
Copy-number aware methylation
deconvolution analysis of cancers

Elizabeth Larose Cadieux

University College London

and

The Francis Crick Institute

A thesis submitted for the degree of

Doctor of Philosophy

University College London

PhD Supervisors: Dr. Peter Van Loo and Prof. Stephan Beck

March 28, 2021



2

Declaration

I, Elizabeth Larose Cadieux, confirm that the work presented in this thesis is

my own. Where information has been derived from other sources, I confirm that

this has been indicated in the work.

The copyright of this thesis rests with the author and no quotation from it or

information derived from it may be published without proper acknowledgement.



Abstract

DNA methylation has long been known to play a role in tumourigenesis. To

this day, interpretation of bulk tumour bisulphite sequencing data has been ham-

pered by normal contamination levels and tumour copy number. To address this

issue, we develop two computational tools: (1) ASCAT.m, which allows Allele-

Specific Copy number Analysis of Tumour methylation data directly from bulk tu-

mour reduced representation bisulphite sequencing (RRBS) data and (2) CAMDAC,

a method for Copy Number-Aware Methylation Deconvolution Analysis of Cancer,

from bulk tumour and adjacent normal RRBS data.

We describe a set of rules to compute allelic imbalance independently of bisul-

phite conversion and correct normalised read coverage estimates for sequencing

biases. We apply ASCAT.m to non-small cell lung cancers from the epiTRACERx

study with multi-region bulk tumour RRBS and adjacent normal. ASCAT.m geno-

types, allele-specific copy numbers and tumour purity and ploidy estimates are in

excellent agreement with those obtained from matched whole-exome and a subset

of whole-genome sequencing of the same samples. We observe a correlation be-

tween whole-genome doubling and relapse-free survival in lung squamous cell car-

cinoma but not in adenocarcinoma. We see widespread genomic instability across

both histological subtypes.

We model bulk tumour methylation rates as a mixture of tumour and normal

signals weighed for tumour purity and copy number and formalise this relationship

into CAMDAC equations. The errors between predicted and observed methyla-

tion rates were low. Normal infiltrates Fluorescence-activated cell sorting (FACS)-

purified from the bulk tumour were similar in composition to the adjacent matched
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normal lung, suggesting the latter is a suitable proxy for deconvolution. Single nu-

cleotide variant (SNV)- and FACS-purified tumour methylation rates are in good

agreement with CAMDAC deconvoluted estimates. Purification successfully re-

moves shared normal signal, decreasing correlations between patients and to normal

after purification. Samples with shared ancestry remain highly correlated.

Purified methylation rates yield accurate tumour-normal and tumour-tumour

differential methylation calls independent of tumour purity and copy number. We

find hundreds of ubiquitously early clonal gene promoter epimutations across the

epiTRACERx cohort, showcasing the potential of DNA methylation markers for

early cancer detection. CAMDAC purified profiles reveal both phylogenetic and

inter-tumour relationships as well as provide insight in tumour evolutionary history.

Quantifying allele-specific methylation on chromosome X in females, we un-

cover extraction biases against the Barr body. X inactivation is random at the scale

of our normal lung cancer samples. Phasing of methylation rates with polymor-

phisms confirms the presence of allele-specific methylation at the H19/IGF2 locus.

Loss of imprinting is observed in 5 tumours, all involving demethylation of the ma-

ternal allele. We attempt to quantify the ratio of clonal allele-specific to bi-allelic

epimutations in tumours in regions of 1+ 1, which we define as regulatory and

stochastic methylation changes, respectively. Utilising this ratio, we try to extract

the number of stochastic epimutations in regions of 2+0 with copy numbers 1 and

2 and time those copy number gains.

We find that SNVs at gene promoters often lead to hypermethylation of neigh-

bouring CpGs on the same copy or allele, suggesting the ablation of a transcription

factor binding site. Non-expressed neo-antigen are enriched for promoter hyperme-

thylation, indicating methylation plays a role in immune escape.

To conclude, CAMDAC purified methylation rates are key to unlock insights

into comparative cancer epigenomics and intra-tumour epigenetic heterogeneity.
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In this work, we present a cohort of 38 non-small cell lung cancer patients

with multi-sample reduced representation bisulphite sequencing, totalling 122 tu-

mour and 37 adjacent normal samples. Lung cancer causes the largest proportion

of cancer-related death and this dataset could provide unprecedented insights into

the non-small cell lung cancer methylome. However, bulk tumour methylation se-

quencing data is convoluted by normal cell contamination, tumour purity and copy

number. This is particularly relevant in lung cancers, which have lower purities than

most other cancer types on average.

To address this issue, we first develop a computational method for obtaining

allele-specific copy numbers and tumour purity estimates directly from RRBS data,

ASCAT.m. For the first time, we formalise the relationship between methylation

rates, tumour purity and copy number into the core CAMDAC equations.

Crucially, only CAMDAC purified methylation profiles enable accurate differ-

ential methylation analysis, and as such, we find hundreds of early clonal promoter

epimutations present in virtually all non-small cell lung cancer samples, showcasing

the immense potential DNA methylation sequencing data for diagnostic purposes.

Early detection has significant implications on patient outcome in non-small cell

lung cancer, with the 5-year survival decreasing from 70% to below 15% between

cases diagnosed in stage I versus II and above, respectively. We discuss plans to

apply CAMDAC to more samples from the TRACERx study recently sent for se-

quencing to gain deeper insight into methylation biomarkers of non-small cell lung

cancer.
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Throughout this work, we showcase the possibilities unlocked by tumour

RRBS data. We demonstrate that CAMDAC purified profiles reveal both phylo-

genetic and inter-tumour relationships as well as provide insight in tumour evolu-

tionary history. We show that it is possible to study the interplay between somatic

mutations and epimutations and namely that DNA methylation plays a role in sup-

pressing neo-antigen presentation.
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Chapter 1

Introduction to the cancer methylome

1.1 DNA methylation and transcription
Epigenetics is the study of inheritable DNA modifications that allow cells

to acquire specialised phenotypes without altering their DNA sequence. There

are two types of epigenetic inheritance: mitotic inheritance, which is well stud-

ied and applies to this thesis, and meiotic inheritance, which is less well studied

and controversial in humans [1]. DNA methylation is an important epigenetic

mark. Six different methylation modifications are currently known of which co-

valent modification at carbon 5 of cytosine (C) is the most common, resulting in

5-methylcytosine (5mC) [2]. Cytosine methylation was first reported in the tuber-

culosis bacterium [3]. Decades later, interest in DNA methylation spiked after 5mC

was observed in mammalian cells [4] and evidence of its role in gene regulation was

uncovered, namely thanks to the observation of methylation-driven chromosome X

inactivation in females [5–7].

Indeed, the importance of methylation in mammalian gene regulation is par-

ticularly striking when looking at X inactivation, the process by which gene dosage

compensation is achieved in females involving widespread methylation of one chro-

mosome X copy [8]. On a smaller scale, genomic imprinting also leads to allele-

specific expression, by methylation of one parental allele at a number of genes loci

across autosomes [9, 10]. Loss of imprinting is associated with several diseases,

including cancer [11].
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Specifically, methylation regulates gene expression by either (1) recruiting

methyl-CpG binding domain proteins (MBDs) which themselves promote histone

deacetylases (HDACs) activity leading to a closed chromatin state [12] and late

replication timing [13, 14], or, (2) through increased steric hindrance at transcrip-

tion factor binding sites (TFBSs, [15], Figure 1.1). The former mechanism is

widespread in the human genome despite requiring several epigenetic modalities

working in synergy. Early experiments showed that genes methylated in vitro were

not immediately silenced by methylation but rather indirectly inhibited after a short

period of time during which the genomic region adopted a closed chromatin struc-

ture [16,17]. The second mechanism is thought to be more dynamic and reportedly

gives rise to tissue-specific, cell state- and, perhaps unsurprisingly, disease-specific

methylation.

While methylation usually leads to gene silencing, it is worth noting that

demethylation of promoters does not necessarily equate to increased expression of

associated genes. Other factors must also be met to induce gene expression such

as availability of the necessary transcription factors, nucleosome depleted TFBSs

and active transcription marks on neighbouring histones such as H3 and H4 acy-

lation and H3K4 (tri)methylation [18]. Linker histone H1 (not depicted) is less

well-studied but is thought to play an important role in modulating chromatin ac-

cessibility [19].

1.2 Measuring genome-wide CpG methylation

In adult mammalian cells, DNA methylation occurs almost exclusively in CpG

context [20]. The first approach to measure DNA methylation levels took advantage

of CpG methylation-sensitive restriction enzymes [21]. This technique enabled re-

searchers to study genome-wide methylation levels, albeit limited to CpG loci at

the enzyme recognition sequences. With the advent of next generation sequencing,

whole genome bisulphite sequencing (WGBS) was developed and allowed assess-

ment of methylation levels at every CpG and at single base pair resolution [22]. In

WGBS, input DNA is typically treated with sodium bisulphite prior to sequenc-
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ing, oxidising unmethylated Cs to uracil (U) with high conversion rate (under-

conversion rate ruc <1%) and leaving 5mC virtually unscathed (over-conversion

rate roc ∼4%, Figure 1.2) [23–25].

Figure 1.1: Epigenetic marks determine chromatin architecture and regulate
transcription.
Eukaryotic DNA resides in the nucleus and exists in the form of chromatin. In the hu-
man genome, DNA is condensed into 23 diploid chromosomes, 22 autosomes and one of
each X and Y sex chromosomes in males while females have 2 copies of X and none of
Y. Within chromosomes, DNA is wrapped around nucleosomes, each made up of 8 his-
tone sub-units, 2 of each H2A, H2B, H3 and H4. Methylation of cytosines and of certain
histone residues, usually tri-methylation of H3K9 or H3K27, promote a repressive hete-
rochromatin state. In comparison, acetylation of these same residues combined with DNA
demethylation enables binding of transcription factors and, if the latter are available, may
result in RNA polymerase activity. Transcription may be stimulated by cis-regulatory ele-
ments such as nearby enhancers.

After bisulphite conversion of unmethylated Cs into Us, their guanine (G)

double-strand partners are left unchanged, which means the forward and reverse

strands are no longer complementary. Post-polymerase chain reaction (PCR), four

possible products are therefore obtained, one for each of the original strands and

their new complements, with Us converted into thymines (T). At this stage, an un-

methylated CpG locus could generate four different dinucleotides read-outs from

either the original top, original bottom or their new complements, TG(+), GT(-

), AC(-) and CA(+), respectively (Figure 1.2). Base read-outs are reported in

terms of the forward strand and so GT(-) is catalogued as CA(-). At methylated

CpG sites, cytosines are unaltered by bisulphite conversion and so only CG(+) and

CG(-) are generated. Methylated read adaptors are often used to generate direc-

tional libraries as they enable selective sequencing of both the original strands while
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discarding the complements. Dinucleotide outputs from directional bisulphite se-

quencing at unmethylated or methylated CpGs will be TG(+) and CA(-) or CG on

both strands respectively. Assuming the absence of heterozygous single nucleotide

polymorphisms or variants, the methylation rate is easily computed by compiling

dinucelotide counts, dividing CG counts by the total number of reads supporting any

of the four methylation informative dinucleotides (i.e. TG(+), CA(-), CG, [26]).

Figure 1.2: Directional bisulphite sequencing dinucleotide read-out at CpGs.
Expected dinucleotide products from directional bisulphite sequencing data at unmethy-
lated (top) and methylated (bottom) CpGs. Bisulphite conversion oxidises unmethylated
Cs into Us leaving its methylated counterpart unaltered. Over- and under-conversion rates
may lead to erroneous read counts and are depicted as a grey or red dashed line, respec-
tively, each accompanied by reported estimates. At unmethylated CpGs, bisulphite conver-
sion leads to base pair mismatch which results in four different PCR products, the original
top (OT+), original bottom (OB-), and their complements. Thanks to directional sequenc-
ing adapters, only the original strands are sequenced. OT+ dinucleotides are reported as is
whilst the OB- bases are catalogued as their reverse complement, (i.e. GT- becomes CA-
and GC- becomes CG+).

Developed a decade or so later, methylation microarrays quickly rose in popu-

larity as a considerably cheaper alternative to WGBS. As part of this protocol, bisul-

phite treated and PCR-amplified DNA is hybridised onto arrayed oligonucleotides

probes each marking a regions of interest for a subset of CpGs, leveraging fluores-

cent labels that can discriminate between C and 5mC alleles [27, 28]. Bisulphite

sequencing approaches have become the gold standard, but methylation arrays are

still in use to this day. Despite plummeting sequencing costs in recent years, the

shift from microarrays to sequencing has been slow, namely due to lack of avail-

ability of bioinformatics analysis tools compatible with bisulphite sequencing data.
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Figure 1.3: NuGEN Ovation RRBS protocol.
(A) DNA extraction is followed by MspI digestion leaving a 2bp overhang. Only the 5′

CCGG remains methylation informative after fragment end-repair. Note that a sequence
of 0 to 3 bases is added to each library molecule in order to avoid clustering issues during
sequencing. Adapter ligation and bisulphite conversion follow. Library amplification and
sequencing is implied but not shown here. (B) NuGEN Ovation libraries include an inte-
grated molecular tag (N6) that enables removal of duplicate reads from the dataset after
PCR and barcode enables multiplexing up to 16 different samples per flow cell, both of
which are 6 nucleotide in length. A custom forward primer enables directional sequenc-
ing of the original top and bottom strands while standard Illumina sequencing primers are
used for the reverse and index reads.

Reduced representation bisulphite sequencing (RRBS) [29–32] is raising in

popularity compared with WGBS since it requires smaller input quantities (10-

300ng versus 5µg) and has lower sequencing costs (≥10 million versus >500 mil-

lion reads) [31, 33]. RRBS gives a read out of ∼2 million CpGs, more than twice

the number covered by the most recent Illumina EPIC array (Reviewed in [34]).

RRBS relies on restriction enzymes such as MspI (CˆCGG recognition motif) to

digest DNA into fragments that are enriched for CpG dinucleotides (Figure 1.3).

Contrary to whole-genome bisulphite sequencing (WGBS) [35], every fragment

produced by MspI digestion contains information for at least one CpG per single

end read. RRBS has been used to identify novel parental imprinting loci [36], to

study embryogenesis [37, 38], cell differentiation [39] or tumour biology [40]. In

addition, reference DNA methylation profiles for a variety of cell types have been

constructed from RRBS data [41].
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1.3 CpG Island methylation and gene regulation

Bisulphite sequencing and microarray technologies have enabled researchers

to gain a deeper understanding of genome-wide DNA methylation patterns. In hu-

mans, 70-80% of CpGs motifs are methylated, most of which are scattered across

the repetitive genome [42,43]. A large fraction of the remaining CpGs are found in

high density clusters called CpG Islands (CGIs), shores (±2kb around islands) and

shelves (±3kb around shores). CGIs often overlap gene promoters and enhancers

and are usually unmethylated irrespective of gene expression levels [44]. As pre-

viously mentioned, several other factors must be met, in addition to demethyla-

tion, to activate gene expression. However, methylation of promoter- or enhancer-

associated CGIs, either on its own or in concert with repressive histone modifica-

tions, is correlated with gene silencing. Interestingly, housekeeping gene promoters

are enriched for CGIs [45]. Because MspI digestion is biased for these CpG-rich

regulatory regions [29, 46] and also targets a number of CGI shores, exons, 3′ and

5′ untranslated regions (UTRs) and repetitive elements [47], RRBS is particularly

well suited to study methylation with respect to gene regulation.

1.4 DNA methylation machinery: introducing key

enzymes

Whilst the methylome of a healthy differentiated cell is relatively stable, it

undergoes complete reprogramming in early embryogenesis [37, 38, 48, 49]. After

genome-wide chromatin activation, DNA methylation and histone repressive marks

both need to be re-established quickly, particularly in the repetitive genome to keep

transposable elements (TEs) in check and protect cells against hijacking by endoge-

nous viral DNA [50, 51]. This is crucial as 45-50% of the human genome encodes

TEs such as endogenous retroviruses (ERVs), long interspersed nuclear elements

(LINEs) and short interspersed nuclear elements (SINEs) [52,53]. Mutations affect-

ing the DNA methylation machinery have been observed in cancer and are known

to disrupts normal epigenetic programmes.
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DNA methyltransferases (DNMTs) are a class of enzymes responsible for

DNA methylation maintenance post-replication as well as during de novo methyla-

tion. DNMT1 is the main enzyme tasked with re-establishing symmetrical methyla-

tion at hemimethylated CpGs following DNA replication in S-Phase [54]. DNMT3C

protects sperm DNA from retrotransposons activity by methylating repeats irrespec-

tive of the germline or offspring methylation state [55]. DNMT3A and B are best

known for their role in de novo methylation namely during embryonic development.

They are the principal enzymes regulating CpG (re)methylation after widespread

genome activation.

Epigenetic reprogramming is a tightly regulated multilayered process involv-

ing methylation. DNA methylation is implicated in repression of transposable el-

ement in later stages of embryogenesis whilst repressive histone post-translational

modifications are necessary for early silencing as shown in vitro in DNMT3A and

B double knockouts embryonic stem cells [56]. In the newly fertilised mammalian

embryo, retrotransposons are silenced by KRAB-Zinc Finger Proteins (KZFP) that

bind to methylated DNA thereby recruiting a repressive chromatin complex via

KAP1/TRIM28 interaction which ultimately results in both cytosine and histone

H3K9 trimethylation [57]. Loss of methylation is prevented at imprinted loci

through the same KZFP-dependent mechanism. In contrast, variably methylated

Intracisternal A Particle Long Terminal Repeats (IAP LTRs) are not perpetuated

across generations but rather through context dependent de novo methylation by

DNMTA/B, such as CTCF binding site proximity [58]. The methylation level of

IAP LTR harbouring promoter regions can influence the expression of nearby genes.

For example, IAP methylation leads to Avy (agouti viable-yellow) ectopic gene ex-

pression in the mouse and visible phenotypic consequences ensue, in the form of

variable coat colour.

In vitro experiments have shown that DNMT1 has high affinity for hemimethy-

lated DNA successfully converting ∼99.7% of hemimethylated loci. Nevertheless,

this means roughly 3 in 1000 methylated CpG dinucleotides will lose methylation

after each cell division [59]. DNMT1 errors rarely result in gain of methylation, but
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when they do, a preference for methylation at CCGG motifs is observed, at least in

healthy cells. The error rate as measured between generations in healthy plant cells

showed a 3-fold higher loss than gain of methylation with respect to the founder

generation, 2.56× 10−4 and 6.30× 10−4 respectively [60]. Gain of methylation

was 25 times more likely than demethylation at transposable elements, suggesting

either selection forces at play or an alternative methylation maintenance mechanism

for the repetitive genome.

Ten-eleven translocation (TET) family of dioxygenases (TET1, 2 and 3) play a

role opposite to that of DNMTs (Figure 1.4), catalysing the step-wise oxidation of

5mC into 5-hydroxymethylcytosine (5hmC) [61], 5-formylcytosine (5fC) and sub-

sequently 5-carboxylcytosine (5caC) [62, 63]. These oxidised 5mC derivatives are

no longer recognised by DNMT1 leading to loss of methylation upon DNA replica-

tion [64]. In some cases, 5mC sites are missed by the methylase creating a transient

hemi-methylated loci which, in the absence of further errors, should regain sym-

metrical methylation following replication in the next cell cycle. Demethylation

may also occur through thymine DNA glycosylase (TDG)-mediated base excision

repair [65]. In vitro experiments suggest that DNMTs can catalyse the dehydrox-

ymethylation 5hmC and decarboxylation of 5caC into C [66].

1.5 Cancer, a disease of the (epi)genome

Epigenetic mutations or ’epimutations’, including aberrant DNA methylation

and chromatin architecture alterations, are now acknowledged as a universal feature

of cancer development [67–69]. Healthy cells accumulate (epi)mutations through-

out their lifetime [70–72] and while most have no effect, a small subset may provide

a selective advantage for the cell [73]. A cell may eventually acquire a fully ma-

lignant phenotype following successive gains of hallmark cancer cellular capabili-

ties [74], while continuing to evolve in response to environmental pressures [75].

The cancer methylome will display characteristic of its cell of origin, with

varying degree of somatic DNA methylation changes [76, 77]. Global hypomethy-

lation has long been known to occur in cancer cells [78], destabilising the genome
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Figure 1.4: An overview of cytosine modifications in mammals.
Cytosine nucleotides can be methylated at the 5′ carbon position on the pyrimidine ring.
This modification is catalysed by DNMTs. Passive demethylation of methylated cytosines
is a slow process but is known to accumulate with ageing and can result in loss of methy-
lation. In addition, TET-assisted oxidation of 5mC into 5hmC, 5fC or 5caC leads to cy-
tosine demethylation upon replication, DNMT-driven decarboxylation or through TDG-
mediated base excision repair.

namely by reactivation of the repetitive genome [79]. Hypomethylation at cen-

tromeres specifically favours aneuploidy [80]. Recent reports suggest these ef-

fects are the results of long range hypomethylation blocks rather than individual

hypomethylated CpGs, as described in colon cancer [81]. Aberrant gain of methyla-

tion usually operates on a smaller scale, silencing individual promoter- or enhancer-

associated CGIs. Gene promoter hypermethylation-driven tumour suppressor deac-

tivation was first reported in cancer cells at the VHL and CDKN2/p16/MST1 lo-

cus [82–84] and has since been reported at a number of genes across cancer types.

Hence, DNA methylation profiles can provide useful information on (disease) cell

states and could become powerful biomarkers [85–87].

The Cancer Genome Atlas (TCGA) and the International Cancer Genome Con-

sortium (ICGC) have revealed recurrent somatic aberrations and their clonality for

the majority of known cancer types [88, 89]. In comparison, the cancer methylome

is considerably less well charted. This is likely due to complexity of interpreting

bulk tumour methylation data, which is confounded by somatic copy number alter-

ations (CNAs) and admixed normal cells, and the lack of computational methods to

correct for these effects in downstream tumour differential methylation analyses.
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Tumour-normal differential methylation can arise due to (1) error-prone DN-

MTs activity, (2) aberrant transcription factor activity, (3) spontaneous deamination

of methylated CpGs and (4) coupled TET- and TDG-mediated demethylation of

5mC oxidation products into apyrimidinic sites [65] in cancer cells with deficient

base excision repair [90]. Stochastic differentially methylated positions (DMPs)

and CG-destroying/-forming single nucleotide variants (SNVs) should be inherited

unless back-mutated. Altering the tumour genetic sequence is non-reversible under

the infinite sites assumptions, which states that the human genome can be consid-

ered infinite and thus the probability of a given base being mutated twice is zero.

Infinite site assumptions violation should be rare, albeit more common than for

point mutations due to relatively higher (epi)mutation rate. Regulatory-driven dif-

ferentially methylated regions (DMRs) are likely to be dynamically methylated in

response to signalling, also violating the assumption and further complicating tu-

mour phylogeny reconstruction.

Popular DMP and DMR calling methods for bisulphite sequencing data have

been reviewed in recent articles by either Hebestreit and Klein [91] and Robinson

et al. [92]. Methylation rates at C>T mutations in CpG context are confounded

by the variant allele, which is indistinguishable from the bisulphite-converted un-

methylated base. We note that C>T SNVs are enriched at CpGs, both in cancer and

normal cells [93].

1.6 Sources of intermediate methylation in bulk tu-

mour data
Cancer cells are constantly evolving in response to selective pressures from

the environment in which they exist, fuelled by the activity of various mutational

processes [94]. Darwinian selection and clonal expansion of the fittest cells cre-

ates subclones and moulds the landscape of intra-tumour heterogeneity (ITH, Fig-

ure 1.5, left). Subclonal epimutations can be detected given they are present in a

large enough cancer cell fraction (CCF) and depending on tumour purity and copy

number. Cell-type heterogeneity within the admixed normal cell populations can
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also give rise intermediate tumour DNA methylation levels due to cell type specific

methylation (Figure 1.5, middle left [95–97]), although this effect is presumably

limited at sufficiently high tumour DNA content. Potential sources of intermedi-

ate methylation also include allele-specific methylation at germline imprinted loci

or allele-specific somatic DNA methylation alterations (Figure 1.5, middle right).

Lastly, DNA methylation erosion can lead to intermediate methylation (Figure 1.5,

right). This occurs as part of healthy ageing, but the process is accelerated in rapidly

replicating cancer cells.

Figure 1.5: Potential sources of intermediate DNA methylation levels.
Sources of intermediate methylation (top) and example bulk methylation rate distribu-
tion (bottom). Circles indicate the methylation state at a given loci formed of one or more
neighbouring CpGs. This could represent an individual intragenic CpG or a CGI.

1.7 Capturing DNA methylation intra-tumour het-

erogeneity
DNA methylation ITH has been reported by independent research laboratories

[98–100], but its role in tumour evolution and its impact on patient outcome both

remain unclear. At present, methods to quantify ITH from bisulphite sequencing

data [40, 101–103] assume low normal contamination levels and/or the absence of

copy number alterations.
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Heterogeneity metrics are reviewed in Scherer et al. [104] including the popu-

lar proportion of discordant reads (PDR [40]), a measure of intra-molecular hetero-

geneity. Individual reads are classified as either concordant (i.e. fully methylated or

unmethylated) or discordant (i.e. partially methylated) and the PDR is calculated as

PDR =
countsdiscordant

countsdiscordant + countsconcordant
. This method relies on the assump-

tion that neighbouring CpGs normally display concordant methylation which is lost

either due to DMPs or DNA methylation erosion in tumours. Alternatively, one

can compute the methylated haplotype load (MHL, [105]), a weighted mean of the

fraction of fully methylated haplotypes and its substrings of 2 of more CpG loci.

Subclonal differential methylation need not be locally discordant to be captured by

the MHL from bulk data. In any case, both scores are affected by variations in

tumour purity and copy number.

Although less well-known, the Bayesian epiallele detection (BED) approach

seems a promising method to evaluate methylation ITH [106]. An epiallele is de-

fined as a sequence of n CpG sites on one read molecule for which there are 2n

possible methylation patterns. Epialleles may be compared between overlapping

reads and epiallele frequencies can be calculated. BED estimates the underlying

number of epialleles using the Bayes information criterion (BIC), accounting for

experimental noise and preventing the model from inferring too many epialleles

unless the evidence is sufficiently strong. Epialleles obtained from tissue-matched

normal can be used as a proxy for the normal contaminating cells and based on

this the authors determine tumour purity and extract purified tumour epialleles. A

more accurate method would require consideration of both tumour purity and copy

number.

1.8 Reconstructing tumour phylogenies

When reconstructing tumour evolutionary histories, accurate estimates of tu-

mour purity and copy number are critical [107]. First, the ratio of cancer cells

carrying a mutation, referred to as the cancer cell fraction (CCF), is extracted from

the variant allele frequencies (VAF) taking care to correct for local copy number
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and the aberrant cell fraction. In turn, we can use the distribution of mutations in

CCF space in a given tumour sample to infer the underlying subclonal architecture.

This distribution usually has a peak at CCF = 1, which corresponds to the most

recent common ancestor shared by all tumour cells while peaks at lower CCF are

attributed to subclonal populations of cells. Clustering of subclonal mutations is

possible with various algorithms. Individual mutations are assigned a probabilis-

tic cluster assignments from which phylogenetic trees can be inferred. Subclobal

reconstruction algorithms include but are not limited to DPClust [107], Phylog-

icNDT [108], PhyloWGS [109], PyClone [110]. These and 7 other methods are

described and compared in Dentro et al. [111]. Whilst these fantastic tools enable

researchers to uncover the genetic evolutionary history of tumours from subclonal

copy number and single nucleotide variant information, they offer no epigenomic

information and are not compatible with methylation data. Bisulphite sequencing

experiments yield genomic and epigenomic data and therefore have the potential to

deepen our understand of the interplay between these two components throughout

tumour evolution.

1.9 Multi-sample studies

While tumour subclones present at large enough cancer cell fractions can be

detected within single biopsies as above-described, the illusion of clonality can

occur when spatially segregated tumour subclones do not overlap with the sin-

gle sampled region. Multi-region sequencing dataset address this caveat and are

therefore particularly powerful for ITH investigations. For example, analyses of

the first 100 patients from the Tracking Non–Small-Cell Lung Cancer Evolution

through Therapy (TRACERx) prospective cohort study (Funded by Cancer Re-

search UK and others; TRACERx, ClinicalTrials.gov number, NCT01888601), also

called the TRACERx100 cohort, suggest that without the use of multi-region WES,

65% of branched subclone clusters would have been (erroneously) classified as

clonal [112]. They were able to identify that, whilst most driver mutations were

clonal (EGFR, MET, BRAF and TP53), others like PIK3CA and NF1 were often
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subclonally aberrated, a relevant observation that could influence treatment choice.

The study involving various hospitals, universities and research institutes across

the UK began recruitment back in 2014 and aims to enrol around 850 NSCLC pa-

tients in stages IA through IIIA and perform high-depth, multi-region WES for

each surgically resected tumour [113]. Multi-omics data, including RNA sequenc-

ing and RRBS data has been obtained for a subset of samples and more sequencing

is under way. The main objective of the study is to investigate potential correla-

tion between measures of intra-tumour heterogeneity and clinical outcome. One of

the major reported findings was that subclonal copy number heterogeneity is nega-

tively correlated with disease-free survival, while SNV clonality does not correlated

with outcome. Whether or not DMP clonality is prognostic in NSCLC is unknown.

A method to infer DMP clonality from multi-region bisulphite sequencing data is

needed to answer this question.

1.10 Thesis summary

To summarise, while it is well-established that DNA methylation plays a role

in tumourigenesis, there is a clear need for computational methods to facilitate the

interpretation of bulk tumour bisulphite sequencing data.

To address this, we developed ASCAT.m, our tool for allele-specific copy num-

ber profiling and purity estimation from tumour RRBS data (see Chapter 2). We

generated multi-region RRBS (range 2-7) of the primary tumour for 38 NSCLC pa-

tients from the TRACERx study and applied ASCAT.m on these samples, referred

to as the epiTRACERx cohort. We validated our approach by comparing ASCAT.m

outputs with those obtained from matched whole-exome sequencing (WES) [112]

and 7 newly generated whole-genome sequencing (WGS) tumour samples from 3

patients as well as each patient-matched adjacent normal, showing high concor-

dance. ASCAT.m copy number profiles reveal recurrent alterations in NSCLC and

highlights differences between lung adenocarcinoma and squamous cell carcinoma.

Whole genome doubling was often observed and was correlated with worse prog-

nosis in lung squamous cell carcinoma, but not in adenocarcinoma.
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With accurate tumour copy number and purity estimates in hand, we for-

malise the relationship between methylation rates, copy number and tumour purity.

This relationship is the guiding principle of our algorithm for Copy number-Aware

Methylation Deconvolution Analysis of Cancers (CAMDAC) from bulk tumour and

tissue-matched normal RRBS data (see Chapter 3). Inter-sample distances between

methylation profiles shows that CAMDAC efficiently removes shared normal sig-

nals from bulk and highlight differences between patients while retaining high cor-

relations between samples of shared clonal ancestry. CAMDAC purified tumour

methylation rates are in agreement with SNV purified estimates across the NSCLC

cohort. Simulated and real data show that CAMDAC deconvoluted tumour methy-

lation rates improve differential methylation calls both between tumour and normal

cells and between different tumours or sampled regions.

In chapter 4, we use CAMDAC purified methylomes and DMPs to obtain

DMRs calls and gain deeper insight into NSCLC methylomes (Chapter 4). DMR

ubiquity analysis reveals that methylation heterogeneity is correlated with relapse-

free survival. We identify hundreds of recurrently early clonal epimutations across

the epiTRACERx cohort, supporting the use of DNA methylation data to improve

early detection of NSCLC. In contrast to the bulk, CAMDAC pure tumour methy-

lation profiles reveal intra-tumour subclonal relationships. We obtain DMR calls on

SNV-deconvoluted methylation rates, and found DMRs were usually in-cis with re-

spect to somatic mutations. DMRs in-cis were usually hypermethylation, implying

that SNVs possibly lead to the ablation on TBFSs and, in the absence of transcrip-

tion factor binding, enables methylation of neighbouring CpGs by DNMTs. Paying

particular attention to expression levels at genes harbouring neo-antigen mutations,

we uncover hypermethylation as a mechanism for immune evasion and published

this finding [114]). Building on this work, we show the effect to be even stronger

after applying CAMDAC to deconvolve the bulk tumour data.

Finally, we set out to investigate copy- and allele-specific methylation in

NSCLC harnessing CAMDAC purified tumour methylation profiles and ASCAT.m

copy numbers (Chapter 5). The mode of allele-specific methylation on chromo-
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some X in females is below 0.4 on average, indicating the presence of extraction

biases against the condensed inactive X chromosome copy. There were no corre-

sponding allelic bias at heterozygous SNPs, suggesting that the inactive X copy is

of random parental origin in a given cell, at least within our normal lung samples.

The presence of heterozygous SNPs at the germline imprinted locus H19/IGF2 en-

ables SNP-phasing of methylation rates in 30/37 normal samples, each case vali-

dating the presence of allele-specific methylation. We saw loss of imprinting in 5

tumours, each with demethylation of the maternal allele. We define two types of

DMPs, stochastic and regulatory, and use regions of 1+1 to estimate their relative

abundance. We find that regulatory DMPs dominate the epimutational landscape of

NSCLC, at least in the epiTRACERx cohort. We leverage epimutation with copy

numbers 1 and 2 in 2+ 0 to time these copy number gains and find they usually

occur late in epimutational time.



Chapter 2

Allele-specific copy number analysis of

cancers from bisulphite sequencing data

2.1 Introduction

2.1.1 Bulk tumour methylation rates are confounded by tumour

purity and copy number

Solid tumour samples are often highly heterogeneous and contain a mixture of

tumour and normal cells, the ratio of which is commonly referred to as the tumour

purity (ρ) or aberrant cell fraction. The relative amounts of tumour and normal

DNA depends not only on tumour purity, but also on copy number [115–117]. If the

methylation rate is different between the tumour and normal cells, the bulk tumour

methylation rate will be affected by the ratio of tumour to normal DNA and thus by

both tumour purity and copy number (Figure 2.1A).

For example, take a hypothetical bulk tumour sample of purity ρ = 0.4 and

a CpG locus that is completely unmethylated in the normal contaminating cells,

mn = 0, fully methylated in the tumour, mt = 1, and located on a tumour copy

number segment with a total of 3 copies, nt = 3. In this bulk mixture, we have 6

unmethylated normal CpGs from 3 diploid cells for every 6 methylated loci with

CpG copy number 3 from 2 cancer cells. The bulk tumour methylation rate should

therefore fall near: mb =
6

6+6
= 0.5. Variation in tumour purity and copy num-

ber will clearly impact the value of mb (Figure 2.1B). Indeed, several studies have

demonstrated that variation in copy number [118–120] and purity [121] lead to in-
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creased false positives and negatives in differential methylation analysis, scientists

are yet to correct bulk cancer methylomes for both of these confounders simulta-

neously, probably due to the lack of computational tools for obtaining purity and

methylation estimates directly from methylation data.

