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Abstract 

We aimed to optimise the estimation of skeletal muscle-water spin-spin relaxation 

time (T2m), and fat fraction estimated from multi-echo MRI, as potential biomarkers, 

by accounting for instrumental factors such as B1 errors, non-Gaussian noise and non-

ideal echo train evolution.  

A multi-component slice-profile-compensated extended phase graph (sEPG) model 

for multi-echo Carr-Purcell-Meiboom-Gill (CPMG) spin-echo sequence signals was 

implemented, modelling the fat signal as two empirically calibrated sEPG 

components with fixed parameters, and the remaining unknown parameters (B1 field 

factor, T2m, fat fraction (ffa), global amplitude and Rician noise SD) determined by 

maximum likelihood estimation. After validation using a calibrated test object the 

algorithm was used to analyse clinical muscle study data from patient groups with 

amyotrophic lateral sclerosis (ALS), Kennedy’s disease (KD) and Duchenne muscular 

dystrophy (DMD) and matched healthy controls. Parameter maps were generated 

using quality control steps to reject pixels failing fit quality or physical meaningfulness 

criteria. Muscle fat-fraction was also determined independently by 3-point Dixon MRI 

(ffd).  

In ALS and KD median T2m were significantly elevated compared with healthy controls 

in varied patterns and time courses, whereas it was decreased in DMD; other T2m 

distribution histogram metrics such as the skewness and full width at quarter 

maximum also differed significantly between patients and healthy volunteers. 

Quantitative comparison of ffa and ffd in the same muscles revealed a monotonic 
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relationship deviating from linearity due to differing deviations from the assumed 

ideal signal behaviour in each method. Finally, the effects upon estimation accuracy 

and precision of practically realisable pulse sequence parameter choices were 

explored in simulations and with real data. Recommendations are presented for 

optimal choices.    

Clinically practical conventional CPMG sequences, combined with an appropriate 

signal model and parameter estimation method can provide robust T2m and ffa 

measures which change in disease and may sensitively reflect different aspects of 

neuromuscular pathology. 
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Impact Statement 

The overall aim of this thesis was to optimise sensitive and objective biomarkers to 

detect and monitor the changes occurring on skeletal muscle due to disease. This 

facilitates drug development and can lead to availability of new treatments for 

previously untreatable conditions. The proposed method is already in use in three 

international natural history studies, validating MRI clinical outcome measures.  

With regards to clinical trials, the potential application to individual examinations 

may also improve diagnosis and treatment monitoring using clinical MRI. Due to the 

wide use of T2 relaxometry in hospital healthcare (e.g. NHS) these advances can also 

benefit other workers and researchers, as they can potentially be implemented at 

any centre with a standard modern scanner.  

There is also direct impact to the academic community by jointly creating and 

exchanging expertise in the study of neuromuscular diseases – the main scope of this 

work – and further applications to liver and brain imaging and potentially also other 

fields.         

The economic impact due to the associated financial implications can also be 

substantial. First, by faster and more efficient drug development. Second, by reducing 

scan duration and cohort sizes. Third by reducing the need for using additional or 

alternative – MRI or other – diagnostic methods and modalities. An additional benefit 

is to avoid lengthy, invasive (e.g. biopsies) or unreliable (e.g. functional tests) 

methods and the associated patient discomfort or difficulty to comply.   
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Such benefits can have immediate effect in the translational research or individual 

examinations taking place in our department and collaborative institutions as 

university hospitals etc. This can be extended to a national or international level in 

accordance with the legislation in place. Any acquired expertise can be also brought 

about through disseminating outputs (e.g. scholarly journals), conferences and 

academic or entrepreneurial associations.    
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Chapter 1. Introduction 

Many medical imaging methods such as computerised tomography (CT) and 

ultrasound (US) imaging rely conceptually upon a single type of image contrast. For 

CT this is the degree of absorption of x-rays as they interact with the electron cloud 

surrounding atoms at the molecular level, and for US the degree of reflection of 

sound waves at structural interfaces within the human body (Zaidman and Van Alfen, 

2016). Magnetic resonance imaging (MRI) on the other hand, takes advantage of 

multiple aspects of the magnetization properties of atomic nuclei in tissue, offering 

multi-modal contrasts probing different physical properties at a deep structural level 

(McRobbie et al., 2006). In conventional MRI the properties proton density, T1 

relaxation time and T2 relaxation time provide the main MRI contrasts. These offer 

versatile ways to distinguish different tissue types, and are sensitive to pathology 

(Wattjes et al., 2010).  

Inherited neuromuscular disorders represent a wide spectrum of diseases, including 

genetically distinct forms of myopathies, neuropathies, and mitochondrial disorders 

that have been increasingly identified in recent decades. Their prevalence in the UK 

is approximately 9.2 cases per million children under 18 years of age. Cases in the 

general population are thought to be between 1 in 3500 and 1 in 3000 (Emery, 1991). 

These diseases all share the clinical feature of fatigable weakness, however age at 

onset, concomitant symptoms, weakness patterns, long-term progression and 

treatment responses differ depending on the molecular mechanism resulting from 

the genetic defect (Cruz et al., 2014). In studies of neuromuscular disease there are 

needs to better characterise subtle or subclinical changes (e.g. relating to fat 
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infiltration or oedema which may precede symptomatic change), achieve early 

detection, and sensitively monitor their progression, including response to therapies 

(Lovitt et al., 2006); this is the overall translational purpose of the work described in 

this thesis. The need for sensitive and responsive imaging biomarkers for 

neuromuscular disorders is motivated by factors including their rarity, complex and 

varying time courses, various underlying processes affecting imaging observations, 

and current lack of effective treatments (Klickovic et al., 2019). Specific diseases 

investigated in this thesis are amyotrophic lateral sclerosis and Kennedy’s disease 

(both neuropathies with consequent muscle involvement), and Duchenne muscular 

dystrophy (a congenital muscular dystrophy). There is growing evidence that MRI 

may provide both quantitative disease biomarkers for trials, and that in clinical 

practice muscle MRI may help in selecting appropriate genetic and biochemical 

diagnostic investigations, as well as suggesting muscle biopsy targets for pathological 

studies (Mercuri et al., 2007).           

Based on the main MRI contrast mechanisms, MRI parameter maps can be 

constructed. For example, as will be described in detail later, by recording the T2-

weighted image intensity with increasing echo time at each pixel and fitting a suitable 

signal model, T2 maps can be generated and summary histogram metrics then 

extracted. It has been suggested that T2 mapping may be used as a non-invasive and 

sensitive biomarker for the quantification of early and subtle muscle changes caused 

by disease, or changes due to therapeutic interventions in neuromuscular diseases 

(Arpan et al., 2013). Such quantitative MRI methods offer the ability to assess large 

and complete anatomical structures – for instance entire limb cross-sections and 
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their individual muscles – in contrast to established methods like biopsy which is 

invasive and restricted to small tissue sample volumes. Additionally, as will be 

explored in this work, T2-based mapping can potentially also provide fat 

quantification indices as well as information regarding instrumental imperfections  

(Azzabou et al., 2015). More generally, as a potential source of biomarkers, MRI does 

not involve ionizing radiation in contrast with CT, is not complicated by participant or 

observer performance variation, as is the case with clinical functional assessment, 

and data are stored and analysed retrospectively. The latter allows for greater 

flexibility in the analysis as well as the option of updating the analysis according to 

advancing method developments.   

The above observations support the use of MRI, which in the case of parameter 

mapping is commonly referred to as quantitative MRI, to provide outcome measures 

for neuromuscular disease treatment trials (Huang et al., 1994). However reliability 

must be established in terms of the precision, accuracy and reproducibility of 

measurement results (Kirshner and Guyatt, 1985). Precision refers to the variability  

observed in an outcome measure after replicate measurements from the same 

(repeatability precision) or similar (reproducibility precision) specified experimental 

conditions (Sullivan et al., 2015). If this variability is larger than the true disease-

resultant differences between subjects or groups of subjects, the measurement 

method cannot be considered reliable. Typically lack of precision impacts the power 

of comparisons using statistical methods such as analyses of variance (ANOVA) or 

student t-tests etc. Accuracy refers to the ability of a method to produce measured 

values comparable to those of a ‘gold standard’, i.e. our best estimate of the 
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theoretical ground truth. Put differently, accuracy assesses the extent to which the 

method in question is biased, i.e. introduces a difference between the measured and 

reference – i.e. true, or best available approximation to true – values. In MRI this is 

typically investigated using test objects with known values (i.e. phantoms) and by 

comparing in vivo parameter estimates with those obtained with alternative methods 

such as biopsy or MR spectroscopy.  

The aims of this thesis are threefold. First, to optimise methods for transverse 

relaxometry parameter estimation based on multi-echo MRI in order to extract 

potential biomarkers from clinically realisable examinations. Second, to test the 

performance of the proposed methods both in terms of test object data and data 

from in vivo patient cohort studies, comparing results with those obtained with 

alternative established methods. Third, by empirical investigation of acquisition 

protocol designs constrained to pragmatically realisable conventional scanner 

parameter settings, to develop useful recommendations and guidelines for future 

acquisition optimisation.  

The first task involved adopting an improved physics model describing the signal 

behaviour in multi echo MRI acquisitions, and an underlying statistical approach to 

parameter estimation appropriate to the experimental conditions encountered in 

real-world acquisitions. In Chapter 2 the basic theoretical background pertaining to 

both is given and in Chapter 3 the experimental work that led to optimisation of the 

method for practical application is described. Also in Chapter 3, validation using a 

calibrated test object (phantom), part of the second aim, is presented. Chapter 4 

continues discussion of the second aim where an application of the proposed method 
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to analysis of muscle MRI data from a motor neuron disease cohort study is 

presented, including comparisons with results from alternative MRI methods. 

Chapter 5 constitutes the final part of the second aim where an application in a more 

challenging dataset from a natural history study of Duchene muscular dystrophy 

patients is presented. Again validation is explored via comparison with existing 

methods. Finally the third aim is developed in Chapter 6 where common multi-echo 

sequence acquisition design and tailoring strategies are presented and discussed. The 

thesis ends in Chapter 7 with an overall discussion and conclusions bringing together 

results from all the previous chapters.                        
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Chapter 2. Theory 

2.1 MRI Background 

2.1.1 Brief general description of MRI theory 

Magnetic resonance relies on the effect that a magnetic field has on the spin of 

specific nuclei. Spin is a quantum mechanical property of a nucleus which takes 

discrete values dependent upon the number of protons and neutrons of which it is 

composed. The hydrogen nucleus spin can take either a positive or an equal negative 

value and can therefore be considered as a microscopic magnet with a spin vector 

aligned along or against the direction of an external magnetic field. While there are 

other nuclei with non-zero spin, the hydrogen nucleus is the most important in 

medical magnetic resonance as hydrogen is a component of water and lipids which 

are highly abundant in the human body. In equilibrium a small surplus of spins are 

aligned with, as opposed to against, the applied magnetic field B0 which produces an 

equilibrium total magnetization M0 parallel to the field (Brown and Semelka, 2005). 

By convention the direction of M0 (and B0) defines the z-axis of the coordinate system 

used to describe this phenomenon. If a second rotating magnetic field B1 

perpendicular to z is applied, it will force M0 to depart from the z direction towards 

the x-y plane. The frequency at which B1 rotates is equal or close to the same 

frequency by which individual spins are caused to rotate by B0, called the resonant or 

Larmor frequency for historical reasons, and is different for different nuclear species 

and magnetic field strengths. The resonance frequency ω0 for a specific nucleus (e.g. 

a proton in this case) in a magnetic field (B0) is given by the simple relationship  
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𝜔𝜔0 = 𝛾𝛾𝐵𝐵0                                                                                                                     Equation 1 

where γ is the gyromagnetic ratio that characterises the nucleus in question. Its value 

for protons is 2.67·108 radians·s-1·T-1, or equivalently 42.56 MHz·T-1. If the duration 

for which of B1 is applied is chosen carefully, the net magnetization M0 can be made 

to rotate entirely into the x-y plane. B1 is produced by transmitting modulated radio 

frequency (RF) energy to the system, and thus the application of B1 in this manner is 

referred to as a 90° RF pulse (Figure 2.1). In quantum mechanical terms the resonance 

phenomenon couples the RF energy at this specific frequency to the energy 

difference between the field-aligned and the field-opposed spins, tending to equalize 

the two populations, while also bringing the spins into phase. Following the 90° RF 

pulse, the net magnetization of the system now entirely in the x-y plane can be 

referred to as Mxy, and because it is rotating about B0 it can induce a voltage signal in 

a suitably orientated RF receiver coil. The detection and quantification of this signal 

induced by the resonant magnetization is the principle behind MRI (Brown and 

Semelka, 2005).  

The above process of generating transverse magnetization is referred to as 

excitation. It is followed by relaxation, because spins will gradually depart from the 

coherent state imposed on them by the 90° RF pulse, starting immediately after it is 

switched off. This process has two aspects; firstly spins exchange energy with their 

environment (the so called “lattice”) so that the initial equilibrium of more spins 

aligned with B0 is gradually restored, with Mz re-approaching M0. Secondly spins also 

exchange energy amongst themselves so that their phase coherence in the x-y plane 

also reduces with time. The first mechanism affects the return of the net 



50 
 

magnetization to the z-axis (M0), while both mechanisms affect the gradual reduction 

of Mxy, which therefore decays faster than M0 recovers. These are exponential 

processes described quantitatively by the time constants T1 and T2: M0 recovery is 

governed by an exponential regrowth with time constant T1 while Mxy decreases by 

exponential decay with time constant T2 (Figure 2.2) (McRobbie et al., 2006). 

 

Figure 2.1: An RF pulse centred at the resonant frequency can be seen in the rotating 
reference frame as an additional magnetic field B1 oriented perpendicular to B0. When energy 
is applied at the appropriate frequency, the protons absorb it and M rotates into the 
transverse plane. M rotates into a direction perpendicular to both B0 and B1 (Brown and 
Semelka, 2005). 

 

Figure 2.2: T1 and T2 relaxation processes take place in parallel, but T2 is more rapid 
(McRobbie et al., 2006)  
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Under practical measurement conditions additional factors affect the decay of Mxy, 

predominantly the inhomogeneity of the main magnetic field B0. In reality this field 

will vary slightly at different spatial locations within the magnet, altering the precise 

frequency at which protons rotate at each location and thus causing them to become 

out of phase with each other more quickly. This causes the net transverse 

magnetization to decrease faster than it otherwise would, with its decay now 

described by a new time constant T2* which is shorter than T2. It is possible to reverse 

this additional decay with the use of a second B1 RF pulse with a duration such as to 

rotate any magnetization about its axis in the rotating frame through 180°. This 

effectively causes spins which have lost phase coherence from each other to regain 

it (Figure 2.3). At a time twice as long as the time that the 180° was applied after the 

initial 90° pulse, the signal returns to a maximum when the transverse net 

magnetization rephases, and the peak signal at this time will have decayed only by 

the T2 time constant. The signal at that point is known as a spin echo (Hahn, 1950) 

and the time at which it occurs as the echo time (TE). 
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Figure 2.3: (a) Spin-echo pulse sequence. Spins initially in phase (b) dephase naturally (c) until 
the 180˚ pulse is applied. (d) Immediately after the pulse their phases are reversed, but they 
continue to dephase in the same direction (e) forming an echo (f) and then dephasing again 
(g) (McRobbie et al., 2006) 
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In addition to the externally applied B0, the local magnetic field experienced by 

protons is influenced also by the magnetic effect of the electron cloud of their 

molecular environment. The slightly different magnetic fields experienced by water 

and lipid protons is an example; molecular water has two hydrogen atoms bonded to 

one oxygen atom, whereas lipid has many hydrogen atoms bonded to a long-chain 

carbon framework. As a consequence the electron cloud densities proximal to water 

and lipid protons differ, meaning that they experience small corresponding 

differences in their local magnetic fields. This local field difference is known as 

chemical shielding and is proportional to the main magnetic field strength.  

