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a b s t r a c t 

Video feedback provides a wealth of information about surgical procedures and is the main sensory 

cue for surgeons. Scene understanding is crucial to computer assisted interventions (CAI) and to post- 

operative analysis of the surgical procedure. A fundamental building block of such capabilities is the 

identification and localization of surgical instruments and anatomical structures through semantic seg- 

mentation. Deep learning has advanced semantic segmentation techniques in the recent years but is in- 

herently reliant on the availability of labelled datasets for model training. This paper introduces a dataset 

for semantic segmentation of cataract surgery videos complementing the publicly available CATARACTS 

challenge dataset. In addition, we benchmark the performance of several state-of-the-art deep learn- 

ing models for semantic segmentation on the presented dataset. The dataset is publicly available at 

https://cataracts- semantic- segmentation2020.grand- challenge.org/ . 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Computer assisted interventions (CAI) have the potential to en- 

ance surgeons’ capabilities through better clinical information fu- 

ion, navigation and visualization ( Maier-Hein et al., 2017 ). Cur- 

ently, CAI systems are used mainly as tools for pre-operative plan- 

ing ( Zeng et al., 2016 ). There is potential to develop CAI further

or improved navigation capabilities, better imaging and robotic in- 

trumentation ( Kassahun et al., 2016 ). However, such systems de- 

end on effective use of surgical video. 

Data-driven machine learning techniques and deep learning 

ave been immensely influential in recent computer vision ad- 

ances as well as in medical image computing and analysis. There- 

ore, using surgical cameras, establishing data repositories and data 

abelling to facilitate training of vision models and subsequent 

enchmarking is necessary to exploit such advances for CAI ( Maier- 

ein et al., 2017; Vedula et al., 2017 ). 

Pixel-level annotations are necessary for model development, 

nd in particular for image segmentation models. Such models 
∗ Corresponding author. 

E-mail address: maria.grammatikopoulou@medtronic.com 
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ould advance applications such as image-guided interventions 

 Kovler et al., 2015; Pfeiffer et al., 2019 ), support pre-operative 

urgical planning ( Ozdemir and Goksel, 2019 ), estimate instru- 

ent usage and motion for post-operative analytics ( Allan, 2015; 

uentes-Hurtado, 2019; García-Peraza-Herrera, 2016 ), automate di- 

gnostic readouts ( Bouget, 2019; Suetens, 1993 ) and enhance sur- 

ical training ( Engelhardt et al., 2018 ). While data availability is 

ncreasingly growing through the usage of digital surgical cam- 

ras in endoscopy, laparoscopy and microsurgery, and due to well- 

stablished systems for managing confidentiality, regulation and 

thics, annotation and data labelling are still a major challenge for 

AI. 

Over the past decade, the emergence of surgical video datasets 

as significantly contributed to the progress of computer vision- 

ased CAI systems. Notable examples include the Cholec80, 

holec120 ( Twinanda et al., 2016 ), RMIT ( Sznitman et al., 2012 )

nd the EndoVis challenge datasets. 2 In particular, two robotic in- 

trument segmentation datasets have been released for the 2017 

 Allan et al., 2019 ) and 2018 ( Allan et al., 2020 ) Robotic Instru-

ent Segmentation EndoVis sub-challenges that included segmen- 

ation masks for robotic instruments appearing in the scene. The 

017 Robotic Instrument Segmentation dataset was later extended 
2 https://endovis.grand-challenge.org/ 
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Fig. 1. Example image frame (left) and semantic segmentation labels (right) from 

the Cataract dataset for Image Segmentation presented in this paper. (Colormap: 

Pupil, Iris, Cornea, Skin, Surgical tape, Eye re- 

tractors, Hand, Bonn Forceps, Secondary Knife and Secondary 

Knife Handle). 
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Table 1 

Phases sampled per video in CaDIS dataset. Phase numbering in the table as de- 

fined in ( Zisimopoulos et al., 2018 ) The defined phases are: (1) Access of anterior 

chamber: sideport incision, (2) Access of anterior chamber: mainport incision, (3) 

Lens removal: Viscoelastic injection, (4) Lens removal, (5) Phacoemulsification: Vis- 

coelastic injection, (6) Phacoemulsification: Capsulorhexis, (7) Phacoemulsification: 

Lens hydrodissection, (8) Phacoemulsification, (9) Phacoemulsification: Lens matter 

removal, (10) Lens insertion: Viscoelastic injection, (11) Lens insertion, (12) Aspira- 

tion of viscoelastic, (13) Wound closure and (14) Wound closure with suture. 

