GRANADA consensus on analytical approaches to assess associations with accelerometer-determined physical behaviours (physical activity, sedentary behaviour and sleep) in epidemiological studies

Jairo H Migueles © , ${ }^{1,2}$ Eivind Aadland © , ${ }^{3}$ Lars Bo Andersen © , ${ }^{3}$ Jan Christian Brond © © ${ }^{4}$ Sebastien F Chastin ©,5,6 Bjorge H Hansen © ${ }^{\text {, }}{ }^{7,8}$ Kenn Konstabel © , 9,10,11 Olav Martin Kvalheim © ${ }^{12}$ Duncan E McGregor © , 5,13 Alex V Rowlands © , ${ }^{14,15,16}$ Séverine Sabia © ${ }^{17,18}$ Vincent T van Hees © ${ }^{19,20}$ Rosemary Walmsley © , ${ }^{21,22}$ Francisco B Ortega © , ${ }^{1,23}$ External review group

- Additional supplemental material is published online only. To view, please visit the journal online (http://dx.doi. org/10.1136/bjsports-2020 103604).

For numbered affiliations see end of article.

Correspondence to

Jairo H Migueles and Dr Francisco B Ortega, Department of physical education and sport, University of Granada, 18071 Granada, Spain; jairohm@ugr.es, ortegaf@ugr.es

Accepted 20 March 2021

Abstract

The inter-relationship between physical activity, sedentary behaviour and sleep (collectively defined as physical behaviours) is of interest to researchers from different fields. Each of these physical behaviours has been investigated in epidemiological studies, yet their codependency and interactions need to be further explored and accounted for in data analysis. Modern accelerometers capture continuous movement through the day, which presents the challenge of how to best use the richness of these data. In recent years, analytical approaches first applied in other scientific fields have been applied to physical behaviour epidemiology (eg, isotemporal substitution models, compositional data analysis, multivariate pattern analysis, functional data analysis and machine learning). A comprehensive description, discussion, and consensus on the strengths and limitations of these analytical approaches will help researchers decide which approach to use in different situations. In this context, a scientific workshop and meeting were held in Granada to discuss: (1) analytical approaches currently used in the scientific literature on physical behaviour, highlighting strengths and limitations, providing practical recommendations on their use and including a decision tree for assisting researchers' decision-making; and (2) current gaps and future research directions around the analysis and use of accelerometer data. Advances in analytical approaches to accelerometer-determined physical behaviours in epidemiological studies are expected to influence the interpretation of current and future evidence, and ultimately impact on future physical behaviour guidelines.

© Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

To cite: Migueles JH,

 Aadland E, Andersen LB, et al. Br I Sports Med Epub ahead of print: [please include Day Month Year]. doi:10.1136/ bjsports-2020-103604
INTRODUCTION

Physical activity (PA), sedentary behaviour (SB) and sleep, collectively described as physical behaviours, ${ }^{1}$ are of interest to many researchers from previously separate fields. Accounting for the inter-relations of these behaviours is important because: (1) they share the 24 hours of the day (ie, closure), so change in one behaviour results in change in others; and (2) the relation of a specific behaviour with health depends on other behaviours (eg, SB and mortality relation depends on moderate-to-vigorous PA
$\left.(\mathrm{MVPA})^{23}\right)$. These inter-relations should be considered in modelling their association with health, with attention to collinearity issues potentially leading to spurious findings.

Accelerometers are increasingly being used to estimate different constructs/dimensions of physical behaviours (eg, types (walking, cycling, dancing), intensities (light, moderate, vigorous), and postures (reclining, sitting, standing)). Other constructs focus more on the description of the acceleration signal (eg, time spent within acceleration bands with no energy expenditure interpretation (eg, $\mathrm{min} /$ day between 0 and 100 mg), or the acceleration above which the most active 30 min of the day occur). The data-analytical approach usually includes: (1) reduction of the acceleration signal into meaningful behaviours/descriptors; (2) mathematical treatment of the descriptors if needed and (3) selection of the statistical model. Multiple choices are available for each step, and decisions should be adapted to the research question and account for potential collinearity issues arising from behaviours' inter-relationships. However, there are currently no consensus/recommendations to help to choose the most appropriate approach. Online supplemental appendix 1 presents the different choices for descriptors, mathematical treatments and statistical models discussed in the Analytical approaches section.

The 'International Workshop: A focus on statistical methods to analyse accelerometer-measured PA' was held in Granada on 21-22 October 2019. This event brought together a panel of researchers to discuss, reach consensus, and provide recommendations about the most frequently used analytical approaches in the field and about future research directions in physical behaviour epidemiology. The focus was on modelling physical behaviour constructs (mainly related to PA and SB , although we also included sleep to cover the 24 -hour continuum) as exposure variables and health indicators as outcomes. We covered time-use descriptors as those quantified in time over the day, and acceleration-based as those quantified as acceleration magnitude.

Table 1 Description of accelerometer-based descriptors of physical behaviours

Descriptor	Brief description	Examples
Average acceleration or steps per day	Arithmetic average of the processed acceleration throughout the measurement period or per day.	2936 46-48
Time-use behaviours	Estimates of time spent in physical activity intensities (eg, LPA, MPA, VPA), types (eg, walking, running, cycling), or SB, optionally expressed in bouted and unbouted behaviour. These estimates can be derived with heuristic methods or ML.	29 49-52
Intensity spectrum	The intensity spectrum is an extension of cut-points which attempts to provide a much more detailed description of the physical activity intensity pattern. Instead of using cut-points representative of SB, LPA, MPA or VPA, the cut-points are arbitrarily selected to obtain a wider range of intensity bands.	323353
Intensity gradient	The intensity gradient describes the negative curvilinear relationship between physical activity intensity and the time accumulated at that intensity during the 24 -hour day.	3646
MX metrics	The acceleration above which a person's most active X minutes/time (MX) are accumulated, to focus on a person's most active periods of the day.	5455
Acceleration functions	Description of the accelerometer data with a function rather than with a scalar. Functions seek a more detailed description of the accelerometer data without making a priori assumptions.	383956
Other indicators	Apart from the descriptors related to energy intensity or acceleration levels, an array of metrics can provide complementary information, such as: physical activity domain, circadian rhythmicity, timing, sleep efficiency, etc.	345758

Data collection decisions are outside our focus, although decisions on body attachment site, ${ }^{4-8}$ number of days recorded, ${ }^{9}$ treatment of weekdays and weekend days, ${ }^{10}{ }^{11}$ seasonality, ${ }^{12}$ among others, affect the ability of accelerometer data to identify specific constructs/aspects of physical behaviours. For example, attaching the accelerometer to the hip, wrist or thigh may be considered depending on the constructs of interest (eg, PA intensity, ${ }^{13-15}$ postures ${ }^{16}$ or sleep patterns, ${ }^{1718}$ among others). A recent consensus report discussed best practices on these decisions. ${ }^{19}$

ANALYTICAL APPROACHES: DISCUSSION AND PRACTICAL CONSIDERATIONS

This section discusses different analytical approaches' applicability in various situations (or research questions). Analytical approaches include the combination of accelerometer descriptors (table 1, online supplemental appendix 1 (Section 1)) and statistical models (table 2, online supplemental appendix 1 (Section 3)) with and without mathematical (compositional) transformation (online supplemental appendix 1 (Section 2)). We provide practical considerations on (1) informativeness of each analytical approach for public health messaging and (2) appropriateness of the analytical approaches for certain research questions. Additionally, table 3 shows the performance of these approaches regarding closure or collinearity, relationship assumptions and interpretation for PA guidelines.

Total PA and linear regression

Average acceleration (or steps per day) provides the simplest estimate of the overall movement and proxy for total daily PA-related energy expenditure. Statistical interpretation of findings using linear regression is straightforward since there is a single variable representing the overall activity volume. Thus, codependence with other explanatory variables is not usually a concern and linear regression models are an option for the analysis. The opinion of the consensus group is that the average acceleration is useful for reducing the confounding effect of PA in a given association analysis (eg, is the association of sugar consumption with body mass index dependent on overall PA?), or as the main exposure in cases where it explains a large proportion of the PA-related energy expenditure in a certain cohort (eg, is PA-related energy expenditure associated with protein intake?). Beyond this, the average acceleration alone is not very informative relative to associations of specific physical behaviours with health outcomes, limiting its applicability for public health messaging. A recent study proposed the minimum clinically informative difference for average acceleration from wrist data, ${ }^{20}$ but further studies are needed. Although these descriptors cannot be interpreted in terms of meeting or not meeting the PA guidelines, they may be the best descriptor to test the 'move more' message reported in several guidelines.

Table 2 Brief description of approaches to analyse associations between physical behaviours and health outcomes

Statistical model	Brief description	Examples
Linear regression modelling	Traditional models establishing the relationship between a set of explanatory variables and an outcome (ie, health outcome). Exposure is usually limited to a single time-use behaviour. Interpretation is in terms of increasing time in one behaviour.	5960
Isotemporal substitution model	Isotemporal substitution models examine the theoretical effects of displacing a fixed duration of time between behaviours. Given the fixed and finite duration of a day, increasing time in one movement behaviour (eg, LPA) will result in a net equal and opposite change in other movement behaviours (eg, SB). Interpretation is in terms of substituting one behaviour for other behaviours.	6162
Multivariate pattern	A regression approach/analysis that can handle an unlimited number of multicollinear explanatory variables by using latent variable modelling. Models are cross-validated to optimise predictive ability. Interpretation is based on the complete pattern of associations among the explanatory variables in relation to the outcome.	$2563-66$

[^0]Table 3 Summary of analytical approaches' (including descriptor, mathematical transformation and statistical model) strengths and limitations in relation to closure, collinearity, relation-shape assumptions and interpretation relative to public health guidelines

Descriptor	CoDA transform	Statistical modelling	Risk of closure?*	Risk of collinearity?	Handles closure?	Handles collinearity?	Relationship assumptions	Allow investigation of longitudinal associations (eg, Cox regression)	Interpretation relative to guidelines? (eg, $150 \mathrm{~min} /$ week of MVPA)
Average acceleration	No	Linear	No	No	NA	NA	Linear	Yes	No
Time-use descriptors	No	Linear	Yes	Yes	No	No	Linear	Yes	Yes
	Yes	Linear	Yes	Yes	Yes	In part \dagger	Log-linear	Yes	Yes
	No	ISO	Yes	Yes	Yes	No	Linear	Yes	Yes
	No	MPA	Yes	Yes	No	No	Linear	Not at the moment	Yes
	Yes	MPA	Yes	Yes	Yes	Yes	Log-linear	Not at the moment	Yes
Intensity spectrum	No	Linear	Yes	Yes	No	No	Linear	Yes	Yes \ddagger
	Yes	Linear	Yes	Yes	Yes	In partt	Log-linear	Yes	Yes \ddagger
	No	ISO	Yes	Yes	Yes	No	Linear	Yes	Yes \ddagger
	No	MPA	Yes	Yes	No	No	Linear	Not at the moment	Yes \ddagger
	Yes	MPA	Yes	Yes	Yes	Yes	Log-linear	Not at the moment	Yes \ddagger
Intensity gradient	No	Linear	No	No	NA	NA	Linear	Yes	No
	No	FDA	No	No	NA	NA	Fewer assumptions than other models	Yes	Yes§
MX metrics	No	Linear	Yes	Yes	No	No	Linear	Yes	Yes \ddagger
	No	MPA	Yes	Yes	No	Yes	Linear	Not at the moment	Yes \ddagger
Other acceleration functions	No	FDA	No	No	NA	NA	Fewer assumptions than other models	Yes	Yes§

*Closure refers to whether a certain descriptor is a specific part of the daily time constraint (ie, it is measured in time per day).
†Indicates that it solves the collinearity due to the closure, but collinearity can still exist across the CoDA-transformed variables.
\#ndicates that the interpretation is made through a post-hoc application of validated cut-points to identify the PA intensity (eg, MVPA).
§Indicates that more work is needed on the interpretation of functional data analysis, an example can be found elsewhere. ${ }^{39}$
CoDA, compositional data analysis; FDA, functional data analysis; ISO, isotemporal substitution models; MPA, multivariate pattern analysis; MVPA, moderate-to-vigorous PA; MX, acceleration above which a person's most active X minutes/time are spent; NA, not applicable; PA, physical activity.

Time-use behaviours or intensity spectrum and linear regression

Among time-use constructs, time spent in PA intensities is the most frequently used, while PA types and postures have gained momentum recently. These descriptors are often introduced in linear regression models to test the association of time spent in a certain intensity/behaviour with health outcomes. As it is widely used, it is useful for comparing estimates with other cohorts. The intensity spectrum is an extension of PA intensities with higher resolution energy bands. When using such time-use behaviours, requirements for bouts in these behaviours should be considered. We observe a lack of consensus in the literature on how a bout should be calculated, including the definition of both acceptable allowance drop period without terminating the bout and minimum and maximum duration. Bouts of 30 min for SB and 10 min for MVPA, often allowing short time intervals outside the behaviour of interest, are frequently used. ${ }^{21}$ It is unclear how much these choices are driven by a desire for harmonisation, by public health guidelines, or by evidence. Although observational data based on 1-minute or longer epoch lengths suggest that any bout duration can produce health benefits, randomised controlled trials investigating the effects of differing bout durations on health outcomes are lacking. ${ }^{21}$ Based on the observational studies, the recommendation about accumulating PA in certain bout durations has been excluded from recent guidelines. ${ }^{22}$

Time-use behaviours (or intensity spectrum) include a set of codependent variables, and linear regression does not handle closure and collinearity among explanatory variables. When using these descriptors, linear regression adjusted for all physical behaviour components may be affected by multicollinearity. ${ }^{23}$ Variance inflation factors are unable to explain inconsistencies between linear regression models sequentially excluding a
behaviour from the explanatory variables ${ }^{24}$ and might not be an acceptable diagnostic indicator for the interdependency between time-use descriptors. ${ }^{24}$ Additionally, the assumption of linearity of the association between these descriptors and health outcome might not be sufficiently met for analyses to yield valid results. This consensus group recommends moving towards other analytical approaches more suitable for studying the codependencies among time-use behaviours. In this regard, transforming time-use behaviours using the compositional data transformation (isometric log ratio (ILR), online supplemental appendix 1 (Section 2)) represents an option. Using the ILR transformation, each variable indicates the time spent in a given behaviour relative to the time spent in the rest of behaviours of the composition (eg, SB, light PA, MVPA and sleep). In other words, it quantifies the effect of increasing the time in a behaviour while proportionally reducing the time in the rest. Pair-wise reallocations of time can be interpreted from linear regression predictions on specific time compositions arising from hypothetical reallocations of time rather than from regression coefficients (as in isotemporal substitution models, online supplemental appendix 1 (Section $3.2)$). By transforming the variables, the codependency among the time-use descriptors relative to their time closure is solved (ie, it accounts for the codependency of time among variables). However, transformed variables can still be collinear, and collinearity should be investigated because linear regression cannot handle collinearity, regardless of its source. This is especially problematic when analysing the intensity spectrum since it provides a wide range of variables (usually more than 10) that are highly correlated, even if using ILR-transformed variables. ${ }^{25}$ As such, we recommend testing the correlations and risk of collinearity among the explanatory variables (even when compositionally transformed). In absence of high correlations and collinearity, linear regression can be appropriate.

The opinion of the consensus group is that physical behaviour epidemiology should move to studying the combined effects and interactions of physical behaviours on health, and a feasible option is using ILR-transformed time-use descriptors and linear regression. ${ }^{24}{ }^{26}$ This approach is informative for public health messaging as it provides information on combinations of behaviours (considering every behaviour that occurs in the day) which are beneficial for health. Clustering groups of people based on their behaviours is also an alternative to investigating the interactions between behaviours, although compositional analyses allow the variables to be studied on a continuous scale. With the intensity spectrum, the use of linear regression models is not possible because of collinearity issues in the variables (either transformed or not). ${ }^{25}$ The collinearity problem, however, can be solved by using partial least square (PLS) regression. Regression models can be used in different study designs, including longitudinal studies, either with absolute ${ }^{27-29}$ or compositional data. ${ }^{30}$ Linear regression with compositional data may need appropriate graphical representation of the results to interpret the magnitude of the association. ${ }^{24}$

Time-use behaviours or intensity spectrum and isotemporal substitution models

Isotemporal substitution modelling carries forward the main limitations of linear regression, that is, multicollinearity and assumption of linearity (as the magnitude of the association is derived from regression coefficients). These important limitations preclude us from recommending the use of isotemporal models with time-use descriptors. However, it is notable that this approach provides broadly similar findings to compositional ILR transformation of time-use descriptors and linear regression. ${ }^{31}$ Public health messaging can be complemented with information on the effect of reallocating daily time across behaviours (either with isotemporal substitution models or with linear regression with compositional data, the Time-use behaviours or intensity spectrum and linear regression section). The intensity spectrum has not been analysed with isotemporal substitution models thus far. We do not recommend such an analysis since the large number of variables in the intensity spectrum would complicate the interpretation.

Time-use behaviours or intensity spectrum and multivariate pattern analysis

Multivariate pattern analysis fully handles the collinearity among explanatory variables using latent variable modelling. Collinearity is approached as a dimensionality reduction problem in which the variance of the explanatory variables shared with the outcome is retained. Multivariate pattern analysis describes the pattern of associations for the descriptors with the outcome, accounting for the correlated structure of the data. Associations with health are interpreted for each descriptor (each PA intensity or band in the intensity spectrum) considering its codependency with the rest, but without quantifying time exchange between descriptors. A limitation of this analytical approach is that PLS regression models cannot be adjusted as usually done in linear regression. If covariates are included in the PLS model, they will contribute their shared variance with PA and the outcome. Aadland et al proposed obtaining residuals for the outcome from a linear regression model including confounders as explanatory variables, prior to entering the outcome variable in the PLS model. ${ }^{253233}$ This challenge remains for the analysis of categorical or time-to-event outcomes (eg, mortality).