Figure 2.1: Tumour purity and copy number affect bulk methylation rates.
(A) Example bulk tumour (mb), pure tumour (mt) and normal (mn) methylation rates at a
tumour-normal differentially methylated CpG with total tumour copy number nt = 3 and
ρ = 0.4. (B) Bulk methylation rates for a CpG locus which is unmethylated in the normal
contaminating cells and methylated in the pure tumour cells stratified by a range of purity
and copy number.
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2.1.2 Somatic copy number alterations are universal features of

cancer genomes

In addition to their above-outlined effect on bulk tumour methylation rates,

somatic copy number alterations also play an important role in tumourigenesis.

As copy number modulates expression, amplification at oncogenes and deletions

at tumour suppressors will provide cells with a selective advantage. In LUAD and

LUSC, focal amplification of EGFR, MYC and deletions of tumour suppressor gene

CDKN2A/B are reported driver events [122]. Whole genome doubling (WGD) is

a genome-wide copy number alteration involving duplication of all chromosome

copies. In non-WGD cancer cells with large proportion of loss of heterozygosity

(LOH) where a single chromosome copy remains, mutations may be disadvanta-

geous if not lethal [123]. While WGD is energetically costly, it also mitigates this

phenomena known as Muller’s ratchet. Genome doubling is therefore correlated

with poor prognosis. Timing of chromosomal gains in tumour evolution including

genome doubling from whole-genome sequencing analysis of 2,658 cancers as part

of the Pan-Cancer Analysis of Whole Genomes (PCAWG) revealed that copy num-

ber alterations can be early drivers of tumourigenesis, such as gains of chromosome

7, 19 and 20 which virtually always occur early in glioblastoma development [124].

WGD was found to occur as early as 20 years prior to diagnosis in WGD ovar-

ian cancers, a finding highlighting incredible potential for early diagnosis of this

disease.

2.1.3 Purity and copy number estimation from bulk tumour

data

Experimentally determining the cancer purity and overall ploidy of bulk tu-

mour tissue is possible through cell sorting-based technology such as Fluorescent-

Activated Cell Sorting (FACS) [125]. FACS of bulk tumour data is time-consuming,

labour intensive and as such may not be suitable for large sequencing efforts.

In silico purity estimation from copy number profiling algorithms is a highly

scalable and accurate alternative. Indeed, these estimates show good correlations
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with ESTIMATE and LUMP purity scores based on RNA-Seq data and leukocyte

infiltration, respectively [126], all of which are more accurate than those obtained

by histological examination of stained frozen tissue slides [115]. ASCAT is a pop-

ular in silico method for clonal allele-specific copy number (ASCN) profiling of

tumours [117]. While originally designed for SNP array data, ASCAT has been

adapted to a range of platforms including WGS [127] and WES [112]. The AB-

SOLUTE [115] copy number profiling tool is comparable to ASCAT in terms of

outputs, but requires computationally expensive statistical modelling. Both ap-

proaches derive tumour purity, ploidy and allele-specific copy numbers from the

read depth (LogR), corrected for GC content biases, and the allelic imbalance (B-

Allele Frequency, BAF) at heterozygous single nucleotide polymorphisms (SNPs).

In ASCAT, BAF and corrected LogR values are segmented simultaneously using

allele-specific piece-wise constant fitting (ASPCF). The optimal partitioning is fed

into a function which computes the goodness of fit score for all possible allele-

specific copy number profiles given the input BAF and LogR segments, and a grid

of possible values for both purity, ρ , and ploidy, ψ . The goodness of fit score for

each purity and ploidy solution is defined by the distance between raw copy number

segments and non-negative whole numbers weighed for segment size. The assump-

tion is that most of the genome is clonal, and therefore the optimal solution is one

which minimises the distance metric. SNP-based copy number profiling approaches

like ASCAT are yet to be adapted for bisulphite sequencing data.

The published algorithms for copy number analysis of tumour methylation data

are fewer in numbers and only generate log read depth profiles [128, 129] as op-

posed to absolute copy numbers and/or do not provide simultaneous tumour pu-

rity estimates. Standalone purity estimation is possible from bulk tumour methy-

lation array data using InfiniumPurify [121]. InfiniumPurify purity values show

good correlation with both LUMP and ABSOLUTE and outperforms immuno-

histochemistry estimates across samples from The Cancer Genome Atlas (TCGA

[130]). MethylPurify enables purity estimation method that is designed for bisul-

phite sequencing and not array data. The approach models purity from intermedi-
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ate methylation rate distribution at tumour-normal differentially methylated posi-

tions (DMPs), assuming monoclonal tumour cells and homogeneous methylation

amongst normal contaminants and ignoring copy number variation. The relative

success of MethylPurify in estimating tumour purity directly from methylation data

suggests that bulk tumour DNA methylation rates are predictably affected by normal

contaminants. Moreover, it shows that for most cancer types, intermediate methy-

lation at DMPs stems from somatic evolution and not from normal cell type hetero-

geneity given the assumption that normal infiltrating cells are homogeneous. How-

ever, the main drawback of these tools for tumour purity estimation from methyla-

tion data is that they do not provide absolute copy number profiles. As such, purity

estimates from methylation rates are not corrected for copy number which can lead

to erroneous purity estimates, for example in whole genome doubled tumours.

In the past, researchers have sometimes chosen to obtain additional SNP array

data to compute copy number profiles from established pipelines instead of extract-

ing the information directly from the methylation data [120, 131]. This approach

incurs additional costs in terms of tumour material, time and the arrays themselves.

In a clinical setting, it is particularly important to avoid wasting precious tumour

material and so obtaining additional array or sequencing data may not be feasible.

In some cancer types, such as non-small cell lung cancer, operable tumours are

surgically resected as first line of treatment which means plenty of material is avail-

able (depending on the tumour size), but this is not standard practice for all solid

tumours. It is often the case that only limited amounts of material can be collected

via tumour biopsies. A novel method to generate both accurate tumour purity esti-

mates and copy number profiles directly from bisulphite sequencing data is clearly

needed.

2.1.4 Chapter summary

To address this issue, we introduce ASCAT.m, a new tool that enables both

allele-specific copy number and purity inference directly from bulk tumour RRBS

data. We begin this chapter with a detailed explanation of the methodology be-

hind ASCAT.m. We then apply ASCAT.m to the epiTRACERx pilot RRBS dataset
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Figure 2.2: EpiTRACERx cohort.
Depiction of the histological subtypes, gender, smoking status and tumour stage distribu-
tion across the epiTRACERx cohort.

(Figure 2.2, Table B.1), which is part of the TRACERx prospective cohort study

[113]. The epiTRACERx cohort consists of multi-region RRBS data for a subset

of 38 non-small cell lung cancer patients (122 tumour samples, 3.3 samples per

patient on average, range 2-7) chosen from the first 100 patients of the TRACERx

study [113]. Copy number analyses of multi-region whole-exome sequencing from

the TRACERx study revealed high variability in both tumour purity and copy num-

ber [112]. The epiTRACERx RRBS cohort is therefore highly amenable in its role

as a pilot dataset for ASCAT.m. We observed high correlation between ASCAT.m

tumour purity and copy number estimates and values obtained from matched WES

data [112] and, from a subset of unpublished WGS samples recently generated by

collaborators. Copy number profiles revealed a high prevalence of WGD in the

epiTRACERx NSCLC cohort. Whole genome doubling is negatively correlated

with patient outcome in LUSC likely due to high levels of loss of heterozygosity.
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2.2 Results

2.2.1 Computing BAF and LogR from bisulphite sequencing

data

Inspired from existing methods copy number and purity estimation from array

or sequencing data [115–117], ASCAT.m requires coverage (LogR) and allelic im-

balance (BAF) information at a sufficient number of (heterozygous) SNPs in order

to compute tumour purity, ploidy and allele specific copy numbers (ASCN, Figure

2.3). The epiTRACERx RRBS dataset was predicted to be particularly well-suited

for ASCAT.m because MspI digestion enriches for CpG Islands and the latter are

known hotspots for C>T polymorphisms [132].

We began by compiling read counts at all 1000 genome SNP positions [133]

from bulk tumour and patient-matched normal RRBS data (Figure 2.3). The LogR

at the ith SNP (SNPi) was then calculated by taking the total read coverage of SNPi

in the tumour, covt,i, normalised by the coverage in the normal, covn,i. Leveraging

findings from different studies, we show that RRBS-derived raw LogR values suffer

from at least 3 sequencing coverage biases as a result of the RRBS protocol (Figure

2.4). (1) Enzymatic digestion with MspI yields libraries with heterogeneous in-

sert size distributions reflecting variability in the distance between any two CCGG

cleavage sites which can be as little as a few base pairs to hundreds [134]. (2) Ex-

treme GC contents are known to bias polymerase chain reaction amplification and

coverage [135] and bisulphite converted sequences have decreased GC content, de-

pending on CpG methylation status and density. (3) Coverage is inflated in genomic

regions that tend to replicate earlier during S-phase compared with those that repli-

cate later. Replication timing differs not only across the genome but also between

cell types [136]. ASCAT.m corrects LogR estimates for each of these three sources

of bias (See Methods Section 2.4.3.1, Figure 2.4).
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Figure 2.3: ASCAT.m workflow.
Allele counts are compiled at all 1000 genome SNP positions [133] for bulk tumour and
patient-matched normal RRBS data. SNP genotyping is carried out on the normal sample
and tumour BAF is obtained at heterozygous SNPs. LogR is computed from the matched
normal and tumour coverage at each SNP. BAF and corrected LogR values are fed into
ASCAT standard ASPCF function. For multi-region datasets, re-segmentation of BAF
and LogR tracks is performed with multi-sample phasing of BAF segments with allelic
imbalance in at least one sample. The best copy number solution is found using a purity
and ploidy grid search approach. The solution which maximises the goodness of fit to
integer copy number is selected.
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Figure 2.4: Sources of bias in LogR values.
(A-C) MspI fragment length (A), GC content (B) and replication timing (C) affect tu-
mour LogR. The observed peaks in the fragment length distribution originate from MspI-
containing micro-satellite repeats of distinct lengths and is characteristic of human RRBS
libraries. (D) A linear combination of three natural splines, modelling the effect of each
of the three biases described in (A), (B) and (C) with respect to tumour LogR is used to
correct the raw LogR and yield the corrected values.

Next, ASCAT.m requires normal (BAFn) and tumour BAF (BAFt) values at

enough heterozygous SNPs to establish germline genotypes and identify regions of

allelic imbalance respectively (Figure 2.3). Computing BAF values from RRBS is

challenging compared with genome sequencing and array data because bisulphite

conversion leads to unexpected reference and alternate allele read counts at SNP

loci with a G and/or C allele. Indeed, unmethylated Cs are converted to Ts during

library preparation, yielding four possible bisulphite DNA strands: (complementary

to) original top and (complementary to) original bottom with roughly the same like-

lihood (Figure 2.5A). Most bisulphite sequencing protocols are directional, includ-

ing the RRBS NuGEN assay used for this work, meaning only bases from original

top (+) or complementary to original bottom strand (-) are sequenced. Methylation

further complicates BAF calculations since roughly half of the SNPs reported by

RRBS are located at CpGs. Across the epiTRACERx cohort, polymorphisms at
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CpGs account for 49.9% of SNPs, 83.3% of which are CpG>TpG polymorphisms.

Figure 2.5: ASCAT.m BAF calculation rules.
(A) Transformation of (un)methylated reference CpG, and alternate ApG, GpG and TpG
alleles during bisulphite sequencing. (B-D) Derivation of BAF rules from strand specific
base pile ups C>A (B), C>G (C) and C>T (D) SNP loci. (E) BAF formulae for all SNP
types.

To address these issues, we propose a set of strand specific allele counting

and BAF calculation rules for all SNP types for ASCAT.m. For reference, the

derivation for C>A, C>G and C>T SNPs is depicted in (Figure 2.5A-D). For

a C>A SNP at a CpG, all reads supporting A on the + or - strand, i.e. A(+)

and A(-), can be assigned to the alternate allele unambiguously. Reads reporting

C(+) and T(+) can be uniquely attributed to the methylated and unmethylated C,

respectively, while C(-) counts could arise from either methylation state. The al-
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lelic imbalance can be calculated as BAFC>A =
A

A+C+T (+)
(Figure 2.5B). At

C>G SNPs, the alternate allele is represented by G(+) and A(-) nucleotides with

BAFC>G =
G(+)+A(−)

G(+)+A(−)+C+T (+)
. The situation is more complex for C>T

SNPs because the bisulphite converted unmethylated reference cytosine base is

indistinguishable from the alternate allele on the + strand with both alleles lead-

ing to a T(+) read-out (Figure 2.5A,D). However, base counts taken from the -

strand are unique to either the alternate allele, T(-), or the (un)methylated refer-

ence, C(-). Therefore, it is still possible to quantify allelic imbalance at C>T SNPs:

BAFC>T =
T (−)

C(−)+T (−)
. Using only the - strand implies that, on average, only half

of the total number of reads can be used to measure allelic imbalance at C>T SNPs.

Following this line of reasoning, we outline a set of rules to compute BAF values at

all types of SNPs (Figure 2.5E). The same principles above can be generalised to

non-CG cytosine methylation, known to occur at low percentages in the mammalian

genome [137]. ASCAT.m BAF rules are robust to both CpG and non-CpG cytosine

methylation.

2.2.2 Comparing genotypes derived from RRBS and WGS data

To test our approach, we leveraged unpublished WGS data generated by col-

leagues for 3 NSCLC patients also part of the epiTRACERx cohort, including nor-

mal samples (see section 2.4.2.2). We compared genotyping outputs generated at

overlapping SNPs between the 2 platforms for each of the normal samples. We

calculated the false positive rates (FPR) and false negative rates (FNR) for RRBS

data using the WGS-derived genotypes as ground truth. The average FPR across all

SNP types and samples was 0.3% whilst the mean FNR was 25% (Figure 2.6).

The average FNR was highly context dependent (χ2 test, p-val < 2.2× 10−16,

FNRCCGG = 83%, FNRCG = 20%, FNRother = 15%). Increasing sequencing depth

only lead to a small decrease in FNR: by requiring a minimum SNP coverage of 30

instead of 10 reads, the average FNR dropped to roughly 1 in 5 heterozygous SNPs.

Polymorphic CCGGs perturbing or creating a CCGG MspI recognition sequence,

can lead to allele-specific fragments during RRBS library preparation skewing al-

lelic coverage and were the largest source of false negatives (49%). We observed a
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bias towards SNPs erroneously assigned as homozygous reference (72%) compared

with homozygous alternate (28%) at false negatives (Figure 2.6B). This suggest an

alignment bias, likely due to limited mappability of short MspI fragments with al-

ternate alleles. In line with this hypothesis, SNPs with low reference allele mapping

quality scores (MAPQ < 40) were enriched for homozygous reference false nega-

tives (Wilcoxon test, p-val < 2.2×10−16), especially outside CCGG context.

Figure 2.6: Comparing ASCAT.m and ASCAT on WGS data.
(A-B) False positive (A) and false negative (B) heterozygous call rates across SNP types
(top) and ASCAT.m BAF estimate error distribution histograms of the distribution of
CAMDAC BAF estimate errors and noise (bottom). SNPs are considered heterozygous
when 0.1 ≥ BAF ≥ 0.9 and a gold standard alleleCounter pipeline on WGS of the normal
sample subset to RRBS-covered regions is taken as ground truth.

2.2.3 Multi-sample SNP phasing improves segmentation

Next, we compute BAF and corrected LogR values for all tumour samples in

the epiTRACERx cohort. Given sufficient tumour purity and sequencing coverage,

copy number segments with clonal allelic imbalance will generate two distinct BAF
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bands. This can be used to assign heterozygous SNPs to the gained or lost alleles

and to phase all SNP alleles in the copy number segment. SNP phasing information

is relayed between different samples from the same patient. For example, consensus

phasing of the 5 tumour regions of CRUK0069 revealed over half a dozen mirrored

subclonal allelic imbalance (MSAI) events (Figure 2.7).

Figure 2.7: Creating haplotypes from multi-sample BAF estimates.
(A) The phased BAF profile for regions 1 to 5 is shown with phased segments being ran-
domly assigned alleles 1 (orange) or 2 (purple). The same labelling is used for the ith SNP
across all 5 tumour samples enabling visual identification of MSAI events.

ASCAT.m phased BAF and LogR profiles are then fed into the ASCAT piece-

wise constant fitting function modified to account for multi-sample haplotyping

(Figure 2.3). The output segmented BAF and LogR profiles are fed into the fi-

nal copy number fitting function, where a grid search approach is used to identify

the optimal purity and ploidy solution, that is to say the solution where, on aver-

age, allele-specific copy number segments have the shortest distance to integer copy

number states. Accurate segmentation is key to generate high quality copy number
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profiles. For example, take a clonal copy number segment with major allele +

minor allele = 2+ 1. If allelic imbalance is not detected from the BAF track by

ASCAT’s allele specific piece-wise constant fitting (ASPCF), the segment is mis-

classified as a balanced copy number segment. At the true underlying tumour pu-

rity, the total copy number would be unaffected by this misclassification and would

appear near copy number 3, but the minor allele segment would be mistakenly posi-

tioned halfway, at 1.5 copies. Because the minor allele is 0.5 away from the nearest

integer copy number, this may penalise the score of the true solution such that it is

no longer a local minimum of the grid search. This is especially true if large and/or

multiple segments are misinterpreted as balanced. Multi-sample haplotyping suc-

cessfully rescues allelic imbalance signal in lower purity and/or coverage samples,

for example in CRUK0069-R2 (ρ = 0.32, Figure 2.8). We note that BAF bands for

the epiTRACERx RRBS data are wider than for matched high coverage WGS and

WES data, further increasing the importance of haplotyping.

Figure 2.8: BAF segmentation is improved by multi-sample haplotyping.
Raw (top) and phased (bottom) segmented BAF for low purity (ρ = 0.32) and ploidy (ψ =
2.67) sample CRUK0069-R2 leveraging multi-sample information.
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2.2.4 Comparing copy number profiles, purity and ploidy de-

rived from RRBS versus matched WES and WGS data

We compared ASCAT(.m) BAF, LogR and allele-specific copy number seg-

ments for 7 tumour samples taken from the above-mentioned 3 patients with

matched WGS and RRBS data (See Methods Section 2.4.2.2). Despite the higher

number of false negative homozygous SNPs in our RRBS data, BAF estimates gen-

erated by ASCAT.m enable correct identification of BAF bands separation at ge-

nomic regions with allelic imbalance as determined by SNP phasing while these

are sometimes missed by the matched WGS data (Figure 2.9 and Supplementary

Figures SA.1-6). The LogR tracks are in good agreement between the two plat-

forms across all samples indicating that biases in coverage introduced by the RRBS

protocol are adequately modelled and removed by ASCAT.m. We compared final

allele-specific copy number calls to data obtained from both platforms and, unsur-

prisingly, the two are virtually identical (Figure 2.9 and Supplementary Figures

SA.1-6).
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Figure 2.9: Comparing WGS- and RRBS-derived ASCAT(.m) BAF, LogR and copy
number segments for a representative tumour sample.
Direct comparison of BAF (top), LogR (middle) and allele-specific copy number (bot-
tom) profiles derived by ASCAT(.m) from matched RRBS and WGS for CRUK0031-R1.
Segmented BAF and LogR values are plotted at heterozygous SNPs only. Raw BAF and
LogR values at every heterozygous SNPs is shown in for the WGS data only. This sample
is male which explains why virtually no data points are plotted on chromosome X.
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ASCAT(.m) ploidy (ψ) and purity (ρ) validation was performed by com-

paring RRBS estimates with those inferred from WGS (mean coverage 67x) and

high-coverage WES (mean coverage 464x) performed on the same samples (Table

3, [112]). Tumour purity and ploidy values derived from RRBS showed excel-

lent agreement (Figure 2.10A-B) with both WGS (corrρ = 0.996, corrψ = 0.991)

and WES estimates (corrρ = 0.984, corrψ = 0.978). We note that tumour purity

variability is relatively high whilst ploidy is typically more homogeneous within

tumours (Figure 2.10C).

Figure 2.10: ASCAT(.m) purity and ploidy estimates across epiTRACERx and
sequencing platforms.
(A-B) Direct comparison of ASCAT(.m) RRBS-derived purity (A) and ploidy (B) esti-
mates with matched WES (blue) and, where available, WGS data (purple). (C) Patient-
wise ASCAT.m tumour ploidy (top panel) and purity (bottom panel) distribution, as in-
ferred by ASCAT.m.

2.2.5 The somatic copy number variation landscape of NSCLC

Whole genome doubling (WGD) status is defined by the fraction of the genome

with loss of heterozygosity (LOH) and tumour ploidy (Figure 2.11A). ASCAT.m

results show that WGD is widespread across lung adenocarcinoma (LUAD, 71%)

and squamous cell lung carcinoma (LUSC, 86%) patients, while LOH is enriched

in LUSC compared with LUAD, with 94% versus 26% of samples harbouring LOH
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in ≥30% of the covered genome respectively (Wilcoxon p-val = 1.48× 10−11).

We note that WGD is negatively associated with relapse-free survival in LUSC but

not in LUAD (Figure 2.11B). Having a higher fraction of the genome with LOH,

genome doubling likely provides a strong selective advantage in LUSC decreasing

the likelihood of acquiring lethal mutations on the sole copy of an essential gene

[123]. No differences in overall purity or ploidy were noted between the two lung

cancer subtypes (ρ Wilcoxon p-val = 0.411, ψ Wilcoxon p-val = 0.276). However,

LUAD samples tend to be of higher ploidy than LUSC when comparing samples of

the same WGD status between histologies (WGD Wilcoxon p-val = 9.83× 10−3,

non-WGD Wilcoxon p-val = 1.85×10−2).

Figure 2.11: Whole genome doubling predicts outcome in LUSC but not LUAD.
(A) Whole genome doubling status is a function of both tumour ploidy and the fraction of
the genome with loss of heterozygosity. (B) Relapse-free survival probability for LUAD
(left) and LUSC (right) cases stratified by WGD status from ASCAT.m.

Genomic instability is a defining feature of both cancer types (Figure 2.12).

Certain copy number gains and losses are observed at a high frequency across the

two subtypes, such as +8q and -8p, while other patterns are strikingly different be-

tween subgroups. For example, +3q is found in virtually all LUAD samples and is

absent from LUSC. Gains and losses are defined based on allele-specific copy num-

ber and with respect to tumour ploidy (2.4). This is important as most LUAD and

LUSC are tetraploid and will appear to have high levels of gains and fewer losses

if not corrected for baseline ploidy. Indeed, reports by others based on GISTIC2.0

data in LUAD only identified losses of 8p, and 18 with frequencies greater than

0.5 [138].
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Figure 2.12: NSCLC somatic copy number variation landscape.
Fraction of samples with copy number gains (red) and losses (blue) in 10Mb bins across
the genome for LUAD (top) and LUSC (bottom).

2.3 Discussion
To summarise, we have shown that ASCAT.m enables accurate allele-specific

copy number profiling and simultaneous tumour purity estimation from RRBS data,

obviating the need to perform separate copy number profiling experiments, reducing

cost and saving time. We demonstrated that ASCAT.m BAF calculation rules are

successful in identifying heterozygous SNPs outside CCGG context. We showed

that multi-sample BAF phasing improves detection of allelic imbalance from BAF,

especially in samples of low tumour purity. ASCAT(.m) output allele specific copy

number profiles for tumour samples with matched RRBS and WGS showed good

agreement and overall tumour purity and ploidy estimates were highly correlated

between WES, WGS and RRBS platforms. WGD was found to be widespread in

NSCLC and was significantly associated with increased probability of relapse in

LUSC but not LUAD and link this result to LOH abundance. Finally, the copy

number variation landscape of LUAD and LUSC was obtained and compared.
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We note that patient-matched tumour adjacent normal samples may not always

be available. In this study, we build reference RRBS coverage profiles which can be

used to compute LogR in the absence of patient-matched normal data. Given suffi-

ciently low tumour purity or the absence of LOH, approximate heterozygous SNPs

can assignments may be obtained directly from the tumour BAF. We ran ASCAT.m

with tissue-matched normal for one tumour sample where no patient-matched nor-

mal data was available. Allele-specific copy number and purity estimates can there-

fore be generated by ASCAT.m without patient-matched normal using the reference

coverage panel generated in this study. Although this was not tested, we hypothe-

sise that patient-matched blood normal RRBS data may be used for ASCAT.m as

an alternative to tissue-matched normal. We therefore conclude that ASCAT.m will

be highly valuable for tumour copy number and purity estimation from bisulphite

sequencing data irrespective of cancer types and matched normal availability.

While evaluating ASCAT.m for genotyping purposes, we noted allelic skewage

at heterozygous SNP in CCGG tetranucleotides context due to SNP-biased enzy-

matic digestion and outside CCGG motifs, likely due to poor alignment of short

MspI fragments with alternate alleles and low mappability of short single end bisul-

phite sequencing reads. It is worth underscoring that these allelic biases are largely

specific to the single-end RRBS protocol. Paired-end sequencing is usually recom-

mended to increase mapping quality but is not suitable in combination with RRBS

due to many fragments being shorter than twice the read length leading to duplicate

sequencing of bases from the same DNA molecule. It is likely that the above bi-

ases could be avoided altogether by using an alternative DNA methylation profiling

method.

Paired-end whole-genome bisulphite sequencing (WGBS), for example, would

not suffer from enzymatic digestion biases potentially reducing the number of false

negatives and increasing the mappability of low degeneracy bisulphite treated reads

thanks to paired-end sequencing. While genotyping bias may be reduced, sequenc-

ing costs would be much greater for paired-end WGBS than for single-end RRBS.

Unlike RRBS, WGBS is less cost-effective due to uneven CpG concentration out-
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side CpG islands meaning many reads will not contain any methylation informa-

tion [31]. WGBS usually requires large quantity of input DNA material (at least 10-

fold higher than NuGEN RRBS protocol). For large scale analyses, it may not be

feasible to carry out WGBS as per the reasons outlined above. Standalone Nanopore

sequencing technology or in combination with enzymatic conversion of modified

cytosine bases is a promising new alternative to provide accurate methylation and

SNP information as well as valuable long range phasing information with minimal

input DNA requirements [139].

Despite high number of false negatives, ASCAT.m BAF rules were shown to

be accurate at called heterozygous SNPs and could be used beyond genotyping

purposes. In future, we speculate that these rules may form the basis of a new

module for ASCAT.m enabling de novo identification of single nucleotide variants

(SNVs). It would be incredibly valuable to add SNV calls to the output one can

obtain directly from bisulphite sequencing data. While RRBS data is suitable for

genotyping purposes and copy number profiling with ASCAT.m, we suspect WGBS

or Nanopore sequencing may be more accurate for genotyping and by extension for

de novo identification of single nucleotide variants.

We note that several in silico methods for tumour purity and copy number in-

ference have been developed since ASCAT was first published in 2010. The Batten-

berg method [116] for instance was inspired from ASCAT but designed for WGS.

Battenberg exploits haplotype information to generate subclonal allele-specific copy

number profiles. WGBS should in theory enable haplotyping and therefore allow

subclonal copy number profiling directly from methylation data. In multi-sample

studies like epiTRACERx, we can evaluate clonality to some extent by compar-

ing tumour regions from the same primary. However, subclonal copy numbers and

DMP calls would be useful in reconstructing phylogenies from single sample biop-

sies and plan to extend ASCAT.m with haplotyping with WGS data.
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2.4 Methods
The methods described below were recently published as part of our bioRxiv

preprint [140].

2.4.1 epiTRACERx methylation study design

Figure 2.13: EpiTRACERx patient inclusion criteria and cohort clinical features.
This flow chart shows how patients from the TRACERx100 cohort were selected for in-
clusion in the epiTRACERx methylation study. The RRBS cohort is the same as the final
epiTRACERx cohort minus 4 samples which failed sequencing.

Samples from the first 100 patients of the TRACERx lung cancer cohort were

selected for multi-region RRBS (Figure 2.13). Patients with data for samples from

2 or more tumour regions and the adjacent matched normal, all with sufficient ma-

terial remaining, were considered for bisulphite sequencing. Tumour samples with

purity below 15% were discarded with the exception of CRUK0062-R6 which was

included for comparison with the other 6 sampled regions from this patient’s pri-

mary tumour. Patients with tumour samples of high purity were prioritised as well as

those with matched RNA-Seq data [114]. Samples were obtained across both lung

adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) subtypes, genders
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and smoking status. The clinical and technical inclusion criteria are summarised in

Figure 2.13 and the resulting cohort is depicted in Figure 2.2 and Table B.1.

2.4.2 Sequencing methods

2.4.2.1 RRBS sequencing protocols

RRBS sequencing was performed by Miljana Tanic and Pawan Dhami at Uni-

versity College London prior to my involvement in the epiTRACERx study.

Multi-region RRBS data was generated for about 1 in 3 NSCLC patients from

the TRACERx 100 cohort (122/327 tumour regions from 38/100 patients, each with

matched normal). The NuGEN Ovation RRBS Methyl-Seq System was adapted by

the manufacturer for automation on Agilent Bravo liquid handling robot. This set

up was then used to prepare libraries by enzymatically digesting 100ng of gDNA

with MspI, an methylation insensitive enzyme that cleaves DNA at 5′-CCGG-3′ mo-

tifs. The enzyme breaks the phosphodiester bonds upstream of CpG dinucleotides,

leaving a 2bp overhang suitable for adaptor ligation and then a final end repair step.

Qiagen’s EpiTect Fast DNA Bisulfite Kit was used for bisulphite conversion of the

resulting libraries.

Bisulphite converted libraries were then amplified by polymerase chain reac-

tion using 12 cycles and purified using Agencourt RNAClean XP magnetic beads

(suitable for DNA purification). Library quantification was performed by Qubit

dsDNA HS Assay (Invitrogen) and quality control was carried out using Agilent

Bioanalyzer High Sensitivity DNA Assay (Agilent Technologies). We multiplexed

8 samples per flow cell and sequenced on HiSeq2500 system using HiSeq SBS Kit

v4 in 100bp paired-end runs for our pilot patient CRUK0062 and in single-end for

the rest of the cohort, yielding an average of 150M raw sequencing reads per sam-

ple. Paired-end sequencing was not applied to the larger cohort because our pilot

data revealed a high number of mates with negative insert sizes due to short MspI

fragments and outweigh any increase in mapping efficiency.

Sequencing outputs were quality checked with FastQC (Babraham In-

stitute, https://www.babraham.ac.uk/), adapter sequences trimming was per-

formed with Cutadapt [141] and reads were aligned to the UCSC hg19 refer-
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ence assembly using Bismark v0.14.4 [26]. Read deduplication was carried

out using NuDup, leveraging NuGEN’s molecular tagging technology (NuGEN,

https://github.com/nugentechnologies/nudup). On average 1.88× 108 reads per

sample remained post-processing and alignment (Table B.2), resulting in an average

of 4.5 million CpGs being supported by at least 1 read in any one sample. A subset

of samples from the epiTRACERx RRBS dataset were deposited at the European

Genome-phenome Archive (EGA) under accession number EGAS00001003484

as part of Rosenthal et al. [114]. The full cohort may be accessed through

the Cancer Research UK & University College London Cancer Trials Centre

(ctc.tracerx@ucl.ac.uk) for academic non-commercial research purposes upon rea-

sonable request, and subject to review of a project proposal that will be evaluated

by a TRACERx data access committee, entering into an appropriate data access

agreement and any applicable ethical approvals.

2.4.2.2 WGS sequencing protocols

Whole genome sequencing was performed on 7 samples from 3 patients in-

cluded in the TRACERx100 cohort and the epiTRACERx cohort. The WGS data

was generated by Edinburgh Genomics. Samples were sequenced on Illumina

HiSeq in paired-end 100bp runs. Sequencing outputs were processed by Michelle

Dietzen. Reads were quality checked with FastQC v0.11.5 (Babraham Institute,

https://www.babraham.ac.uk/) and aligned to the UCSC hg19 reference assembly

using BWA-MEM v0.7.15 ( [142], http://bio-bwa.sourceforge.net). Alignments

were saved as Binary Alignment Map files (BAM), sorted and indexed with SAM-

tools v0.1.19 (http://github.com/samtools/).

2.4.3 Computational method development and analyses

2.4.3.1 ASCAT.m

ASCAT.m stands for Allele-Specific Copy number Analysis of Tumours from

Methylation data. Like ASCAT [117], ASCAT.m requires both BAF and LogR in-

formation at germline SNPs to compute tumour purity and copy number. To obtain

these variables, base counts are compiled at all 1000 genome SNP positions [133]
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that overlap with RRBS data. Briefly, the LogR at the ith SNP is taken as the base-2

logarithm of the read depth ratio of the tumour coverage, covt,i, to the normal refer-

ence, covn,i, divided by the average of this ratio. LogR values are easily computed

from RRBS data, as per Equation (1):

LogR = log2(
covt,i/covn,i

∑
k
j=1(covt, j/covn, j)

k

) (1)

For the majority of the epiTRACERx cohort, normalisation is carried out with

patient-matched tumour-adjacent normal samples, but LogR values can also be

obtained from blood normal RRBS data. Patient-matched normal reference sam-

ples remove noise from germline copy number variants. For one female patient,

CRUK0047, we do not have patient-matched adjacent normal. We generated male

and female reference coverage profiles by taking the median depth at every SNP

position across gender-matched RRBS data from the epiTRACERx cohort. This

female reference profile was used to compute LogR for CRUK0047.

Next, normalised LogR values are corrected for sequencing coverage biases

due to variation in MspI fragment length, GC content and replication timing across

the genome (Figure 2.4). Technical and biological biases affecting sequencing cov-

erage can differ between the normal and bulk tumour data and so normalisation is

not sufficient to fully remove these confounders.

In order to obtain the corresponding fragment length for each single end read,

we reconstruct the underlying MspI fragment distribution for each patient using

the matched normal. We note the absence of CCGG motifs within RRBS reads,

confirming complete enzymatic digestion. Thus, covered CCGG motifs correspond

to MspI fragment ends. To identify these boundaries, we create a list of all CCGG

motifs from the reference genome accounting for SNP forming/destroying cleavage

sites and evaluate CCGG coverage at each of these by compiling read counts in

support of the following trinucleotides at the 5’ end: CGG(+), TGG(+), CCG(-) or

CCA(-). Having identified the fragments supported by reads (i.e. both ends have

total CCGG counts greater than 0), we annotate their respective lengths.
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Next, for replication timing correction, we leverage publicly available cell line

Repli-seq data from the ENCODE project (Dataset GEO Accession: GSE34399).

