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Abstract

Computational cost often hinders the calibration of complex computer mod-

els. In this context, history matching is becoming a widespread calibration

strategy, with applications in many disciplines. History matching (HM) uses

a statistical approximation - also known as an emulator - to the model out-

put, in order to mitigate computational cost. The process starts with an

observation of a physical system. It then produces progressively more accu-

rate emulators to determine a non-implausible domain: a subset of the input

space that provides a good agreement between the model output and the

data, conditional on the model structure, the sources of uncertainty and an

implausibility measure. In HM, it is essential to generate samples from the

non-implausible domain, in order to run the model and train the emulator

until a stopping condition is met. However, this sampling can be very chal-

lenging, since the non-implausible domain can become orders of magnitude
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smaller than the original input space very quickly. This paper proposes a

solution to this problem using subset simulation, a rare event sampling tech-

nique that works efficiently in high dimensions. The proposed approach is

demonstrated via calibration and robust design examples from the field of

aerospace engineering.

Keywords: History matching, Subset simulation, Gaussian process

emulation, Robust design.

1. Introduction1

The use of computer models (also known as simulators) to study complex2

systems and environments is indispensable in modern scientific research. The3

reliability of these models depends critically on how well they are calibrated4

to experimental data. Otherwise, model-based decisions run the risk of being5

misguided or ill-informed. One of the challenges of model calibration is that6

several sources of uncertainty must be taken into account. This uncertainty7

originates (for instance) due to process idealisations, model assumptions and8

computational cost. In order to provide evidence of predictive reliability, it9

is essential that any model is calibrated taking into account these sources of10

uncertainty.11

Typically, high-fidelity computer models of complex phenomena are com-12

putationally expensive. In the context of uncertainty quantification, this13

characterisation usually describes models whose evaluation time prohibits14

their repeated use in any form of sampling-based analysis. This feature15

presents a challenge to classical calibration techniques, which require a con-16

siderable number of simulator runs to identify an acceptable match between17
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model and data. Furthermore, the analyst might face an added challenge18

if not only the model, but also the generation of experimental data, is ex-19

pensive or unfeasible. Despite the importance and necessity of efficient cali-20

bration methods for complex computer codes, their development has lagged21

behind their application [1]. Instead, simple goodness-of-fit measures such22

as distance-based methods and least squares (see e.g. [2]) or likelihood func-23

tions (consult [3] and references therein) are applied. Neither of these may24

be suitable when computational cost and high dimensional input are consid-25

ered. This is due to the fact that goodness-of-fit measures typically require26

large data sets to achieve a reliable quantification of the degree of agreement27

between observations and simulator realizations. Likewise, the likelihood of28

complex simulators is usually intractable and approximations may be re-29

quired (see e.g. [4]).30

History matching (HM) [5, 6] is a form of calibration for complex and com-31

putationally expensive numerical models. It uses Bayesian emulation [7] to32

tackle computational cost. Emulation means building a statistical approx-33

imation to the original simulator, thus allowing affordable inference about34

its output. History matching also defines an implausibility measure, which35

is used to reduce the input space by finding an input subspace that pro-36

vides a reasonable match between the model output and experimental data,37

given the model structure and various sources of uncertainty. This input38

space reduction is achieved by building progressively more accurate emula-39

tors, which in practice results in HM becoming an iterative process. The40

resulting input subspace is known in the literature as non-implausible do-41

main, non-implausible set or Not-Ruled-Out-Yet (NROY) space [8]. History42
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matching has been successfully applied in epidemiology [1], galaxy formation43

modeling [8], oil reservoir analysis [9] and large climate systems modelling44

[10], amongst many other applications.45

The sequential generation of samples from the non-implausible domain46

at every HM iteration has remained an open and complex problem. This47

mainly stems from the fact that the non-implausible domain can be orders48

of magnitude smaller than the original input space [11]. A notable example49

of a field of study in which a similar challenge is encountered is engineering50

reliability analysis. The main aim of this type of reliability analysis is to51

identify the conditions under which a physical system fails. In that context,52

failure means that the demand has exceeded the capacity of the system, ac-53

cording to a model of the system and a criterion guided by expert knowledge.54

Reliability analysis aims at generating samples from the failure set, that is,55

the set of model input configurations that lead to failure. This allows the56

characterisation of different modes in which the system can fail and to esti-57

mate the probability of failure. If an engineering system is well-designed and58

the model is a good representation of the system, the volume of the failure59

domain is expected to be orders of magnitude smaller compared to the input60

space. Since this can also be the case for the non-implausible domain within61

HM, this opens the prospect of treating it as if it were a failure set within62

reliability analysis.63

Subset simulation (SuS) [12] is a widely used technique in engineering re-64

liability computations and rare event simulation. Unlike direct Monte Carlo,65

SuS models a rare event, which has a small failure probability, as contained66

in a nested sequence of less-rare events. Eventually, the probability of failure67
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can be computed as the product of larger conditional probabilities given the68

occurrence of each preceding event. Markov chain Monte Carlo (MCMC)69

is used to generate the conditional samples that belong to the intermediate70

failure events. Based on this strategy, SuS generates samples selectively, to71

efficiently populate the target failure set. Given the potential disparity in72

the size of the original input space and the non-implausible domain (in the73

context of HM); and the potential disparity in the size of the original input74

space and the failure domain (in the context of reliability analysis), this pa-75

per proposes the use of SuS as an efficient sampler of the non-implausible76

domain within each wave of HM.77

The remainder of the paper is organized as follows. Section 2 presents an78

overview of HM. Section 3 reviews the details of SuS. Section 4 presents the79

proposed approach, in which SuS is used to sample from the non-implausible80

domain in HM. The resulting procedure is demonstrated in a calibration81

context in Section 5 and in an industrial context for robust aircraft design in82