Likewise, time-use behaviours or the intensity spectrum could be transformed as compositional data before performing multivariate pattern analysis. Since multivariate pattern analysis can handle singular data, the use of ILR coordinates is not necessary. Aadland et al recently compared the use of centred log ratio (CLR)-transformed time-use and intensity spectrum descriptors with respect to associations with metabolic health using multivariate pattern analysis. ${ }^{25}$ While associations appeared to differ, the interpretation of associations, considering the absolute and relative interpretation, were partly equivalent. The interpretation of CLR-transformed variables may not be very informative for public health messaging as they represent the effect of time exchange from the geometric mean of the time-use descriptors distribution to a specific time-use descriptor (eg, MVPA or any intensity spectrum band).

Other similar alternatives to reduce dimensionality of the data while retaining relevant information by increasing covariance among descriptors (rather than with the outcome) include factor analysis, principal component analysis, or joint and individual variation explained. ${ }^{34}$ This consensus group recommends considering these approaches to analyse many explanatory variables (eg, intensity spectrum) in relation to health. ${ }^{35}$ There is no clear recommendation on the number of bands (or number of explanatory variables) to generate for this analytical approach, though previous studies have used from 16 (uniaxial data) ${ }^{32}$ to 102 (triaxial data) ${ }^{33}$ intensity bands. Resolution (number of bands) may influence the relationship with the outcome and depend on the sample characteristics; thus, further research is needed.

Intensity gradient and linear regression

The intensity gradient describes the straight line negative slope of the natural logs of time and acceleration intensity. ${ }^{36}$ The intensity gradient was developed to: (1) capture the entire intensity distribution, (2) avoid reliance on population and protocolspecific calibration protocols, and (3) provide information that complements average acceleration. The intensity gradient can be used alongside average acceleration to more fully describe the 24 -hour movement profile by capturing both volume and intensity of PA. Using the intensity gradient and average acceleration together in linear regression models allows investigation of independent, additive and interactive associations of volume and intensity of PA with health. More work is needed to interpret the intensity gradient relative to the adherence to PA guidelines.

Intensity gradient or intensity distribution and functional data analysis

The acceleration distribution over time of the day, the acceleration density or the intensity gradient function can be used in functional data analysis. Using scalar-on-function data analysis, ${ }^{37}$ these acceleration functions can be used as an explanatory variable in regression models including linear, ${ }^{38}$ logistic or Cox regression models. For example, in the case of the acceleration density function as explanatory variable, the association with the event of interest is described along the acceleration range. ${ }^{38}$ This shows acceleration sections that are associated with the outcome by accounting for the full acceleration distribution, allowing identification of a cut-point such that proportion of time spent above this acceleration cut-point is associated with the outcome. Once these cut-points are identified, it is possible to estimate differences in the outcome by allocating time below to time above this cut-point. ${ }^{39}$

Functional data analysis has several advantages: (1) it is not affected by multicollinearity since it handles the data continuity; (2) it can test the effects of time reallocation and thus consider closure; and (3) it detects sections of the accelerometer data that are important for a certain health outcome, thus relaxing assumptions of linearity in particular behaviours made by other statistical models. Among its main limitations, acceleration functions usually carry much information that may be irrelevant to the outcome, but is considered in the analysis. Its main drawback is difficulty translating the findings into useful, straightforward public health messages. Investigation of how to make the conclusions of functional data analysis relevant to public health guidelines is highly encouraged by this consensus group (see ${ }^{39}$ for an example).

MX metrics and linear regression

MX metrics represent the acceleration above which a person's most active non-consecutive X minutes over the day are spent. An advantage of using MX metrics is that analysis is not affected by cut-point assumptions on energy expenditure, while cut-points may be post-hoc applied to enable public health messaging. For example, if the M60 of a child is 230 mg , this can be compared with an MVPA cut-point, for example, 200 mg , ${ }^{14}$ showing that the child meets the 60 min daily MVPA recommendation. However, if compared with a more stringent 250 mg MVPA cut-point, the child does not reach the recommendation. The post-hoc application of cut-points can, therefore, be skipped and keep the interpretation to the descriptive MX values instead. Another advantage of this approach is that the intensity of PA for the specified duration is captured regardless of how inactive a person is. Regarding statistical modelling, the MX metrics usually include a wide range of variables (table 1, online supplemental appendix 1 (Section 1)). These MX metrics are likely to be codependent as they are time-use descriptors, which may increase the multicollinearity risk. Likewise, each MX metric would carry partial and relative information on the pattern, and compositional transformation would also be interesting, although this approach has not been tested yet.

The usefulness of MX metrics with multivariate pattern analysis has not been investigated yet. However, since one of the limitations of MX metrics with linear regression is collinearity among the explanatory variables, multivariate pattern analysis could provide new insights by overcoming collinearity.

Multiple descriptors and machine learning

Machine learning (ML) describes a broad range of techniques to automate finding patterns in data with a focus on predictive ability (supervised ML) or data reduction (unsupervised ML). ML methods have been widely applied to derive accelerometer descriptors, ${ }^{40}$ yet rarely applied to study health associations. ${ }^{41}{ }^{42}$ Different ML approaches have different strengths and limitations. In general, strengths include their usefulness for data-driven hypothesis generation, their capacity to handle multidimensional data, their ability to find non-linear patterns, and the possibility of training a model in one dataset and updating it in another. However, it can be difficult to interpret how results are obtained and their significance for public health guidelines. ML methods can also be data hungry and computationally intensive. Overfitting and sensitivity to (potentially unknown) biases in the training data are risks.

In some ways, multivariate pattern analyses and other dimension reduction methods can be considered ML methods. The Transparent Reporting of a multivariable prediction model for

Individual Prognosis Or Diagnosis (TRIPOD) Initiative developed a set of recommendations for reporting of studies developing, validating, or updating ML-based prediction models for diagnostic or prognostic purposes. ${ }^{43}$ The TRIPOD statement should be considered when developing or applying ML-based prediction models in physical behaviour epidemiology.

FUTURE RESEARCH DIRECTIONS

The workshop in Granada, as well as the later meeting and the work developed in the following months by this author group, has initiated a discussion on analytical approaches and their usefulness for public health guidelines. Currently, $150 \mathrm{~min} / \mathrm{week}$ of MVPA in adults and older adults, and 60 min /day of MVPA in children are recommended by different agencies. ${ }^{22}{ }^{44}$ Recent guidelines removed the 10 -minute bout requirement for MVPA in adults, and included the importance of replacing SB for PA. ${ }^{22}$ The Canadian PA guidelines are the first attempt to promote the combined effects of behaviours on health, ${ }^{45}$ although the evidence used was not based on the 24 -hour paradigm (and so, appropriateness of statistical approach can be discussed).

We propose future research directions based on the research gaps identified, that is, the uncertainty regarding the accelerometer data descriptors to use and what analytical models are the most appropriate given the research question being addressed. The authors of this consensus article agree that investigations determining associations between physical behaviours and health should be extended to understand the interplay of physical behaviours (PA, SB and sleep) in their relationship with health. Measurement and processing capacity is increasing and offers an opportunity to provide further information on how different intensities and types of PA interact to improve health. At the same time, the focus on translating findings to meaningful information for interpretation in practice cannot be lost when using advanced analytical models. It is notable that most of the information presented comes from the PA and SB fields; thus, the relevance for the sleep research filed can be further discussed. The main implications for the analysis of accelerometer data proposed and agreed by the authors of this consensus manuscript are presented below.

Short-term agenda

- Clear communication on the rationale for the use and limitations of each analytical approach in studies is important for a meaningful interpretation of the findings. Practical recommendations for this are provided in the Analytical approaches section of this document and a decision tree was developed (figure 1) to assist researchers' decision-making.
- Investigation of the associations of physical behaviours with health using different analytical approaches is encouraged. Ideally, physical behaviour epidemiology would draw consistent conclusions independently of analytical approach. To do so, clear reporting on the interpretation of findings derived from each analytical approach is crucial to understand 'a priori' inconsistencies across methods. Triangulation of results from different analytical approaches is currently the best solution to quantify associations of physical behaviours with health. Additionally, using the best-suited analytical approaches for a given research question is crucial (see figure 1).
- Although little explored so far, ML-based approaches for diagnostic/prognostic purposes are worth implementing. We encourage transparent reporting of the resulting tools (TRIPOD initiative checklist).

Figure 1 The GRANADA consensus decision tree and research question examples to assist in the selection of an analytical approach in the field of 'physical behaviour epidemiology'. JIVE, joint and individual variance explained; LPA, light physical activity; ML, machine learning; MVPA, moderate-to-vigorous physical activity; PA, physical activity; PCA, principal component analysis; SB, sedentary behaviour; VIFs, variance inflation factors.

- Translating findings to meaningful information for guidelines should be a priority. Accurate reporting of study findings, interpretation and practical implications is highly encouraged.

Long-term agenda

- How to conveniently adjust for confounders in multivariate pattern analysis should be investigated and its application extended to time-dependent outcomes (eg, survival analysis with mortality).
- Further efforts are needed to translate functional data analysis and other advanced analytical approaches' outputs into meaningful information for public health guidelines.
- To evaluate whether the information gathered from the analytical approaches discussed herein can result in complementary information for public health guidelines. Such complementary information may result in more specific recommendations for certain health outcomes or populations, or even in their implementation at population level through movement sensors using evidence-based goals on PA intensity, duration, timing or type, among others.

CONCLUSIONS

This group agreed on several consensus points and research needs for physical behaviour epidemiology (see box 1 and figure 1). This consensus article will increase researchers' understanding

Box 1 Consensus points from the GRANADA report on analytical approaches to assess associations with accelerometer-determined physical behaviours (physical activity (PA), sedentary behaviour (SB) and sleep) in epidemiological studies

1. The study of the association between physical behaviours (ie, PA, SB and sleep) and health should move to a more thorough investigation of the interactions and codependencies between different behaviours (or PA intensities) and health. Several analytical approaches are provided in this consensus document, although none of them is free from limitations.
2. We recommend investigating more detailed PA intensities than the typically studied (ie, SB and moderate-to-vigorous PA). Examples include light PA of different intensities or the more fine-grained intensity bands as described in this document.
3. Public health guidelines on physical behaviours should acknowledge that behaviours are codependent and this may affect the guidelines as traditionally understood.
4. Further investigation in functional data analysis and machine learning is needed concerning the associations of physical behaviours with health.
5. There is not a gold standard able to test which analytical approach is the best for a given research question. Thus, we cannot make a strong recommendation on a single analytical approach. Instead, we provide some practical recommendations to select analytical approaches well suited for a given research question. Triangulation across findings from different analytical approaches is currently the best solution.
of different analytical approaches used in recent epidemiological studies of physical behaviours. This article and the decision tree provided aim to assist researchers in selecting analytical approaches based on their research questions and data. This will ultimately have an impact on the scientific evidence and, therefore, on future public health guidelines on physical behaviours.

Author affiliations

${ }^{1}$ PROFITH "PROmoting FITness and Health through physical activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
${ }^{2}$ Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
${ }^{3}$ Faculty of Education, Arts and Sports, Western Norway University of Applied Sciences, Sogndal, Norway
${ }^{4}$ Department of Sport Science and Biomechanics, University of Southern Denmark, Odense, Denmark
${ }^{5}$ School of Health and Life Science, Glasgow Caledonian University, Glasgow, UK
${ }^{6}$ Department of Movement and Sport Science, Ghent University, Ghent, Belgium
${ }^{7}$ Department of Sports Medicine, Norwegian School of Sport Sciences, Osloàl, Norway
${ }^{8}$ Departement of Sport Science and Physical Education, University of Agder,
Kristiansand, Norway
${ }^{9}$ Department of Chronic Diseases, National Institute for Health Development, Tallinn, Estonia
${ }^{10}$ School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
${ }^{11}$ Institute of Psychology, University of Tartu, Tartu, Estonia
${ }^{12}$ Department of Chemistry, University of Bergen, Bergen, Norway
${ }^{13}$ Biomathematics and Statistics Scotland, Edinburgh, UK'
${ }^{14}$ Diabetes Research Centre, University of Leicester, Leicester General Hospital, Leicester, UK
${ }^{15}$ NIHR Leicester Biomedical Research Centre, Leicester General Hospital, Leicester, UK
${ }^{16}$ Alliance for Research in Exercise, Nutrition and Activity (ARENA), Sansom Institute for Health Research, Division of Health Sciences, University of South Australia, Adelaide, SA, Australia
${ }^{17}$ Université de Paris, Inserm U1153, Epidemiology of Ageing and Neurodegenerative diseases, Paris, France
${ }^{18}$ Department of Epidemiology and Public Health, University College London, London, UK
${ }^{19}$ Accelting, Almere, The Netherlands
${ }^{20}$ Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Public and Occupational Health, Amsterdam Public Health research institute, Amsterdam, The Netherlands
${ }^{21}$ Nuffield Department of Population Health, University of Oxford, Oxford, UK
${ }^{22}$ Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
${ }^{23}$ Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
Correction notice This article has been corrected since it published Online First. The co-corresponding author has been added.
Twitter Jairo H Migueles @Jairohm8 and Séverine Sabia @epiAgeing
Acknowledgements Because of logistic and funding reasons, the researchers participating in the workshop and authors of this manuscript are mainly based in Europe and do not represent governing body or public health organisation. Thus, the authors of this consensus manuscript are a group of European researchers selected from the speaker and participant list of the GRANADA workshop: 'a focus on statistical methods to analyse accelerometer-measured physical activity'. Additionally, the manuscript was sent for review to a set of external experts in the field from different countries, including Europe, USA and Australia. Ten reviewers provided comments (more than 150 comments received) out of the 15 initially contacted. Therefore, it has an international dimension beyond Europe given the important input that the comments from the international review group had on the manuscript. The authors jointly accumulate reasonable expertise around methodology and application of methodology in physical behaviour research. This manuscript contains the authors' opinions and it is not written under the name of any health association or governing body. This is part of a PhD Thesis conducted in the Biomedicine Doctoral Studies at the University of Granada, Spain.
Collaborators Alexander Burchartz (Institute for Sports and Sports Science, Karlsruhe Institute of Technology, Karlsruhe, Germany), Cain Clark (Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, UK), Paddy Dempsey (MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK; Physical Activity \& Behavioural Epidemiology Laboratories, Baker Heart and Diabetes Institute, Melbourne, Australia), Aiden Doherty (Nuffield Department of Population Health, Big Data Institute, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK), Ulf Ekelund (Department of Sports Medicine, Norwegian School of Sport Sciences, Oslo, Norway), Timothy Olds (Alliance for Research in Exercise, Nutrition and Activity, University of South Australia, Adelaide, Australia), Eric J Shiroma (Laboratory of Epidemiology and Population Science, National Institute on Aging, Baltimore, Maryland), Emmanuel Stamatakis (Charles Perkins Centre, Prevention Research Collaboration, Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia), Richard P Troiano (Division of Cancer Control and Population Sciences, National Cancer Institute, NIH, HHS, Rockville, Maryland, USA), Stewart Trost (Institute of Health and Biomedical Innovation at Queensland Centre for Children's Health Research, Queensland University of Technology, South Brisbane, Australia; Faculty of Health, School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, Australia) and Vadim Zipunnikov (Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University).
Contributors JHM and FBO conceived the idea, organised and led the workshop, the meeting, and the GRANADA consensus design and writing. All authors contributed to the idea, reviewed the manuscript and provided detailed suggestions for revisions.
Funding This study was conducted under the umbrella of the ActiveBrains and the SmarterMove projects supported by the MINECO/FEDER (DEP2013-47540, DEP2016-79512-R, RYC-2011-09011) and the CoCA project supported by the European Union's 2020 research and innovation programme (667302). JHM is supported by a grant from the Spanish Ministry of Education, Culture and Sport (FPU15/02645). AR is supported by the NIHR Leicester Biomedical Research Centre, and the Collaboration for leadership in Applied Health Research and Care (CLAHRC) East Midlands. SS is supported by the French National Research Agency (ANR-19-CE36-0004-01). RW is supported by a Medical Research Council Industrial Strategy Studentship (MR/S502509/1). Additional funding was obtained from the Andalusian Operational Programme supported with European Regional Development Funds (ERDF in English, FEDER in Spanish, project ref: B-CTS-355-UGR18), the University of Granada, Plan Propio de Investigación 2016, Excellence actions: Units of Excellence; Scientific Excellence Unit on Exercise and Health (UCEES), Junta de Andalucía,

Consejería de Conocimiento, Investigación y Universidades and European Regional Development Funds (ref. SOMM17/6107/UGR). In addition, funding was provided by the SAMID III network, RETICS, funded by the PN I+D+I 2017-2021 (Spain), ISCIII-Sub-Directorate General for Research Assessment and Promotion, the European Regional Development Fund (ERDF) (Ref. RD16/0022), the EXERNET Research Network on Exercise and Health in Special Populations (DEP2005-00046/ACTI).

Competing interests None declared.