We generate 15 reference profiles, one for each cell line, by calculating the repli-

cation timing at every 1000 genome SNPs. The replication timing profile which is

the most correlated with the observed coverage biases is selected for each tumour

sample and used to compute the replication timing at every SNP position.

GC content values are generated per fragments using the bulk tumour reads

and adjusting the reference GC content for bisulphite conversion and methylation

rate. When fragments are longer than 2x the read length (i.e. ≥200bp), we make

the following assumptions at bases that are not covered by any sequencing reads:

(1) Cs outside CpG dinucleotides are converted to thymines and (2) CpGs have

methylation rates equal to the mean of all CpG loci supported by reads in the same

fragment.

Finally, we fit the observed LogR to a linear combination of the natural splines

(df = 5) of MspI fragment length, replication timing and GC content. The model

residuals provide corrected LogR values.

Calculating the BAF at SNP i requires the number of reads supporting the alter-

nate allele, ralt,i, and the reference allele, rre f ,i, BAF =
ralt,i

ralt,i + rre f ,i
. Strand-specific

BAF rules allow to distinguish between the methylated or unmethylated reference

and the alternate allele and 1000 genome SNPs. We explain these calculations in

detail for all SNP types in the results section (Section 2.2). Unexpected alleles can

arise due to rare polymorphisms, SNVs or misalignments. We exclude SNPs from

downstream analyses when the unexpected allele makes up more 5% of the total

allele counts at a given SNP.

Genotyping is performed on the patient-matched normal and conservative het-

erozygosity boundaries (0.3 ≥ BAFn ≥ 0.7). At heterozygous SNPs, given high

enough tumour purity and sequencing coverage, copy number segments with clonal

allelic imbalance will generate two distinct BAF bands. ASCAT.m can assign het-

erozygous SNPs to the gained or lost alleles and phases all SNP alleles in the copy

number segment. If SNP phasing is available for any one sampled tumour region,
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this information is relayed to all of the other samples from the same patient. These

haplotypes can be used to identify mirrored subclonal allelic imbalance [112] and

to rescue signal in tumours where there is allelic imbalance but no clear separation.

NSCLC tumour purity is usually low and RRBS data has wider BAF bands than

matched higher coverage WGS and WES data, further increasing the importance of

haplotyping to rescue signal.

ASCAT.m partially phased BAF and corrected LogR estimates are fed into

ASCAT [117] piece-wise constant segmentation function (penalty = 200) leveraging

germline heterozygous SNPs and copy number fitting functions (gamma = 1) to

obtain allele-specific copy number profiles and purity estimates for each tumour

region. For CRUK0047, heterozygous SNPs are identified as all SNPs with tumour

BAF above 0.15 and below 0.85. Note that we set the minimum germline coverage

for SNP inclusion to 10 whilst one read is deemed sufficient in the tumour. In

the tumour, we identify SNPs with coverage below 10, but only exclude them if

their nearest neighbours within a 10kb moving window display coverage above this

threshold. In this manner, we only remove isolated low coverage singletons. This

prevents creating bias against homozygous deletions.

Ploidy was QC’ed by leveraging intra-tumour information. 6 patients were

flagged by QC for having large intra-tumour differences in their ploidy estimates. In

each of those cases, we looked for evidence supporting an alternative ploidy solution

in the purity and ploidy solution matrix. If such a better suited solution existed in

line with the the overall tumour ploidy profile, the ASCAT copy number fitting step

was re-run forcing the solution to the ploidy towards a diploid or tetraploid solution

(setting MINPLOIDY and MAXPLOIDY boundary variables). We refit 7 tumour

copy number profiles in total. In comparison, 17 samples were manually curated

and re-run in the matched exome sequencing data [112].

2.4.3.2 Tumour copy-number profiling from WGS data

Base counts were extracted at 1000 genome SNPs subset for having coverage

in the matched RRBS data using alleleCount (http://cancerit.github.io/alleleCount/)

on the 10 WGS samples from patients CRUK0031, CRUK0062 and CRUK0069
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(7 multi-region tumour and 3 adjacent normal samples). ASCAT GC content and

replication timing LogR corrections were performed for each tumour sample. The

normal genotype, tumour BAF and corrected normalised LogR values were fed

into ASCAT piece-wise constant segmentation (penalty = 200) and obtained copy

number and purity (gamma = 1). Segmented BAF, LogR and final allele specific

copy number profiles generated from WGS and RRBS data were compared.

2.4.3.3 Comparing RRBS and WGS-derived SNP genotypes

Base counts obtained by ASCAT(.m) at 1000 genome SNPs were recycled for

genotyping purposes. Genotypes derived from WGS and RRBS of normal samples

from patients CRUK0031, CRUK0062 and CRUK0069 were compared. Because

short read WGS data is well-established for use in genotyping, the positive het-

erozygous SNPs (0.1 ≥ BAFn ≥ 0.9) calls generated from the WGS data of the 3

patient’s normal samples are considered to provide ground truth. A minimum SNP

read depth of 10 required on both platforms for inclusion. The mean ASCAT.m false

positive rate (FPR) is the number of erroneous heterozygous SNP assignments. It

is computed as the sum of all false positives over the sum of false positive and true

negative across samples. Similarly, the mean false negative rate (FNR) is taken as

the sum of all false negatives divided by the sum of false negatives and true pos-

itives. Three different contexts are evaluated: (i) SNPs at CCGG, the recognition

sequence of the MspI enzyme used to digest DNA and enrich for CpGs during li-

brary preparation, (ii) SNPs at CpGs (excluding CCGG motifs), and (iii) all other

SNPs. A chi-square analysis is performed to test whether or not the FNR is con-

text dependent. Next, we also evaluate the impact of heterozygosity boundaries and

minimum coverage thresholds on both FNR and FPR. Finally, we take a deep look

into the various sources of false negative homozygous SNPs.

2.4.3.4 Determining regions of copy number gains and losses

First, the genome was divided into 10 Mb bins. For each chromosome, the

first bin was set to the genomic position with the lowest index that generated copy

number information in at least one sample. Next, each bin was classified as a gain,

loss, both or neither for each sample. After compiling pan-cohort information, the
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fraction of samples with gains and/or losses for each 10 Mb genomic bin was cal-

culated. This fraction was divided by the number of samples with copy number

information overlapping this genomic region to get the fraction samples with losses

or gains at that loci. Regions were deemed neutral if the allele-specific copy number

was major allele + minor allele = 1+1 in diploid (2n) or 2+2 in whole-genome

doubled (4n) samples. A bin was considered to harbour a copy number gain when

the copy number of the major allele was ≥2 in 2n and ≥3 in 4n samples. Loss of

heterozygosity events were classified as losses, irrespective of the major allele copy

number. In WGD tumours, segments of copy number major allele +1 have lost one

copy of the minor allele and are therefore classified as losses. For example, 2+1 is

a gain in 2n tumours but a loss in 4n tumours while 3+1 is classed as a gain in both

2n and 4n samples and also as a loss in 4n tumours. Indeed, certain allele-specific

copy number states are achieved by both gains and losses and should be counted as

such.



Chapter 3

Copy-number aware methylation

deconvolution and analysis of cancer

3.1 Introduction

3.1.1 Bulk tumour methylation deconvolution methods

In the previous chapter, we presented a simple two-component model which

defined the bulk tumour as a mixture of aberrant and normal cells. We described the

relationship between tumour DNA content and methylation rates at tumour-normal

differentially methylated CpGs (Figure 2.1) and concluded that tumour purity and

copy number must be accounted for correct interpretation of bulk cancer methy-

lomes, in line with published reports [118–121].

Separation of aneuploid cancer cells from diploid normal populations is pos-

sible by FACS based on nuclei staining and scatter angles [125]. Crucially, prior

knowledge of tumour-specific protein markers is additionally required to distinguish

near diploid tumour populations from admixed normal cells since nuclei staining is

uninformative. Moreover, FACS is low throughput and not usually scalable to large

cohorts due to time and costs and, to our knowledge, this technique has never been

used in combination with bisulphite sequencing. This is potentially because sorting

puts added stress on nuclei, which combined with bisulphite-driven DNA degrada-

tion [143], may considerably reduce DNA quality. Large amounts of input material

are likely needed to compensate for this. A computational tumour purification alter-

native would therefore save researchers time, costs and precious tumour material.
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A handful of tools have been developed to computationally interrogate nor-

mal contamination levels from bulk tumour methylation sequencing and array data

[105, 106, 144]. As introduced in the first chapter (section 1.7), the BED algorithm

identifies the number of unique methylation sequences of n CpGs present at a given

genomic locus, termed epialleles, and quantifies methylation ITH from the Shan-

non entropy [106]. In addition, epialleles from a patient-matched non-aberrant lung

tissue sample can be used as proxy for the tumour contaminating normal cells and

removed from the bulk weighed for tumour purity yielding the pure tumour epiallele

distribution. Despite having only been tested on a single squamous cell carcinoma

primary tumour with multi-region RRBS data, BED could be modified to account

for copy number and is a potentially powerful approach to extract purified tumour

methylomes and study copy- and allele-specific methylation. InfiniumPurify and

MethylPurify do not extract purified tumour methylation rates but do account for

tumour purity in differential methylation analysis, a key part of cancer research,

and do so in a reference free fashion. All approaches discussed ignore tumour copy

number profiles which leads to increased false positives and negatives rates [144].

3.1.2 Differential methylation analysis from bisulphite sequenc-

ing data

Differential methylation analysis is key to understanding the cancer methy-

lome. DMP and DMR calling methods from bisulphite sequencing data are re-

viewed by Hebestreita and Klein [91]. Bisulphite sequencing yields read count

data and thus DMP calling from RRBS and WGBS is often based on Beta or Beta-

Binomial regression models. DMR calling is reportedly most successful when it

builds on DMP calls as opposed to de novo differential methylation analysis of

regions. There is however consensus as to the best way to bin CpGs (and hence

DMPs) into regions for DMR calling. Some researchers prefer binning CpGs by

genomic features while others opt for a feature-agnostic approach.

Spatially separated bins are easily determined from RRBS data due to sparsity.

RRBS is also particularly well-suited to assay (potentially) disease-causing changes

in methylation and dynamically regulated CpGs, which are usually concentrated in
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CGI shores and at TFBSs [33, 145]. Compared with WGBS, RRBS data is a cost-

effective way to query aberant methylation at regulatory CpGs.

3.1.3 Chapter summary

In this chapter, we present Copy Number-Aware Methylation Deconvolution

Analysis of Cancer (CAMDAC), a novel computation tool for deconvolution of

pure tumour signals and allele-specific methylation analysis, and apply it to multi-

region bulk tumour RRBS from the epiTRACERx cohort totalling 122 tumour and

37 tumour-adjacent normal samples from 38 NSCLC patients (section 2.4.1).

To begin with, we show that bulk tumour and normal methylation rates are

affected by polymorphisms and develop SNP-independent methylation rate calcu-

lation rules based on strand-specific dinucleotides counts. The output methylation

rate is the average per CpG allele and importantly is bound by [0,1], regardless of

heterozygous SNPs.

Next, we define the bulk tumour as a two-component mixture of tumour and

normal cell populations. Assuming the normal is a reasonable proxy for the nor-

mal contaminating cells, we visualise tumour-normal DMPs populations by plot-

ting bulk methylation rates distributions thresholding on the normal methylation

rate and stratifying CpGs by sample purity and ASCN. We formalise the relation-

ship between methylation rates and tumour DNA content into CAMDAC equation 2

and validate this model by comparing the observed and predicted DMP population

peak position across samples and copy number states. We demonstrate that pre-

dictions fit the observed data with noise proportional to tumour purity. CAMDAC

purified tumour methylomes successfully remove shared normal signal, decreasing

correlations between patients and to normal after purification, while sampled re-

gions from the same tumour remain closely connected. Where possible, we obtain

SNV deconvoluted tumour methylation rates and compare them with CAMDAC mt .

We observe good agreement between the two approaches, validating our tool.

Subsequently, we describe our Bayesian DMP calling method. We demon-

strate from simulated and real data that differential methylation analysis from pu-

rified methylomes considerably reduces false positive and negative rates. Finally,
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we present FACS tumour RRBS data for a subset of epiTRACERx bulk tumour

samples, separating tumour and normal contaminating cells. We compare the com-

position of the FACS and bulk normal and conclude the adjacent normal is a suit-

able proxy for the tumour infiltrating normal cells. Because the adjacent normal

has a significant epithelial component, it is an appropriate substitute for the NSCLC

cell of origin in differential methylation analyses. Finally, we compare tumour-

normal DMP calls based on bulk and CAMDAC pure tumour methylation rate with

those obtained from FACS-purified tumour methylomes and see better overlap post-

deconvolution.

3.2 Results

3.2.1 SNP-independent methylation rate estimation

In the previous chapter, we showed that the allele distribution at SNPs over-

lapping with CpG loci are affected by methylation. Conversely, we posit that poly-

morphisms confound methylation rates. Across the epiTRACERx RRBS dataset,

heterozygous CpGs account for 11,026 (0.31%) of CpG sites, 83.3% of which

are CpG>TpG polymorphisms and methylation rates at these positions using de-

fault approaches show markedly different distributions (Figure 3.1A-C). In tumour

samples, methylation at heterozygous CpG>TpG shows copy number dependence

(Figure 3.1D-F).

Addressing this, we propose an new set of rules to compute methylation rates

accounting for SNP status (Methods, 3.4.2). (1) We define methylation rates as the

average methylation per CpG allele ensuring the methylation rate at a polymorphic

CpG can take any value between 0 and 1, rather than, for example, between 0 and

0.5 in a diploid region. (2) In directional bisulphite sequencing protocols, the origi-

nal top and bottom strands encode methylation information for the first and second

position of a CpG, respectively. Therefore, we can differentiate (un)methylated

CpGs based on TG(+) and CA(-) versus CG(+) and CG(-) dinucleotide counts

(Figure 3.2A). (3) At CpG>TpG SNPs, reads supporting the unmethylated CpG

and the CpG-destroying alleles are only separable on the reverse strand (CA(-) ver-
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sus TA(-), Figure 3.2B). Likewise, at CpG>CpA SNPs, only the top strand may be

used to unambiguously distinguish alleles (Figure 3.2C).

Excluding counts supporting the CpG-destroying allele, we compiled strand-

specific dinucleotides and calculated methylation rates per CpG allele as: m =
CG

CG+T G(+)+CA(−)
, except at CpG>TpG and CpG>CpA SNPs, where only

reads from the bottom strand and top strand, respectively, inform the estimates

(Figure 3.2B-C). When accounting for these confounders, intermediate methyla-

tion signals are removed (Figure 3.1A-F), confirming that CAMDAC methylation

rates are robust to polymorphisms.

Figure 3.1: Naı̈ve versus CAMDAC polymorphism independent methylation rates.
(A-C) CAMDAC compared with naı̈ve normal methylation rate estimates at (A) all CpGs,
(B) polymorphic CpGs and (C) CpG>TpG SNPs, selected from a random sample of
3,000,000 CpGs from this cohorts 37 normal lung samples. (D-F) CAMDAC versus naı̈ve
bulk tumour methylation rate estimates for CpG>TpG SNPs in segments with total copy
number (D) 1, (E) 2 and (F) 3, pooling the data from all 3 sampled regions from patient
CRUK0084 of near-equal and high tumour purity (range 0.85-0.87). The data points high-
lighted by the orange, green and yellow circles indicate heterozygous C>T SNPs with
CpG allele copy number 1 and the pink circle CpGs with copy number 2.
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Figure 3.2: Rules for calculating polymorphism independent methylation rates with
CAMDAC.
(A) Derivation of methylation rate estimates at non-polymorphic CpGs. (B-C) Deriva-
tion of the CpG-forming allele-specific methylation rate at a (B) CpG>TpG and (C)
CpG>CpA SNP. (B) Methylation rate formulae for all possible polymorphic CpGs.

3.2.2 Bulk tumour methylation rates are affected by tumour pu-

rity and copy number alterations

Analysis of the epiTRACERx cohort with ASCAT.m revealed substantial vari-

ability in tumour copy number and purity, in line with previous work using WES of

the same samples [112]. Here, we take advantage of this to assess the effect of both

these confounders on bulk methylation rates at differentially methylated positions.

In the absence of a robust method to identify differential methylation indepen-

dently of normal contamination and copy number, we first developed a method to

visualise candidate DMPs. Selecting CpG loci that were confidently unmethylated

in the normal contaminating cells, using the patient-matched adjacent normal as a

proxy (mn posterior 99% highest density interval (HDI99) ⊆ [0, 0.2], Figure 3.3A-

B), and plotted the bulk tumour methylation rates at those positions, unpolluted
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by signals from non-aberrant cells. Most of these sites were also unmethylated in

the bulk tumour (Figure 3.3C), exhibiting methylation rates close to 0 (88% with

HDI99 ⊆ [0, 0.2]). This is as expected and suggests that most sites are not differ-

entially methylated between tumour and normal cells. Zooming in, we detect gain

of methylation in a subset of CpGs (Figure 3.3D). Leveraging copy number from

ASCAT.m, we see the modal peak of differential methylation shift with tumour copy

number (Figure 3.3E-F).

Figure 3.3: Bulk tumour methylation rates at CpGs confidently unmethylated in the
matched normal.
(A) Normal and bulk tumour methylation rate density distributions for sample
CRUK0062-R3 and adjacent patient-matched normal showing most CpGs are either fully
methylated or unmethylated. A slight increase in the number of CpGs with intermediate
methylation levels is found in the bulk tumour. (B) Simulated 99% Highest Density In-
terval (HDI99) at example unmethylated CpGs with variable number of methylated and
unmethylated read counts and total CpG coverage. (C-F) Normal and bulk tumour methy-
lation rate (mn and mb, respectively) histogram for CpGs labelled as confidently unmethy-
lated in the normal (HDI99 ⊆ [0,0.2]). The majority of these loci are also unmethylated in
the bulk tumour. (D-F) Zoom-in, highlighting CpGs with gained methylation in the cancer
cells across all copy numbers (D), and in regions of copy number states 2+0 (E) and 2+2
(F).
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To appreciate the combined effect of normal contamination and tumour copy

number, we again selected CpGs that were confidently unmethylated in the nor-

mal (HDI99 ⊆ [0, 0.2]) and further stratified them by ASCAT.m allele-specific copy

number state for each of three tumour regions with different purity and visualised

their bulk tumour methylation rates (Figure 3.4). A bi-allelic DMP population is

apparent across all histograms and its modal methylation rate varies along with tu-

mour purity and total copy number. Similar observations can be made from profiles

which we generated by selecting CpGs that were confidently methylated in the nor-

mal (HDI99 ⊆ [0.8, 1], Figure S7).

Figure 3.4: Tumour purity and copy number affect methylation rates.
Bulk methylation rate histograms for tumour regions 1-3 of patient CRUK0062, for CpGs
which are confidently unmethylated in the adjacent normal sample. CpGs are stratified by
allele-specific copy number. A dashed line indicates the expected mode of the methylation
rate peak corresponding to clonal differentially methylated CpGs on all copies (mt = 1).

These results suggest that correct interpretation of bulk tumour intermediate

methylation signals requires consideration of both tumour purity and copy num-

ber. To address this, we present CAMDAC, a computation tool enabling correction

of bulk tumour methylation rates for these confounders to yield the pure tumour

methylomes, leveraging tumour purity and copy number estimates from ASCAT.m.
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3.2.3 Modelling bulk tumour methylation rates

In the introduction to the previous section, we briefly showed that when a tu-

mour clone is methylated at CpGs that are unmethylated in the normal contaminat-

ing cells, the ratio of methylated reads at that locus obtained from bulk bisulphite

sequencing will rise with tumour purity and copy number (Figures 2.1B, 3.4). Con-

versely, if the tumour clone is hypomethylated with respect to the admixed normal

populations, we record a decrease in methylation rate with increasing purity and

copy number (Figure S7). We formally define this relationship modelling the bulk

tumour methylation rate (mb) as the sum of a tumour component (with methylation

rate mt) and a normal component (with methylation rate mn), weighted for their rel-

ative DNA contributions, which can be calculated as the product of purity and copy

numbers (ρ and 1−ρ , and nt and nn for tumour and normal, respectively):

mb =
ρntmt +nnmn(1−ρ)

ρnt +nn(1−ρ)
(2)

Applying this equation, we compute the expected bulk tumour methylation

mode for clonal bi-allelic DMPs across our lung cancer RRBS data (represented

as a dashed line in Figures 2.1B, 3.4). We then compare our prediction with the

observed mb distribution peak stratifying CpGs by sample purity, copy number and

normal contaminant methylation state, using the adjacent normal samples as a proxy

for the admixed normal cells. For each subset of loci, we carry out separate beta

regression to extract the mode of the observed mb distribution peak generated by

DMPs present on all tumour copies. Setting a minimum effect size threshold is

necessary to obtain a solution at low tumour purities, although this may artificially

increase the distance between DMPs and non-differentially methylated CpGs. The

estimated mode of the mb peaks representing clonal bi-allelic tumour-normal DMPs

align closely with those theoretically predicted under equation 2, for different values

of tumour purity and copy number, and holds across all tumour samples (Figure

3.5). We conclude that the two-component model portrayed in equation 2 explains

the observed bulk tumour methylation rate distribution in our lung cancer cohort.

The median absolute differences between the expected and the observed fit-
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Figure 3.5: Validation of CAMDAC equations across sample purities and copy
number states.
(A) Comparison of the predicted methylation rate under the CAMDAC equations as a
function of purity and copy number state, and the observed peak position for clonal bi-
allelic tumour-normal hypermethylated CpGs that are unmethylated in the adjacent normal
sample. (B) As in A, but for unmethylated CpGs that are methylated in the adjacent nor-
mal sample. (C-D) Observed minus expected mb peak position in relation to tumour DNA
content at clonal hyper- (C) and hypomethylated (D) CpGs across copy number states and
tumour samples. Samples from patients CRUK0031 and CRUK0071 are highlighted.

ted values was 0.0254 (range -0.131 to 0.109) and is correlated with tumour DNA

content (Figure 3.5C,D), calculated as
ρnt

ρnt +nn(1−ρ)
, at both hyper- (Pearson

correlation = 0.703, p-val = 5.43×10−96) and hypomethylated DMPs (Pearson cor-

relation = -0.692, p-val = 7.42×10−92). At low tumour fraction, there is signifi-

cant bleeding of non-differentially methylated CpGs into the DMP peaks, and thus

setting a minimum effect size threshold to fit the observed data can bias the fitted

estimates removing signal (Figures 3.4, S7). At high tumour fraction, DMP popula-

tions form well-defined clonal bi-allelic peaks in the mb distribution. The observed

is systematically shifted away from the expected and towards non-differentially

methylated CpGs. We hypothesise that methylation erosion in rapidly dividing tu-

mour cells may play a role in this effect. Nevertheless, the reported errors are small
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in comparison to absolute methylation changes at clonal epimutations and thus un-

likely to affect downstream analyses. We note that samples from CRUK0031 and a

subset from CRUK0071 show noticeably larger errors than the rest of the cohort. It

is apparent from the bulk tumour distribution that the observed modal value com-

puted by beta regression is not a good a fit for the observed data in those samples,

explaining the discrepancy with CAMDAC equations.

Overall, the predicted modal methylation rate under CAMDAC equations at

clonal bi-allelic DMPs was in agreement with the observed data. This suggest that

differential methylation is the most important driver of intermediate methylation, at

least at the scale of our non-small cell lung cancer cohort.

3.2.4 Deconvolution of bulk into pure tumour methylomes

CAMDAC equation 2 formalises the relationship between the bulk, purified tu-

mour and normal methylation rates in relation to tumour DNA content and is a good

CAMDAC model for our NSCLC dataset. Leveraging estimates of tumour purity

and copy numbers directly from RRBS obtained with ASCAT.m and assuming the

adjacent normal is a suitable substitute for the methylation rate of the tumour pol-

luting normal cells, we have all the necessary variables to solve equation 2 for mt

and obtain deconvolved tumour methylation rate estimates:

mt =
mb(ρnt +nn(1−ρ))−nnmn(1−ρ)

ρnt
(3)

We applied CAMDAC to the epiTRACERx cohort and assessed the output

purified methylomes. After deconvolution, CpGs that have become clonally methy-

lated on all copies in tumour cells are expected to have purified tumour methylation

rates close to mt = 1. Vice versa, tumour-normal hypomethylated loci should ap-

proach mt = 0. We see a high correlation between the expected and the observed pu-

rified tumour methylation rates at these clonal differentially methylated loci present

on all copies (Figure 3.6A). The error on the CAMDAC predictions is proportional

to tumour DNA content (Figure 3.6B-C), with the noise decreasing along with tu-

mour sample purity (Figure 3.6D) causing the error to plateau at ±0.1.
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Figure 3.6: Validation of CAMDAC purified mt at DMPs.
(A) Observed deconvolved tumour methylation rate at clonal hypo- (blue) and hyperme-
thylated (red) CpGs on all tumour chromosome copies compared with the expected, taken
as the mean of the adjacent normal beta distribution peak for unmethylated and methy-
lated CpGs respectively. (B-C) Observed minus expected mt peak position in relation to
tumour DNA content at clonal hyper- (B) and hypomethylated (C) CpGs across copy num-
ber states and for all tumour samples. Samples that were outliers in mb are highlighted.
(D) Observed minus expected deconvolved tumour methylation rate at clonal hyper- (top)
and hypomethylated (bottom) per tumour sample.

We showed that our CAMDAC model can account for copy number and tu-

mour purity to correctly predict the mode of clonal bi-allelic DMPs. However,

we often noted the presence of distinct DMP populations forming peaks between

the bi-allelic and non-differentially methylated clusters, suggesting that these CpGs

were aberrated on a subset of tumour copies. For example, this signal is visible in

the methylation rate distributions of DMPs stratified by allele-specific copy number

and normal methylation rate in samples with sufficiently high purity (Figures 3.4,

S7). Allele-specific methylation has been reported in healthy cells and is known
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to play an important role in chromosome X inactivation in females, at germline

imprinted genes and at polymorphic regulatory sequences [146, 147]. DNA methy-

lation ITH could also contribute to intermediate methylation signals, but published

work on the same samples showed little subclonal signal within single tumour biop-

sies, with most clustered mutations appearing clonal in individual samples and only

found to be subclonal after multi-sample analyses [112]. We therefore assume that

subclonal signal will not substantially alter methylation rates and ignore this source

of intermediate methylation going forward.

We sought to assess CAMDAC purified methylomes by comparing Pearson

correlations between sample pairs. Sample pairs from the same tumour and pa-

tient have shared clonal origins and so were expected to have lower distances than

between patient or tumour-normal pairs. In line with predictions, deconvolved tu-

mour methylomes showed increased distances to matched normals and between tu-

mour samples from different patients compared to bulk signals, while samples from

the same patient remained correlated (Figure 3.7). From this, we conclude that

Figure 3.7: Comparing normal, bulk tumour and CAMDAC purified methylomes.
Correlation between bulk tumour, CAMDAC deconvolved tumour, and adjacent normal
methylation profiles, separating samples from the same (intra-tumour) versus different
patients (inter-tumour).
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CAMDAC successfully deconvolves tumour-specific signals, removing the shared

normal component from the bulk profiles.

3.2.5 Comparing CAMDAC and SNV purified methylomes

We validate CAMDAC pure tumour estimates by phasing CpG methylation

to clonal SNVs present on the same read and on all copies in regions with loss

of heterozygosity called from newly obtained WGS data and previously published

WES [112]. At these sites, tumour reads must report the variant allele, and methyla-

tion rates obtained from this subset of reads can be used as an unbiased estimate of

the pure tumour methylation rate. The variant allele frequencies of somatic genetic

alterations were computed from bisulphite sequencing data using the same rules

devised for BAF calculation at germline SNPs (Figure 2.5). Overall, RRBS- and

matched WES/WGS-derived VAF estimates were highly correlated (Pearson corre-

lation = 0.86, Figure 3.8A). We obtained phased methylation estimates for a total

of 4,485 CpGs across our dataset and observed concordance between these SNV

purified mt values and CAMDAC estimates (Pearson correlation = 0.97, Figure

3.8B). We thus conclude that deconvolution of bulk profiles with CAMDAC leads

to accurate pure tumour methylation rate estimates.

Figure 3.8: SNV deconvoluted versus CAMDAC mt estimates.
(A) Comparison of variant allele frequencies of single-nucleotide variants derived from
RRBS and WES/WGS in regions of loss of heterozygosity. (B) Scatter plot comparing
CAMDAC mt with SNV purified methylation rates. Pearson correlation is displayed.
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3.2.6 Inferring differential methylation from CAMDAC puri-

fied methylation rates

So far, we assessed methylation rates at DMPs by setting thresholds on the

matched normal, stratifying CpGs by copy number state and sample purity, and

modelled peaks of differential methylation. Here, we develop a formal approach for

tumour-normal DMP calling from CAMDAC purified tumour profiles and normal

lung samples (as proxy for the normal cell of origin). We compute the probabilities

of a CpG having gained or lost methylation during tumour evolution, P(mt > mn)

and P(mt <mn), respectively (Methods, section 3.4.5). Replacing mt with equation

3, these probabilities can be expressed in terms mb and mn, hence enabling use of a

beta distribution Bayesian model based on bulk tumour and normal (un)methylated

read counts (UMb, Mb, UMn and Mn). The resulting probability density is a scaled

difference of two beta posteriors (mn and mb Beta(Mx,UMx), where x ∈ [n,b]), cal-

culated as (Methods, section 3.4.5):

P(mt > mn) = P(C(mn−mb)< 0) where C =
ρnt

ρnt +nn(1−ρ)
(4)

CAMDAC equations 3 and 4 reveal the relationship between tumour purity,

copy number and read depth. From this, we can deduce the effect of these vari-

ables on tumour–normal DMP detection power. Specifically, the standard deviation

around the observed mn and mb increases with decreasing normal and tumour cov-

erage, respectively. In other words, a reduction in coverage flattens the two Beta

distributions. Int turn, higher tumour copy number leads to increases in local read

depth reducing the variance of mb but also, together with increasing purity, widens

the gap between bulk tumour and normal methylation rates at DMPs, further in-

creasing power.

For tumour–tumour DMP calling, we calculated the probabilities P(mt1 >mt2)

and P(mt1 < mt2), substituting mti by equation 3 and resampling mt from the poste-

rior distributions of mn and mb weighed for tumour DNA content (Methods, section

3.4.6).
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In addition to the statistical test, a minimum methylation rate difference is

usually required by differential methylation analysis tools to tease out biologically

significant from statistically significant signals. We set this threshold to |mt−mn|>

0.2, which is relatively low compared with other cancer studies (e.g. 0.25 [148],

0.3 [149, 150]).

3.2.7 Evaluating CAMDAC performance on simulated DMPs

We discuss our tumour-normal and tumour-tumour DMP simulation outputs,

including false positive and false negative rates and evaluate the impact of tumour

purity, copy number and read depth on CAMDAC DMP calling power (Methods,

section 3.4.7).

First, we created two sample sets of differing tumour DNA content by taking

the 20 lowest and highest purity samples in our cohort, each group with purities ρ <

0.3 and ρ > 0.58, respectively. For all those samples, we compiled the copy number

and coverage information at every autosomal CpG and noted the associated sample

purity. We then sampled CpGs from this list, taking the bulk tumour coverages, copy

numbers and sample purities to calculate the number of reads coming from tumour

and normal cells. Next, we compiled vectors of confidently unmethylated (HDI99

∈ [0, 0.2]) and methylated (HDI99 ∈ [0.8, 1]) CpGs from the adjacent normals. A

normal methylation prior was randomly selected from these two vectors and the

tumour methylation prior was either sampled from the same prior as the normal, to

simulate non-differentially methylated loci, or from the opposite, to generate our

true positive DMP set. We used these methylation priors in combination with the

sampled coverages to generate the counts methylated in the tumour and normal.

The bulk is finally computed as the sum of the normal and tumour read counts.

We generated equal numbers of inter- and intra-tumour sample pairs, from

the same or across purity groups and copy number states ∈ 1,2,3,4,5,≥6, totalling

168 possible combinations each with 10,000 simulated CpGs. Every CpG pair

is included in the tumour-tumour DMP analysis while individual CpGs are fed

into tumour-normal DMP calling, setting the probability and minimum effect size

thresholds to 0.01 and 0.2, respectively. Our results revealed that, in contrast to mb,
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thresholding based on mt removed dependence on purity and copy number, with true

positive bi-allelic and mono-allelic DMPs (in balanced regions) showing absolute

mt−mn methylation rate difference near 1 and 0.5 respectively (Figure 3.9).

Figure 3.9: Absolute tumour-normal methylation difference in simulated data.
Average absolute normal minus mt (solid line) and mb (dashed line) methylation difference
at simulated bi-allelic (left) and mono-allelic (right) false negatives (FN), false positives
(FP), true negatives (TN) and true positives (TP).

In comparison to mb, setting the effect size on mt lowered the false negative

rates in tumours with high normal contamination levels and at CpGs with low copy

number (Figure 3.10), while retaining low numbers of false positives at all copy

numbers (FPR < 3.0× 10−3). Likewise, tumour-tumour DMP calls based on mb

were highly polluted with false positive DMPs, while those derived from purity and

copy number adjusted mt estimates were not. We conclude that use of CAMDAC

mt values considerably reduces false positives in tumour-tumour comparisons while

retaining a similarly low rate of false negatives (Figures 3.11 and S8).

To evaluate CAMDAC performance on real data, we compared intra-tumour

DMPs called using mb or mt for patient CRUK0062, which we selected for its large

number of samples with varying tumour purity (Figure 3.12A). In this setting, most

CAMDAC mt-based calls are also identified using mb and the effect of tumour purity

on power can readily be seen as an increase in the number of DMPs identified with

sample purity. Note however that, using mt , more DMPs are called when both

samples are high purity, i.e. statistical power is the highest. In contrast, when using

mb, more DMPs are called when two samples differ more in purity. These findings
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Figure 3.10: Tumour-normal DMP simulation results.
False negative rates at mono- (diamond) and bi-allelic (circle) DMPs for samples falling
in the low (orange) and high (yellow) tumour purity categories using CAMDAC mt (solid
line) and mb (dashed line) with tumour copy nuber (A) or by coverage interval (B).

Figure 3.11: Bi-allelic tumour-tumour DMP simulation results.
False negative and false positive rates as a function of the copy number state, averaged
across simulated sample pairs of low (left panel), low versus high (middle panel) and high
(right panel) tumour purities with CAMDAC deconvolved (top row) and bulk (bottom
row) tumour methylation rates.

are in line with our simulation results and suggest that also on real data, controlling

methylation rates for tumour purity and copy number greatly reduces the number of

false positive DMP calls, while maintaining low false negative rates.