Section 6. Finally, section 7 provides some conclusions.83

2. History matching84

2.1. Procedure overview85

A rigorous description of the relationship between a model and the un-86

derlying physical process requires the identification and inclusion of different87

sources of uncertainty. Let y denote the true value of the physical process. A88

modeller analysing the process can only observe a noisy version of this value.89

Let z = y + εme be this noisy observation, where εme is measurement error.90

This type of error, also called observational uncertainty, can be thought of91
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as a random variable with zero mean and finite variance. The modeller then92

represents the physical process through a numerical simulator, which defines93

an input-output mapping η : Rd → R. Let η(x) denote the simulator output94

as a function of some input vector x ∈ X ⊆ Rd. Even if all model parame-95

ters were known exactly, the process y cannot be represented perfectly. This96

is due to unavoidable modelling assumptions, simplifications, or incomplete97

knowledge of the underlying physics. This disparity is known as model dis-98

crepancy [13] and is denoted by εmd. The modelled physical process can99

therefore be described by y = η(xc) + εmd, where xc is an input configura-100

tion, such that η(xc) summarizes all of the information the simulator carries101

about the system. Finally1, the value of η(x) is unknown until the model is102

evaluated at the input combination x. When the model is computationally103

expensive, the analyst will only be able to run the model in a limited number104

of input configurations, which induces another source of uncertainty, called105

code uncertainty [14].106

Given the sources of uncertainty introduced above, HM is designed to107

explore the input space X and discard regions which are unlikely to produce108

the measured system response. This is achieved through: (i) the use of an109

implausibility measure, which quantifies the distance between the measure-110

ment z and the output of the model η(x), normalized by the different sources111

of uncertainty; and (ii) a Bayesian emulator to alleviate the cost of running112

the complex model. The technical details behind Bayesian emulation are113

1If the simulator is stochastic in nature, i.e. evaluating η at a fixed input combination

x returns a different output value, η(x) every time, another source of uncertainty called

ensemble variation can be added. See discussion in Section 2.3
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given in Section 2.2. Due to the use of an emulator, HM becomes an itera-114

tive procedure in practice. At each iteration, also called wave [8], HM builds115

increasingly accurate emulators and the implausibility measure provides a116

rule to discard the subsets of the input domain that are unlikely to pro-117

duce an acceptable match between model output and observed data. Once118

the non-implausible domain in the current wave is identified, HM selects a119

handful of points at which to evaluate η(·). This data is then used to refine120

the approximation provided by the emulator in the non-implausible domain.121

The process continues until a predefined stopping condition is satisfied.122

In contrast to conventional calibration methods, which seek a single point123

xc, HM identifies a set of input combinations that are likely to produce124

a match between model prediction and measured data, within some level of125

uncertainty. Furthermore, whereas standard Bayesian calibration will always126

find a posterior distribution for acceptable inputs, HM can discover that the127

model is an inadequate representation of the physical process by returning128

an empty non-implausible domain. Thus, some authors regard HM as a129

pre-calibration strategy [8].130

Generating an initial design to run the simulator is the first step for a131

typical HM workflow. Initially, the whole input domain X is considered. To132

explore the model output across the input domain with as few data points133

as possible, a design with good space-filling qualities is generated. A Latin134

hypercube sampling (LHS) plan [15] is often used. As suggested in [16], a135

common choice is to have the number of sample points equal to n = 10d,136

where d is the dimension of the input. In practice, the choice of n is often de-137

termined by the computational budget. Once an LHS design is specified, the138
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simulator η(·) is evaluated at each input point xi, producing a corresponding139

output η(xi) for i = 1 . . . n. The resulting input-output pairs constitute an140

experimental design denoted by D = {xi, η(xi)}ni=1.141

2.2. Emulation142

An emulator is a statistical approximation to the output of an expensive143

computer model. Gaussian process emulators [17] are widely used to infer144

the output of expensive simulators based on a small number of training runs.145

In this case, the experimental design D defined in the previous subsection146

provides such runs. Emulators provide a full probabilistic characterisation147

of the output at untried input configurations. Their widespread use is due148

to the fact that they not only provide a fast surrogate to the output of149

the simulator, but also produce an analytic expression for the uncertainty150

arising due to the limited number of model evaluations (referred to in Section151

2.1 as code uncertainty). The applications of Gaussian process emulators152

span many fields of science and technology. Some recent examples include153

modelling submarine sliding and tsunami formation, [18] and reducing the154

cost of engineering reliability analysis [19].155

It is important to note that the original HM approach presented in [20]156

and [21] is based on the concepts of Bayes linear emulation [22], which uses157

mathematical expectation, instead of probability, as a primitive. This further158

aids the mitigation of computational cost. In this paper however, we assume159

a Bayesian emulator is of the form:160

η̂(x) = h(x)ᵀβ + Z(x) (1)
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where h : Rd → Rq is a vector of known functions, β ∈ Rq is a vector161

of coefficients and Z(x) is a zero mean Gaussian process with covariance162

function σ2c(x,x′;ψ), also known as covariance kernel [23]. The regression163

term h(x)ᵀβ models the global trend of the output, whilst the Gaussian164

process models local variations. The covariance of the Gaussian process at165

two distinct inputs, x and x′, is the product of a process variance parameter166

σ2 and a positive semi-definite correlation function c(·, ·;ψ), parameterised167

by ψ. In this work, the Matérn (5/2) correlation function [24] is employed.168

This function was chosen because it is stationary and because it exhibits169

a moderate degree of smoothness, which is suitable for many applications170

[25]. The Matérn (5/2) correlation function has the following mathematical171

expression:172

c(x,x′;ψ) =

(
1 +

√
5δ(x,x′)

ψ
+

5δ2(x,x′)

3ψ2

)
exp

(
−
√

5δ(x,x′)

ψ

)
(2)

where δ(x,x′) is the Euclidean distance between x and x′.173

In order to estimate the values of each of the parameters β, σ2 and ψ,174

prior probability distributions can be imposed, and their posterior distribu-175

tions can be computed by conditioning on the training runs D. A weak prior176

[26] can be used for β and σ2, namely177

p(β, σ2) ∝ σ−2 (3)

Conditional on D, the two parameters are distributed according to a normal-178
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inverse-gamma distribution [27], with expected values given by179

β̂ = (HᵀC−1H)−1HᵀC−1f (4)

σ̂2 =
fᵀ(C−1 −C−1H(HᵀC−1H−1)HᵀC−1)f

n− q − 2
(5)

where H = [h(x1), . . . , h(xn)]ᵀ, C ∈ Rn×n such that Cij = c(xi,xj;ψ), and180

f = [η(x1), . . . , η(xn)]ᵀ. The posterior distribution of ψ can be computed181

using a full Bayesian approach [28, 29]. Due to the potentially high computa-182

tional cost of Bayesian computations, some authors instead prefer resorting183

to maximum likelihood estimation [30].184

It can be shown [17] that, conditional on the parameter estimates in185

Eq. (4) and Eq. (5), the posterior predictive distribution for the simulator186

output is187

η(x) ∼ m(x) + σc(x)tn−q (6)

where tn−q is the Student’s-t distribution with n− q degrees of freedom. The188

emulator’s posterior mean m(x) and posterior variance σ2
c (x) are given by189

m(x) = h(x)ᵀβ̂ + t(x)ᵀC−1(f −Hβ̂) (7)

