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Abstract

DNA methylation has long been known to play a role in tumourigenesis. To
this day, interpretation of bulk tumour bisulphite sequencing data has been ham-
pered by normal contamination levels and tumour copy number. To address this
issue, we develop two computational tools: (1) ASCAT.m, which allows Allele-
Specific Copy number Analysis of Tumour methylation data directly from bulk tu-
mour reduced representation bisulphite sequencing (RRBS) data and (2) CAMDAC,
a method for Copy Number-Aware Methylation Deconvolution Analysis of Cancer,

from bulk tumour and adjacent normal RRBS data.

We describe a set of rules to compute allelic imbalance independently of bisul-
phite conversion and correct normalised read coverage estimates for sequencing
biases. We apply ASCAT.m to non-small cell lung cancers from the epiTRACERx
study with multi-region bulk tumour RRBS and adjacent normal. ASCAT.m geno-
types, allele-specific copy numbers and tumour purity and ploidy estimates are in
excellent agreement with those obtained from matched whole-exome and a subset
of whole-genome sequencing of the same samples. We observe a correlation be-
tween whole-genome doubling and relapse-free survival in lung squamous cell car-
cinoma but not in adenocarcinoma. We see widespread genomic instability across

both histological subtypes.

We model bulk tumour methylation rates as a mixture of tumour and normal
signals weighed for tumour purity and copy number and formalise this relationship
into CAMDAC equations. The errors between predicted and observed methyla-
tion rates were low. Normal infiltrates Fluorescence-activated cell sorting (FACS)-

purified from the bulk tumour were similar in composition to the adjacent matched
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normal lung, suggesting the latter is a suitable proxy for deconvolution. Single nu-
cleotide variant (SNV)- and FACS-purified tumour methylation rates are in good
agreement with CAMDAC deconvoluted estimates. Purification successfully re-
moves shared normal signal, decreasing correlations between patients and to normal
after purification. Samples with shared ancestry remain highly correlated.

Purified methylation rates yield accurate tumour-normal and tumour-tumour
differential methylation calls independent of tumour purity and copy number. We
find hundreds of ubiquitously early clonal gene promoter epimutations across the
epiTRACERXx cohort, showcasing the potential of DNA methylation markers for
early cancer detection. CAMDAC purified profiles reveal both phylogenetic and
inter-tumour relationships as well as provide insight in tumour evolutionary history.

Quantifying allele-specific methylation on chromosome X in females, we un-
cover extraction biases against the Barr body. X inactivation is random at the scale
of our normal lung cancer samples. Phasing of methylation rates with polymor-
phisms confirms the presence of allele-specific methylation at the H19/IGF2 locus.
Loss of imprinting is observed in 5 tumours, all involving demethylation of the ma-
ternal allele. We attempt to quantify the ratio of clonal allele-specific to bi-allelic
epimutations in tumours in regions of 1+ 1, which we define as regulatory and
stochastic methylation changes, respectively. Utilising this ratio, we try to extract
the number of stochastic epimutations in regions of 2 4 0 with copy numbers 1 and
2 and time those copy number gains.

We find that SN'Vs at gene promoters often lead to hypermethylation of neigh-
bouring CpGs on the same copy or allele, suggesting the ablation of a transcription
factor binding site. Non-expressed neo-antigen are enriched for promoter hyperme-
thylation, indicating methylation plays a role in immune escape.

To conclude, CAMDAC purified methylation rates are key to unlock insights

into comparative cancer epigenomics and intra-tumour epigenetic heterogeneity.



Impact statement

In this work, we present a cohort of 38 non-small cell lung cancer patients
with multi-sample reduced representation bisulphite sequencing, totalling 122 tu-
mour and 37 adjacent normal samples. Lung cancer causes the largest proportion
of cancer-related death and this dataset could provide unprecedented insights into
the non-small cell lung cancer methylome. However, bulk tumour methylation se-
quencing data is convoluted by normal cell contamination, tumour purity and copy
number. This is particularly relevant in lung cancers, which have lower purities than

most other cancer types on average.

To address this issue, we first develop a computational method for obtaining
allele-specific copy numbers and tumour purity estimates directly from RRBS data,
ASCAT.m. For the first time, we formalise the relationship between methylation

rates, tumour purity and copy number into the core CAMDAC equations.

Crucially, only CAMDAC purified methylation profiles enable accurate differ-
ential methylation analysis, and as such, we find hundreds of early clonal promoter
epimutations present in virtually all non-small cell lung cancer samples, showcasing
the immense potential DNA methylation sequencing data for diagnostic purposes.
Early detection has significant implications on patient outcome in non-small cell
lung cancer, with the 5-year survival decreasing from 70% to below 15% between
cases diagnosed in stage I versus II and above, respectively. We discuss plans to
apply CAMDAC to more samples from the TRACERXx study recently sent for se-
quencing to gain deeper insight into methylation biomarkers of non-small cell lung

cancer.
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Throughout this work, we showcase the possibilities unlocked by tumour
RRBS data. We demonstrate that CAMDAC purified profiles reveal both phylo-
genetic and inter-tumour relationships as well as provide insight in tumour evolu-
tionary history. We show that it is possible to study the interplay between somatic
mutations and epimutations and namely that DNA methylation plays a role in sup-

pressing neo-antigen presentation.
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Chapter 1

Introduction to the cancer methylome

1.1 DNA methylation and transcription

Epigenetics is the study of inheritable DNA modifications that allow cells
to acquire specialised phenotypes without altering their DNA sequence. There
are two types of epigenetic inheritance: mitotic inheritance, which is well stud-
ied and applies to this thesis, and meiotic inheritance, which is less well studied
and controversial in humans [1]. DNA methylation is an important epigenetic
mark. Six different methylation modifications are currently known of which co-
valent modification at carbon 5 of cytosine (C) is the most common, resulting in
5-methylcytosine (SmC) [2]. Cytosine methylation was first reported in the tuber-
culosis bacterium [3]. Decades later, interest in DNA methylation spiked after SmC
was observed in mammalian cells [4] and evidence of its role in gene regulation was
uncovered, namely thanks to the observation of methylation-driven chromosome X
inactivation in females [5-7].

Indeed, the importance of methylation in mammalian gene regulation is par-
ticularly striking when looking at X inactivation, the process by which gene dosage
compensation is achieved in females involving widespread methylation of one chro-
mosome X copy [8]. On a smaller scale, genomic imprinting also leads to allele-
specific expression, by methylation of one parental allele at a number of genes loci
across autosomes [9, 10]. Loss of imprinting is associated with several diseases,

including cancer [11].
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Specifically, methylation regulates gene expression by either (1) recruiting
methyl-CpG binding domain proteins (MBDs) which themselves promote histone
deacetylases (HDACs) activity leading to a closed chromatin state [12] and late
replication timing [13, 14], or, (2) through increased steric hindrance at transcrip-
tion factor binding sites (TFBSs, [15], Figure 1.1). The former mechanism is
widespread in the human genome despite requiring several epigenetic modalities
working in synergy. Early experiments showed that genes methylated in vitro were
not immediately silenced by methylation but rather indirectly inhibited after a short
period of time during which the genomic region adopted a closed chromatin struc-
ture [16, 17]. The second mechanism is thought to be more dynamic and reportedly
gives rise to tissue-specific, cell state- and, perhaps unsurprisingly, disease-specific

methylation.

While methylation usually leads to gene silencing, it is worth noting that
demethylation of promoters does not necessarily equate to increased expression of
associated genes. Other factors must also be met to induce gene expression such
as availability of the necessary transcription factors, nucleosome depleted TFBSs
and active transcription marks on neighbouring histones such as H3 and H4 acy-
lation and H3K4 (tri)methylation [18]. Linker histone HI1 (not depicted) is less
well-studied but is thought to play an important role in modulating chromatin ac-

cessibility [19].

1.2 Measuring genome-wide CpG methylation

In adult mammalian cells, DNA methylation occurs almost exclusively in CpG
context [20]. The first approach to measure DNA methylation levels took advantage
of CpG methylation-sensitive restriction enzymes [21]. This technique enabled re-
searchers to study genome-wide methylation levels, albeit limited to CpG loci at
the enzyme recognition sequences. With the advent of next generation sequencing,
whole genome bisulphite sequencing (WGBS) was developed and allowed assess-
ment of methylation levels at every CpG and at single base pair resolution [22]. In

WGBS, input DNA is typically treated with sodium bisulphite prior to sequenc-



1.2. Measuring genome-wide CpG methylation 21

ing, oxidising unmethylated Cs to uracil (U) with high conversion rate (under-
conversion rate r,. <1%) and leaving SmC virtually unscathed (over-conversion

rate 7, ~4%, Figure 1.2) [23-25].