𝐵𝐵𝑖𝑖 = 𝐵𝐵0(1 − 𝜎𝜎𝑖𝑖)                                                                                                                      Equation 2 

                                                                                                                  

where σi is the shielding term for the specific proton. Chemical shielding causes 

different resonant frequencies for fat and water protons in the same externally 

applied main magnetic field. Because these frequency differences are very small, and 

linearly dependent on B0, they are typically expressed as parts in a million (ppm), 

denoting the resonant frequency of the proton of interest relative to a reference 

frequency (Figure 2.4).  
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Figure 2.4 Nuclear magnetic resonance spectrum of water and fat at 1.5 T (a) and 3.0 T (b). 
The resonant frequencies for water and fat are separated by approximately 3.5 ppm, which 
corresponds to an absolute frequency difference of 220 Hz for a 1.5 T magnetic field (63MHz) 
or 450 Hz at a magnetic field of 3.0 T (126 MHz) (Brown and Semelka, 2005)  

Frequency differences expressed in this form are known as chemical shifts (Brown 

and Semelka, 2005).  

2.1.2 Dixon fat water imaging 

The chemical shift between water and lipid resonant frequencies can be used to 

determine their respective distributions quantitatively. This can be achieved by 

encoding this frequency difference into gradient echo images with different TE shifts. 

In a time Δt water and fat proton spins in the x-y plane will dephase by an angle 

α=γ·B0·σ·Δt, where σ is here the fat-water chemical shift difference, so by adjusting 

Δt by correctly specifying TE during the frequency encoding period (section 2.1.5), for 

a given B0, we can acquire images with the fat and water protons precessing in phase 

(0°) or with opposite phases (180°). The image intensity will be based on the 

individual water and fat signal intensities in phase S0=W+F, and in phase opposition 

S1=W-F, where W, F are the complex signals emanating from water and fat protons 
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respectively. The water and fat signal levels can then be calculated as W=0.5·(S0+S1) 

and F=0.5·(S0-S1).   

Such methods are called “Dixon” techniques (Dixon, 1984). The above described 

version is commonly referred to as the “two point Dixon technique”, referencing the 

two “points” in time (TE) at which the signal was sampled. However this is only the 

simplest implementation illustrating the basic principle. A drawback to this simple 

implementation is the effect of field inhomogeneity ΔB0 which may result in phase-

wrapping and water–fat “swapping” in the image. Furthermore, fat is known to have 

a multi-peak spectrum with only the main peak frequency (methylene group) 3.5 ppm 

away from water. 

Various methods have been proposed to correct for the phase wrapping 

predominantly due to field inhomogeneity (ΔB0), to achieve ‘phase unwrapping’. This 

is inherent to all Dixon water–fat separation methods and necessitates complex 

correction algorithms to avoid the concomitant fat-water swapping. The three point 

Dixon technique achieves this by encoding the phase differences due to 

inhomogeneity and other imperfections, in addition to the required chemical shift 

difference, by recording two gradient-echo images in which the fat signal is in 

opposite phase to the water – instead of only one that would be sufficient in the 

absence of ΔB0. Then with the use of computational phase unwrapping techniques 

the error phase differences can be determined (Glover and Schneider, 1991) leading 

to a more accurate estimation of the fat and water signal and their ratio. 
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Most unwrapping algorithms exploit the fact that B0 field inhomogeneities vary 

smoothly across the image and are continuous. In the Dixon method used in the work 

described here (to generate Dixon fat fraction maps in the results sections) the 

“Prelude” phase unwrapping tool from FSL software was used (FSL, 2015). Fat 

fraction (ff) is calculated as ff = F/(W+F)·100%, where W and F are the water and fat 

signal levels respectively, as previously described, and fat fraction maps are thus 

constructed. Subsequently regions of interest (ROIs) are commonly manually defined 

(to avoid operator bias often with the use of an “auxiliary” T1 weighted, or raw Dixon 

acquisition image) to extract mean ff values for analysis.  

This type of quantitative MRI (qMRI) offers an observer independent measurement 

which is highly repeatable and can be performed at most clinical centres (Burakiewicz 

et al., 2017). Additional correction for the multiple peaks of the lipid spectrum may 

assist in obtaining more accurate fat fractions (Wokke et al., 2013).   

2.1.3 Factors affecting T1 and T2 relaxation times 

The process of relaxation relies on the energy transfer from an excited proton (spin) 

to either another spin (T2 effects) or to its surrounding environment (T1 and T2 effects) 

(section 2.1.1). This is mediated by fluctuations of the local magnetic field that spins 

experience, acting as an additional magnetic field BR effectively perturbing spins from 

their in-phase (x-y plane coherence) and higher energy (aligned to the opposite 

direction of the main B0 field) state. These fluctuations are in general caused by 

movement of neighbouring magnetic moment-possessing particles, such as protons 

in the same molecule or orbital electrons in neighbouring molecules. Since water is 



57 
 

the most common MRI detected molecule, the movement of the dipole consisting of 

its two protons is one of the main sources of relaxation. Magnetic field fluctuations 

thus depend on temperature, and on the microscopic environment that affects the 

motion of the particles in question, and as a result comprise of a wide range of 

frequency components. For example unconstrained (‘free’) water molecules will 

generate high frequency local field fluctuations while strongly bound protons in large 

molecules will cause low frequency fluctuations (Foster and Hutchison, 1987).  

The effects of the aforementioned local BR field fluctuations can be better understood 

by decomposing them into transverse and longitudinal components. The transverse 

BR field components have two effects. First, in a way similar to the action of B1 they 

affect the energy state of spins causing transitions (flipping) from the antiparallel to 

the parallel state (towards M0), leading to T1 relaxation. Second, this alteration in the 

lifetime of the spin states causes ambiguity in their energy difference ΔE, which 

according to quantum mechanical physics (Heisenberg uncertainty principle, 

ħ≈ΔE·Δt) introduces also uncertainty Δt in the duration that spins remain at each 

state; this relates to the width of the spectral distribution (Lorentzian) expressing the 

transverse magnetization decay in the frequency domain and thus T2 relaxation 

(Figure 2.5).   
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Figure 2.5: The exponential T2 decay corresponds to a Lorentzian distribution in the 
frequency domain (Fourier transform), with the width of the distribution inversely 
proportional to the T2 decay constant of the time domain (Tofts, 2004)   

The longitudinal BR field components introduce alterations to the main B0 field by 

adding or subtracting to it, causing temporally random departures from the nominal 

(Larmor) frequency locally, which gradually brings spins out of phase coherence thus 

contributing to T2 relaxation (Tofts, 2004). Since longitudinal BR field components are 

related to the (longitudinally) static B0 field they appear (average) as fluctuations 

close to zero frequencies (ω=0), while transverse BR field components are added to 

and therefore centred around the Larmor (B0-dependent) frequency ω0. The first play 

a key role in T2 relaxation, which due to its influence by both types of BR field 

components is also affected by the latter, while T1 relaxation depends only on the 

latter (local magnetic field fluctuations around the ω0 frequency)  (Foster and 

Hutchison, 1987).              

To describe the above processes in the context of the biophysical molecular 

environments present in typical MR experiments, the concepts of spectral density 

function J(ω) and correlation time τc have been widely used (McRobbie et al., 2006). 
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The first describes the distribution of the frequencies influencing relaxation of a 

particular collection of molecules. The second is a measure of the time it takes for 

interactions to take place within such a collection and therefore describes the 

mobility and motion of its contents. In that light T1 and T2 relaxation behaviour can 

be discussed in terms of representative biophysical environment scenarios. A 

common approach considers water molecules – as the main source of MRI signal – to 

exist in a range of ‘binding’ conditions, as presented in Figure 2.6 (Foster and 

Hutchison, 1987). 

 

Figure 2.6: (i) Water molecules can be tightly bound to a large molecule (molecule A, as part 
of an hydration layer), in an intermediate distance (molecule B) or at a larger distance 
(molecule C, as free water). (ii) The corresponding expected spectral density distributions 
and associated relaxation behaviour for the previous types of water molecule attachment. 
(iii) The corresponding relaxation rates 1/T1 and 1/T2 as a function of the distance (degree of 
attachment) of the molecules (Foster and Hutchison, 1987)        
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Tightly bound water molecules are considered to reside within the hydration layers 

at the surface of large molecules such as polysaccharides and proteins, as molecule 

A in this example. Thereafter water molecules are continuously distributed with 

distance, from intermediately bound as molecule B to completely free as molecule C 

[panel (i)]. Tightly bound molecules like A do not readily interact with other molecules 

hence their correlation time τc is long. The corresponding spectral density function 

distribution is plot A [panel (ii)] showing high intensities at low frequency field 

fluctuations for ω close to zero and markedly decreasing thereafter before ω0. This 

translates to efficient T2 but inefficient T1 relaxation processes. For less tightly bound 

molecules like B – at larger distances from the membrane – correlation time τc is 

relatively shorter with spectral density as shown in plot B, where T2 processes 

become less dominant and T1 processes more efficient. For free water molecules like 

C correlation time τc is much shorter with spectral density relatively uniform along 

the frequency ω spectrum, and both relaxation processes become inefficient. The 

relationship between T2 and T1 relaxation and distance from the membrane as a 

measure of binding efficacy are shown in panel (iii). The strong dependence of T2 

relaxation upon low local field frequency components is the reason that T1 is in 

general longer than T2. It also follows that T1 relaxation is more frequency-dependent 

(and hence B0 dependent) than T2 relaxation.  

A foundational assumption in the above discussion is that only field fluctuations due 

to particle rotation and translation (‘tumbling’) are considered. However there are 

also strong exchange mechanisms due to redistributions taking place in real 

biophysical situations. A water proton may over time change environment between 
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tightly bound, intermediate binding and free water conditions. The proportion of 

time at each state is considered to be in average equal to the proportional occupancy 

of each state, and the observed relaxation rates to be a weighted mean of the rates 

for the participating water fractions: 

1
𝑇𝑇1,2
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑓𝑓𝑜𝑜𝑜𝑜𝑏𝑏𝑏𝑏𝑜𝑜

𝑇𝑇1,2
𝑜𝑜𝑜𝑜𝑏𝑏𝑏𝑏𝑜𝑜 + 𝑓𝑓𝑖𝑖𝑏𝑏𝑖𝑖𝑜𝑜𝑜𝑜𝑖𝑖.

𝑇𝑇1,2
𝑖𝑖𝑏𝑏𝑖𝑖𝑜𝑜𝑜𝑜𝑖𝑖. + 𝑓𝑓𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜

𝑇𝑇1,2
𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜                                                                                     Equation 3 

where 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑓𝑓𝑖𝑖𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. + 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖 = 1 (McRobbie et al., 2006). Another simplifying 

assumption is that only large hydrophilic molecules such as proteins attract water 

molecules, whereas there is in reality much greater variety in the number and types 

of binding sites in particular tissues. For instance carboxylic and other ionic groups 

within proteins (or polysaccharides, nucleic acids etc.) attract water while methyl 

groups are hydrophobic. Such differences are a potential reason for the differences 

in the relaxation times observed between different tissues, for instance brain, 

muscle, fat or liver tissue. Finally the assumption so far of considering mainly water 

protons is not always a good approximation due to the potential presence of mobile 

lipid molecules depending on tissue type and disease status. These molecules are in 

the form of triglycerides, consisting of relatively small glycerol molecules combined 

with usually unbranched fatty acids. The central part of such acids is an alkyl chain – 

with high hydrogen concentration – which retains certain freedom of motion within 

the triglyceride molecule. In adipose or fat infiltrated tissue triglyceride molecules 

tend to be closely packed and due to these mobility and structural properties show 

high proton density in MR images. In such cases protons are much more constrained 

in general than in water and hence exhibit shorter T1 and significantly longer T2. Due 

to their dense packing triglycerides can form a significant component of fatty cells, 
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and therefore of pixel volume, while due to their hydrophobic nature they can be 

considered to be compartmentalised from water content (Foster and Hutchison, 

1987).  

2.1.4 Neuromuscular pathology and multi-component T2 relaxation 

Since the principal source of biological MRI signal is from fat and water protons, 

abnormalities causing a change in fat or water content result in the modification of 

proton density and T1 and T2 relaxation times. Changes in properties such as free vs. 

bound water fractions and intracellular vs. extracellular water distribution also 

influence the observed relaxation behaviour. In addition to compartmentalisation 

between fat and water components, tissue water itself appears also to often be 

distributed between non-exchanging compartments. The latter has been 

demonstrated by the multi-exponential nature of T2 decay, or equivalently the multi-

peak T2 distribution spectrum seen in skeletal muscle data if the appropriate imaging 

technique is used, in contrast to the single relatively short T2 (typically 30-40ms) 

yielded with more conventional methods (Saab et al., 1999, Sharafi et al., 2017). 

There appears to be at most only rather slow exchange between intra- and 

extracellular water compartments. The latter is a relatively small water fraction of 

about 10 to 20% and has a relatively long T2 above 100ms. Most of the water is 

thought to be in the intracellular compartments – around 70% or more – and exhibits 

various decay rates. These are thought to be related to the restricted water molecular 

motion caused by the relatively large surfaces by which the cytoplasm is permeated; 

additional decay processes may be due to water contained in membrane-bound 

structures and differences in the muscle fibre intracellular space due to twitching. 
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Other metabolites might convolute these findings (Krssák et al., 2004). Additional 

short (below 5ms) or long (above 200ms) components have also been reported, in 

relatively small proportions, and have been related to the hydration shell of 

macromolecules and small amounts of relatively free water in tissue or vascular 

blood, respectively (Sharafi et al., 2017, Saab et al., 1999).           

Nevertheless, on the conventional T2 weighted images widely used radiologically 

healthy muscle appears to have a single short T2 relaxation time, while both oedema-

related water and fat have longer T2 relaxation times. Therefore T2 weighted images 

are sensitive to both fat and water changes within muscle. T2 weighted images may 

show abnormalities early in the disease course of many myopathic conditions, likely 

reflecting increased water content due to inflammation or abnormal blood flow. 