Patient consent for publication Not required.
Provenance and peer review Not commissioned; externally peer reviewed.
Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.
Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs

Jairo H Migueles http://orcid.org/0000-0003-0366-6935
Eivind Aadland http://orcid.org/0000-0001-9654-2653
Lars Bo Andersen http://orcid.org/0000-0002-9800-029X
Jan Christian Brønd http://orcid.org/0000-0001-6718-3022
Sebastien F Chastin http://orcid.org/0000-0003-1421-9348
Bjørge H Hansen http://orcid.org/0000-0001-8445-8227
Kenn Konstabel http://orcid.org/0000-0002-9673-8469
Olav Martin Kvalheim http://orcid.org/0000-0001-9432-8776
Duncan E McGregor http://orcid.org/0000-0003-2575-7547
Alex V Rowlands http://orcid.org/0000-0002-1463-697X
Séverine Sabia http://orcid.org/0000-0003-3109-9720
Vincent T van Hees http://orcid.org/0000-0003-0182-9008
Rosemary Walmsley http://orcid.org/0000-0002-1916-2478
Francisco B Ortega http://orcid.org/0000-0003-2001-1121

REFERENCES

1 Bussmann JBJ, van den Berg-Emons RJG. To total amount of activity... and beyond: perspectives on measuring physical behavior. Front Psychol 2013;4:463.
2 Ekelund U, Steene-Johannessen J, Brown WJ, et al. Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. Lancet 2016;388:1302-10.
3 Stamatakis E, Gale J, Bauman A, et al. Sitting time, physical activity, and risk of mortality in adults. J Am Coll Cardiol 2019;73:2062-72.
4 Migueles JH, Cadenas-Sanchez C, Rowlands AV, et al. Comparability of accelerometer signal aggregation metrics across placements and dominant wrist cut points for the assessment of physical activity in adults. Sci Rep 2019;9:18235.
5 Migueles JH, Cadenas-Sanchez C, Ekelund U, et al. Accelerometer data collection and processing criteria to assess physical activity and other outcomes: a systematic review and practical considerations. Sports Med 2017;47:1821-45.
6 Kamada M, Shiroma EJ, Harris TB, et al. Comparison of physical activity assessed using hip- and wrist-worn accelerometers. Gait Posture 2016;44:23-8.
7 LaMunion SR, Bassett DR, Toth LP, et al. The effect of body placement site on ActiGraph wGT3X-BT activity counts. Biomed. Phys. Eng. Express 2017;3:035026.
8 Hickey AM, Freedson PS. Utility of consumer physical activity Trackers as an intervention tool in cardiovascular disease prevention and treatment. Prog Cardiovasc Dis 2016;58:613-9.
9 Togo F, Watanabe E, Park H, et al. How many days of pedometer use predict the annual activity of the elderly reliably? Med Sci Sports Exerc 2008;40:1058-64.
10 Ortega FB, Konstabel K, Pasquali E, et al. Objectively measured physical activity and sedentary time during childhood, adolescence and young adulthood: a cohort study. PLoS One 2013;8:e60871.
11 Konstabel K, Veidebaum T, Verbestel V, et al. Objectively measured physical activity in European children: the IDEFICS study. Int J Obes 2014;38:S135-43.
12 Rääsk T, Lätt E, Jürimäe T, et al. Association of subjective ratings to objectively assessed physical activity in pubertal boys with differing BMI. Percept Mot Skills 2015;121:245-59.
13 Evenson KR, Catellier DJ, Gill K, et al. Calibration of two objective measures of physical activity for children. J Sports Sci 2008;26:1557-65.

14 Hildebrand M, VAN Hees VT, Hansen BH, et al. Age group comparability of raw accelerometer output from wrist- and hip-worn monitors. Med Sci Sports Exerc 2014;46:1816-24.
15 Chandler JL, Brazendale K, Beets MW, et al. Classification of physical activity intensities using a wrist-worn accelerometer in 8-12-year-old children. Pediatr Obes 2016;11:120-7.
16 Crowley P, Skotte J, Stamatakis E, et al. Comparison of physical behavior estimates from three different thigh-worn accelerometers brands: a proof-of-concept for the prospective physical activity, sitting, and sleep Consortium (ProPASS). Int I Behav Nutr Phys Act 2019;16:65.
17 Sadeh A, Sharkey KM, Carskadon MA. Activity-based sleep-wake identification: an empirical test of methodological issues. Sleep 1994;17:201-7.
18 van Hees VT, Sabia S, Anderson KN, et al. A novel, open access method to assess sleep duration using a wrist-worn accelerometer. PLoS One 2015;10:e0142533-13.
19 Burchartz A, Anedda B, Auerswald T, et al. Assessing physical behavior through accelerometry - state of the science, best practices and future directions. Psychol Sport Exerc 2020;49:101703.
20 Rowlands A, Davies M, Dempsey P, et al. Wrist-worn accelerometers: recommending $\sim 1.0 \mathrm{mg}$ as the minimum clinically important difference (MCID) in daily average acceleration for inactive adults. Br J Sports Med 2020:bjsports-2020-102293.
21 Jakicic JM, Kraus WE, Powell KE, et al. Association between bout duration of physical activity and health: systematic review. Med Sci Sports Exerc 2019;51:1213-9.
22 Bull FC, Al-Ansari SS, Biddle S, et al. World Health organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sports Med 2020;54:1451-62.
23 Stanton JM. Galton, Pearson, and the peas: a brief history of linear regression for statistics Instructors. J Stat Educ 2001;9.
24 Dumuid D, Stanford TE, Martin-Fernández J-A, et al. Compositional data analysis for physical activity, sedentary time and sleep research. Stat Methods Med Res 2018;27:3726-38.
25 Aadland E, Kvalheim OM, Anderssen SA, et al. Multicollinear physical activity accelerometry data and associations to cardiometabolic health: challenges, pitfalls, and potential solutions. Int J Behav Nutr Phys Act 2019;16:1-14.
26 Chastin SFM, Palarea-Albaladejo J, Dontje ML, et al. Combined effects of time spent in physical activity, sedentary behaviors and sleep on obesity and cardiometabolic health markers: a novel compositional data analysis approach. PLoS One 2015;10:e0139984.
27 Ekelund U, Tarp J, Steene-Johannessen J, et al. Dose-response associations between accelerometry measured physical activity and sedentary time and all cause mortality: systematic review and harmonised meta-analysis. BMJ 2019;366:I4570.
28 Tarp J, Hansen BH, Fagerland MW, et al. Accelerometer-measured physical activity and sedentary time in a cohort of US adults followed for up to 13 years: the influence of removing early follow-up on associations with mortality. Int J Behav Nutr Phys Act 2020;17:1-8.
29 Lee I-M, Shiroma EJ, Evenson KR, et al. Accelerometer-measured physical activity and sedentary behavior in relation to all-cause mortality: the women's health study. Circulation 2018;137:203-5.
30 McGregor DE, Palarea-Albaladejo J, Dall PM, et al. Compositional analysis of the association between mortality and 24-hour movement behaviour from NHANES. Eur J Prev Cardiol 2019:204748731986778.
31 Biddle GJH, Edwardson CL, Henson J, et al. Associations of physical behaviours and behavioural Reallocations with markers of metabolic health: a compositional data analysis. Int J Environ Res Public Health 2018;15:2280-14.
32 Aadland E, Kvalheim OM, Anderssen SA, et al. The multivariate physical activity signature associated with metabolic health in children. Int J Behav Nutr Phys Act 2018;15:1-11.
33 Aadland E, Kvalheim OM, Anderssen SA, et al. The Triaxial physical activity signature associated with metabolic health in children. Med Sci Sports Exerc 2019;51:2173-9.
34 Di J, Spira A, Bai J, et al. Joint and individual representation of domains of physical activity, sleep, and circadian rhythmicity. Stat Biosci 2019;11:371-402.
35 Aadland E, Nilsen AKO, Andersen LB, et al. A comparison of analytical approaches to investigate associations for accelerometry-derived physical activity spectra with health and developmental outcomes in children. J Sports Sci 2021;39:1-9.
36 Rowlands AV, Edwardson CL, Davies MJ, et al. Beyond cut points: Accelerometer metrics that capture the physical activity profile. Med Sci Sports Exerc 2018;50:1323-32.
37 Ramsay J, Silverman B. Functional data analysis. 2 edn. New York, 2005.
38 Augustin NH, Mattocks C, Faraway JJ, et al. Modelling a response as a function of high-frequency count data: the association between physical activity and fat mass. Stat Methods Med Res 2017;26:2210-26.
39 Benadjaoud MA, Menai M, van Hees VT, et al. The association between accelerometerassessed physical activity and respiratory function in older adults differs between smokers and non-smokers. Sci Rep 2019;9:1-9.
40 Narayanan A, Desai F, Stewart T, et al. Application of raw Accelerometer data and Machine-Learning techniques to characterize human movement behavior: a systematic scoping review. J Phys Act Health 2020;17:360-83.
41 Hua A, Quicksall Z, Di C, et al. Accelerometer-based predictive models of fall risk in older women: a pilot study. NPJ Digit Med 2018;1:25.

42 Li X, Zhao H. Automated feature extraction from population wearable device data identified novel loci associated with sleep and circadian rhythms. PLoS Genet 2020;16:e1009089.
43 Collins GS, Moons KGM. Reporting of artificial intelligence prediction models. Lancet 2019;393:1577-9.
44 U.S. Department of Health and Human Services. 2018 physical activity guidelines Advisory Committee scientific report. Washington, DC. Available: https://health. gov/paguidelines/second-edition/report/pdf/pag_advisory_committee_report.pdf\% OAhttps://health.gov/paguidelines/second-edition/report/pdf/06_E_Systematic_ Review_Literature_Search_Methodology.pdf
45 Canadian Society for Exercise Physiology. Canadian physical activity guidelines: clinical practice Guideline development report, 2011.
46 Fairclough SJ, Taylor S, Rowlands AV, et al. Average acceleration and intensity gradient of primary school children and associations with indicators of health and well-being. J Sports Sci 2019;37:2159-67.
47 Lee I-M, Shiroma EJ, Kamada M, et al. Association of step volume and intensity with all-cause mortality in older women. JAMA Intern Med 2019;02215. doi:10.1001/ jamainternmed.2019.0899. [Epub ahead of print: 29 May 2019].
48 Saint-Maurice PF, Troiano RP, Bassett DR, et al. Association of daily step count and step intensity with mortality among US adults. JAMA 2020;323:1151-60.
49 Mora-Gonzalez J, Esteban-Cornejo I, Cadenas-Sanchez C, et al. Fitness, physical activity, working memory, and neuroelectric activity in children with overweight/ obesity. Scand J Med Sci Sports 2019;29:1352-63.
50 Migueles JH, Cadenas-Sanchez C, Tudor-Locke C, et al. Comparability of published cut-points for the assessment of physical activity: implications for data harmonization. Scand J Med Sci Sports 2019;29:566-74.
51 Tudor-Locke C, Aguiar EJ, Han H, et al. Walking cadence (steps/min) and intensity in 21-40 year olds: CADENCE-adults. Int J Behav Nutr Phys Act 2019;16:8.
52 Tudor-Locke C, Schuna JM, Han H, et al. Cadence (steps/min) and intensity during ambulation in 6-20 year olds: the CADENCE-kids study. Int I Behav Nutr Phys Act 2018;15:20.
53 Barreira TV, Katzmarzyk PT, Johnson WD, et al. Cadence patterns and peak cadence in US children and adolescents: NHANES, 2005-2006. Med Sci Sports Exerc 2012;44:1721-7.
54 Rowlands AV, Dawkins NP, Maylor B, et al. Enhancing the value of accelerometerassessed physical activity: meaningful visual comparisons of data-driven translational accelerometer metrics. Sports Med Open 2019;5:47.
55 Tudor-Locke C, Brashear MM, Katzmarzyk PT, et al. Peak stepping cadence in freeliving adults: 2005-2006 NHANES. J Phys Act Health 2012;9:1125-9.
56 Augustin NH, Mattocks C, Cooper AR, et al. Modelling fat mass as a function of Weekly physical activity profiles measured by actigraph accelerometers. Physiol Meas 2012;33:1831-9.

57 Wanigatunga AA, Di J, Zipunnikov V, et al. Association of total daily physical activity and fragmented physical activity with mortality in older adults. JAMA Netw Open 2019;2:e1912352.
58 Kok JS, Berg IJ, Blankevoort GCG, et al. Rest-activity rhythms in small scale homelike care and traditional care for residents with dementia. BMC Geriatr 2017;17:137.
59 Henson J, Yates T, Biddle SJH, et al. Associations of objectively measured sedentary behaviour and physical activity with markers of cardiometabolic health. Diabetologia 2013;56:1012-20.
60 Mora-Gonzalez J, Esteban-Cornejo I, Cadenas-Sanchez C, et al. Physical fitness, physical activity, and the executive function in children with overweight and obesity.J Pediatr 2019;208:50-6.
61 Grgic J, Dumuid D, Bengoechea EG, et al. Health outcomes associated with reallocations of time between sleep, sedentary behaviour, and physical activity: a systematic scoping review of isotemporal substitution studies. Int I Behav Nutr Phys Act 2018;15:1-68.
62 Mekary RA, Willett WC, Hu FB, et al. Isotemporal substitution paradigm for physical activity epidemiology and weight change. Am J Epidemiol 2009;170:519-27.
63 Kvalheim OM, Arneberg R, Grung B. Determination of optimum number of components in partial least squares regression from distributions of the root-mean-squared error obtained by Monte Carlo resampling. I Chemom 2018;32:e2993-12.
64 Rajalahti T, Arneberg R, Berven FS, et al. Biomarker discovery in mass spectral profiles by means of selectivity ratio plot. Chemom Intell Lab Syst 2009;95:35-48.
65 Rajalahti T, Kvalheim OM. Multivariate data analysis in Pharmaceutics: a tutorial review. Int J Pharm 2011;417:280-90.
66 Aadland E, Andersen LB, Resaland GK, et al. Interpretation of multivariate association patterns between Multicollinear physical activity Accelerometry data and cardiometabolic health in Children-A tutorial. Metabolites 2019;9:129-14.
67 Menai M, van Hees VT, Elbaz A, et al. Accelerometer assessed moderate-to-vigorous physical activity and successful ageing: results from the Whitehall II study. Sci Rep 2017;8:1-9.
68 Goldsmith J, Zipunnikov V, Schrack J. Generalized multilevel function-on-scalar regression and principal component analysis. Biometrics 2015;71:344-53.
69 Sørensen H, Goldsmith J, Sangalli LM. An introduction with medical applications to functional data analysis. Stat Med 2013;32:5222-40.
70 Bi Q, Goodman KE, Kaminsky J, et al. What is machine learning? A primer for the epidemiologist. Am J Epidemiol;3.
71 Alaa AM, Bolton T, Di Angelantonio E, Di AE, et al. Cardiovascular disease risk prediction using automated machine learning: a prospective study of 423,604 UK Biobank participants. PLoS One 2019;14:e0213653-17.

The GRANADA consensus on analytical approaches to assess associations with

 accelerometer-determined physical behaviours (physical activity, sedentary
behaviour, and sleep) in epidemiological studies

Jairo H. Migueles ${ }^{1,2}$, Eivind Aadland ${ }^{3}$, Lars B. Andersen ${ }^{3}$, Jan Christian Brønd ${ }^{4}$, Sébastien F. Chastin ${ }^{5,6}$, Bjørge H. Hansen ${ }^{7,8}$, Kenn Konstabel ${ }^{9,10,11}$, Olav M. Kvalheim ${ }^{12}$, Duncan E. McGregor ${ }^{5,13}$, Alex V. Rowlands ${ }^{14,15,16}$, Séverine Sabia ${ }^{17,18}$, Vincent T. van Hees ${ }^{19,20}$, Rosemary Walmsley ${ }^{21}$, Francisco B. Ortega ${ }^{1,22}$ and external review group*

Note: Except for the first and last author, contributing authors are listed in alphabetic order.
${ }^{1}$ PROFITH "PROmoting FITness and Health through physical activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain.
${ }^{2}$ Department of Health, Medicine and Caring Sciences, Linköping University, 581 83, Linköping, Sweden.
${ }^{3}$ Faculty of Education, Arts and Sports, Western Norway University of Applied Sciences, Sogndal, NORWAY.
${ }^{4}$ Department of Sport Science and Biomechanics, University of Southern Denmark, Odense, Denmark.
${ }^{5}$ School of Health and Life Science, Glasgow Caledonian University, Glasgow, UK.
${ }^{6}$ Department of Movement and Sport Science, Ghent University, Belgium.
${ }^{7}$ Department of Sports Medicine, Norwegian School of Sport Sciences, PO Box 4014, Ullevål Stadion, 0806 Oslo, Norway.
${ }^{8}$ Departement of Sport Science and Physical Education, University of Agder, Norway
${ }^{9}$ Department of Chronic Diseases, National Institute for Health Development, Hiiu 42, Tallinn, Estonia.
${ }^{10}$ School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia.
${ }^{11}$ Institute of Psychology, University of Tartu, Tartu, Estonia.
${ }^{12}$ Department of Chemistry, University of Bergen, Bergen, Norway.
${ }^{13}$ Biomathematics and Statistics Scotland, Edinburgh, UK.
${ }^{14}$ Diabetes Research Centre, University of Leicester, Leicester General Hospital, Gwendolen Road, Leicester LE5 4PW, UK.
${ }^{15}$ NIHR Leicester Biomedical Research Centre, Leicester General Hospital, Gwendolen Road, Leicester LE5 4PW, UK.
${ }^{16}$ Alliance for research in Exercise, Nutrition and Activity (ARENA), Sansom Institute for Health Research, Division of Health Sciences, University of South Australia, Adelaide SA 5001, Australia.
${ }^{17}$ Université de Paris, Inserm U1153, Epidemiology of Ageing and Neurodegenerative diseases, 75010 Paris, France.
${ }^{18}$ Department of Epidemiology and Public Health, University College London, London, UK.
${ }^{19}$ Accelting, Almere, The Netherlands.