(4x2 histones)

\'\/\s ) nucleosome
Q euchromatin R

Legend
@ Unmethylated Cs heterochromatin
? Methylated Cs

© Methylated histone

© Acetylated histone

& RNA polymerase

Transcription factor(s)

Figure 1.1: Epigenetic marks determine chromatin architecture and regulate
transcription.

Eukaryotic DNA resides in the nucleus and exists in the form of chromatin. In the hu-
man genome, DNA is condensed into 23 diploid chromosomes, 22 autosomes and one of
each X and Y sex chromosomes in males while females have 2 copies of X and none of
Y. Within chromosomes, DNA is wrapped around nucleosomes, each made up of 8 his-
tone sub-units, 2 of each H2A, H2B, H3 and H4. Methylation of cytosines and of certain
histone residues, usually tri-methylation of H3K9 or H3K27, promote a repressive hete-
rochromatin state. In comparison, acetylation of these same residues combined with DNA
demethylation enables binding of transcription factors and, if the latter are available, may
result in RNA polymerase activity. Transcription may be stimulated by cis-regulatory ele-
ments such as nearby enhancers.

After bisulphite conversion of unmethylated Cs into Us, their guanine (G)
double-strand partners are left unchanged, which means the forward and reverse
strands are no longer complementary. Post-polymerase chain reaction (PCR), four
possible products are therefore obtained, one for each of the original strands and
their new complements, with Us converted into thymines (T). At this stage, an un-
methylated CpG locus could generate four different dinucleotides read-outs from
either the original top, original bottom or their new complements, TG(+), GT(-
), AC(-) and CA(+), respectively (Figure 1.2). Base read-outs are reported in
terms of the forward strand and so GT(-) is catalogued as CA(-). At methylated
CpG sites, cytosines are unaltered by bisulphite conversion and so only CG(+) and
CG(-) are generated. Methylated read adaptors are often used to generate direc-

tional libraries as they enable selective sequencing of both the original strands while
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discarding the complements. Dinucleotide outputs from directional bisulphite se-
quencing at unmethylated or methylated CpGs will be TG(+) and CA(-) or CG on
both strands respectively. Assuming the absence of heterozygous single nucleotide
polymorphisms or variants, the methylation rate is easily computed by compiling
dinucelotide counts, dividing CG counts by the total number of reads supporting any

of the four methylation informative dinucleotides (i.e. TG(+), CA(-), CG, [26]).

Bisulphite PCR S i Read-out Legend

E’ f i OT(+)-T equencing u g |
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£ p==== /0 7T T Thymine
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Figure 1.2: Directional bisulphite sequencing dinucleotide read-out at CpGs.
Expected dinucleotide products from directional bisulphite sequencing data at unmethy-
lated (top) and methylated (bottom) CpGs. Bisulphite conversion oxidises unmethylated
Cs into Us leaving its methylated counterpart unaltered. Over- and under-conversion rates
may lead to erroneous read counts and are depicted as a grey or red dashed line, respec-
tively, each accompanied by reported estimates. At unmethylated CpGs, bisulphite conver-
sion leads to base pair mismatch which results in four different PCR products, the original
top (OT+), original bottom (OB-), and their complements. Thanks to directional sequenc-
ing adapters, only the original strands are sequenced. OT+ dinucleotides are reported as is
whilst the OB- bases are catalogued as their reverse complement, (i.e. GT- becomes CA-
and GC- becomes CG+).

Developed a decade or so later, methylation microarrays quickly rose in popu-
larity as a considerably cheaper alternative to WGBS. As part of this protocol, bisul-
phite treated and PCR-amplified DNA is hybridised onto arrayed oligonucleotides
probes each marking a regions of interest for a subset of CpGs, leveraging fluores-
cent labels that can discriminate between C and 5SmC alleles [27,28]. Bisulphite
sequencing approaches have become the gold standard, but methylation arrays are
still in use to this day. Despite plummeting sequencing costs in recent years, the
shift from microarrays to sequencing has been slow, namely due to lack of avail-

ability of bioinformatics analysis tools compatible with bisulphite sequencing data.
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Figure 1.3: NuGEN Ovation RRBS protocol.

(A) DNA extraction is followed by Mspl digestion leaving a 2bp overhang. Only the 5’
CCGG remains methylation informative after fragment end-repair. Note that a sequence
of 0 to 3 bases is added to each library molecule in order to avoid clustering issues during
sequencing. Adapter ligation and bisulphite conversion follow. Library amplification and
sequencing is implied but not shown here. (B) NuGEN Ovation libraries include an inte-
grated molecular tag (N6) that enables removal of duplicate reads from the dataset after
PCR and barcode enables multiplexing up to 16 different samples per flow cell, both of
which are 6 nucleotide in length. A custom forward primer enables directional sequenc-
ing of the original top and bottom strands while standard Illumina sequencing primers are
used for the reverse and index reads.

Reduced representation bisulphite sequencing (RRBS) [29-32] is raising in
popularity compared with WGBS since it requires smaller input quantities (10-
300ng versus 5ug) and has lower sequencing costs (>10 million versus >500 mil-
lion reads) [31,33]. RRBS gives a read out of ~2 million CpGs, more than twice
the number covered by the most recent Illumina EPIC array (Reviewed in [34]).
RRBS relies on restriction enzymes such as Mspl (C°"CGG recognition motif) to
digest DNA into fragments that are enriched for CpG dinucleotides (Figure 1.3).
Contrary to whole-genome bisulphite sequencing (WGBS) [35], every fragment
produced by Mspl digestion contains information for at least one CpG per single
end read. RRBS has been used to identify novel parental imprinting loci [36], to
study embryogenesis [37, 38], cell differentiation [39] or tumour biology [40]. In
addition, reference DNA methylation profiles for a variety of cell types have been

constructed from RRBS data [41].
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1.3 CpG Island methylation and gene regulation

Bisulphite sequencing and microarray technologies have enabled researchers
to gain a deeper understanding of genome-wide DNA methylation patterns. In hu-
mans, 70-80% of CpGs motifs are methylated, most of which are scattered across
the repetitive genome [42,43]. A large fraction of the remaining CpGs are found in
high density clusters called CpG Islands (CGIs), shores (+2kb around islands) and
shelves (4+=3kb around shores). CGIs often overlap gene promoters and enhancers
and are usually unmethylated irrespective of gene expression levels [44]. As pre-
viously mentioned, several other factors must be met, in addition to demethyla-
tion, to activate gene expression. However, methylation of promoter- or enhancer-
associated CGls, either on its own or in concert with repressive histone modifica-
tions, is correlated with gene silencing. Interestingly, housekeeping gene promoters
are enriched for CGls [45]. Because Mspl digestion is biased for these CpG-rich
regulatory regions [29,46] and also targets a number of CGI shores, exons, 3’ and
5’ untranslated regions (UTRs) and repetitive elements [47], RRBS is particularly

well suited to study methylation with respect to gene regulation.

1.4 DNA methylation machinery: introducing key
enzymes

Whilst the methylome of a healthy differentiated cell is relatively stable, it
undergoes complete reprogramming in early embryogenesis [37, 38,48,49]. After
genome-wide chromatin activation, DNA methylation and histone repressive marks
both need to be re-established quickly, particularly in the repetitive genome to keep
transposable elements (TEs) in check and protect cells against hijacking by endoge-
nous viral DNA [50,51]. This is crucial as 45-50% of the human genome encodes
TEs such as endogenous retroviruses (ERVs), long interspersed nuclear elements
(LINESs) and short interspersed nuclear elements (SINEs) [52,53]. Mutations affect-
ing the DNA methylation machinery have been observed in cancer and are known

to disrupts normal epigenetic programmes.
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DNA methyltransferases (DNMTs) are a class of enzymes responsible for
DNA methylation maintenance post-replication as well as during de novo methyla-
tion. DNMT1 is the main enzyme tasked with re-establishing symmetrical methyla-
tion at hemimethylated CpGs following DNA replication in S-Phase [54]. DNMT3C
protects sperm DNA from retrotransposons activity by methylating repeats irrespec-
tive of the germline or offspring methylation state [55]. DNMT3A and B are best
known for their role in de novo methylation namely during embryonic development.
They are the principal enzymes regulating CpG (re)methylation after widespread

genome activation.