These contrast properties may identify regions with a higher probability of yielding in 

a useful pathologic diagnosis when biopsied. The underlying cause of T2-weighted 

hyper-intensities in muscle disease is still not entirely understood. Reversal of these 

findings in inflammatory myopathy is consistent with both improvement of strength 

and Creatine Kinase level. These findings have been characterised as relating to 

‘inflammation’ or ‘muscle oedema’, by different authors. However, it has also been 

reported that inflammatory myopathy often does not result in detectable oedema on 

muscle biopsy. In addition, denervation causes muscle T2 weighted hyper-intensity, 

despite the lack of oedema and inflammation in most cases of denervation (Lovitt et 

al., 2006).  

When there are two separate tissue components in the same volume which are not 

in exchange, then two corresponding separate T2 decays are observed.  This is the 
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case in fat infiltrated muscle which contains separate water and lipid components. 

Various strategies can be used to separate or independently measure the T2 of these 

2 components.  

Fat suppression  

In short tau inversion recovery (STIR) imaging the signal originating from fat is 

expected to be nulled, allowing unequivocal visualization of oedema and water. This 

method takes advantage of the difference in longitudinal magnetization recovery 

rates between water (muscle) and fat (Figure 2.7). Fat nulling is achieved with the 

introduction of a 180o inversion pulse at the beginning of the imaging pulse sequence, 

and with a subsequent delay before application of a 90o pulse to generate the image 

signal at a time when the longitudinal magnetization due to fat protons is zero.  STIR 

images are however only qualitative so cannot be used on their own to generate the 

quantitative T2 values required for an MRI outcome measure. Other limitations are 

the inability to acquire multi-slice images data across large volumes in a single scan 

due to the constraint of the repetition times (TR), the sometimes complex contrast 

dependence on both T1 and T2 (section 4.4), and a difficulty in discriminating tissues 

with similar T1 relaxation times, for instance when using contrast agents (Brown and 

Semelka, 2005). 
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Figure 2.7: T1 recovery curves for inversion recovery sequences. The 180° inversion pulse 
inverts the net magnetization for both fat and water at time zero. If the 90° pulse is applied 
when the fat longitudinal magnetization crosses zero (dashed line), echoes will be formed 
from signal emanating only from muscle.  

An alternative to the STIR approach is frequency selective fat saturation, a technique 

based on the chemical shift difference between fat and water. In this method again 

a preparation RF pulse is used, in this case having a narrow bandwidth with centre 

frequency chosen in order to excite only proton spins in the fat resonance (fat peak) 

so that they are tipped into the transverse plane and then dephased - before the rest 

of the pulse sequence, so that no remaining image signal originates from the fat. 

However under certain conditions there may be difficulty in successfully saturating 

the fat resonances, e.g. at low B0 fields because they overlap with water proton 

frequencies and at higher fields due to the multiple peaks apparent in the fat 

spectrum. In addition inhomogeneity in either the main magnetic field B0 or the RF 

pulse amplitude can cause incomplete fat suppression (Brown and Semelka, 2005, 

McRobbie et al., 2006).  
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Post hoc multicomponent modelling  

In a different approach, explored in this thesis, methods have been developed based 

on quantifying multiple components in the decay of T2-weighted image signal 

intensity with TE to separate the water and fat signal contributions (Kan et al., 2009). 

In this approach fat and water protons co-existent in a particular imaging volume, are 

assumed to be physically separate (i.e. not in exchange) and therefore their 

composite signal decay can be decomposed into their respective individual 

contributions illustrated in the theoretical curves presented in Figure 2.8. 

  

Figure 2.8: Simulation of a decay of T2 weighted signal comprising of mono-exponential fat 
and water components, assuming equal proton densities.   

After signal decomposition, post-processing can include correction factors for 

component-specific T1 weighting and proton density bias (Yao and Gai, 2012), or 

allowance for transmit field inhomogeneities (Azzabou et al., 2015). The latter 

publication suggested that such quantitative MR protocols can offer an easily 
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implemented, straight forward alternative to existing Dixon techniques. The 

significance of this is that by separating the fat from the muscle signal, the latter will 

show T2 value alterations corresponding to oedema and related changes, 

independent of fat signal intensity changes, which are potentially of great importance 

since they are potentially early indicators of reversible myopathologies.  

Techniques which integrate multi-component and Dixon-type measurements have 

also been proposed, such as IDEAL – CPMG combined signal decomposition (Janiczek 

et al., 2011), or fat correction of the conventional T2 values with use of the Dixon 

acquired muscle – fat fraction (Yao and Gai, 2012).  

From the above discussion it emerges that a useful distinction can be drawn between 

the so called global T2, referring to a T2 estimated assuming a mono-exponential 

signal decay even where this may not actually be so, and multicomponent T2 values 

estimated with a model accounting for different compartments existing in in vivo 

skeletal muscle (Carlier, 2014).                                                       

2.1.5 Spatial localisation, slice selection and sources of artefacts  

The signal induced by the resonant magnetization (section 2.1.1) must be detected 

and analysed in a way that leads to image formation, i.e. to provide spatial 

localisation. While in the Larmor equation (Equation 1, section 2.1.1) the value of γ 

for a given nucleus is fixed, the value of the magnetic field strength can be varied 

linearly along any spatial direction by applying a magnetic field gradient. If such a 

gradient is applied along the x direction this equation becomes 
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𝜔𝜔0 (𝑥𝑥) = 𝛾𝛾(𝐵𝐵0 + 𝑥𝑥𝐺𝐺𝑥𝑥)                                                                                                           Equation 4 

where Gx is the gradient along that direction, the magnitude of magnetic field 

strength added or subtracted from B0 per unit distance from the origin. The main field 

B0 direction is by convention along the z-axis (along the magnet bore of the MRI 

scanner) therefore gradients are linearly varying added or subtracted z-components 

of magnetic field. This means that the total field in the z direction that nuclei 

experience depends on their position, in this case along the x-axis, and for that reason 

their resonance frequency is also spatially dependent. Conversely determination of 

the frequency of a proton’s MR signal determines its position in space. This principle 

is illustrated for a single dimensional sample consisting of different numbers of 

protons at each position in Figure 2.9 below.   

  

Figure 2.9: Illustration of the use of a magnetic field gradient to produce a spectrum of 
frequencies corresponding to a density of spins in a given sample, along a single direction 
(Foster and Hutchison, 1987)  
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By sequentially applying three gradients Gx, Gy and Gz, in each orthogonal direction, 

3-dimensional spatial localisation may be achieved. The simplest 2D version of MRI is 

tomographic, in which the first gradient applied in any acquisition is Gz, because it 

has to be combined with the signal excitation RF pulse in order to image the desired 

slice. With the use of a relatively strong Gz gradient the resonant band of frequencies 

(or bandwidth) defined by the selective RF pulse can be centred closely around the 

image isocentre as shown in Figure 2.10 so that signal originates only from a relatively 

narrow slice.    

 

Figure 2.10: Slice selection by combining the bandwidth-limited excitation RF pulse with a Gz 
gradient (McRobbie et al., 2006).  

A representation of the RF pulse and the Gz gradient (or Gss, slice selective gradient) 

in the time domain is shown in Figure 2.11 below.  
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Figure 2.11: Representation of the generic shape of the excitation RF pulse and the slice 
selective gradient with time (McRobbie et al., 2006)  

The RF pulse amplitude as a function of time (the “pulse-shape”) usually 

approximates a sinc function as, assuming linear time-frequency behaviour, this 

corresponds to a constant (square) excitation frequency spectrum producing a 

rectangular slice profile as suggested in Figure 2.10. Mathematically this is because 

the Fourier transform of a sinc function (time domain) is a rectangle or ‘top hat’ 

function in the frequency domain; this ensures that the necessary spatial frequency 

components (which translate to image contrast) are adequately represented. Figure 

2.11 also shows that the applied gradient has a secondary negative lobe. Its role is to 

bring back into the same phase all the excited protons across the selected slice to 

correct for the dispersion in resonant frequency that the applied Gz gradient caused 

such that the final phase of the protons is close to zero after the application of both 

Gz lobes.    

At the same time that the refocusing part of the slice selective gradient is applied the 

in-plane frequency encoding commences with the application of another gradient in 

either the x or the y direction. Its role is to assign a range of frequencies along the 

length of the respective dimension. The first, negative frequency encoding gradient 
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results in dephasing of the signals along that dimension, with the phase at each 

position corresponding to its specific Larmor frequency. By reversing the applied 

gradient’s polarity, signals start to rephase until they all coincide back at the same 

initial phase, as shown in Figure 2.12.  

  

Figure 2.12: Dephasing of signal due to the range of frequencies imposed by the gradient 
along the y direction, shown as different phase angles in green (bottom left); reversing the 
polarity of the gradient eventually brings all spins along y at the same phase (bottom right) 
in the form of a gradient echo (McRobbie et al., 2006)  

This coherence recovery is called a gradient echo and this echo is the signal finally 

detected. It is a function of the resonant frequency range used and the gradient 

strength (Equation 4). For that reason it can be written as a weighted sum of spatial 

(localisation dependent) frequencies that are linear functions of the gradient 

strength.  This expression consists mathematically of an inverse Fourier transform of 

these weights with respect to the above spatial frequencies as parameters. These 

weights describe in fact the spin density along that direction because the application 

of the gradient has captured the spatial distribution of the excited spins. Thus by 
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performing a (forward) Fourier transform of the acquired signal we can recover the 

spins spatial distribution as a single dimensional image. 

Localisation in the second in-plane dimension is typically achieved with use of the 

phase encoding gradient GPE oriented with the remaining (third) y or x dimension. 

This is done by repeating the previously described frequency encoding process, 

starting for each repetition from a different initial phase introduced by the phase 

encoding gradient, as illustrated in the example in Figure 2.13.  

 

Figure 2.13: Phase encoding returns the signal to the Larmor frequency but with phase 
changes dependent on the position along the phase encoding axis (McRobbie et al., 2006)   

This phase will then be preserved in the frequency encoded gradient echo coherence 

(Figure 2.12) and will be unique for each encoding step and (via the GPE gradient) for 

each position along the phase encoding direction. To achieve complete localisation 

the phase encoding gradient is applied in steps of increasing amplitude for each 

sequence repetition. Due to Equation 4 this means that for each phase encoding 

gradient increment the phase differences between spins in different locations are 
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maintained between each phase encoding step. Therefore the spatial distribution of 

spin densities will be captured as a function of the phase steps, or equivalently the 

GPE gradient. The acquired signal in terms of both phase and frequency encoding 

evolves in time as shown in Figure 2.14.  

  

Figure 2.14: Representation of the signal acquisition with time. Frequency encoding takes 
place in real time while phase encoding is implemented in discrete time intervals or pseudo-
time (McRobbie et al., 2006) 

As can be seen there is equivalence between the two axes with increasing signal 

towards the centre which corresponds to spins exactly on resonance (in the 

frequency axis) with zero phase (in the phase axis). In extension to the previous 

explanation for the one dimensional image recovered from the frequency encoded 

signal, a 2-dimensional Fourier transform of the type of signal presented in Figure 

2.14 will yield the spin density distributions in space, i.e. the desired 2D image of the 

sample. The entire acquisition scheme described above is shown graphically in Figure 

2.15 below as a ‘pulse sequence’.  
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Figure 2.15: A generic gradient echo sequence. Time is shown horizontally and amplitudes 
vertically; GSS is the slice selective gradient, GFE the frequency encoding gradient and GPE the 
phase encoding gradient (McRobbie et al., 2006) 

The spin echo sequence described in section 2.1.1 (Figure 2.3), relies on the use of an 

additional RF pulse to refocus and acquire the signal as a spin echo which is an 

alternative echo-formation method to the gradient reversal used in gradient echo 

sequences. Spin echo sequences are more pertinent to the scope of this work and 

are further explored in later sections, although the Dixon technique (section 2.1.2) is 

usually based on differently timed gradient echoes. 

The necessity in conventional imaging for relatively long time intervals (‘pseudo-

time’) between phase encoding steps, i.e. the frequency encoding repetition time TR, 

renders it susceptible to motion artefacts, one of the most common sources of MR 

imaging imperfections. A special case of motion is blood flow in vessels. Both types 

of motion occur relatively slowly in comparison to the frequency encoding timescale 

but much faster than that of phase encoding, thus between the phase encoding steps 
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either anatomy or blood movement can cause erroneous signal registration (image 

‘ghosts’) along that direction (Figure 2.16).     

 

Figure 2.16: Left: example of bulk motion artefact in a forearm image (from the datasets 
analysed in chapter 5). Right: artefact from flowing blood in a knee image (McRobbie et al., 
2006) 

The chemical shift phenomenon (section 2.1.1) can have an effect in the frequency 

encoding process when the imaged anatomy contains a mix of fat and water protons, 

dependent upon the receive bandwidth per pixel (the range of frequencies 

corresponding to the pixel size). If the latter in a given acquisition is comparable to 

the absolute difference in the resonant frequencies of fat and water, chemical shift 

artefacts might appear along the frequency encoding direction, typically in the form 

of dark bands (void signal) or bright bands (superimposed signal) at the interface 

between different tissue types (i.e. muscle and fat) or the background (Figure 2.17).  
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Figure 2.17: Examples of chemical shift artefacts (frequency encoding direction) in thigh 
images (from the datasets analysed in chapter 4) 

 

2.1.6 Signal behaviour in spin echo sequences; the limitations of 

exponential signal models  

By applying successive additional 180˚ RF refocusing pulses following excitation, a 

series of spin-echoes may be generated in what is known as a multi-echo spin echo 

(MESE) sequence (Carr and Purcell, 1954), the generic design of which in an imaging 

context is shown in Figure 2.18.  
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Figure 2.18: A schematic representation of the generic multi-echo spin echo sequence design 
(here shown for 2 echoes). The exact shape or slope, duration and timing of the RF pulses 
and the gradients is responsible for the variations in the spin echo modalities used in practical 
applications (McRobbie et al., 2006)   

A modification commonly used in practice is the Carr-Purcell-Meiboom-Gill (CPMG) 

sequence (Meiboom and Gill, 1958) which is a special case of the MESE method. The 

main advantage of the CPMG sequence lies in its ability to partially compensate for 

imperfect 180˚ refocusing pulses. Such (imperfect) pulses leave the spin populations 

unbalanced, with lost phase coherence at the echo time so that their vector sum 

refocuses slightly above or below the transverse plane (Figure 2.19); this leaves a 

longitudinal magnetization component which can accumulate over the echo train. 

The improvement implemented in the CPMG sequence is to apply the 180˚ pulses 

with a 90˚ phase shift relative to the initial 90˚ B1 RF pulse so that any residual 

longitudinal magnetization will be cancelled at every other echo as shown in Figure 

2.19.  
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Figure 2.19: (a) In the CPMG sequence, the 180° pulses are applied along the y’ axis instead 
of the x’ axis. If the 180° pulse is imperfect, e.g. only 170° (c), the first spin echo will rephase 
above the transverse plane (e), giving a slightly reduced echo height. However, the second 
170° brings the spins exactly back to the transverse plane (g) so that the even echoes are 
always correct (h) (McRobbie et al., 2006) 
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The decay in successive spin-echo signal magnitudes in an MESE sequence is heavily 

dependent upon T2 as well as other factors; thus if an appropriate model for the signal 

decay with parameters including T2 is available, then fitting this model to the data in 

some optimal way should yield accurate estimates for those parameters, including 

T2. If applied to imaging data sets this will yield maps indicating the tissue T2 values 

at each pixel location.     