Video IDs Phases sampled in video 

Video 1 1, 3, 7, 8, 9, 10, 11 

Video 2 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12 

Videos 3, 5 1, 2, 3, 5, 6, 7, 8, 9, 10 

Video 4 1, 2, 3, 4, 5, 6, 7, 8, 9 

Video 6 7, 8, 9, 10, 11, 12 

Videos 7, 9, 11 1, 2, 3, 5, 6, 7, 8, 9 

Video 8, 10, 15-18 1, 2, 3, 5, 6, 7, 8 

Video 12 1, 2, 3, 4, 6, 7 

Video 13 1, 2, 3, 5, 6, 7 

Video 14 1, 2, 3, 4, 5, 6 

Videos 19, 23, 24 1, 2, 3, 5, 7, 8, 9 

Videos 20, 21 1, 2, 3, 5, 6, 7, 8, 9, 10 

Video 22 1, 2, 4, 5, 7, 8, 9 

Video 25 1, 2, 3, 5, 7, 8, 9, 10, 11 
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or the 2018 Robotic Scene Segmentation EndoVis sub-challenge 

o include pixel-wise labels for anatomical structures for approx- 

mately 2400 endoscopic images ( Allan et al., 2020 ). While re- 

easing these datasets, the research community has also worked 

owards standardizing the reporting of datasets and challenges 

 Maier-Hein et al., 2020 ). 

Recently, the CATARACTS challenge 3 presented 50 anno- 

ated surgical videos obtained through a surgical microscope 

 Al Hajj et al., 2019 ). The dataset was annotated to provide both

rame-level instrument presence labels and frame-level surgical 

hase labels ( Al Hajj et al., 2019; Zisimopoulos et al., 2018 ). From

 clinical perspective, even though cataract surgery is less prone 

o complications, risk mitigation can have big impact, with over 

0 million cases recorded in 2010 ( WHO, 2018 ). Studies on med- 

cal malpractice related to cataract surgery revealed that 76.28% 

f the 118 claims are intra-operative allegations ( Kim et al., 2012 ) 

nd that the rate of a certain intra-operative complication (pos- 

erior capsular rent) was 0.45–3.6% for experienced surgeons, and 

.8–8.9% for residents ( Chakrabarti and Nazm, 2017 ). With these 

n consideration, a dataset for semantic segmentation may lead to 

he development of systems that could potentially reduce compli- 

ations and improve workflow. 

In this paper, we introduce a semantic segmentation dataset 

enerated from videos of the training set of the CATARACTS 

ataset. The dataset includes pixel-wise annotations for the entire 

urgical scene for cataract surgery procedures, including anatom- 

cal structures and surgical instruments, for 4670 surgical micro- 

cope images (Fig. 1) . The aim of releasing such a dataset is to al-

ow simultaneous anatomy and instrument pixel-level localization. 

 potential application is the detection of anatomy and surgical in- 

trument interactions, which can be subsequently used to assess 

he safety and progress of the surgical procedure. We demonstrate 

ow this dataset can be used to train state-of-the-art deep learning 

rameworks to segment microscope images from cataract surgery. 

e believe this contribution will underpin the development of CAI 

echniques based on surgical vision. 

. Cataract dataset for image segmentation 

The dataset was generated from the training videos released 

or the CATARACTS challenge ( Al Hajj et al., 2019 ). The CATARACTS 

hallenge training set includes 25 videos with average duration of 

0 min and 56 s recorded at 30 frames per second (fps). 

.1. Data sources 

The recorded operations were performed in Brest University 

ospital from January to September 2015 ( Al Hajj et al., 2019 ). The

ideos were recorded using a 180I camera (Toshiba, Tokyo, Japan) 

ounted on an OPMI Lumera T microscope (Carl Zeiss Meditec, 
3 https://cataracts.grand-challenge.org/ 

o

s

t

2 
ena, Germany) focusing on the patient’s eye. The surgeries were 

erformed by three surgeons of varying expertise levels (one ex- 

ert, one mid-level and an intern surgeon). The average age of 

he patients was 61 years old, with a minimum of 23, a maxi- 

um of 83 years old and 10 years standard deviation. The surg- 

ries were performed because of age-related causes, trauma and 

efractive errors. Each video corresponds to a different patient. The 

tudy was approved by the Institutional Review Board of Brest Uni- 

ersity Hospital on 28 January 2013. All patients were informed 

nd gave their consent to participate in the study. 

.2. Training and test set characteristics 

Frames from the 25 training videos were extracted using the 

eference instrument and phase information. This is to select video 

rames that include instruments and to ensure a class distribu- 

ion across the surgical phases that represents real-world scenar- 

os. In particular, the videos were sampled to tackle the overhead 

f pixel-level manual labelling for semantic mask generation in or- 

er to label as many frames, which contain substantial scene vari- 

tions. The surgical procedures were divided into 14 phases as in 

 Zisimopoulos et al., 2018 ). The phases sampled per video in the 

resented dataset are given in Table 1 . A number of 10 to 20 

rames were randomly selected per phase such that the frames are 

t least 0.3 s apart. The images were also resized from 1920 × 1080 

o 960 × 540 . In total, 4670 frames were selected. 