20 Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Public and Occupational Health, Amsterdam Public Health research institute, The Netherlands.
${ }^{21}$ Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK.
${ }^{22}$ Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
*External review group: Alexander Burchartz ${ }^{1}$, Cain Clark 2, Paddy Dempsey ${ }^{3,4,}$, Aiden Doherty ${ }^{5,6}$, Ulf Ekelund ${ }^{7}$, Timothy Olds ${ }^{8}$, Eric J. Shiroma ${ }^{9}$, Emmanuel Stamatakis ${ }^{10}$, Richard P. Troiano ${ }^{11}$, Stewart Trost ${ }^{12,13}$ and Vadim Zipunnikov ${ }^{14}$.

Note: Listed in alphabetic order.
${ }^{1}$ Institute for Sports and Sports Science, Karlsruhe Institute of Technology, Karlsruhe, Germany.
${ }^{2}$ Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, CV1 5FB, UK.
${ }^{3}$ MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
${ }^{4}$ Physical Activity \& Behavioural Epidemiology Laboratories, Baker Heart and Diabetes Institute, Melbourne, Australia.
${ }^{5}$ Nuffield Department of Population Health, Big Data Institute, University of Oxford, Oxford, UK.
${ }^{6}$ NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK.
${ }^{7}$ Department of Sports Medicine, Norwegian School of Sport Sciences, PO Box 4014, Ullevål Stadion, 0806 Oslo, Norway.
${ }^{8}$ Alliance for Research in Exercise, Nutrition and Activity, University of South Australia, Adelaide, Australia.
${ }^{9}$ Laboratory of Epidemiology and Population Science, National Institute on Aging, Baltimore, Maryland.
${ }^{10}$ Charles Perkins Centre, Prevention Research Collaboration, Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
${ }^{11}$ Division of Cancer Control and Population Sciences, National Cancer Institute, NIH, HHS, Rockville, MD.
${ }^{12}$ Institute of Health and Biomedical Innovation at Queensland Centre for Children's Health Research, Queensland University of Technology, South Brisbane, Australia.
${ }^{13}$ Faculty of Health, School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, Australia.
${ }^{14}$ Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University.
Appendix 1
Contents
Accelerometer data descriptors 5
1.1 Average acceleration or steps per day 6
1.2 Time-use behaviours 7
1.3 Time-use descriptor (intensity spectrum) 9
1.4 Intensity gradient 10
1.5 MX metrics - acceleration values corresponding to a set of percentiles 11
1.6 Acceleration functions 13
1.7 Indicators of movement behaviour patterns and quality 14
Mathematical treatment of descriptors (compositional data analysis) 14
1.8 Compositional data transformation 17
Statistical modelling 20
1.9 Linear regression modelling 21
1.10 Isotemporal substitution models 22
1.11 Multivariate pattern analysis and other dimension reduction models 23
1.12 Functional data analysis 25
1.13 Machine learning for epidemiological analysis 27

Accelerometer data descriptors

Modern accelerometers collect raw accelerations (measured in G 's) at sample frequencies typically varying from 20 to 100 Hz . As an example, raw data from a thigh-worn accelerometer is presented in Figure A1. This raw signal is usually filtered and aggregated to remove the gravitational acceleration and the noise effects on the signal [1]. Examples of common accelerometer data aggregation metrics are activity counts (brand-specific and proprietary aggregation metrics), Euclidean Norm Minus One with negative values rounded to 0 (ENMO), Mean Amplitude Deviation (MAD), Monitor Independent Motion Summary (MIMS) units, Activity Index $\left(\mathrm{AI}_{0}\right)$, or steps, among others (hereinafter we refer collectively to them as 'acceleration metrics'). With regard to MIMS it should be noted that the claim that it is accelerometer brand independent has so far not been demonstrated, only sensor from the Actigraph brand were used in the study by John and colleagues [2]. Further, other metrics like MAD and AI_{0} can also be brand independent, although this has not been formally tested yet. MIMS applies a narrow frequency filter by which its potential lack of sensitivity to differences in the monitor comes at the cost of lower sensitivity to movements in the low- and high frequency range. In-depth discussions about the influence that these aggregation metrics on the final estimates have been published elsewhere [1,35]; we focus our discussion on the conversion of such acceleration metrics to descriptors at a day or person level. Given the numerous versions of accelerometer data descriptors presented in the literature, we decided to focus on those descriptors representative of physical activity (PA) volume, type, and intensity since they are the most frequently-used in public health guidelines.

Raw accelerometer data

Figure A1. Sample raw accelerometer data recording from a thigh-worn accelerometer.
Accelerometer model: Axivity AX3, sampling frequency: 30 Hz , body attachment site: thigh; 24h/day recording protocol.

1.1 Average acceleration or steps per day

Average acceleration over a 24 h period is directly derived from the processed acceleration and can be used as a proxy for total daily PA-related energy expenditure [6]. This single estimate indicates the overall activity level and/or the volume of activity. The same can be obtained from the total number of steps per day, which is also widely used in the field $[7,8]$. It is usually expressed in mg or a manufacturer-provided acceleration metric (usually
counts). Average acceleration usually has a moderate correlation with PA-related energy expenditure ($\mathrm{r} \sim 0.3-0.5$), which can be improved by considering body weight, body composition, and activity type in the models [9,10]. Given that the correlation is not high, it is often used as a direct measure of movement, without making inferences about PA-related energy expenditure.

1.2 Time-use behaviours

Various descriptors quantify the daily time spent in a set of behaviours e.g. time spent in certain activity intensities (e.g., light, moderate or vigorous PA) or types (e.g., sitting, standing, walking). In this regard, cut-points represented one of the first developed and most frequently used methods for assessing the time spent sedentary and in light PA, moderate PA and vigorous PA using the acceleration metric [11]. The identified linear association between acceleration and energy expenditure was used to determine cut-points based on linear absolute metabolic equivalents (METs) thresholds (e.g., sedentary behaviour (SB), ≤ 1.5; light $\mathrm{PA},>1.5$ and <3.0; moderate $\mathrm{PA}, \geq 3.0$ and <6.0; vigorous PA, ≥ 6.0 [12]). Thresholds have been also proposed for walking cadence based on the estimation of steps per minute [13,14]. Figure A2 graphically represents a cut-point-based classification of the acceleration recorded during one day without any definition of bouts. Cut-points can be derived with linear statistical procedures such as linear regression or receiver operating characteristic (ROC) curves, which assume a linear relationship between magnitude of acceleration and METs. However, non-linear approaches have also been used. Otherwise, classification of activity types usually relies on thresholds applied to the device angle variability, usually from thigh- or wrist-placed accelerometers [15,16]. Similarly, thresholds have been applied to acceleration metrics and accelerometer angles to detect
sleep from the accelerometer signal $[15,17,18]$. More sophisticated models have used the acceleration signal to detect whether the activity performed is locomotion or not, and then applied specific regression models for each activity type (locomotion vs. not locomotion) [19]. Machine learning (ML) methods have gained momentum to classify both activity intensities and types from an accelerometer time series [20]. Classifying behaviours or estimating energy expenditure using a supervised ML approach requires data labelled with 'true' intensity or type (as measured with indirect calorimetry, direct observation, heart rate monitors, among others) [21-25], which is used to iteratively improve classification/estimation. Alternatively, unsupervised ML methods can be used to define "states" in the accelerometer signal pattern that can be interpreted as specific behaviours [26].

Figure A2. Graphical representation of cut-point-based metrics without bout-specification. Accelerometer model: ActiGraph GT3X+, sampling frequency: 100 Hz , body attachment site: hip; only awake time represented. SB: sedentary behaviour; LPA: light physical activity; MPA: moderate physical activity; VPA: vigorous physical activity.

Independently of the method used to derive these descriptors, they estimate daily time devoted to a specific behaviour. Descriptors of time spent in different PA intensities were first developed to assess objectively the information gained from questionnaire data (the source of most knowledge on the benefits of PA). Use of these time estimates in recent research has confirmed the benefits of PA for health and demonstrated stronger effects of PA than observed with self-report [27].

1.3 Time-use descriptor (intensity spectrum)

The intensity spectrum is also quantified as daily time spent in certain categories, so it is a time-use descriptor. Specifically, time acceleration metric signal over time is classified based on increasing acceleration bands (e.g., time spent from 0-50, 50-100, 100-150, ... counts or mg or steps per minute). Thus, the intensity spectrum uses a wider range of narrower equally-sized bands for increased resolution of the data [28]. The definition of the bin size is arbitrary, might not directly relate to energy expenditure and does not make any assumption on the behaviour underlying the intensity bin (its purpose is purely descriptive). It can also be regarded as a discretisation of a functional representation of the intensity distribution. The idea behind this approach is to avoid exaggerated aggregation of data (into only 3-4 categories) leading to loss of information. Thus, the number of bands should be large enough to incorporate all essential features in the accelerometer signal.

1.4 Intensity gradient

The intensity gradient describes the negative curvilinear shape of the intensity spectrum (i.e., the higher the intensity the less time spent at this intensity) [29]. The regression coefficient from a linear regression of time spent in an intensity bin on intensity, both on a logarithmic scale, is used as a scalar descriptor of this curvilinear relationship. It is always negative, reflecting the drop-in time accumulated as intensity increases; a more negative (lower) gradient reflects a steeper drop with a large proportion of time accumulated at lower intensities, while a less negative (higher) gradient reflects a shallower drop with time accumulated at higher intensities (Figure A3).

Figure A3. Example of intensity gradients from different participants with a similar average acceleration but discordant intensity distribution (i.e., intensity gradient). Accelerometer model: ActiGraph GT3X+, sampling frequency: 100 Hz , body attachment site: non-dominant wrist.

1.5 MX metrics -acceleration values corresponding to a set of percentiles

Time-use descriptors were based on the time accumulated in a series of a priori defined behaviours/bands. An alternative is to turn this approach on its head and describe the acceleration intensity distribution in terms of linearized periods of time or fractions of the 24 h day (percentiles). The acceleration for each epoch during the day is ranked in descending order to obtain the acceleration above which the person's most active X minutes are accumulated [29]. Therefore, instead of reporting the minutes above a given acceleration threshold, the minimum acceleration achieved for a given duration is reported (the unit of measurement is often mg or counts). MX , where X refers to the duration, e.g. M30, refers to the minimum acceleration for the most active 30 min (\sim percentile $98^{\text {th }}$) of the day. The MX metrics focus on a person's most active periods of the day, with the active minutes accumulated in any way across the day. For example, if a child had an M60 value of 230 mg , the child accumulated 60 min of PA at accelerations (intensity) greater than 230 $\mathrm{m} g$ across the day. Similarly, the periods with the lowest recorded activity can be defined. Similar estimates have been proposed for steps per minute (cadence), being typically referred to as peak-X min (e.g., peak-30 min) [30].

A range of MX metrics covering short to long time durations can be used to aid interpretation of the volume and intensity of the 24 h profile of physical activity. Using the MX metrics facilitates interpretation in terms of time spent in indicative activities (e.g., brisk walking) or above cut-points for different intensities of activity, e.g., moderate-tovigorous PA (MVPA) or vigorous PA. Plotting a broad range of MX variables on a radar plot illustrates the intensity and volume of the 24 h activity profile (Figure A4), facilitating
e.g., translation of results from analyses investigating the relative contributions of average acceleration and intensity gradient to markers of health, and/or comparisons between and within groups. For example, the M120, M60, M45, M30, M15, M10, M5 and M2 illustrate the more active periods of the day, while M8h refers to the most active 8 h of the day.

Figure A4. MX metrics example from two participants with similar average acceleration but different intensity gradient. Accelerometer model: ActiGraph GT9X, sampling frequency: 100 Hz , body attachment site: non-dominant wrist. Adapted from Rowlands et al. [31] with the permission from the publisher. IG: intensity gradient; MVPA: moderate-to-vigorous physical activity; VPA: vigorous physical activity.

1.6 Acceleration functions

While the above-mentioned descriptors are represented by scalar numbers, acceleration can also be described using a function. For example, the intensity gradient (described above) can be defined by its function instead of only reporting the beta coefficient. Other functions of interest could be the acceleration over time of the day [32] or the acceleration distribution (Figure A5) [33]. Acceleration functions seek a more detailed description of behaviours without making a priori assumptions. For example, while time in light activities assumes that all of the data between two cut-points (e.g., 0.05 to 0.10 g) relates similarly to health outcomes, analysis of acceleration functions could detect that a group tend to do more activities at acceleration less than $0.0 \mathrm{~m} g$ or more activities at acceleration above 0.07
g.

Figure A5. Sample of accelerometer-based distribution as a function of acceleration and time. Accelerometer model: GeneActiv, sampling frequency: 85.7 Hz , body attachment site: non-dominant wrist; $24 \mathrm{~h} /$ day recording protocol.

1.7 Indicators of movement behaviour patterns and quality

All the above-mentioned descriptors are time-based (time-use behaviours and intensity spectrum) or acceleration-based (average acceleration, MX metrics, acceleration functions) descriptors. That is, they either measure time in a given behaviour or acceleration in a certain time interval. Other descriptors of movement behaviour quality and patterns can be obtained thanks to the time-stamped data derived from accelerometers. Time-stamped accelerometer data can be used to derive certain characteristics of the PA and SB patterns throughout the day, such as the time accumulation in bouts of PA intensities or types. Time-stamped data also provides insight on timing of behaviours, domain (school/work or leisure), and circadian rhythmicity. For example, fragmentation of PA and sleep, sedentary breaks, intradaily variability, interdaily stability, sleep efficiency, or waking periods after sleep onset are frequently used in the field to assess the quality and patterns of PA, SB, and sleep.

Mathematical treatment of descriptors (compositional data analysis)

This section focuses on mathematical treatments to account for the specific singularities of the descriptors presented above. Time-use behaviours and the intensity spectrum consist of a set of components that represent parts of some finite total. This total may be explicit (e.g., complete 24-hour data) or it may arise through interpretation of the data as proportions (e.g., waking day data). Therefore, these descriptors can be considered as compositional data. Each part is called a component and the proportional distribution is called composition. So, for a composition with i components:
\sum_{i} Component $_{i}=1=100 \%=$ Whole

Compositional data analysis (CoDA) is an approach to analyse compositional data. Its birth is often attributed to Pearson's paper on spurious forms of correlation in ratio data [34]. Arguably the father of CoDA is John Aitchison, who developed comprehensive statistical frameworks to deal with compositional data [35]. CoDA is an established branch of statistics and has been used in many fields of research such as geosciences, nutrition, the study of the microbiome and gene sequencing. In the last five years CoDA has been applied in the field of 'physical behaviour epidemiology' to study the association between daily time use and health (Figure A6) [36-38].

Abstract

 B) Compositional data transformation $(\mathbf{N}=36)$ A)

Overall publications ($\mathrm{N}=\mathbf{1 1 , 7 6 5 \text {) }}$

Figure A6. Overall number of publications using accelerometer-determined PA (panel A) and number of publications using compositional data transformations from inception to December $31^{\text {st }}$, 2019. Search syntax introduced in the Web of Science: Panel A: ((((("physical activity")) OR "sedentary")) AND ((acceleromet*) OR actigraph*)); Panel B: (((()"physical activity")) OR "sedentary")) AND ((acceleromet*) OR actigraph*) AND ("compositional data analysis")).

1.8 Compositional data transformation

Time-use descriptors of physical behaviours are by nature compositional when they describe a time or energy budget (Figure A7). Hence the sum of time spent in each behaviour will be the period of interest (24 hours, waking period, week, wear time) and the proportions will sum to 100% of this period. In this example, the composition is made of four components over 24 hours: sleep, SB, light PA and MVPA.

$$
t_{\text {sleep }}+t_{S B}+t_{L P A}+t_{M V P A}=24 \text { hours }
$$

This is also true if we consider part of the day, such as the composition of movement behaviours during the waking day. Though waking hours are typically not fixed, we can still carry out a compositional data analysis of the proportions.

Figure A7. Visualization of the compositional nature of physical behaviour data. SB: sedentary behaviour; LPA: light physical activity; MVPA: moderate-to-vigorous physical activity.

A composition can have an unlimited number of parts that can be defined by intensity band, activity type, context information or a combination of those, provided they are mutually exclusive. As a consequence of the fact they describe mutually exclusive components of a time or energy budget, each part only contains relative information rather than an absolute value and, then, the interpretation of compositional data is in terms of relative time spent in the different behaviours. If the data is regarded as a composition; mathematical transformation of the data is required prior to introducing the variables in a statistical model. For some applications, the absolute time may be important, in which case it would not be appropriate to apply the compositional transformation.