Historically T2 mapping was attempted assuming the signal decay in CPMG imaging 

experiments follows a simple exponential decay; in practice it was found that such 

imaging data is better fitted by a model comprising a mono-exponential decay plus a 

constant (Milford et al., 2015).  The reason for including a constant has been stated 

as the existence of a rectified background noise floor or a build-up of a persistent 

background signal due to imperfect refocusing. Both of these factors will be 

addressed in full detail later in this thesis, but in brief, this background signal typically 

occurs in MESE sequences when spins partially refocus at the sampling (echo) times, 

or when echoes originating from previous pulses overlap with subsequent ones and 

accumulate with time. The former are known as Hahn echoes and the latter as 

stimulated echoes (Hahn, 1950). B1 field inhomogeneity resulting in flip-angle errors 

is a major contributor to this background signal (Milford et al., 2015).    

In this case the equation modelling the signal evolution in such a sequence is 

𝑠𝑠𝑏𝑏 = 𝛼𝛼𝑒𝑒−
𝑏𝑏𝑛𝑛𝑛𝑛
𝑛𝑛2 + 𝑐𝑐                                                                                                                   Equation 5 
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where sn is the signal acquired at echo number n, α is the signal amplitude 

extrapolated to time zero, TE the echo time, T2 the decay time constant and c the 

constant accounting for noise and any background signal. In the conventional fitting 

process the signal acquired is compared to the values predicted by the model at each 

TE, iteratively varying the model parameters in a systematic manner to obtain the 

“best fit” by means of a least squares minimization, which aims to minimize the sum 

of the squared residuals (differences) between the acquired values (signal) and the 

predicted ones.    

However, inspection of real-world MRI CPMG signal trajectories suggests that the 

signal behaviour is far from mono-exponential, with the first echo amplitude 

commonly less than the second, an alternating amplitude modulation between even 

and odd echoes, as well as the build-up of an apparent baseline signal contribution. 

Figure 2.20 exemplifies the stimulated-echo coherence and alternate echoes effects 

in signals acquired with CPMG sequences, clearly demonstrating divergence from 

simple exponential decay behaviour.    
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Figure 2.20: Simulation of the acquired signal using a MESE sequence in the case of imperfect 
RF pulses. The signal here is fitted to an exponential model excluding the first echo due to 
the stimulated echo effect, however the alternate echo uneven amplitude effect is clearly 
visible and not accounted for by this signal model (Milford et al., 2015).   

In order to achieve reliable parameter estimation using exponential models, 

additional tactics have typically been adopted, for instance inclusion of a constant 

and omission of the uneven echoes – or at least the first echo (Milford et al., 2015, 

McRobbie et al., 2006).     

2.1.7 EPG formalism 

Assuming that the tissue of interest is properly characterised by a single T2 value, 

these apparent deviations from simple exponential T2 decay arise largely due to 

deviations in the refocusing RF pulse flip angles from their ideal values (the effects of 

noise on the parameter estimation process will be addressed separately below). The 

CPMG sequence introduced in section 2.1.1 attempts to compensate errors in MESE 

acquisitions where while the initial excitation angle is 90˚, the effects of imperfect 
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refocusing pulses are partially corrected at even echo times. However under practical 

conditions MR imaging experiments involve various causes of non-ideal flip angles 

including potentially a combination of globally mis-calibrated, or locally deviating B1 

fields, a deliberate choice to reduce flip angles e.g. to manage the SAR – the specific 

absorption rate (Guérin et al., 2014), and more fundamentally the interaction 

between frequency-selective excitation and refocusing RF pulses and the field 

gradients used for slice selection. A characteristic of the latter is that the theoretically 

required infinite sinc function-shaped RF pulse – the Fourier transform of a perfectly 

square (‘top hat’) slice profile – cannot be achieved in practice. Additional effects 

commonly causing alterations in the slice profile shape and amplitude for the excited 

and refocused magnetization are magnetic field inhomogeneities, gradient non-

linearity as well as tissue-field interactions. The extended phase graph (EPG) 

formalism (Hennig, 1991) can be used to more accurately predict the magnetization 

behaviour in real world scanners where such imperfections are typically present, 

accurately quantifying the expected signal at successive echo times. The two 

fundamental EPG concepts are its representation of dephasing and its description of 

the RF pulse action. Its implementation is then based on the combination of these 

two concepts.     

The dephasing caused by the action of gradients (Figure 2.21) can be quantified using 

a wavenumber, essentially quantifying the number of cycles of dephasing that has 

occurred while a particular gradient was switched on. The motion of all protons of 

magnetization M at position r from the isocenter will be described as 𝑀𝑀𝑥𝑥(𝑟𝑟) =

cos(𝑘𝑘𝑟𝑟)  and 𝑀𝑀𝑦𝑦(𝑟𝑟) = sin(𝑘𝑘𝑟𝑟), where the wavenumber k describes the  
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Figure 2.21: The dephasing effect due to an assumed z-direction gradient exhibited by initially 
in-phase transverse magnetization, evolving with time (left to right) and with distance from 
isocenter (bottom to top), denoting increasing frequency (coloured external helix) to both 
directions (Weigel, 2015).  

action of the gradient 𝑘𝑘(𝑡𝑡) = 𝛾𝛾 ∫ 𝐺𝐺(𝑡𝑡′)𝑑𝑑𝑡𝑡′𝑖𝑖
0  after time t and x, y are the transverse 

plane axes. At this stage a change of coordinates transforms the previous equations 

to more convenient expressions: 

𝑀𝑀+(𝑟𝑟) = 𝑀𝑀𝑥𝑥(𝑟𝑟) + 𝑖𝑖𝑀𝑀𝑦𝑦(𝑟𝑟) = 𝑀𝑀𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 = (𝑀𝑀−)∗ and 

𝑀𝑀−(𝑟𝑟) = 𝑀𝑀𝑥𝑥(𝑟𝑟) − 𝑖𝑖𝑀𝑀𝑦𝑦(𝑟𝑟) = 𝑀𝑀𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 = (𝑀𝑀+)∗   

where 𝑖𝑖 is the imaginary unit and the asterisk denotes the complex conjugate 

operation. The latter is equivalent to a 180˚ rotation of M+ to M- around the x axis 

and vice versa, therefore it mimics the action of a 180˚ RF pulse by means of a simple 

algebraic operation. This is a core feature of the EPG formalism, essentially linking 

the spin dephasing aspect with RF pulse rotation effects. Depending on the action of 

gradients and RF pulses, M+ will be the magnetization component left to be dephased 

(moving away from the x axis) while M- will be the magnetization component to be 
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refocused (moving towards the x axis). A second important characteristic of the 

complex notation is that it can be generalised to include all participating signals – 

with arbitrary frequencies or positions – the entire available transverse 

magnetization is represented as the integral ∫𝑀𝑀𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑3𝑟𝑟. This integral may be 

evaluated in the case of M+ over a volume V according to 

𝐹𝐹�+(𝑘𝑘) = ∫ �𝑀𝑀𝑥𝑥(𝑟𝑟) + 𝑖𝑖𝑀𝑀𝑦𝑦(𝑟𝑟)� 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑉𝑉 𝑑𝑑3𝑟𝑟 = ∫ 𝑀𝑀+(𝑟𝑟)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑3𝑟𝑟𝑉𝑉     

   
𝐹𝐹𝑇𝑇
⇔   𝑀𝑀𝑥𝑥(𝑟𝑟) + 𝑖𝑖𝑀𝑀𝑦𝑦(𝑟𝑟) = 𝑀𝑀+(𝑟𝑟) = ∫ 𝐹𝐹�+(𝑘𝑘)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑3𝑘𝑘𝑉𝑉                        which is the Fourier 

transform (𝐹𝐹�) of each k-dependent dephasing package (state) of dephased 

magnetization (‘isochromat’). Thus 𝐹𝐹�+ will describe the distribution (scale factor in 

terms of Fourier decomposition) of magnetization among different dephasing states 

k and 𝑀𝑀+the magnetization dependence on distance r (position space) for each k, 

within the specific volume V. This basic relationship in frequency and space is 

demonstrated in Figure 2.22 (Weigel, 2015).  
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Figure 2.22: The z-direction gradient dephasing effects of Figure 2.21 linked to the dephasing 
stages corresponding to k evolution (Weigel, 2015).  

In a similar fashion 𝐹𝐹�− will describe the Fourier decomposition of rephasing 

magnetization as a function of k. While dephasing occurs due to the action of 

gradients, rephasing occurs after the application of refocusing RF pulses – which will 

be mathematically expressed by the conjugate operation. However RF pulses in the 

general case may cause rotation through any angle – as for example in excitation, 

inversion and any intermediate/imperfect refocusing pulse – and this will cause the 

existence and modulation also of longitudinal z-component of the magnetization. For 

that reason it is necessary to introduce also the Fourier term 𝑍𝑍�(𝑘𝑘) denoting the 

distribution of longitudinal magnetization with k.                
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The above principle of the k-dependent 𝐹𝐹�+, 𝐹𝐹�− and 𝑍𝑍� configuration states is also the 

framework used to describe the action of the RF pulses. The action of RF and gradient 

pulses can be mathematically expressed by the action of the rotation matrices 

𝑅𝑅𝑥𝑥(𝛼𝛼) = �
1 0 0
0 cos𝛼𝛼 − sin𝛼𝛼
0 sin𝛼𝛼 cos𝛼𝛼

�  and  𝑅𝑅𝑧𝑧(𝜑𝜑) = �
cos𝜑𝜑 − sin𝜑𝜑 0
sin𝜑𝜑 cos𝜑𝜑 0

0 0 1
� on a 

magnetization vector of the form �
𝑀𝑀𝑥𝑥
𝑀𝑀𝑦𝑦
𝑀𝑀𝑧𝑧

�. Rx expresses in general a rotation of angle α 

around the x axis, e.g. the effect of an RF pulse applied along the x axis on a 

magnetization vector. Rz expresses rotation of angle φ around the z axis, e.g. the 

dephasing caused by the gradients. Therefore if an RF pulse is applied with a 

(transverse plane) phase φ with respect to the x axis, its action on the above 

magnetization vector will be given by the rotation matrix 𝑅𝑅𝜑𝜑(𝛼𝛼) =

𝑅𝑅𝑧𝑧(𝜑𝜑)𝑅𝑅𝑥𝑥(𝛼𝛼)𝑅𝑅𝑧𝑧(−𝜑𝜑) (Hahn, 1950, Carr and Purcell, 1954). In order to express this 

action in terms of the dephasing and rephasing k states prerequisite in the EPG 

approach, we need to use the same transformation to complex notation coordinates 

as previously. The magnetization vector then becomes �
𝐹𝐹�+(𝑘𝑘)
𝐹𝐹�−(𝑘𝑘)
𝑍𝑍�(𝑘𝑘)

�, expressing the three 

different magnetization dephasing and rephrasing components per k state, and the 

Rx and Rz matrices according to linear algebra become the rotation matrices  

𝑇𝑇𝑥𝑥(𝛼𝛼) =

⎣
⎢
⎢
⎢
⎡ cos2 𝛼𝛼

2
sin2 𝛼𝛼

2
−𝑖𝑖 sin𝛼𝛼

sin2 𝛼𝛼
2

cos2 𝛼𝛼
2

+𝑖𝑖 sin𝛼𝛼

− 𝑖𝑖
2

sin𝛼𝛼 + 𝑖𝑖
2

sin𝛼𝛼 cos𝛼𝛼 ⎦
⎥
⎥
⎥
⎤
 and 𝑇𝑇𝑧𝑧(𝜑𝜑) = �

𝑒𝑒+𝑖𝑖𝜑𝜑 0 0
0 𝑒𝑒−𝑖𝑖𝜑𝜑 0
0 0 1

�, around 

the x and z axis respectively. Therefore in this transformed coordinate system the 
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effect of an RF pulse with a phase difference φ from the x axis causing rotation of the 

magnetization by an angle α will be given by the matrix 𝑇𝑇𝜑𝜑(𝛼𝛼) = 𝑇𝑇𝑧𝑧(𝜑𝜑)𝑇𝑇𝑥𝑥(𝛼𝛼)𝑇𝑇𝑧𝑧(−𝜑𝜑).  

Taking together the above, the expression describing the action of a generic RF pulse 

(inserted at any angle in the transverse plane) on a complex k-state dependent 

magnetization vector, will be: 

 �
𝐹𝐹�+(𝑘𝑘)
𝐹𝐹�−(𝑘𝑘)
𝑍𝑍�(𝑘𝑘)

�

+

= �
cos2 𝛼𝛼

2
𝑒𝑒2𝑖𝑖𝜑𝜑 sin2 𝛼𝛼

2
−𝑖𝑖𝑒𝑒𝑖𝑖𝜑𝜑 sin𝛼𝛼

𝑒𝑒−2𝑖𝑖𝜑𝜑 sin2 𝛼𝛼 cos2 𝛼𝛼 𝑖𝑖𝑒𝑒−𝑖𝑖𝜑𝜑 sin𝛼𝛼
− 𝑖𝑖

2
𝑒𝑒−𝑖𝑖𝜑𝜑 sin𝛼𝛼 𝑖𝑖

2
𝑒𝑒𝑖𝑖𝜑𝜑 sin𝛼𝛼 cos 𝛼𝛼

� · �
𝐹𝐹�+(𝑘𝑘)
𝐹𝐹�−(𝑘𝑘)
𝑍𝑍�(𝑘𝑘)

�

−

                     Equation 6  

where the symbols “-” and “+“ denote respectively the magnetization before and 

after application of the RF pulse. The above equation describes fully the effects of the 

application of gradients and RF pulses on the magnetization’s constituent parts as 

these are modulated in both phase and amplitude. For that reason it has also been 

termed a partition state effect or method (Kaiser et al., 1974), and because it is 

applied to all Fourier components for each state and partition of the magnetization, 

it provides the basis of the EPG model. For clarity, the term state is commonly used 

for each of the three configurations 𝐹𝐹�+, 𝐹𝐹�− and 𝑍𝑍� and for each dephasing order k – 

thus for 𝐹𝐹�+(𝑘𝑘), 𝐹𝐹�−(𝑘𝑘) and 𝑍𝑍�(𝑘𝑘). It is useful to emphasize that any magnetization in 

the 𝑍𝑍�(𝑘𝑘) state does not undergo phase modulation from the RF pulses’ action (its k 

remains constant) since this occurs only on the transverse plane, however it 

continues to carry the position encoding phase information via the Fourier transform 

and decomposition.   
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Figure 2.23: A schematic representation of the mechanisms of magnetization exchange 
described by EPGs – taking place for equal dephasing orders k only. Notably for exchanges 
when k=0 𝐹𝐹�+(0) and 𝐹𝐹�−(0) express the same physical quantity (𝐹𝐹�(0)), and exchange 
between 𝑍𝑍�(0) and these denotes signal induction. For k≠0 conversions occur between 
𝐹𝐹�+, 𝐹𝐹�− and 𝑍𝑍� and of interest is any 𝐹𝐹�− magnetization as this can lead to signal 
generation via either a spin or a stimulated echo (Weigel, 2015).             