σ2
c (x) = σ̂2

[
c(x,x)− t(x)ᵀC−1t(x)

+ (h(x)ᵀ − t(x)ᵀC−1H)(HᵀC−1H)−1

×(h(x)ᵀ − t(x)ᵀC−1H)ᵀ
]

(8)

where t(x) = [c(x,x1;ψ), . . . , c(x,xn;ψ)]ᵀ.190
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2.3. Implausibility threshold191

Let I : Rd → R be a function that measures the implausibility that an192

input configuration x will produce a simulator output matching the experi-193

mental observation z. When the simulator is expensive, this implausibility194

can be defined as the distance between z and the emulator mean, m(x).195

This distance can be normalised in order to express it in terms of the num-196

ber of standard deviations of the overall uncertainty [1]. This results in the197

following expression:198

I(x) =
|z −m(x)|√

σ2
me + σ2

md + σ2
c (x)

(9)

where σ2
me and σ2

md are respectively the variances of the measurement error199

term εme and the model discrepancy term εmd, as defined in Section 2.1.200

The term σ2
c (x), corresponding to the (current level) emulator’s posterior201

predictive variance in Eq. (8), quantifies the code uncertainty. In this work,202

the simulator is assumed deterministic: for the same input configuration, the203

output is fixed. It is possible to add a term in the denominator of equation204

Eq. (9) to account for ensemble variability in case the simulator is stochastic205

[1].206

Suppose that the implausibility measure I(·) is evaluated at a particular207

sample point x∗. For I(·) to be meaningful, it should be true that the smaller208

the value of I(x∗), the more likely it is that x∗ yields an output that matches209

the experimental data within the specified level of uncertainty. A criterion210

for setting an implausibility threshold is provided by Pukelsheim’s rule [31],211

which states that if a random variable X has a unimodal distribution with212
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mean µ and standard deviation σ, such as the Student’s-t in Eq. (6), then213

P (|X − µ| > 3σ) ≤ 0.05 (10)

Hence, a natural criterion for accepting x∗ as a non-implausible input214

combination is I(x∗) ≤ 3. Sample points that fail this criterion are con-215

sidered implausible. The new wave of HM begins by sampling from the216

non-implausible domain identified using this rule.217

2.4. Sampling design for new waves218

The initial design D to train the emulator can be generated through219

LHS. After the first wave, sampling from the non-implausible domain can220

become challenging very quickly. This can be due to, for example, rapid221

reduction in its size. An additional challenge is that the non-implausible222

domain may become disconnected or exhibit a complex topology, which can223

further complicate the sampling procedure.224

The most intuitive strategy to deal with this problem is to generate an225

LHS plan on the whole input space X , then discard all implausible points,226

determined by I(x). This simple acceptance-rejection strategy can quickly227

become inefficient if the non-implausible domain reduces to a small frac-228

tion of X . Multiple solutions have been proposed in the literature. An229

implausibility-driven evolutionary Monte Carlo algorithm (IDEMC) was pro-230

posed in [32]. This generates uniform designs for the target space using an231

implausibility ladder, which might be challenging to determine. Another ap-232

proach, discussed in [1] is to generate normally distributed samples centered233

on each point from the non-implausible domain of the current wave. The234
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covariance matrix of the non-implausible samples is scaled to give a rela-235

tively flat distribution. The challenge in this approach is to determine an236

optimal scaling factor, which determines the rate at which the input space237

is explored. As an alternative to the above methods, this paper proposes238

to sample the non-implausible domain using subset simulation, a rare-event239

sampling method used in engineering reliability analysis.240

3. Subset simulation241

Subset simulation (SuS) is an advanced Monte Carlo method that ef-242

ficiently estimates probabilities of failure of engineering systems [33]. Let243

g : Rd → R be a performance function used to model a physical system.244

That is, g(·) encodes all the available information about the system’s be-245

haviour and attributes, such as its geometry, material properties and loads.246

When the system is large and complex, specifying deterministic inputs of the247

performance function can be unrealistic. Thus, the inputs x can be modelled248

as distributed according to a joint probability density function (PDF) π(x)2.249

The output of g(·) then becomes a random variable Y = g(x), and failure250

is formulated as the exceedance of this random variable over a prescribed251

threshold b ∈ R. The main interest of reliability analysis is to determine the252

probability of failure P (Y > b), given by253

2Even though precise characterisation for the inputs can be specified, one may want

to investigate different scenarios by varying those inputs according to some probability

distributions
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PF = P (Y > b) =

∫
π(x)1(x ∈ F) dx, (11)

where F denotes the failure event defined as

F = {Y > b} = {x ∈ F} = {x ∈ Rd : g(x) > b} (12)

and F ⊆ Rd is the failure region of the input space. The indicator function254

1(·) is equal to 1 if x ∈ F and is zero otherwise.255

The idea behind SuS is to model F as contained in a nested sequence256

of events F = Fm ⊂ Fm−1 ⊂ · · · ⊂ F1 ⊂ F0 = {x ∈ X} such that the257

probability of failure can be computed as258

PF = P

(
m⋂
i=1

Fi

)
= P (F1)× P (F2|F1)× · · · × P (Fm|Fm−1) (13)

This means that sampling from F is done by sampling progressively from259

more frequent conditional events. Every intermediate failure event corre-260

sponds to an iteration level in the SuS algorithm, whereby level 0 corresponds261

to initial Monte Carlo sampling of the whole input space X . There are two262

important parameters in the algorithm: the level probability, denoted by p0263

and defined as p0 ≡ P (Fi|Fi−1), and the number of samples in each level, N .264

Both are determined by the modeller, such that p0N and 1/p0 are integers.265

The level probability p0 directly influences the properties of the estimator266

for PF . The recommended range to minimise its coefficient of variation is267

p0 ∈ [0.1, 0.3] [34]. The number of samples at each level, N , can be set268

to achieve a given coefficient of variation in the estimation of PF . In our269

experience, however, its prescribed value is mainly driven by the available270
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computational budget. It is worth noting that, in industrial settings, the271

performance function g(·) is rarely analytical or inexpensive to compute. In272

practice, it usually consists of one or more expensive computer model. Differ-273

ent authors (see [19] and references therein) have proposed different strategies274

to tackle this cost, some of which include using the emulators discussed in275

Section 2.2.276

The SuS algorithm proceeds as follows. At the unconditional level 0,277

SuS starts by generating N independent samples x1, . . . ,xN ∼ π(x). The278

performance function g(·) is evaluated and the corresponding output values279

are sorted in descending order, resulting in the list {b(0)k : k = 1, . . . , N}. The280

value b
(0)
k gives the estimated output value corresponding to the exceedance281

probability p
(0)
k = P (Y > b

(0)
k ) where282

p
(0)
k =

k

N
, k = 1, . . . , N. (14)