Epigenetic reprogramming is a tightly regulated multilayered process involv-
ing methylation. DNA methylation is implicated in repression of transposable el-
ement in later stages of embryogenesis whilst repressive histone post-translational
modifications are necessary for early silencing as shown in vitro in DNMT3A and
B double knockouts embryonic stem cells [56]. In the newly fertilised mammalian
embryo, retrotransposons are silenced by KRAB-Zinc Finger Proteins (KZFP) that
bind to methylated DNA thereby recruiting a repressive chromatin complex via
KAPI/TRIM?2S interaction which ultimately results in both cytosine and histone
H3K9 trimethylation [57]. Loss of methylation is prevented at imprinted loci
through the same KZFP-dependent mechanism. In contrast, variably methylated
Intracisternal A Particle Long Terminal Repeats (IAP LTRs) are not perpetuated
across generations but rather through context dependent de novo methylation by
DNMTA/B, such as CTCF binding site proximity [58]. The methylation level of
IAP LTR harbouring promoter regions can influence the expression of nearby genes.
For example, IAP methylation leads to A, (agouti viable-yellow) ectopic gene ex-
pression in the mouse and visible phenotypic consequences ensue, in the form of

variable coat colour.

In vitro experiments have shown that DNMT1 has high affinity for hemimethy-
lated DNA successfully converting ~99.7% of hemimethylated loci. Nevertheless,
this means roughly 3 in 1000 methylated CpG dinucleotides will lose methylation

after each cell division [59]. DNMT] errors rarely result in gain of methylation, but
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when they do, a preference for methylation at CCGG motifs is observed, at least in
healthy cells. The error rate as measured between generations in healthy plant cells
showed a 3-fold higher loss than gain of methylation with respect to the founder
generation, 2.56 x 10~* and 6.30 x 10~ respectively [60]. Gain of methylation
was 25 times more likely than demethylation at transposable elements, suggesting
either selection forces at play or an alternative methylation maintenance mechanism

for the repetitive genome.

Ten-eleven translocation (7ET) family of dioxygenases (TET1, 2 and 3) play a
role opposite to that of DNMTs (Figure 1.4), catalysing the step-wise oxidation of
SmC into 5-hydroxymethylcytosine (ShmC) [61], 5-formylcytosine (5fC) and sub-
sequently 5-carboxylcytosine (5caC) [62,63]. These oxidised SmC derivatives are
no longer recognised by DNMT1 leading to loss of methylation upon DNA replica-
tion [64]. In some cases, SmC sites are missed by the methylase creating a transient
hemi-methylated loci which, in the absence of further errors, should regain sym-
metrical methylation following replication in the next cell cycle. Demethylation
may also occur through thymine DNA glycosylase (TDG)-mediated base excision
repair [65]. In vitro experiments suggest that DNMT's can catalyse the dehydrox-

ymethylation ShmC and decarboxylation of 5caC into C [66].

1.5 Cancer, a disease of the (epi)genome

Epigenetic mutations or ’epimutations’, including aberrant DNA methylation
and chromatin architecture alterations, are now acknowledged as a universal feature
of cancer development [67-69]. Healthy cells accumulate (epi)mutations through-
out their lifetime [70-72] and while most have no effect, a small subset may provide
a selective advantage for the cell [73]. A cell may eventually acquire a fully ma-
lignant phenotype following successive gains of hallmark cancer cellular capabili-

ties [74], while continuing to evolve in response to environmental pressures [75].
The cancer methylome will display characteristic of its cell of origin, with
varying degree of somatic DNA methylation changes [76,77]. Global hypomethy-

lation has long been known to occur in cancer cells [78], destabilising the genome
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Figure 1.4: An overview of cytosine modifications in mammals.

\//

Cytosine nucleotides can be methylated at the 5’ carbon position on the pyrimidine ring.
This modification is catalysed by DNMTs. Passive demethylation of methylated cytosines
is a slow process but is known to accumulate with ageing and can result in loss of methy-
lation. In addition, TET-assisted oxidation of SmC into ShmC, 5fC or S5caC leads to cy-
tosine demethylation upon replication, DNMT-driven decarboxylation or through TDG-
mediated base excision repair.

namely by reactivation of the repetitive genome [79]. Hypomethylation at cen-
tromeres specifically favours aneuploidy [80]. Recent reports suggest these ef-
fects are the results of long range hypomethylation blocks rather than individual
hypomethylated CpGs, as described in colon cancer [81]. Aberrant gain of methyla-
tion usually operates on a smaller scale, silencing individual promoter- or enhancer-
associated CGIs. Gene promoter hypermethylation-driven tumour suppressor deac-
tivation was first reported in cancer cells at the VHL and CDKN2/p16/MSTI lo-
cus [82—-84] and has since been reported at a number of genes across cancer types.
Hence, DNA methylation profiles can provide useful information on (disease) cell

states and could become powerful biomarkers [85-87].

The Cancer Genome Atlas (TCGA) and the International Cancer Genome Con-
sortium (ICGC) have revealed recurrent somatic aberrations and their clonality for
the majority of known cancer types [88, 89]. In comparison, the cancer methylome
is considerably less well charted. This is likely due to complexity of interpreting
bulk tumour methylation data, which is confounded by somatic copy number alter-
ations (CNAs) and admixed normal cells, and the lack of computational methods to

correct for these effects in downstream tumour differential methylation analyses.
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Tumour-normal differential methylation can arise due to (1) error-prone DN-
MTs activity, (2) aberrant transcription factor activity, (3) spontaneous deamination
of methylated CpGs and (4) coupled TET- and TDG-mediated demethylation of
SmC oxidation products into apyrimidinic sites [65] in cancer cells with deficient
base excision repair [90]. Stochastic differentially methylated positions (DMPs)
and CG-destroying/-forming single nucleotide variants (SNVs) should be inherited
unless back-mutated. Altering the tumour genetic sequence is non-reversible under
the infinite sites assumptions, which states that the human genome can be consid-
ered infinite and thus the probability of a given base being mutated twice is zero.
Infinite site assumptions violation should be rare, albeit more common than for
point mutations due to relatively higher (epi)mutation rate. Regulatory-driven dif-
ferentially methylated regions (DMRs) are likely to be dynamically methylated in
response to signalling, also violating the assumption and further complicating tu-
mour phylogeny reconstruction.

Popular DMP and DMR calling methods for bisulphite sequencing data have
been reviewed in recent articles by either Hebestreit and Klein [91] and Robinson
et al. [92]. Methylation rates at C>T mutations in CpG context are confounded
by the variant allele, which is indistinguishable from the bisulphite-converted un-
methylated base. We note that C>T SNVs are enriched at CpGs, both in cancer and

normal cells [93].

1.6 Sources of intermediate methylation in bulk tu-

mour data

Cancer cells are constantly evolving in response to selective pressures from
the environment in which they exist, fuelled by the activity of various mutational
processes [94]. Darwinian selection and clonal expansion of the fittest cells cre-
ates subclones and moulds the landscape of intra-tumour heterogeneity (ITH, Fig-
ure 1.5, left). Subclonal epimutations can be detected given they are present in a
large enough cancer cell fraction (CCF) and depending on tumour purity and copy

number. Cell-type heterogeneity within the admixed normal cell populations can
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also give rise intermediate tumour DNA methylation levels due to cell type specific
methylation (Figure 1.5, middle left [95-97]), although this effect is presumably
limited at sufficiently high tumour DNA content. Potential sources of intermedi-
ate methylation also include allele-specific methylation at germline imprinted loci
or allele-specific somatic DNA methylation alterations (Figure 1.5, middle right).
Lastly, DNA methylation erosion can lead to intermediate methylation (Figure 1.5,
right). This occurs as part of healthy ageing, but the process is accelerated in rapidly
replicating cancer cells.
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Figure 1.5: Potential sources of intermediate DNA methylation levels.

Sources of intermediate methylation (top) and example bulk methylation rate distribu-
tion (bottom). Circles indicate the methylation state at a given loci formed of one or more
neighbouring CpGs. This could represent an individual intragenic CpG or a CGL.