.3. Annotation process 

After frame selection, the videos were annotated manually. The 

uidelines for anatomy and instrument annotation were drafted 

y a team of in-house expert medical officers. A team of four 

n-house roto artists (annotators) created the pixel-wise segmenta- 

ion masks. The annotators used commercial rotoscoping software 

o create the segmentation masks. The annotators were trained 

y the medical officers in order to get familiar with the surgical 

rocedure, the anatomical structures appearing and the different 

nstruments used at each phase. The annotators had direct access 

o the medical officers at all steps of the annotation process. Every 

rame was annotated by one roto artist. To ensure the quality 

f annotations, every annotated frame was also checked by a 

econd annotator. In case of disagreement between the annotators, 

he medical officers’ opinion is sought in accordance with the 

https://cataracts.grand-challenge.org/
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Fig. 2. Instances for all instruments appearing in the dataset. 
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pecified annotation guidelines. The medical officers validated the 

egmentation mask annotations. Further pixel-wise checks per seg- 

entation mask were performed by programmatically extracting 

ll contours from the generated segmentation masks and over- 

aying them to the respective image frame. This facilitated visual 

nspection of the segmentation masks to ensure accurate anatomy 

nd instrument boundaries. In addition, pixel-wise checks were 

erformed to ensure that all clusters of pixel larger than 50 pixels 

re assigned to a class. The same process of annotation was 

pplied to all selected frames (training, validation and test set). 

.4. Sources of error 

Potential sources of error in the annotation can be attributed 

o blurriness due to substantial instrument or patient motion. This 

ontributes to having instrument or anatomy out of focus and, 

herefore, not have very clear boundaries in some frames. How- 

ver, even in this cases, it was ensured that the instrument and 

natomy boundaries are as accurate as possible. Specular reflec- 

ions may also lead to inaccurate boundary delineation, especially 

or the instrument tips when they are inside the anatomy. 

.5. Dataset statistics 

The dataset includes 36 classes: 29 surgical instrument classes, 

 anatomy classes and 3 miscellaneous classes. The list of classes 

er category and the statistics of the dataset are given in Table 2 .

s expected, the anatomy classes appear more frequently than the 

urgical instruments. The anatomy also covers the largest part of 

he scene, as it can be seen from the average number of pixels 

hat represent the pupil, iris and cornea compared to the surgical 

nstruments ( Table 2 ). In addition, the Presence In Videos metric 

hows that 17 instrument classes appear in less than half of the 

ideos. The instance and pixel distribution indicate that the dataset 

s imbalanced and, consequently, accurate instrument classification 

s more challenging. Furthermore, there are other visual challenges 

ue to the high inter-class similarity among instruments. For ex- 

mple, Fig. 2 shows four different types of cannulas, which look 

ery similar. Each of these cannulas are used to perform different 

ctions, like injecting material and handling tissue. Therefore, as 

he type of instrument can reveal information and be one of the 

ain indications of what surgical action has been performed, it is 

f interest to distinguish different instrument types. 

. Experiments 

A set of experiments were performed using the presented 

ataset in three different tasks as described in the following sec- 

ions. Baseline experiments were performed using state-of-the-art 

egmentation networks (Table 3) to provide a reference for future 

xperiments using the dataset. It is worth noting that the models 

ere not optimized to each given task. 

.1. Tasks 

Three tasks are presented that use different class groupings. 

he motivation for the following tasks is that anatomical structure 

nd instrument localization could be useful for intra- and post- 

perative image guidance and risk assessment. Instrument seg- 

entation and identification can be useful to a different degree, 

or example identifying only where anatomy or an instrument is or 

dditionally identifying the types of instruments. A brief descrip- 

ion of each task is given in the following sections. 
3 
.1.1. Task I 

The first task is focused on differentiating between anatomy 

nd instruments within every frame. Therefore, instrument classifi- 

ation is excluded from this task as the purpose of this scenario is 

o identify mainly where the anatomical structures are. This task is 

efined by segmenting the scene into 8 classes, and in particular, 

 classes for anatomical structures, 1 class for all instruments and 

 classes for all other objects appearing in the scene ( Table 5 ). 

.1.2. Task II 

The second task incorporates instrument classification and 

ncludes 17 classes given in Table 7 . The instruments are grouped 

n categories according to appearance similarities and instrument 

ypes as suggested by the medical officers who created the anno- 

ation guidelines. This task is to identify anatomical structures and 

lso the main types of instruments that appear in the scene. The 

urpose of identifying the main instrument type simultaneously 

s to give more information on the stage of the procedure through 

cene segmentation. The type of instrument can also help dif- 

erentiating overlapping instruments in the segmentation output, 

n case of use of different instruments, which would otherwise 
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Table 2 

Total instances per class [% of total number of frames in each set], total presence per class in videos [% of total videos in each set] and average number of pixels per class per frame for the entire dataset and for the training, 

validation and test splits. 