Compositional data transformations are simple and rely on logarithmic transformations. The purpose of this transformation is to resolve the difficulties around co-dependency and spurious correlation associated with the compositional nature of these descriptors. Statistical models can, therefore, be adjusted for all physical behaviour components without incurring perfect collinearity. Specifically, the data transformations that have been used so far in 'physical behaviour epidemiology' are the centred \log ratio (CLR) $[39,40]$ and the isometric-log ratio (ILR) [37,41-43]. Using the CLR method, each component is centred according to the mean logarithm of all the components [35]. The CLR-transformation is mathematically expressed as:
$z_{i}=\ln \frac{t_{i}}{\sqrt[D]{\prod_{j=1}^{D} t_{j}}}$ with i indicating each component

The sum of the D (number of components) CLR-transformed variables is 0 . This fixed sum means they are singular, and cannot be used in regression models. However, we can apply an additional transformation to the CLR components to obtain a D-1 dimensional space
without this constraint. This is referred to as the ILR-transformation when the new space uses an orthonormal basis. There are multiple such bases (and hence ILR transformations) however the most common approach in physical behaviour epidemiology research is shown below (e.g., SB, light PA, MVPA and sleep):
$z_{S B}=\left(z_{1}: \sqrt{\frac{3}{4}} \ln \frac{S B}{(\text { LPA } \cdot M V P A \cdot \text { Sleep })^{1 / 3}}, z_{2}: \sqrt{\frac{2}{3}} \ln \frac{L P A}{(M V P A \cdot \text { Sleep })^{1 / 2}}, z_{3}: \sqrt{\frac{1}{2}} \ln \frac{M V P A}{\text { Sleep }}\right)(1)$
$Z_{\text {LIPA }}=\left(z_{1}: \sqrt{\frac{3}{4}} \ln \frac{\text { LPA }}{(M V P A \cdot S l e e p \cdot S B)^{1 / 3}}, z_{2}: \sqrt{\frac{2}{3}} \ln \frac{M V P A}{(\text { Sleep } \cdot S B)^{1 / 2}}, z_{3}: \sqrt{\frac{1}{2}} \ln \frac{\text { Sleep }}{S B}\right)(2)$
$z_{M V P A}=\left(z_{1}: \sqrt{\frac{3}{4}} \ln \frac{M V P A}{(S l e e p \cdot S B \cdot L P A)^{1 / 3}}, z_{2}: \sqrt{\frac{2}{3}} \ln \frac{\text { Sleep }}{(S B \cdot L P A)^{1 / 2}}, z_{3}: \sqrt{\frac{1}{2}} \ln \frac{S B}{L P A}\right)$
$z_{\text {Sleep }}=\left(z_{1}: \sqrt{\frac{3}{4}} \ln \frac{\text { Sleep }}{(S B \cdot L P A \cdot M V P A)^{1 / 3}}, z_{2}: \sqrt{\frac{2}{3}} \ln \frac{S B}{(L P A \cdot M V P A)^{1 / 2}}, z_{3}: \sqrt{\frac{1}{2}} \ln \frac{L P A}{M V P A}\right)(4)$

Thus, the ILR produces a set of coordinates for each component (i.e., z_{1}, z_{2} and z_{3} in each component of the example above) that should be introduced together as covariates in any statistical model (see section 2.3 for considerations on the statistical model selection). The main difficulty associated with these transformations is in interpreting the results; this is a problem similar to (for example) in linear regression when a variable is log-transformed. For compositional data, a solution is to find an appropriate graphical representation of the results, keeping in mind the co-dependence of the parts and using model predictions rather than deriving the estimate directly from model coefficients. Another difficulty arising from these mathematical transformations is related to having zeros or values close to zero in any of the components. This can happen in certain populations which may not perform vigorous PA or even MVPA. Considering very low values in a composition could lead to spurious
correlations [44], usually, these values are either ignored in the analysis or imputed to stabilize the models [37].

Statistical modelling

The third and last step of the analytical process relates to the decisions on how to model the associations between the selected descriptor(s) (with or without mathematical transformations) and health. As far back as the 1950's [45,46], many studies have investigated the epidemiological associations of physical behaviours with health outcomes. The use of accelerometers confirmed some of these associations, and allowed a better characterisation of the dose-response curve overcoming the cognitive biases of self-reports. However, most studies have solely focused on basic descriptors of one behaviour in isolation (e.g., MVPA). Out of the 11,765 publications identified in a search in the Web of Science on physical activity and accelerometers (Figure A6, Panel A), only 125 studies explored the interdependencies among physical behaviours using isotemporal substitution models, multivariate pattern analysis or functional data analysis (Figure A8) [47]. This consensus group believes that now is the right time to move to more detailed and informative studies on the combined effects and interactions across physical behaviours on health outcomes.

Figure A8. Number of publications using some of the approaches described in the present document from inception to December $31^{\text {st }}, 2019$. Search syntax introduced in the Web of Science: isotemporal substitution models: ((((("physical activity")) OR "sedentary")) AND ((acceleromet*) OR actigraph*) AND ("isotemporal substitution")); multivariate pattern analysis: ((((("physical activity")) OR "sedentary")) AND ((acceleromet*) OR actigraph*) AND ("Physical activity signature" OR "multivariate pattern analysis")); functional data analysis: ((((("physical activity")) OR "sedentary")) AND ((acceleromet*) OR actigraph*) AND ("Physical activity signature" OR "functional data analysis")).

1.9 Linear regression modelling

Linear regression is the most frequently used statistical model in the field, often including the physical behaviour descriptor as a continuous exposure variable in a linear, logistic or Cox regression (depending on the outcome of interest). Linear regression models are
interpreted in terms of the (theoretical) effect of increasing the explanatory variable on the outcome, under a linear relationship. Standard linear regression models are usually adjusted for the covariates that could influence the association of interest. Highly correlated explanatory variables result in multicollinearity, which is a phenomenon in which redundant information carried by predictors leads to erratic estimation of the models [48].

Linear regression models can also be used with compositional ILR-transformed descriptors, which may eliminate that part of the collinearity which arises from the fixed sum (or closure) constraint [37,38]. In this case, the model coefficients are interpreted in terms of time replacements across behaviours. For example, the estimate for the z_{1} coordinate of the z_{SB} equation presented above represents the effect of increasing SB while proportionally reducing the time in light PA, MVPA and sleep. The dose-response association between a specific behaviour and the health outcome is assumed to be logarithmic (curvilinear) using compositionally-transformed descriptors. Likewise, the regression model predictions (using compositional data) can be used to estimate the time replacement between pairs of behaviours (e.g., reallocating time from SB to MVPA). This results in a similar interpretation to the isotemporal substitution models presented in the section 2.3.2. When examining longitudinal associations, advanced regression models (e.g., survival analysis using Cox regression) may be used with either absolute descriptors $[27,49,50]$ or compositional ILR-transformed descriptors [42].

1.10 Isotemporal substitution models

The isotemporal substitution modelling framework considers potential outcomes of increasing one behaviour at the expense of another and whether the strength of the association is dependent on the behaviour being displaced. Isotemporal substitution models
are linear regressions in which all-but-one of the time-use behaviours are introduced as the exposure (together with the pertinent covariates) and the health outcome is the dependent variable. These models examine the estimated effects of replacing time spent in one behaviour (the missing behaviour in the model) with an equal amount of time spent in another, while keeping monitor wear time constant. They do so by dropping the behaviour of interest from the model (otherwise, the model would suffer from perfect collinearity). The linear effects of the pair-wise reallocations are then estimated from the model coefficients. Similar interpretations of time replacement between pairs of behaviours can be obtained from applying linear regression over compositional data (see section 2.3.1).

1.11 Multivariate pattern analysis and other dimension reduction models

Multivariate pattern analysis can handle completely collinear explanatory variables by combining the data into orthogonal latent variables [51]. Thereby, this method tackles collinearity as a dimension reduction problem, rather than a data transformation (as CoDA does). Multivariate pattern analysis is especially well-suited to analyse a wide range of collinear descriptors, such as the intensity spectrum, without requiring any data transformation [28,52], although transformations can be done to make distributions within bands more normal and linearly associated with the outcome. Another important feature is that the models are optimized for predictive ability by Monte-Carlo resampling whereby half of the data are repeatedly used for modelling and half for prediction [53]. In this way, the optimal number of latent variables can be determined and only relevant features in the descriptor retained.

Multivariate pattern analysis uses partial least squares (PLS) regression modelling [51], or other latent-variable regression models [54], to determine the multivariate association
pattern. PLS regression decomposes the explanatory variables into orthogonal linear combinations (PLS components), while simultaneously maximizing the covariance with the outcome variable. Similar procedures to reduce the data can be observed in factor analysis, principal component analysis, or JIVE models. Multivariate pattern analysis differs from these others by creating components that maximize the covariation with the outcome, not internally among the explanatory variables. JIVE models seek to maximize the variance explained across explanatory variables assuming that they come from different dimensions (e.g., PA, sleep, and circadian rhythms) and improving the within and between dimension representation [55]. The procedure for obtaining the multivariate patterns is completely data-driven, with no assumptions on variable distributions or degree of collinearity among variables. Selectivity ratios are calculated to express and rank each single explanatory variables' association with the outcome [56,57]. The selectivity ratio represents each explanatory variable's ratio of explained to residual variance in relation to the outcome (Figure A9). By replacing residual variance with total variance in the denominator, a straight-forward measure of explained variance can be obtained [58]. Multivariate pattern analysis has been applied with time-use descriptors and intensity spectrum in both their absolute scale and with the compositional CLR-transformation [39]. Since multivariate pattern analysis can handle singular data (e.g., CLR-transformed data), the ILRtransformation is not necessary if modelling compositional data.

Figure A9. Multivariate pattern analysis example. Accelerometer model: ActiGraph GT3X+, sampling frequency: 30 Hz , body attachment site: right hip; awake time recording protocol. Selectivity ratio represents the explained-to-total outcome variance ratio. Adapted from Aadland et al. [39] with permission from the publisher.

1.12 Functional data analysis

Functional data analysis is an extension of linear regression analysis where the exposure or the outcome (or both) is a function instead of a scalar [59-61]. In physical behaviour epidemiology, the rationale of functional data analysis in the context of accelerometer data comes from the availability of moment-by-moment acceleration data allowing the use of the entire range of accelerations, whatever the aggregated metric used (e.g., counts, ENMO,

MAD) $[62,63]$. The acceleration functions described in section 2.1.6 can be used in functional data analysis. A first step often consists in smoothing the function of interest so that the smoothed function can then be used in functional data analysis, although some approaches do not smooth the data at subject level and rather pool the data across subjects to avoid the loss of information from the accelerometer signal. For example, when the interest is in the distribution of acceleration over time of the day, one can reduce data into 10 minute epochs as the objective is to assess when individuals are more or less active at each time of the day [64]. When the function of interest is the acceleration density distribution, Gaussian Kernel smoothing methods can be used (Figure A10) [65]. In that case, careful attention should be given to the number and place of nodes for acceleration values: a higher number of nodes should be present in the acceleration range where most of the time is spent. Then, the smoothed function of interest can be used for further analysis as an outcome variable (Function-on-scalar analysis), an exposure (Scalar-on-function analysis), or both (Function-on-function analysis) using functional data analysis regression techniques.

Figure A10. Smooth mean and interquartile acceleration density function. Red curve represents the mean density function of the study population and the grey area the interquartile range.

1.13 Machine learning for epidemiological analysis

ML methods provide a broad range of techniques to identify patterns in data. Although it has been increasingly used to derive descriptors from raw accelerometer data [20], ML has rarely been applied to the study of the associations of accelerometer data descriptors (examples of ML for health association analysis using physical behaviour data include [66,67]). As ML methods typically emphasise prediction or data reduction, they are most often relevant for hypothesis generation and data exploration. While there is no clear distinction between conventional statistical methods and ML, there is typically a different emphasis, and so they can be difficult to apply directly to problems requiring statistical inference. Bi et al. discuss possible epidemiologic applications of a wide range of machine learning methods in detail [68]. Examples of ML methods which could be applied to health association analysis using accelerometer data include Decision Trees/ Random Forests, Support Vector Machines and Neural Networks.

References

1 van Hees VT, Gorzelniak L, Dean León EC, et al. Separating Movement and Gravity Components in an Acceleration Signal and Implications for the Assessment of Human Daily Physical Activity. PLoS One 2013;8:1-10. doi:10.1371/journal.pone. 0061691

2 John D, Tang Q, Albinali F, et al. An Open-Source Monitor-Independent Movement

Summary for Accelerometer Data Processing. J Meas Phys Behav 2019;2:268-81. doi:10.1123/jmpb.2018-0068

3 Migueles JH, Cadenas-Sanchez C, Rowlands A V, et al. Comparability of accelerometer signal aggregation metrics across placements and dominant wrist cut points for the assessment of physical activity in adults. Sci Rep 2019;9:18235. doi:10.1038/s41598-019-54267-y

4 Migueles JH, Cadenas-Sanchez C, Ekelund U, et al. Accelerometer Data Collection and Processing Criteria to Assess Physical Activity and Other Outcomes: A Systematic Review and Practical Considerations. Sports Med 2017;47:1821-45. doi:10.1007/s40279-017-0716-0

5 Vähä-Ypyä H, Vasankari T, Husu P, et al. A universal, accurate intensity-based classification of different physical activities using raw data of accelerometer. Clin Physiol Funct Imaging 2015;35:64-70. doi:10.1111/cpf. 12127

6 Bouten C V, Verboeket-van de Venne WP, Westerterp KR, et al. Daily physical activity assessment: comparison between movement registration and doubly labeled water. J Appl Physiol 1996;81:1019-26. doi:10.1152/jappl.1996.81.2.1019

7 Saint-Maurice PF, Troiano RP, Bassett DR, et al. Association of Daily Step Count and Step Intensity With Mortality Among US Adults. JAMA 2020;323:1151-60. doi:10.1001/jama.2020.1382

8 Lee IM, Shiroma EJ, Kamada M, et al. Association of Step Volume and Intensity with All-Cause Mortality in Older Women. JAMA Intern Med 2019;02215. doi:10.1001/jamainternmed.2019.0899

9 Migueles JH, Rowlands A V., Huber F, et al. GGIR: A Research CommunityDriven Open Source R Package for Generating Physical Activity and Sleep Outcomes From Multi-Day Raw Accelerometer Data. J Meas Phys Behav 2019;2:188-96. doi:10.1123/jmpb.2018-0063

10 Brage S, Westgate K, Franks PW, et al. Estimation of free-living energy expenditure by heart rate and movement sensing: A doubly-labelled water study. PLoS One 2015;10:1-19. doi:10.1371/journal.pone. 0137206

11 Freedson PS, Melanson E, Sirard JR. Calibration of the computer science and applications, Inc. accelerometer. Med Sci Sports Exerc 1998;30:777-81. doi:10.1097/00005768-199805000-00021

12 Garber CE, Blissmer B, Deschenes MR, et al. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med Sci Sports Exerc 2011;43:1334-59. doi:10.1249/MSS.0b013e318213fefb

13 Tudor-Locke C, Aguiar EJ, Han H, et al. Walking cadence (steps/min) and intensity in 21-40 year olds: CADENCE-adults. Int J Behav Nutr Phys Act 2019;16:8. doi:10.1186/s12966-019-0769-6

14 Tudor-Locke C, Schuna JM, Han H, et al. Cadence (steps/min) and intensity during ambulation in 6-20 year olds: the CADENCE-kids study. Int J Behav Nutr Phys Act 2018;15:20. doi:10.1186/s12966-018-0651-y

15 Van Hees VT, Sabia S, Anderson KN, et al. A novel, open access method to assess sleep duration using a wrist-worn accelerometer. PLoS One 2015;10:1-13.
doi:10.1371/journal.pone. 0142533

16 Crowley P, Skotte J, Stamatakis E, et al. Comparison of physical behavior estimates from three different thigh-worn accelerometers brands: a proof-of-concept for the Prospective Physical Activity, Sitting, and Sleep consortium (ProPASS). Int J Behav Nutr Phys Act 2019;16:65. doi:10.1186/s12966-019-0835-0

17 Sadeh A, Sharkey KM, Carskadon MA. Activity-based sleep-wake identification: an empirical test of methodological issues. Sleep 1994;17:201-7. doi:7939118

18 Cole RJ, Kripke DF, Gruen W, et al. Automatic sleep wake identification from wrist activity - Cole et al 1992.pdf. Sleep. 1992;15:461-9.

19 Crouter SE, Kuffel E, Haas JD, et al. Refined two-regression model for the ActiGraph accelerometer. Med Sci Sports Exerc 2010;42:1029-37. doi:10.1249/MSS.0b013e3181c37458

20 Narayanan A, Desai F, Stewart T, et al. Application of Raw Accelerometer Data and Machine-Learning Techniques to Characterize Human Movement Behavior: A Systematic Scoping Review. J Phys Act Health 2020;17:360-83. doi:10.1123/jpah.2019-0088

21 Doherty A, Smith-Byrne K, Ferreira T, et al. GWAS identifies 14 loci for devicemeasured physical activity and sleep duration. Nat Commun 2018;9:5257. doi:10.1038/s41467-018-07743-4

22 Willetts M, Hollowell S, Aslett L, et al. Statistical machine learning of sleep and physical activity phenotypes from sensor data in 96,220 UK Biobank participants. Sci Rep 2018;8:1-10. doi:10.1038/s41598-018-26174-1

Exerc 2018;50:1323-32. doi:10.1249/MSS. 0000000000001561

30 Tudor-Locke C, Brashear MM, Katzmarzyk PT, et al. Peak stepping cadence in freeliving adults: 2005-2006 NHANES. J Phys Act Health 2012;9:1125-9. doi:10.1123/jpah.9.8.1125

31 Rowlands A V., Dawkins NP, Maylor B, et al. Enhancing the value of accelerometer-assessed physical activity: meaningful visual comparisons of datadriven translational accelerometer metrics. Sport Med - Open 2019;5. doi:10.1186/s40798-019-0225-9

32 Goldsmith J, Zipunnikov V, Schrack J. Generalized multilevel function-on-scalar regression and principal component analysis. Biometrics 2015;71:344-53. doi:10.1111/biom. 12278

33 Benadjaoud MA, Menai M, van Hees VT, et al. The association between accelerometer-assessed physical activity and respiratory function in older adults differs between smokers and non-smokers. Sci Rep 2019;9:1-9. doi:10.1038/s41598-019-46771-y

34 Pearson K. Mathematical contributions to the theory of evolution.-On a form of spurious correlation which may arise when indices are used in the measurement of organs. Proc R Soc London 1897;60:489-98. doi:10.1098/rspl.1896.0076

35 Aitchison J. The statistical analysis of compositional data. J R Stat Soc 1982;44:13977.

36 McGregor DE, Palarea-Albaladejo J, Dall PM, et al. Cox regression survival analysis with compositional covariates: Application to modelling mortality risk from

24-h physical activity patterns. Stat Methods Med Res 2019;29:096228021986412. doi:10.1177/0962280219864125