1.7 Capturing DNA methylation intra-tumour het-

erogeneity

DNA methylation ITH has been reported by independent research laboratories
[98—100], but its role in tumour evolution and its impact on patient outcome both
remain unclear. At present, methods to quantify ITH from bisulphite sequencing
data [40, 101-103] assume low normal contamination levels and/or the absence of

copy number alterations.
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Heterogeneity metrics are reviewed in Scherer ef al. [104] including the popu-
lar proportion of discordant reads (PDR [40]), a measure of intra-molecular hetero-
geneity. Individual reads are classified as either concordant (i.e. fully methylated or

unmethylated) or discordant (i.e. partially methylated) and the PDR is calculated as

countsdiscordant . .
PDR = - . This method relies on the assump-
countsdiscordant + countsconcordant

tion that neighbouring CpGs normally display concordant methylation which is lost

either due to DMPs or DNA methylation erosion in tumours. Alternatively, one
can compute the methylated haplotype load (MHL, [105]), a weighted mean of the
fraction of fully methylated haplotypes and its substrings of 2 of more CpG loci.
Subclonal differential methylation need not be locally discordant to be captured by
the MHL from bulk data. In any case, both scores are affected by variations in

tumour purity and copy number.

Although less well-known, the Bayesian epiallele detection (BED) approach
seems a promising method to evaluate methylation ITH [106]. An epiallele is de-
fined as a sequence of n CpG sites on one read molecule for which there are 2"
possible methylation patterns. Epialleles may be compared between overlapping
reads and epiallele frequencies can be calculated. BED estimates the underlying
number of epialleles using the Bayes information criterion (BIC), accounting for
experimental noise and preventing the model from inferring too many epialleles
unless the evidence is sufficiently strong. Epialleles obtained from tissue-matched
normal can be used as a proxy for the normal contaminating cells and based on
this the authors determine tumour purity and extract purified tumour epialleles. A
more accurate method would require consideration of both tumour purity and copy

number.

1.8 Reconstructing tumour phylogenies

When reconstructing tumour evolutionary histories, accurate estimates of tu-
mour purity and copy number are critical [107]. First, the ratio of cancer cells
carrying a mutation, referred to as the cancer cell fraction (CCF), is extracted from

the variant allele frequencies (VAF) taking care to correct for local copy number
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and the aberrant cell fraction. In turn, we can use the distribution of mutations in
CCF space in a given tumour sample to infer the underlying subclonal architecture.
This distribution usually has a peak at CCF = 1, which corresponds to the most
recent common ancestor shared by all tumour cells while peaks at lower CCF are
attributed to subclonal populations of cells. Clustering of subclonal mutations is
possible with various algorithms. Individual mutations are assigned a probabilis-
tic cluster assignments from which phylogenetic trees can be inferred. Subclobal
reconstruction algorithms include but are not limited to DPClust [107], Phylog-
icNDT [108], PhyloWGS [109], PyClone [110]. These and 7 other methods are
described and compared in Dentro et al. [111]. Whilst these fantastic tools enable
researchers to uncover the genetic evolutionary history of tumours from subclonal
copy number and single nucleotide variant information, they offer no epigenomic
information and are not compatible with methylation data. Bisulphite sequencing
experiments yield genomic and epigenomic data and therefore have the potential to
deepen our understand of the interplay between these two components throughout

tumour evolution.

1.9 Multi-sample studies

While tumour subclones present at large enough cancer cell fractions can be
detected within single biopsies as above-described, the illusion of clonality can
occur when spatially segregated tumour subclones do not overlap with the sin-
gle sampled region. Multi-region sequencing dataset address this caveat and are
therefore particularly powerful for ITH investigations. For example, analyses of
the first 100 patients from the Tracking Non—Small-Cell Lung Cancer Evolution
through Therapy (TRACERX) prospective cohort study (Funded by Cancer Re-
search UK and others; TRACERX, ClinicalTrials.gov number, NCT01888601), also
called the TRACERx100 cohort, suggest that without the use of multi-region WES,
65% of branched subclone clusters would have been (erroneously) classified as
clonal [112]. They were able to identify that, whilst most driver mutations were

clonal (EGFR, MET, BRAF and TP53), others like PIK3CA and NF1 were often
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subclonally aberrated, a relevant observation that could influence treatment choice.
The study involving various hospitals, universities and research institutes across
the UK began recruitment back in 2014 and aims to enrol around 850 NSCLC pa-
tients in stages IA through IIIA and perform high-depth, multi-region WES for
each surgically resected tumour [113]. Multi-omics data, including RNA sequenc-
ing and RRBS data has been obtained for a subset of samples and more sequencing
is under way. The main objective of the study is to investigate potential correla-
tion between measures of intra-tumour heterogeneity and clinical outcome. One of
the major reported findings was that subclonal copy number heterogeneity is nega-
tively correlated with disease-free survival, while SNV clonality does not correlated
with outcome. Whether or not DMP clonality is prognostic in NSCLC is unknown.
A method to infer DMP clonality from multi-region bisulphite sequencing data is

needed to answer this question.

1.10 'Thesis summary

To summarise, while it is well-established that DNA methylation plays a role
in tumourigenesis, there is a clear need for computational methods to facilitate the

interpretation of bulk tumour bisulphite sequencing data.

To address this, we developed ASCAT.m, our tool for allele-specific copy num-
ber profiling and purity estimation from tumour RRBS data (see Chapter 2). We
generated multi-region RRBS (range 2-7) of the primary tumour for 38 NSCLC pa-
tients from the TRACERX study and applied ASCAT.m on these samples, referred
to as the epiTRACERX cohort. We validated our approach by comparing ASCAT.m
outputs with those obtained from matched whole-exome sequencing (WES) [112]
and 7 newly generated whole-genome sequencing (WGS) tumour samples from 3
patients as well as each patient-matched adjacent normal, showing high concor-
dance. ASCAT.m copy number profiles reveal recurrent alterations in NSCLC and
highlights differences between lung adenocarcinoma and squamous cell carcinoma.
Whole genome doubling was often observed and was correlated with worse prog-

nosis in lung squamous cell carcinoma, but not in adenocarcinoma.
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With accurate tumour copy number and purity estimates in hand, we for-
malise the relationship between methylation rates, copy number and tumour purity.
This relationship is the guiding principle of our algorithm for Copy number-Aware
Methylation Deconvolution Analysis of Cancers (CAMDAC) from bulk tumour and
tissue-matched normal RRBS data (see Chapter 3). Inter-sample distances between
methylation profiles shows that CAMDAC efficiently removes shared normal sig-
nals from bulk and highlight differences between patients while retaining high cor-
relations between samples of shared clonal ancestry. CAMDAC purified tumour
methylation rates are in agreement with SNV purified estimates across the NSCLC
cohort. Simulated and real data show that CAMDAC deconvoluted tumour methy-
lation rates improve differential methylation calls both between tumour and normal

cells and between different tumours or sampled regions.

In chapter 4, we use CAMDAC purified methylomes and DMPs to obtain
DMRs calls and gain deeper insight into NSCLC methylomes (Chapter 4). DMR
ubiquity analysis reveals that methylation heterogeneity is correlated with relapse-
free survival. We identify hundreds of recurrently early clonal epimutations across
the epiTRACERX cohort, supporting the use of DNA methylation data to improve
early detection of NSCLC. In contrast to the bulk, CAMDAC pure tumour methy-
lation profiles reveal intra-tumour subclonal relationships. We obtain DMR calls on
SNV-deconvoluted methylation rates, and found DMRs were usually in-cis with re-
spect to somatic mutations. DMRs in-cis were usually hypermethylation, implying
that SN'Vs possibly lead to the ablation on TBFSs and, in the absence of transcrip-
tion factor binding, enables methylation of neighbouring CpGs by DNMTs. Paying
particular attention to expression levels at genes harbouring neo-antigen mutations,
we uncover hypermethylation as a mechanism for immune evasion and published
this finding [114]). Building on this work, we show the effect to be even stronger

after applying CAMDAC to deconvolve the bulk tumour data.