To get a global overview of the performance of CAMDAC mt and bulk mb

for tumour-tumour differential methylation analysis, we analyse simulated pairwise

loci selected CpG loci from samples of low or high tumour purities both within and
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between patients and obtained DMP calls (Methods). As expected, results showed

a greater number of DMPs for inter-patient comparisons than between samples of

shared clonal origins (Figure 3.12B). Furthermore, DMP calls unique to the bulk

tumour were frequent between samples of differing purities taken from the same

patient, suggesting a high false-positive rate of DMP calling without deconvolution.

Taken together, analyses of both simulated and observed data show that

CAMDAC enables accurate calling of both tumour-normal and tumour-tumour dif-

ferential methylation from RRBS data, accounting for both purity and copy number.

Figure 3.12: DMP calling on real data.
(A) Comparing observed tumour-tumour differential methylation calls between
CRUK0062 regions from bulk (grey) and CAMDAC (blue) approaches. Samples are or-
dered by tumour DNA content. (B) Venn diagrams showing the overlap of tumour-tumour
DMPs between bulk and CAMDAC call sets for intra- and inter-tumour DMPs.

3.2.8 Validation of normal lung as reference for CAMDAC and

differential methylation

CAMDAC purification and differential methylation analysis modules require

a proxy for the methylation rates of the tumour-infiltrating normal cells and the

tumour-initiating cell, mn,in f il and mn,init , respectively. In this work, we substitute

the tumour-adjacent patient-matched lung normal as an estimate of both these vari-

ables and thus refer to them interchangeably as mn.

Deconvolution of cellular subtypes in LUAD and LUSC from bulk tumour

RNA-Seq data suggests variable immune infiltration levels between sampled region

of the same patient and across the cohort [114]. We posit that immune, fibroblast
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and epithelial populations in the adjacent normal will roughly match the tumour

composition if sampled within sufficient proximity. Studies in mouse and human

have shown that the lung epithelium hosts at least 32 different cellular subtypes

[151, 152]. While most of these components represent a small fraction of cells,

lung tissue is enriched for two epithelial cellular subtypes, both of which happen to

be a cell of origin of lung adeno- and/or squamous cell carcinoma. A surfactant-

producing population in the alveolar space referred to as alveolar type II cells (AT2

cells) could be the cell of origin of lung adenocarcinoma [153]. The bronchiolar

club (Clara) cells can presumably initiate both LUAD and LUSC [154, 155]. The

bulk adjacent normal should therefore be densely populated by the NSCLC cells

of origin and thus an adequate proxy for tumour-normal differential methylation

analysis.

To test our hypothesis, we performed RRBS of diploid, popD, and aneuploid,

popA, populations separated by FACS from 5 different patients selected for having

sufficient material available and high tumour ploidy (Methods, section 3.4.8). As-

suming diploid cells are all normal, we compared the cellular composition obtained

from EpiDISH [96] on the sorted popD and bulk normal data (Table 3.1). EpiDISH

is a reference-based cell-type deconvolution approach designed for array data lever-

aging the methylation rates of epithelial, immune and fibroblast cells at 716 probes.

On average, RRBS data overlaps with 27.23% (195) of these reference probes. The

mean absolute difference between the adjacent normal and sorted populations from

the same patient were 0.130, 0.167 and 0.178 for epithelial, fibroblast and immune

components, respectively. The tumour-adjacent lung tissue had consistently higher

epithelial cell fraction than the tumour-infiltrating normal cells separated by FACS

suggesting that, of these two normals, it is the best substitute for the cell of origin

of NSCLC (Wilcoxon paired test p-val = 0.0556).

Next, we obtained DMP calls between the tumour-adjacent normal samples

and the patient-matched diploid population that were isolated by FACS to gauge

their similarity. Overall, the mean absolute difference (∆m) between paired pro-

files was ∆m = 0.0672 and on average 95.28% of CpGs were classified as non-
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Table 3.1: Comparison of the cellular composition of bulk and sorted normals.

CRUK ids sample design epithelial fibroblast immune

CRUK0090 N bulk 0.388 0.208 0.404
CRUK0090 R1 sorted 0.362 0.016 0.621
CRUK0062 N bulk 0.316 0.302 0.382
CRUK0062 R5 sorted 0.199 0.338 0.462
CRUK0079 N bulk 0.335 0.231 0.434
CRUK0079 R1 sorted 0.224 0.155 0.622
CRUK0070 N bulk 0.349 0.176 0.475
CRUK0070 R2 sorted 0.221 0.301 0.478
CRUK0050 N bulk 0.491 0.159 0.349
CRUK0050 R4 sorted 0.222 0.0263 0.752

differentially methylated. This suggests that cell-type heterogeneity between sorted

and bulk normals generates few DMPs.

There were a total of 2,557,754 CpGs that were covered in all samples, 6.86%

and 10.94% of which were hyper- and hypomethylated in at least one sorted sam-

ple with respect to the patient-matched bulk tissue. Of these DMPs, 28.81% were

shared between at least 2 patients with most showing consistent direction of methy-

lation difference across pairs (98.1%). Additionally, 92.73% of CpG sites that fell

within the 150bp region spanning either side of an EpiDISH cellular deconvolution

reference probes were recurrently differentially methylated across samples. Given

these observations, we posit that most sorted versus bulk normal DMPs arise from

cell-type specific methylation and variable cell type composition, and that these loci

may be used to assess normal infiltrate composition.

Finally, we compared tumour-normal DMPs calls based on mb and CAMDAC

mt with those obtained from the sample-matched tumour cells purified by FACS. In

both cases, we used the adjacent normal as a proxy for the normal cell of origin. As

expected, we observed good overlap between all DMP call sets for tumour samples

with high tumour DNA content and the number of DMPs was correlated with power

(Figure 3.13). At lower tumour copy number and purity, CAMDAC deconvolved

methylation rates enabled identification of a large fraction of DMPs also identified

by FACS, while bulk tumour methylomes recalled considerably fewer. Comparison
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of non-overlapping calls is difficult due to the FACS data being of lower coverage

(meanFACSmt = 24, meanCAMDACmt = 41, meanmb = 78) and, potentially, cell-type

biases during nuclei sorting.

To sum up, the adjacent normal is seemingly more suitable for differential

methylation analyses than the sorted non-tumour cells due to having a larger ep-

ithelial component and, despite variation in composition, the adjacent normal is an

adequate proxy for the normal tumour contaminating cells. Tumour-normal DMP

calls based on CAMDAC mt have greater overlap with the FACS sorted data than the

bulk, further advocating use of CAMDAC over bulk methylation rates for accurate

identification of epimutations.

Figure 3.13: Comparing tumour-normal differential methylation based on CAMDAC
mt , mb and FACS purified tumour methylation rates.
Venn diagrams showing the overlap between tumour-normal DMP calls performed on
the adjacent matched normal and CAMDAC mt versus FACS mt (top row) and mb versus
FACS mt (bottom row). Individual Venn diagrams are to scale. Samples are ordered by the
tumour sample tumour DNA content.

3.3 Discussion
Data presented in the previous chapter (Section 2.2.4) showed that LUAD and

LUSC both have high levels of normal contamination. In line with this observation,

they each ranked in 4th and 7th lowest position in terms of mean purity when com-

pared with 30 other cancer types [144]. Tumour-normal deconvolution is therefore

particularly important to correctly interpret NSCLC methylomes. To overcome this

issue, we introduced our tool for Copy Number-Aware Methylation Deconvolution
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Analysis of Cancer, CAMDAC and applied it to multi-region RRBS data performed

on the primary tumour of NSCLC patients from the epiTRACERx cohort.

We showed that SNPs affect methylation levels in both normal and tumour

samples and thus computed SNP-independent methylation rates. This ensured that

CpG methylation could take any values between 0 and 1, as it should. By thresh-

olding on the adjacent matched normal and stratifying CpGs by ASCAT.m copy

numbers and tumour purity, we could visualise DMP populations. Following the

same approach, we demonstrated that bulk methylation rates at DMPs depend on

tumour purity, copy number and both tumour and admixed normal methylation rates

and formalised this relationship as CAMDAC equation 2. To test this model, we

extracted the modal methylation rate of clonal bi-allelic DMP populations from

the observed mb distribution and compared them with the expected, showing good

agreement across tumour purities and copy number states for both hyper- and hy-

pomethylation positions. We concluded that tumour purity and copy number ex-

plains the majority of the observed intermediate methylation values in the mb distri-

bution. With ASCAT.m purity and copy numbers and polymorphism-independent

methylation rates all obtained directly from tumour and adjacent matched normal

RRBS, we could compute the CAMDAC mt estimates as per equation 3.

Analysis of inter-sample Pearson distances confirmed that CAMDAC effec-

tively removes the shared normal component from the bulk, increasing distances

between different patients and normal and tumour sample pairs while retaining high

intra-tumour correlations, as was expected due to shared clonal origins. Where pos-

sible, we phased SNVs from newly obtained WGS and published WES [112] in

regions of LOH with the mutant allele on all tumour copies, enabling unbiased sep-

aration of tumour and normal reads. Despite the alignment bias against reads con-

taining alternate alleles in RRBS data, which we discussed in the previous chapter

(Section 2.2.2), the RRBS- and WES/WGS-derived VAFs were highly correlated.

This suggests that, when the alternate allele is mapped successfully, the VAF is re-

liable and thus de novo SNV calls from RRBS using CAMDAC calculation rules

would be possible. SNV purified tumour methylation rates validate CAMDAC de-



3.3. Discussion 87

convolved mt estimates. Next, we performed tumour-normal and tumour-tumour

DMP calls of both simulated and real data, revealing that only mt values enable

accurate differential methylation analyses.

Finally, we presented additional RRBS data acquired for both tumour and ad-

mixed normal cell populations separated by ploidy with FACS from five different

patients. For two of the patients, we sequenced an additional aneuploid population

from a different tumour region. Results suggest that the tumour-adjacent normals

have greater epithelial content then the non-tumour infiltrating cells, making the

former the most suitable proxy for the NSCLC cell of origin and thus for tumour-

normal differential methylation analyses. Despite differences in cell type com-

position, normal methylation rates computed from the diploid populations which

were sorted by FACS and those obtained from the adjacent normal were in agree-

ment with over 95% of CpGs classified as non-DMPs at overlap probability < 0.01

and effect size > 0.2. Where present, DMPs tended to be recurrent across normal

pairs and were likely due to cell-specific methylation. Tumour-normal DMPs de-

rived from the adjacent matched normal and either the mb, CAMDAC mt or FACS

mt revealed greater overlap between calls based on CAMDAC- and FACS-purified

methylation rates than between mb and FACS mt .

Overall, CAMDAC allows for correct interpretation of bulk tumour interme-

diate methylation levels as well as extraction of purified profiles unpolluted by ad-

mixed normal cells.

The data presented in this chapter showed that, at least in NSCLC, the methy-

lation rate distribution at CpGs having lost methylation in tumour cells is noisier

than hypermethylated loci, likely due to (i) ongoing methylation erosion, especially

in rapidly dividing tumour cells, (ii) bisulphite over-conversion and (iii) cell-type

specific methylation in normal contaminating cells.

Although ignored in our model thus far, ongoing tumour evolution gives rise

to intra-tumour heterogeneity. Diverging evolutionary trajectories from the most

recent common ancestor (MRCA) will lead to coexisting subgroups of cells called

subclones. If these populations harbour substantially different (epi)genetic profiles
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and are present in a sufficiently large fraction of cells, this signal could further

complicate interpretation of bulk tumour profiles [126]. Work from the PCAWG

consortium showed that, on average less than 5 and 10% of SNVs detected from

single LUAD and LUSC bulk tumour biopsies were subclonal, respectively [126].

Clonal bi-allelic DMP signal is unlikely to be affected by this, but clonal allele-

specific epimutations could be confounded by subclonal bi-allelic aberrations in

high purity samples with sufficiently large co-existing subclones and sufficiently

high cancer cell fraction.

For example, take a hypothetical bulk tumour admixture with nt = 3 and

ρ = 0.4, and a large set of CpGs that were unmethylated in the normal and the

MRCA, but became fully methylated in 50% of tumour cells. These sites would

form a potentially detectable subclonal DMP cluster around mb =
1
4

or mt =
1
2

in

pure tumour methylation space (Figure 3.14. In reality, most tumours will have a

dominant subclone, and the small population of tumour cells that are heterogeneous

at a subset of CpGs are unlikely to interfere with global differential methylation

detection [144].

Cell type heterogeneity between normal cell populations can also contribute

to intermediate methylation signal. In samples of low tumour purity, a normal cell

population present in a large fraction of the normal contaminating cells with cell-

type specific methylation will generate intermediate bulk tumour methylation levels.

For example, if one or more CpGs are methylated in
1
3

of normal contaminants

and otherwise unmethylated in a sample of purity ρ = 0.4, tumour copy number

nt = 3 and normal copy number nn = 2, this would lead to intermediate methylation

centred around mb =
1
6

(Figure 3.14). However, we show that the adjacent normal

cellular composition is sufficiently close to the normal contaminating cells to serve

as a proxy to remove this signal from the bulk tumour looking at correlations pre-

and post-deconvolution and comparing adjacent normal methylation rates directly

with that of the admixed normal cells isolated by FACS for a subset of samples.

To conclude, our tool for copy number-aware methylation deconvolution

analysis of cancers, CAMDAC, allows users to fully exploit the wealth of infor-
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Figure 3.14: Intra-tumour and cell type heterogeneity may also generate
intermediate methylation signal in bulk tumour data.
Example bulk tumour (mb), pure tumour (mt) and normal (mn) methylation rates in a bulk
tumour admixture of purity ρ = 0.4 for an individual or group of CpG(s) of clonal tumour
copy number nt = 3 and with either mono- or bi-allelic subclonal tumour-normal differen-
tial methylation or cell type specific methylation.

mation present within RRBS, enabling combined copy number profiling and purity

estimation with accurate DMP analysis derived from CAMDAC mt . CAMDAC

has the potential to unveil unique insights into cancer biology and taxonomy as

well as methylation ITH, directly from bulk bisulphite sequencing of solid tumours.

CAMDAC is expected to further our understanding of the interplay between epige-

netic and genetic mutations as well as their roles throughout tumor evolution.

3.4 Methods

The methods described below were recently published as part of our bioRxiv

preprint [140]. The epiTRACERx cohort selection, characteristics and sequencing

methods can be found in the previous chapter (Methods 2.4).
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Figure 3.15: CAMDAC pipeline overview.
CAMDAC takes bulk tumour and a normal proxy for the tumour contaminating cells as in-
put. The default is to used the same normal sample as a representative methylome for the
cell of origin in differential methylation analyses or a different normal may be provided.
CAMDAC extracts SNP-independent mb and mn and leverages copy number profiles and
tumour purity estimates from ASCAT.m to compute mt and perform DMP and DMR call-
ing. Allele-specific methylation analysis and phasing to SNVs / heterozygous SNP can be
done applying CAMDAC principles, but is yet to be implemented as part of the package.

3.4.1 Copy-number aware methylation deconvolution analysis

of cancers (CAMDAC)

As depicted below, CAMDAC requires RRBS data prepared from bulk tumour

and matched adjacent normal samples. At this moment, CAMDAC is only compat-

ible with human (directional) RRBS data. The input must be quality and adapter

trimmed with PCR duplicates removed and subsequently aligned to hg19 (hg38,

GRCH37 and GRHCH38 formats also compatible). The tumour and matched nor-

mal data must be provided in .bam file format. The files must be sorted and indexed

using SAMtools (http://github.com/samtools/). The input tumour and matched nor-

mal sequencing data is used to compute tumour purity and allele-specific copy num-

bers with ASCAT.m as well as SNP-independent bulk tumour and normal methy-

lation rates. From these data, we obtain CAMDAC purified mt values and per-

form tumour-normal and tumour-tumour differential methylation analysis. Allele-

specific methylation analyses and phasing of differentially methylated loci to SNVs

or heterozygous SNPs can both be achieved by applying CAMDAC principles, but

this is yet to be implemented as part of the package.
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3.4.2 SNP-independent methylation rate calculation

The bulk tumour and matched normal methylation rate is readily computed

by taking the ratio of methylated CpG read counts to the sum of methylated (M)

and unmethylated (UM) read counts, m =
M

M+UM
. CAMDAC uses strand-

specific dinucleotide counts to distinguish between methylated and unmethylated

CpGs, m =
CG

CG+T G(+)+CA(−)
. At CpG>TpG (TpT>CpG) and CpG>CpA

(CpA>CpG) SNPs, only reads from the bottom strand and top strand, respectively,

contribute to methylation rates. Moreover, only the CpG-forming allele contributes

to the methylation rate at polymorphic CpGs. This enables the methylation rate at

a heterozygous CpG to vary between 0 and 1, instead of between 0 and 0.5 in a

diploid example, and ensures further independence between methylation rate and

copy number estimates.

We compiled bulk tumour and normal methylation rates for all CpGs which

fell within the above-mentioned reference RRBS genomic regions list. For each

patient, we discarded all CpGs that failed to reach a minimum coverage of 10 in

the matched normal RRBS data. CpGs that had less than 3 reads in a given tumour

sample were also filtered out from that sample.

3.4.3 CAMDAC-purified tumour methylation rates from RRBS

data

Bulk tumour methylation rate (mb) could be expressed as a function of the

methylation rate in the tumour cells (mt) and contaminating normal cells (mn),

scaled for the purity of the sample (ρ) and the local copy number state. This normal

copy number is set to nn = 2 for autosomal CpGs and 1 copy at polymorphic CpGs

or outside pseudoautosomal regions regions on chromosome X in males in the nor-

mal. Similarly, nt is the tumour total copy number obtained from ASCAT.m, with

the exception being polymorphic CpGs where the CpG allele-specific copy num-

ber is used. For CpG-destroying SNPs with BAF<0.5 or CpG-forming SNPs with

BAF>0.5, the major allele copy is used. Vice versa, if the BAF>0.5 and the SNP

is CpG-destroying or the BAF<0.5 and the SNP is CpG-forming, only the minor
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allele informs the methylation rate.

We obtained total copy number at each CpG and tumour purity directly from

RRBS with ASCAT.m and thus, assuming the matched normal is a reasonable proxy

for the contaminating normal, we can derive mt .

Finally, mt is a rate and so must be bound by the 0 and 1. But, due to biologi-

cal and technical noise, values can fall outside of these boundaries. For downstream

analyses, we round negative mt estimates up to 0 and those above the upper bound-

ary are capped at 1. The mt 99% HDI virtually always overlaps with allowed values.

We validate our model by comparing observed and expected clonal bi-allelic

DMPs modal peak position for CpGs that were confidently unmethylated (HDI99

⊆ [0,0.2]) of methylated (HDI99 ⊆ [0.8,1]) in the adjacent patient-matched normal.

For this subset of CpGs, we compiled allele-specific copy number (ASCN) seg-

ments are retained ASCN states with ≥ 10,000 loci (inter-quartile range 180,125-

807,774). Sex chromosomes were excluded due to sequencing biases against the

packed Barr body shifting methylation estimates. Segments meeting these crite-

ria had total copy number ranging from 1-8. Beta regression was used to estimate

the mode of the peak generated by hyper- and hypomethylated DMP populations

in the observed bulk tumour and CAMDAC methylation rates distribution stratified

by tumour purity, copy number and matched normal methylation rate. The modal

methylation rate of the peaks at 0 and 1 in the patient matched normal were esti-

mated by beta regression and these unmethylated (m0) and methylated (m1) values

were used to derive the expected values as opposed to exactly 0 and 1. The bulk

tumour expected at hypermethylated loci is computed by feeding sample purity,

segment copy number, nn=2 and mn = m0 and mt = m1 equation 2. Vice versa, mn

and mt are substituted with m1 and m0 to calculate the expectation at hypomethy-

lated loci. The predicted values are set to exactly m0 and m1 in the purified profiles

for CpGs having lost and gained methylation respectively.

In the bulk comparisons, the mean observed and expected methylation rates

were 0.49 compared with 0.52 for hypermethylated loci and 0.46 for both at hy-

pomethylated CpG sites. This further supports that intermediate methylation gives
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rise to intermediate methylation signal. The mean absolute errors were 0.032 and

0.029 at CpGs that gained and lost methylation, respectively. As for the bulk, the er-

ror between modelled and expected pure tumour methylation rates is correlated with

tumour DNA content, but after purification, the error plateaus to -0.084 at tumour

fractions greater than 0.53 for hypermethylated loci. Similarly, at hypomethylated

DMPs, it plateaued from 0.51 at a value of 0.052.

3.4.4 SNV-phased methylation rate estimates

Leveraging SNV calls from newly obtained WGS data and previously pub-

lished WES [112], we phased CpG methylation to all SNVs, excluding loci with

VAF ≤ 0.1 in a tumour sample or VAF > 0 in the patient-matched adjacent nor-

mal tissue. Allele-specific methylation counts were compiled for all reads that

could be phased to exactly one SNV. Phased methylation rates were obtained for

32,874 CpGs and 6,529 SNVs across samples (14,514 and 2,984 unique CpGs and

SNVs respectively across patients). The VAF was derived from the mutant (mut)

and wild type (WT ) reads counts: VAF =
countsmut

countsmut + countsWT
. RRBS-derived

VAF estimates were compared with those obtained from the WES/WGS (Pearson

correlation = 0.86, Figure 3.8A). The mutation copy number, nmut , was then com-

puted as a function of the variant allele frequency, tumour purity and copy number:

nmut =
1
ρ
×VAF×ρnt +nn(1−ρ). The wild type allele copy number, nWT , is ob-

tained by subtracting nmut from nt : nWT = nt−nmut . The mutant allele methylation

rate, mmut , is extracted by taking the counts methylated (Mmut) and unmethylated

(UMmut) divided by all counts phased to the variant allele: mmut =
Mmut

Mmut +UMmut
.

The wild type allele methylation rate, mWT , is confounded by signal from normal

contaminating cells and must be deconvolved. For this, we use a modified version

of the CAMDAC equations 2 and 3, where the tumour methylation rate and copy

number are expressed in terms of the mutant and wild type alleles.

mb =
ρ(nmutmmut +nWT mWT )+nnmn(1−ρ)

ρ(nmut +nWT )+nn(1−ρ)
(5)

mWT =
mb(ρ(nmut +nWT )+nn(1−ρ))−nnmn(1−ρ)−ρnmutmmut

ρnWT
(6)
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We validate CAMDAC mt by comparison with methylation estimates phased to

clonal SNVs present on all copies in regions with loss of heterozygosity across our

cohort (nmut = nt). At these sites, all reads reporting the variant allele can directly

be assigned to the tumour cells, and methylation rates obtained from this subset

of reads should be an unbiased estimate of the purified tumour methylation rate

(i.e. nmut = 0). Overall, 4,485 CpG loci met these criteria. A high correlation

was observed between these SNV deconvoluted mt values and CAMDAC estimates

(Pearson correlation = 0.97, Figure 3.8B).

3.4.5 Identifying tumour-normal DMPs

We develop a statistical test for DMP calling between tumour and normal. The

number of methylated reads at a CpG can be modelled as Beta-Binomial distribution

with mean equal to the methylation rate and following a Beta distribution. The bulk

tumour and matched normal methylation rate at the ith CpG, mx,i, can be expressed

in terms of the observed methylated and unmethylated read counts Mx,i and UMx,i,

respectively, where x is b for the bulk tumour and n for the normal:

mx,i = Beta(Mx,i,UMx,i) (7)

For tumour-normal DMP calling, we test whether or not the CAMDAC purified

tumour methylation rate at the ith locus, mt,i, is different from the normal methy-

lation rate, mn,i. In other words, we evaluate whether mt,i is statistically different

from mn,i.

∆B = mt,i−mn,i (8)

As per CAMDAC equation 3, we defined mt,i as a difference between two Beta

distributions, mb,i and mn,i, scale for tumour purity and copy number. Substituting

expression 2 into ∆B, we obtain the following and simplify:

∆B =
mb,i(ρnt,i +nn,i(1−ρ))−nn,imn,i(1−ρ)

ρnt,i
−mn,i (9)

∆B =C× (mb,i−mn,i) where C =
ρnt,i

ρnt,i +nn,i(1−ρ)
(10)
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Expression 10 suggests that our model is independent of copy number and

tumour purity. However, the power to call DMPs will intrinsically depend on purity,

local copy number and CpG coverage. The former two will alter the magnitude of

∆B and the latter will impact the variance of each mb,i and mn,i. Since there is a

closed-form solution for testing P(mb,i > mn,i), but not for P(mb,i = mn,i) [156], the

null and alternate hypotheses are written as follows:

H0 : mb,i = mn,i The methylation rate of the ith CpG is identical in normal and

tumour

H1 : mb,i > mn,i The tumour is hypermethylated at this locus

H1 : mb,i < mn,i The tumour is hypomethylated at this locus

where,

P(mb,i > mn,i) =
Mn,i−1

∑
j=0

B(Mb,i + j,UMb,i +UMn,i)

(UMb,i + j)+B(1+ j,UMn,i)+B(Mb,i,UMb,i)
(11)

P(mb,i < mn,i) =
Mb,i−1

∑
j=0

B(Mn,i + j,UMn,i +UMb,i)

(UMn,i + j)+B(1+ j,UMb,i)+B(Mn,i,UMn,i)
(12)

= 1−P(mb,i > mn,i) (13)

Equation 11 can be rewritten as follows, incorporating our B(0.5,0.5) prior to each

methylation count variable. The prior informs on the underlying methylation rate

distribution and ensures finite logarithms:

P(mb,i > mn,i) =
Mn,i−1

∑
j=0

logB(Mb,i + j+0.5,UMb,i +UMn,i +0.5)−

logB(UMb,i + j+0.5)−

logB(1+ j+0.5,UMn,i +0.5)−

logB(Mb,i +0.5,UMb,i +0.5) (14)
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We compute the probability that a CpG site is hypo- or hypermethylated and

for easier interpretation, we express these probabilities as their complement (C =

1-P), which is a measure of the overlap between mb,i and mn,i. If C(mb,i > mn,i)

or C(mb,i > mn,i) ≤ 0.01 we accept H1 or H2 respectively. Differential methylation

analyses incorporating a beta distribution model reportedly show higher true posi-

tive and lower false discovery rate are obtained compared with Fisher’s and z-score

methods [157]. Nevertheless, given high enough coverage, even a small difference

in methylation can become statistically significant. In order to focus our analysis

on biologically significant methylation changes, we require a minimum effect size

of 0.2 between the purified tumour methylation rate, mt,i, and the matched normal,

mn,i, for DMP calling. In theory, this allows for subclonal or allele specific changes

to be picked up whilst removing spurious signal. We obtained a second set of DMPs

by applying the minimum effect size threshold on the difference between the bulk

tumour methylation rate, mb,i, and the normal methylation rate, mn,i as is custom-

ary [91,92,158–160], and compared the output with CAMDAC calls. The threshold

of 0.2 was deemed sufficiently low to capture most mono-allelic aberrations whilst

being high enough to remove false positives and filter noise from the heterogeneous

normal contaminating cells.

3.4.6 Identifying tumour-tumour DMPs

The purified tumour methylation rate is not a beta distribution but rather the

difference between two betas, the bulk tumour and normal methylation rate, scaled

for tumour purity and copy number. As such, there is no exact solution to compute

the highest density interval for mt,i. To address this, we simulate a credible 99%

HDI for mt,i at every CpG. We use the tumour purity and CpG copy number and

simulate 2000 data points for the bulk tumour (mb,i) and matched normal methy-

lation rate (mn,i), given mx,i ∼ B(Mx,i,UMx,i). Substituting these into Eq(2), we

obtain a vector of values for mt,i and readily extract the 99% HDI. If the purified

tumour methylation rate HDI does not overlap between any two tumour regions at

a given CpG and the minimum effect size, 0.2, is reached, a tumour-tumour DMP

is identified.
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3.4.7 Simulating tumour-normal and tumour-tumour DMPs

To appreciate the effect of tumour purity on both tumour-normal and tumour-

tumour differential methylation analysis, we extracted the 20 lowest and highest

purity samples in our cohort, ρ < 0.3 and ρ > 0.58, respectively. We combined

the methylation information at all overlapping autosomal CpGs from these samples

including the patient-matched normal of selected samples. The normal methylation

rate at confidently unmethylated and methylated CpGs was extracted. Confidently

unmethylated and methylated CpGs are respectively defined as having their methy-

lation rate 99% HDI boundaries in the 0.0-0.2 and 0.8-1.0 intervals. This vector

of values incorporates information for both distributions such as mean methylation

rate and deviation as well as their respective contribution to the overall bimodal nor-

mal methylation rate profile. Sampling from this vector will yield our simulation

priors.

Next, we randomly selected intra- and inter-tumour CpG pairs from samples

within or across purity categories and of equal or differing total copy numbers

(range 1-6). For all 168 possible combination of these simulation parameters, we

sampled 10,000 loci from each tumour samples randomly assigned as x and y as

well as their matched normal. For each locus, we begin by obtaining the coverage

information for the ith CpG selected from sample s = x or y. We know the bulk

tumour coverage (covb,s,i), the tumour copy number (nt,s,i), the normal copy number

(nn,s,i = 2) and the global tumour purity (ρs,i) and so the tumour DNA fraction ( ft,s,i)

is ft,s,i = (nt,s,i×ρs,i)/(nt,s,i×ρs,i +(nn,s,i× (1−ρs,i)). We can deduce the purified

tumour coverage as covt,s,i = covb,s,i× ft,s,i where covt,s,i ∼ Binom(covb,s,i, ft,s,i).

The matched normal coverage (covn,s,i) is therefore covn,s,i = covb,s,i− covt,s,i.

We then sample a normal methylation rate prior (pn,i) from the confidently

unmethylated (vunmeth) and methylated CpGs (vmeth) from the matched normal data

which is used to simulate the normal methylation rates of normal contaminating

cells from both tumour samples x and y. For each sample, we obtain the counts

methylated (Mn,s,i) and unmethylated (UMn,s,i): Mn,s,i ∼ Binom(covn,s,i, pn,i) and

UMn,s,i = covn,s,i−Mn,s,i.
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The purified tumour methylation rate is obtained by randomly selecting from

the same vector as the matched normal (pn,i, pt,i ∈ vunmeth or pn,i, pt,i ∈ vmeth) or

from opposite vector states (pt,i ∈ vunmeth and pn,i ∈ vmeth or pt,i ∈ vmeth and pn,i

∈ vunmeth). We obtain the counts methylated (Mt,s,i) and unmethylated (UMt,s,i)

as Mt,s,i ∼ Binom(covt,s,i, pt,i) and UMt,s,i = covt,s,i−Mt,s,i. The bulk methylation

counts for both samples are easily calculated by adding the tumour and normal

counts: Mb,s,i = Mt,s,i−Mn,s,i and UMb,s,i = UMt,s,i−UMn,s,i. In balanced copy

number regions, we also simulate allele-specific DMPs whereby one allele is in the

normal ground state and the other is differentially methylated. We obtain the counts

methylated from the minor allele, allele A, and for the major allele, allele B, and

combine them to obtain total counts methylated and unmethylated.

The expected absolute tumour-normal methylation difference at simulated bi-

allelic DMPs is |mt −mn| ≈ 0.95. In the bulk, the magnitude of the difference

depends on sample purity and CpG copy number. The purified methylation rate

at mono-allelic DMPs usually depends on the copy number of the mutated allele,

however, in balanced copy number regions, where nA = nB and given that one

copy clonal differentially methylated CpG(s) and the other is in the ground state,

mt =
Mt,A +Mt,B

Mt,A +UMt,A +Mt,B +UMt,B
= 0.5. The expected tumour-normal difference

at simulated mono-allelic DMPs is thus |mt −mn| ≈ 0.5. Finally, tumour-normal

and tumour-tumour differential methylation calls were made using CAMDAC dif-

ferential methylation analysis and the output compared with the ground truth. False

negative and positive rates are obtained for the bulk and deconvolved tumour simu-

lated data.

3.4.8 RRBS sequencing of FACS populations

3.4.8.1 Nuclei extraction and FACS

Nuclei extraction and FACS were performed by Annelien Verfaillie. Briefly,

Frankenstein protocol (dx.doi.org/10.17504/protocols.io.3fkgjkw) was used for nu-

clei isolation from fresh frozen tissue samples of seven epiTRACERx samples:

CRUK0050-R4, CRUK0070-R2, CRUK0070-R4, CRUK0079-R1, CRUK0079-

R4, CRUK0062-R5, CRUK0090-R1. The tumour is minced and placed into a lysis
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buffer. The lysate is homogenised using a pestle and the homogenate is filtered out

using a 70 µm filter. The extracted nuclei were then washed and suspended into

a buffer containing Pi followed by another filtering step, this time with a smaller

35 µm filter. Note that the Pi chromatin staining buffer concentration is 70 µg/mL

of Pi, 1% BSA, 1×PBS.

Nuclei were run through the FACS machine, which separated nuclei by Pi

staining intensity, reflecting nuclei ploidy, and by side scatter, reflecting cell mor-

phology. We use the first few cells to adjust the nuclei sorting parameters so as to

eliminate debris and select near-diploid, popD, and the most prevalent aneuploid

population, popA. For example, replicating cell populations were small but de-

tectable, and were excluded. Nuclei were sorted and populations were collected

directly into tubes containing the 200µL of PBS and 2% FCS, yielding between

100,000-300,0000 events per population. Finally, DNA extraction was prepared

using the Zymo Research Quick DNA-microprep plus kit (D4074) following the

indications from manufacturer. DNA was eluted in 12µL of elution buffer.

3.4.8.2 RRBS

The NuGEN Ovation RRBS Methyl-Seq System protocol was used to prepare

libraries and for bisulphite sequencing using the same approach as described for

the bulk tumour RRBS dataset, with the exception that no automation was required

(Methods, section 2.4.2.1). Library preparation was carried out by Alex McLatchie

and Cristina Cotobal-Martin. Libraries were prepared by enzymatically digesting

∼100ng of gDNA with MspI. Qiagen’s EpiTect Fast DNA Bisulfite Kit was used

for bisulphite conversion of the resulting DNA fragments. Bisulphite converted li-

braries were then amplified by PCR using 12 cycles and purified using Agencourt®

RNAClean® XP magnetic beads. Library quantification was performed by Qubit

dsDNA HS Assay (Invitrogen) and quality control was carried out using Agilent

Bioanalyzer High Sensitivity DNA Assay (Agilent Technologies). In cases with

two samples from the same patient, both popA and only one popD were made into

libraries and sequenced to save on costs. We therefore sequenced 7 tumour aneu-

ploid and 5 (presumably) normal diploid populations.
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RRBS was performed by at the Francis Crick Institute sequencing facility un-

der the supervision of Robert Goldstone. The 12 samples were multiplexed across

4 lanes on HiSeq 4000 using the HiSeq® 3000/4000 SBS Kit. As for the bulk tu-

mour samples, 100bp SE and 10bp reads were generated for the NuGEN RRBS

library insert and unique molecular identifiers, respectively. We aimed to sequence

120,000,000 reads per sample.