The first intermediate failure level, b1 is defined as the midpoint between283

b
(0)
p0N

and b
(0)
p0N+1. This way, the conditional failure relation284

p0 = P (Y > b1) = P (F1|F0), (15)

is satisfied. Note that, by construction, the p0N top-ranked samples have285

responses greater or equal to b1. Thus, they are guaranteed to belong to286

the first intermediate failure level F1. The generation of new samples from287

F1 is done by exploiting this property. The p0N top-ranked samples are288

used as seeds to generate independent Markov chains from the target density289

π(x|F1) ∝ π(x)1(x ∈ F1). This results in generating Nc = p0N Markov290
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chains, each with length291

Ns =
N

Nc

=
1

p0
(16)

Since the seeds already belong to the intermediate failure domain F1, there is292

no burn-in period, usually required in MCMC simulations to generate a single293

Markov chain. The MCMC scheme employed in the original SuS algorithm294

[12], was the modified Metropolis algorithm, which uses a component-wise295

Metropolis-Hastings sampling to generate the Markov chains. Throughout296

the years, different strategies have been proposed and developed. An account297

of those strategies can be consulted in [35].298

Subset simulation follows the same principle iteratively: the ith level (for299

i ≥ 1) is defined as Fi = {Y > bi}, where bi is determined as the midpoint300

between b
(i−1)
Nc

and b
(i−1)
Nc+1. Thus, at each intermediate failure level, the equa-301

tion p0 = P (Fi|Fi−1) is satisfied. At level i, Nc independent Markov chains302

are generated from the target density π(·|Fi), each with length Ns. The pro-303

cess is repeated until the target threshold level b is reached. As before, let304

m denote the final intermediate level. The threshold value satisfies bm ≥ b305

and thus the number of conditional samples with responses greater than b,306

exceeds Nc. The estimate of the failure probability is derived from Eq. (13),307

which can be written as308

P̂F = pm−10

1

N

N∑
k=1

1(xk ∈ Fm), (17)

where 1
N

∑N
k=1 1(xk ∈ Fm) is the estimate of the conditional failure proba-309

bility at level m.310
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Subset simulation is capable of efficiently sampling from disconnected311

failure regions that are, potentially, orders of magnitude smaller than the312

original input space. In order to illustrate this, consider the performance313

function g : [0, 1]2 → R given by314

g(x) =
9∑

i=1

wiφ(x|µi,Ci) (18)

where each wi ∈ (0, 1) is a weight, µi the mean and Ci the covariance ma-315

trix of the ith Gaussian PDF, φ(x|µi,Ci). The numerical values of these316

parameters are given in Table A.1 and the level contours of g(x) are shown317

in Figure 1. Let the failure thershold be b = 2.75. The failure domain would318

then be F = {x ∈ [0, 1]2 : g(x) > 2.75}, which results in the disjoint failure319

set shown in Figure 1(c). The successive subplots in Figure 1 depict how SuS320

steers the sampling towards F .321

[Figure 1 about here.]322

The example above suggests that a natural analogy can be established be-323

tween the non-implausible domain introduced in Section 2 and a failure set.324

Firstly, both are defined by specifying a threshold (for non-implausibility and325

for failure, respectively). Secondly, both may be significantly smaller than326

the original input space. Thirdly, they may become disconnected. This mo-327

tivates treating the non-implausible domain within HM as if it were a failure328

set. The corresponding sampling can therefore be done using SuS within329

HM.330
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4. Proposed Approach331

As discussed in the previous section, the main aim of SuS is to estimate332

the probability of failure given by Eq. (11). In order to do so, the algorithm333

produces samples within each intermediate failure domain and eventually334

from the failure domain F . The proposed approach for HM takes advantage335

of this property, since the prime objective is to eventually sample from the336

non-implausible domain. It should be noted that SuS has previously been337

used in the context of calibration, for the estimation of parameter posterior338

distributions [36, 37]. However, as discussed in Section 2.1, whilst Bayesian339

calibration always delivers a posterior distribution, HM might determine that340

the non-implausible domain is empty.341

In order to use SuS within HM, sampling is done by treating the non-

implausible domain as if it were the failure domain defined by

F = {x : I(x) < 3} (19)

where the implausibility measure I(x), defined in Eq. (9), takes the role of342

the performance function.343

The proposed approach begins with sampling the input domain of the344

computer model and evaluating it to get an initial data set, D1. This data345

set is split and then used to train and validate the initial GPE3 [27]. At346

this point, the parameters of SuS are set as per Section 3. It is important347

to note that the direction of the inequality in F = {x : I(x) < 3} is the348

opposite to that of the inequality in the definition of the failure domain349

3If the code is very computationally expensive, the emulator can be validated using

cross-validation instead of a separate validation set (see Section 2.1 in [30]).
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given in Eq. (12). This feature is accounted for by sorting the negative of the350

values of the implausibility function evaluated at the candidate samples. The351

algorithm progresses by sequentially discarding regions of the input domain,352

according to their implausibility I(x), as explained in Section 2.3. When353

SuS converges, it returns the set XSuS, which belongs to the non-implausible354

domain. A subset of these samples, which maximises the predictive variance355

of the GPE at the current level is selected and denoted as Xadd. Other356

approaches to selecting Xadd exist, such as the maximin strategy outlined in357

[1]. The GPE for the `th wave of HM is trained using an augmented data set,358

D` = D`−1∪{Xadd, η(Xadd)}. It should be pointed out that, even if the model359

itself is a highly non-linear function, it becomes smoother in the plausible360

region as the latter shrinks after each level of HM, which in turn leads to an361

increase in the accuracy of the emulator [1]. At the same time, the training362

points become denser. The algorithm terminates once the code uncertainty,363

quantified through the emulator variance, becomes smaller than the other364

sources of error. The proposed approach is summarised in Algorithm 1.365

The next two sections present applications of the proposed SuS-based366

HM. In both examples, the modified Metropolis algorithm is used to sample367

from the intermediate failure domains. This is not a constraint, since any368

of the MCMC sampling schemes reviewed in [35] could in principle be used.369

Previous work on the comparison of some of these schemes within SuS-based370

HM can be found in [38].371
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Algorithm 1 History matching with subset simulation

1: Provide an experimental observation z and relevant standard deviations:

σme for observational uncertainty and σmd for model discrepancy.