Finally, we set out to investigate copy- and allele-specific methylation in
NSCLC harnessing CAMDAC purified tumour methylation profiles and ASCAT.m

copy numbers (Chapter 5). The mode of allele-specific methylation on chromo-
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some X in females is below 0.4 on average, indicating the presence of extraction
biases against the condensed inactive X chromosome copy. There were no corre-
sponding allelic bias at heterozygous SNPs, suggesting that the inactive X copy is
of random parental origin in a given cell, at least within our normal lung samples.
The presence of heterozygous SNPs at the germline imprinted locus H19/IGF?2 en-
ables SNP-phasing of methylation rates in 30/37 normal samples, each case vali-
dating the presence of allele-specific methylation. We saw loss of imprinting in 5
tumours, each with demethylation of the maternal allele. We define two types of
DMPs, stochastic and regulatory, and use regions of 14 1 to estimate their relative
abundance. We find that regulatory DMPs dominate the epimutational landscape of
NSCLC, at least in the epiTRACERx cohort. We leverage epimutation with copy
numbers 1 and 2 in 2 4 0 to time these copy number gains and find they usually

occur late in epimutational time.



Chapter 2

Allele-specific copy number analysis of

cancers from bisulphite sequencing data

2.1 Introduction

2.1.1 Bulk tumour methylation rates are confounded by tumour

purity and copy number

Solid tumour samples are often highly heterogeneous and contain a mixture of
tumour and normal cells, the ratio of which is commonly referred to as the tumour
purity (p) or aberrant cell fraction. The relative amounts of tumour and normal
DNA depends not only on tumour purity, but also on copy number [115-117]. If the
methylation rate is different between the tumour and normal cells, the bulk tumour
methylation rate will be affected by the ratio of tumour to normal DNA and thus by
both tumour purity and copy number (Figure 2.1A).

For example, take a hypothetical bulk tumour sample of purity p = 0.4 and
a CpG locus that is completely unmethylated in the normal contaminating cells,
my, = 0, fully methylated in the tumour, m; = 1, and located on a tumour copy
number segment with a total of 3 copies, n; = 3. In this bulk mixture, we have 6
unmethylated normal CpGs from 3 diploid cells for every 6 methylated loci with
CpG copy number 3 from 2 cancer cells. The bulk tumour methylation rate should

therefore fall near: m;, = = 0.5. Variation in tumour purity and copy num-

6+6
ber will clearly impact the value of m;, (Figure 2.1B). Indeed, several studies have

demonstrated that variation in copy number [118—120] and purity [121] lead to in-
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creased false positives and negatives in differential methylation analysis, scientists

are yet to correct bulk cancer methylomes for both of these confounders simulta-

neously, probably due to the lack of computational tools for obtaining purity and

methylation estimates directly from methylation data.
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Figure 2.1: Tumour purity and copy number affect bulk methylation rates.

(A) Example bulk tumour (mj), pure tumour (m,) and normal (m,) methylation rates at a
tumour-normal differentially methylated CpG with total tumour copy number n; = 3 and
p = 0.4. (B) Bulk methylation rates for a CpG locus which is unmethylated in the normal
contaminating cells and methylated in the pure tumour cells stratified by a range of purity

and copy number.
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2.1.2 Somatic copy number alterations are universal features of
cancer genomes

In addition to their above-outlined effect on bulk tumour methylation rates,
somatic copy number alterations also play an important role in tumourigenesis.
As copy number modulates expression, amplification at oncogenes and deletions
at tumour suppressors will provide cells with a selective advantage. In LUAD and
LUSC, focal amplification of EGFR, MYC and deletions of tumour suppressor gene
CDKN2A/B are reported driver events [122]. Whole genome doubling (WGD) is
a genome-wide copy number alteration involving duplication of all chromosome
copies. In non-WGD cancer cells with large proportion of loss of heterozygosity
(LOH) where a single chromosome copy remains, mutations may be disadvanta-
geous if not lethal [123]. While WGD is energetically costly, it also mitigates this
phenomena known as Muller’s ratchet. Genome doubling is therefore correlated
with poor prognosis. Timing of chromosomal gains in tumour evolution including
genome doubling from whole-genome sequencing analysis of 2,658 cancers as part
of the Pan-Cancer Analysis of Whole Genomes (PCAWG) revealed that copy num-
ber alterations can be early drivers of tumourigenesis, such as gains of chromosome
7, 19 and 20 which virtually always occur early in glioblastoma development [124].
WGD was found to occur as early as 20 years prior to diagnosis in WGD ovar-
ian cancers, a finding highlighting incredible potential for early diagnosis of this

disease.

2.1.3 Purity and copy number estimation from bulk tumour
data

Experimentally determining the cancer purity and overall ploidy of bulk tu-
mour tissue is possible through cell sorting-based technology such as Fluorescent-
Activated Cell Sorting (FACS) [125]. FACS of bulk tumour data is time-consuming,
labour intensive and as such may not be suitable for large sequencing efforts.

In silico purity estimation from copy number profiling algorithms is a highly

scalable and accurate alternative. Indeed, these estimates show good correlations
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with ESTIMATE and LUMP purity scores based on RNA-Seq data and leukocyte
infiltration, respectively [126], all of which are more accurate than those obtained
by histological examination of stained frozen tissue slides [115]. ASCAT is a pop-
ular in silico method for clonal allele-specific copy number (ASCN) profiling of
tumours [117]. While originally designed for SNP array data, ASCAT has been
adapted to a range of platforms including WGS [127] and WES [112]. The AB-
SOLUTE [115] copy number profiling tool is comparable to ASCAT in terms of
outputs, but requires computationally expensive statistical modelling. Both ap-
proaches derive tumour purity, ploidy and allele-specific copy numbers from the
read depth (LogR), corrected for GC content biases, and the allelic imbalance (B-
Allele Frequency, BAF) at heterozygous single nucleotide polymorphisms (SNPs).
In ASCAT, BAF and corrected LogR values are segmented simultaneously using
allele-specific piece-wise constant fitting (ASPCF). The optimal partitioning is fed
into a function which computes the goodness of fit score for all possible allele-
specific copy number profiles given the input BAF and LogR segments, and a grid
of possible values for both purity, p, and ploidy, y. The goodness of fit score for
each purity and ploidy solution is defined by the distance between raw copy number
segments and non-negative whole numbers weighed for segment size. The assump-
tion is that most of the genome is clonal, and therefore the optimal solution is one
which minimises the distance metric. SNP-based copy number profiling approaches

like ASCAT are yet to be adapted for bisulphite sequencing data.

The published algorithms for copy number analysis of tumour methylation data
are fewer in numbers and only generate log read depth profiles [128, 129] as op-
posed to absolute copy numbers and/or do not provide simultaneous tumour pu-
rity estimates. Standalone purity estimation is possible from bulk tumour methy-
lation array data using InfiniumPurify [121]. InfiniumPurify purity values show
good correlation with both LUMP and ABSOLUTE and outperforms immuno-
histochemistry estimates across samples from The Cancer Genome Atlas (TCGA
[130]). MethylPurify enables purity estimation method that is designed for bisul-

phite sequencing and not array data. The approach models purity from intermedi-
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ate methylation rate distribution at tumour-normal differentially methylated posi-
tions (DMPs), assuming monoclonal tumour cells and homogeneous methylation
amongst normal contaminants and ignoring copy number variation. The relative
success of MethylPurify in estimating tumour purity directly from methylation data
suggests that bulk tumour DNA methylation rates are predictably affected by normal
contaminants. Moreover, it shows that for most cancer types, intermediate methy-
lation at DMPs stems from somatic evolution and not from normal cell type hetero-
geneity given the assumption that normal infiltrating cells are homogeneous. How-
ever, the main drawback of these tools for tumour purity estimation from methyla-
tion data is that they do not provide absolute copy number profiles. As such, purity
estimates from methylation rates are not corrected for copy number which can lead
to erroneous purity estimates, for example in whole genome doubled tumours.

In the past, researchers have sometimes chosen to obtain additional SNP array
data to compute copy number profiles from established pipelines instead of extract-
ing the information directly from the methylation data [120, 131]. This approach
incurs additional costs in terms of tumour material, time and the arrays themselves.
In a clinical setting, it is particularly important to avoid wasting precious tumour
material and so obtaining additional array or sequencing data may not be feasible.
In some cancer types, such as non-small cell lung cancer, operable tumours are
surgically resected as first line of treatment which means plenty of material is avail-
able (depending on the tumour size), but this is not standard practice for all solid
tumours. It is often the case that only limited amounts of material can be collected
via tumour biopsies. A novel method to generate both accurate tumour purity esti-
mates and copy number profiles directly from bisulphite sequencing data is clearly

needed.