Category ID class name All videos Training set Validation set Test set 

Instances per 

class 

Presence in 

videos 

Avg. pixels 

per class 

Instances per 

class 

Presence in 

videos 

Instances per 

class 

Presence in 

videos 

Instances per 

class 

Presence in 

videos 

Anatomy 0 Pupil 99.9 100 87,215 99.8 100 100 100 100 100 

4 Iris 99.9 100 58,247 99.9 100 100 100 100 100 

5 Skin 99.9 100 69,351 100 100 98.9 100 100 100 

6 Cornea 100 100 253,631 100 100 100 100 100 100 

Instruments 7 Hydrosdissection Cannula 9.6 100 6840 9.6 100 9.7 100 9.2 100 

8 Viscoelastic Cannula 12.6 100 3697 13 100 10.9 3 11.4 100 

9 Capsulorhexis Cystotome 9.6 100 5016 9.4 100 10.5 100 9.9 100 

10 Rycroft Cannula 9.4 100 3571 9.2 100 10.1 100 10.2 100 

11 Bonn Forceps 8.2 88 16,476 8 84.2 5.1 100 12.6 100 

12 Primary Knife 6.6 96 11,040 6.7 94.7 5.6 100 7 100 

13 Phacoemulsifier Handpiece 9.8 100 9745 9.6 100 11 3 10.1 3 

14 Lens Injector 8.6 96 19,543 8.2 94.7 10.3 100 9.9 100 

15 Irrigation/Aspiration (I/A) Handpiece 16.6 92 11,291 15.9 89.4 21 100 16.4 100 

16 Secondary Knife 6.4 100 8644 6.4 100 5.8 100 6.5 100 

17 Micromanipulator 13.3 100 7690 13 100 15.2 100 13.5 100 

18 Irrigation/Aspiration Handpiece Handle 2.1 68 12,894 1.9 57.9 1.3 100 4.6 100 

19 Capsulorhexis Forceps 2.8 48 13,268 3 47.4 1.5 66.7 2.4 33.3 

20 Rycroft Cannula Handle 1.8 52 10,556 1.5 42.1 3.4 100 2.4 66.7 

21 Phacoemulsifier Handpiece Handle 1.5 40 16,199 1.6 42.1 1.3 33.3 1.2 33.3 

22 Capsulorhexis Cystotome Handle 1.8 44 4993 1.7 36.8 2.1 33.3 2.2 100 

23 Secondary Knife Handle 2.8 80 10,004 3 78.9 2.2 66.7 2.6 100 

24 Lens Injector Handle 0.9 16 17,670 0.5 10.5 2.4 33.3 1.4 33.3 

25 Suture Needle 0.7 16 802 0.7 15.8 0 0 1.2 33.3 

26 Needle Holder 0.3 4 31,156 0.3 5.3 0 0 0 0 

27 Charleux Cannula 0.4 8 5042 0.6 10.5 0 0 0 0 

28 Primary Knife Handle 0.1 8 2395 0.01 5.3 0 0 0.3 33.3 

29 Vitrectomy Handpiece 0.4 4 14,637 0.5 5.3 0 0 0 0 

30 Mendez Ring 0.1 4 151,711 0.2 5.3 0 0 0 0 

31 Marker 3.6 4 7034 4.8 5.3 0 0 0 0 

32 Hydrosdissection Cannula Handle 0.3 8 2291 0.3 10.5 0 0 0 0 

33 Troutman Forceps 0.4 8 22,246 0.2 5.3 0 0 2.4 33.3 

34 Cotton 0.4 12 16,623 0.6 15.8 0 0 0 0 

35 Iris Hooks 2.7 4 4525 3.5 5.3 0 0 0 0 

Others 1 Surgical Tape 77 96 39,907 72 94.7 86.7 100 98.5 100 

2 Hand 13 100 29,473 12.7 100 10.3 100 17.2 100 

3 Eye Retractors 73.5 100 4033 71.7 100 93.4 100 66.6 100 

4
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Table 3 

Number of parameters of baseline models. 

Model Number of parameters 

UNet 14 M 

DeepLabV3 (Xception/Mobilenet) 58 M / 54 M 

UPerNet 60 M 

HRNetV2 66 M 

Table 4 

Mean Intersection over Union (mIoU) [%], Pixel Accuracy (PA) [%] and 

Pixel Accuracy per Class (PAC) [%] per model for validation and test 

sets for Task I. 

Model Validation set Test set 

mIoU PA PAC mIoU PA PAC 

UNet 86.7 94.8 92.3 83.7 94.3 89.3 

DeepLabV3 + 85.3 94.8 92 82.6 93.9 88.7 

UPerNet 87.9 95.4 93.2 84 94.2 89.5 

HRNetV2 88.1 95.2 93 84.9 94.2 90 

Table 5 

mIoU per class [%] for test set for Task I. 

UNet DeepLabV3 + UPerNet HRNetV2 

Pupil 94 93.9 93.9 94.2 

Surgical Tape 86.9 84.4 87 88.5 

Hand 85.2 82.4 86 86.5 

Eye Retractors 80.2 81.7 82.6 87.5 

Iris 84.9 84.5 84.6 85 

Skin 70.9 67 68.1 68 

Cornea 93.2 92.8 93 92.7 

Instrument 73.8 74.3 76.4 77 

mIoU (Anatomy) 85.8 84.5 84.9 85 

mIoU (Instruments) 73.8 74.3 76.4 77 

mIoU (All classes) 83.7 82.6 84 84.9 

Table 6 

Mean Intersection over Union (mIoU) [%], Pixel Accuracy (PA) [%] and 

Pixel Accuracy per Class (PAC) [%] per model for validation and test 

sets for Task II. 