For that reason 𝑍𝑍� states are also commonly referred to as stored magnetization. An 

important special case is for k=0, the initial time point of the described phase history, 

where  𝑍𝑍�(0) is converted to 𝐹𝐹�+(0) which is the same as 𝐹𝐹�−(0) because they are at 

the same zero initial phase, or state 𝐹𝐹�(0). This is simply the excitation stage (section 

2.1.1) as notated within the EPG formalism. All consequent 𝐹𝐹�(0) (zero phase) states 

are the result of refocusing components and will lead to signal generation either in 

the form of a spin echo or a stimulated echo, while all other (k≠0) 𝐹𝐹�+ and 𝐹𝐹�− states 

are considered to be of completely dephased magnetization. The latter is a key 
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assumption of practical importance in applications such as simulating the MESE and 

CPMG types of sequences examined in this work. For these applications k is as an 

integer, a discrete number denoting this full dephasing between echoes in units of 

2π. In that light k represents the number of helical turns or wave cycles in the graphs 

in Figure 2.21 through Figure 2.23 (Weigel, 2015). 

The above description of dephasing between RF pulses, described as k-states 

succession has a direct beneficial impact in the practical implementation of the EPG 

concept in spin echo applications such as the CPMG sequence. It means that 

dephasing can be captured quantitatively as a function of (discretized) k in between 

TEs, and at each TE it is only affected by the action of the RF pulse. While this is not 

exactly what is happening in the real MR system (dephasing is a continuous and not 

quantized process), it is nevertheless a convenient and numerically correct way to 

track refocusing (coherent) magnetization and thus the accumulated signal in realistic 

scenarios. It is also the basis on which actual EPGs are plotted as demonstrated in 

Figure 2.24, and as commonly found in the related literature (Scheffler, 1999).   
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Figure 2.24: Extended phase graph (EPG) for a generic spin echo sequence with constant 
gradient and equal RF pulses and echo spacing. For simplicity the more compact 𝐹𝐹−𝑖𝑖+ -style in 
notation is used for the refocused magnetization states after each RF pulse. Magnetization 
components are classified (binned) in k-dependent envelopes (states) and at each RF 
application are redistributed depending on the flip angle (not shown) (Scheffler, 1999). 

It should be noted that the term ‘extended’ underlines the fact that these phase 

graphs refer to the entire spatial distribution of spins that through the Fourier 

transform are converted to k-state components and redistributed accordingly. 

However these graphs are only a schematic depiction and in this form do not provide 

a quantitative analysis of the signal evolution. A common way to achieve this is with 

the use of algebraic matrices and operations, as an extension of the concept of 

rotation matrices presented already with respect to RF pulse action. The history of 

phase evolution according to the above k-state classification or binning can be 

tracked as summarised in the 𝑃𝑃 matrix manipulations shown in Figure 2.25 below, 

which in fact is the information of a ’classic’ EPG (as in Figure 2.24) converted into a 

matrix operations description (Hargreaves, 2012).            
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Figure 2.25: Schematic representation of a generic EPG as a phase history matrix 𝑃𝑃. Here all 
k-states are symbolized in a compact manner as 𝐹𝐹𝑖𝑖for dephasing components (green arrow 
envelope), 𝐹𝐹−𝑖𝑖  for rephrasing components (red arrow envelope) and 𝑍𝑍𝑖𝑖  for longitudinal 
‘stored’ magnetization components. The transition between the two first is achieved at k=0 
(zero phase state) with use of the complex conjugate operation (blue arrow envelope) 
(Hargreaves, 2012).   

It can be seen that the phase history matrix 𝑃𝑃 consists of the top row dephasing 

components moving to higher k-states (to the right), the middle row rephrasing 

components moving to lower k-states – since they have been reversed by the RF 

pulse action – and the stable k-states of longitudinal magnetization in the bottom 

row. Importantly the complex conjugate operation mentioned previously completes 

the zero phase crossing where coherent magnetization can be quantified and 

rephasing (middle row) becomes dephasing (top row).    

Apart from gradient and RF pulse effects the signal evolution in real acquisitions is 

affected also by the tissue-specific T2 and T1 decay rates (section 2.1.1). These effects 

are dependent upon a geometric distinction between transverse and longitudinal 

magnetization which is maintained within the EPG model through the 𝐹𝐹�  and 𝑍𝑍� states, 

and they affect equally all k states with the exception of the 𝑍𝑍�(0) state (k=0, coherent 

𝑍𝑍� magnetization) where T1 recovery will also be taking place. In terms of matrix 

operations decay effects can therefore be expressed as 
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� , where t is the elapsed time 

interval. For spin echo sequences this is typically split into two halves of the echo 

spacing time to accommodate for the RF pulse action as explained further below. 

Signal quantification can finally be achieved by combining the operation of the 

rotation and decay matrices introduced so far with the phase history matrix. This 

takes the form of successive operator matrix applications on the k-dependant states 

of magnetization, with the generic expression  

[𝐹𝐹+,𝐹𝐹−,𝑍𝑍(𝑘𝑘 + 1)] = 𝐸𝐸 · 𝑆𝑆 · 𝑇𝑇 · [𝐹𝐹+,𝐹𝐹−,𝑍𝑍(𝑘𝑘)] · 𝐸𝐸 · 𝑆𝑆, where 𝐸𝐸 and 𝑇𝑇 are the decay 

and RF rotation matrices respectively, and 𝑆𝑆 the phase history matrix operation. This 

is an iterative process as lower k-order states participate in – or are modulated to – 

higher k-order states, and is demonstrated in Figure 2.26 linked to the phase 

evolution framework representation of Figure 2.25.  
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Figure 2.26: Schematic representation of the quantitative version of the phase evolution 
matrix of Figure 2.25. After inclusion of the decay 𝐸𝐸, rotation 𝑇𝑇 and state transition (or phase 
evolution) 𝑆𝑆 matrices action on the magnetization states, 𝐹𝐹0 will now quantify the acquired 
signal at each echo time, and the entire matrix can be renamed to the (states) population 𝑃𝑃 
matrix.  

Due to the existence of the RF pulse the relaxation decay effects are split in two parts 

for 𝑡𝑡 = 𝑇𝑇𝐸𝐸/2 each before and after its application, and also the k-dependent state 

transition has to occur twice in order to correctly distribute populations. This is 

demonstrated practically in the numerical example shown in Figure 2.27, where echo 

formation with use of the EPG formalism is calculated for a hypothesized CPMG 

sequence using intermediate (≠90˚ or 180˚) flip angles.  
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Figure 2.27: A numerical example demonstrating the action of the 𝐸𝐸, 𝑆𝑆 and 𝑇𝑇 matrix 
operators participating in the magnetization states populations matrix 𝑃𝑃, according to the  
quantitative matrix-based EPG representation described in the previous text and figures, for 
excitation angle 45˚, refocusing angle 135˚, T2=200ms and T1=1000ms, for the 3 first echoes 
(assuming unit initial magnetization vector).   
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Calculations were performed as a succession of simple default Matlab functions and 

commands executing the respective mathematical operations (e.g. matrix rotations 

etc.), and form in essence the basic computational implementation of the EPG 

formalism (Figure 2.28), in this case written in Matlab 2015a (MathWorks, 

Massachusetts, United States).    

 

Figure 2.28: The generic structure (‘pseudo-code’) of the EPG function as a computer 
program 
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To summarise, EPGs rely on: 

• Capturing the magnetization phase history as packages of complete 

dephasing between events (RF action, decay etc.), denoted by a 

corresponding integer k-number. For instance, if no other actions take place, 

signals after excitation dephase forming a disc on the transverse plane with 

zero vector sum. This phase evolution is encapsulated in the action of the S-

operator. 

• Action of the RF pulse, described by matrix operations – the T-operator – 

which provide a closed form solution for quantification of any refocused, 

defocused and longitudinal (z-axis) stored remnant magnetization. A typical 

example is Hahn’s experiment: the action of a second 90° pulse on the disc of 

dephased spins mentioned above, transforming it subsequently to the ‘eight-

ball’ shape with vector sum half the initially available magnetization. 

• Decay effects – T1 and T2 relaxation and T1 recovery – described by action of 

the E-operator along the phase history, readjusting the magnetization sum 

vector accordingly.  

• For CPMG sequences in particular, decay and dephasing continues after RF 

pulse action and this has to be added to the phase history description, 

forming, after the initial excitation, a E-S-T-E-S pattern of operators fully 

describing the effects of the applied sequence.  

Finally, EPGs also vary along the slice selection direction due to the slice-selection 

gradient, causing location-dependent resonance offsets, which has to be 

accounted for, as will now be discussed.      
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2.1.8 Slice profile effects 

Real MR experimental conditions involve in general imperfect slice profiles: a basic 

reason is that the theoretically required infinite-duration sinc function-shaped RF 

pulse – the Fourier transform of a perfectly square (‘top hat’) slice profile – cannot 

be implemented in practice. Also the selective excitation process in MR is non-linear 

except for a close approximation at low flip angles. In real sequences the excited and 

subsequently refocused magnetization will therefore in general show variation in 

both magnitude and phase across the selected slice. This is due to inevitable design 

compromises in the selective RF pulse shapes, and their associated field gradients, 

complicated by possible global and local B1 calibration errors. Hence the EPG 

formalism presented above must be extended to account for these variations across 

the slice profile. Under this approach the signal is considered as the aggregate decay 

curve representing EPG-generated echo train amplitudes at successive locations 

integrated over the slice profile, where the effective excitation and refocusing angle 

for each location across the slice can be calculated from the applied RF pulse and 

gradient characteristics, assuming these are known a priori. This is described by the 

action of the B1 field factor B1f, which is a percentage scale factor accounting for B1 

transmit inhomogeneity, having a value of 100% for a slice profile with 180° 

refocusing angle at its centre. B1f determines the precise excitation and refocusing 

flip angles.   

The program design (‘pseudocode’) corresponding to the above description of the 

slice profile corrected EPG function (sEPG) is shown in Figure 2.29. In the first step 

the magnetization immediately following the excitation pulse is calculated for each 
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position across the slice profile, and this is defined as the initial magnetization at each 

position, in terms of its x-y and z projections and angle with respect to the x’ axis. This 

is based on the Bloch simulation of the rotations caused by the gradient and 

excitation RF pulse action (including its phase) per time step and slice position 

(Hargreaves, 2016). In this example all time steps are equal, the RF pulse duration 

vector t is the same for both excitation and refocusing, and the refocusing RF pulse is 

of double amplitude than the excitation pulse, however in the general case this might 

not necessarily be so. Similarly, for the subsequent refocusing pulses the effective 

refocusing angle is calculated from the z-component (arc of cosine) after action of 

the refocusing RF pulse and gradient on an initial unitary z-axis-only magnetization. 

This is because the EPG function will fully describe the remaining effects of the above 

refocusing rotation on the excited magnetization at each slice position – since these 

are integrated in its complex notation, through zero phase x-y plane crossings and z-

axis residuals – and also account for T1 and T2 decay effects.  
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Figure 2.29: The generic structure (‘pseudo-code’) of the sEPG function as a computer 
program.  
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In Figure 2.30 an example of simulated sEPG echo trains according to through-slice 

position are shown, for the same parameters that were used in the example of Figure 

2.27: the three first echo heights of the solid blue middle slice echo train are the EPG 

values calculated in that example.  

     

Figure 2.30: Simulation of the signal behaviour according to the EPG formalism at different 
positions across the slice profile for successive CPMG echoes. The mean of these signals 
represents the CPMG signal observed in real acquisitions (labelled as “slice profile 
corrected”) whereas the signal at the centre of the slice (labelled as “maximum” in this case) 
is typically higher.    

Both the excitation and refocusing pulses were selective – typical of those 

implemented on our Siemens 3T scanners used in this work – with different pulse 

shapes and appropriate slice gradient amplitudes. The dashed blue line echo train 

projected on the signal-to-echo number plane is the mean of the individual sEPG 

contributions, representing (with a normalised amplitude) the signal that would be 
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observed in a practical imaging experiment; as it can be seen slice profile effects 

cause both signal reduction (away from the centre of the slice) and echo train 

modulation. This suggests that it is essential to take the slice profile into 

consideration when estimating transverse relaxation parameters from conventional 

CPMG data.            

2.1.9 Noise in MR images 

The levels of (thermal or electronic) noise in MR images depend upon the receiver 

bandwidth, the pixel size, the field strength, the number of averages taken and the 

number of coil elements. Most of these factors are operator controlled and therefore 

may be selected to optimise image quality in terms of SNR, notwithstanding their 

influence upon resolution and scan time. A generic expression describing their 

relationship is 𝑆𝑆𝑆𝑆𝑅𝑅 ∝ 𝛥𝛥𝑥𝑥 · 𝛥𝛥𝛥𝛥 · 𝛥𝛥𝛥𝛥 · 𝐹𝐹𝑠𝑠𝑖𝑖𝑠𝑠�
𝑁𝑁𝑁𝑁𝑁𝑁·𝑁𝑁𝑃𝑃𝑛𝑛·𝑁𝑁𝐹𝐹𝑛𝑛

𝐵𝐵𝐵𝐵
  , where NSA is the number of 

signal averages, NPE and NFE the phase encode and frequency encode matrix size 

respectively, BW the receive bandwidth, Δx·Δy·Δz the pixel dimensions and Fseq is a 

sequence dependent relaxation factor; for spin echo (SE) sequences for example Fseq 

takes the form 𝐹𝐹𝑁𝑁𝑆𝑆 ∝ �1 − 𝑒𝑒−
𝑛𝑛𝑇𝑇
𝑛𝑛1� · 𝑒𝑒−

𝑛𝑛𝑛𝑛
𝑛𝑛2  in the simplest version, where TR is the 

sequence repetition time, TE the inter-echo spacing, and T1, T2 the longitudinal and 

transverse magnetization decay rates respectively. The factors in the square root are 

related to the noise while the rest determine the available signal (McRobbie, 1996).  

NMR signals are detected using quadrature detection providing real and imaginary 

components; following Fourier transformation the image data are magnitude 
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reconstructed, meaning that any phase information is disregarded. The noise in each 

quadrature channel can be assumed to be normally distributed – ignoring at this 

stage multi-coil combination effects, and assuming noise to be spatially stationary 

(Hardy and Andersen, 2009). However calculating the magnitude from the complex 

source data is a non-linear operation and the noise in the resulting magnitude signal 

therefore not itself normally distributed. If A is the true image pixel intensity in the 

absence of noise and M the measured signal, it can be shown that the probability 

distribution pM for M in the presence of noise is given by  

𝑝𝑝𝑀𝑀(𝑀𝑀) = 𝑀𝑀
𝜎𝜎2
𝑒𝑒−

𝑀𝑀2+𝐴𝐴2

2𝜎𝜎2 𝐼𝐼0 �
𝑁𝑁·𝑀𝑀
𝜎𝜎2
�                                                                                  Equation 7 

where I0 is the modified Bessel function of 0th order and σ the standard deviation of 

the assumed equal Gaussian noise in both the real and imaginary channels 

(Gudbjartsson and Patz, 1995). This expression is known as the Rician distribution 

following its original introduction for electrical engineering applications  (Rice, 1944). 