2.1.4 Chapter summary

To address this issue, we introduce ASCAT.m, a new tool that enables both
allele-specific copy number and purity inference directly from bulk tumour RRBS
data. We begin this chapter with a detailed explanation of the methodology be-
hind ASCAT.m. We then apply ASCAT.m to the epiTRACERXx pilot RRBS dataset
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Figure 2.2: EpiTRACERX cohort.
Depiction of the histological subtypes, gender, smoking status and tumour stage distribu-
tion across the epiTRACERX cohort.

(Figure 2.2, Table B.1), which is part of the TRACERXx prospective cohort study
[113]. The epiTRACERX cohort consists of multi-region RRBS data for a subset
of 38 non-small cell lung cancer patients (122 tumour samples, 3.3 samples per
patient on average, range 2-7) chosen from the first 100 patients of the TRACERx
study [113]. Copy number analyses of multi-region whole-exome sequencing from
the TRACERX study revealed high variability in both tumour purity and copy num-
ber [112]. The epiTRACERx RRBS cohort is therefore highly amenable in its role
as a pilot dataset for ASCAT.m. We observed high correlation between ASCAT.m
tumour purity and copy number estimates and values obtained from matched WES
data [112] and, from a subset of unpublished WGS samples recently generated by
collaborators. Copy number profiles revealed a high prevalence of WGD in the
epiTRACERx NSCLC cohort. Whole genome doubling is negatively correlated

with patient outcome in LUSC likely due to high levels of loss of heterozygosity.
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2.2 Results

2.2.1 Computing BAF and LogR from bisulphite sequencing
data

Inspired from existing methods copy number and purity estimation from array
or sequencing data [115-117], ASCAT.m requires coverage (LogR) and allelic im-
balance (BAF) information at a sufficient number of (heterozygous) SNPs in order
to compute tumour purity, ploidy and allele specific copy numbers (ASCN, Figure
2.3). The epiTRACERx RRBS dataset was predicted to be particularly well-suited
for ASCAT.m because Mspl digestion enriches for CpG Islands and the latter are
known hotspots for C>T polymorphisms [132].

We began by compiling read counts at all 1000 genome SNP positions [133]
from bulk tumour and patient-matched normal RRBS data (Figure 2.3). The LogR
at the i'" SNP (SNP;) was then calculated by taking the total read coverage of SNP,
in the tumour, cov; ;, normalised by the coverage in the normal, cov, ;. Leveraging
findings from different studies, we show that RRBS-derived raw LogR values suffer
from at least 3 sequencing coverage biases as a result of the RRBS protocol (Figure
2.4). (1) Enzymatic digestion with Mspl yields libraries with heterogeneous in-
sert size distributions reflecting variability in the distance between any two CCGG
cleavage sites which can be as little as a few base pairs to hundreds [134]. (2) Ex-
treme GC contents are known to bias polymerase chain reaction amplification and
coverage [135] and bisulphite converted sequences have decreased GC content, de-
pending on CpG methylation status and density. (3) Coverage is inflated in genomic
regions that tend to replicate earlier during S-phase compared with those that repli-
cate later. Replication timing differs not only across the genome but also between
cell types [136]. ASCAT.m corrects LogR estimates for each of these three sources
of bias (See Methods Section 2.4.3.1, Figure 2.4).
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Figure 2.3: ASCAT.m workflow.

Allele counts are compiled at all 1000 genome SNP positions [133] for bulk tumour and
patient-matched normal RRBS data. SNP genotyping is carried out on the normal sample
and tumour BAF is obtained at heterozygous SNPs. LogR is computed from the matched
normal and tumour coverage at each SNP. BAF and corrected LogR values are fed into
ASCAT standard ASPCF function. For multi-region datasets, re-segmentation of BAF
and LogR tracks is performed with multi-sample phasing of BAF segments with allelic
imbalance in at least one sample. The best copy number solution is found using a purity
and ploidy grid search approach. The solution which maximises the goodness of fit to
integer copy number is selected.
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Figure 2.4: Sources of bias in LogR values.

(A-C) Mspl fragment length (A), GC content (B) and replication timing (C) affect tu-
mour LogR. The observed peaks in the fragment length distribution originate from Mspl-
containing micro-satellite repeats of distinct lengths and is characteristic of human RRBS
libraries. (D) A linear combination of three natural splines, modelling the effect of each
of the three biases described in (A), (B) and (C) with respect to tumour LogR is used to
correct the raw LogR and yield the corrected values.

Next, ASCAT.m requires normal (BAF,) and tumour BAF (BAF;) values at
enough heterozygous SNPs to establish germline genotypes and identify regions of
allelic imbalance respectively (Figure 2.3). Computing BAF values from RRBS is
challenging compared with genome sequencing and array data because bisulphite
conversion leads to unexpected reference and alternate allele read counts at SNP
loci with a G and/or C allele. Indeed, unmethylated Cs are converted to Ts during
library preparation, yielding four possible bisulphite DNA strands: (complementary
to) original top and (complementary to) original bottom with roughly the same like-
lihood (Figure 2.5A). Most bisulphite sequencing protocols are directional, includ-
ing the RRBS NuGEN assay used for this work, meaning only bases from original
top (+) or complementary to original bottom strand (-) are sequenced. Methylation
further complicates BAF calculations since roughly half of the SNPs reported by
RRBS are located at CpGs. Across the epiTRACERx cohort, polymorphisms at
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CpGs account for 49.9% of SNPs, 83.3% of which are CpG>TpG polymorphisms.
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Figure 2.5: ASCAT.m BAF calculation rules.

(A) Transformation of (un)methylated reference CpG, and alternate ApG, GpG and TpG
alleles during bisulphite sequencing. (B-D) Derivation of BAF rules from strand specific
base pile ups C>A (B), C>G (C) and C>T (D) SNP loci. (E) BAF formulae for all SNP

types.

To address these issues, we propose a set of strand specific allele counting
and BAF calculation rules for all SNP types for ASCAT.m. For reference, the
derivation for C>A, C>G and C>T SNPs is depicted in (Figure 2.5A-D). For
a C>A SNP at a CpG, all reads supporting A on the + or - strand, i.e. A(+)
and A(-), can be assigned to the alternate allele unambiguously. Reads reporting
C(+) and T(+) can be uniquely attributed to the methylated and unmethylated C,

respectively, while C(-) counts could arise from either methylation state. The al-
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lelic imbalance can be calculated as BAFc~4 = (Figure 2.5B). At

A+C+T(+)
C>G SNPs, the alternate allele is represented by G(+) and A(-) nucleotides with
G(+)+A(-)
G(+)+A(-)+C+T(+)
SNPs because the bisulphite converted unmethylated reference cytosine base is

BAFc~g = The situation is more complex for C>T
indistinguishable from the alternate allele on the + strand with both alleles lead-
ing to a T(+) read-out (Figure 2.5A,D). However, base counts taken from the -
strand are unique to either the alternate allele, T(-), or the (un)methylated refer-

ence, C(-). Therefore, it is still possible to quantify allelic imbalance at C>T SNPs:
T(-)

C(—)+T(-)

of the total number of reads can be used to measure allelic imbalance at C>T SNPs.

BAFc~T = . Using only the - strand implies that, on average, only half
Following this line of reasoning, we outline a set of rules to compute BAF values at
all types of SNPs (Figure 2.5E). The same principles above can be generalised to
non-CG cytosine methylation, known to occur at low percentages in the mammalian
genome [137]. ASCAT.m BAF rules are robust to both CpG and non-CpG cytosine

methylation.

2.2.2 Comparing genotypes derived from RRBS and WGS data

To test our approach, we leveraged unpublished WGS data generated by col-
leagues for 3 NSCLC patients also part of the epiTRACERx cohort, including nor-
mal samples (see section 2.4.2.2). We compared genotyping outputs generated at
overlapping SNPs between the 2 platforms for each of the normal samples. We
calculated the false positive rates (FPR) and false negative rates (FNR) for RRBS
data using the WGS-derived genotypes as ground truth. The average FPR across all
SNP types and samples was 0.3% whilst the mean FNR was 25% (Figure 2.6).
The average FNR was highly context dependent (y? test, p-val < 2.2 x 10716,
FNRccgg = 83%, FNRcGg = 20%, FNR t1.r = 15%). Increasing sequencing depth
only lead to a small decrease in FNR: by requiring a minimum SNP coverage of 30
instead of 10 reads, the average FNR dropped to roughly 1 in 5 heterozygous SNPs.
Polymorphic CCGGs perturbing or creating a CCGG Mspl recognition sequence,
can lead to allele-specific fragments during RRBS library preparation skewing al-

lelic coverage and were the largest source of false negatives (49%). We observed a



2.2. Results 46

bias towards SNPs erroneously assigned as homozygous reference (72%) compared
with homozygous alternate (28%) at false negatives (Figure 2.6B). This suggest an
alignment bias, likely due to limited mappability of short Mspl fragments with al-
ternate alleles. In line with this hypothesis, SNPs with low reference allele mapping
quality scores (MAPQ < 40) were enriched for homozygous reference false nega-

tives (Wilcoxon test, p-val < 2.2 x 10~!), especially outside CCGG context.
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Figure 2.6: Comparing ASCAT.m and ASCAT on WGS data.