Model Validation set Test set 

mIoU PA PAC mIoU PA PAC 

UNet 72.7 94.9 82.8 70.6 94 79.6 

DeepLabV3 + 74.5 94.4 83.3 72.3 93.5 80.8 

UPerNet 79.5 95 86.8 73.8 94.1 82 

HRNetV2 81.8 95.4 88.6 76.1 94.6 83.6 

Table 7 

mIoU per class [%] for test set for Task II. 

UNet DeepLabV3 + UPerNet HRNetV2 

Pupil 93.8 94 94 94 

Surgical Tape 85.3 82.9 87.3 90 

Hand 84.6 83.8 86 86.7 

Eye Retractors 79.8 80.6 86 86.5 

Iris 84.9 84.4 84.9 85 

Skin 69.5 64.8 67.8 72.6 

Cornea 93 92.4 93 93.4 

Cannula 44.5 48.9 50 49.5 

Cap. Cystotome 40.4 55.7 54.5 61.7 

Tissue Forceps 65 70 74 78 

Primary Knife 87 86.1 89.5 89.3 

Ph. Handpiece 74.7 75 77.6 77.9 

Lens Injector 79 78.5 81 82.8 

I/A Handpiece 69.5 74 73.6 75.3 

Secondary Knife 74.7 69 68.2 79.5 

Micromanipulator 51.4 59.3 63.6 64.4 

Cap. Forceps 22.9 28.9 23 27.2 

mIoU (Anatomy) 85.4 83.9 84.9 86.3 

mIoU (Instruments) 60.9 64.6 65.5 68.6 

mIoU (All classes) 70.6 72.3 73.8 76.1 

Table 8 

Mean Intersection over Union (mIoU) [%], Pixel Accuracy (PA) [%] and 

Pixel Accuracy per Class (PAC) [%] per model for validation and test 

sets for Task III. 

Model Validation set Test set 

mIoU PA PAC mIoU PA PAC 

UNet 66.6 94.7 78.9 59.2 93.9 70.5 

DeepLabV3 + 68.6 94.5 79.9 63.2 93.9 75.6 

UPerNet 74.2 95.3 84.7 66.8 94.2 77.8 

HRNetV2 72.4 95.3 83.1 66.6 94.3 77 

Table 9 

mIoU per class [%] for test set for Task III. 

UNet DeepLabV3 + UPerNet HRNetV2 

Pupil 94 93.9 94 94.1 

Surgical Tape 87.2 87.1 87.4 88.9 

Hand 84.5 82.3 85.3 86.4 

Eye Retractors 83.8 82.8 84.2 87.3 

Iris 84.4 84.3 85.1 84.6 

Skin 68.9 68.7 68.5 70 

Cornea 92.9 92.5 93.2 93.1 

Hydro. Cannula 45.6 53.7 54.6 55.2 

Visc. Cannula 39.5 57 57.4 62.7 

Cap. Cystotome 42.1 41.4 58.3 60.6 

Rycroft Cannula 40.8 52 54.5 56.2 

Bonn Forceps 70.7 66.9 76.8 77.2 

Primary Knife 84.1 87.9 90.6 90.5 

Ph. Handpiece 75.7 74.8 77.5 77 

Lens Injector 69.8 72.6 72.9 71.1 

I/A Handpiece 69.5 71.8 71.7 72.9 

Secondary Knife 77.1 79.4 88.6 89.5 

Micromanipulator 55.4 59.7 61.1 64.6 

I/A Handpiece Handle 67.8 72.1 74.5 71.5 

Cap. Forceps 19.7 33.7 40.1 36.3 

R. Cannula Handle 9.8 23.3 33 20 

Ph. Handpiece Handle 56.9 46.8 65.4 60.4 

Cap. Cystotome Handle 28.7 67.7 64.6 54 

Sec. Knife Handle 30.4 29 29.9 42.1 

Lens Injector Handle 0 0 0 0 

mIoU (Anatomy) 85.3 84.8 85.6 86.2 

mIoU (Instruments) 52 58.2 63 62.5 

mIoU (All classes) 59.2 63.2 66.8 66.6 
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5 
e shown as one merged area. In addition, grouping instrument 

lasses mitigates class imbalance while also allows a degree of 

nstrument classification in combination with anatomy segmenta- 

ion. The classes that are merged are: (i) hydrosdissection cannula 

nd handle, viscoelastic cannula, Rycroft cannula and handle and 

harleux cannula as cannula and (ii) Bonn and Troutman forceps 

s tissue forceps while all the other instrument classes were 

erged with their respective handle. It should be noted that the 

nstruments that appear only in the training set and could not 

e merged with another instrument class were ignored during 

raining. The ignored classes are: suture needle, needle holder, 

itrectomy handpiece, marker, cotton, iris hooks and Mendez ring. 