The dependence of pM on SNR (A/σ) is shown in Figure 2.31.     
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Figure 2.31: The Rician distribution of the measured signal M and the resulting mean, with 
increasing signal to noise ratio A/σ (Gudbjartsson and Patz, 1995)   

It can be seen that for lower SNRs the probability distribution for the observed signal 

(M) and therefore the corresponding mean of M deviate increasingly from a Gaussian 

distribution and the expected signal (A) respectively. This bias in the mean value of 

M relative to A is the result of rectification of negative noise contributions, 

contributing especially at low signal levels, through taking the magnitude of the real 

and the imaginary parts of the acquired signal. In image regions where only noise 

exists, A is zero, and Equation 7 reduces to   

𝑝𝑝𝑀𝑀(𝑀𝑀) = 𝑀𝑀
𝜎𝜎2
𝑒𝑒−

𝑀𝑀2

2𝜎𝜎2                                                                                                                   Equation 8 

known as the Rayleigh distribution (Papoulis, 2002). In that case it can be shown that 

the mean signal observed and its standard deviation are given by the analytical 

expressions  
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 𝑀𝑀� = 𝜎𝜎�𝜋𝜋 2⁄  and 𝜎𝜎𝑀𝑀2 = (2 − 𝜋𝜋 2)𝜎𝜎2⁄                                                                 Equations 9 

which can be used to estimate the true noise σ from the background signal in 

magnitude reconstructed images (section 3.1) (Gudbjartsson and Patz, 1995, 

Papoulis, 2002).  

2.2 Statistical modelling – Maximum likelihood estimation 

2.2.1 Introduction 

Given a parametrised signal model, such as an exponential function, or sEPG 

formulation, and experimental observations, such as the signal decay in a MSME 

acquisition for a particular pixel, the task is to adjust the model parameters until the 

signal predicted by the model is in some sense most compatible with the observed 

signal; the parameter estimates will in that case be taken as our best estimates of the 

(unknown) ground truth values.      

The process of fitting a data sample of measurements M(x) containing N entries then 

involves iterative comparison of data and a theoretical model S(x,p) assumed to 

describe those data. The x are discriminating variables to be used in the fit, taking the 

value xi for the ith measurement point, and p is the vector of parameters participating 

in the theoretical model S. The parameters are allowed to vary in the fit to data, i.e. 

each iteration of the optimisation process uses a different value for p, in order to 

improve the compatibility of data and model. This process requires the definition of 

a test statistic that is used to quantify how well the model and data agree and to then 

vary p to try and obtain an improved model description of the data. So in order to 
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perform a fit to data we perform an optimisation process in the parameter space 

which involves minimising the sum ST of the chosen test statistic T, dependent on the 

sample of observations M(xi) and the model S(x,p), over the data. Therefore for each 

iteration of the optimisation process p are varied in order to improve compatibility 

between M(xi) and S(x,p), which is quantified by T.  

In order to converge on a solution, one starts with an initial estimate of the parameter 

set which is used to evaluate ST. Having done this a new estimate of p is then 

calculated following a pre-defined rule, and at this and each subsequent step each 

corresponding ST is evaluated. From an initial set of estimates of the parameters p, it 

is normally possible for the algorithm to determine in which direction in the 

parameter space a more optimal set lies. Having done this, the algorithm will perform 

another search starting from a point p’ yielding an ST hopefully closer to the assumed 

minimum than the previous one. This process is repeated until the optimisation 

algorithm yields a sufficiently small step size δ =|p−p’|. When δ is smaller than some 

pre-defined minimum distance in the parameter space, the optimisation is said to 

have converged on a minimum value pmin. In practice a set of convergence criteria is 

defined, examples of which may be thresholds with regards to the change in the 

values of p, T or the number of iterations. Other criteria may be analogous to the 

condition that the gradient of T must be zero at a minimum. After finding the value 

pmin corresponding to a minimum the final step usually is for the algorithm to 

determine the corresponding uncertainty δpmin, which depends on the test statistic 

that is being minimised.  
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Two different approaches to parameter estimation, each using a different form of 

test statistic, are considered in this thesis: least squares fitting (LSQ), and the method 

of maximum likelihood estimation (MLE). 

2.2.2 Least squares fitting  

Least squares fitting aims to minimise the sum of the squared residuals (differences) 

between the acquired signal values and those predicted by the model. Various 

computational approaches have been proposed to achieve least squares 

minimization (or nonlinear regression) for nonlinear models such as Equation 5; the 

Levenberg-Marquardt method (Bates, 1988) is commonly used being with some 

variations and improvements implemented within numerous image processing 

software and statistical packages. It achieves a fast and efficient least squares 

minimization by a smooth transition from using the steepest descent direction of the 

gradient of the residuals function of the parameters, i.e. the ‘chi-squared’, far away 

from the minimum in the error space, to the second order expansion terms 

(derivatives) path near the minimum (where the first order terms will be zero). The 

basis for this is the ability to approximate any function (here of the residuals) at a 

given point by a function of its derivatives at that point (i.e. a Taylor series expansion). 

Usually fitting proceeds iteratively, by updating for each step the provisional solution 

for the parameters, so that eventually the point corresponding to the minimum of 

the sum of the squared residuals is reached. Thus a global convergence is hopefully 

achieved rapidly with the use of the steepest descent for the gradient, and then fast 

local convergence with the use of the second order terms’ steps. 
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2.2.3 Maximum likelihood parameter estimation 

The most obvious performance measure to consider in a parameter estimation 

optimisation experiment is bias: the difference between the average, or expectation  

value of a parameter estimate (estimator) and its true value (Morris et al., 2017). 

Since in investigational (e.g. patient) study datasets the latter is unknown, bias is itself 

subject of estimation. From statistical theory it is known that if for a particular 

experiment there exists an unbiased estimator for which the variance can attain the 

lowest possible value, it is obtained by the maximum likelihood (ML) method; for that 

reason ML estimators are said to be asymptotically more precise than conventional 

estimators (Sijbers et al., 1998a). For a random sample of N observations x from a 

distribution that depends on one or more unknown parameters p with probability 

density (or mass) function 𝑙𝑙(𝐱𝐱,𝐩𝐩), the joint probability density (or mass) function of 

x with regards to p, 𝐿𝐿(𝐩𝐩) = ∏ 𝑙𝑙(𝐱𝐱,𝐩𝐩)𝑁𝑁
𝑖𝑖=1 , is called the likelihood function; the set of 

parameters that maximizes 𝐿𝐿 is the maximum likelihood estimator of p (PennState, 

2018). The main test statistic used in this work is therefore likelihood based; the 

likelihood 𝐿𝐿 of an event to occur is proportional to the probability density function 

(PDF) related to the probability of the event occurring at a given point in the 

parameter space (Bevan, 2013). For that reason it is not necessarily normalised but 

can be useful in investigating the relative expectations of an event or experiment, 

whereas probabilities and PDFs typically refer to the absolute expectation of an 

outcome. As a means of systematic evaluation a method based on such a statistic will 

be compared here with least squares minimization results (considered a χ2 statistic, 
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i.e. for least squares based methods the test statistic is the residuals function of the 

parameters).   

This process in the case of least-squares minimisation was described in general terms 

in section 2.2.2. In the case of maximum likelihood estimation, 𝐿𝐿 represents the 

likelihood of the parameters p given the observed data x, and therefore is a function 

of p. After data collection and the likelihood function of a model given the data has 

been calculated – based on the conditions and nature of the particular experiment – 

statistical inferences about the data sample can be made. The aim is to find the 

parameters and therefore the specific PDF, that make the observed data most likely. 

It is computationally more convenient to, rather than maximise 𝐿𝐿, minimise the 

negative logarithm of 𝐿𝐿, − log 𝐿𝐿(𝑥𝑥|𝑝𝑝) (i.e. minus the logarithm of “the likelihood of 

the parameters p given the data x”), justified since 𝐿𝐿 and  − log 𝐿𝐿(𝑥𝑥|𝑝𝑝) are 

monotonically related. If  − log 𝐿𝐿(𝑥𝑥|𝑝𝑝) is differentiable and pmin exists, the following 

partial differential equation  

𝜕𝜕[− log𝐿𝐿�𝑥𝑥�𝑝𝑝�]
𝜕𝜕𝜕𝜕

= 0                                                                                                                   Equation 10 

must hold for each parameter in p. This corresponds to the fact that the first 

derivatives of a continuous and differentiable function vanish at the locations of its 

minimum or maximum. Equation 10 is known as the likelihood equation (Myung, 

2003). An additional condition that must also be satisfied is that the second derivative 

of  − log 𝐿𝐿(𝑥𝑥|𝑝𝑝) is negative: 

  𝜕𝜕
2[−log 𝐿𝐿�𝑥𝑥�𝑝𝑝�]

𝜕𝜕2𝜕𝜕
< 0                                                                                                               Equation 11 
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This ensures that the neighbourhood of pmin in the parameter space is concave, 

corresponding to a trough of the test statistic function − log 𝐿𝐿, and not convex which 

would correspond to a peak. The fact that the (negative) logarithm of 𝐿𝐿 behaves 

smoothly and continuously in such regions facilitates the search for pmin, and is a basic 

reason for choosing it as the quantity to be minimised. An additional reason is related 

to the joint PDF of the parameters (given the data) which assuming statistically 

independent observations (Bevan, 2013), is given by the product of the PDFs of the 

individual observations, as in the expression 

𝐿𝐿(𝑥𝑥|𝑝𝑝) = 𝐿𝐿1(𝑥𝑥1|𝑝𝑝) · 𝐿𝐿2(𝑥𝑥2|𝑝𝑝) · … · 𝐿𝐿𝑁𝑁(𝑥𝑥𝑁𝑁|𝑝𝑝)                                                                Equation 12 

for N observations (data points). By taking the logarithm of 𝐿𝐿 this product becomes a 

sum which is also easier to handle computationally. 

Numerical example  

Practical application of the above can be demonstrated by the following example, 

taken from a review (Myung, 2003) in the field of psychology. The aim was to 

compare two different models, an exponential and a power model, tested in an 

experiment of ‘forgetting data’ where the proportion of correct answers recalled as 

a function of time is recorded, for a cohort of subjects. The two models are defined 

as 

power model: 𝑆𝑆(𝑝𝑝, 𝑡𝑡) = 𝑝𝑝1 · 𝑡𝑡−𝜕𝜕2 (𝑝𝑝1,𝑝𝑝2 > 0)                                              Equation 13a 

exponential model: 𝑆𝑆(𝑝𝑝, 𝑡𝑡) = 𝑝𝑝1 · 𝑒𝑒−𝜕𝜕2·𝑖𝑖 (𝑝𝑝1,𝑝𝑝2 > 0)                                 Equation 13b 
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where S are the data consisting of the observed proportion of correctly recalled 

answers at time t, p1 and p2 the parameter vector p in each model, and the data will 

be in the form x=x1, x2, … xN for N recordings. Application of MLE requires 

specification of the PDF governing the data for each model. Each proportion of 

correctly recalled answers xi recorded is the ratio between the number of correct 

responses yi and the total number of trials n, 𝑥𝑥𝑖𝑖 = 𝛥𝛥𝑖𝑖/𝑛𝑛 (0 ≤ 𝑥𝑥𝑖𝑖 ≤ 1), and follows a 

binomial distribution 𝑃𝑃(𝛥𝛥|𝑛𝑛, 𝑥𝑥) = 𝑏𝑏!
𝑦𝑦!(𝑏𝑏−𝑦𝑦)!

𝑥𝑥𝑦𝑦(1 − 𝑥𝑥)𝑏𝑏−𝑦𝑦 where 0≤x≤1 and y=0, 1, …, 

n. Therefore the PDF corresponding to each model will be 

power model: 𝑃𝑃(𝛥𝛥𝑖𝑖|𝑛𝑛,𝑝𝑝) = 𝑏𝑏!
𝑦𝑦!(𝑏𝑏−𝑦𝑦)!

(𝑝𝑝1 · 𝑡𝑡−𝜕𝜕2)𝑦𝑦𝑖𝑖(1− 𝑝𝑝1 · 𝑡𝑡−𝜕𝜕2)𝑏𝑏−𝑦𝑦𝑖𝑖        Equation 14a  

exp. model: 𝑃𝑃(𝛥𝛥𝑖𝑖|𝑛𝑛,𝑝𝑝) = 𝑏𝑏!
𝑦𝑦!(𝑏𝑏−𝑦𝑦)!

(𝑝𝑝1 · 𝑒𝑒−𝜕𝜕2·𝑖𝑖)𝑦𝑦𝑖𝑖(1 − 𝑝𝑝1 · 𝑒𝑒−𝜕𝜕2·𝑖𝑖)𝑏𝑏−𝑦𝑦𝑖𝑖      Equation 14b  

according to how each observation xi is modelled via Equations 13, where yi=0, 1, …, 

n and i=0, 1, …, N. Since xi is related to yi by a scaling constant 1/n any statistical 

inference regarding yi applies also to xi, taking into consideration this scale 

transformation, by substituting yi in  𝑃𝑃(𝛥𝛥𝑖𝑖|𝑛𝑛,𝑝𝑝) with nxi. By combining Equation 12 

with Equations 14 the desired log-likelihood expression can be produced. For the case 

of the power model it will be 

− log 𝐿𝐿(𝛥𝛥𝑖𝑖|𝑛𝑛, 𝑝𝑝) = − log[𝑃𝑃(𝛥𝛥1|𝑛𝑛,𝑝𝑝) · 𝑃𝑃(𝛥𝛥2|𝑛𝑛, 𝑝𝑝) · … · 𝑃𝑃(𝛥𝛥𝑁𝑁|𝑛𝑛,𝑝𝑝)] 

= −∑ log𝑃𝑃(𝛥𝛥𝑖𝑖|𝑛𝑛, 𝑝𝑝) = −∑ [𝛥𝛥𝑖𝑖 log(𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1 𝑝𝑝1 · 𝑡𝑡−𝜕𝜕2) + (𝑛𝑛 − 𝛥𝛥𝑖𝑖) log(1 −𝑝𝑝1 · 𝑡𝑡−𝜕𝜕2) +

log𝑛𝑛! − log(𝑛𝑛 − 𝛥𝛥𝑖𝑖)! − log𝛥𝛥𝑖𝑖!]. 
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Minimising this quantity with respect to the parameters p1 and p2 in this case is not 

affected by the last three terms as they are not parameter-dependent and therefore 

can be omitted. The expressions to be minimised corresponding to the two models 

therefore are 

 − log 𝐿𝐿(𝛥𝛥𝑖𝑖|𝑛𝑛,𝑝𝑝) = −∑ [𝛥𝛥𝑖𝑖 log(𝑁𝑁
𝑖𝑖=1 𝑝𝑝1 · 𝑡𝑡−𝜕𝜕2) + (𝑛𝑛 − 𝛥𝛥𝑖𝑖) log(1 −𝑝𝑝1 · 𝑡𝑡−𝜕𝜕2)] and 

 − log 𝐿𝐿(𝛥𝛥𝑖𝑖|𝑛𝑛,𝑝𝑝) = −∑ [𝛥𝛥𝑖𝑖 log(𝑁𝑁
𝑖𝑖=1 𝑝𝑝1 · 𝑒𝑒−𝜕𝜕2·𝑖𝑖) + (𝑛𝑛 − 𝛥𝛥𝑖𝑖) log(1 −𝑝𝑝1 · 𝑒𝑒−𝜕𝜕2·𝑖𝑖)]. 