(A-B) False positive (A) and false negative (B) heterozygous call rates across SNP types
(top) and ASCAT.m BAF estimate error distribution histograms of the distribution of
CAMDAC BAF estimate errors and noise (bottom). SNPs are considered heterozygous
when 0.1 > BAF > 0.9 and a gold standard alleleCounter pipeline on WGS of the normal
sample subset to RRBS-covered regions is taken as ground truth.

2.2.3 Multi-sample SNP phasing improves segmentation

Next, we compute BAF and corrected LogR values for all tumour samples in
the epiTRACERX cohort. Given sufficient tumour purity and sequencing coverage,

copy number segments with clonal allelic imbalance will generate two distinct BAF
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bands. This can be used to assign heterozygous SNPs to the gained or lost alleles
and to phase all SNP alleles in the copy number segment. SNP phasing information
is relayed between different samples from the same patient. For example, consensus
phasing of the 5 tumour regions of CRUKO0069 revealed over half a dozen mirrored

subclonal allelic imbalance (MSAI) events (Figure 2.7).
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Figure 2.7: Creating haplotypes from multi-sample BAF estimates.

(A) The phased BAF profile for regions 1 to 5 is shown with phased segments being ran-
domly assigned alleles 1 (orange) or 2 (purple). The same labelling is used for the i"* SNP
across all 5 tumour samples enabling visual identification of MSAI events.

ASCAT.m phased BAF and LogR profiles are then fed into the ASCAT piece-
wise constant fitting function modified to account for multi-sample haplotyping
(Figure 2.3). The output segmented BAF and LogR profiles are fed into the fi-
nal copy number fitting function, where a grid search approach is used to identify
the optimal purity and ploidy solution, that is to say the solution where, on aver-
age, allele-specific copy number segments have the shortest distance to integer copy

number states. Accurate segmentation is key to generate high quality copy number
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profiles. For example, take a clonal copy number segment with major allele +
minor allele = 2+ 1. If allelic imbalance is not detected from the BAF track by
ASCAT’s allele specific piece-wise constant fitting (ASPCF), the segment is mis-
classified as a balanced copy number segment. At the true underlying tumour pu-
rity, the total copy number would be unaffected by this misclassification and would
appear near copy number 3, but the minor allele segment would be mistakenly posi-
tioned halfway, at 1.5 copies. Because the minor allele is 0.5 away from the nearest
integer copy number, this may penalise the score of the true solution such that it is
no longer a local minimum of the grid search. This is especially true if large and/or
multiple segments are misinterpreted as balanced. Multi-sample haplotyping suc-
cessfully rescues allelic imbalance signal in lower purity and/or coverage samples,
for example in CRUK0069-R2 (p = 0.32, Figure 2.8). We note that BAF bands for
the epiITRACERx RRBS data are wider than for matched high coverage WGS and

WES data, further increasing the importance of haplotyping.
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Figure 2.8: BAF segmentation is improved by multi-sample haplotyping.
Raw (top) and phased (bottom) segmented BAF for low purity (p = 0.32) and ploidy (y =
2.67) sample CRUK0069-R2 leveraging multi-sample information.
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2.2.4 Comparing copy number profiles, purity and ploidy de-
rived from RRBS versus matched WES and WGS data

We compared ASCAT(.m) BAF, LogR and allele-specific copy number seg-
ments for 7 tumour samples taken from the above-mentioned 3 patients with
matched WGS and RRBS data (See Methods Section 2.4.2.2). Despite the higher
number of false negative homozygous SNPs in our RRBS data, BAF estimates gen-
erated by ASCAT.m enable correct identification of BAF bands separation at ge-
nomic regions with allelic imbalance as determined by SNP phasing while these
are sometimes missed by the matched WGS data (Figure 2.9 and Supplementary
Figures SA.1-6). The LogR tracks are in good agreement between the two plat-
forms across all samples indicating that biases in coverage introduced by the RRBS
protocol are adequately modelled and removed by ASCAT.m. We compared final
allele-specific copy number calls to data obtained from both platforms and, unsur-
prisingly, the two are virtually identical (Figure 2.9 and Supplementary Figures

SA.1-6).
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Figure 2.9: Comparing WGS- and RRBS-derived ASCAT(.m) BAF, LogR and copy
number segments for a representative tumour sample.

Direct comparison of BAF (top), LogR (middle) and allele-specific copy number (bot-
tom) profiles derived by ASCAT(.m) from matched RRBS and WGS for CRUK0031-R1.
Segmented BAF and LogR values are plotted at heterozygous SNPs only. Raw BAF and
LogR values at every heterozygous SNPs is shown in for the WGS data only. This sample
is male which explains why virtually no data points are plotted on chromosome X.
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ASCAT(.m) ploidy (y) and purity (p) validation was performed by com-
paring RRBS estimates with those inferred from WGS (mean coverage 67x) and
high-coverage WES (mean coverage 464x) performed on the same samples (Table
3, [112]). Tumour purity and ploidy values derived from RRBS showed excel-
lent agreement (Figure 2.10A-B) with both WGS (corr, = 0.996, corry = 0.991)
and WES estimates (corrp = 0.984, corry = 0.978). We note that tumour purity
variability is relatively high whilst ploidy is typically more homogeneous within

tumours (Figure 2.10C).
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Figure 2.10: ASCAT(.m) purity and ploidy estimates across epiTRACERx and
sequencing platforms.

(A-B) Direct comparison of ASCAT(.m) RRBS-derived purity (A) and ploidy (B) esti-
mates with matched WES (blue) and, where available, WGS data (purple). (C) Patient-
wise ASCAT.m tumour ploidy (top panel) and purity (bottom panel) distribution, as in-
ferred by ASCAT.m.

2.2.5 The somatic copy number variation landscape of NSCLC

Whole genome doubling (WGD) status is defined by the fraction of the genome
with loss of heterozygosity (LOH) and tumour ploidy (Figure 2.11A). ASCAT.m
results show that WGD is widespread across lung adenocarcinoma (LUAD, 71%)
and squamous cell lung carcinoma (LUSC, 86%) patients, while LOH is enriched

in LUSC compared with LUAD, with 94% versus 26% of samples harbouring LOH
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in >30% of the covered genome respectively (Wilcoxon p-val = 1.48 x 10~11).
We note that WGD is negatively associated with relapse-free survival in LUSC but
not in LUAD (Figure 2.11B). Having a higher fraction of the genome with LOH,
genome doubling likely provides a strong selective advantage in LUSC decreasing
the likelihood of acquiring lethal mutations on the sole copy of an essential gene
[123]. No differences in overall purity or ploidy were noted between the two lung
cancer subtypes (p Wilcoxon p-val = 0.411, v Wilcoxon p-val = 0.276). However,
LUAD samples tend to be of higher ploidy than LUSC when comparing samples of
the same WGD status between histologies (WGD Wilcoxon p-val = 9.83 x 1073,
non-WGD Wilcoxon p-val = 1.85 x 1072).
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Figure 2.11: Whole genome doubling predicts outcome in LUSC but not LUAD.

(A) Whole genome doubling status is a function of both tumour ploidy and the fraction of
the genome with loss of heterozygosity. (B) Relapse-free survival probability for LUAD
(left) and LUSC (right) cases stratified by WGD status from ASCAT.m.

Genomic instability is a defining feature of both cancer types (Figure 2.12).
Certain copy number gains and losses are observed at a high frequency across the
two subtypes, such as +8q and -8p, while other patterns are strikingly different be-
tween subgroups. For example, +3q is found in virtually all LUAD samples and is
absent from LUSC. Gains and losses are defined based on allele-specific copy num-
ber and with respect to tumour ploidy (2.4). This is important as most LUAD and
LUSC are tetraploid and will appear to have high levels of gains and fewer losses
if not corrected for baseline ploidy. Indeed, reports by others based on GISTIC2.0
data in LUAD only identified losses of 8p, and 18 with frequencies greater than
0.5 [138].
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Figure 2.12: NSCLC somatic copy number variation landscape.
Fraction of samples with copy number gains (red) and losses (blue) in 10Mb bins across
the genome for LUAD (top) and LUSC (bottom).