.1.3. Task III 

The third task includes 25 classes as listed in Table 9 . This 

ask allows more granular instrument classification by representing 

ach instrument type and instrument tips and handles as separate 

lasses. The classes that do not appear in all splits and are present 

n less than 5 videos were ignored during training ( Table 2 ). Iden-

ifying all instrument types in the scene gives even more explicit 

nformation about the stage of the surgery. For example, different 

annulas are used in different phases of the procedure. In addition, 

egmenting instrument tips and handles can result to more accu- 

ate information of which part of the instrument interacts with 

he anatomy. Therefore, the third tasks aims at combining anatomy 

nd instrument segmentation while giving the most information 
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4 UNet: https://github.com/milesial/Pytorch-UNet 
5 DeepLab v3+: https://github.com/tensorflow/models/tree/master/research/ 

deeplab 
6 UPerNet: https://github.com/CSAILVision/unifiedparsing 
7 HRNetV2: https://github.com/HRNet/HRNet- Semantic- Segmentation 
bout the procedure itself through identifying the exact type and 

art of the instrument. 

.2. Dataset splits 

The videos are separated into training, validation and test sets. 

he dataset distribution per set is presented in Table 2 . As not all

lasses are present in all videos, we ensured that the videos in the 

raining set include samples from all classes. We split the rest of 

he videos between the validation and test sets so that sufficient 

nstrument instances were present in each set to allow a fair as- 

essment of models across different instrument classes. It should 

e mentioned that, since the split is done on a video basis and 

ot all instruments appear with the same proportion in all videos, 

hat there is an inherent difference in class distribution among the 

hree splits. The distribution of classes in splits could also be done 

n a frame basis for a more uniform class distribution between 

raining, validation and testing. However, dividing frames from the 

ame video across training, validation and test sets was avoided 

s it would result in training and evaluating the model on frames 

rom previously seen videos. The training, validation and test sets 

ontain 3550, 534 (Videos 5, 7 and 16) and 586 (Videos 2, 12 and

2) images respectively. As mentioned in Section 2.5 , the dataset 

s imbalanced since the classes that represent instruments appear 

ess frequently and occupy less pixels per frame than the anatomy 

 Table 2 ). The main problems that are present with imbalance are 

hat it is more challenging to learn and classify less frequent in- 

truments or smaller instruments. 

.3. Metrics 

The metrics that are used to assess the segmentation quality 

re the mean Intersection over Union (mIoU), Pixel Accuracy (PA) 

nd Pixel Accuracy per Class (PAC) and the IoU per class. The for- 

ulations for PA, PAC and mIoU are defined as follows: 

A = 

∑ N 
i =1 p ii ∑ N 

i =1 

∑ N 
j=1 p i j 

, i, j = 1 , . . . , N (1) 

AC = 

1 

N 

N ∑ 

i =1 

p ii ∑ N 
j=1 p i j 

i, j = 1 , . . . , N (2) 

IoU = 

1 

N 

N ∑ 

i =1 

p ii ∑ N 
j=1 p i j − p ii + 

∑ N 
j=1 p ji 

, i, j = 1 , . . . , N (3) 

ere N the number of classes and p i j the number of pixels pre- 

icted as class i and labelled as class j. It is worth noting that the

gnored classes were not taken into account when the metrics are 

alculated. 

.4. Baseline models 

The three tasks are benchmarked on state-of-the-art models to 

rovide a baseline for semantic segmentation models for cataract 

urgery. The models used in the baseline experiments are UNet 

 Ronneberger et al., 2015 ), DeepLabV3+ ( Chen et al., 2018 ), UPer-

et ( Xiao et al., 2018 ) and HRNetV2 ( Wang et al., 2020 ). UNet

as proposed by Ronnenberger et al. for biomedical image seg- 

entation. It has been widely used in the medical community 

ecause of its relatively low number of parameters. DeepLabV3+ 

as introduced as an extension of DeepLab (v2 ( Chen et al., 

017a ) and v3 ( Chen et al., 2017b )) that uses modified Xception

 Chollet, 2017 ) as the encoder and combines it with atrous con- 

olutions with different dilation rates to achieve better contex- 

ual predictions without losing image resolution. The atrous con- 

olution enables DeepLabV3+ to benefit from long-range contex- 

ual information while preserving fine boundary information. In 
6 
his work, MobilenetV2 ( Sandler et al., 2018 ) is used as the back- 

one for DeepLabV3+ in order to use a light-weight version of the 

odel. UperNet uses a pyramid pooling module to make use of 

oth global and local contextual information. To extract and in- 

orporate this information, the model relies on a Feature Pyra- 

id Network to extract features at different scales of the encoder, 

hich allows to build a richer representation by combining in- 

ormation at multiple image scales. Lastly, HRNetV2 attempts to 

reserve high-resolution feature representations by combining fea- 

ures from all scales throughout the encoder and also from parallel 

onvolution streams. The open-source implementations of the net- 

orks were used in all experiments (UNet, 4 DeepLabV3+, 5 Uper- 

et, 6 HRNetV2 7 ). 

