelope theorem, this approximation
becomes exact in the small-γ limit.

In Figure 3, we plot the evolution of GDTW and soft
GDTW as one of the 2D time series gets distorted
by a factor λ: xλ = x + (0, λ). Across a range of
λ values GDTW’s optimal alignment matrices vary
in discrete steps, which leads to discontinuous values,
and hence discontinuous gradients, around such xλ
values. By contrast, soft GDTW with sufficiently high
γ values is qualitatively smooth with respect to λ,
which remediates discontinuity of GDTW’s gradients.

4 Learning with Gromov DTW as a
Loss Function

We now present a range of applications of Gromov
DTW, including barycentric averaging, generative mod-
eling and imitation learning.

4.1 Barycenters

To compute barycenters of Gromov DTW (10), we ex-
tend the algorithm from Peyré et al. (2016) to the
sequential setting. Given time series x1, ...,xJ ∈
X T1

1 , ...,X TJJ and weights α ∈ ∆J , let (Dxj )mn =

dXj (x
(m)
j ,x

(n)
j ). For fixed T ∈ N (length of the barycen-

tric time series), the barycenter is defined as any triple
(X , dX ,x) satisfying

D∗ = arg min
D∈RT×T

J∑
j=1

αj GDTW(D,Dxj ), (18)

Dmn = dX (x(m),x(n)), n,m = 1, . . . , T, (19)

where, to ease notation, we denote GDTW purely
in terms of distance matrices. The barycentric time
series can then be reconstructed by applying multi-
dimensional scaling (MDS) (Kruskal and Wish, 1978) to

D∗: see Figure 4 for an illustration. We rewrite (18) as

min
D∈RT×T

A1,..,AJ∈A(Tx,Ty)

J∑
j=1

αj
〈
L(D,Dxj )⊗Aj ,Aj

〉
F

(20)

and solve it by alternating between minimizing over Aj

for j ∈ 1, ..., J via Algorithm 1, and minimizing over
D for fixed Aj . The latter step admits a closed-form
solution given as follows.

Proposition 1. If L is squared error loss, the solution
to the minimization in (20) for fixed Aj is

D =

J∑
j=1

αjA
T
j DxjAj∑J

j=1 αj(Aj1)(Aj1)T
, (21)

where division is performed element-wise, and 1 is a
vector of ones.

Proof. Appendix A.

4.2 Generative Modeling

We now use GDTW as an approach for training genera-
tive models of time series. Here, we view our dataset of
time series x1, ...,xJ ∈ X T1

1 , ...,X TJJ as a discrete mea-

sure µ = 1
J

∑J
j=1 δxj . We define a generative model

µθ = Gθ#ν, where ν is a latent measure, such as an
isotropic Gaussian, Gθ : Z → X T is a neural network
and Gθ#ν is the pushforward measure. By nature of
Gromov DTW, the generated time series do not have
to live in the same space as the data. In particular,
this allows us to specify the length of the time series we
wish to generate. We train the model µθ by minimizing
the entropic Wasserstein distance Wε (Cuturi, 2013)
between µ and µθ. For the ground cost d of Wε, we use
DTWγ and GDTWγ . For GDTWγ , the objective is

min
θ∈Θ

Wε(µ, µθ)

= min
π∈Π(µ,µθ)

E
(x,y)∼π

GDTWγ(x,y)− εH(π),
(22)
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Figure 5: Barycenters computed on the QuickDraw dataset using DTW, DTW-GI and GDTW, and sample data
points from four different classes (hands, clouds, fishes, blueberries). We observe that only GDTW barycenters
are meaningful across all datasets, and hence that GDTW better captures the geometric shape of the time series.

where H is the entropic regularization term. Following
Genevay et al. (2018), it is also possible to use the
debiased analog of (22). Wε(µ, µθ) is computed effi-
ciently using the Sinkhorn algorithm (Sinkhorn, 1974;
Cuturi, 2013), and θ is minimized by gradient descent.
This approach extends the Sinkhorn GAN by Genevay
et al. (2018) and the GWGAN by Bunne et al. (2019)
to sequential data.