37 Chastin SFM, Palarea-Albaladejo J, Dontje ML, et al. Combined effects of time spent in physical activity, sedentary behaviors and sleep on obesity and cardiometabolic health markers: A novel compositional data analysis approach. PLoS One 2015;10:e0139984. doi:10.1371/journal.pone. 0139984

38 Dumuid D, Stanford TE, Martin-Fernández JA, et al. Compositional data analysis for physical activity, sedentary time and sleep research. Stat Methods Med Res 2018;27:3726-38. doi:10.1177/0962280217710835

39 Aadland E, Kvalheim OM, Anderssen SA, et al. Multicollinear physical activity accelerometry data and associations to cardiometabolic health: challenges, pitfalls, and potential solutions. Int J Behav Nutr Phys Act 2019;16:1-14. doi:10.1186/s12966-019-0836-z

40 Hinkle J, Rayens W. Partial least squares and compositional data: problems and alternatives. Chemom Intell Lab Syst 1995;30:159-72. doi:10.1016/0169-7439(95)00062-3

41 Egozcue JJ, Pawlowsky-Glahn V, Mateu-Figueras G, et al. Isometric Logratio Transformations for Compositional Data Analysis. Math Geol 2003;35:279-300. doi:10.1023/A:1023818214614

42 McGregor DE, Palarea-Albaladejo J, Dall PM, et al. Compositional analysis of the association between mortality and 24-hour movement behaviour from NHANES. Eur J Prev Cardiol 2019;:204748731986778. doi:10.1177/2047487319867783

43 Migueles JH, Cadenas-Sanchez C, Esteban-Cornejo I, et al. Associations of objectively-assessed physical activity and sedentary time with hippocampal gray matter volume in children with overweight/obesity. J Clin Med 2020;9. doi:10.3390/jem9041080

44 Skala W. Some effects of the constant-sum problem in geochemistry. Chem Geol 1979;27:1-9. doi:10.1016/0009-2541(79)90099-8

45 Rook A. An investigation into the longevity of Cambridge sportsmen. Br Med J 1954;1:773-7. doi:10.1136/bmj.1.4865.773

46 Morris JN, Heady JA, Raffle PA, et al. Coronary heart-disease and physical activity of work. Lancet (London, England) 1953;262:1111-20; concl. doi:10.1016/s0140-6736(53)91495-0

47 Ekelund U, Dalene KE, Tarp J, et al. Physical activity and mortality: What is the dose response and how big is the effect. Br J Sports Med 2020;0:5-6. doi:10.1136/bjsports-2019-101765

48 Stanton JM. Galton, Pearson, and the Peas: A Brief History of Linear Regression for Statistics Instructors. J Stat Educ 2001;9. doi:10.1080/10691898.2001.11910537

49 Tarp J, Hansen BH, Fagerland MW, et al. Accelerometer-measured physical activity and sedentary time in a cohort of US adults followed for up to 13 years: The influence of removing early follow-up on associations with mortality. Int J Behav Nutr Phys Act 2020;17:1-8. doi:10.1186/s12966-020-00945-4

50 Lee I-M, Shiroma EJ, Evenson KR, et al. Accelerometer-Measured Physical Activity and Sedentary Behavior in Relation to All-Cause Mortality: The Women's Health

Study. Circulation 2018;137:203-5. doi:10.1161/CIRCULATIONAHA.117.031300

51 Wold S, Ruhe A, Wold H, et al. The Collinearity Problem in Linear Regression. The Partial Least Squares (PLS) Approach to Generalized Inverses. SIAM J Sci Stat Comput 1984;5:735-43. doi:10.1137/0905052

52 Aadland E, Kvalheim OM, Anderssen SA, et al. The Triaxial Physical Activity Signature Associated with Metabolic Health in Children. Med Sci Sports Exerc 2019;51:2173-9. doi:10.1249/MSS.0000000000002021

53 Kvalheim OM, Arneberg R, Grung B, et al. Determination of optimum number of components in partial least squares regression from distributions of the root-meansquared error obtained by Monte Carlo resampling. J Chemom 2018;32:1-12. doi:10.1002/cem. 2993

54 Rajalahti T, Kvalheim OM. Multivariate data analysis in pharmaceutics: A tutorial review. Int J Pharm 2011;417:280-90. doi:10.1016/j.ijpharm.2011.02.019

55 Di J, Spira A, Bai J, et al. Joint and Individual Representation of Domains of Physical Activity, Sleep, and Circadian Rhythmicity. Stat Biosci 2019;11:371-402. doi:10.1007/s12561-019-09236-4

56 Kvalheim OM, Karstang T V. Interpretation of latent-variable regression models. Chemom Intell Lab Syst 1989;7:39-51. doi:10.1016/0169-7439(89)80110-8

57 Rajalahti T, Arneberg R, Kroksveen AC, et al. Discriminating variable test and selectivity ratio plot: Quantitative tools for interpretation and variable (biomarker) selection in complex spectral or chromatographic profiles. Anal Chem 2009;81:2581-90. doi:10.1021/ac802514y

58 Aadland E, Andersen LB, Resaland GKKK, et al. Interpretation of Multivariate Association Patterns between Multicollinear Physical Activity Accelerometry Data and Cardiometabolic Health in Children-A Tutorial. Metabolites 2019;9:1-14. doi:10.3390/metabo9070129

59 Ramsay J, Silverman B. Functional Data Analysis. 2nd Editio. New York: 2005. doi:10.1007/978-3-540-32691-5_16

60 Reiss PT, Goldsmith J, Shang HL, et al. Methods for scalar-on-function regression. Int Stat Rev 2017;85:228-49. doi:10.1111/insr. 12163

61 Morris JS. Comparison and Contrast of Two General Functional Regression Modeling Frameworks Stat Modelling 2017;17:59-85. doi:10.1177/1471082X16681875

62 Augustin NH, Mattocks C, Cooper AR, et al. Modelling fat mass as a function of weekly physical activity profiles measured by Actigraph accelerometers. Physiol Meas 2012;33:1831-9. doi:10.1088/0967-3334/33/11/1831

63 Augustin NH, Mattocks C, Faraway JJ, et al. Modelling a response as a function of high-frequency count data: The association between physical activity and fat mass. Stat Methods Med Res 2017;26:2210-26. doi:10.1177/0962280215595832

64 Goldsmith J, Liu X, Jacobson JS, et al. New Insights into Activity Patterns in Children, Found Using Functional Data Analyses. Med Sci Sports Exerc 2016;48:1723-9. doi:10.1249/MSS.0000000000000968

65 Chacón JE, Duong T. Multivariate plug-in bandwidth selection with unconstrained pilot bandwidth matrices. Test 2010;19:375-98. doi:10.1007/s11749-009-0168-4

66 Hua A, Quicksall Z, Di C, et al. Accelerometer-based predictive models of fall risk in older women: a pilot study. npj Digit Med 2018;1. doi:10.1038/s41746-018-00335

67 Alaa AM, Bolton T, Angelantonio E Di, et al. Cardiovascular disease risk prediction using automated machine learning: A prospective study of 423,604 UK Biobank participants. PLoS One 2019;14:1-17. doi:10.1371/journal.pone. 0213653

68 Bi Q, Goodman KE, Kaminsky J, et al. What Is Machine Learning: a Primer for the Epidemiologist. Am J Epidemiol Published Online First: 11 September 2019. doi:10.1093/aje/kwz189

The GRANADA consensus on analytical approaches to assess associations with

 accelerometer-determined physical behaviours (physical activity, sedentary
behaviour, and sleep) in epidemiological studies

Jairo H. Migueles ${ }^{1,2}$, Eivind Aadland ${ }^{3}$, Lars B. Andersen ${ }^{3}$, Jan Christian Brønd ${ }^{4}$, Sébastien F. Chastin ${ }^{5,6}$, Bjørge H. Hansen ${ }^{7,8}$, Kenn Konstabel ${ }^{9,10,11}$, Olav M. Kvalheim ${ }^{12}$, Duncan E. McGregor ${ }^{5,13}$, Alex V. Rowlands ${ }^{14,15,16}$, Séverine Sabia ${ }^{17,18}$, Vincent T. van Hees ${ }^{19,20}$, Rosemary Walmsley ${ }^{21}$, Francisco B. Ortega ${ }^{1,22}$ and external review group*

Note: Except for the first and last author, contributing authors are listed in alphabetic order.
${ }^{1}$ PROFITH "PROmoting FITness and Health through physical activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain.
${ }^{2}$ Department of Health, Medicine and Caring Sciences, Linköping University, 581 83, Linköping, Sweden.
${ }^{3}$ Faculty of Education, Arts and Sports, Western Norway University of Applied Sciences, Sogndal, NORWAY.
${ }^{4}$ Department of Sport Science and Biomechanics, University of Southern Denmark, Odense, Denmark.
${ }^{5}$ School of Health and Life Science, Glasgow Caledonian University, Glasgow, UK.
${ }^{6}$ Department of Movement and Sport Science, Ghent University, Belgium.
${ }^{7}$ Department of Sports Medicine, Norwegian School of Sport Sciences, PO Box 4014, Ullevål Stadion, 0806 Oslo, Norway.
${ }^{8}$ Departement of Sport Science and Physical Education, University of Agder, Norway
${ }^{9}$ Department of Chronic Diseases, National Institute for Health Development, Hiiu 42, Tallinn, Estonia.
${ }^{10}$ School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia.
${ }^{11}$ Institute of Psychology, University of Tartu, Tartu, Estonia.
${ }^{12}$ Department of Chemistry, University of Bergen, Bergen, Norway.
${ }^{13}$ Biomathematics and Statistics Scotland, Edinburgh, UK.
${ }^{14}$ Diabetes Research Centre, University of Leicester, Leicester General Hospital, Gwendolen Road, Leicester LE5 4PW, UK.
${ }^{15}$ NIHR Leicester Biomedical Research Centre, Leicester General Hospital, Gwendolen Road, Leicester LE5 4PW, UK.
${ }^{16}$ Alliance for research in Exercise, Nutrition and Activity (ARENA), Sansom Institute for Health Research, Division of Health Sciences, University of South Australia, Adelaide SA 5001, Australia.
${ }^{17}$ Université de Paris, Inserm U1153, Epidemiology of Ageing and Neurodegenerative diseases, 75010 Paris, France.
${ }^{18}$ Department of Epidemiology and Public Health, University College London, London, UK.
${ }^{19}$ Accelting, Almere, The Netherlands.

20 Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Public and Occupational Health, Amsterdam Public Health research institute, The Netherlands.
${ }^{21}$ Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK.
${ }^{22}$ Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
*External review group: Alexander Burchartz ${ }^{1}$, Cain Clark 2, Paddy Dempsey ${ }^{3,4,}$, Aiden Doherty ${ }^{5,6}$, Ulf Ekelund ${ }^{7}$, Timothy Olds ${ }^{8}$, Eric J. Shiroma ${ }^{9}$, Emmanuel Stamatakis ${ }^{10}$, Richard P. Troiano ${ }^{11}$, Stewart Trost ${ }^{12,13}$ and Vadim Zipunnikov ${ }^{14}$.

Note: Listed in alphabetic order.
${ }^{1}$ Institute for Sports and Sports Science, Karlsruhe Institute of Technology, Karlsruhe, Germany.
${ }^{2}$ Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, CV1 5FB, UK.
${ }^{3}$ MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
${ }^{4}$ Physical Activity \& Behavioural Epidemiology Laboratories, Baker Heart and Diabetes Institute, Melbourne, Australia.
${ }^{5}$ Nuffield Department of Population Health, Big Data Institute, University of Oxford, Oxford, UK.
${ }^{6}$ NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK.
${ }^{7}$ Department of Sports Medicine, Norwegian School of Sport Sciences, PO Box 4014, Ullevål Stadion, 0806 Oslo, Norway.
${ }^{8}$ Alliance for Research in Exercise, Nutrition and Activity, University of South Australia, Adelaide, Australia.
${ }^{9}$ Laboratory of Epidemiology and Population Science, National Institute on Aging, Baltimore, Maryland.
${ }^{10}$ Charles Perkins Centre, Prevention Research Collaboration, Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
${ }^{11}$ Division of Cancer Control and Population Sciences, National Cancer Institute, NIH, HHS, Rockville, MD.
${ }^{12}$ Institute of Health and Biomedical Innovation at Queensland Centre for Children's Health Research, Queensland University of Technology, South Brisbane, Australia.
${ }^{13}$ Faculty of Health, School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, Australia.
${ }^{14}$ Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University.
Appendix 1
Contents
Accelerometer data descriptors 5
1.1 Average acceleration or steps per day 6
1.2 Time-use behaviours 7
1.3 Time-use descriptor (intensity spectrum) 9
1.4 Intensity gradient 10
1.5 MX metrics - acceleration values corresponding to a set of percentiles 11
1.6 Acceleration functions 13
1.7 Indicators of movement behaviour patterns and quality 14
Mathematical treatment of descriptors (compositional data analysis) 14
1.8 Compositional data transformation 17
Statistical modelling 20
1.9 Linear regression modelling 21
1.10 Isotemporal substitution models 22
1.11 Multivariate pattern analysis and other dimension reduction models 23
1.12 Functional data analysis 25
1.13 Machine learning for epidemiological analysis 27

Accelerometer data descriptors

Modern accelerometers collect raw accelerations (measured in G 's) at sample frequencies typically varying from 20 to 100 Hz . As an example, raw data from a thigh-worn accelerometer is presented in Figure A1. This raw signal is usually filtered and aggregated to remove the gravitational acceleration and the noise effects on the signal [1]. Examples of common accelerometer data aggregation metrics are activity counts (brand-specific and proprietary aggregation metrics), Euclidean Norm Minus One with negative values rounded to 0 (ENMO), Mean Amplitude Deviation (MAD), Monitor Independent Motion Summary (MIMS) units, Activity Index $\left(\mathrm{AI}_{0}\right)$, or steps, among others (hereinafter we refer collectively to them as 'acceleration metrics'). With regard to MIMS it should be noted that the claim that it is accelerometer brand independent has so far not been demonstrated, only sensor from the Actigraph brand were used in the study by John and colleagues [2]. Further, other metrics like MAD and AI_{0} can also be brand independent, although this has not been formally tested yet. MIMS applies a narrow frequency filter by which its potential lack of sensitivity to differences in the monitor comes at the cost of lower sensitivity to movements in the low- and high frequency range. In-depth discussions about the influence that these aggregation metrics on the final estimates have been published elsewhere [1,35]; we focus our discussion on the conversion of such acceleration metrics to descriptors at a day or person level. Given the numerous versions of accelerometer data descriptors presented in the literature, we decided to focus on those descriptors representative of physical activity (PA) volume, type, and intensity since they are the most frequently-used in public health guidelines.

Raw accelerometer data

Figure A1. Sample raw accelerometer data recording from a thigh-worn accelerometer.
Accelerometer model: Axivity AX3, sampling frequency: 30 Hz , body attachment site: thigh; 24h/day recording protocol.

1.1 Average acceleration or steps per day

Average acceleration over a 24 h period is directly derived from the processed acceleration and can be used as a proxy for total daily PA-related energy expenditure [6]. This single estimate indicates the overall activity level and/or the volume of activity. The same can be obtained from the total number of steps per day, which is also widely used in the field $[7,8]$. It is usually expressed in mg or a manufacturer-provided acceleration metric (usually
counts). Average acceleration usually has a moderate correlation with PA-related energy expenditure ($\mathrm{r} \sim 0.3-0.5$), which can be improved by considering body weight, body composition, and activity type in the models [9,10]. Given that the correlation is not high, it is often used as a direct measure of movement, without making inferences about PA-related energy expenditure.

1.2 Time-use behaviours

Various descriptors quantify the daily time spent in a set of behaviours e.g. time spent in certain activity intensities (e.g., light, moderate or vigorous PA) or types (e.g., sitting, standing, walking). In this regard, cut-points represented one of the first developed and most frequently used methods for assessing the time spent sedentary and in light PA, moderate PA and vigorous PA using the acceleration metric [11]. The identified linear association between acceleration and energy expenditure was used to determine cut-points based on linear absolute metabolic equivalents (METs) thresholds (e.g., sedentary behaviour (SB), ≤ 1.5; light $\mathrm{PA},>1.5$ and <3.0; moderate $\mathrm{PA}, \geq 3.0$ and <6.0; vigorous PA, ≥ 6.0 [12]). Thresholds have been also proposed for walking cadence based on the estimation of steps per minute [13,14]. Figure A2 graphically represents a cut-point-based classification of the acceleration recorded during one day without any definition of bouts. Cut-points can be derived with linear statistical procedures such as linear regression or receiver operating characteristic (ROC) curves, which assume a linear relationship between magnitude of acceleration and METs. However, non-linear approaches have also been used. Otherwise, classification of activity types usually relies on thresholds applied to the device angle variability, usually from thigh- or wrist-placed accelerometers [15,16]. Similarly, thresholds have been applied to acceleration metrics and accelerometer angles to detect
sleep from the accelerometer signal $[15,17,18]$. More sophisticated models have used the acceleration signal to detect whether the activity performed is locomotion or not, and then applied specific regression models for each activity type (locomotion vs. not locomotion) [19]. Machine learning (ML) methods have gained momentum to classify both activity intensities and types from an accelerometer time series [20]. Classifying behaviours or estimating energy expenditure using a supervised ML approach requires data labelled with 'true' intensity or type (as measured with indirect calorimetry, direct observation, heart rate monitors, among others) [21-25], which is used to iteratively improve classification/estimation. Alternatively, unsupervised ML methods can be used to define "states" in the accelerometer signal pattern that can be interpreted as specific behaviours [26].

Figure A2. Graphical representation of cut-point-based metrics without bout-specification. Accelerometer model: ActiGraph GT3X+, sampling frequency: 100 Hz , body attachment site: hip; only awake time represented. SB: sedentary behaviour; LPA: light physical activity; MPA: moderate physical activity; VPA: vigorous physical activity.