Minimising such functions is a common requirement in many fields of research and 

tools in various programming languages exist, including Matlab as in this paradigm – 

and also as in the work presented throughout this thesis. A constrained minimisation 

was performed with inputs each of the above expressions as the objective function, 

random start points and bounds according to the above constraints (e.g. 0≤xi≤1), and 

default optimisation options. In the particular experiment correct recalls were 

recorded for six time intervals ti = 1, 3, 6, 9, 12 and 18 s (N=6) and were found to be 

yi = 94, 77, 40, 26, 24, 16 out of n=100 repetitions. The yielded − log 𝐿𝐿 was 313.37 

and 305.31 for the power and the exponential model respectively, indicating that the 

latter fits better the data (Figure 2.32).        
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Figure 2.32: The fitting of the proportion correct observations with the use of a power (thick 
curve) and an exponential (thin curve) model by the MLE parameters yielded for binomially 
distributed data (Myung, 2003).  

 

Application to T2-decay models  

The above MLE based fitting is directly applicable to signals describing transverse 

magnetization decay as is the scope of this work. Objective functions under MLE in 

general incorporate a model and a PDF as shown in Figure 2.33.     

    

Figure 2.33: The generic structure (‘pseudo-code’) of the computer function (code) 
computing the  log-likelihood, to be minimised in the MLE process. The parameters (‘p’) and 
the model describing the given experiment (‘M’) are passed as arguments to this function via 
the PDF (‘P’) applying to the particular problem.    
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To adapt the MLE method to the estimation of transverse magnetisation decay model 

parameters, as in the present work, candidate physical models could include the 

exponential, EPG or sEPG functions introduced in previous sections, and candidate 

PDFs the Rician or Gaussian distribution. For example if fitting CPMG data with an 

sEPG model where the underlying noise is assumed to be Rician distributed, the 

quantity to be minimised under MLE would take the form 

− log 𝐿𝐿 =

∑ �− log �𝑀𝑀(𝑖𝑖𝑒𝑒ℎ𝑏𝑏𝑖𝑖𝑠𝑠)
𝜎𝜎2

𝑒𝑒−
𝑀𝑀(𝑜𝑜𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑜𝑜)2+𝑜𝑜𝑛𝑛𝑃𝑃𝑠𝑠(𝑝𝑝,𝑜𝑜𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑜𝑜)2

2𝜎𝜎2 𝐼𝐼0 �
𝑠𝑠𝑆𝑆𝑠𝑠𝑠𝑠(𝜕𝜕,𝑖𝑖𝑒𝑒ℎ𝑏𝑏𝑖𝑖𝑠𝑠)·𝑀𝑀(𝑖𝑖𝑒𝑒ℎ𝑏𝑏𝑖𝑖𝑠𝑠)

𝜎𝜎2
� ��𝑖𝑖𝑒𝑒ℎ𝑏𝑏𝑖𝑖𝑠𝑠 , 

where M(echoes) is the signal measured, sEPG(p,echoes) the signal modelled by the 

sEPG model, p the parameters to be estimated, ‘echoes’ represents echoes as a 

vector of integers (1, 2, …, echo-train length; echo spacing is one of the fixed model 

parameters) and σ the underlying noise SD in each acquisition channel. The above 

expression is an application of the general expression of the Rician distribution 

(Equation 7) to the particular model; this will thus be the objective function taken as 

an argument by the minimisation function (i.e. Matlab ‘fmincon’) to iteratively 

determine the MLE estimated parameters p. In that case a more specific version of 

the pseudocode corresponding to the pseudocode to that of Figure 2.33 would be: 
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function logliksepg = sepg_mle (tex, tref, rfex, rfref, p, s, echoes) 

               s0 = sepg (tex, tref, rfex, rfref, p(1:end-1), echoes); 

                logliksepgvec = - log(s) + 2·log(p(end)) + (s0.2+s.2)./(2·p(end)2) 

- abs(real(s0.·s./p(end)2)) - log(besseli(0,s0.·s./p(end)2,1)); 

                logliksepg = sum(logliksepgvec); 

end; 

where logliksepg is the resulting − log 𝐿𝐿 (a scalar), tex and rfex the time and 

amplitude vector of the excitation RF pulse, tref and rfref the time and corresponding 

amplitude vector of the refocusing RF pulse, s the measured signal along the echo 

train (echoes), s0 the signal modelled by the sEPG model and logliksepgvec the vector 

of partial log-likelihoods per echo. The parameters (p) are the B1 field factor (B1f), the 

echo spacing (TE), the T2 and T1 decay constants, signal amplitude α (intercept) and 

σ. A period (dot) after a symbol (e.g. ‘s0.’) denotes vector operations. TE is usually 

known from the acquisition (sequence) settings and T1 is commonly fixed (Chapter 3, 

section 3.2.4) therefore the parameters to be estimated in p are B1f, T2, α and σ.    

Implementation considerations 

There are a few additional points to be made regarding this particular 

implementation of the minimisation algorithm. First, it is necessary in practice to 

distinguish the time and amplitude vectors for each RF pulse whereas previously 
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(sections 2.1.7 and 2.1.8) the refocusing pulse was assumed to have exactly double 

amplitude and half the duration (does not include rephasing) of the excitation pulse 

(Figure 2.27). This change reflects the way the CPMG MESE sequence is practically 

implemented on the system used (Siemens MAGNETOM Prisma) where the RF 

excitation and refocusing pulse, with their associated gradient pulses are individually 

programmed in terms of shape and amplitude. This proprietary pulse shape 

information may be provided by the MRI system vendor in the context of a 

collaboration agreement with a given institution. Second, σ is under this approach 

one of the parameters to be estimated, rather than assumed or measured a priori 

(Chapter 3, section 3.2.5); σ appears as the last end element of p ‘p(end)’ in the 

pseudo code above, and is treated separately from the remaining estimated 

parameters as it appears only in the Rician PDF expression and not in the sEPG model. 

Its role is to account for the rectified background noise floor (sections 2.1.5 and 

2.1.8), while the sEPG model accounts for the magnetization behaviour including the 

slice profile-corrected stimulated and alternate echoes coherences (sections 2.1.6 

and 2.1.7). Third, after taking logarithms for the Rician PDF there appears to be an 

extra term before the logarithm of the Bessel function (the last but one term). The 

reason for this is that ‘besseli’, the default Matlab function for I0 (the modified Bessel 

function of the 0th order) tends to return infinite results for large values of its 

argument, namely the product of the measured and modelled signal over the noise 

SD, due to numerical overload. This can be avoided by calling a normalised version of 

the function which is also available (MathWorks, Massachusetts, United States), 

necessitating use of the exponential of the negative argument within the function, 

reversed by taking the exponential of the positive argument outside (before the 
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function is executed), which leads to the additional term in the log-likelihood 

expression. The above issue is a consequence of the algebraic construction of the 

Rician PDF, which is a combination of an increasing with signal Bessel-function term 

and an exponentially decreasing term (Rice, 1944).                     

Common generic issues with iterative minimisation methods are that they do not 

always converge to a minimum and that a global minimum is not always guaranteed. 

Approaches to address these problems include for the former to empirically 

experiment with the start points and step sizes, and for the latter to perform a 

parameter scan by repeating the process for a grid of parameter start points (Bevan, 

2013). Both these techniques were used in the experimental work presented here as 

will be seen in particular later sections. 

2.3 Review of literature on quantitative T2 MRI 

Table 2.1 below is a comprehensive list of published work related to quantitative T2 

mapping for the most part pertaining to musculoskeletal disease and imaging, 

although directly relevant papers from other related fields which are referenced later 

in this thesis are included. The literature reflects the history that the simplest and 

historically commonly used T2 estimation method with a mono-exponential model 

and least-squares fitting has over time been challenged and replaced by improved 

alternatives. These have included multi-component analyses, physical models more 

advanced than a simple exponential decay, and more accurate statistical 

descriptions.  
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Out of 53 papers included here, 22 pertain to total or global T2 mapping (section 

2.1.4), i.e. estimating T2 with a mono-exponential decay model (Adams et al., 1992, 

Poon et al., 1992, Jehenson et al., 1993, Huang et al., 1994, Phoenix et al., 1996, 

Hatakenaka et al., 2001, Livingston et al., 2001, Phillips et al., 2001, Dardzinski et al., 

2002, Maillard et al., 2004, Nygren, 2006, Sesto et al., 2008, Shafer-Crane et al., 2005, 

Kim et al., 2010a, Gloor et al., 2011, Friedman et al., 2012, Arpan et al., 2013, Saleh 

Elessawy et al., 2013, Arpan et al., 2014, Kim et al., 2010b, Forbes et al., 2014, Bryan 

et al., 1998). One paper was based on T2 weighted signal intensity comparisons 

(Jenkins et al., 2018).   

Thirteen of the papers refer to multi-component models of T2 relaxation behaviour 

which take into account multi-compartment tissue structure at the pixel level (water, 

fat, oedema etc.) (Kamman et al., 1987, Cole et al., 1993, Saab et al., 1999, Gambarota 

et al., 2001, Kan et al., 2009, Prasloski et al., 2012, Yao and Gai, 2012, Araujo et al., 

2014, Azzabou et al., 2015, Wary et al., 2015, Marty et al., 2016, Mankodi et al., 2017, 

Keene et al., 2020). In most of these reports multi-component exponential models 

were used, except one case where a 2-component EPG model was used (Marty et al., 

2016). One of the papers was particularly focused on the effect of monitoring 

treatment by T2 obtained quantitatively in diseased tissue (Arpan et al., 2014). 

However the implications for treatment monitoring were also part of the discussion 

in other papers (Wary et al., 2015). Two papers involved a comparison between T2 

relaxometry mapping and MR spectroscopy (Kim et al., 2014, Kim et al., 2015). Finally 

there were seventeen papers of generic content, addressing common shortcomings 

of the method and practical issues (Majumdar et al., 1986, Gold et al., 2004, Jordan 
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et al., 2013) and novel analysis methods (Sijbers et al., 1998b, Hardy and Andersen, 

2009, Walker-Samuel et al., 2009, Lebel and Wilman, 2010, Prasloski et al., 2012, 

Neumann et al., 2014, Ben-Eliezer et al., 2015, Petrovic et al., 2015, Milford et al., 

2015, McPhee and Wilman, 2017, Milford et al., 2018, Lankford and Does, 2018, Basiri 

et al., 2019, Poot et al., 2013). These papers will be referenced at various points in 

the work to follow. 

Table 2.1: Quantitative T2 literature overview 

 
 

Guide (themes): 

Mono-
exponential 
T2 
behaviour 
with disease 

Multi-
exponential 
T2 decay 
analysis 

Quantitative 
T2 mapping vs 
MR 
spectroscopy 

(Mono-
exponential) T2 
behaviour with 
treatment 

Generic / method & 
modality dependent / 
artefacts 

Abbreviations: 
CPMG: Carr-Purcell-Meiboom-Gill sequence                                    SE: spin echo 
LSQ: Least squares                                                                                MLE: Maximum likelihood estimation 
NNLS: non-negative least squares                                                     IR: inversion recovery 
EPG: extended phase graph (model)                                                 sEPG: slice profile corrected EPG 
FF: fat fraction                                                                                       Bloch: Bloch equations 
SLR: Shinar-Le Roux method                                                               FT: Fourier transform  
Title Author / 

Reference / 
Year 

Body part Acquisition 
method / 
sequence 

Analysis 
method 

Summary / Results 

Errors in the Measurements 
of T2 Using Multiple-Echo MRI 
Techniques I. Effects of 
Radiofrequency Pulse 
Imperfections 

(Majumdar 
et al., 1986) 

general / 
phantom 

Quantitative 
T2  

Simulation and 
experiment 
based 

Signal imperfections 
due to RF pulsing 

Multi-exponential relaxation 
analysis with MR imaging and 
NMR spectroscopy using fat-
water systems 

(Kamman et 
al., 1987) 

general / 
phantom 

CPMG – 
fat/water 
phantom 

Multi-
exponential 
modelling 

Multi-compartment 
exponential behaviour 
of tissue in T2 
estimation 

Magnetic resonance imaging 
and electromyography 
as indexes of muscle function 

(Adams et 
al., 1992) 

forearm Multi echo SE Signa Software  Increased T2 with 
exercise 

Quantitative Magnetic-
Resonance-Imaging 
Parameters and Their 
Relationship to 
Mammographic Pattern 

(Poon et al., 
1992) 

breast Multi echo SE Three-
parameter 
Levenberg-
Marquardt, Sun 
workstation 

T2 histograms more 
informative than 
nominal T2 

The origin of biexponential T2 
relaxation in muscle water 

(Cole et al., 
1993) 

animal 
study 

Variable τ 
single spin 
echo 

Nonlinear least 
squares / 
Macintosh 

Bi-exponential T2 decay 
of muscle represents 
anatomical 
compartmentation of 
tissue water  

MR imaging as a potential 
diagnostic test for metabolic 
myopathies: importance of 
variations in the T2 of muscle 
with exercise 

(Jehenson 
et al., 1993) 

forearm Double echo 
SE  

Intensity ratio 
calculations  

Correlation of T2 and 
end-exercise pH in 
McArdle’s disease 
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Quantitative MR relaxometry 
study of muscle composition 
and function in Duchenne 
muscular dystrophy 

(Huang et 
al., 1994) 

calf Double echo 
SE 

Intensity ratio 
logarithms, SUN 
Sparc 
workstation 

Increased T2 / non 
uniform distribution 
histogram 

Objective quantification of 
muscle and fat in human 
dystrophic muscle by 
magnetic resonance image 
analysis 

(Phoenix et 
al., 1996) 

calf Multi echo SE log-linear least 
squares, SUN 
Sparc 
workstation 

Prolonged T2, wider and 
inhomogeneous 
distribution 

Magnetic resonance imaging 
of muscle in amyotrophic 
lateral sclerosis 

(Bryan et 
al., 1998) 

calf Multi echo SE Mono-
exponential 
fitting 

Strong negative 
correlation between 
muscle T2 and 
physiological tests   

Optimal estimation of T2 
maps from magnitude MR 
images 

(Sijbers et 
al., 1998b) 

simulations/ 
brain 

6 echo SE MLE (vs LSQ) / 
mono-exp.  