4.3 Imitation Learning

We consider an imitation learning setting in which an
agent needs to solve a task given the demonstration of
an expert. We assume the agent has access to the true
transition function T over the agent’s state-space X ,
and define a state trajectory as a time series x ∈ X Tx .
An expert state trajectory yexp ∈ YTy solving a specific
task, such as traversing a maze, is given. The goal is
to train the agent’s parametrized policy πθ : X → A to
solve the given task by imitating the expert’s behavior,
where A is the action space. To find this policy, the
agent uses the model of the environment to predict
state trajectories xθ under the current policy πθ, com-
pares these predictions with the expert’s trajectory
yexp, and then optimizes the controller parameters θ
to minimize the distance between predicted agent tra-
jectory and observed expert trajectory. Using GDTW,

our objective is

min
θ

GDTWγ(yexp,xθ). (23)

The flexibility of GDTW allows for expert trajectories
defined in pixel space Y = R32×32, while the agent
lives in X = R2. Rollouts obtained with πθ mimic the
expert’s trajectory up to isometry. For comparison,
instead of (23), we also consider DTW. The aim is
to learn the same trajectory in the same space as the
expert. DTW, in contrast with GDTW, requires X =
Y, and the starting positions for the agent and expert
to be close. From a reinforcement learning perspective,
the use of GDTW in (23) can be interpreted as a value
estimate and gradient-based policy learning as taking
estimated value gradients (Fairbank and Alonso, 2012;
Heess et al., 2015).

5 Experiments

We assess the effectiveness of our proposals in settings
in which (i) time series live in comparable spaces and
where previous approaches apply, (ii) the spaces are
incomparable.

Baselines. Throughout the experiments, we compare
GDTWγ to, in settings in which they apply, DTWγ

(Sakoe and Chiba, 1978; Cuturi and Blondel, 2017) its
respectively rotationally-invariant and translationally-
rotationally-invariant extensions DTW-GI (rotation),

G
D
T
W

D
T
W

Figure 6: Samples generated by the time series GAN trained on Sequential MNIST, with DTWγ and GDTWγ ,
respectively, used as ground costs.
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Figure 7: (a)–(f): Snapshot of an expert trajectory (sequence of pixel images); (g): policy of an agent in R2

learned by imitation learning given video demonstrations; (h): log-episodic loss per training step in the video/2D
setting; (i) in the 2D/2D setting (averaged across 20 seeds, with standard deviations.

DTW-GI (rotation, translation) (Vayer et al., 2020),
and canonical time warping (Zhou and Torre, 2009).

5.1 Alignment

We first evaluate GDTW on alignment tasks. We
consider two settings in which y is obtained by applying
to x (i) a rotation, and (ii) a translation followed by
a rotation. In Figure 1, we see that GDTW recovers
the right alignment in both settings, while DTW-GI
with rotation only works in the rotational setting—
this can be seen in the top row of Figure 1. DTW-
GI with rotation and translation and CTW work in
both settings, while ordinary DTW fails in both. We
emphasize that CTW and DTW-GI variants are made
invariant to the symmetries by explicitly optimizing
manually specified spatial projections, whilst GDTW
works in both settings without needing anything to
be specified, as GDTW is invariant to symmetries by
construction. Further experiments with soft DTW and
GDTW are given in Appendix B.

5.2 Barycenter Computation

We investigate barycentric averaging of GDTW, on
both toy data and the QuickDraw1 dataset. We com-
pare Gromov DTW to DTW and DTW-GI variants,
where barycenters from the latter two methods are
computed using DTW barycentric averaging (Petitjean
and Gançarski, 2012).

Toy data. In Figure 4, we see that in comparable
settings DTW barycenters fail if time series are rotated
or translated. DTW-GI with rotation is robust to
rotation, but fails when applying both rotations and
translations, because the translational symmetry is not
manually specified. By contrast, GDTW is robust to
both, and leads to meaningful barycenters in all of the
given settings.