2: Set parameter values for SuS: p0, N .

3: Define F = {x : I`(x) < 3} where I`(x) is the implausibility measure for

the emulator at `th wave of HM as defined in Eq. (9).

4: Generate a space-filling plan, X ∈ Rn×d and form D1 = {xi, η(xi)}ni=1

5: Train a GPE η̂1(x) ∼ m1(x) + σc1(x)tn−q on D1 and validate it.

6: `← 1.

7: while σme < σc` and σmd < σc` do

8: Sample from the non-implausible domain using SuS:

9: Subset simulation

10: Obtain an MC sample XSuS ∈ RN×d ∼ π(x).

11: NF ← 0.

12: j ← 0.

13: while NF < p0N do

14: j = j + 1.

15: Evaluate η̂`(XSuS).

16: Compute ISuS ≡ −I`(XSuS) and sort in descending order.

17: Renumber XSuS to match the order of ISuS.

18: Select
{
x
(i)
SuS

}p0N

i=1
as seeds for MCMC.

19: Compute intermediate threshold bj = 1
2

[
I
(p0N)
SuS + I

(p0N+1)
SuS

]
20: Define intermediate failure domain Fj = {ISuS > bj}

21: Obtain a sample, XSuS, from π(x|Fj) using an MCMC scheme.

22: NF =
∑N

i=1 1(ISuS > −3)

23: end while

24: ` = `+ 1

25: Let Xadd be a subset of points from XSuS.

26: Construct D` ← D`−1 ∪ {Xadd, η(Xadd)}

27: Train a GPE η̂`(x) ∼ m`(x) + σc`(x)tn−q on D`.

28: end while



5. Calibration: wing weight reduction372

This section demonstrates the proposed approach by using HM to cal-373

ibrate a model of the weight of a light aircraft wing. Weight is a critical374

factor in aircraft design and ensuring the model at hand can reliably match375

experimental weights is of vital importance.376

The analytical model considered here is derived from historical data and is377

given by378

W = 0.036S0.758
w W 0.0035

fw

(
Aw

cos2 Λ

)0.6

q0.006λ0.04
(

100tc
cos Λ

)−0.3
(NzWdg)

0.49+SwWp

(20)

[Table 1 about here.]379

Eq. (20) was introduced in its original form in [39]. The last term on the380

right hand side representing the weight of the paint on the wing was added381

in [30]. A brief description of the inputs of the model, together with their382

ranges is provided in Table 1.383

A simulated observation for the wing weight was set at z = 130lb. A mea-384

surement error of ±5lb was imposed, corresponding to a standard deviation385

of σme = 1.7lb. Since, in this case, z is a synthetic surrogate for a physical386

observation, there is no direct meaning to the term model discrepancy and387

it is identically 0. Despite this, if the observation were coming from a real388

physical measurement the discrepancy term would have had some nonzero389

value. For this example, the model discrepancy was set to σmd = 1, a value390

sufficient to make sure σmd is included in the procedure, yet small enough so391

as to not overpower the uncertainty coming from the simulated measurement.392

21



The treatment of model discrepancy is an important problem in uncertainty393

quantification and an area of research in itself, see for example [13]. Finally,394

the simulator described by Eq. (20) is deterministic and has no ensemble395

error.396

Following the ideas outlined in Section 2.2 a Gaussian process emulator397

was trained with 100 points from an LHS design. The global trend term in398

Eq. (1) was chosen as h(x) = 1 in this case, so that the Gaussian process399

component of the emulator was responsible for taking into account any devia-400

tions from the mean. This choice is subjective and was motivated by the lack401

of knowledge of the general shape of the function. Specifying more complex402

forms for h(x) is possible and can be informed by exploratory analysis. The403

samples in the training set were normalized in [0, 1] due to the large variation404

of the input scales. This preprocessing step facilitates the search for optimal405

correlation lengths, ψ, and makes the results more easily interpretable. A406

genetic algorithm was used to search the likelihood of the emulator for ψ,407

while β and σ2 were computed from the expected values of their respective408

distributions, given in Eq. (4) and Eq. (5).409

At each wave, SuS was used to sample the non-implausible domain with410

6000 points per subset level, and each level was given a target probability,411

p0 = 0.1. Out of the final sample, 10 points from the non-implausible domain412

were added to the design at locations where the predictive variance from413

the emulator, given by Eq. (8), was the largest. The number of samples is414

such that there is at least one point representing each input. Additionally,415

sites with maximum predictive variance were chosen to rapidly reduce the416

uncertainty about the non-implausible domain. The GPE was retrained after417
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each wave.418

After 9 HM waves and 80 additional evaluations of the model in Eq. (20),419

the standard deviation of the code uncertainty, σc had decreased below that420

of the measurement error, σme and the analysis was terminated. Each wave421

required between 5 and 6 SuS levels, implying that the probability of the422

non-implausible domain is on the order of 10−6 to 10−5. Figure 2 depicts the423

optical depth projections of the input space, introduced by [8]. These projec-424

tions show the logarithm, base 10, of the empirical probability of finding a425

non-implausible sample in a given region of the input space, when projected426

onto a two-dimensional subspace. In this manner, optical depth projections427

provide a way to visualize the non-implasuible domain conditioned on the428

pair of inputs in each subfigure. To generate these plots, the input subspace429

of each pair of inputs was discretised in a 20× 20 grid of point values. The430

remaining 8 dimensions, which vary between subfigures, were represented431

by a 50, 000 point LHS sample. In this manner, to produce a single opti-432

cal depth plot, the emulator for the appropriate wave of HM was evaluated433

20× 20× 50, 000 = 20, 000, 000 times.434

The panels in the lower and upper triangles of Figure 2 show the projec-435

tion plots from the first and last wave of HM, respectively. Several obser-436

vations can be made from these plots. Firstly, many of the two-dimensional437

projections of the input space exhibit subtle, but quantifiable reduction in438

area from the first to the last wave of the analysis. This behaviour can be439

attributed to the function being relatively smooth and the fact that the GPE440

mean was capable of representing it with reasonable accuracy early on in the441

procedure. This is to say that even though the mean of the emulator was442
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able to match the non-implausible domain reasonably well, its distance from443