Processing of the sequencing reads was performed by the author of this re-

port. Sequencing reads were QC’ed, adapter trimmed, aligned to hg19, PCR-

deduplicated and output binary alignment map were sorted and indexed following

the same procedure as described for the epiTRACERx bulk tumour RRBS dataset

(Methods, section 2.4.2.1).

On average, 109,864,415 raw sequencing reads were obtained per samples.

Mapping efficiency averaged around 70.5%, as expected for bisulphite sequencing

data aligned with Bismark. However, samples had very high duplication rates (av-

erage 57.18%), leaving only 31,533,497 reads per sample post-processing. This is

potentially due to combined bisulphite- and FACS-driven DNA degradation. This

effect was not observed on the previous cohort generated using the same protocol,

but without FACS.

3.4.9 WGS SNV calls

WGS samples were obtained for 7 samples from 3 patients included in the

TRACERx100 cohort and the epiTRACERx cohort and processed as described in

section 2.4.2.2. Somatic mutations were identified with MuTECT v1.1.7 [161]

using the same pipeline as for the published TRACERx100 WES-derived SNV

calls [112] and was run by Michelle Dietzen from the McGranahan Lab at Uni-

versity College London. SNVs present in the tumour-adjacent normal tissue were

removed from downstream analyses.



Chapter 4

Initials insights into the NSCLC methylome

4.1 Introduction

4.1.1 Rationale for studying NSCLC

In 2018, around 1,700 Americans died of cancer each day in the United States

only according to reports by the American Cancer Society [162]. Of these, roughly

1 in 4 deaths were attributable to tumours originating in the lung or bronchus, to-

talling around 149,000 yearly casualties. NSCLC accounts for about 80% of all

lung cancer diagnoses in the US, with LUAD and LUSC being the two most com-

mon histological subtypes. Unfortunately, the disease is often diagnosed late, with

one study reporting that 68-80% of cases between 2005 and 2010 were classed as

stage II and above [163]. Due to late diagnosis and lack of adequate treatment, the

5-year survival rate is below 15% [164]. For all of the above reasons, large scale

sequencing efforts have been deployed to provide insights into the NSCLC genome

namely from The Cancer Genome Atlas [165, 166].

In recent years, research focus has shifted away from simply charting genetic

alterations and towards analysing intra-tumour heterogeneity as well as reconstruct-

ing tumour evolutionary histories. The TRACERx lung cancer study was designed

to answer both these important questions and involves sampling of NSCLC tumours

in space, taking a multi-sample sequencing approach, and in time, collecting tissue

from the primary as well as any recurrence and metastases [113]. Preliminary re-

sults from the TRACERx first 100 patients revealed widespread somatic mutation

and copy number ITH. Driver mutations in key genes such as EGFR, TP53, BRAF
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and MET were virtually always clonal, while others, including PIK3CA and NF1,

were heterogeneous [112]. The presence of subclonal driver mutations has impor-

tant clinical implications, presenting a potential mechanism of resistance to targeted

therapy. Crucially, several mutations which appeared clonal from single tumour

biopsies were re-classified as subclonal based on multi-region data. This demon-

strates that the illusion of clonality can be an issue when estimating the mutational

profile of tumours from individual samples and making clinical decisions in relation

to these findings.

4.1.2 Current understanding of the NSCLC methylome

The NSCLC methylome is considerably less well charted than its somatic se-

quence and copy number alteration landscape. Promoter hypermethylation of both

CDKN2A and CDH13 is known to drastically increase risk of recurrence in sur-

gically resected stage I lung tumours (odds ratio 15.5, [167]). To name a few,

hypermethylation of CDH1 [168], DAPK [169], DLEC1 [170], MLH1 [170] or

RASSF1A [171] in NSCLC is also linked with poor patient outcome. A hand-

ful of other events have been reported, most of which are included either in re-

views by Tsou et al. [172], Belinsky [173] or, more recently, Langevin, Kratzke

and Kelsey [174]. Importantly, studies often disagree as to the prevalence of each

hypermethylation events (Table 4.1). This discrepancy can represent skewed pa-

tient selection and sampling biases, especially in smaller cohorts, as well as the use

of different techniques to probe DNA methylation levels. Additionally, we posit

that the lack of a method to faithfully purify bulk tumour methylation estimates and

obtain DMP calls that are robust to variations in tumour purity and copy number

contributes significantly to the observed variation. Correctly predicting the preva-

lence of epimutated gene promoters is important for use as biomarkers and in early

detection.

The study of DNA methylation ITH has been mostly limited to high tumour

purity samples and cancer types with little to no aneuploidy such as haematological

malignancies [40, 148, 189, 190], Ewing sarcoma [103] and cancers of the central

nervous system [191]. One recent article [150] investigated DNA methylation ITH
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Table 4.1: Commonly hypermethylated gene promoters in NSCLC.

Pathway Gene Histological Prevalence Sample Technique Source
subtype (in %) type

Apoptosis DAPK LUAD 24-48 TU ML [169, 175]
LUSC 25-31 TU ML [169, 175]

Cell cycle CDKN2A LUAD 13-67 TU MSP [171, 176, 177]
LUSC 37-70 TU MSP [171, 176, 177]

PAX5 LUAD 52-64 TU MSP [178]
LUSC 61-74 TU MSP [178]

CHFR NSCLC 10-19 TU MSP [179, 180]
Differen- RARβ NSCLC 26 TU MSP [181]
tiation LUAD 61 TU MSP [170]

LUSC 51 TU MSP [170]
DNA Repair MGMT LUAD 27-47 TU MSP [176, 182]

LUSC 19 TU MSP [176]
Invasion CDH1 LUAD 16 TU MSP [176]

LUSC 19 TU MSP [176]
CDH13 LUAD 16 TU MSP [176]

NSCLC 43 TU MSP [183]
TIMP3 LUAD 24 TU MSP [176]

LUSC 23 TU MSP [176]
LAMA3 LUAD 58 CL MSP [184]

LUSC 27 CL MSP [184]
LAMB3 LUAD 32 CL MSP [184]

LUSC 20 CL MSP [184]
LAMC3 LUAD 32 CL MSP [184]

LUSC 13 CL MSP [184]
MSI MHL1 LUAD 23 TU MSP [170]

LUSC 46 TU MSP [170]
NF−κβ DLEC1 LUAD 32 TU MSP [170]

LUSC 48 TU MSP [170]
UBE2N LUAD 46 TU MSP [170]

LUSC 27 TU MSP [170]
RAS RASSF1 NSCLC 30-38 TU BS,MSP [185, 186]

LUAD 27 TU MSP [170]
LUSC 25 TU MSP [170]

RASSF5 NSCLC 18-24 TU,CL MSP [187]

∗MSI = microsatellite instability, TU = patient primary tumour, CL = cell line, MSP = methylation-
specific PCR, ML = MethyLight assay [188], BS = Targetted bisulphite sequencing

and tumour evolutionary trajectories in LUAD, leveraging multi-sample methyla-

tion array data obtained for 205 and 75 primary tumours and matched adjacent nor-

mal tissue samples, respectively, from 68 patients part of the EAGLE study [192].

Methylomes covered on average 338,730 CpG probes and profiles were corrected

for tumour purity, but not ploidy. The study found that heterogeneity between sam-

ples from the same primary tumour was lower than between patients, with ∼ 90%
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of tumour regions from the same patient clustering together. Correcting for tumour

copy number would likely increase this percentage. Nevertheless, results suggest

that DNA methylation ITH, particularly at CpG Islands, predicts not only survival

but also time to metastasis.

4.1.3 Chapter summary

First, we performed DMR calling on CAMDAC purified methylomes and iden-

tified thousands of DMRs in NSCLC that were covered by RRBS and present at

a detectable CCF. We annotated DMRs, revealing that RRBS data covered more

intragenic regions than originally expected. As a result, most DMRs were hy-

pomethylated, but promoter-associated CGIs were usually hypermethylated. We

surveyed recurrently hypo- and hypermethylated DMRs and identified several early

events as well as histological subtype-specific epimutations. We measured intra-

tumour DMR ubiquity was correlated with patient outcome. Our results indicate at

least 3 samples are needed to adequately survey intra-tumour heterogeneity. As a

multi-sample RRBS dataset, the epiTRACERx cohort is particularly well-suited to

study both intra- and inter-tumour epigenetic heterogeneity in NSCLC. Clustering

of CAMDAC pure tumour methylation rates at promoter DMRs separated sam-

ples by sex, histology and patient while DMP clustering revealed intra-tumour sub-

clonal relationships. In summary, CAMDAC offers unique insights into the NSCLC

methylome.

4.2 Results

4.2.1 The epiTRACERx cohort epimutational landscape

4.2.1.1 General overview

In an attempt to identify disease-causing epimutations, it is common to search

for differentially methylated regions (DMRs) instead of individual CpGs [92].

CAMDAC builds on its tumour-normal DMP calls to uncover DMRs. CpGs are

binned into clusters setting a threshold on inter-CpG distance and tumour-normal

DMRs are called if a given neighbourhood harbours a hotspots of n consecutive
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and m total DMPs (Methods, section 4.4.1). On average, we found 22,578 DMRs

per sample and a combined total of 30,233 unique aberrated loci per patient, corre-

sponding to 13.5% and 16.8% of covered loci, respectively (Figure 4.1, first and

second panel). The DMR rate was weakly correlated with the number of samples

per patient (Pearson correlation = 0.424, p-val = 0.00794), but the relationship was

no longer significant after removing patients with two or less sampled tumour re-

gions (Pearson correlation = 0.286, p-val = 0.174). This result advocates that at

least 3 separate tumour biopsies are needed to chart the (detectable) epimutational

profile of a patient’s tumours.

Overall, 62.9% of tumour-normal DMRs across patients were hypo- as op-

posed to hypermethylated (Figure 4.1, third panel). This makes sense since more

than 66.2% of bins covered by RRBS data were intragenic, which are expected to

be methylated in the normal cells and could undergo demethylation during tumouri-

genesis. The fraction of hypo- and hyper-methylated DMRs varied greatly across

patients and genetic features. On average, 26.7% of DMRs recorded at CGIs were

hypomethylated, meaning they were usually hypermethylated. On the contrary, fre-

quent loss of methylation was observed at CGI shelves (70.9% of DMRs).

4.2.1.2 DMR ubiquity levels could inform NSCLC prognosis

Next, we evaluated the ubiquity of epimutations as a proxy measure of tumour

heterogeneity. Methylation clusters which were consistently epimutated across all

sampled tumour regions from a given patient were termed ubiquitous. In cases

where at least one sample was confidently epimutated, but others were not, we as-

sessed whether the non-differentially methylated allele was confidently in the nor-

mal ground state. If at least one normal and mutant state were observed at a given

methylation locus across samples from the same patient, the bin was classified as

non-ubiquitous. In other words, the DMR was not present in all samples from the

same tumour. Otherwise, if we could not distinguish whether the non-differentially

methylated allele was in the normal ground state in at least one samples, the methy-

lation bin could not be confirmed as non-ubiquitous and was instead categorised as

’undetermined’ (Figure 4.1, fourth panel).
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Figure 4.1: Evaluating DMR calls across the epiTRACERx cohort.
Total number of DMRs recorded per patient (top panel), fraction of loci classified as
DMRs or non-differentially methylated (second row), fraction of DMRs with hypo- and
hypermethylation (third row), DMR ubiquity breakdown per patient (fourth panel). Pa-
tients are ordered by the number of sampled tumour regions.
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Overall, 36.1% of DMRs were ubiquitous across the 24 tumours for which we

sampled 3 or more regions and showed little to no variation across genetic features

for a given patient. DMR ubiquity levels did not affect overall survival (Pearson cor-

relation = 0.102, p-val = 0.262) but were significantly correlated with relapse-free

survival (Pearson correlation = 0.336, p-val= 1.49× 10−4). However, we cannot

exclude that this effect may be driven by the the anti-correlation between ubiquity

estimates and the number of samples per patient, which itself reflects tumour size

as per the TRACERx study design [112].

4.2.1.3 Promoter-associated differentially methylated CpG Islands

To identify key methylation events in NSCLC progression, we evaluated

16,906 distinct methylation bins that were covered by RRBS, overlapped with CGIs

and spanned gene promoters (totalling 17,781 different genes). Regions were se-

lected for having coverage in all tumour and normal samples for a total of 22,173

different annotated CpG clusters per sample, with some duplicate bins due to over-

lapping genes. Almost half of these methylation bins were not aberrated in any

samples (49.6%, 10,988) and a further 6.07% (1,345) were only altered in a sin-

gle patient or sample. Of the remaining 9,840 loci that were epimutated in at least

2 patients, 71.5% were hypermethylated in the tumour with respect to the normal

(median CAMDAC pure methylation difference = 0.437). This result is in line

with the expectation that promoter-associated CGIs are usually hypermethylated in

cancer [193]. In total, 609 gene promoter-associated methylation bins were differ-

entially methylated in more than 90% of patients. Comparative analysis of matched

RNA-Seq and RRBS data could help narrow down key alterations that result in

differential expression, but this is beyond the scope of this work.

4.2.1.4 Recurrently hypomethylated gene promoters

The top 5 most recurrently hypomethylated loci were oncogenes SH2B1 (106

samples, 35 patients), SFN (109 samples, 37 patients), NELFCD (120 samples,

37 patients), FAM83H-AS1 (115 samples, 38 patients) and TUBA1C (118 samples,

38 patients). Suppression of SH2B1 expression with micro-RNAs has been shown

to reduce NSCLC cell proliferating potential and metastasis formation [194]. Our
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results suggest that, in the absence of silencing micro-RNAs, promoter hypomethy-

lation could enable expression of this oncogene. SFN over-expression has been

reported in LUAD and is known to be regulated by aberrant hypomethylation [195].

We posit that the same mechanism is at play in LUAD and LUSC. NELFCD is

known to be over-expressed in colorectal cancer and this is usually linked to focal

copy number amplification [196]. Our data suggest DNA hypomethylation may also

contribute to the observed NELFCD upregulation. Over-expression of TUBA1C is

a predictor of poor prognosis in pancreatic ductal adenocarcinoma [197]. FAM83H-

AS1 is a long non-coding RNA (LncRNA) and is also reportedly up-regulated in

LUAD with high expression levels associated with worse outcome [198]. Despite

hypomethylation being only weakly correlated with gene expression, our results

imply that these five recurrent altered genes likely play an important role in lung

cancer.

4.2.1.5 Frequently hypermethylated gene promoters

The role of promoter hypermethylation in cancer, and more specifically in

NSCLC, is well understood. We take a look at known hypermethylated gene pro-

moters and members of the same family, selecting methylation bins that had cov-

erage in all samples (Figure 4.2) and compared epimutation rates with published

estimates (reviewed in [173]).

We report PAX5 promoter DMRs in 81.6% of epiTRACERx patients (91 sam-

ples, 31 patients) a higher percentage than the ∼ 52−75% estimates published by

others [178]. This is likely explained by increased sensitivity in CAMDAC decon-

voluted profiles as opposed to bulk tumour tissues. This epimutation was ubiquitous

in 74.1% of patients after excluding the 2 patients with only one tumour region and

a further 2 cases for which ubiquity was undetermined, suggesting PAX5 alteration

is an early even in NSCLC evolution. Highlighting the importance of paired-box

(PAX) transcription factors in cell cycle deregulation during lung cancer tumourige-

nesis, several other members of the PAX family were repeatedly altered, including

PAX genes 1-3 and 6-9 which were hypermethylated in 73.7-100% of NSCLC in

this cohort (78-120 samples, 28-38 patients). PAX6 hypermethylation has been re-
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Figure 4.2: Prevalent promoter DMRs at genes and their families across the
epiTRACERx cohort.
CAMDAC DMR status at gene promoters reported as frequently hypermethylated in the
literature (Table 4.1) and members of the same family across samples and divided by his-
tological subtypes. If a given gene promoter comprises of more than one spatially segre-
gated DMR, one being hyper- and the other being hypo-methylated, the bin DMR status is
labelled as ’mixed’. Otherwise, if all regions are in the same direction of methylation, the
methylation bin can be categorised as either having gained (hyper) or lost (hypo) methyla-
tion. Gene promoter-associated methylation bins that did not have coverage in all samples
were excluded. Samples are ordered by patient ids and genes are ordered by family and
prevalence, except for the bottom panel, where genes that showed distinct DMR status or
prevalence between LUAD and LUSC are listed.
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ported previously with a prevalence of 85% in a single biopsy cohort of 20 LUSC

patients [199] while it was detected in 94.4% and 100% of epiTRACERx LUSC

samples based on CAMDAC bulk and purified tumour methylation profiles, re-

spectively. Interestingly, LncRNA PAX8-AS1 is regularly hypomethylated at its

promoter. We hypothesise PAX8-AS1 activation further inhibits transcription of

the overlapping PAX8 gene. In summary, hypermethylation of PAX genes is om-

nipresent and usually ubiquitous, suggesting they occur early in tumour develop-

ment, and thus that they may present an opportunity for early detection.

The promoter of tumour suppressor gene RASSF1 was hypermethylated in

84.2% of patients (32 patient, 94 samples) after combining methylation bins as-

sociated with the locus, a much higher percentage than the previously published

30-38% range, showcasing the increased DMR detection power from CAMDAC

purified methylomes. RASSF2 was the second most commonly differentially methy-

lated RASS family member and was observed in 44 samples (36.1%) from 15 pa-

tients (39.5%, 9 LUAD, 6 LUSC) followed by RASSF5 (NORE1A) and RASSF10

which were detected in 8 (21.2%) and 3 (7.9%) cases, respectively. Contrary to

other family member, the RASSF7 promoter often lost methylation in the tumour

(15/122 samples) while RASSF3 and 4 were never altered. RASS genes were not

always clonally aberrated and were present in a lower percentage in tumours and

thus likely occur later in tumour development, compared with PAX loci. Sporad-

ically mutated genes are less useful for diagnostic purposes, but can be powerful

biomarkers of disease prognosis. A larger cohort of RASS-negative patients would

be needed to evaluate the prognostic value of RASSF promoter alterations.

Methylation of cadherins (CDH) and protocadherins (PCDH) is a known fea-

ture of several cancers, including NSCLC [176, 183]. Gain of methylation at the

CDH13 gene promoter is reportedly present in 16% of LUAD patients [176], while

we detected it in 42% of samples (51 samples) representing 53% of NSCLC patients

(20/38 patients, 16/24 LUAD and 4/14 LUSC). CDH13 mutation was ubiquitous

in 80% of cases. The most commonly epimutated (P)CDH family member were

PDCH8, a known breast cancer tumour suppressor gene [200]. At least part of the
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promoter region associated with this gene was hypermethylated in every single pa-

tient of the epiTRACERx NSCLC cohort (121/122 samples). Prior to CAMDAC,

this alteration would have been missed from at least 6 samples. Because CAMDAC

tumour-normal DMP calling has a very low false positive rate, even from bulk, we

can use a minimum methylation difference threshold of 0.2, which is low compared

with that used in other cancer studies (e.g. 0.25 [148], 0.3 [149, 150]). The number

of false negatives would increase with higher effect size. The mean methylation

difference across PAX6 DMRs was 0.384 in the bulk, compared with 0.629 post-

deconvolution, stressing the importance of deconvolution.

DAPK gain of promoter methylation was observed in 27 samples from 9 pa-

tients, 8 of which were LUSC and therefore the epimutation rates were 57.1% in

LUSC and 4.17% in LUAD. Both estimates differed widely from the published

values in both 35-33% and 24-48%, respectively.

Genes of the laminin family, specifically LAMA3, LAMB3 and LAMC2 are

known to the hypermethylated in both lung adenocarcinoma and squamous cell

lung cancer cell lines. In the epiTRACERx data, LAMB1 was most often hyper-

methylated, while LAMA3 and LAMC3 were LUSC- and LUAD-specific, respec-

tively. LAMP3 was often hypomethylated in LUSC and less often in LUAD. These

observation suggests that LAM genes could be used as biomarkers of the two his-

tologies, as well as MLPH, CDH3 and SAFTA3, which were virtually always hyper-

methylated in LUSC. CHFR gain of methylation only occurred in LUSC and was

found it 5 samples (9.10%) from 3 different patients (21.4%) which is comparable

to published data. Two more genes showed bias between histologies, CHMP4BP1

and HMHA1, showing increased methylation in one and loss of methylation in the

other. This was possible as these loci exhibited intermediate normal methylation

rates across all normal samples.

To summarise, we evaluated known hypermethylated genes and their families

revealing numerous new loci that were also consistently hypermethylated as ex-

pected, while others were surprisingly hypomethylated. Epimutation prevalence

was often higher in the epiTRACERx cohort then previously reported, thanks to de-
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convolution with CAMDAC leading to lower false negative rates. Strikingly, a small

number of DMRs were specific to LUAD or LUSC. We identify a number of genes

with potential as biomarkers for early NSCLC detection and lung cancer subtype

diagnosis. On a wider cohort, CAMDAC DMR calls may enable the identification

of prognostic markers, for example to predict recurrence or outcome.

4.2.2 Intra- and inter-tumour sample relationships

In order to investigate sample relationships, we performed clustering of all tu-

mour and normal samples. First, we extracted promoter methylation bins that were

covered in all samples and that were tumour-normal DMRs in at least one sam-

ple pair. Promoters are enriched for CpGs that can modulate gene expression and

are thus likely correlated with phenotype. Using the average methylation values,

we carried out uniform manifold approximation and projection (UMAP) using the

average normal or CAMDAC purified methylation estimate in normal and tumour

samples respectively for each of these bins (Figure 4.3A,B).

We observe four main clusters, two of each cancer and normal samples. The

two normal lung subgroups corresponded to either male or female samples (Figure

4.3A), presumably dominated by differences in chromosome X methylation across

sexes. Tumour samples did not separate strongly by sex, likely due to the majority

of female samples having at least partial (52%) if not complete (34%) chromosome

X LOH. The main dividing feature between tumour samples was histological sub-

types, potentially indicative of a different cell type of origin. This is in line with

reports that a LUAD usually develops at the bronchioalveolar duct junction from

the alveolar type I/II and Clara progenitor cells while LUSC are often located in

the trachea and are thought to originate from aberrant basal cells [155]. Regions

sampled from the same tumour were found to cluster in close proximity, reflect-

ing ancestral relationships, while samples from different patients showed greater

inter-sample distances (Figure 4.3C,D).
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Figure 4.3: Relationships between tumour and normal methylation profiles.
UMAP of the average deconvolved tumour and normal methylation rates across
promoters-associated methylation bins that are DMRs in at least one sample, highlighted
sample sex (A), histology (B) and patient of origin, zooming in the LUAD (C) and LUSC
(D) clusters.

4.2.3 CAMDAC deconvoluted methylomes reflect phylogenetic

relationships

To assess clonal relationships between samples, we used DMPs as opposed

to DMRs and did not limit our analysis to promoter-associated CpG positions. In

theory, this allows for the inclusion of potentially isolated stochastic methylation

changes which can contain valuable information. For each patient, we sub-selected

all CpG loci which were tumour-normal DMPs in at least one sample. Pearson cor-

relations between tumour and normal methylation values at clonal bi-allelic DMPs,

which make up the majority of DMPs, should be anti-correlated. Leveraging pa-

tient CRUK0062, selected for having the most tumour regions and highest level of

methylation ITH as well as a wide range of purity and ploidy values, we demon-

strate that CAMDAC deconvoluted methylation rates captured this effect, while

on the contrary, the bulk tumour methylation profiles were increasingly correlated

with the normal lung epithelium methylome with decreasing tumour DNA fraction

(Figure 4.4A). This further supports that CAMDAC removes shared normal signals

from bulk tumour data, enabling accurate comparison of pure tumour signals.

Genetic mutations identified in a given tumour are phylogenetically related,

having evolved from a single founder cell. In recent years, several methods have

been developed to obtain phylogenies from exome and genome sequencing experi-

ments [107, 116]. We therefore make the reasonable assumption that DMPs should
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Figure 4.4: CAMDAC deconvoluted methylomes are free from normal contamination
and reflect phylogenetic relationships.
(A) Pearson correlations between CRUK0062 tumour and adjacent normal samples in the
bulk (left triangle) and purified tumour (right triangle). Tumour samples are ordered by
tumour DNA content. (B) CRUK0062 phylogenetic tree inferred by SNV clustering and
reproduced from published WES data [112]. (C) Hierarchical clustering of the same sam-
ples based on the purified (left) and bulk tumour (right) methylation rates at all CpGs that
were differentially methylated in at least one tumour region, overlaying the SNV clusters
from (C). Patient CRUK0062 was selected as an example for having the most tumour re-
gions.

equally inform phylogenetic relationships between tumour samples. Using the same

sites as in Figure 4.4A, we performed hierarchical clustering of CAMDAC pure tu-

mour methylation rates and found that resulting sample clusters accurately mirrored

evolutionary relationships between samples derived from SNVs (Figure 4.4B,C). In

contrast, normal contaminated bulk tumour samples did not reproduce inferred sam-

ple relationships, and clustered by tumour DNA content. From this, we conclude

that purified tumour methylation profiles present a unique opportunity to study ITH

in solid cancers, unconfounded by signals from normal contaminating cells.

4.3 Discussion
We analysed CAMDAC tumour-normal DMR calls across the epiTRACERx

lung cancer cohort. We suggest that a minimum of 3 tumour regions are needed

to capture the epimutational landscape of a given tumour. The average DMR ubiq-

uity levels were correlated with relapse-free survival, but not overall survival. We

extracted promoter-associated differentially methylated CpG Islands and surveyed

the five most commonly hypomethylated loci, all of which were known oncogenes.

Next, we investigated published hypermethylated DMRs and genes of the same
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families, revealing widespread hypermethylation across samples for several genes.

Crucially, some alterations were specific to LUSC or LUAD. Prevalence as deter-

mined by CAMDAC tended to be higher than previously reported, likely due to

increased sensitivity post-deconvolution. Unsurprisingly, clustering of promoter

DMRs separated tumour samples by histology. Normal samples were separated

by sex, as expected since we included chromosome X in our analyses. Tumour

samples were not strictly segregated by sex, possibly due to most females having

chromosome X LOH and the abundance of tumour-specific epimutations across the

remainder of the genome. Finally, we perform hierarchichal clustering of individ-

ual DMPs and overlay SNV-derived phylogenetic trees, revealing that epigenetic

and somatic mutations follow the same evolutionary trajectory.

In NSCLC, the 5-year survival for patients diagnosed in stage I is greater than

70%, whilst, alarmingly, the survival drops to about 15% in later stages. Widespread

promoter hypermethylation events therefore present a unique opportunity for early

cancer detection. In long-time smokers, CDKN2A hypermethylation in sputum was

indicative of a 2-fold increase in the risk of lung cancer development [201]. While

this and other tested genes did not perfectly predict NSCLC, the study suggests that

targeted methylation analysis of bronchoalveolar fluid has potential in detection of

early drivers. A routine minimally invasive blood or sputum test for NSCLC in

high risk individuals could allow for early diagnosis and drastically improve patient

outcome. CAMDAC DMR calling outputs for the epiTRACERx cohorts revealed

several epimutations which could be included in such a targeted panel, including

PAX1, 3 and 5-9, RASSF1, PCDH8, 17 and 19, PCDHGA11 and 12 and LAMB1.

Hypomethylation is only weakly correlated with gene expression because sev-

eral other elements must be in place to allow transcription. Nevertheless, recur-

rently hypomethylated loci could be valuable for diagnostic purposes and worthy

of inclusion in a diagnostic panel given they occurred early in tumourigenesis. Al-

though they are less frequent than gain of methylation events, our observations sug-

gest such epimutations do exist, namely at the promoters of TUBA1C, FAM83H-

AS1, NELFCD, SFN, SH2B1, and that these alterations play a role in lung cancer.
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LAMA3, CDH3, SFTA3, MLPH, HMHA1 and CHMP4BP1 are histology-specific

and would make a great addition to any NSCLC early detection panel as they could

help distinguish between LUAD and LUSC upon diagnosis.

Lastly, epimutations that appear in a subset of samples could potentially serve

as prognostic biomarkers. A larger cohort could give insight into the outcomes of

LUAD and LUSC patients with and without certain alterations. Indeed, the upcom-

ing release of the entire TRACERx cohort will provide unprecedented insight into

spatial and longitudinal intra-tumour heterogeneity as well as lung cancer evolution

in relation to survival and response to therapy and across ethnicity, smoking status,

sexes and histological subtypes.

We show that CAMDAC purified methylomes contain phylogenetic informa-

tion and that clustering of these profiles reveals inter-sample relationships. In or-

der to build phylogenetic trees directly from epimutations, in a similar fashion to

somatic mutations, subclonal reconstruction is required as described in Dentro et

al. [111]. Developing such a tool is beyond the scope of this work. Alterna-

tively, single cell bisulphite sequencing could enable phylogenetic reconstruction

without the need for deconvolution as done in one study in chronic lymphocytic

leukemia [149]. While the approach provides unique insight into DNA methylation

heterogeneity and evolutionary trajectories, it comes with obvious drawback. For

example, the depth of single cell data is typically very low (less then 1X), thus re-

quiring binning of both copy number, mutational and methylation values, thereby

losing single base pair resolution. Moreover, single cell experiments are techni-

cally challenging, lower throughput and more costly. Unless thousands of cells are

sequenced per tumour, the output is unlikely to capture intra-tumour heterogene-

ity nuances as well as CAMDAC deconvoluted tumour data. Our results indicate

that CAMDAC purified profiles captures epigenetic ITH given at least 3 tumour re-

gions are sequenced, in line with observations from genome analyses of the same

samples [112].
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4.4 Methods
The methods described below were recently published as part of our bioRxiv

preprint [140].

4.4.1 Tumour-normal DMR calling

First, CpGs are grouped into bins whereby neighbouring loci with inter-CpG

distance below or equal to 100bp are grouped together. Bins with less than 3 CpGs

with coverage equal or greater than 10 and 3 in the normal and purified tumour,

respectively, were discarded. On average, 259,312 methylation bins were covered

by all sampled tumour regions in a given patient (Figure 4.5) and 180,444 bins met

the inclusion criteria in all 122 tumour samples and their matched normal.

Figure 4.5: Distribution of annotated methylation bins.
Intragenic CpGs from exons, introns and UTRs are concatenated under the category intra-
genic to simplify the Venn diagram.

For each bin, we compute the total number of DMPs as well as the maximum

number of consecutive DMPs with effect size 0.2 and p < 0.01 per bin. Genomic

regions with at least m = 5 DMPs in total and n = 4 or more consecutive DMPs

are deemed differentially methylated. The average number of CpGs and DMPs per

bin were 15 and 2.5, respectively, and within DMRs, these values were 22 and 12.

Limiting ourselves to regions covered in all tumour samples, we find on average

30,233 bins were classified as differentially methylated in at least one sample per

patient, corresponding to 16.8% of methylation bins covered. This number goes up
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to 35,591 when looking at genomic regions covered by all samples from individ-

ual patients, which represents 13.5% of patient-specific covered bins. Only 28,337

DMRs could be identified from bulk prior to CAMDAC (10.8% of patient-specific

covered bins).

Each bin is annotated for downstream analyses. Annotated gene features in-

clude CpG Islands, shores and shelves, exons, introns, 5′UTR, 3′UTR, promoters

and enhancers. CpG islands, intragenic features and enhancers genomic coordi-

nates are extracted from Ensembl via biomaRt. Genomic coordinates of CpG island

shores and shelves are defined as the regions 0-2kb and 2kb-5kb either side of a

CpG island, respectively. When islands, shores and shelves annotations overlap

due to neighbouring CGIs, the closest annotation to the island is chosen. Intra-

genic annotations are simplified for each gene to the GENCODE basic transcript

set. We note that CGIs covered by RRBS are more often intragenic than intergenic

(Figure 4.6A). Each gene transcript promoter is defined as starting 2.5kb upstream

and ending 250bp downstream of the transcription start site. Promoters overlap

significantly with CpG Islands, shores and shelves (Figure 4.6B). Enhancer regions

are annotated along with the associated GeneHancer ids [202]. Enhancers show less

overlap with CpG dense regions ((Figure 4.6C). For this work, we used CAMDAC

with hg19 annotation set, but hg38 is also available. Note that a given CpG clus-

ter can be associated to several features, although inter-/intragenic annotations are

mutually exclusive and so are the three CGI annotations. The number of annotated

bins covered for each category is consistent across the epiTRACERx cohort (Figure

4.6D).

To validate our DMR calls, we leverage SNV purified tumour methylation

rates. First, we perform tumour-normal DMP calling following the same logic

as in equation 14, but this time computing the probability that P(mmut > mn),

P(mWT > mn) and their complements. We feed the DMP calls into CAMDAC

DMR calling as described above. We then classified DMRs as either occurring on

both alleles, only the mutant allele (in-cis) or only the wild type allele (in-trans).

DMRs in regions with loss of wild type allele are categorised separately as it is not
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Figure 4.6: Overview of genomic features covered by RRBS and annotated by
CAMDAC.
(A) Venn diagram showing the proportion of bins at CpG Islands, shores and shelves
which are intra- vs. intergenic. Intragenic CpGs from exons, introns and UTRs are con-
catenated under the category intragenic to simplify the Venn diagram. (B-C) Comparing
the overlap between CGI-related annotations and either promoters (B) or enhancers (C).
(D) Breakdown of the number of bins assigned to each annotation. Each dot represent a
sample.

possible to determine whether the DMR was in-cis, in-trans or on both alleles prior

to the loss.

4.4.2 Clustering tumour and normal methylation profiles

We performed hierarchical clustering at the single patient level across 15 pa-

tients with 4 or more sampled tumour regions (average = 5 samples, range 4-

7) to investigate inter-sample clonal relationships. Clustering was carried out

on the purified tumour methylation rate at all CpGs that were DMPs in at least

one of the tumour samples. The clustering output nicely fit the SNV phyloge-

netic trees derived from patient-matched multi-region WES data. This analysis

was repeated on the bulk tumour methylation rate and the outputs were com-
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pared. Bootstrap hierarchical clustering was performed using the R package pv-

clust (http://www.sigmath.es.osaka-u.ac.jp/shimo-lab/prog/pvclust/) with the hier-

archical clustering method set to the average and using a Pearson distance matrix.

For each clustering, we ran 100 bootstrap iterations with r-values going from 0.5 to

1.5.