QuickDraw dataset. The QuickDraw dataset con-
sists of time series of drawings in R2, belonging to
345 categories. Among those categories, we selected
hands, clouds, fishes, and blueberries. To address high
variability in classes, we selected input data following
a preprocessing routine described in Appendix B. A
sample of the data sets, together with barycenters com-
puted with DTW, DTW-GI, and GDTW is displayed
in Figure 5. DTW and DTW-GI with rotation fail
to reproduce the shape of the inputs for most classes.
DTW-GI with rotation and translation outperforms
DTW-GI with rotation, but fails on the fish class,
while GDTW provides meaningful barycenters across
the range of examples. GDTW is thus more robust
in recovering the geometric shape of the time series,
whilst DTW variants are sensitive to isometries.

5.3 Generative Modeling

We evaluate the generative modeling proposal of Sec-
tion 4.2, and analyze the behavior of the learned model
when using DTW and GDTW. Here, we consider the

1QuickDraw can be found at https://quickdraw.withgoogle.com/.
2Sequential MNIST can be found at https://github.com/edwin-de-jong/mnist-digits-stroke-sequence-data.

https://quickdraw.withgoogle.com/
https://github.com/edwin-de-jong/mnist-digits-stroke-sequence-data


Samuel Cohen, Giulia Luise, Alexander Terenin, Brandon Amos, Marc Peter Deisenroth

sequential-MNIST dataset,2 which consists of time se-
ries of digits in R2 being drawn, and where each time
step corresponds to a stroke. In Figure 6, we see that
samples using GDTW as ground cost (22) are of a
significantly higher quality than samples using DTW.
This can be explained by the variability in the data set:
slight translations significantly affect DTW, but not
GDTW. Note that the GDTW samples are rotated and
reflected, since GDTW only produces learned samples
up to metric isometries.

5.4 Imitation Learning

We now apply Gromov DTW to the imitation learning
setting of Section 4.3. Here, we are given an expert
trajectory yexp, and our goal is to find a policy πθ, such
that the agent’s simulated trajectory xθ mimics yexp.
We consider maze navigation tasks in two settings: (i)
both expert trajectories and the agent’s domain are
X = Y = R2 and (ii) expert trajectories consist of a
video sequence of 32× 32 images, giving Y = R32×32,
whilst the agent’s domain is X = R2. In the first
setting, DTW and GDTW apply, whilst in the second
setting only GDTW can be used. Figure 7(i) displays
the loss (23), which is the GDTW distance to the given
trajectory, obtained by learning with GDTW and DTW
in (i) averaged across 20 seeds. We see that in this
fully-comparable setting, GDTW and DTW recover
the spiral trajectory provided by the expert.

Finally, we consider a setting in which an agent living in
R2 is provided with an expert trajectory yexp consisting
of a video of a car driving through a spiral, illustrated
in Figures 7(a)–7(f) (prior to down-scaling the images).
Here, the state-space of the agent, X = R2, differs from
the state-space of the expert, Y = R32×32. The cost on
image space dY is the 2-Wasserstein distance, with im-
ages interpreted as densities on a grid. The cost on the
Euclidean space dX is the Euclidean distance. Figure
7(g) shows the agent’s trajectory under the learned pol-
icy πθ, and Figure 7(h) shows the loss (23) against the
number of training steps. Using GDTW, the agent suc-
cessfully learns to solve the task despite never having
access to trajectories in the space of interest.

Conclusion

We propose Gromov DTW, a distance between time se-
ries living on potentially incomparable spaces. GDTW
compares intra-relational geometries of the time series,
alleviating the need for a ground metric to be defined on
potentially incomparable spaces. Moreover, GDTW is
invariant under isometries by nature, which contributes
to its versatility and is an important inductive bias for
generalization. We hope these contributions enable use
of time series alignment in novel settings.
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J. Feydy, T. Séjourné, F.-X. Vialard, S.-i. Amari, A.
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