the training sample caused the predictive variance of the GPE to be larger444

than the other sources of uncertainty, preventing the analysis from terminat-445

ing. For some projections, such as Λ − q and λ − q the whole space seems446

to have been discarded as implausible. This outcome is due to the sample-447

based nature of the optical depth plots and the difficulty of producing data in448

the non-implausible domain, by uniformly sampling the hidden dimensions.449

Secondly, the scale of the log-probabilities is indicative of the overall size450

of the non-implausible domain, with between 1 and 230 samples per 50, 000451

producing acceptable matches. Simple-looking problems such as these, show452

the inadequacy of rejection-based uniform sampling and emphasise the im-453

portance of effective methods to identify the non-implausible domain in each454

wave of HM. Finally, the plots reveal how active certain inputs are, which455

could lead to better understanding of the underlying model. For example,456

the quarter-chord sweep angle Λ is not identified as important for satisfying457

the measurement z, as seen from the fact that non-implausible samples are458

uniformly distributed in its range. Similar conclusions can be made for Wfw,459

q and Wp. On the other hand, the wing area, Sw, the aspect ratio, Aw and460

the load factor, Nz in particular are all influential in producing an accept-461

able match to a relatively light wing, confirming the engineering intuition462

that smaller, less-loaded wings can be made lighter.463

[Figure 2 about here.]464

The effect of HM on the output of the model is shown in Figure 3. The465

samples identified to belong to the final non-implausible domain results in466
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the output values shown in Figure 3(a). In this figure, there is a tendency467

for the outputs to cluster to the upper boundary of the prescribed region.468

This behaviour serves as an evidence to the restrictive target weight used469

in the analysis. For comparison, one of the most recognizable general avi-470

ation aircraft, Cessna 172, has a wing weight of approximately 236 lb [40].471

Figure 3(b) depicts a kernel estimation of the final distribution of the wing472

weights, which is considerably narrower than the one used to train the initial473

GPE.474

[Figure 3 about here.]475

The correlation between samples from SuS can be calculated using the476

procedure outlined in Section 6 of [12] to determine the quality of the in-477

formation they provide. In the above example, the coefficient of variation,478

accounting for sample correlation varies in δ = [0.039, 0.068].479

To illustrate how SuS is capable of sampling more efficiently from the480

non-implausible domain, HM for the wing weight model was repeated using481

MC sampling instead of SuS. All other aspects of the analysis were kept the482

same, except for the number of MC samples. Since MC extracts all of its483

information in one step, as opposed to SuS, which uses levels, the number484

of samples required by MC to explore X is much larger. At each wave,485

nMC = 324, 000 samples were generated in X , out of which m = 10 samples486

were to be added to the training set for the next wave emulator. In this487

comparison, nMC is calculated as the total number of samples used in HM488

with SuS (9 waves, with 6 SuS levels each and 6000 samples per level). Due to489

the small volume of the non-implausible domain at each wave, MC was unable490

to populate it densly enough and as a result m < 10 samples were added in491
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each wave. This outcome reveals one of the important advantages of using492

SuS for sampling the non-implausible domain: unless the set of acceptable493

matches is empty, SuS is able to populate it according to requirement. The494

MC-based HM terminated after ` = 4 waves, due to the inability of MC to495

find samples in the non-implausible domain. A total of 9 samples were added496

across the 4 waves, which gives a GPE equivalent to the one in Wave 2 in497

SuS-based HM. It must be pointed out that the efficiency of SuS compared498

to MC comes at the cost of producing samples that cannot be guaranteed499

to be uniformly distributed over the non-implausible domain. However, the500

coefficient of variation accounting for sample correlation δ can be computed,501

as it was done above. This allows the analyst to monitor efficiency. An502

interesting question arises when this coefficient of variation is unacceptably503

large, due to high sample correlation. A potential solution could involve504

designing a thinning strategy for the modified Metropolis algorithm, but this505

is the subject of future work.506

Figure 4 shows the minimum implausibility plots for three pairs of inputs507

from MC-based HM in the top row, compared to the ones from SuS-based508

HM in the bottom row. These plots depict the minimum implausibility509

in the high-dimensional domain, if a given pair of inputs were fixed to a510

particular value [8]. These plots reveal several things. Firstly, for all pairs511

of inputs, the non-implausible domain differs in topology. A particularly512

noticeable difference exists in the space spanned by thickness-to-chord ratio513

tc and wing fuel weight Wfw. History matching with MC sampling identifies514

the non-implausible domain to be much more diffuse than the one in the515

SuS-based analysis. That is, it is larger and at the same time has higher516
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implausibility overall. Secondly, the GPE trained on data with a dense set517

of non-implausible samples from SuS achieves better accuracy compared to518

the true function. In the case of the wing weight simulator, the code can be519

run affordably without the need of an emulator, to explore the implausibility520

landscape without code uncertainty. The implausibility threshold, I(x) = 3,521

is shown on each of the contour plots as a black dashed line. In all three522

cases, the agreement is better for the lower line of plots. Finally, it must523

be noted that the efficiency of the HM process increases when using SuS524

as a sampler, since the quality of the GPE in the non-implausible domain525

increases more rapidly when using informative samples. This decreases both526

the number of potentially costly code evaluations and the number of waves,527

and thereby emulators, to be generated.528

[Figure 4 about here.]529

Note that, even if the model in this case study is not computationally530

expensive, it demonstrates the challenges in calibrating models with even531

moderately-sized input domains.532

6. Robust design: aircraft wing-engine matching533

The second application of SuS within HM presented here is robust de-534

sign. In engineering, the term robust design refers to the process of seeking535

not only an optimal mean value of a system performance metric, but also536

to ensure that this optimum is insensitive to variations which could lead to537

undesired system behaviour [41, 42]. The essence of the robust design prob-538

lem is prescribing a target value for quantities of interest that determine the539
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performance of a system. The designer’s task is to then find one or more540

design input configurations that deliver this target within certain tolerance.541