Next, we compiled a list of all CpGs which fell within a promoter-associated

tumour-normal DMR in one or more samples based on CAMDAC purified methy-

lomes (totaling 8,570 gene promoters). We then calculated the mean methylation

rate for each of those genomic regions across this cohort’s 159 samples (122 tu-

mour and 37 normal lung samples) and performed UMAP clustering analyses. We

repeated this analysis selecting promoter regions based on the bulk tumour-normal

DMR calls (totaling 8,387 gene promoters) feeding the mean bulk tumour methyla-

tion rates into the UMAP.



Chapter 5

Quantifying allele- and copy-specific

methylation in NSCLC

5.1 Introduction

5.1.1 Allele-specific methylation in normal and tumour cells

Allele-specific methylation (ASM) is reported at a number of genomic loci and

serves to modulate gene expression herein maintaining normal and possibly disease

cellular functions. For example, germline imprinting involves methylation of one

parental allele set during gamete formation and is maintained throughout epigenetic

reprogramming, resulting in parent-of-origin expression [203]. Loss of imprinting

(LOI) is associated with various diseases [204], and thus recent efforts have culmi-

nated in comprehensive mapping of imprint loci across the human genome [205].

Chromosome X inactivation in females is another well-characterised occurrence of

ASM in normal tissues and involves methylation of one chromosome copy in fe-

males to allow for gene dosage compensation between the sexes [8].

5.1.2 Measuring allele-specific methylation

Allele-specific methylation rates can be obtained from bisulphite sequencing

data by phasing CpG to heterozygous SNPs on the same read or read pair from

single- and paired-end reads, respectively. In normal tissues, reports suggest that

∼5-8% of SNPs across the human genome lead to ASM [206]. Targeted bisul-

phite sequencing experiments enriched for CpG-dense DNA fragments revealed that

38%-88% of the observed intermediate CpG methylation signals across 16 normal
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cell lines [207], were dependent on heterozygous loci, supposedly via the CpG-

destroying allele itself or indirectly, for example, through TFBS ablation. One ob-

vious drawback of this approach is that it requires neighbouring CpGs to identify

ASM sites.

To overcome this limitation, a method was developed to infer ASM status

directly from methylation data [208]. The authors designed this method for the

analysis of normal diploid mammalian cell lines where ASM is the most likely

source of intermediate methylation. They make the reasonable assumption that

CpGs are either methylated on one allele or equally (un)methylated on both copies

in all cells. They then compute the likelihood of each scenario at a given locus from

the overlapping read distribution. The Bayesian information criterion is used to call

regions of ASM. This model succeeds in identifying ASM in cell lines but breaks

down when it comes to bulk tissue analyses where additional source of intermediate

methylation are at play.

To our knowledge, the BED algorithm [106] is the only published method that

enables to detect k epialleles where k can take values greater than 2. None of these

tools can be directly applied to impure bulk tumour bisulphite sequencing data,

which requires adjustment for both tumour purity and copy number to correctly

identify allele-specific methylation. CAMDAC purified methylation rates therefore

present a unique opportunity to gain insights into ASM in NSCLC.

5.1.3 Chapter summary

First, we show that CAMDAC SNP-independent mn enable visualisation of

ASM. Evaluating chromosome X inactivation in females, we identify biases against

the inactive X copy reducing its coverage and thus decreasing methylation levels

across this chromosome. The BAF values at heterozygous SNPs were not skewed,

X inactivation is random at the scale of our normal samples (i.e. it can silence ei-

ther parental allele). Next, we assess methylation rates at the H19/IGF2 germline

imprinted locus. We validate the presence of ASM at this locus by phasing to het-

erozygous SNPs in 30/37 normal lung samples. Modifying CAMDAC equations to

obtain allele-specific pure tumour methylation rates, we see LOI (without LOH) in
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five patients. In every instance of LOI, we observe loss of methylation.

Next, we evaluate ASM levels in tumours in a more general manner. We as-

sign epimutation copy numbers to hypermethylated DMPs identified by CAMDAC

DMP calling. We quantify the extent of allele- and copy-specific methylation in re-

gions of 1+1 and 2+0, using regions of 1+0 as negative controls. We hypothesise

that DMPs on one copy in 1+1 reflect mainly stochastic methylation changes while

those on both copies possibly reflect aberrant gene regulatory signalling. Regula-

tory DMPs constitute the (slim) majority of loci, at least in our dataset. In regions

of 2+0, stochastic DMPs can exist on both copies if they were acquired prior to the

copy number gain. We filter out regulatory signals to extract stochastic DMPs, and,

by comparing the number of clonal stochastic epimutations on 1 versus 2 copies,

we obtained timings estimates for the copy number gain in epimutational time. Our

results suggest copy number gains, at least in 2+ 0, usually occur late in tumour

evolution. Whether or not this holds for all copy number gains remains to be deter-

mined.

We perform DMR calling on SNV-phased CpG methylation estimates and find

that allele-specific DMRs at these loci usually occurred on the same copy as the

mutation (in-cis). In-cis DMRs were commonly hypermethylated, implying that

the genetic mutations often lead to the ablation of a neighbouring TFBS. We also

investigate the relationship between neo-antigen mutations and DNA methylation.

We uncover that promoter hypermethylation can help suppress neo-antigen presen-

tation and published this observation [114].

5.2 Results

5.2.1 Modelling allele- and copy-specific methylation rates

Previously, we introduced a simple model where the bulk tumour consists

of two homogeneous cellular components: normal and tumour cells (Figure 2.1).

Building on this model, we investigate the impact of ASM on mb. To illustrate this

effect, we recycle our previous example taking an unmethylated autosomal locus of

tumour copy number nt = 3 existing in a bulk tumour mixture of purity ρ = 0.4.
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As before, we note that for most genomic CpGs, the tumour and normal pop-

ulations will not be differentially methylated and thus, the bulk tumour, mb, pure

tumour, mt , and normal, mn, methylation rates will be equal and near 0 (Figure 5.1,

top row). If this locus were to gain methylation on a single, two or all three copies in

the tumour, the resulting bulk tumour methylation rate would fall near mb =
1
6

,
1
3

or
1
2

, respectively (Figure 5.1, rows 2-4). If present in a sufficiently large population

of cells, allele-specific methylation may be detectable in the bulk tumour methyla-

tion rate distribution. We therefore speculate that intermediate CAMDAC purified

mt values can, for the most part, be attributed to copy- or allele-specific differential

methylation signal and attempt to quantify this.

Figure 5.1: Differential methylation between tumour and normal populations of cells
leads to intermediate bulk methylation levels.
Example bulk tumour (mb), pure tumour (mt) and normal (mn) methylation rates in a bulk
tumour mixture of purity ρ = 0.4 for an individual CpG (or a group of CpGs) of clonal
tumour copy number nt = 3 and with either no differential methylation (top row) or DMPs
on the minor (second row), major (third row) or both alleles (fourth row). Note that a sim-
ilar relationship is observed for loci that were methylated in the normal and underwent
demethylation in the tumour, but with mirrored methylation rates.
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5.2.2 Recapitulating known germline ASM events

We begin by evaluating the detection sensitivity of RRBS-derived CAMDAC

methylation rates for known germline ASM signals, starting with chromosome X

inactivation. In the female normal lung samples from the epiTRACERx cohort, we

expect to find widespread ASM of one chromosome X copy. Interestingly, chro-

mosome X modal intermediate methylation estimates were below 0.5 for all of the

13 normal female samples in this cohort (Figure 5.2A). Additionally, sequencing

coverage on X in females was lower in comparison with autosomes (Figure 5.2B).

We hypothesise that DNA extraction biases against the condensed Barr body (inac-

tive chromosome X copy) lead to a reduction in coverage. There was no correlation

between the mode of the methylation rate distribution and either smoking (Pearson

correlation = -0.204, p-value = 0.502) or age (Pearson correlation = 0.155, p-value

= 0.614). Observation of the BAF distribution at heterozygous SNPs did not re-

veal any deviation from the expected (Figure 5.2C), indicating that chromosome X

inactivation is random in our albeit small female normal lung dataset.

Figure 5.2: Chromosome X modal methylation suggest RRBS coverage is skewed
against the inactive copy.
(A) Normal lung methylation rate density distribution across autosomes (dashed) and
chromosome X (solid line) for male (orange) compared with female (purple) samples.
(B) Ratio of the depth of coverage at autosomes versus chromosome X in males and fe-
males. (C) Boxplot showing the distribution of the difference between the median BAF at
heterozygous SNPs across chromosome X minus autosomes in female samples.
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Next, we investigated the imprinting control region (ICR) of the IGF2/H19

locus [209] and assessed whether we could detect intermediate methylation at this

well-known germline imprinted loci. The ICR is covered by RRBS data and the

CpGs overlapping with the region had methylation rates around mn=0.5 in all nor-

mal lung samples. For example, 86 CpGs spanning the ICR and neighbouring H19

promoter in sample CRUK0073-N appear confidently methylated on one of the two

alleles as inferred from the bulk normal data (mn HDI99⊆ [0.25, 0.75], Figure 5.3A,

top panel). To validate the occurrence of ASM, we phased CpG methylation rate

estimates to germline heterozygous SNPs, where possible. In 31/37 (84%) normal

samples, we found at least one heterozygous SNPs overlapping with the ICR and,

on average, 15 imprinted CpGs could be validated by phasing (|malleleA - malleleB|

> 0.7, Figure 5.3A (top panel)). In contrast, phased methylation estimates at the

H19 exon, where available, showed no allele-specific methylation.

LOI is linked to various diseases. Specifically, LOI has been reported at the

IGF2/H19 locus in colorectal cancer [210]. We therefore set out to investigate

this phenomenon across our lung cancer cohort. We found LOI in CRUK0073-R2

(Figure 5.3A, bottom panel) as well as a further 4 tumours, all of which involved

demethylation of the maternal allele rendering the ICR fully unmethylated (Figure

5.3B). Loss of heterozygosity also led to loss of imprinting in 8 additional tumours,

but demonstrated no evidence of epiallelic bias.

5.2.3 Quantifying allele- and copy-specific methylation

CpGs outside of either imprinted regions and the inactive X chromosome copy

in females are usually presumed to be symmetrically methylated on both alleles,

at least in normal cells. Heterozygous SNPs at CpGs can also lead to intermedi-

ate methylation values, but, by design, methylation at polymorphic CpGs is com-

puted by CAMDAC as the average per CpG allele (Figure 3.1). As a result, clonal

allele- (and copy-)specific DMPs are likely the principal contributor of intermediate

methylation signals in purified tumour methylomes.
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Figure 5.3: Evaluating normal and tumour imprinting status at the IGF2/H19
imprinted locus.
(A) Normal lung (CRUK0073-N, top) and CAMDAC pure tumour (CRUK0073-R2, mid-
dle) methylation rate across the IGF2/H19 imprinted locus. Black dots represent the av-
erage methylation point estimates per CpG allele and the grey ribbon is the HDI99 around
each of them. CpG methylation point estimates phased to either parental alleles are also
displayed (purple and yellow). Genomic annotations of the GENCODE basic H19 tran-
script (grey) and its promoter (red) defined as the region 250 and 2500bp downstream and
upstream of the transcript start site, respectively. Neighbouring CpG islands (green), en-
hancers (magenta) and the IGF2/H19 imprinting control region (yellow) are also shown
(bottom panel). (E) Summary of the somatic changes observed at the IGF2/H19 ICR.

Figure 5.4: Allele- and copy-specific hypermethylation.
Tumour methylation rate distribution zooming in on tumour normal hypermethylated
CpGs that were confidently unmethylated in the adjacent normal in regions of ASCN (A)
1+1 and (B) 2+0 in sample CRUK0062-R3.
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To illustrate this effect, we selected loci that were fully unmethylated in the

cell of origin, using the tumour-adjacent normal lung as proxy (mn HDI99 ⊆ [0,

0.2]) and focused on regions of total copy number nt = 2. CpGs were then stratified

according to ASCN (i.e. either 1 + 1 or 2 + 0). As there are only two copies,

the clonal allele- or copy-specific DMPs clusters located around mt = 0.5 should

be easily distinguishable from peaks on either side coming from non-differentially

methylated CpGs (mt = 0) or DMPs on both copies (mt = 1). Taking CRUK0062-

R3 as an example, two peaks emerge in the tumour methylation rate histogram

each corresponding to hypermethylated DMP populations with epimutation copy

numbers 1 and 2 (Figure 5.4). We set out to quantify the relative size of these

two methylation clusters in the epiTRACERx cohort. We subset our analysis to 58

bulk and 2 FACS sorted tumour RRBS samples that harboured both 1+1 and 2+0

ASCN segments each containing at least 200 tumour-normal DMPs as well as 1+0

segments for use as proxy to calculate subclonal contamination (Methods, section

5.4.3).

Observations from the TRACERx100 cohort indicate that there is usually one

major detectable genetic subclone per sampled tumour region [112]. Our findings

suggest that epigenetic and genetic changes follow the same somatic evolutionary

trajectories (Figure 4.4B,C), in line with recently published data from independent

research laboratories [150]. In light of these facts, we hypothesise that one major

clone exists per sampled tumour region and thus that most DMPs in 1+ 0 should

be present on one copy in all cells after CAMDAC. Consequently, the majority of

DMPs should have pure tumour methylation rates near 1, assuming mt adequately

reflects the variant allele frequencies of epimutations. We note that CAMDAC DMP

calling requires a minimum tumour-normal absolute methylation difference of |mt−

mn|> 0.2, and thus we cannot detect subclones with very low CCFs. However, we

can measure the number of DMPs in subclones with intermediate CCFs values near

0.5 and compare this with the clonal signal near 1, thresholding on mt . In 1+ 1

and 2+ 0, DMPs in ∼50% of cells present on both copies will appear at the same

methylation rates as clonal DMPs present on one copy. We leveraged the observed
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Figure 5.5: Epimutation copy numbers give insights into subclonal, copy- and
allele-specific methylation.
(A) The first violin shows the fraction of clonal copy number nt = 1 versus subclonal
(nt < 1) epimutations in 1+ 0 (purple). The second and third depict the fraction of clonal
DMPs with copy numbers 2 and 1 in 1+ 1 (red) and 2+ 0 (blue), after attempting to re-
move subclonal contamination. The fourth distribution is a variation of the third, but lim-
ited to what we estimate to be stochastic DMPs. (B) Relapse-free survival (RFS) in LUAD
appears worse for highly subclonal tumours, but the effect is not statistically significant.
Samples with subclonal scores falling below the 25th quantile (q25 = 0.6) are deemed sub-
clonal whilst the rest are classed as predominantly clonal. (C) Showing the same fractions
as depicted in the second and fourth violin from (A), but per sample.

ratio of DMPs at high and intermediate deconvoluted methylation rates in 1+ 0 to

estimate the level of subclonal contamination in 1+1 and 2+0.

We calculated the fraction of clonal copy number 1 (mt ∈ [0.6, 1]) versus

subclonal (nt < 1, mt ∈ [0.2, 0.6[) epimutations in regions of 1+ 0 allele-specific

copy number and found that, on average, 69.8% of DNA methylation alterations

were clonal (Figure 5.5A). The presence of subclonal DMPs as measured in regions
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of 1 + 0 was not significantly correlated relapse-free survival in LUAD (Figure

5.5B). Leveraging this clonality estimate, we corrected DMP counts in an attempt

to reduce the impact of subclonal contamination of the clonal ASM peaks in 1+1

and 2 + 0. Indeed, subclonal DMPs present on both copies in a large subclone

with say a CFF of 50% would overlap with the methylation rates of DMPs on one

copy and pressent in all sells in regions with total tumour copy number nt = 2. By

measuring We obtained the number of DMPs with copy numbers 1 and 2, which we

expressed as the fraction of epimutation on all copies versus that on a single copy.

In 1+1 and 2+0 ASCN segments, the mean values were 0.597 (inter-quartile range

[0.556, 0.643]), and 0.664 (inter-quartile range [0.634, 0.731], Figure 5.5A).

Speculating on the origin of DMPs, we propose that DNA methylation changes

can be classified into two categories: (1) stochastic and (2) gene regulatory epimuta-

tions. We suggest that epimutations found on a single copy in segments of total copy

number nt = 2 are the result of stochastic methylation changes. These alterations

can reflect errors in DNA methylation maintenance during replication, abnormal

TET activity or the impact of neighbouring somatic mutation truncating or creating

TFBSs [59, 65, 93]. Following clonal expansion, stochastic DMPs would be on one

copy in all tumour cells assuming faithful replication. On the other hand, DNA

methylation alterations in response to somatic regulatory changes should affect all

copies equally. For instance, tumour specific silencing of a transcription factor may

lead to hypermethylation of some of the associated TFBSs.

We propose that the infinite sites model [211] used in tumour evolutionary

analyses [107] also applies to DMPs. As per this model, we assume that stochastic

methylation changes are unlikely to occur twice at the same CpG position. This

means that DMPs present on all copies in regions without loss of heterozygosity,

such as 1+1, are unlikely to be caused by stochastic alterations and are for the most

part attributed to regulatory differential methylation. In 2+ 0 segments, DMPs on

both copies of the gained allele could be either regulatory or stochastic while those

on one copy are likely to be stochastic.

We then computed the ratio of DMPs with copy numbers 1 and 2 in 1+ 1
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Figure 5.6: Timing copy number gains in epimutational time.
(A) Timing schematic. Stochastic epimutations appearing before the gain on the gained
allele in 2+ 0 are found on two copies while, in principle, those having occurred after the
gain are present on a single copy. (B) Copy number gain timing estimates in 2+ 0 across
patients.

as proxy for the relative contribution of stochastic and regulatory epimutations to

the overall number of DMPs. We leverage this fraction to extract the number of

stochastic DMPs on all copies 2+ 0. We then compute the fraction of stochastic

epimutations only in 2+ 0 with copy numbers 1 and 2. The mean ratio was 0.446

(inter-quartile range [0.410, 0.494], Figure 5.5A). In regions of 1+ 1 and 2+ 0,

As the mutation rate makes sense because looking at large enough bins mut rate in

constant that the values obtained for are correlated within samples Figure 5.5C).

Samples from the same patients showed similar values and so did estimates from

matched bulk and FACS sorted RRBS data.

In regions of 2 + 0, we posit that stochastic epimutations on both copies

were acquired prior to the copy number gain, whilst those on one copy occurred

after (Figure 5.6A [124]). We utilise the stochastic clonal DMP counts on 1

(counts1,stochastic) and 2 (counts2,stochastic) copies in 2 + 0 to derive timing esti-

mates for this copy number gain as: timing =
2× counts2,stochastic

counts1,clonal +2× counts2,stochastic
(Methods, section 5.4.3). Results suggest that gains usually occurred in the second

half of epimutational time (Figure 5.6B), with the mean value sitting slightly higher

in LUSC than in LUAD, 0.635 and 0.577 respectively. We found good agreement

between timing values across samples from the same patient.

To conclude, we showed that allele-specific epimutations gives rise to inter-

mediate methylation in CAMDAC purified profiles. We verified that detectable
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epimutations were usually clonal, as measured by the ratio of DMPs on one or less

than one copy in 1+0. We then defined two classes of epimutations, stochastic and

regulatory DMPs, and estimated the rate of each from epimutations in 1+ 1 copy

number segments. Leveraging clonal and stochastic DMP rates inferred from 1+0

and 1+1 segments we extracted the number of stochastic DMPs on a single or on

both copies of the gained allele in 2+ 0 and used these to get timing estimates for

the copy number gain in epimutational time. Note that this result is based only on

the timing of gains in 2+0 in a small subset of epiTRACERx samples. Our obser-

vations and work by others [126] both suggest that, in lung cancers, copy number

gains tend to occur late, at least in 2+0. We note that we cannot evaluate whether

our approach enables accurate timing of early gains. Nevertheless, our results sug-

gest that methylation data does contain timing information, at least in 2+0, and is

a first step in developping a tool to harness this.

5.2.4 The interplay between mutations and somatic mutations

We briefly mentioned that genetic mutations can alter the methylation levels of

neighbouring CpGs, for example through the ablation or creation of TFBSs. We set

out to formally investigate the relationship between somatic mutation and differen-

tial methylation. We obtained DMR calls on the SNV deconvoluted CAMDAC pure

tumour methylation rates already computed as part of analyses included in the pre-

vious chapters (Methods, sections 3.4.4, 4.4.1). Across all samples, we extracted a

combined total of 5,727 phased methylation bins, 603 of which were DMRs (Figure

5.7A). This SNV deconvoluted DMR rate, 10.52%, is in line with the per sample

average obtained from CAMDAC purified DMR calling which was 12.51%. We

note that SNV deconvoluted methylation rates may have lower coverage and thus

greater uncertainty which will influence DMR calling. The overlap between RRBS

and WES is low, as opposed to WGS. We obtained 5 and 21 DMRs out of 36 and

247 SNV-phased methylation bins per sample on average, respectively for the two

platforms. Given the 3 patients with WGS have on average 23,348 SNVs and that

RRBS covers < 2% of the genome, the total number of SNV-phaseable methylation

bins is sensible.
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We then classified DMRs as either bi-allelic or mono-allelic with or without

loss of the wild type (WT) allele. We further divided the latter category into epimu-

tations that were in-cis with the mutant allele (ncis = 258) and those which were

specifically located on the WT allele (in-trans, ntrans = 43). The observed enrich-

ment for DMRs in-cis to SNVs (Binomial test, p = 1.67× 10−33) implies that a

causal relationship exists between certain somatic genetic sequence alterations and

aberrant DNA methylation.

Figure 5.7: Interplay between somatic mutations and methylation changes.
(A) Pie chart of the methylation status of SNV-phaseable regions. Categories include bi-
allelic, WT loss, in-cis, in-trans and non-DMRs. Epimutations were further divided into
into hypo- and hyper-methylated loci. (B-D) Examples of (B) in-trans, (C) in-cis and (D)
loss of WT phased DMRs.

Promoter hypermethylation, or possibly intragenic hypomethylation, of the

wild type allele combined with a deleterious mutant allele likely results in stronger

downregulation of tumour suppressor genes than one modality alone, offering a

possible explanation for the occurrence of DMRs in-trans to SNVs. Alternatively,

activating mutations at oncogenes together with together with hypomethylation of
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the wild type allele could also favour tumour progression. The theory is that the

combined effect of a somatic mutation and DNA methylation change on separate

copies leads to greater impact on expression than each alteration alone.

Phased epimutations in-trans relative to SNVs were usually hypermethylated

(p = 2.19×10−3, Binomial test). Enhancer GH06F037648, which is intragenic to

MDGA1, was clonally hypermethylated on at least one wild type allele copy in all

CRUK0071 regions (Figure 5.7B). Findings from the ENCODE project predict that

this enhancer also regulates RNF8 expression, a reported tumour suppressor gene

in breast cancer thanks to its role in DNA double strand break repair and Notch sig-

nalling downregulation [212]. Other studies in both LUAD and breast cancers sug-

gest that, on the contrary, activation of this ubiquitin ligase is indicative of tumour

progression because it can stabilise transcription factors RXRα and Twist promoting

epithelial–mesenchymal transition and increased proliferation [213]. The various

roles on RNF8 in tumourigenesis are discussed in a review by Zhou et al. [214].

DMRs in-cis with respect to the mutant allele showed no bias for either gain or

loss of methylation. The occurrence of either hyper- or hypomethylated DMRs in-

cis may depend on whether the SNV results in the deletion or, although less likely,

the formation of TFBSs, respectively. In the case of hypomethylated regions in-

cis, a more plausible explanation is that the loci is in fact hydroxymethylated, an

intermediate state in tumour demethylation pathway which is unaffected by bisul-

phite conversion and thus indistinguishable from methylated CpG in RRBS data.

Patient CRUK0082 harbours a clonal promoter mutation at the tumour suppressor

gene CDKN2A where only the mutant allele hypermethylated (Figure 5.7C).

In cases where the mutant allele was differentially methylated and the WT

allele was lost in the tumour cells, we could not establish whether the DMR orig-

inally occurred on both alleles or in-cis. There was WT loss at the CDH10 gene

locus in patient CRUK0072 (Figure 5.7D). The remaining copies harboured a mis-

sense mutation and hypomethylation of the surrounding CpGs. Specifically, this

example SNV-phased DMR was found in a region of both LOH and WT allele loss

and thus the SNV was present on all remaining copies. As such, CAMDAC purified
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methylation rates were in excellent agreement with SNV deconvoluted estimates as

previously detailed (Chapter 3, sections 3.2.5, 3.4.4).

Taken together, CAMDAC deconvolution and phasing enables deeper under-

standing of the interplay between genetic mutations and aberrant DNA methylation.

In our lung cancer cohort, we observed frequent phasing of the hypermethylated

allele to the mutant SNV allele, potentially through ablation of adjacent transcrip-

tion factor binding sites.

5.2.5 DNA methylation and immune escape

Somatic sequence alterations can create tumour-specific neo-antigens that can

be recognised by competent immune cells initiating an anti-tumour immune re-

sponse. This not only requires effective antigen presentation to the cell surface,

but also the presence of relevant immune effectors nearby to detect these molecules

[215]. In Rosenthal et al. [114], we show that, in NSCLC, tumour cells can sup-

press antigen presentation via several different mechanisms, including loss of het-

erozygosity at the human leukocyte antigen locus, loss of function mutation of the

major histocompatibility complex, alterations at the enhanceosome of these loci,

aberration of the peptide generation pathway and epigenetic silencing of genes har-

bouring neo-antigens. The analysis linking DNA methylation with immune escape

in Rosenthal et al. was carried out by the author of this thesis.

Leveraging a list of expressed (mutant read counts > 30) and non-expressed

(mutant read counts = 0) neo-antigenic transcripts derived by colleagues, we set

out to evaluate whether promoter methylation could play a role in modulating neo-

antigen transcription in NSCLC (Methods, section 5.4.4). Neo-antigens, expres-

sion levels and methylation rates were respectively determined from matched WES,

RNA sequencing and RRBS data of 79 TRACERx samples from 28 different pa-

tients.

We obtained CAMDAC tumour-normal DMP calls for all CpGs contained in

the region spanning 2kb down- and upstream of the most upstream transcription

start site at genes harbouring neo-antigens. Note that methylation rates at the pro-

moters could not be phased to distant intragenic neo-antigen mutations. For exam-
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ple, the LAMB1 locus has two distinct intragenic neo-antigen mutations in sample

CRUK0057-R1. These mutations are not expressed and the LAMB1 gene promoter

is hypermethylated (Figure 5.8, left). In comparison, a randomly sampled unmu-

tated control sample was not hypermethylated (Figure 5.8, right).

Figure 5.8: Hypermethylated non-expressed neo-antigen example.
Methylation rates at CpGs overlapping the most upstream transcription start site of the
LAMB1 gene locus. Under the methylation profiles the two neo-antigenic mutation are
shown relative to all exonic regions across LAMB1 transcripts. The most upstream tran-
scription start site is highlighted. Methylation rates are shown for the normal (rose), bulk
tumour (purple) and pure tumour (grey) in sample CRUK0057-R1, which harbours two
non-expressed neo-antigens and is hypermethylated (green, left) and for an un-mutated
control sample, CRUK0002-R1, which is neither mutated nor differentially methylated
(right).

Strikingly, we saw a 11.4-fold increase in the number of gene promoters har-

bouring hypermethylated DMPs for non-expressed compared with expressed neo-

antigens (χ2 test, p-val = 1.6×10−4, Figure 5.9A). To ensure gene hypermethyla-

tion was correlated with the presence of neo-antigen mutations and mutant expres-

sion levels, as opposed to the gene loci themselves, we randomly sampled an un-

mutated controls for each gene in Figure 5.9A. As predicted, controls were usually

non-differentially methylated, irrespective of the expression level of the matched

mutant transcript (Figure 5.9B-C). Overall, this analysis implies that promoter hy-

permethylation plays a role in silencing the expression of tumour neo-antigens.
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Figure 5.9: Hypermethylation across expressed versus non-expressed genes
harbouring neo-antigenic mutations in (epi)TRACERx.
Comparing promoter hypermethylation status at (A) non-expressed versus expressed neo-
antigens, (B) expressed neo-antigens versus unmutated controls of the same genes and (C)
non-expressed neo-antigens versus unmutated controls of the same genes.

5.3 Discussion

In summary, we showed that allele (and copy-)specific methylation is a com-

mon feature of normal lung tissue and NSCLC. Surprisingly, we found that the

modal methylation on chromosome X in females was lower than the expected value.

We saw reduced coverage at the inactive X copy due to extraction biases against the

Barr body, at least in RRBS data. In light of this finding, we advise researchers to

take caution when interpreting methylation rates on X in females. Next, we eval-

uated allele-specific methylation at the H19/IGF2 germline imprinted locus. We

detected ASM in all normal samples and were able to validate this by phasing to het-

erozygous SNPs in 30/37 samples. We identified loss of imprinting in five patients,

all of which lead to complete loss of methylation at CpGs spanning the imprinting

control region.

We went on to evaluate allele- and copy-specific methylation in a more gen-

eral setting across tumour samples. From this, we defined two classes of DMPs,

stochastic and regulatory DMPs and assessed the relative quantities of each based

on the ratio of epimutations with copy numbers 1 and 2 in 1+ 1 regions. Our re-

sults show that regulatory DMPs tend to dominate the mutational landscape of our

NSCLC samples, although we cannot exclude that this is in part due to RRBS data

being skewed for CGIs.

Leveraging the estimated number of stochastic alterations on 1 versus 2 copies,

we attempt to extract timing values for copy number gains in 2+0 copy number seg-
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ments only. An obvious drawback of our method is that we were limited to timing

gains in regions of 2+ 0 and in samples which also harboured a sufficient number

of DMPs in regions of 1+0 and 1+1, which were used for subclonal and regula-

tory DMP decontamination, respectively. Nevertheless, timing estimates in regions

of 2+ 0 suggest that virtually all of these gains take place in the second half of

epimutational time. This result is in line with published timing of LUAD samples

derived from whole-genome sequencing data, the current state-of-the-art for timing

purposes [124]. We note that a different cancer type cohort with both late and early

gains would be better suited for the development of a methylation-based copy num-

ber timing method. Nevertheless, our data indicates that methylation sequencing

data may have the potential to inform on tumour evolutionary trajectories.

Indeed, studies of whole genomes have enabled timing of somatic mutation

in tumour evolution. To do this accurately and for all gains - as opposed to limit-

ing ourselves to 2+ 0 - one is required to perform clustering of (sub)clonal muta-

tions. Although beyond the scope of this work, a probabilistic approach to assign

epimutation copy numbers, cluster clonal DMPs and from this compute timing es-

timates may enable timing of higher copy number gains. Identifying recurrently

early clonal, late clonal or late subclonal epigenetic alterations has obvious clini-

cal implications, in early diagnosis, disease monitoring and for developping new

treatments.

A similar approach has been utilised to situate copy number events in mu-

tational time, as detailed in Jolly and Van Loo [216] and Gerstung et al. [124].

However, this approach is not directly applicable for use with DNA methylation

data, where both subclonal and regulatory contamination must be taken into ac-

count. Moreover, bleeding between peaks of non-differentially methylated CpGs

and subclonal and clonal mutations is likely much more significant in methylation

data than for SNVs, posing an additional challenges to clonal reconstruction.

For example, normal methylation levels will vary according to cellular compo-

sition and may be susceptible to tumour field effects, while in comparison, genetic

sequence alterations rarely reach a detectable CCF in healthy tissues [217]. At high
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tumour DNA content, normal methylation noise is unlikely to affect clonal DMP

calls, but at low tumour DNA fraction, it could have a non-negligible effect, es-

pecially for subclonal DMPs with low effect sizes. Furthermore, epimutations are

reversible, meaning that clonal epimutations can revert to the ground state in a sub-

set of cells, decreasing the methylation rate difference between non-differentially

methylated CpGs and clonal epimutations.

We note that whole-genome bisulphite sequencing would be particularly well-

suited to methylation timing analysis since the entire genome contains many indi-

vidual isolated CpGs unlikely to be affected by regulatory changes and thus able to

reflect accurate timing, unlike RRBS which is enriched for regulatory elements.

Subsequently, we showcased the power of RRBS as a tool to study the interplay

between epigenetic and somatic changes. We classified SNV-phased DMRs as bi-

allelic, in-cis, in-trans, on both alleles or on the mutant allele in regions of WT loss.

Overall, we identified very few recurrent SNV-phased DNA methylation changes

between patients. This is likely due to fact that SNVs need to occur at specific

bases in order to cause in DNA methylation changes. Most SNV-phased DMRs

were in-cis and hypermethylated, suggesting that somatic mutations can result in

TFBS ablation thereby preventing transcription factor binding and allowing DNMT

activity.

The rarity of loci harbouring SNV-phased DMRs in more than one patient

could also be explained in part by the small cohort size, the low mappability of

RRBS reads with alternate alleles (see Chapter 2, section 2.2.2) and the weak over-

lap between RRBS and WES data from which DMR and SNV calls were made,

respectively. In future, trading two sequencing platforms for either Nanopore se-

quencing or matched paired-end WGBS and WGS data would help address the

latter two potential sources of bias, but would significantly increase experimental

costs.

It is important to note that despite totalling 122 samples, the epiTRACERx

study comprises of only 38 different patients, 14 LUSC and 24 LUAD, at the time

of writing. In the next epiTRACERx RRBS dataset, additional samples from both
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current and new patients will be available and thus it may be possible to identify

genes with recurrent SNV-phased DMRs. Specifically, frequently in-trans alter-

ations would suggest strong selective forces for aberrant gene regulation. In the

absence of recurrent individual hits, one could look at enrichment for in-trans aber-

rations within gene sets. Similarly, a larger cohort would be needed to fully appre-

ciate the impact of LOI and subclonal methylation on clinical outcome in NSCLC.

Finally, we describe work completed as part of Rosenthal et al. [114]. We

leverage mulit-omics data to unveal the relationship between immune escape and

DNA methylation. We find that promoter hypermethylation is enriched at genes

containing non-expressed as opposed to expressed neo-antigenic mutations. By

comparison with unmutated controls of the same genes, we confirm that hyper-

methylation is specific to non-expressed neo-antigens. This finding has significant

clinical implications, suggesting that combining a DNMT inhibitor with immune

checkpoint blockade therapy could improve anti-tumour response and patient out-

come in NSCLC.

5.4 Methods
The methods described below were recently published as part of our bioRxiv

preprint [140].

5.4.1 Chromosome X allele-specific methylation analysis

First, we compute the median coverage on autosomes (medautosomes) and

on chromosomes X (medX ) for each sample, excluding pseudoautosomal regions

(PAR1 and PAR2) in males. To correct for spatial correlation between CpGs on

the same read molecule, we only include the coverage values of 1 CpG per read

(covi). We obtain the log normalised depth (LogDi) estimates for the ith CpG:

LogDi = log2(
covi

medchr
), where medchr is the median depth across all chromosomes,

excluding Y in males. We centre the LogD distribution around 0 by subtracting the

median (medLogD): LogDi,corrected = LogDi,corrected−medLogD). Finally, we get the

median LogDi,corrected values on X and convert it to the base 2 exponent to obtain

the coverage ratio, dividing samples by sex. The mean coverage ratio for males and
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females on X versus the rest of the genome were 0.523 and 0.902, respectively.