.5. Training process 

.5.1. Data pre/post-processing 

Data augmentation was applied prior to model training. The 

ame augmentation was applied for all models. Each training im- 

ge was normalized, flipped, randomly rotated and hue and satu- 

ation was also adjusted. The input images were downsized to 270 

480. No post-processing was performed. 

.5.2. Experiment parameters and setup 

The network weights for UPerNet and HRNetV2 were ini- 

ialized using pre-trained weights on ImageNet ( Deng et al., 

009 ) while for DeepLabV3+ pre-trained weights on Pascal VOC 

 Everingham et al., 2010 ) were used. The networks were trained on 

 system with two NVIDIA GTX 1080 Ti GPUs for 100 epochs. For 

ll models, the Cross Entropy loss function was used with learning 

ate equal to 10 −4 using the Adam Optimizer. The β1 , β2 and ε
alues for the Adam Optimizer were set to 0.9, 0.999 and 10 −8 , 

hich are proposed as good default values for the optimizer in 

 Kingma and Ba, 2014 ). It is noted that default parameters which 

re fair for all models were chosen, rather than optimizing each 

odel’s hyperparameters separately. 

.6. Results 

.6.1. Task I 

The overall mIoU, PA and PAC for the validation and test set 

or all models in Task I are given in Table 4 . In particular, for

natomy segmentation of the test set, UNet presents a mIoU of 

5.8 %, DeepLabV3+ of 84.5%, UPerNet of 84.9% and HRNetV2 of 

5% ( Table 5 ). Similarly for instrument segmentation, UNet gives a 

IoU of 73.8%, DeepLabV3+ 74.3%, UPerNet of 76.4% and HRNetV2 

f 77% ( Table 5 ). 

.6.2. Task II 

The mIoU, PA and PAC for the validation and test set are shown 

n Table 6 . The mIoUs for anatomy segmentation are 85.4%, 83.9%, 

4.9% and 86.3% for UNet, DeepLabV3+, UPerNet and HRNetV2 

espectively ( Table 7 ). For instrument segmentation for Task II, 

he IoUs per class are 60.9%, 64.6%, 65.5% and 68.6% for UNet, 

eepLabV3+, UPerNet and HRNetV2 ( Table 7 ). 

.6.3. Task III 

The results for Task III for the validation and test set are given 

n Table 8 . Including now all tips and instrument handles as sep- 

rate classes, for instrument segmentation the mIoUs for UNet, 

https://github.com/milesial/Pytorch-UNet
https://github.com/tensorflow/models/tree/master/research/deeplab
https://github.com/CSAILVision/unifiedparsing
https://github.com/HRNet/HRNet-Semantic-Segmentation
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Fig. 3. Example frames with reference segmentation mask and model predictions for Task I. The top row presents a representative case for all models, while middle and 

bottom row depict two failure cases for all models. (Colormap: Pupil, Iris, Cornea, Skin, Surgical tape, Eye retractors and Instrument). 

Fig. 4. Example frames with reference segmentation mask and model predictions for Task II. The top row presents a representative case for all models, while middle and 

bottom row depict two failure cases for all models. (Colormap: Pupil, Iris, Cornea, Skin, Surgical tape, Eye retractors, Cannula, 

Tissue forceps, Capsulorhexis forceps, Secondary knife, Micromanipulator and Phacoemulsification handpiece). 
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eepLabV3+, UPerNet and HRNetV2 are 52%, 58.2%, 63% and 62.5% 

espectively ( Table 9 ). For anatomy segmentation, the IoUs per 

lass are similar to the previous tasks ( Table 9 ). 

.7. Discussion 

.7.1. Task I 

The mIoU for all models of Task I is comparable for the seg- 

entation into 8 classes, with HRNetV2 presenting the highest 

IoU and DeepLabV3+ the lowest for both validation and test sets 

 Table 4 ). The small differences in the mIoU between the models is 

ecause the imbalance among the classes is reduced by represent- 

ng all instruments with one class. Therefore, since this experiment 

xcluded instrument classification, it focused on scene segmenta- 

ion. Fig. 3 (top row) shows a representative frame for this task, as 

n most frames all models performs well. Failure cases for this task 

nclude missed instruments tips as for the tip of the instrument in 

ig. 3 (middle row) and inaccurate segmentation as for the han- 

le of the instrument in Fig. 3 (middle row) and the forceps in 

ig. 3 (bottom row). 

.7.2. Task II 

The differences among the networks for simultaneous anatomy 

egmentation and multiple instrument segmentation are more vis- 

ble as the number of classes increases. ( Table 6 ). It can be seen

hat all networks achieve a high mIoU for large classes, such as 
7 
he anatomical classes and instrument classes that are represented 

y large number of pixels ( Table 7 ). For the instrument classes that 

ppear in the test set, UNet has the lowest mIoU with 60.9% and 

RNetV2 the highest with 68.56%. It is worth noting that finer 

nstruments, such as the cannula and the micromanipulator have 

ow IoUs ( Table 7 ). This is because part of these instruments might 

e missed by the segmentation model, especially when they have 

een inserted in the anatomy. A representative frame that shows 

ow finer instrument segmentation is more challenging for some 

f the models is depicted in Fig. 4 (top row). A failure cases for 

ll models is shown in Fig. 4 (bottom row) where large part of 

he cannula has not been segmented by all models. These cases 

re also evident in the confusion matrix for HRNetV2, as it is 

hown that for example the cannula has also been segmented as 

ither pupil or cornea ( Fig. 6 ). Another failure case across models is 

patially inconsistent instrument classification, where parts of the 

ame instrument has been classified as different types, particularly 

etween visually similar instruments ( Fig. 4 - middle row). Simi- 

arly, this is also shown in the confusion matrix where the capsu- 

orhexis forceps has been also classified as Bonn forceps. 