Independently of the method used to derive these descriptors, they estimate daily time devoted to a specific behaviour. Descriptors of time spent in different PA intensities were first developed to assess objectively the information gained from questionnaire data (the source of most knowledge on the benefits of PA). Use of these time estimates in recent research has confirmed the benefits of PA for health and demonstrated stronger effects of PA than observed with self-report [27].

1.3 Time-use descriptor (intensity spectrum)

The intensity spectrum is also quantified as daily time spent in certain categories, so it is a time-use descriptor. Specifically, time acceleration metric signal over time is classified based on increasing acceleration bands (e.g., time spent from 0-50, 50-100, 100-150, ... counts or mg or steps per minute). Thus, the intensity spectrum uses a wider range of narrower equally-sized bands for increased resolution of the data [28]. The definition of the bin size is arbitrary, might not directly relate to energy expenditure and does not make any assumption on the behaviour underlying the intensity bin (its purpose is purely descriptive). It can also be regarded as a discretisation of a functional representation of the intensity distribution. The idea behind this approach is to avoid exaggerated aggregation of data (into only 3-4 categories) leading to loss of information. Thus, the number of bands should be large enough to incorporate all essential features in the accelerometer signal.

1.4 Intensity gradient

The intensity gradient describes the negative curvilinear shape of the intensity spectrum (i.e., the higher the intensity the less time spent at this intensity) [29]. The regression coefficient from a linear regression of time spent in an intensity bin on intensity, both on a logarithmic scale, is used as a scalar descriptor of this curvilinear relationship. It is always negative, reflecting the drop-in time accumulated as intensity increases; a more negative (lower) gradient reflects a steeper drop with a large proportion of time accumulated at lower intensities, while a less negative (higher) gradient reflects a shallower drop with time accumulated at higher intensities (Figure A3).

Figure A3. Example of intensity gradients from different participants with a similar average acceleration but discordant intensity distribution (i.e., intensity gradient). Accelerometer model: ActiGraph GT3X+, sampling frequency: 100 Hz , body attachment site: non-dominant wrist.

1.5 MX metrics -acceleration values corresponding to a set of percentiles

Time-use descriptors were based on the time accumulated in a series of a priori defined behaviours/bands. An alternative is to turn this approach on its head and describe the acceleration intensity distribution in terms of linearized periods of time or fractions of the 24 h day (percentiles). The acceleration for each epoch during the day is ranked in descending order to obtain the acceleration above which the person's most active X minutes are accumulated [29]. Therefore, instead of reporting the minutes above a given acceleration threshold, the minimum acceleration achieved for a given duration is reported (the unit of measurement is often mg or counts). MX , where X refers to the duration, e.g. M30, refers to the minimum acceleration for the most active 30 min (\sim percentile $98^{\text {th }}$) of the day. The MX metrics focus on a person's most active periods of the day, with the active minutes accumulated in any way across the day. For example, if a child had an M60 value of 230 mg , the child accumulated 60 min of PA at accelerations (intensity) greater than 230 $\mathrm{m} g$ across the day. Similarly, the periods with the lowest recorded activity can be defined. Similar estimates have been proposed for steps per minute (cadence), being typically referred to as peak-X min (e.g., peak-30 min) [30].

A range of MX metrics covering short to long time durations can be used to aid interpretation of the volume and intensity of the 24 h profile of physical activity. Using the MX metrics facilitates interpretation in terms of time spent in indicative activities (e.g., brisk walking) or above cut-points for different intensities of activity, e.g., moderate-tovigorous PA (MVPA) or vigorous PA. Plotting a broad range of MX variables on a radar plot illustrates the intensity and volume of the 24 h activity profile (Figure A4), facilitating
e.g., translation of results from analyses investigating the relative contributions of average acceleration and intensity gradient to markers of health, and/or comparisons between and within groups. For example, the M120, M60, M45, M30, M15, M10, M5 and M2 illustrate the more active periods of the day, while M8h refers to the most active 8 h of the day.

Figure A4. MX metrics example from two participants with similar average acceleration but different intensity gradient. Accelerometer model: ActiGraph GT9X, sampling frequency: 100 Hz , body attachment site: non-dominant wrist. Adapted from Rowlands et al. [31] with the permission from the publisher. IG: intensity gradient; MVPA: moderate-to-vigorous physical activity; VPA: vigorous physical activity.

1.6 Acceleration functions

While the above-mentioned descriptors are represented by scalar numbers, acceleration can also be described using a function. For example, the intensity gradient (described above) can be defined by its function instead of only reporting the beta coefficient. Other functions of interest could be the acceleration over time of the day [32] or the acceleration distribution (Figure A5) [33]. Acceleration functions seek a more detailed description of behaviours without making a priori assumptions. For example, while time in light activities assumes that all of the data between two cut-points (e.g., 0.05 to 0.10 g) relates similarly to health outcomes, analysis of acceleration functions could detect that a group tend to do more activities at acceleration less than $0.0 \mathrm{~m} g$ or more activities at acceleration above 0.07
g.

Figure A5. Sample of accelerometer-based distribution as a function of acceleration and time. Accelerometer model: GeneActiv, sampling frequency: 85.7 Hz , body attachment site: non-dominant wrist; $24 \mathrm{~h} /$ day recording protocol.

1.7 Indicators of movement behaviour patterns and quality

All the above-mentioned descriptors are time-based (time-use behaviours and intensity spectrum) or acceleration-based (average acceleration, MX metrics, acceleration functions) descriptors. That is, they either measure time in a given behaviour or acceleration in a certain time interval. Other descriptors of movement behaviour quality and patterns can be obtained thanks to the time-stamped data derived from accelerometers. Time-stamped accelerometer data can be used to derive certain characteristics of the PA and SB patterns throughout the day, such as the time accumulation in bouts of PA intensities or types. Time-stamped data also provides insight on timing of behaviours, domain (school/work or leisure), and circadian rhythmicity. For example, fragmentation of PA and sleep, sedentary breaks, intradaily variability, interdaily stability, sleep efficiency, or waking periods after sleep onset are frequently used in the field to assess the quality and patterns of PA, SB, and sleep.

Mathematical treatment of descriptors (compositional data analysis)

This section focuses on mathematical treatments to account for the specific singularities of the descriptors presented above. Time-use behaviours and the intensity spectrum consist of a set of components that represent parts of some finite total. This total may be explicit (e.g., complete 24-hour data) or it may arise through interpretation of the data as proportions (e.g., waking day data). Therefore, these descriptors can be considered as compositional data. Each part is called a component and the proportional distribution is called composition. So, for a composition with i components:
\sum_{i} Component $_{i}=1=100 \%=$ Whole

Compositional data analysis (CoDA) is an approach to analyse compositional data. Its birth is often attributed to Pearson's paper on spurious forms of correlation in ratio data [34]. Arguably the father of CoDA is John Aitchison, who developed comprehensive statistical frameworks to deal with compositional data [35]. CoDA is an established branch of statistics and has been used in many fields of research such as geosciences, nutrition, the study of the microbiome and gene sequencing. In the last five years CoDA has been applied in the field of 'physical behaviour epidemiology' to study the association between daily time use and health (Figure A6) [36-38].

Abstract

 B) Compositional data transformation $(\mathbf{N}=36)$ A)

Overall publications ($\mathrm{N}=\mathbf{1 1 , 7 6 5 \text {) }}$

Figure A6. Overall number of publications using accelerometer-determined PA (panel A) and number of publications using compositional data transformations from inception to December $31^{\text {st }}$, 2019. Search syntax introduced in the Web of Science: Panel A: ((((("physical activity")) OR "sedentary")) AND ((acceleromet*) OR actigraph*)); Panel B: (((()"physical activity")) OR "sedentary")) AND ((acceleromet*) OR actigraph*) AND ("compositional data analysis")).

1.8 Compositional data transformation

Time-use descriptors of physical behaviours are by nature compositional when they describe a time or energy budget (Figure A7). Hence the sum of time spent in each behaviour will be the period of interest (24 hours, waking period, week, wear time) and the proportions will sum to 100% of this period. In this example, the composition is made of four components over 24 hours: sleep, SB, light PA and MVPA.

$$
t_{\text {sleep }}+t_{S B}+t_{L P A}+t_{M V P A}=24 \text { hours }
$$

This is also true if we consider part of the day, such as the composition of movement behaviours during the waking day. Though waking hours are typically not fixed, we can still carry out a compositional data analysis of the proportions.

Figure A7. Visualization of the compositional nature of physical behaviour data. SB: sedentary behaviour; LPA: light physical activity; MVPA: moderate-to-vigorous physical activity.

A composition can have an unlimited number of parts that can be defined by intensity band, activity type, context information or a combination of those, provided they are mutually exclusive. As a consequence of the fact they describe mutually exclusive components of a time or energy budget, each part only contains relative information rather than an absolute value and, then, the interpretation of compositional data is in terms of relative time spent in the different behaviours. If the data is regarded as a composition; mathematical transformation of the data is required prior to introducing the variables in a statistical model. For some applications, the absolute time may be important, in which case it would not be appropriate to apply the compositional transformation.

Compositional data transformations are simple and rely on logarithmic transformations. The purpose of this transformation is to resolve the difficulties around co-dependency and spurious correlation associated with the compositional nature of these descriptors. Statistical models can, therefore, be adjusted for all physical behaviour components without incurring perfect collinearity. Specifically, the data transformations that have been used so far in 'physical behaviour epidemiology' are the centred \log ratio (CLR) $[39,40]$ and the isometric-log ratio (ILR) [37,41-43]. Using the CLR method, each component is centred according to the mean logarithm of all the components [35]. The CLR-transformation is mathematically expressed as:
$z_{i}=\ln \frac{t_{i}}{\sqrt[D]{\prod_{j=1}^{D} t_{j}}}$ with i indicating each component

The sum of the D (number of components) CLR-transformed variables is 0 . This fixed sum means they are singular, and cannot be used in regression models. However, we can apply an additional transformation to the CLR components to obtain a D-1 dimensional space
without this constraint. This is referred to as the ILR-transformation when the new space uses an orthonormal basis. There are multiple such bases (and hence ILR transformations) however the most common approach in physical behaviour epidemiology research is shown below (e.g., SB, light PA, MVPA and sleep):
$z_{S B}=\left(z_{1}: \sqrt{\frac{3}{4}} \ln \frac{S B}{(\text { LPA } \cdot M V P A \cdot \text { Sleep })^{1 / 3}}, z_{2}: \sqrt{\frac{2}{3}} \ln \frac{L P A}{(M V P A \cdot \text { Sleep })^{1 / 2}}, z_{3}: \sqrt{\frac{1}{2}} \ln \frac{M V P A}{\text { Sleep }}\right)(1)$
$Z_{\text {LIPA }}=\left(z_{1}: \sqrt{\frac{3}{4}} \ln \frac{\text { LPA }}{(M V P A \cdot S l e e p \cdot S B)^{1 / 3}}, z_{2}: \sqrt{\frac{2}{3}} \ln \frac{M V P A}{(\text { Sleep } \cdot S B)^{1 / 2}}, z_{3}: \sqrt{\frac{1}{2}} \ln \frac{\text { Sleep }}{S B}\right)(2)$
$z_{M V P A}=\left(z_{1}: \sqrt{\frac{3}{4}} \ln \frac{M V P A}{(S l e e p \cdot S B \cdot L P A)^{1 / 3}}, z_{2}: \sqrt{\frac{2}{3}} \ln \frac{\text { Sleep }}{(S B \cdot L P A)^{1 / 2}}, z_{3}: \sqrt{\frac{1}{2}} \ln \frac{S B}{L P A}\right)$
$z_{\text {Sleep }}=\left(z_{1}: \sqrt{\frac{3}{4}} \ln \frac{\text { Sleep }}{(S B \cdot L P A \cdot M V P A)^{1 / 3}}, z_{2}: \sqrt{\frac{2}{3}} \ln \frac{S B}{(L P A \cdot M V P A)^{1 / 2}}, z_{3}: \sqrt{\frac{1}{2}} \ln \frac{L P A}{M V P A}\right)(4)$

Thus, the ILR produces a set of coordinates for each component (i.e., z_{1}, z_{2} and z_{3} in each component of the example above) that should be introduced together as covariates in any statistical model (see section 2.3 for considerations on the statistical model selection). The main difficulty associated with these transformations is in interpreting the results; this is a problem similar to (for example) in linear regression when a variable is log-transformed. For compositional data, a solution is to find an appropriate graphical representation of the results, keeping in mind the co-dependence of the parts and using model predictions rather than deriving the estimate directly from model coefficients. Another difficulty arising from these mathematical transformations is related to having zeros or values close to zero in any of the components. This can happen in certain populations which may not perform vigorous PA or even MVPA. Considering very low values in a composition could lead to spurious
correlations [44], usually, these values are either ignored in the analysis or imputed to stabilize the models [37].

Statistical modelling

The third and last step of the analytical process relates to the decisions on how to model the associations between the selected descriptor(s) (with or without mathematical transformations) and health. As far back as the 1950's [45,46], many studies have investigated the epidemiological associations of physical behaviours with health outcomes. The use of accelerometers confirmed some of these associations, and allowed a better characterisation of the dose-response curve overcoming the cognitive biases of self-reports. However, most studies have solely focused on basic descriptors of one behaviour in isolation (e.g., MVPA). Out of the 11,765 publications identified in a search in the Web of Science on physical activity and accelerometers (Figure A6, Panel A), only 125 studies explored the interdependencies among physical behaviours using isotemporal substitution models, multivariate pattern analysis or functional data analysis (Figure A8) [47]. This consensus group believes that now is the right time to move to more detailed and informative studies on the combined effects and interactions across physical behaviours on health outcomes.

Figure A8. Number of publications using some of the approaches described in the present document from inception to December $31^{\text {st }}, 2019$. Search syntax introduced in the Web of Science: isotemporal substitution models: ((((("physical activity")) OR "sedentary")) AND ((acceleromet*) OR actigraph*) AND ("isotemporal substitution")); multivariate pattern analysis: ((((("physical activity")) OR "sedentary")) AND ((acceleromet*) OR actigraph*) AND ("Physical activity signature" OR "multivariate pattern analysis")); functional data analysis: ((((("physical activity")) OR "sedentary")) AND ((acceleromet*) OR actigraph*) AND ("Physical activity signature" OR "functional data analysis")).

1.9 Linear regression modelling

Linear regression is the most frequently used statistical model in the field, often including the physical behaviour descriptor as a continuous exposure variable in a linear, logistic or Cox regression (depending on the outcome of interest). Linear regression models are
interpreted in terms of the (theoretical) effect of increasing the explanatory variable on the outcome, under a linear relationship. Standard linear regression models are usually adjusted for the covariates that could influence the association of interest. Highly correlated explanatory variables result in multicollinearity, which is a phenomenon in which redundant information carried by predictors leads to erratic estimation of the models [48].

Linear regression models can also be used with compositional ILR-transformed descriptors, which may eliminate that part of the collinearity which arises from the fixed sum (or closure) constraint [37,38]. In this case, the model coefficients are interpreted in terms of time replacements across behaviours. For example, the estimate for the z_{1} coordinate of the z_{SB} equation presented above represents the effect of increasing SB while proportionally reducing the time in light PA, MVPA and sleep. The dose-response association between a specific behaviour and the health outcome is assumed to be logarithmic (curvilinear) using compositionally-transformed descriptors. Likewise, the regression model predictions (using compositional data) can be used to estimate the time replacement between pairs of behaviours (e.g., reallocating time from SB to MVPA). This results in a similar interpretation to the isotemporal substitution models presented in the section 2.3.2. When examining longitudinal associations, advanced regression models (e.g., survival analysis using Cox regression) may be used with either absolute descriptors $[27,49,50]$ or compositional ILR-transformed descriptors [42].

1.10 Isotemporal substitution models

The isotemporal substitution modelling framework considers potential outcomes of increasing one behaviour at the expense of another and whether the strength of the association is dependent on the behaviour being displaced. Isotemporal substitution models
are linear regressions in which all-but-one of the time-use behaviours are introduced as the exposure (together with the pertinent covariates) and the health outcome is the dependent variable. These models examine the estimated effects of replacing time spent in one behaviour (the missing behaviour in the model) with an equal amount of time spent in another, while keeping monitor wear time constant. They do so by dropping the behaviour of interest from the model (otherwise, the model would suffer from perfect collinearity). The linear effects of the pair-wise reallocations are then estimated from the model coefficients. Similar interpretations of time replacement between pairs of behaviours can be obtained from applying linear regression over compositional data (see section 2.3.1).

1.11 Multivariate pattern analysis and other dimension reduction models

Multivariate pattern analysis can handle completely collinear explanatory variables by combining the data into orthogonal latent variables [51]. Thereby, this method tackles collinearity as a dimension reduction problem, rather than a data transformation (as CoDA does). Multivariate pattern analysis is especially well-suited to analyse a wide range of collinear descriptors, such as the intensity spectrum, without requiring any data transformation [28,52], although transformations can be done to make distributions within bands more normal and linearly associated with the outcome. Another important feature is that the models are optimized for predictive ability by Monte-Carlo resampling whereby half of the data are repeatedly used for modelling and half for prediction [53]. In this way, the optimal number of latent variables can be determined and only relevant features in the descriptor retained.