The modal methylation rate on X in females was computed as the local max-

imum of the methylation rate density falling in the [0.3,0.7] interval taking 1 CpG

per read on chromosome X in all 13 normal female lung samples. Since one copy

of X is unmethylated and the other is methylated, we expected a value near 0.5, but

the observed mode of methylation was 0.384. The observed reduction in coverage

is thus likely biased against the inactive X copy, leading to a decrease in global

methylation.

To see whether there was a corresponding allelic bias, we compiled the

ASCAT.m normal BAF values for all heterozygous SNPs (see Methods, section

2.4.3.1) and compared the means on autosomes and on chromosome X in females,

0.454 and 0.453, respectively. We did not observe allelic bias, suggesting X-

inactivation is random in our normal lung dataset.

5.4.2 Allele-specific methylation at the H19/IGF2 imprinting

control region

We obtained allele-specific methylation rate estimates at the ICR of the

H19/IGF2 by phasing the germline heterozygous SNPs. The normal methy-

lation rate for the reference allele, mn,re f , is computed from the methylated

(Mn,re f ) and unmethylated (UMn,re f ) reads phased to the reference allele: mn,re f =

Mn,re f /(Mn,re f +UMn,re f ). Vice versa, the alternate allele normal methylation rate,

mn,alt , is calculated as: mn,alt = Mn,alt/(Mn,alt +UMn,alt). Overall, 31/37 patients

had polymorphisms at the H19/IGF2 ICR. On average, we could phase 15 CpGs

with clear allele-specific methylation at the ICR (malleleA - malleleB > 0.7) per sam-

ple.

Obtaining bulk tumour methylation rates at the reference and alternate allele,

mb,re f and mb,alt , respectively, follows the same principle. To obtain the purified

tumour methylation rate, we first assign clonal copy numbers to each allele using

the BAF at the heterozygous and the allele-specific copy number from ASCAT.m.

If BAF < 0.5, then major allele, nA, is the reference allele copy number, nre f =nA

and the minor allele, nB, is the alternate allele, nalt=nB. Vice versa, if BAF > 0.5,
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nalt=nA and nre f =nB. Both the reference and alternate allele methylation rates are

confounded by signal from normal contaminating cells and must be deconvolved.

We modified CAMDAC equations 2 and 3 for this purpose, where x is either the

reference or alternate allele:

mb,x =
ρnt,xmt,x +nn,xmn,x(1−ρ)

ρnt,x +nn,x(1−ρ)
(15)

mt,x =
mb,x(ρnt,x +nn,x(1−ρ))−nn,xmn,x(1−ρ)

ρnt,x
(16)

Using mt,x, we classified tumour samples has having retained imprinting when

absolute differences between the reference and alternate allele phased methylation

rates at 1 or more CpGs across the ICR were larger than 0.7 (i.e. |mt,re f −mt,alt | >

0.7). Assignments were then manually validated. Tumours with loss of heterozy-

gosity were classified as having lost either the inactive or active copies by taking

the average methylation rate across CpGs within the ICR which were phased to the

remaining allele. Similarly, in tumours with loss of imprinting, we took the aver-

age methylation level across CpGs at the ICR phased to either alleles to determine

whether gain or loss of methylation had occurred.

5.4.3 Quantifying epimutation copy numbers

We set out to quantify allele-specific versus bi-allelic DMPs. Unlike SNVs,

DMPs can occur as a results of regulatory changes and so can take any copy num-

ber and DMP populations are larger in number than genetic mutational clusters. The

combined effect of a wide range of multiplicity and large cluster size lead to sig-

nificant overlap between copy- and allele-specific and bi-allelic DMP populations

with increasing total copy number. We therefore limited our analysis to 1+ 1 and

2+ 0 copy number segments. We used 1+ 0 as a negative control as there should

be no ASM in 1+0 region. We subset our analysis to 58 bulk and 2 FACS sorted

tumour RRBS samples that harboured both 1+ 1 and 2+ 0 ASCN segments each

containing at least 200 DMPs as well as 1+ 0 segments for use as ASM negative

control.
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In those samples, we selected CpG loci which were confidently unmethylated

in the adjacent normal (mn HDI99 ⊆ [0,0.2]) and hypermethylated in tumour cells

(P(mt > mn) > 0.995 and mt −mn > 0.2). The methylation rate distribution at

hypomethylated DMPs are less informative than at hypermethylated DMPs because

of increased noise (Figure 3.6D). We divide the pure tumour methylation space into

discrete bins: mt ∈ [0.2,0.6[ or [0.6, 1].

In 1+0, hypermethylated DMPs falling in the second interval are likely clonal

with copy number 1, while those below are presumable subclonal. At very low

purity, CAMDAC estimates have high uncertainty and DMP calls are biased against

subclonal and mono-allelic DMPs. We trimmed 13 samples with low tumour DNA

fraction ( ft ≤ 0.20) to remove any correlation between tumour purity and the ratio of

clonal to subclonal DMPs counts (rclonal). After trimming, the correlation between

the mean sample purity and rclonal per patient was -0.117 (p-val = 0.614). On

average, rclonal counts ratio was 0.698 across all samples and 0.660 in LUAD and

0.707 in LUSC.

Leveraging rclonal values computed above for each sample, we then cor-

rected DMP counts of copy number 1 (counts1) for subclonal contamination:

counts1,clonal = counts1× rclonal . We could then compute the ratio of clonal copy

number 1 and 2 (counts2) DMPs for each sample and for ASCNs 1+ 1 and 2+ 0.

In 1+ 1, we used this fraction as a proxy for the ratio of stochastic to regulatory

DMPs, rstochastic =
counts1,clonal

counts1,clonal + counts2
. From this, we extracted the number of

DMPs having occurred from stochastic methylation changes only at copy number

2 in 2+ 0 counts2,stochastic = counts2× rstochastic. Finally, we obtain the ratio of

stochastic epimutation with copy numbers 1 and 2 in 2+ 0. DMPs on one copy

must have occurred after the gain took place while those on 2 copies were already

present prior to the copy number alteration. The ratio of late to early epimutations is

calculated as:
counts2,stochastic

counts1,clonal + counts2,stochastic
. Finally, we obtained copy number

gain timing estimates leveraging stochastic DMP counts on 1 and 2 copies in 2+0:

timing =
2× counts2,stochastic

counts1,clonal +2× counts2,stochastic
.
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5.4.4 Evaluating promoter hypermethylation at genes harbour-

ing neo-antigens

These methods were previously published in Rosenthal et al. [114] and in the

results of a collaboration between the author of this thesis, the authors of the paper

and the wider TRACERx consortium.

Matched RNA sequencing data was available for 28 out of the 38 patients

included in the epiTRACERx with multi-region sequencing totalling 79 out of 122

tumour samples. Matched normal RNA sequencing data was not available. To

exclude genes that are not expressed in lung cancer, Rachel Rosenthal compiled

a reference lung cancer transcriptome comprised of genes that were ubiquitously

expressed in the TCGA non-small cell lung cancer dataset.

Using this reference panel, Rachel extracted neo-antigenic mutations from

matched WES data and classified genes harbouring neo-antigens into two groups:

expressed neo-antigenic transcripts, where the mutant allele was present in at least

30 reads, and non-expressed locus, where no reads supported the mutant allele. She

found 883 and 375 expressed and non-expressed neo-antigenic transcripts in sam-

ples with matched RRBS data, respectively. Of those 407 and 77 were unique,

while others were duplicates from different sampled tumour regions of the same

patient. Correlations between samples of the same patient could skew downstream

analyses, we therefore only used on sample per patient, taking the sample with the

largest variant allele frequency for each neo-antigenic loci. The higher the VAF,

the more likely we are to detect methylation-driven silencing of neo-antigens, if

present.

Expressed neo-antigens were slightly biased for higher RNA sequencing cover-

age and VAF. To even out the expression and mutational profiles between expressed

and non-expressed neo-antigens, we downsampled the expressed neo-antigenic loci

to match as closely as possible the gene expression and the variant allele fre-

quency distributions observed for the non-expressed neo-antigens. We performed

CAMDAC DMP calling from bulk and normal methylation rates at promoters (2kb

up- and downstream of TSS). Hochberg family-wise error rate correction is then
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applied and promoters are flagged as hypermethylated when 3 or more CpGs were

significantly hypermethylated (q < 0.05). Promoter counts are tested in a 2x2 con-

tingency table (methylation status vs expression status or mutation status) using a

χ2-test. We re-ran this analysis with CAMDAC purified tumour methylation rates

and saw mo difference in the outcome of the χ2-test. However, we saw greater

tumour-normal methylation differences at hypermethylated neo-antigenic promot-

ers post-deconvolution.



Chapter 6

Discussion

6.1 Summary

This work began with the proposition that bulk tumour methylation rates are

affected by tumour copy number and purity. As such, these two confounders present

a barrier to our understanding of the cancer methylome. Addressing this issue, we

describe a robust framework for the analysis of bulk tumour RRBS data, unpolluted

by normal signals.

First, we discuss ASCAT.m, our method for allele-specific copy number pro-

filing directly from methylation sequencing data. Importantly, this tool obviates

the need for additional SNP array or WGS data. To develop this approach, we use

the epiTRACERx pilot cohort, comprised of 38 NSCLC patients selected from the

TRACERx first 100 patients each with 2-7 tumour regions for which we collected

RRBS data, totalling of 122 tumour and 37 adjacent normal lung samples. Previ-

ously published WES [112] of the same samples as well as newly obtained WGS

data for a subset of samples were available for validation, making the epiTRACERx

particularly well-suited for ASCAT.m method development.

Comparing RRBS- and WGS-derived genotypes from 3 NSCLC patients, we

find that genotypes obtained directly from bisulphite sequencing data are reli-

able, except for polymorphic CCGGs. For multi-region sequencing studies, multi-

sample segmentation greatly improves copy number profiles. Resulting segmented

LogR and BAF profiles and allele-specific copy numbers were comparable be-

tween ASCAT(.m) performed on RRBS and gold standard WGS. Overall, purity
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and ploidy values were in good agreement between RRBS data and WGS/WES of

the same samples, including one sample without patient-matched normal.

Indeed, ASCAT.m performs well in one case without tumour-adjacent matched

normal, which we substitute by a panel of sex-matched normals. Analysing

ASCAT.m copy number profiles across the epiTRACERx cohort, we find common-

alities and differences between LUAD and LUSC. Genome doubling is a frequent

feature of NSCLC according to our and previously published results [123]. WGD

was significantly associated with increased probability of relapse in LUSC but not

LUAD likely due to increase prevalence of LOH in the former.

Subsequently, we introduce our method for copy number-aware methylation

deconvolution analysis of cancer, CAMDAC. We first obtain SNP-independent bulk

tumour and normal methylation rates for all samples in the epiTRACERx cohort.

Next, we visualised DMP populations in the mb distribution by thresholding on mn,

assuming the adjacent normal cell composition is a suitable match for the normal

contaminants and stratifying CpGs by ASCAT.m copy numbers and tumour purity.

From this, we formalise the relationship between methylation rates and tumour copy

number and purity as CAMDAC equations 2 and 3.

We model the position of the clonal bi-allelic DMP population as predicted

by CAMDAC both pre- (mb) and post-deconvolution (mt) and find that both are in

agreement with the observed. The error on the CAMDAC predictions is propor-

tional to tumour DNA content, decreasing with increasing copy number and tumour

purity. Although the errors are small, we note that the observed methylation rates

is systematically shifted away from the expected and towards non-differentially

methylated CpGs and suggest that this effect is caused by methylation erosion in

fast replicating tumour cells.

Next, we demonstrate that by removing shared signal from normal contami-

nating cells, CAMDAC purified profiles have increased pairwise distances to nor-

mals and between samples from different patients, while samples from the same

patients remain correlated, reflecting their shared ancestry. Leveraging SNV calls

from WGS and WES of the same samples, we perform SNV deconvolution. SNV
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deconvoluted methylation rates in regions of LOH where the SNV is on all copies

should be an unbiased estimate of the pure tumour methylation rate. We report good

agreement between SNV- and CAMDAC-purified methylation rates at these loci.

We develop a method for tumour-normal and tumour-tumour DMP calling

from CAMDAC deconvoluted methylation rates and compared its performance with

the bulk tumour on simulated and real data. DMP calls were obtained for simulated

mono- (balanced regions only) and bi-allelic DMPs, revealing that only mt values

enable accurate differential methylation analyses. Applying the effect size thresh-

old to the bulk, as is customary, leads to false negatives. Indeed, false negative rates

based on the bulk increased with decreasing copy number and purity, especially at

mono-allelic DMPs. False positive rates at tumour-tumour DMPs derived from bulk

were highest in low versus high purity sample pairs and simulated CpGs of differing

copy number. A similar trend is observed from real data.

We perform RRBS of sorted diploid and aneuploid populations separated

by FACS for 7 bulk tumour fresh frozen tissue samples taken from 5 different

epiTRACERx patients. Diploid cells extracted from the bulk tumour are assumed

to represent normal infiltrates while the higher ploidy population is purely tu-

mour cells. We first use these data to validate the use of tumour-adjacent normal

lung methylation rates as substitutes for that of the normal contaminating cells in

CAMDAC equation 3. We perform cell-type deconvolution using EpiDISH on the

normal infiltrates isolated by FACS and on the tumour-adjacent normals, compar-

ing results between samples from the same patient. The bulk normal lung tissue

samples are shown to be of similar cellular composition to the sorted normal con-

taminants, suggesting that it is a suitable proxy for bulk tumour deconvolution, at

least in NSCLC.

We also investigate the suitability of the bulk normal lung samples as substi-

tutes for the NSCLC cell of origin in differential methylation analysis. We find that

the bulk normals contain a large percentage of epithelial cells, more so than the

sorted normal infiltrates, suggesting that they are the best available proxy for the

NSCLC cell of origin. Using the FACS-purified aneuploid tumour cell populations,
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we also demonstrate that the tumour-normal DMP calls based on CAMDAC mt had

greater overlap with the FACS sorted data than the bulk, further advocating use of

CAMDAC over bulk methylation rates for accurate identification of epimutations.

We subsequently obtain DMR calls building on CAMDAC purified methy-

lomes and DMPs. Roughly 12.5% of methylation bins covered by RRBS reads in

all epiTRACERx samples were DMRs. We measure intra-tumour DMR ubiquity

and observe a positive correlation with patient outcome. Importantly, results indi-

cate that a minimum of 3 samples is required to adequately sample intra-tumour

heterogeneity. Clustering of CAMDAC pure tumour methylation rates at promoter

DMRs separated samples by sex, histology and patient while DMP clustering re-

vealed intra-tumour subclonal relationships.

Investigating the most frequent epigenetic alterations across the epiTRACERx

cohort, we note that recurrently hypomethylated promoters are few in numbers.

This is likely because most promoter CGIs are not methylated to begin with. Nev-

ertheless, recurrent loss of methylation is observed at 5 oncogenes, H2B1, SFN,

NELFCD, FAM83H-AS1 and TUBA1C, suggesting that demethylation may play a

role in transcription regulation at those loci. In contrast, promoter hypermethy-

lation was abundant, with over 600 gene promoters having gained methylation in

≥ 90% of patients in our NSCLC cohort. Focusing on known hypermethylated

genes and their families, we usually find epimutations to occur at a higher rate than

previously reported in the literature. We propose that use of CAMDAC purified

tumour methylomes for DMR calling leads to the observed reduction in the number

of false negatives. Hundreds of DMRs are ubiquitous within patients, suggesting

they occurred early in tumour evolution, and across our cohort, demonstrating the

potential of methylation data for early diagnosis of NSCLC. Interestingly, a handful

of DMRs were histological subtype-specific: MLPH, CDH3, SAFTA3, CHMP4BP1

and HMHA1.

Finally, we leverage CAMDAC pure tumour methylation rates and ASCAT.m

allele-specific copy numbers to gain insight into copy- and allele-specific methyla-

tion in NSCLC. We find that allele (and copy)-specific methylation is a universal
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feature of both normal lung tissue and NSCLCs. To being with, we illustrate the

presence of allele-specific methylation in tumour-adjacent normal lung tissue by

looking at X inactivation and incidentally uncover the presence of extraction biases

against the Barr body. We also note that X inactivation is random, at the scale of

our normal samples. Next, we use SNP-phased methylation rates to confirm the

presence of allele-specific methylation at the H19/IGF2 germline imprinting con-

trol region. Looking at this locus in tumour samples, we saw loss of imprinting in 5

patients, leading to demethylation of CpGs spanning the ICR in all instances.

Next, we assess allele- and copy-specific methylation in tumours, measuring

the number of DMPs with epimutation copy numbers 1 and 2 in regions of 1+ 1

and 2+0. As proxy for the ratio of clonal to subclonal DMPs, we also compute the

number of DMPs on 1 or less than 1 copy in regions of 1+0. We then use this ratio

as a proxy to remove subclonal contamination from allele- and copy-specific DMPs

in regions of 1+ 1 and 2+ 0. Speculating on the origins of DMPs, we define two

classes of DNA methylation changes, stochastic and regulatory alterations. We esti-

mate their relative frequency based on the ratio of epimutations with copy numbers

1 and 2 in 1+ 1 regions, assuming all DMPs with epimutation copy number 1 are

stochastic and those with copy number 2 are regulatory. Our results show that reg-

ulatory DMPs tend to dominate the mutational landscape of our NSCLC samples,

although we cannot exclude that this is in part due to RRBS data being skewed for

CGIs.

Leveraging the estimated ratio of regulatory to stochastic DMPs computed

from 1+ 1 copy number segments, we attempt to extract the number of stochastic

alterations on 2 copies in 2+0. We take the estimated number of clonal stochastic

DMPs with epimutation copy numbers 1 and 2 in regions of 2+ 0 and attempt to

estimate the timing of the copy number gain. Our method is currently limited to

timing gains in regions of 2+0 and in samples that also harbour sufficiently many

DMPs in regions of 1+ 0 and 1+ 1, which are needed as proxy for subclonal and

regulatory DMP decontamination, respectively. Nevertheless, timing estimates in

regions of 2+ 0 suggest that gains take place in the second half of epimutational
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time, in line with published timing of LUAD samples derived from whole-genome

sequencing data [124].

We investigate the relationship between somatic alterations and DNA methyla-

tion changes. We often find a causal relationship between the two, with SNV-phased

DMRs commonly appearing in-cis with respect to the mutation. DMRs in-cis are

usually hypermethylated, suggesting that SNVs lead to the deletion of TFBSs and

consequently enable DNMT activity. In the same line of idea, we describe the re-

lationship between methylation and gene expression at tumour neo-antigens across

epiTRACERx. We find that non-expressed tumour neo-antigens were significantly

enriched for hypermethylation compared with expressed neo-antigens and unmu-

tated controls of the same genes. Our results implies that DNA methylation plays

a role in immune escape, suppressing neo-antigen presentation. This analysis has

been published as part of Rosenthal et al. [114].

Overall, this work sheds light on the wealth of genetic and epigenetic informa-

tion contained in bisulphite sequencing data. We show that ASCAT.m copy numbers

and CAMDAC deconvoluted methylomes are a first step towards gaining a deeper

understanding of the cancer methylome.

6.2 Strengths of this work

For the first time, we present a simple model for bulk tumour data, formalising

the relationship between tumour copy number, purity and methylation rates in bulk

tumour bisulphite sequencing data. We formalise this relationship into CAMDAC

equations 2 and 3. Importantly, use of CAMDAC pure tumour methylomes greatly

reduces false negatives in differential methylation analyses while keeping false pos-

itives low. As a result, we see increased prevalence of recurrently epimutated gene

promoters compared to levels reported in the literature. CAMDAC purified DNA

methylation estimates could prove to be an even more powerful cancer biomarker

than previously thought based on bulk data, which is subject to high false nega-

tive rates at low tumour purity and copy number. Moreover, our results suggest

that intra-tumour heterogeneity analysis by clustering of methylation rates at DMPs
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from bulk simply reflects tumour DNA content, and only mt reflects sample re-

lationships. We speculate that CAMDAC mt can also provide deeper insights in

tumour heterogeneity in other solid cancers.

CAMDAC relies on ASCAT.m, which enables copy number profiling directly

from RRBS data, saving researchers time and money by eliminating the need for

matched SNP array or WGS, at least for copy number profiling and genotyping

purposes. Adding to its usefulness, ASCAT.m does not require a patient-matched

normal. Indeed, we showed in one example case without tumour-adjacent patient-

matched normal lung RRBS data that a panel of sex-matched normal is suitable to

obtain LogR estimates. Although affecting only a small portion of the genome, it is

worth noting that germline copy number variants may be mistaken as somatic copy

number alterations with this approach. Heterozygous SNPs can be inferred directly

from the tumour BAF profile if samples are of sufficiently low tumour purity, which

is the case for most NSCLC samples.

We also show that CAMDAC deconvolution and differential methylation

analysis can be run on tissue- and sex-matched normals. This is important as it

is not always possible to obtain patient-matched normal tissue. In cases where the

cell of origin is unknown, the tissue-matched normal may not be readily obtainable.

CAMDAC provides provides HDI99 estimates on its mt values, which can be used

to identify tumour-tumour DMPs. While early clonal DMPs present in all samples

will be missed by this approach, it can be used to identify methylation differences

between for example histological subtypes, primary tumours and metastases, or

groups of samples with different prognosis. One can obtain valuable information

from ASCAT.m and CAMDAC simply with a cohort of tumour samples with RRBS

data.

Furthermore, we show that RRBS data allows combined analysis of SNVs and

CAMDAC DMPs, providing insights into the interplay between somatic genetic

sequence alterations and DNA methylation changes. Most SNV-phased DMRs were

hypermethylated and in-cis with respect to SNVs, suggesting a causal relationship

between genetic mutations and epimutations, likely through the ablation of TFBSs,
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enabling DNMT activity. In-trans DMRs also exist, reflecting two independent

epigenetic and genetic events affecting different copies of the same locus. Such

alterations were rare, and we speculate that they could indicate the presence of

tumour suppressor genes where strong selection forces are at play.

Lastly, the TRACERx consortium is a powerful collaborative effort between

research laboratories with different field of expertise and the resulting multi-omics

dataset collected and analysed by each lab is immensely valuable. We were able

to combine WES, RNA sequencing and RRBS data of the same samples to in-

vestigate the relationship between DNA methylation and immune escape. As part

of published work [114], we uncover that silenced neo-antigens are enriched for

hypermethylated CpGs compared with expressed neo-antigens and unmutated con-

trols. Methylation is reversible by DNMT inhibitors and therefore we posit that ad-

ministering DNMT inhibitors in combination with immune checkpoint blockade in

patients with otherwise competent immune presentation and recognition pathways

could greatly improve treatment response and patient survival.

6.3 Limitations

6.3.1 Comparing reduced-representation with whole-genome

bisulphite sequencing methylation data

We discussed the advantages of RRBS data throughout this manuscript. Here,

we point out some of the limitations. Briefly, while the NuGEN Ovation RRBS

Methyl-Seq System protocol enables cost-effective analysis of DNA methylation

in key regulatory regions such as CGIs, promoters and enhancers, it cannot probe

CpGs outside MspI fragments. As a result, differentially methylated regions de-

tected from CpG-dense RRBS reads should mainly involve regulatory alterations,

while stochastic DNA methylation changes are likely fewer in number.

In this work, we suggest that, like SNVs, random stochastic epimutations con-

tain timing information and attempt to extract these loci from RRBS data. In fact,

WGBS (and Nanopore WGS) potentially covers a large number of isolated loci in

low CpG density regions covered that are unlikely to be affected by aberrant gene
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regulation and possibly only prone to stochastic alterations. Compared with RRBS,

WGBS and Nanopore sequencing would probably allow for more accurate timing

analysis, obviating the need for decontamination of potentially dynamic regulatory

aberrations by focusing on loci in low CpG density areas of the genome. In this

work, we find that RRBS is well-suited to identify differential methylation at regu-

latory loci, which are likely to play a role in tumourigenesis, but we speculate that

stochastic DNA methylation are better represented in WGBS data, which could re-

fine timing of copy number gains and shed light on tumour evolutionary trajectories.

We also note that RRBS data is not particularly well-suited to the investigation

of methylation rates at repetitive elements due to the low mappability of bisulphite

converted reads. This mapping bias is worsened for reads with alternate alleles

or from short MspI fragments (i.e. shorter than 100bp). For example, RRBS is

unlikely to provide coverage at repetitive endogenous retroviral elements. Recent

publications showed that expression of endogenous retroviruses in cancer cells can

stimulate an immune response resulting in apoptosis [218, 219]. The authors of

both papers go on to demonstrate that transcription of viral RNA is silenced due to

aberrant DNMT activity. These findings have significant clinical implications, with

results showing that DNMT inhibitors, through endogenous retroviruses upregula-

tion, can (re-)instigate cell death. Indeed, administration of a DNMT inhibitor in

low dosage was shown to slow tumour growth in colorectal cancer [218]. These

reports offer a possible explanation for the anti-tumour activity of DNMT inhibitors

and highlight the importance of repetitive elements in tumourigenesis. Nanopore

data yields long reads with high mappability and may be more adequate to probe

methylation levels at repetitive elements than RRBS.

6.3.2 Challenges in timing copy number gains from methylation

data

Our method relies on the infinite sites model, implying that no CpG may be

mutated twice given the size of the human genome. Violations to the infinite sites

model for genetic mutations are rare. The mutation rate for NSCLC is one of the

highest, near that of melanoma, reportedly ∼ 1×10−5 mutation per base pair [94].



6.3. Limitations 155

Nevertheless, the likelihood of a given nucleotide being mutated twice, either on

the same or the opposite allele or copy is low.

In contrast, the epimutation rate at CpGs is much higher, with roughly 1 in 10

CpGs identified as epimutated by CAMDAC, at least in RRBS data. It is therefore

probable that random DNA methylation changes affecting a given copy or allele

are subsequently acquired on a second, in two distinct steps. In such cases, our

assumption that all loci on 2 copies in 1+ 1 are of regulatory origin breaks down.

DNA methylation is reversible, meaning that stochastic DMPs can be erased. These

caveats will complicate the development of both timing and phylogenetic recon-

struction tools from methylation data.

DNA methylation erosion is known to occur in ageing cells and rapidly divid-

ing tumour cells, increasing noise at methylated CpGs in both normal contaminants

and tumour cells. Erosion is likely to be transient at regulatory DMRs and unlikely

to reverse methylation without corresponding changes in signalling. Methylated

stochastic DMPs are most likely to be erased by this process, as they are probably

passenger epimutations with no evolutionary and/or regulatory pressure to remain

in the altered state.

NSCLC samples often harbour late copy number gains while other cancer

types, such as glioblastoma, have well-defined early gains [126]. Testing whether

our methylation-based copy number gain timing approach can not only detect late

gains as implied in this work, but also known early gains could validate our hy-

pothesis that methylation sequencing data has the potential to inform on tumour

evolutionary trajectories.

In summary, we hypothesise that bisulphite sequencing data harbours timing

information, but highlight several challenges in developping methods to robustly

investigate tumour epigenetic evolutionary trajectories and the need for samples.
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6.4 Future perspectives

6.4.1 The epiTRACERx study: next steps

Having now developed tools to analyse tumour RRBS data, unpolluted by sig-

nals from normal infiltrating cells, we plan to expand the epiTRACERx cohort.

The new cohort will include longitudinal data (i.e. metastasis), providing insights

into the metastatic seeding potential of clones with specific alterations and enabling

comparison of the methylome of patient-matched primary tumour and metastasis

samples.

We note that the ASCAT.m and CAMDAC methods described in this work can

be directly applied to analysis of bulk tumour RRBS data from local lung metas-

tases, using the patient matched normal for copy number profiling with ASCAT.m

and for both deconvolution and tumour-normal differential methylation analyses.

Samples taken from metastases can be combined with primary tumour regions

to improve multi-sample segmentation and downstream copy number profiling by

ASCAT.m. However, for lymph nodes or distant metastases, adjacent normal tissue

will be required for used as proxy for the normal contaminants in CAMDAC.

6.4.2 CAMDAC beyond NSCLC

To increase the value and accessibility of CAMDAC to other cancer types and

cohort designs, it would be useful to build an extensive normal reference panel with

(1) a collection of normal RRBS samples to obviate the need for germline samples

to get LogR estimates in ASCAT.m and (2) different bulk tissues and cell types so

matched normal is not needed for CAMDAC deconvolution and differential methy-

lation analysis. Read coverage data extracted from the normal lung samples pre-

sented in this work provide an adequate normal reference for ASCAT.m. Sequenc-

ing coverage is not controlled data and could be made publicly available. For decon-

volution, a variety of cell types with RRBS data have already been compiled [41],

and could be utilised in combination with reference profiles generated by our lab

in future. It would be interesting to compare differential methylation analysis on

the epiTRACERx cohort performed using patient-matched adjacent normal sam-
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ples versus normal lung cell lines.

Knowing that Small Intestine Neuro-Endocrine Tumours (SINETs) harbour

very few genetic aberrations, we plan to mine the SINET methylome to better un-

derstand the evolution of this disease. So far, we applied CAMDAC to a small

pilot cohort of 7 SINETs with low coverage multi-region RRBS (range 2-5) of the

primary tumour (see Chapter 6). We find that multi-region copy number segmen-

tation is key to obtain good quality profiles with ASCAT.m at low coverage. We

find that tumour-adjacent healthy intestinal tissue is an adequate proxy for the nor-

mal contaminating cells and thus for tumour-normal deconvolution with CAMDAC.

However, neuro-endocrine cells only make up a small percentage of the small intes-

tine niche and thus methylation data from an endocrine cell line will be needed for

accurate tumour-normal differential methylation analysis. Hopefully, after procur-

ing the adequate normal reference, this work will shed light on the origin of SINETs

and offer potential therapeutic targets as well as biomarkers.

6.4.3 Combining normal cell-type and bulk tumour deconvolu-

tion

We show that, in lung, the adjacent normal tissue is a relatively good fit for

the tumour infiltrating normal cells. This may however not be the case in all bulk

tumour samples. In theory, we posit that it would be possible to adapt cell-type

deconvolution algorithms, such as EpiDISH [96], to determine the cellular com-

position of normal infiltrates. In NSCLC, for example, given tumour purity and

ploidy, the epithelial fraction would be split between tumour and normal, while all

immune and fibroblast components would be attributed to normal infiltrates. With

the normal composition in hand, we could use reference normal RRBS profiles of

each cell types to create a proxy for the normal contaminating cells. This approach

would be useful in cancer types where the adjacent normal cannot be obtained.
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6.4.4 Investigating the interplay between genetic and epigenetic

modalities

Our SNV-phased deconvolution of methylation rates revealed the causal rela-

tionship between DMRs in-cis to SNVs. Our analysis incidentally showed that the

variant allele frequencies of mutations derived from RRBS, building on ASCAT.m

BAF calculation rules, were comparable between RRBS and WGS/WES. While

our analysis leverages a list of SNVs pre-curated from matched WES and WGS, it

indicates that de novo SNV calls could be made directly from RRBS, in addition

to allele-specific copy numbers, tumour purity, pure tumour methylation rates and

differential methylation analysis.

We are yet to investigate the interplay between epigenetic markers, mainly

DNA methylation, histone post-translational modifications and nucleosome posi-

tioning, which work together to modulate chromatin structure and transcription fac-

tor binding, thereby regulating gene expression. In future, combining CAMDAC

with an analogous method to deconvolute bulk tumour RNA and chromatin im-

munoprecipitation sequencing data has the potential to provide unprecedented in-

sight in the interplay of these modalities and their deregulation in cancer.
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Supplementary Figures

Figures S1-6: Comparing WGS- and RRBS-derived ASCAT(.m) BAF,

LogR and copy number segments for a representative tumour sample. Direct

comparison of BAF (top) LogR (middle), and allele-specific copy number (bot-

tom) profiles derived by ASCAT(.m) from matched RRBS and WGS. We show

results for the 7 tumour samples for which matched RRBS and WGS data was

available but they were not included as examples in the main body. The samples

are CRUK0031-R3 (Figure S1), CRUK0062-R1 (Figure S2), CRUK0062-R3 (Fig-

ure S3), CRUK0062-R4 (Figure S4), CRUK0069-R3 (Figure S5), CRUK0069-R4

(Figure S6). BAF and LogR values are plotted at heterozygous SNPs only and this

sample is male.
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Figure S1: CRUK0031-R3.

Figure S2: CRUK0062-R1.
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Figure S3: CRUK0062-R3.

Figure S4: CRUK0062-R4.
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Figure S5: CRUK0069-R3.

Figure S6: CRUK0069-R4.
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Figure S7: Tumour purity and copy number affect methylation rates.
Bulk methylation rate histograms for tumour regions 1-3 of patient CRUK0062, for CpGs
which are confidently methylated in the adjacent normal sample. CpGs are stratified by
copy number. A dashed line indicates the expected mode of the methylation rate peak
corresponding to clonal differentially methylated CpGs on all copies (mt = 0).

Figure S8: Mono-allelic tumour-tumour DMP simulation.
Results of mono-allelic tumour-tumour DMP simulations. False negative and false posi-
tives rates as a function of tumour copy number for low (left panel), low versus high (mid-
dle panel) and high purity (right panel) sample pairs at mono-allelic epimutations.
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Supplementary Tables

Table B.1: Cohort clinical information for the TRACERx methylation study.