.7.3. Task III 

The mIoU per class given in Table 9 shows that the instrument 

ips and handles are classified with varying degrees of accuracy. 

 representative case for all models is shown in Fig. 5 (top 

ow) which shows how sensitive each model is to inconsistent 
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Fig. 6. Confusion matrix for HRNetV2 on test set of Task II. 

Fig. 5. Example frames with reference segmentation mask and model predictions for Task III. The top row presents a representative case for all models, while middle and 

bottom row depict two failure cases for all models. (Colormap: Pupil, Iris, Cornea, Skin, Surgical tape, Eye retractors, Viscoelastic 

cannula, Rycroft cannula, Rycroft cannula handle, Secondary knife handle, Capsulorhexis cystotome, Micromanipulator, I/A handpiece and 

I/A handpiece handle). 
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nstrument classification and accurate segmentation. The main 

ailure cases that are present in this task are spatially inconsistent 

nstrument classification ( Fig. 5 (middle row)) and missed parts 

f instruments ( Fig. 5 (bottom row)). It is worth noting that these 

ssues also appear in task II but to a lesser degree as task II seg-

ents the scene into fewer classes. In particular, in Fig. 5 (middle 

ow), it can be seen that parts of the same instrument have been 

lassified as multiple types of instruments (rycroft and viscoelastic 

annula for the instrument tip and rycroft cannula handle and 

econdary knife handle for instrument handle in the middle row). 
8 
.7.4. All tasks 

In conclusion, the main challenges for the presented dataset 

cross tasks and for all models are spatially consistent instrument 

lassification and accurate segmentation of finer instruments, es- 

ecially when instruments have been inserted into the anatomy. 

There is a consistent difference between the mIoU for the vali- 

ation and test sets as can be seen in Tables 4, 6 and 8 . This can

e explained by the distribution of class instances in each set, de- 

pite the attempt to have a similar distribution of instances at each 

et of videos, there is a variance in the distribution of instrument 
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lasses. This justifies further the choice of ignoring classes that do 

ot have sufficient instances in the test set and are not present in 

he validation set. 

Overall, DeepLabV3+, UPerNet and HRNetV2 achieve higher 

IoU for instrument segmentation and classification than UNet 

 Tables 5, 7 and 9 ). In particular, UNet achieves a mIoU over 85%

or anatomy segmentation in all tasks but gives a lower mIoU at 

nstrument segmentation and classification. As mentioned, this dif- 

erence in performance is smaller when the type of instrument 

oes not need to be identified ( Table 5 ) but is more evident when

nstrument classification is performed ( Tables 7 and 9 ). UPerNet 

nd HRNetV2 have the higher mIoU at simultaneous anatomy seg- 

entation and instrument classification. It is also worth noting 

hat DeepLabV3+ was trained using a MobileNetV2 backbone. This 

as to assess the performance of a light-weight version of the 

etwork. It performs more accurate instrument segmentation than 

Net as the mIoU for instrument classes for all tasks highlights 

 Tables 5, 7 and 9 ). 

. Conclusions 

Semantic segmentation of a surgical scene can improve under- 

tanding of the workflow of a surgical procedure and is crucial 

or intra-operative image guidance. In this paper, we present a 

ataset for semantic segmentation of images from cataract surgery 

rocedures. The dataset consists of 4670 labelled images, which 

re sampled from the training set of the CATARACTS challenge 

ataset. The dataset labels include 36 classes and, in particular, 

our classes describing anatomical structures, 29 surgical instru- 

ent classes and three classes for other objects appearing in the 

urgical scene. The statistics presented for the dataset illustrate 

hat the dataset is imbalanced, as the surgical instrument classes 

ppear less frequently and are represented by fewer pixels com- 

ared to the anatomy classes. Three tasks were performed using 

he UNet, DeepLabV3+, UPerNet and HRNetV2 deep learning mod- 

ls. Each task presents different groups of instrument classes in 

rder to assess the effect of simultaneous instrument classifica- 

ion on the segmentation output. It was shown that the four net- 

orks perform similarly for a relatively small number of classes 

ith comparable number of pixels, addressing the imbalance issue. 

s the number of classes increase, HRNetV2 and UPerNet perform 

etter in simultaneous anatomy segmentation and instrument clas- 

ification than DeepLabV3+ and UNet, as HRNetV2 and UPerNet 

ave a larger receptive field and are more capable of segmenting 

ner features. The mIoU per class metric reveals that UNet per- 

orms well in segmenting large areas such as the anatomical struc- 

ures while DeepLabV3+, UPerNet and HRNetV2 provide more con- 

istent instrument segmentation and classification in all performed 

asks. Overall, the open challenges of the dataset are spatially con- 

istent instrument classification, where parts of the same instru- 

ent can be classified as different types, and accurate segmenta- 

ion of instruments, particularly when inserted into the anatomy. 

he aim of introducing a dataset for semantic segmentation in 

ataract surgery is to facilitate further development of computer- 

ssisted strategies for image guidance. 
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