Suppose that a target value for a quantity of interest is treated as if it542

were an experimental measurement. Also, suppose that the corresponding543

tolerance can be treated as the underlying uncertainties. This treatment544

provides an analogy between matching a model output with experimental545

data (given the sources of uncertainty) and matching a design target within546

a prescribed tolerance. Therefore, the proposed SuS sampling for HM can547

also be used to solve the robust design problem by identifying the set of548

input values that yield an output consistent with a design target within549

certain tolerance. This results in a reduced input space that can be further550

explored by an analyst in the search for an optimal design. Since HM can551

deliver an empty non-implausible domain, the designer might conclude that552

there is no input configuration that complies with the system requirements,553

given the current model. This information can be very valuable in terms of554

improving the model or rethinking the feasibility of the design targets.555

This section develops the idea with an application to aircraft design.556

Subset simulation has previously been used in different optimisation-related557

problems [43, 44]. However, to the authors’ knowledge, it has not been used558

in robust design. The application proposed in this section demonstrates how559

SuS-based HM can be used in contexts beyond model calibration.560

6.1. Problem description561

Modern aircraft are expected to operate within very stringent perfor-562

mance and regulatory limits to reduce their environmental impact, whilst563

keeping their profitability as a mode of transportation. Increasingly demand-564
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ing regulations are coming into effect worldwide, which impose bounds on the565

amount of nitrous oxide (NOX), among other greenhouse gases produced by566

aircraft [45]. Such requirements necessitate a highly structured approach to567

early stage aircraft design, acknowledging the complex nature of interactions568

and dependencies between different systems. For the purposes of this study,569

and following the work in [46], the conceptual aircraft is defined as a com-570

bination of different wings and engines, in an approach known as set-based571

design. Each wing and engine are in turn defined by the parameters given in572

Table 2.573

Whilst the modelling process is multi-disciplinary and multi-organisational,574

here it is presented in an abstract form as a chain of coupled analyses im-575

plemented in a tool called AirCADia [47]. AirCADia is a framework for576

interactive composition and exploration of conceptual aircraft design config-577

urations. In this case study, six parameters were varied within AirCADia578

to achieve the target emissions value. In order to collect all required data,579

the model was run on a Lenovo ThinkCentre M900 Tower, with an Intel R©
580

CoreTM i7-6700, 3.4 GHz CPU. On this machine, each evaluation took 0.5581

seconds.582

[Table 2 about here.]583

6.2. History matching NOX584

The level of NOX emissions was selected as the target output variable585

that would drive the design. Initially, a GPE was trained on n = 60 Latin586

hypercube points, using a global trend term, h(x) = [1, x]ᵀ. The emula-587

tor was validated with another m = 40 LHS samples to verify its accuracy588
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in representing AirCADia’s output. The plot of simulator outputs against589

GPE predictions is displayed in Figure 5(a). It shows the degree to which590

predictions from the emulator correspond with simulator observations. If the591

GPE were a perfect predictor, the scatter would have lain along the 45 de-592

gree dashed line. The error bars indicate the 95% credible interval associated593

with each point. Most of the predicted points contain the 45 degree line in594

their credible intervals. As seen in Eq. (6), each prediction from the emulator595

follows a Student’s-t distribution. Therefore, the residuals between simulator596

output and prediction should occupy the interval [−2, 2] with around 95%597

probability. These normalised residuals, often termed individual prediction598

errors [27], are plotted against predictions in Figure 5(b). The residuals are599

uniformly spread around 0 with no discernible patterns, or significant num-600

ber of outliers. Jointly, these visual diagnostics suggest that the emulator is601

a reasonably accurate representation of the simulator. After validation, the602

test points were added to the design of experiments and the trend coefficients603

in Eq. (4), and process variance in Eq. (5) were re-estimated.604

[Figure 5 about here.]605

After consultation with the developers of AirCADia, at the Centre for606

Aeronautics at Cranfield University, the target range for NOX was chosen607

as 240± 10 lb over a 3000 nautical mile trip, including landing and take-off608

[47]. The reader is reminded that the end goal of the robust design task609

is to attain a pre-specified level, with tolerance, of a quantity of interest.610

This is in contrast to the aim of optimisation, where, typically, the analyst611

seeks to attain an optimum level of the quantity of interest, possibly subject612

to constraints. The experts’ reasoning behind choosing the specific NOX613
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target is not provided herein, since it is not in line with the main aim of614

the paper. As outlined before, in the robust design setting the target range615

can be treated as measurement plus corresponding uncertainties. Therefore,616

all uncertainties for HM are accumulated into the measurement error term.617

In order to ensure that the target range is respected, HM was carried out618

with an error term which ensures that 95% of the responses will lie in the619

correct region. Thus, the final values for the analysis were set as z = 240620

and σme = 3.33.621

In each wave of HM, SuS was run with N = 6, 000 samples per level622

and level probability, p0 = 0.1. In the first wave, two levels of SuS were623

required to populate the non-implausible domain, implying that its proba-624

bility is on the order of 10−2. The two levels sampled the emulator a total625

of 12, 000 times, obtaining over 3, 500 samples in the non-implausible do-626

main. For comparison, a direct Monte Carlo simulation would have required627

approximately 350, 000 samples on average to achieve a similar result. The628

code uncertainty associated with some of the samples from SuS exceeded629

the measurement error and therefore it was necessary to continue with the630

analysis.631

The analysis was terminated after three waves, when the emulator vari-632

ance σ2
c (x) was reduced sufficiently in comparison with the imposed uncer-633

tainty4. From the denominator in Eq. (9), it can be seen that in this example,634

σ2
c (x) is the only source of uncertainty that is free to change. Once it be-635

4Despite the seemingly quick running times of the simulator, the analyses would have

taken approximately 5 hours for SuS and just over 2.5 days for DMC, if the simulator was

sampled directly.
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comes small in comparison with the other components, the implausibility636

measure does not change significantly. Further substantial reduction in the637

non-implausible domain becomes unlikely.638

Figure 6 shows diagnostics from the final wave of HM. The sub-figures639

in the upper triangle contain the optical depth plots and those in the lower640

triangle show the minimum implausibility plots. Together, these two repre-641

sentations visualize the extent of the non-implausible domain. In Figure 6,642

it can be seen that the inputs relating to engine pressure (OPR, FPR) have643

significant contribution to the value of NOX, since their domain was signif-644

icantly reduced to achieve the specified target range. In particular, it was645

not likely to find matching outputs for high values of OPR and low values646

of FPR, regardless of the values of the other inputs. An interesting interac-647

tion is the one between sea-level static thrust (SLST) and wing aspect ratio648

(AW ), which indicates that low powered engines must be matched to efficient,649

slender wings to attain the required NOX level.650

[Figure 6 about here.]651

The values of NOX corresponding to the non-implausible samples are652

shown in Figure 7. Note that the values of the emissions in Figure 7(a)653

exceed the specified range. This is due to the code uncertainty introduced654

using the emulator instead of the original code. This uncertainty can be655

reduced further, but an increase in the computational cost of the analysis656

will be incurred, owing to the additional code evaluations needed to refine657

the surrogate model. Figure 7(b), provides a visual comparison between the658

pre- and post-history matching distributions of the output.659

[Figure 7 about here.]660
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7. Conclusions661