Publication ID Region IDs Age group Gender Diagnosis Stage Smoking Status

CRUK0002 R1,R2,R3 80-89 Male LUAD 1b Ex-Smoker
CRUK0003 R1,R2,R3,R4,R6 70-79 Female LUAD 3a Never Smoked
CRUK0008 R1,R2 70-79 Male LUAD 1a Ex-Smoker
CRUK0010 R2 60-69 Male LUAD 3a Never Smoked
CRUK0012 R1,R2 60-69 Male LUAD 1a Ex-Smoker
CRUK0013 R1,R2,R3 60-69 Male LUAD 3a Ex-Smoker
CRUK0014 R1,R2 60-69 Male LUAD 1a Never Smoked
CRUK0021 R1,R2 80-89 Female LUAD 1a Never Smoked
CRUK0023 R1,R2,R3,R4 60-69 Male LUAD 2b Ex-Smoker
CRUK0025 R1,R2,R3 50-59 Male LUAD 1b Recent Ex-Smoker
CRUK0029 R4,R5,R6,R8 50-59 Male LUAD 3a Ex-Smoker
CRUK0031 R1,R2,R3 50-59 Male LUAD 1b Recent Ex-Smoker
CRUK0033 R1,R2 60-69 Male LUAD 1a Never Smoked
CRUK0034 R1,R2,R3 60-69 Female LUAD 1b Ex-Smoker
CRUK0036 R1,R2,R3,R4 60-69 Female LUAD 1b Recent Ex-Smoker
CRUK0037 R1,R2,R3,R5 80-89 Male LUAD 2b Ex-Smoker
CRUK0046 R1,R2,R3,R4 60-69 Female LUAD 2a Ex-Smoker
CRUK0047 R2 70-79 Female LUAD 1a Ex-Smoker
CRUK0048 R1,R2,R3 70-79 Female LUAD 1b Recent Ex-Smoker
CRUK0049 R1,R2 60-69 Female LUAD 1a Recent Ex-Smoker
CRUK0050 R1,R2,R3,R4,R5 50-59 Male LUAD 3a Current Smoker
CRUK0053 R1,R2 60-69 Male LUAD 1b Ex-Smoker
CRUK0057 R1,R2 60-69 Female LUAD 1b Recent Ex-Smoker
CRUK0058 R1,R2 70-79 Male LUAD 2b Ex-Smoker
CRUK0062 R1,R2,R3,R4,R5,R6,R7 50-59 Male LUSC 2b Recent Ex-Smoker
CRUK0065 R1,R2,R3,R4,R5,R6 70-79 Male LUSC 2b Ex-Smoker
CRUK0067 R1,R3 60-69 Male LUSC 1a Recent Ex-Smoker
CRUK0069 R1,R2,R3,R4,R5 70-79 Female LUSC 1b Ex-Smoker
CRUK0070 R2,R4,R6,R7 50-59 Male LUSC 2a Recent Ex-Smoker
CRUK0071 R1,R2,R3,R6,R7 60-69 Male LUSC 2a Ex-Smoker
CRUK0072 R1,R2,R4 60-69 Male LUSC 1b Ex-Smoker
CRUK0073 R1,R2 70-79 Female LUSC 1a Ex-Smoker
CRUK0076 R1,R2,R3,R4 60-69 Male LUSC 1b Recent Ex-Smoker
CRUK0079 R1,R2,R3,R4 60-69 Female LUSC 2a Recent Ex-Smoker
CRUK0082 R1,R2,R3,R4 60-69 Female LUSC 3a Recent Ex-Smoker
CRUK0083 R2,R3,R4 70-79 Male LUSC 2b Ex-Smoker
CRUK0084 R1,R2,R3 60-69 Female LUSC 1b Ex-Smoker
CRUK0090 R1,R2 60-69 Male LUSC 2a Ex-Smoker
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Table B.2: Reduced representation bisulphite sequencing experiment statistics.

Publication Region Sequencing Number of reads
ID IDs strategy pre-alignment post-alignment duplicated unique first mate only

CRUK0002 N Single-End 176,577,580 118,293,212 32,510,856 85,782,356
CRUK0002 R1 Single-End 109,780,858 72,681,231 12,385,656 60,295,575
CRUK0002 R2 Single-End 193,374,886 125,803,430 29,118,753 96,684,677
CRUK0002 R3 Single-End 187,715,188 130,136,542 24,230,929 105,905,613
CRUK0003 N Single-End 160,473,093 108,733,935 8,599,836 100,134,099
CRUK0003 R1 Single-End 200,334,726 135,600,635 8,448,022 127,152,613
CRUK0003 R2 Single-End 310,128,838 209,781,946 12,292,698 197,489,248
CRUK0003 R3 Single-End 217,245,738 144,526,174 8,878,308 135,647,866
CRUK0003 R4 Single-End 203,844,235 139,022,618 9,700,560 129,322,058
CRUK0003 R6 Single-End 165,730,526 114,446,343 7,666,303 106,780,040
CRUK0008 N Single-End 225,831,238 150,658,818 13,512,196 137,146,622
CRUK0008 R1 Single-End 351,041,032 231,256,287 16,967,399 214,288,888
CRUK0008 R2 Single-End 245,593,118 163,941,546 10,211,390 153,730,156
CRUK0010 N Single-End 192,819,487 130,866,815 33,095,290 97,771,525
CRUK0010 R2 Single-End 177,333,787 117,565,424 41,977,384 75,588,040
CRUK0012 N Single-End 257,363,758 168,123,698 58,873,685 109,250,013
CRUK0012 R1 Single-End 138,437,889 90,844,187 33,140,371 57,703,816
CRUK0012 R2 Single-End 111,784,902 73,251,187 28,048,382 45,202,805
CRUK0013 N Single-End 141,737,697 90,657,162 52,718,241 37,938,921
CRUK0013 R1 Single-End 174,260,865 115,347,510 26,830,800 88,516,710
CRUK0013 R2 Single-End 145,760,227 96,451,089 14,385,105 82,065,984
CRUK0013 R3 Single-End 170,067,074 111,015,955 22,924,015 88,091,940
CRUK0014 N Single-End 143,562,839 94,518,013 29,965,967 64,552,046
CRUK0014 R1 Single-End 157,023,226 104,907,557 45,150,892 59,756,665
CRUK0014 R2 Single-End 88,937,506 59,369,190 23,225,005 36,144,185
CRUK0021 N Single-End 259,152,036 170,980,696 13,771,917 157,208,779
CRUK0021 R1 Single-End 239,708,830 159,256,899 10,505,082 148,751,817
CRUK0021 R2 Single-End 244,113,091 164,207,547 10,811,883 153,395,664
CRUK0023 N Single-End 189,845,885 131,686,853 16,764,595 114,922,258
CRUK0023 R1 Single-End 223,695,274 153,450,622 12,538,940 140,911,682
CRUK0023 R2 Single-End 121,951,818 84,639,798 11,344,714 73,295,084
CRUK0023 R3 Single-End 191,421,238 129,896,640 10,232,953 119,663,687
CRUK0023 R4 Single-End 220,881,732 146,794,041 8,628,254 138,165,787
CRUK0025 N Single-End 316,379,753 203,776,340 79,039,614 124,736,726
CRUK0025 R1 Single-End 196,148,346 125,412,731 28,357,239 97,055,492
CRUK0025 R2 Single-End 133,249,133 87,735,212 30,669,699 57,065,513
CRUK0025 R3 Single-End 193,583,657 126,774,857 26,115,835 100,659,022
CRUK0029 N Single-End 228,332,002 146,820,145 9,599,976 137,220,169
CRUK0029 R4 Single-End 186,393,652 125,064,146 6,128,547 118,935,599
CRUK0029 R5 Single-End 197,670,506 134,538,849 7,333,553 127,205,296
CRUK0029 R6 Single-End 129,733,337 87,515,820 2,969,394 84,546,426
CRUK0029 R8 Single-End 142,505,442 94,901,517 3,629,347 91,272,170
CRUK0031 N Single-End 150,705,771 102,682,345 5,549,114 97,133,231
CRUK0031 R1 Single-End 229,952,348 150,893,313 7,305,813 143,587,500
CRUK0031 R2 Single-End 163,541,715 109,035,678 3,996,871 105,038,807
CRUK0031 R3 Single-End 267,701,825 185,717,904 10,507,904 175,210,000
CRUK0033 N Single-End 134,119,007 88,615,119 41,563,766 47,051,353
CRUK0033 R1 Single-End 148,509,494 99,092,456 27,240,292 71,852,164
CRUK0033 R2 Single-End 197,893,842 132,661,250 42,020,038 90,641,212
CRUK0034 N Single-End 134,752,760 91,306,117 3,124,934 88,181,183
CRUK0034 R1 Single-End 111,641,432 77,116,402 3,265,592 73,850,810
CRUK0034 R2 Single-End 127,878,414 88,022,832 2,494,256 85,528,576
CRUK0034 R3 Single-End 169,027,791 115,243,277 4,403,058 110,840,219
CRUK0036 N Single-End 122,727,492 74,669,574 12,483,692 62,185,882
CRUK0036 R1 Single-End 140,786,079 95,284,773 32,450,832 62,833,941
CRUK0036 R2 Single-End 208,496,792 130,223,874 26,734,423 103,489,451
CRUK0036 R3 Single-End 121,973,872 82,881,569 11,885,771 70,995,798
CRUK0036 R4 Single-End 198,610,895 132,284,379 31,799,765 100,484,614
CRUK0037 N Single-End 96,569,632 65,127,608 14,984,730 50,142,878
CRUK0037 R1 Single-End 134,467,907 92,404,439 18,971,383 73,433,056
CRUK0037 R2 Single-End 145,587,783 89,796,131 21,099,936 68,696,195
CRUK0037 R3 Single-End 155,760,117 99,202,061 16,553,245 82,648,816
CRUK0037 R5 Single-End 164,886,388 113,050,996 22,133,460 90,917,536
CRUK0046 N Single-End 99,313,402 67,614,858 8,490,388 59,124,470
CRUK0046 R1 Single-End 122,394,806 82,688,578 7,377,427 75,311,151
CRUK0046 R2 Single-End 148,515,781 101,509,093 13,749,080 87,760,013
CRUK0046 R3 Single-End 136,471,123 93,594,253 9,365,580 84,228,673
CRUK0046 R4 Single-End 160,510,970 109,089,471 11,796,092 97,293,379
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Publication Region Sequencing Number of reads
ID IDs strategy pre-alignment post-alignment duplicated unique first mate only

CRUK0047 R2 Single-End 117,741,255 80,012,445 16,458,310 63,554,135
CRUK0048 N Single-End 105,661,152 69,292,850 12,506,126 56,786,724
CRUK0048 R1 Single-End 205,194,953 129,045,020 29,926,683 99,118,337
CRUK0048 R2 Single-End 111,854,131 72,608,853 13,001,310 59,607,543
CRUK0048 R3 Single-End 237,534,761 159,600,549 39,436,988 120,163,561
CRUK0049 N Single-End 169,817,224 111,010,675 48,624,188 62,386,487
CRUK0049 R1 Single-End 92,626,321 64,693,260 6,189,508 58,503,752
CRUK0049 R2 Single-End 79,492,970 54,702,441 4,749,321 49,953,120
CRUK0050 N Single-End 153,897,300 106,299,535 7,652,691 98,646,844
CRUK0050 R1 Single-End 214,681,573 149,811,170 11,012,964 138,798,206
CRUK0050 R2 Single-End 132,925,239 91,903,081 5,160,116 86,742,965
CRUK0050 R3 Single-End 159,614,536 109,177,226 6,664,450 102,512,776
CRUK0050 R4 Single-End 121,863,483 86,079,159 7,954,686 78,124,473
CRUK0050 R5 Single-End 210,626,040 145,025,505 16,812,769 128,212,736
CRUK0053 N Single-End 156,483,904 105,654,211 7,793,328 97,860,883
CRUK0053 R1 Single-End 223,988,888 153,046,780 8,316,822 144,729,958
CRUK0053 R2 Single-End 160,224,975 110,565,270 6,084,544 104,480,726
CRUK0057 N Single-End 172,406,307 117,509,826 9,815,269 107,694,557
CRUK0057 R1 Single-End 194,314,384 135,623,834 8,720,607 126,903,227
CRUK0057 R2 Single-End 247,608,714 171,005,391 11,872,436 159,132,955
CRUK0058 N Single-End 200,733,687 117,631,593 41,832,873 75,798,720
CRUK0058 R1 Single-End 101,922,040 68,656,066 9,455,847 59,200,219
CRUK0058 R2 Single-End 125,484,040 86,263,751 16,529,467 69,734,284
CRUK0062 N Paired-End 152,333,066 98,254,494 2,526,892 95,727,602 46,600,355
CRUK0062 R1 Paired-End 256,504,028 166,734,428 4,233,859 162,500,569 79,133,355
CRUK0062 R2 Paired-End 231,783,292 154,534,238 3,099,023 151,435,215 74,168,096
CRUK0062 R3 Paired-End 220,294,066 145,162,762 3,184,253 141,978,509 69,397,128
CRUK0062 R4 Paired-End 175,406,104 117,793,172 2,629,235 115,163,937 56,267,351
CRUK0062 R5 Paired-End 174,208,958 116,200,478 2,908,975 113,291,503 55,191,264
CRUK0062 R6 Paired-End 162,725,478 108,272,938 2,380,023 105,892,915 51,756,446
CRUK0062 R7 Paired-End 138,575,046 93,359,494 1,788,742 91,570,752 44,891,005
CRUK0065 N Single-End 232,906,183 156,803,508 14,037,230 142,766,278
CRUK0065 R1 Single-End 214,524,438 145,263,862 10,811,974 134,451,888
CRUK0065 R2 Single-End 280,314,392 188,035,758 16,120,426 171,915,332
CRUK0065 R3 Single-End 152,548,102 98,985,662 6,491,985 92,493,677
CRUK0065 R4 Single-End 146,745,671 100,847,498 8,009,293 92,838,205
CRUK0065 R5 Single-End 272,179,018 179,814,561 12,692,904 167,121,657
CRUK0065 R6 Single-End 145,256,217 99,628,402 6,825,782 92,802,620
CRUK0067 N Single-End 272,802,297 186,029,212 10,571,322 175,457,890
CRUK0067 R1 Single-End 296,787,548 200,950,994 20,576,429 180,374,565
CRUK0067 R3 Single-End 218,523,836 148,855,611 12,560,009 136,295,602
CRUK0069 N Single-End 130,876,889 90,869,087 6,812,915 84,056,172
CRUK0069 R1 Single-End 161,318,796 115,629,840 7,668,007 107,961,833
CRUK0069 R2 Single-End 228,915,136 156,846,230 10,315,263 146,530,967
CRUK0069 R3 Single-End 344,081,324 241,298,905 17,536,408 223,762,497
CRUK0069 R4 Single-End 229,496,537 163,062,306 9,137,095 153,925,211
CRUK0069 R5 Single-End 168,660,408 116,034,662 7,989,767 108,044,895
CRUK0070 N Single-End 187,675,744 130,320,639 11,425,957 118,894,682
CRUK0070 R2 Single-End 161,053,122 108,991,413 5,274,874 103,716,539
CRUK0070 R4 Single-End 202,225,100 126,820,203 15,401,020 111,419,183
CRUK0070 R6 Single-End 208,425,163 141,639,227 10,240,961 131,398,266
CRUK0070 R7 Single-End 46,509,567 31,834,584 1,642,240 30,192,344
CRUK0071 N Single-End 368,748,102 251,429,251 22,637,538 228,791,713
CRUK0071 R1 Single-End 187,799,234 125,506,331 9,970,498 115,535,833
CRUK0071 R2 Single-End 337,178,117 229,262,086 21,594,182 207,667,904
CRUK0071 R3 Single-End 203,958,067 138,962,176 7,675,737 131,286,439
CRUK0071 R6 Single-End 179,970,484 123,067,101 9,989,923 113,077,178
CRUK0071 R7 Single-End 161,296,724 113,926,280 8,423,611 105,502,669
CRUK0072 N Single-End 229,103,940 151,482,236 8,206,440 143,275,796
CRUK0072 R1 Single-End 246,881,836 166,081,071 14,798,115 151,282,956
CRUK0072 R2 Single-End 253,822,733 167,270,558 12,801,062 154,469,496
CRUK0072 R4 Single-End 241,197,792 161,386,223 10,056,498 151,329,725
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Publication Region Sequencing Number of reads
ID IDs strategy pre-alignment post-alignment duplicated unique first mate only

CRUK0073 N Single-End 191,064,007 132,610,014 15,254,641 117,355,373
CRUK0073 R1 Single-End 220,753,580 152,995,691 12,552,849 140,442,842
CRUK0073 R2 Single-End 180,471,575 125,045,179 12,802,061 112,243,118
CRUK0076 N Single-End 245,069,612 162,515,246 9,940,017 152,575,229
CRUK0076 R1 Single-End 177,400,379 123,907,729 6,183,967 117,723,762
CRUK0076 R2 Single-End 212,061,856 151,153,527 8,953,063 142,200,464
CRUK0076 R3 Single-End 270,645,020 185,800,099 9,901,404 175,898,695
CRUK0076 R4 Single-End 312,695,624 210,144,508 11,947,501 198,197,007
CRUK0079 N Single-End 211,013,183 144,791,682 9,459,070 135,332,612
CRUK0079 R1 Single-End 264,775,778 179,371,207 11,553,046 167,818,161
CRUK0079 R2 Single-End 311,163,392 212,087,133 15,161,716 196,925,417
CRUK0079 R3 Single-End 164,893,649 113,108,705 6,593,671 106,515,034
CRUK0079 R4 Single-End 210,247,585 143,565,398 6,565,688 136,999,710
CRUK0082 N Single-End 181,865,369 119,474,117 15,882,569 103,591,548
CRUK0082 R1 Single-End 184,541,943 127,914,804 8,990,451 118,924,353
CRUK0082 R2 Single-End 325,893,467 220,294,206 16,984,725 203,309,481
CRUK0082 R3 Single-End 247,704,764 168,251,377 11,369,164 156,882,213
CRUK0082 R4 Single-End 214,372,257 146,195,961 9,650,198 136,545,763
CRUK0083 N Single-End 170,475,446 113,710,069 36,699,024 77,011,045
CRUK0083 R2 Single-End 119,129,680 80,639,195 14,607,043 66,032,152
CRUK0083 R3 Single-End 119,782,004 79,040,704 20,899,790 58,140,914
CRUK0083 R4 Single-End 146,709,576 99,124,226 33,500,031 65,624,195
CRUK0084 N Single-End 178,454,733 113,640,247 18,520,306 95,119,941
CRUK0084 R1 Single-End 159,224,808 103,948,419 14,106,917 89,841,502
CRUK0084 R2 Single-End 149,184,870 99,969,238 18,019,522 81,949,716
CRUK0084 R3 Single-End 142,176,976 92,272,775 21,221,270 71,051,505
CRUK0090 N Single-End 282,352,055 191,099,891 11,248,006 179,851,885
CRUK0090 R1 Single-End 172,996,407 119,044,613 6,685,291 112,359,322
CRUK0090 R2 Single-End 162,405,212 113,581,149 5,905,199 107,675,950



Appendix C

Running CAMDAC

The CAMDAC package which can be downloaded from github (https://github.

com/elarosecadieux/CAMDAC). ASCAT.m in integrated within CAMDAC. After

cloning the repository to your location of choice and running the install.R script,

you simply need to set the path to CAMDAC variable to your install path in all

CAMDAC function calls. This path should point inside the CAMDAC folder. At

time of writing, CAMDAC is only compatible with human (directional) RRBS data,

but we plan to extend the algorithm to support further platforms, namely WGBS.

The input must be quality and adapter trimmed with PCR duplicates removed. Bi-

nary alignment map files aligned to hg19, hg38, GRCH37 and GRHCH38 genome

builds are accepted formats.

Single nucleotide allele counts are obtained for all CpG and 1000g SNP posi-

tions [133] that overlap with RRBS data. To speed up the computation, we built a

reference RRBS genome listing all genomic regions supported by ≥5 reads in ≥1

of the 37 epiTRACERx normals. The get allele counts() function will only query

1000g SNP and CpG positions which fall within the above-mentioned genomic re-

gions. This step greatly reduces the number of loci to investigate since RRBS data

only covers about 2% of the human genome [31]. Reference loci files are divided

into 25 smaller files to reduce memory requirements. The get allele counts() func-

tion is run within a loop whereby the ith iteration of the function pulls the corre-

sponding ith reference file.

As ASCAT.m can be applied to multi-region data, both (anonymised) patient

and sample identification string variables are required, patient id and sample id.
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The sex follows the ASCAT format, ”XX” for females and ”XY” for males. This

flag is important for copy number estimates on chromosome X as well as global

tumour purity and ploidy values. Users are ask to provide the full BAM file path

and name. By default, no mapping quality threshold is set to avoid creating a bias

against the alternate allele at SNPs. Instead, reads are discarded when they do

not align with MspI CCGG recognition sites. With allele counts in hand, we can

calculate the BAF and LogR.

If you are unsure of the reference genome build of your BAM file, but know it

is either hg19, hg38, GRCH37 or GRHCH38, set build=NULL and let CAMDAC

determine the build version for you. We recommend that users create a direc-

tory to store CAMDAC outputs which we will call parent dir. When submitting

get allele counts() via the CAMDAC wrapper, the path is set automatically to the

below. Users running CAMDAC outside the wrapper should set this same path.

CAMDAC efficiency is improved by setting the number of cores to either 8 or 12.

This may differ depending on your local machine or remote server compute power.

When running get allele counts() for the first time, it is recommended that users set

the test flag to TRUE.

1 # Run function iterating over each reference file

2 for(a in 1:25){

3 get_allele_counts(i=a,patient id, sample id, sex ,

bam file, mq=0, path to CAMDAC, build=NULL , path, n cores,

test=FALSE)

4 }

Next, we concatenate the 25 allele counts ’.fst’ files and convert these data to

GRanges objects from the GenomicRanges R library [220]. MspI fragment refer-

ence profiles are created from the normal at this point.

1 # format allele counts output

2 format_output(patient id, sample id, sex , is normal,

is patient matched normal, path, path to CAMDAC, build ,

txt output=FALSE)
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Note that bulk tumour and normal methylation rates are computed prior to

BAF and LogR because they are needed to inform the GC content of each MspI

fragment, which itself is required for LogR correction and copy number profiling.

CAMDAC’s polymorphism-independent methylation rate calculation is covered in

Chapter 3, Section 3.2.1. If a patient-matched normal proxy for the tumour cell

of origin is not available for differential methylation analysis, a reference panel can

be used. The reference sample(s) should be at the very least sex-matched to avoid

contamination of tumour-normal and tumour-tumour DMPs with female-to-male

differential methylation signal.

1 # run bulk tumour and normal methylation processing

2 run_methylation_data_processing(patient id, sample id,

normal infiltrates proxy id, normal origin proxy id, path,

min tumour=3, min normal=10, n cores, reference panel=NULL)

Next, tumour and normal BAF and LogR values are combined to obtain allele-

specific copy number profiles. Methylation rates are used to correct LogR for

MspI fragment GC content. Note that the code for phasing BAF from multi-region

data and improve copy number profiles is not included in the current version of

CAMDAC but is available to share upon request.

1 # Get copy number (includes LogR bias correction)

2 get_copy_number(patient id, sample id, normal id, build , path,

min tumour=1, min normal=10, sex , path to CAMDAC,

chr names=c(1:22,"X"), n cores, reference panel=NULL ,

fragments reference=NULL)

With methylation rates in hand for both the bulk tumour and normal infiltrates

proxy as well as tumour copy number and purity estimates, we obtain the pure

tumour methylation rates as detailed in Chapter 3, Section 3.2.4.

1 # Get pure tumour methylation rates

2 get_pure_tumour_methylation(patient id, sample id,

normal infiltrates proxy id, sex , path, path to CAMDAC, build ,

n cores, reseg=FALSE)
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With purified tumour methylation rates in hand, one can accurately examine

distances between normal and tumour and between tumour methylomes themselves

in R. Clustering analyses can also easily be performed by the user using well-

established R packages. Leveraging CAMDAC purified methylomes, we then ob-

tain differentially methylated positions and regions.

1 # Carry out differential methylation analysis

2 get_differential_methylation(patient id, sample id,

normal origin proxy id, sex , path, path to CAMDAC, build ,

effect size=0.2, min DMP counts in DMR=5,

min consec DMP in DMR=4, n cores, reseg=FALSE)

Finally, users may choose to look for recurrently aberrated loci across their

cohort. We recommend any gene-set enrichment analysis to be limited to hyper-

methylated promoter-associated CpG Islands given that methylation at these loci is

most correlated with expression. Users may leverage normal, deconvoluted tumour

methylation rates and tumour-normal DMP calls to identify clonal bi-allelic and

allele-specific methylation changes to shed light into tumour evolutionary histories.
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[20] J. Doskočil and F. Šorm. Distribution of 5-methylcytosine in pyrimi-

dine sequences of deoxyribonucleic acids. Biochimica et Biophysica Acta,

55(6):953–959, 1962.

[21] Adrian P. Bird. DNA methylation and the frequency of CpG in animal DNA.

Nucleic Acids Research, 8(7):1499–1504, 1980.

[22] Ryan Lister, Mattia Pelizzola, Robert H. Dowen, R. David Hawkins, Gary

Hon, Julian Tonti-Filippini, Joseph R. Nery, Leonard Lee, Zhen Ye, Que-

Minh Ngo, Lee Edsall, Jessica Antosiewicz-Bourget, Ron Stewart, Victor

Ruotti, A. Harvey Millar, James A. Thomson, Bing Ren, and Joseph R. Ecker.

Human DNA methylomes at base resolution show widespread epigenomic

differences. Nature, 462(7271):315–322, 2009.

[23] M. Frommer, L. E. McDonald, D. S. Millar, C. M. Collis, F. Watt, G. W.

Grigg, P. L. Molloy, and C. L. Paul. A genomic sequencing protocol that

yields a positive display of 5- methylcytosine residues in individual DNA

strands. Proceedings of the National Academy of Sciences of the United

States of America, 89:1827–1831, 1992.



Bibliography 175

[24] Susan J. Clark, Janet Harrison, Cheryl L. Paul, and Marianne Frommer.

High sensitivity mapping of methylated cytosines. Nucleic Acids Research,

22(15):2990–2997, 1994.

[25] Junhua Zhou, Minqiong Zhao, Zefang Sun, Feilong Wu, Yucong Liu, Xi-

anghua Liu, Zuping He, Quanze He, and Quanyuan He. BCREval: A com-

putational method to estimate the bisulfite conversion ratio in WGBS. BMC

Bioinformatics, 21, 2020.

[26] Felix Krueger and Simon R. Andrews. Bismark: A flexible aligner

and methylation caller for Bisulfite-Seq applications. Bioinformatics,

27(11):1571–1572, 2011.

[27] Cora Mund, Verena Beier, Peter Bewerunge, Michael Dahms, Frank Lyko,

and Jörg D. Hoheisel. Array-based analysis of genomic DNA methylation

patterns of the tumour suppressor gene p16INK4A promoter in colon carci-

noma cell lines. Nucleic Acids Research, 33(8), 2005.

[28] Huidong Shi, Sabine Maier, Inko Nimmrich, Pearlly S. Yan, Charles W.

Caldwell, Alexander Olek, and Tim Hui Ming Huang. Oligonucleotide-based

microarray for DNA methylation analysis: Principles and applications, 2003.

[29] Patrick Boyle, Kendell Clement, Hongcang Gu, Zachary D Smith, Michael

Ziller, Jennifer L Fostel, Laurie Holmes, Jim Meldrim, Fontina Kelley, An-

dreas Gnirke, and Alexander Meissner. Gel-free multiplexed reduced rep-

resentation bisulfite sequencing for large-scale DNA methylation profiling.

Genome Biology, 13(10):R92, 2012.

[30] Alexander Meissner, Tarjei S. Mikkelsen, Hongcang Gu, Marius Wernig, Ja-

cob Hanna, Andrey Sivachenko, Xiaolan Zhang, Bradley E. Bernstein, Chad

Nusbaum, David B. Jaffe, Andreas Gnirke, Rudolf Jaenisch, and Eric S. Lan-

der. Genome-scale DNA methylation maps of pluripotent and differentiated

cells. Nature, 454(7205):766–770, 2008.



Bibliography 176

[31] Hongcang Gu, Zachary D Smith, Christoph Bock, Patrick Boyle, Andreas

Gnirke, and Alexander Meissner. Preparation of reduced representation

bisulfite sequencing libraries for genome-scale DNA methylation profiling.

Nature Protocols, 6(4):468–481, 2011.

[32] A. Meissner, Andreas Gnirke, George W. Bell, Bernard Ramsahoye, Eric S.

Lander, and Rudolf Jaenisch. Reduced representation bisulfite sequencing

for comparative high-resolution DNA methylation analysis. Nucleic Acids

Research, 33(18):5868–5877, 2005.

[33] M J Ziller, K D Hansen, A Meissner, and M J Aryee. Coverage recommen-

dations for methylation analysis by whole-genome bisulfite sequencing. Nat

Methods, 12(3):230–4, 2015.

[34] Ruth Pidsley, Elena Zotenko, Timothy J. Peters, Mitchell G. Lawrence,

Gail P. Risbridger, Peter Molloy, Susan Van Djik, Beverly Muhlhausler, Clare

Stirzaker, and Susan J. Clark. Critical evaluation of the Illumina Methyla-

tionEPIC BeadChip microarray for whole-genome DNA methylation profil-

ing. Genome Biology, 17, 2016.

[35] Shawn J. Cokus, Suhua Feng, Xiaoyu Zhang, Zugen Chen, Barry Merriman,

Christian D. Haudenschild, Sriharsa Pradhan, Stanley F. Nelson, Matteo Pel-

legrini, and Steven E. Jacobsen. Shotgun bisulphite sequencing of the Ara-

bidopsis genome reveals DNA methylation patterning. Nature, 452:215–219,

2008.

[36] Yonatan Stelzer, Daniel Ronen, Christoph Bock, Patrick Boyle, Alexander

Meissner, and Nissim Benvenisty. Identification of novel imprinted differ-

entially methylated regions by global analysis of human-parthenogenetic-

induced pluripotent stem cells. Stem Cell Reports, 1(1):79–89, 2013.

[37] Zachary D. Smith, Michelle M. Chan, Tarjei S. Mikkelsen, Hongcang Gu,

Andreas Gnirke, Aviv Regev, and Alexander Meissner. A unique regula-



Bibliography 177

tory phase of DNA methylation in the early mammalian embryo. Nature,

484:339–344, 2012.

[38] Zachary D. Smith, Michelle M. Chan, Kathryn C. Humm, Rahul Karnik,

Shila Mekhoubad, Aviv Regev, Kevin Eggan, and Alexander Meissner.

DNA methylation dynamics of the human preimplantation embryo. Nature,

511:611–615, 2014.

[39] Melanie Ehrlich and Michelle Lacey. DNA methylation and differentiation:

silencing, upregulation and modulation of gene expression. Epigenomics,

5(5):553–568, 2013.

[40] Dan A. Landau, Kendell Clement, Michael J. Ziller, Patrick Boyle, Jean Fan,

Hongcang Gu, Kristen Stevenson, Carrie Sougnez, Lili Wang, Shuqiang Li,

Dylan Kotliar, Wandi Zhang, Mahmoud Ghandi, Levi Garraway, Stacey M.

Fernandes, Kenneth J. Livak, Stacey Gabriel, Andreas Gnirke, Eric S. Lan-

der, Jennifer R. Brown, Donna Neuberg, Peter V. Kharchenko, Nir Hacohen,

Gad Getz, Alexander Meissner, and Catherine J. Wu. Locally Disordered

Methylation Forms the Basis of Intratumor Methylome Variation in Chronic

Lymphocytic Leukemia. Cancer Cell, 26(6):813–825, 2014.

[41] Katherine E. Varley, Jason Gertz, Kevin M. Bowling, Stephanie L. Parker,

Timothy E. Reddy, Florencia Pauli-Behn, Marie K. Cross, Brian A. Williams,

John A. Stamatoyannopoulos, Gregory E. Crawford, Devin M. Absher, Bar-

bara J. Wold, and Richard M. Myers. Dynamic DNA methylation across di-

verse human cell lines and tissues. Genome Research, 23(3):555–567, 2013.

[42] Adrian Bird. DNA methylation patterns and epigenetic memory. Genes &

Development, 16(1):6–21, 2002.

[43] Rudolf Jaenisch and Adrian Bird. Epigenetic regulation of gene expression:

how the genome integrates intrinsic and environmental signals. Nature Ge-

netics, 33(S3):245–254, 2003.



Bibliography 178

[44] Adrian P. Bird. CpG-rich islands and the function of DNA methylation. Na-

ture, 321(6067):209–213, 1986.

[45] Margaret Gardiner-Garden and Marianne Frommer. CpG Islands in verte-

brate genomes. Journal of Molecular Biology, 196(2):261–282, 1987.

[46] Zachary D. Smith, Hongcang Gu, Christoph Bock, Andreas Gnirke, and

Alexander Meissner. High-throughput bisulfite sequencing in mammalian

genomes. Methods, 48(3):226–232, 2009.

[47] Hongcang Gu, Christoph Bock, Tarjei S Mikkelsen, Natalie Jäger, Zachary D
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Andreas Schönegger, Michael Schuster, Johanna Hadler, Didier Surdez, Del-

phine Guillemot, Eve Lapouble, Paul Freneaux, Jacqueline Champigneulle,

Raymonde Bouvier, Diana Walder, Ingeborg M Ambros, Caroline Hutter,

Eva Sorz, Ana T Amaral, Enrique de Álava, Katharina Schallmoser, Dirk
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Reading, Kroopa Joshi, Jake Y. Henry, Ehsan Ghorani, Gareth A. Wilson,

Nicolai J. Birkbak, Mariam Jamal-Hanjani, Selvaraju Veeriah, Zoltan Szal-

lasi, Sherene Loi, Matthew D. Hellmann, Andrew Feber, Benny Chain, Javier

Herrero, Sergio A. Quezada, Jonas Demeulemeester, Peter Van Loo, Stephan



Bibliography 191

Beck, Nicholas McGranahan, and Charles Swanton. Neoantigen-directed

immune escape in lung cancer evolution. Nature, 567(7749):479–485, 2019.

[115] Scott L Carter, Kristian Cibulskis, Elena Helman, Aaron McKenna, Hui

Shen, Travis Zack, Peter W Laird, Robert C Onofrio, Wendy Winckler, Bar-

bara A Weir, Rameen Beroukhim, David Pellman, Douglas A Levine, Eric S

Lander, Matthew Meyerson, and Gad Getz. Absolute quantification of so-

matic DNA alterations in human cancer. Nature Biotechnology, 30(5):413–

421, 2012.

[116] Serena Nik-Zainal, Peter Van Loo, David C. Wedge, Ludmil B. Alexandrov,

Christopher D. Greenman, King Wai Lau, Keiran Raine, David Jones, John

Marshall, Manasa Ramakrishna, Adam Shlien, Susanna L. Cooke, Jonathan

Hinton, Andrew Menzies, Lucy A. Stebbings, Catherine Leroy, Mingming

Jia, Richard Rance, Laura J. Mudie, Stephen J. Gamble, Philip J. Stephens,

Stuart McLaren, Patrick S. Tarpey, Elli Papaemmanuil, Helen R. Davies, Ig-

nacio Varela, David J. McBride, Graham R. Bignell, Kenric Leung, Adam P.

Butler, Jon W. Teague, Sancha Martin, Goran Jönsson, Odette Mariani, San-

drine Boyault, Penelope Miron, Aquila Fatima, Anita Langerod, Samuel A

J R Aparicio, Andrew Tutt, Anieta M. Sieuwerts, Åke Borg, Gilles Thomas,
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