2.3 Discussion

To summarise, we have shown that ASCAT.m enables accurate allele-specific
copy number profiling and simultaneous tumour purity estimation from RRBS data,
obviating the need to perform separate copy number profiling experiments, reducing
cost and saving time. We demonstrated that ASCAT.m BAF calculation rules are
successful in identifying heterozygous SNPs outside CCGG context. We showed
that multi-sample BAF phasing improves detection of allelic imbalance from BAF,
especially in samples of low tumour purity. ASCAT(.m) output allele specific copy
number profiles for tumour samples with matched RRBS and WGS showed good
agreement and overall tumour purity and ploidy estimates were highly correlated
between WES, WGS and RRBS platforms. WGD was found to be widespread in
NSCLC and was significantly associated with increased probability of relapse in
LUSC but not LUAD and link this result to LOH abundance. Finally, the copy

number variation landscape of LUAD and LUSC was obtained and compared.
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We note that patient-matched tumour adjacent normal samples may not always
be available. In this study, we build reference RRBS coverage profiles which can be
used to compute LogR in the absence of patient-matched normal data. Given suffi-
ciently low tumour purity or the absence of LOH, approximate heterozygous SNPs
can assignments may be obtained directly from the tumour BAF. We ran ASCAT.m
with tissue-matched normal for one tumour sample where no patient-matched nor-
mal data was available. Allele-specific copy number and purity estimates can there-
fore be generated by ASCAT.m without patient-matched normal using the reference
coverage panel generated in this study. Although this was not tested, we hypothe-
sise that patient-matched blood normal RRBS data may be used for ASCAT.m as
an alternative to tissue-matched normal. We therefore conclude that ASCAT.m will
be highly valuable for tumour copy number and purity estimation from bisulphite

sequencing data irrespective of cancer types and matched normal availability.

While evaluating ASCAT.m for genotyping purposes, we noted allelic skewage
at heterozygous SNP in CCGG tetranucleotides context due to SNP-biased enzy-
matic digestion and outside CCGG motifs, likely due to poor alignment of short
Mspl fragments with alternate alleles and low mappability of short single end bisul-
phite sequencing reads. It is worth underscoring that these allelic biases are largely
specific to the single-end RRBS protocol. Paired-end sequencing is usually recom-
mended to increase mapping quality but is not suitable in combination with RRBS
due to many fragments being shorter than twice the read length leading to duplicate
sequencing of bases from the same DNA molecule. It is likely that the above bi-
ases could be avoided altogether by using an alternative DNA methylation profiling

method.

Paired-end whole-genome bisulphite sequencing (WGBS), for example, would
not suffer from enzymatic digestion biases potentially reducing the number of false
negatives and increasing the mappability of low degeneracy bisulphite treated reads
thanks to paired-end sequencing. While genotyping bias may be reduced, sequenc-
ing costs would be much greater for paired-end WGBS than for single-end RRBS.

Unlike RRBS, WGBS is less cost-effective due to uneven CpG concentration out-
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side CpG islands meaning many reads will not contain any methylation informa-
tion [31]. WGBS usually requires large quantity of input DNA material (at least 10-
fold higher than NuGEN RRBS protocol). For large scale analyses, it may not be
feasible to carry out WGBS as per the reasons outlined above. Standalone Nanopore
sequencing technology or in combination with enzymatic conversion of modified
cytosine bases is a promising new alternative to provide accurate methylation and
SNP information as well as valuable long range phasing information with minimal

input DNA requirements [139].

Despite high number of false negatives, ASCAT.m BAF rules were shown to
be accurate at called heterozygous SNPs and could be used beyond genotyping
purposes. In future, we speculate that these rules may form the basis of a new
module for ASCAT.m enabling de novo identification of single nucleotide variants
(SNVs). It would be incredibly valuable to add SNV calls to the output one can
obtain directly from bisulphite sequencing data. While RRBS data is suitable for
genotyping purposes and copy number profiling with ASCAT.m, we suspect WGBS
or Nanopore sequencing may be more accurate for genotyping and by extension for

de novo identification of single nucleotide variants.

We note that several in silico methods for tumour purity and copy number in-
ference have been developed since ASCAT was first published in 2010. The Batten-
berg method [116] for instance was inspired from ASCAT but designed for WGS.
Battenberg exploits haplotype information to generate subclonal allele-specific copy
number profiles. WGBS should in theory enable haplotyping and therefore allow
subclonal copy number profiling directly from methylation data. In multi-sample
studies like epiTRACERx, we can evaluate clonality to some extent by compar-
ing tumour regions from the same primary. However, subclonal copy numbers and
DMP calls would be useful in reconstructing phylogenies from single sample biop-

sies and plan to extend ASCAT.m with haplotyping with WGS data.
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2.4 Methods

The methods described below were recently published as part of our bioRxiv

preprint [140].

2.4.1 epiTRACERXx methylation study design

TRACERXx100 cohort

Overview:

- 100 NSCLC patients

- 100 normal adjacent samples
- 327 tumour samples

Clinical information:

- 61 LUAD : 32 LUSC : 7 other RRBS cohort

- 62 males : 38 females

- age at diagnosis = 68.3 yo Overview:

- 12 never smokers - 38 NSCLC patients

- 48 ex-smokers - 38 normal adjacent samples
- 40 recent-ex / current smokers - 125 tumour samples

Clinical information:
-24 LUAD : 14 LUSC

A .
Inclusion criteria -24 males : 14 fgmales
- age at diagnosis = 67.5 yo
Technical inclustion criteria: - 5 never smokers
- Patient part of TRACERx100 - 21 ex-smokers
- Patient with sufficient material - 12 recent-ex / current smokers epiTRACERKX pilot cohort

for = 2 tumour samples and the
matched normal

- WES purity > 0.15

- Samples with matched
RNA-Seq prioritised

- 38 NSCLC patients
- 37 normal adjacent samples
P - 122 tumour samples
Failed Sequencing - 3.2 tumour samples pp
- Mean tumour purity = 0.44
- Mean tumour ploidy = 2.92

-4 /163 samples

Clinical inclustion criteria: -1 normal
- Include LUAD and LUSC, - 3 tumour samples
females and males, smokers (from 3 different patients)

and non-smokers

Figure 2.13: EpiTRACERX patient inclusion criteria and cohort clinical features.
This flow chart shows how patients from the TRACERx100 cohort were selected for in-
clusion in the epiTRACERx methylation study. The RRBS cohort is the same as the final
epiTRACERXx cohort minus 4 samples which failed sequencing.

Samples from the first 100 patients of the TRACERx lung cancer cohort were
selected for multi-region RRBS (Figure 2.13). Patients with data for samples from
2 or more tumour regions and the adjacent matched normal, all with sufficient ma-
terial remaining, were considered for bisulphite sequencing. Tumour samples with
purity below 15% were discarded with the exception of CRUK0062-R6 which was
included for comparison with the other 6 sampled regions from this patient’s pri-
mary tumour. Patients with tumour samples of high purity were prioritised as well as
those with matched RNA-Seq data [114]. Samples were obtained across both lung

adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) subtypes, genders
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and smoking status. The clinical and technical inclusion criteria are summarised in

Figure 2.13 and the resulting cohort is depicted in Figure 2.2 and Table B.1.
24.2 Sequencing methods

2.4.2.1 RRBS sequencing protocols

RRBS sequencing was performed by Miljana Tanic and Pawan Dhami at Uni-
versity College London prior to my involvement in the epiTRACERX study.

Multi-region RRBS data was generated for about 1 in 3 NSCLC patients from
the TRACERXx 100 cohort (122/327 tumour regions from 38/100 patients, each with
matched normal). The NuGEN Ovation RRBS Methyl-Seq System was adapted by
the manufacturer for automation on Agilent Bravo liquid handling robot. This set
up was then used to prepare libraries by enzymatically digesting 100ng of gDNA
with Mspl, an methylation insensitive enzyme that cleaves DNA at 5'-CCGG-3’ mo-
tifs. The enzyme breaks the phosphodiester bonds upstream of CpG din