A solution to an important problem in model calibration with history662

matching was proposed. The solution involves the use of subset simulation663

to generate samples from the non-implausible domain of an expensive com-664

puter model. It was shown that, within history matching, the volume of665

the non-implausible domain may shrink by several orders of magnitude as666

compared to the original input space. Thus, the non-implausible domain was667

treated as a failure set, analogous to that in engineering reliability analysis.668

This allowed the use of subset simulation as an efficient sampler, which pro-669

vided good coverage of the non-implausible domain with a moderate number670

of samples. The method selected highly informative input configurations,671

which were used to train a Bayesian emulator. This led to a reduction in672

computational time and fast convergence of the analysis.673

The advantages of the proposed approach were demonstrated in two ex-674

amples. The first one dealt with the calibration of an analytical wing model675

to match a restrictively low target weight. The second example showed how676

the proposed approach can be used as a pre-processor for robust design in677

an industrial context. Future research based on this work includes exploring678

the link between history matching and robust design with several, possibly679

conflicting, design objectives. Another problem that requires attention is680

that of local variations in the behaviour of the simulator. This might require681

fitting different emulators if the non-implausible domain is disconnected.682
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(a) Level 0 (b) Level 1 (c) Level 2

Figure 1: Sampling from a small probability event via subset simulation. (a) Samples
from the unconditional failure domain F0 (i.e. the entire input space); (b) samples in the
first intermediate failure domain F1 ⊆ F0; (c) samples in the failure domain F ⊆ F1 ⊆ F0

generated by MCMC.
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FIGURES 45

Figure 2: Pairwise optical depth plots for the first (lower triangle) and final (upper triangle)
waves of history matching for wing weight. The plots show the evolution of the size of the
non-implausible domain and reflect the decreasing log-probability of finding acceptable
input combinations (color bar) in different regions of the input space. (color online).
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Figure 3: Wing weight realizations from the final wave of history matching; (a) emulator
predictions (blue dots) compared to the specified target range; (b) kernel density estima-
tion of the initial code output distribution (orange fill) and that from samples in the final
non-implausible domain (purple fill). Dashed lines in both figures show the target range
(color online).
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Figure 4: Minimum implausibility plots for three pairs of inputs to the wing weight model.
Top row: wave 4 HM results with Monte Carlo sampling. Bottom row: wave 2 HM results
with SuS sampling. Dotted line: decision boundary of the non-implausible domain without
code uncertainty (color online).



FIGURES 48

250 300 350 400

250

300

350

400

(a)

250 300 350 400

-2

-1

0

1

2

(b)

Figure 5: Predictive diagnostics for the NOX GPE. (a) correlation between prediction and
observations with 95% credible intervals depicted as error bars; (b) individual prediction
errors for the validation set.
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Figure 6: Pairwise minimum implausibility (lower triangle, left color bar) and optical depth
(upper triangle, right color bar) plots from the last wave of NOX history matching. The
color bar on the right depicts the empirical log-probability of finding a non-implausible
sample in a given region of the input domain, whereas the one on the left indicates the
expected implausibility value of that sample. Inputs belonging to the “Engine” subsystem
are clearly affected more than those belonging to the “Airframe” subsystem in Table 2
(color online).
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Figure 7: History matching identifies input configurations, which result in output values
lying in the specified target range (dashed lines); (a) emulator predictions (blue dots) and
the observation error distribution; (b) kernel density estimation of code outputs before
(orange fill) and after (purple fill) history matching (color online).
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TABLES 52

Table 1: Inputs for the light aircraft wing weight model.

Notation Name Range Unit

Sw Wing area [150, 200] ft2

Wfw Weight of fuel in the wing [220, 300] lb
Aw Aspect ratio [6, 10] -
Λ Quarter-chord sweep [−10, 10] deg
q Dynamic pressure at cruise [16, 45] lb/ft2

λ Taper ratio [0.5, 1] -
tc Airfoil thickness to chord ratio [0.08, 0.18] -
Nz Ultimate load factor [2.5, 6] -
Wdg Design gross weight [1700, 2500] lb
Wp Paint weight per unit area [0.025, 0.08] lb/ft2



Table 2: Inputs and output for the climb-cruise case study, with respective parent system
and target ranges.

Notation Name System Range Unit

SW Wing area Airframe [1300, 1400] ft2

AW Aspect ratio Airframe [9, 11] -
SLST Static thrust Engine [26, 32] lbf ×103

FPR Fan pressure ratio Engine [1.5, 1.8] -
OPR Overall pressure ratio Engine [30, 40] -
BPR Bypass ratio Engine [6, 8] -

NOX Nitrous oxide emissions Output 240±10 lb
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Appendix A. SuS illustration function886

The function in Eq. (18), whose contour levels are shown in Figure 1 is a887

mixture of nine bivariate Gaussian random variables with mean, covariance888

and weight given in Table A.1.889

[Table 3 about here.]890
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TABLES 56

Table A.1: Parameter values for g(x) in Eq. (18).

i wi µᵀ
i Ci

1 0.327
[
0.04 0.04

] [
0.030 0.020
0.020 0.025

]
2 0.096

[
0.98 0.70

] [
0.020 0
0 0.003

]
3 0.143

[
0.75 0.85

] [
0.010 −0.015
−0.015 0.030

]
4 0.038

[
0.71 0.32

] [
0.002 0
0 0.002

]
5 0.161

[
0.33 0.83

] [
0.020 −0.010
−0.010 0.010

]
6 0.023

[
0.43 0.73

] [
0.005 0
0 0.005

]
7 0.026

[
0.23 0.93

] [
0.005 0
0 0.005

]
8 0.104

[
1.00 0.00

] [
0.008 0
0 0.008

]
9 0.081

[
0.12 0.57

] [
0.005 0
0 0.005

]
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