Multivariate pattern analysis uses partial least squares (PLS) regression modelling [51], or other latent-variable regression models [54], to determine the multivariate association
pattern. PLS regression decomposes the explanatory variables into orthogonal linear combinations (PLS components), while simultaneously maximizing the covariance with the outcome variable. Similar procedures to reduce the data can be observed in factor analysis, principal component analysis, or JIVE models. Multivariate pattern analysis differs from these others by creating components that maximize the covariation with the outcome, not internally among the explanatory variables. JIVE models seek to maximize the variance explained across explanatory variables assuming that they come from different dimensions (e.g., PA, sleep, and circadian rhythms) and improving the within and between dimension representation [55]. The procedure for obtaining the multivariate patterns is completely data-driven, with no assumptions on variable distributions or degree of collinearity among variables. Selectivity ratios are calculated to express and rank each single explanatory variables' association with the outcome [56,57]. The selectivity ratio represents each explanatory variable's ratio of explained to residual variance in relation to the outcome (Figure A9). By replacing residual variance with total variance in the denominator, a straight-forward measure of explained variance can be obtained [58]. Multivariate pattern analysis has been applied with time-use descriptors and intensity spectrum in both their absolute scale and with the compositional CLR-transformation [39]. Since multivariate pattern analysis can handle singular data (e.g., CLR-transformed data), the ILRtransformation is not necessary if modelling compositional data.

Figure A9. Multivariate pattern analysis example. Accelerometer model: ActiGraph GT3X+, sampling frequency: 30 Hz , body attachment site: right hip; awake time recording protocol. Selectivity ratio represents the explained-to-total outcome variance ratio. Adapted from Aadland et al. [39] with permission from the publisher.

1.12 Functional data analysis

Functional data analysis is an extension of linear regression analysis where the exposure or the outcome (or both) is a function instead of a scalar [59-61]. In physical behaviour epidemiology, the rationale of functional data analysis in the context of accelerometer data comes from the availability of moment-by-moment acceleration data allowing the use of the entire range of accelerations, whatever the aggregated metric used (e.g., counts, ENMO,

MAD) $[62,63]$. The acceleration functions described in section 2.1.6 can be used in functional data analysis. A first step often consists in smoothing the function of interest so that the smoothed function can then be used in functional data analysis, although some approaches do not smooth the data at subject level and rather pool the data across subjects to avoid the loss of information from the accelerometer signal. For example, when the interest is in the distribution of acceleration over time of the day, one can reduce data into 10 minute epochs as the objective is to assess when individuals are more or less active at each time of the day [64]. When the function of interest is the acceleration density distribution, Gaussian Kernel smoothing methods can be used (Figure A10) [65]. In that case, careful attention should be given to the number and place of nodes for acceleration values: a higher number of nodes should be present in the acceleration range where most of the time is spent. Then, the smoothed function of interest can be used for further analysis as an outcome variable (Function-on-scalar analysis), an exposure (Scalar-on-function analysis), or both (Function-on-function analysis) using functional data analysis regression techniques.

Figure A10. Smooth mean and interquartile acceleration density function. Red curve represents the mean density function of the study population and the grey area the interquartile range.

1.13 Machine learning for epidemiological analysis

ML methods provide a broad range of techniques to identify patterns in data. Although it has been increasingly used to derive descriptors from raw accelerometer data [20], ML has rarely been applied to the study of the associations of accelerometer data descriptors (examples of ML for health association analysis using physical behaviour data include [66,67]). As ML methods typically emphasise prediction or data reduction, they are most often relevant for hypothesis generation and data exploration. While there is no clear distinction between conventional statistical methods and ML, there is typically a different emphasis, and so they can be difficult to apply directly to problems requiring statistical inference. Bi et al. discuss possible epidemiologic applications of a wide range of machine learning methods in detail [68]. Examples of ML methods which could be applied to health association analysis using accelerometer data include Decision Trees/ Random Forests, Support Vector Machines and Neural Networks.

References

1 van Hees VT, Gorzelniak L, Dean León EC, et al. Separating Movement and Gravity Components in an Acceleration Signal and Implications for the Assessment of Human Daily Physical Activity. PLoS One 2013;8:1-10. doi:10.1371/journal.pone. 0061691

2 John D, Tang Q, Albinali F, et al. An Open-Source Monitor-Independent Movement

Summary for Accelerometer Data Processing. J Meas Phys Behav 2019;2:268-81. doi:10.1123/jmpb.2018-0068

3 Migueles JH, Cadenas-Sanchez C, Rowlands A V, et al. Comparability of accelerometer signal aggregation metrics across placements and dominant wrist cut points for the assessment of physical activity in adults. Sci Rep 2019;9:18235. doi:10.1038/s41598-019-54267-y

4 Migueles JH, Cadenas-Sanchez C, Ekelund U, et al. Accelerometer Data Collection and Processing Criteria to Assess Physical Activity and Other Outcomes: A Systematic Review and Practical Considerations. Sports Med 2017;47:1821-45. doi:10.1007/s40279-017-0716-0

5 Vähä-Ypyä H, Vasankari T, Husu P, et al. A universal, accurate intensity-based classification of different physical activities using raw data of accelerometer. Clin Physiol Funct Imaging 2015;35:64-70. doi:10.1111/cpf. 12127

6 Bouten C V, Verboeket-van de Venne WP, Westerterp KR, et al. Daily physical activity assessment: comparison between movement registration and doubly labeled water. J Appl Physiol 1996;81:1019-26. doi:10.1152/jappl.1996.81.2.1019

7 Saint-Maurice PF, Troiano RP, Bassett DR, et al. Association of Daily Step Count and Step Intensity With Mortality Among US Adults. JAMA 2020;323:1151-60. doi:10.1001/jama.2020.1382

8 Lee IM, Shiroma EJ, Kamada M, et al. Association of Step Volume and Intensity with All-Cause Mortality in Older Women. JAMA Intern Med 2019;02215. doi:10.1001/jamainternmed.2019.0899

9 Migueles JH, Rowlands A V., Huber F, et al. GGIR: A Research CommunityDriven Open Source R Package for Generating Physical Activity and Sleep Outcomes From Multi-Day Raw Accelerometer Data. J Meas Phys Behav 2019;2:188-96. doi:10.1123/jmpb.2018-0063

10 Brage S, Westgate K, Franks PW, et al. Estimation of free-living energy expenditure by heart rate and movement sensing: A doubly-labelled water study. PLoS One 2015;10:1-19. doi:10.1371/journal.pone. 0137206

11 Freedson PS, Melanson E, Sirard JR. Calibration of the computer science and applications, Inc. accelerometer. Med Sci Sports Exerc 1998;30:777-81. doi:10.1097/00005768-199805000-00021

12 Garber CE, Blissmer B, Deschenes MR, et al. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med Sci Sports Exerc 2011;43:1334-59. doi:10.1249/MSS.0b013e318213fefb

13 Tudor-Locke C, Aguiar EJ, Han H, et al. Walking cadence (steps/min) and intensity in 21-40 year olds: CADENCE-adults. Int J Behav Nutr Phys Act 2019;16:8. doi:10.1186/s12966-019-0769-6

14 Tudor-Locke C, Schuna JM, Han H, et al. Cadence (steps/min) and intensity during ambulation in 6-20 year olds: the CADENCE-kids study. Int J Behav Nutr Phys Act 2018;15:20. doi:10.1186/s12966-018-0651-y

15 Van Hees VT, Sabia S, Anderson KN, et al. A novel, open access method to assess sleep duration using a wrist-worn accelerometer. PLoS One 2015;10:1-13.
doi:10.1371/journal.pone. 0142533

16 Crowley P, Skotte J, Stamatakis E, et al. Comparison of physical behavior estimates from three different thigh-worn accelerometers brands: a proof-of-concept for the Prospective Physical Activity, Sitting, and Sleep consortium (ProPASS). Int J Behav Nutr Phys Act 2019;16:65. doi:10.1186/s12966-019-0835-0

17 Sadeh A, Sharkey KM, Carskadon MA. Activity-based sleep-wake identification: an empirical test of methodological issues. Sleep 1994;17:201-7. doi:7939118

18 Cole RJ, Kripke DF, Gruen W, et al. Automatic sleep wake identification from wrist activity - Cole et al 1992.pdf. Sleep. 1992;15:461-9.

19 Crouter SE, Kuffel E, Haas JD, et al. Refined two-regression model for the ActiGraph accelerometer. Med Sci Sports Exerc 2010;42:1029-37. doi:10.1249/MSS.0b013e3181c37458

20 Narayanan A, Desai F, Stewart T, et al. Application of Raw Accelerometer Data and Machine-Learning Techniques to Characterize Human Movement Behavior: A Systematic Scoping Review. J Phys Act Health 2020;17:360-83. doi:10.1123/jpah.2019-0088

21 Doherty A, Smith-Byrne K, Ferreira T, et al. GWAS identifies 14 loci for devicemeasured physical activity and sleep duration. Nat Commun 2018;9:5257. doi:10.1038/s41467-018-07743-4

22 Willetts M, Hollowell S, Aslett L, et al. Statistical machine learning of sleep and physical activity phenotypes from sensor data in 96,220 UK Biobank participants. Sci Rep 2018;8:1-10. doi:10.1038/s41598-018-26174-1

Exerc 2018;50:1323-32. doi:10.1249/MSS. 0000000000001561

30 Tudor-Locke C, Brashear MM, Katzmarzyk PT, et al. Peak stepping cadence in freeliving adults: 2005-2006 NHANES. J Phys Act Health 2012;9:1125-9. doi:10.1123/jpah.9.8.1125

31 Rowlands A V., Dawkins NP, Maylor B, et al. Enhancing the value of accelerometer-assessed physical activity: meaningful visual comparisons of datadriven translational accelerometer metrics. Sport Med - Open 2019;5. doi:10.1186/s40798-019-0225-9

32 Goldsmith J, Zipunnikov V, Schrack J. Generalized multilevel function-on-scalar regression and principal component analysis. Biometrics 2015;71:344-53. doi:10.1111/biom. 12278

33 Benadjaoud MA, Menai M, van Hees VT, et al. The association between accelerometer-assessed physical activity and respiratory function in older adults differs between smokers and non-smokers. Sci Rep 2019;9:1-9. doi:10.1038/s41598-019-46771-y

34 Pearson K. Mathematical contributions to the theory of evolution.-On a form of spurious correlation which may arise when indices are used in the measurement of organs. Proc R Soc London 1897;60:489-98. doi:10.1098/rspl.1896.0076

35 Aitchison J. The statistical analysis of compositional data. J R Stat Soc 1982;44:13977.

36 McGregor DE, Palarea-Albaladejo J, Dall PM, et al. Cox regression survival analysis with compositional covariates: Application to modelling mortality risk from

24-h physical activity patterns. Stat Methods Med Res 2019;29:096228021986412. doi:10.1177/0962280219864125

37 Chastin SFM, Palarea-Albaladejo J, Dontje ML, et al. Combined effects of time spent in physical activity, sedentary behaviors and sleep on obesity and cardiometabolic health markers: A novel compositional data analysis approach. PLoS One 2015;10:e0139984. doi:10.1371/journal.pone. 0139984

38 Dumuid D, Stanford TE, Martin-Fernández JA, et al. Compositional data analysis for physical activity, sedentary time and sleep research. Stat Methods Med Res 2018;27:3726-38. doi:10.1177/0962280217710835

39 Aadland E, Kvalheim OM, Anderssen SA, et al. Multicollinear physical activity accelerometry data and associations to cardiometabolic health: challenges, pitfalls, and potential solutions. Int J Behav Nutr Phys Act 2019;16:1-14. doi:10.1186/s12966-019-0836-z

40 Hinkle J, Rayens W. Partial least squares and compositional data: problems and alternatives. Chemom Intell Lab Syst 1995;30:159-72. doi:10.1016/0169-7439(95)00062-3

41 Egozcue JJ, Pawlowsky-Glahn V, Mateu-Figueras G, et al. Isometric Logratio Transformations for Compositional Data Analysis. Math Geol 2003;35:279-300. doi:10.1023/A:1023818214614

42 McGregor DE, Palarea-Albaladejo J, Dall PM, et al. Compositional analysis of the association between mortality and 24-hour movement behaviour from NHANES. Eur J Prev Cardiol 2019;:204748731986778. doi:10.1177/2047487319867783

43 Migueles JH, Cadenas-Sanchez C, Esteban-Cornejo I, et al. Associations of objectively-assessed physical activity and sedentary time with hippocampal gray matter volume in children with overweight/obesity. J Clin Med 2020;9. doi:10.3390/jem9041080

44 Skala W. Some effects of the constant-sum problem in geochemistry. Chem Geol 1979;27:1-9. doi:10.1016/0009-2541(79)90099-8

45 Rook A. An investigation into the longevity of Cambridge sportsmen. Br Med J 1954;1:773-7. doi:10.1136/bmj.1.4865.773

46 Morris JN, Heady JA, Raffle PA, et al. Coronary heart-disease and physical activity of work. Lancet (London, England) 1953;262:1111-20; concl. doi:10.1016/s0140-6736(53)91495-0

47 Ekelund U, Dalene KE, Tarp J, et al. Physical activity and mortality: What is the dose response and how big is the effect. Br J Sports Med 2020;0:5-6. doi:10.1136/bjsports-2019-101765

48 Stanton JM. Galton, Pearson, and the Peas: A Brief History of Linear Regression for Statistics Instructors. J Stat Educ 2001;9. doi:10.1080/10691898.2001.11910537

49 Tarp J, Hansen BH, Fagerland MW, et al. Accelerometer-measured physical activity and sedentary time in a cohort of US adults followed for up to 13 years: The influence of removing early follow-up on associations with mortality. Int J Behav Nutr Phys Act 2020;17:1-8. doi:10.1186/s12966-020-00945-4

50 Lee I-M, Shiroma EJ, Evenson KR, et al. Accelerometer-Measured Physical Activity and Sedentary Behavior in Relation to All-Cause Mortality: The Women's Health

Study. Circulation 2018;137:203-5. doi:10.1161/CIRCULATIONAHA.117.031300

51 Wold S, Ruhe A, Wold H, et al. The Collinearity Problem in Linear Regression. The Partial Least Squares (PLS) Approach to Generalized Inverses. SIAM J Sci Stat Comput 1984;5:735-43. doi:10.1137/0905052

52 Aadland E, Kvalheim OM, Anderssen SA, et al. The Triaxial Physical Activity Signature Associated with Metabolic Health in Children. Med Sci Sports Exerc 2019;51:2173-9. doi:10.1249/MSS.0000000000002021

53 Kvalheim OM, Arneberg R, Grung B, et al. Determination of optimum number of components in partial least squares regression from distributions of the root-meansquared error obtained by Monte Carlo resampling. J Chemom 2018;32:1-12. doi:10.1002/cem. 2993

54 Rajalahti T, Kvalheim OM. Multivariate data analysis in pharmaceutics: A tutorial review. Int J Pharm 2011;417:280-90. doi:10.1016/j.ijpharm.2011.02.019

55 Di J, Spira A, Bai J, et al. Joint and Individual Representation of Domains of Physical Activity, Sleep, and Circadian Rhythmicity. Stat Biosci 2019;11:371-402. doi:10.1007/s12561-019-09236-4

56 Kvalheim OM, Karstang T V. Interpretation of latent-variable regression models. Chemom Intell Lab Syst 1989;7:39-51. doi:10.1016/0169-7439(89)80110-8

57 Rajalahti T, Arneberg R, Kroksveen AC, et al. Discriminating variable test and selectivity ratio plot: Quantitative tools for interpretation and variable (biomarker) selection in complex spectral or chromatographic profiles. Anal Chem 2009;81:2581-90. doi:10.1021/ac802514y

58 Aadland E, Andersen LB, Resaland GKKK, et al. Interpretation of Multivariate Association Patterns between Multicollinear Physical Activity Accelerometry Data and Cardiometabolic Health in Children-A Tutorial. Metabolites 2019;9:1-14. doi:10.3390/metabo9070129

59 Ramsay J, Silverman B. Functional Data Analysis. 2nd Editio. New York: 2005. doi:10.1007/978-3-540-32691-5_16

60 Reiss PT, Goldsmith J, Shang HL, et al. Methods for scalar-on-function regression. Int Stat Rev 2017;85:228-49. doi:10.1111/insr. 12163

61 Morris JS. Comparison and Contrast of Two General Functional Regression Modeling Frameworks Stat Modelling 2017;17:59-85. doi:10.1177/1471082X16681875

62 Augustin NH, Mattocks C, Cooper AR, et al. Modelling fat mass as a function of weekly physical activity profiles measured by Actigraph accelerometers. Physiol Meas 2012;33:1831-9. doi:10.1088/0967-3334/33/11/1831

63 Augustin NH, Mattocks C, Faraway JJ, et al. Modelling a response as a function of high-frequency count data: The association between physical activity and fat mass. Stat Methods Med Res 2017;26:2210-26. doi:10.1177/0962280215595832

64 Goldsmith J, Liu X, Jacobson JS, et al. New Insights into Activity Patterns in Children, Found Using Functional Data Analyses. Med Sci Sports Exerc 2016;48:1723-9. doi:10.1249/MSS.0000000000000968

65 Chacón JE, Duong T. Multivariate plug-in bandwidth selection with unconstrained pilot bandwidth matrices. Test 2010;19:375-98. doi:10.1007/s11749-009-0168-4

66 Hua A, Quicksall Z, Di C, et al. Accelerometer-based predictive models of fall risk in older women: a pilot study. npj Digit Med 2018;1. doi:10.1038/s41746-018-00335

67 Alaa AM, Bolton T, Angelantonio E Di, et al. Cardiovascular disease risk prediction using automated machine learning: A prospective study of 423,604 UK Biobank participants. PLoS One 2019;14:1-17. doi:10.1371/journal.pone. 0213653

68 Bi Q, Goodman KE, Kaminsky J, et al. What Is Machine Learning: a Primer for the Epidemiologist. Am J Epidemiol Published Online First: 11 September 2019. doi:10.1093/aje/kwz189

[^0]: LPA, light physical activity; SB, sedentary behaviour.