Superior accuracy with 
MLE compared to LSQ 

Multicomponent T2 
relaxation of in vivo skeletal 
muscle 

(Saab et al., 
1999) 

forearm Volume 
localized 
CPMG 

Non-negative 
least squares 

Multi component decay 
of the cellular water 
organization 

Osmotic effects on the T2 
relaxation decay of in vivo 
muscle 
 

(Gambarota 
et al., 2001) 

animal 
study 

CPMG NNLS, Matlab / 
ProFit   

Intra/extra-cellular 
water quantification by 
bi-exponential T2 fitting 

Effects of Aging on Muscle T2 
Relaxation Time 
Difference Between Fast- and 
Slow-Twitch Muscles 

(Hatakenak
a et al., 
2001) 

calf Multi echo SE 
/ IR fat 
suppression 

Mono-
exponential 
least squares 
fitting 

T2 increases in fast 
twitch muscles with age 

Functional activation of the 
extensor carpi radialis 
muscles in humans 

(Livingston 
et al., 2001) 

forearm Multi echo SE Mono-
exponential 
fitting / Scion 
Image software 

T2 monitors differential 
forearm muscle 
activation 

Patterns of muscle 
involvement in inclusion body 
myositis: clinical and 
magnetic resonance imaging 
study 

(Phillips et 
al., 2001)  

thigh / calf / 
forearm 

Multi echo SE T2 relaxometry T2 findings of 
preferential muscle 
involvement 

Mapping T2 relaxation time in 
the pediatric knee: feasibility 
with a clinical 1.5-T MR 
imaging system 

(Dardzinski 
et al., 2002) 

knee Multi echo SE Mono-
exponential 
linear least 
squares / IDL 

Spatial variation and 
increase in T2 

Musculoskeletal MRI at 3.0T: 
Relaxation times and image 
contrast 

(Gold et al., 
2004) 

knee Multi echo SE Mono-
exponential  
T2 relaxometry 

Decreased T2 from 1.5T 
to 3T 

Quantitative assessment of 
MRI T2 relaxation time of 
thigh muscles in juvenile 
dermatomyositis 

(Maillard et 
al., 2004) 

thigh CPMG T2 relaxometry T2 measures 
inflammation and 
correlates with 
functional tests 

Shortened T2 after exercise in 
ischemic skeletal muscle 

(Nygren, 
2006) 

calf Multi echo SE Mono-
exponential 
least squares 
fitting 

Ischemia detection 

Mechanical and magnetic 
resonance imaging changes 
following eccentric or 
concentric exertions 

(Sesto et al., 
2008) 

forearm 3 echoes SE T2 relaxometry / 
MR Vision 

Increase in T2 of 
forearm muscles with 
exercise 

Effect of occupational typing 
on MRI of forearm muscles in 
subjects with and without 
symptoms of carpal tunnel 
syndrome 

(Shafer-
Crane et al., 
2005) 

forearm Double echo 
SE 

Intensity ratio 
logarithms 

Increase of T2 in 
forearm flexors with 
typing 
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Calculating T2 in images from 
a phased array receiver 

(Hardy and 
Andersen, 
2009) 

simulations/ 
phantom 

Multi-echo SE log-linear, 
nonlinear LSQ, 
MLE fitting 

MLE yields the most 
accurate T2 in the 
presence of phased 
array coil bias 

Quantitative MR imaging of 
individual muscle 
involvement in 
facioscapulohumeral 
muscular dystrophy 

(Kan et al., 
2009) 

calf Multi-echo SE Bi-exponential 
T2 mapping / 
IDL 

Quantitative 
assessment of fatty 
infiltration  

Robust estimation of the 
apparent diffusion coefficient 
(ADC) in heterogeneous solid 
tumours 

(Walker-
Samuel et 
al., 2009) 

simulations 
/ mice 
prostate   

Diffusion 
sequence & 
simulation 

LSQ / MLE 
fitting 

MLE recommended 
over LSQ for robust 
ADC estimation 

T2 mapping in Duchenne 
muscular dystrophy: 
distribution of disease activity 
and correlation with clinical 
assessments 

(Kim et al., 
2010b) 

pelvis and 
thighs 

Multi-echo SE Linear least 
squares curve 
fitting 

Elevated T2 with disease 

T2 relaxation time changes in 
distal femoral articular 
cartilage in children with 
juvenile idiopathic arthritis: a 
3-year longitudinal study 

(Kim et al., 
2010a) 

knee Multi-echo SE AUC of the T2 
relaxation time  
profile 

Increase of T2 with 
distance 

Transverse relaxometry with 
stimulated echo 
compensation 

(Lebel and 
Wilman, 
2010) 

simulations/ 
phantom/ 
brain 

Multi-echo SE FT/sEPG 
nonlinear least- 
squares fitting 

accurate transverse 
relaxometry in 
heterogeneous 
transmit fields 

Quantification of fat 
infiltration in 
oculopharyngeal muscular 
dystrophy: comparison of 
three MR imaging methods 

(Gloor et al., 
2011) 

thigh and 
calf 

Multi-echo 
TSE 

nonlinear least- 
squares fitting 

Elevated T2 with disease 

Musculoskeletal MRI at 3.0 T 
and 7.0 T: A comparison of 
relaxation times and image 
contrast 

(Jordan et 
al., 2013) 

knee Multi-echo SE nonlinear least 
squares 
regression / 
Matlab 

Decreased T2 from 3T 
to 7T 

The magnetic resonance 
imaging spectrum of 
facioscapulohumeral 
muscular dystrophy 

(Friedman 
et al., 2012) 

knee 32 echo SE NNLS / Matlab T2 increase due to 
oedema 

Applications of Stimulated 
Echo Correction to 
Multicomponent T2 Analysis 

(Prasloski et 
al., 2012) 

simulations 
/ brain 

3D multi-echo 
SE 

EPG simulated 
database / 
NNLS 

Stimulated Echo 
Correction improves 
Multicomponent T2 
Analysis 

Fat-Corrected T2 
Measurement as a Marker of 
Active Muscle Disease in 
Inflammatory Myopathy 

(Yao and 
Gai, 2012) 

thigh Multi-echo SE Bi-exponential 
nonlinear least-
squares fitting 

Fat-corrected T2 values 
lower and more widely 
distributed 

T2 mapping provides multiple 
approaches for the 
characterization of muscle 
involvement in 
neuromuscular diseases: a 
cross-sectional study of lower 
leg muscles in 5-15-year-old 
boys with Duchenne 
muscular dystrophy 

(Arpan et 
al., 2013) 

calf Multi-echo SE Mono-
exponential 
fitting / IDL 

Increased 
heterogeneity in T2 
histograms for DMD 
patients 

Bias correction of maximum 
likelihood estimation in 
quantitative MRI 

(Poot et al., 
2013) 

simulations Exponential 
Multi-echo 
plus σ (noise) 

bias-corr. MLE, 
MLE, LSQ, 
nonlinear LSQ  

MLE bias can be 
corrected  
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The role of MRI in the 
evaluation of muscle diseases 

(Saleh 
Elessawy et 
al., 2013) 

pelvis, thigh 
and calf 

Multi-echo SE T2 relaxometry Increased T2 with fat 
infiltration 

New Insights on Human 
Skeletal Muscle Tissue 
Compartments Revealed by 
In Vivo T2 NMR Relaxometry 

(Araujo et 
al., 2014) 

calf (soleus 
muscle) 

Volume 
localized (ISIS) 
CPMG 

NNLS / Matlab biexponential T2 
relaxation models 
reflecting anatomical 
compartmentation of 
myowater 

Examination of effects of 
corticosteroids on skeletal 
muscles of boys with DMD 
using MRI and MRS 

(Arpan et 
al., 2014) 

thigh and 
calf 

Multi-echo SE 
/ MRS 

T2 relaxometry / 
spectroscopy 

corticosteroids reduce 
inflammation in DMD 

Validation of a generic 
approach to muscle water T2 
determination at 3T in fat-
infiltrated skeletal muscle 

(Azzabou et 
al., 2015) 

thigh 17 echo SE Tri-exponential 
model, 
nonlinear least 
squares 

Quantification of water 
T2 changes 
independently of fat 
infiltration 

Magnetic Resonance Imaging 
and Spectroscopy 
Assessment of Lower 
Extremity Skeletal Muscles in 
Boys with Duchenne 
Muscular Dystrophy: A 
Multicentre Cross-Sectional 
Study 

(Forbes et 
al., 2014) 

thigh and 
calf 

Multi-echo SE Mono-
exponential 
fitting / IDL 

T2 increases with DMD 
disease and with age 

Objective measurement of 
minimal fat in normal skeletal 
muscles of healthy children 
using T2 relaxation time 
mapping (T2 maps) and MR 
spectroscopy 

(Kim et al., 
2014) 

pelvis Multi-echo SE 
/ MR 
spectroscopy 

Mono-
exponential 
linear least 
squares 

Elevated T2 due to fat 
infiltration correlates 
with spectroscopy 
acquired fat fraction 

Simple recipe for accurate T2 
quantification with multi 
spin-echo acquisitions 

(Neumann 
et al., 2014) 

simulations 
/ phantom / 
brain 

Multi-echo SE Mono-
exponential 
fitting / EPG  

Stimulated echoes 
correction in mono-
exponential fitting 

Longitudinal measurements 
of MRI-T2 in boys with 
Duchenne muscular 
dystrophy: Effects of age and 
disease progression 

(Arpan et 
al., 2014) 

calf Multi-echo SE Mono-
exponential 
fitting / IDL 

T2 and its histogram 
width increases with 
time in DMD patients 

Rapid and Accurate T2 
Mapping from Multi–Spin-
Echo Data Using Bloch-
Simulation-Based 
Reconstruction 

(Ben-Eliezer 
et al., 2015) 

simulations 
/ brain / 
prostate 

Multi-echo SE, 
single SE 

Simulated sEPG 
signals database 
comparison (L2 
norm) 

Bloch simulated sEPG 
model improves T2 
mapping accuracy 

Quantitative Skeletal Muscle 
MRI: Part 2, MR Spectroscopy 
and T2 Relaxation Time 
Mapping-Comparison 
Between Boys with Duchenne 
Muscular Dystrophy and 
Healthy Boys 

(Kim et al., 
2015) 

pelvis and 
thigh 

Multi-echo SE 
/ MR 
spectroscopy 

Mono-
exponential 
nonlinear least 
squares fitting / 
ISS 

T2 mapping more 
accurate in separating 
patients and normals 
based on fat infiltration 

Closed-Form Solution for T2 
Mapping with Nonideal 
Refocusing of Slice Selective 
CPMG Sequences 

(Petrovic et 
al., 2015) 

simulations 
/ phantom / 
brain 

Multi-echo SE Generating 
functions (GF) / 
nonlinear least 
squares 

A solution for 
stimulated echoes 
correction in order to  
to compute comparable 
T2 values 

Quantitative NMRI and NMRS 
identify augmented disease 
progression after loss of 
ambulation in forearms of 
boys with Duchenne 
muscular dystrophy 

(Wary et al., 
2015)  

forearm Multi-echo SE Tri-exponential 
model, 
nonlinear least 
squares 

inflammation/oedema 
and fat infiltration 
progress in opposite 
directions with disease 
evolution 
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Mono-Exponential Fitting in 
T2-Relaxometry: Relevance of 
Offset and First Echo 

(Milford et 
al., 2015) 

phantom Simulations / 
Multi-echo SE  

Mono-
exponential 
fitting / EPG 

Effect of the refocusing 
pulse, echo spacing, 
echo train length and 
offset on T2 error 

Simultaneous muscle water 
T2 and fat fraction mapping 
using transverse relaxometry 
with stimulated echo 
compensation 

(Marty et 
al., 2016) 

thigh Multi-echo SE 
/ Dixon FF 

NNLS / 
dictionary 
based sEPG 

Sensitive and fast 
simultaneous muscle 
water T2 and fat 
fraction mapping 

Skeletal muscle water T2 as a 
biomarker of disease status 
and exercise effects in 
patients with Duchenne 
muscular dystrophy 

(Mankodi et 
al., 2017) 

lower leg Multi-echo SE Tri-exponential 
model, 
nonlinear least 
squares 

Tri-exponential method 
muscle 
water T2 sensitive to 
the underlying disease 
status in DMD 

Transverse Relaxation and 
Flip Angle Mapping: 
Evaluation of Simultaneous 
and Independent Methods 
Using Multiple Spin Echoes 

(McPhee 
and 
Wilman, 
2017) 

simulations 
/ phantom / 
brain 

Multi-echo SE Bloch / SLR / FT 
-sEPG and 
nonlinear least- 
squares 

Bloch-sEPG fitting 
improves T2 estimation 
but is limited by flip 
angle redundancy   

Imaging muscle as a potential 
biomarker of denervation in 
motor neuron disease 

(Jenkins et 
al., 2018) 

Whole body  T2 weighted 
fast spin echo 

Signal intensity 
comparisons 

Higher relative T2 signal  
associated with 
physiological findings 

A novel method for T2 
quantification in presence of 
B1 inhomogeneities 

(Milford et 
al., 2018) 

simulations 
/ phantom 

Multi-echo SE sEPG – custom 
minimisation 
technique 

Improved T2, proton 
density and flip angle 
estimation 

Propagation of error from 
parameter constraints in 
quantitative MRI: Example 
application of multiple spin 
echo T2 mapping 

(Lankford 
and Does, 
2018) 

simulations Multi-echo SE EPG algorithm Flip-angle 
measurement and 
constraint could be 
beneficial to T2 
accuracy and precision 
in specific T2 mapping 
applications 

Transverse relaxometry with 
transmit field-constrained 
stimulated echo 
compensation  

(Basiri et al., 
2019) 

simulations 
/ in vivo 
(brain) 

Multi-echo SE sEPG - 
nonlinear least- 
squares fitting 

More reliable and 
reproducible 
quantitative T2 maps   

T2 relaxation-time mapping in 
healthy and diseased skeletal 
muscle using extended phase 
graph algorithms 

(Keene et 
al., 2020) 
  

simulations 
/ in vivo 

Multi-echo SE NNLS / 
dictionary 
based sEPG 

Recommended sEPG 
slice flip-angle profile 
correction for through-
plane chemical-shift 
displacements 

 
 
 

Guide (themes): 

Mono-
exponential 
T2 
behaviour 
with disease 

Multi-
exponential 
T2 decay 
analysis 

Quantitative 
T2 mapping vs 
MR 
spectroscopy 

(Mono-
exponential) T2 
behaviour with 
treatment 

Generic / method & 
modality dependent / 
artefacts 

Abbreviations: 
CPMG: Carr-Purcell-Meiboom-Gill sequence                                    SE: spin echo 
LSQ: Least squares                                                                                MLE: Maximum likelihood estimation 
NNLS: non-negative least squares                                                     IR: inversion recovery 
EPG: extended phase graph (model)                                                 sEPG: slice profile corrected EPG 
FF: fat fraction                                                                                       Bloch: Bloch equations 
SLR: Shinar-Le Roux method                                                               FT: Fourier transform  
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Chapter 3. Practical implementation, optimisation and 

validation of T2 estimation algorithms 

The work presented in this chapter aimed to develop, implement and characterise 

robust methods to estimate muscle-water T2 values from multi-echo imaging data, 

using computer simulated data, with validation and practical performance 

assessment in exemplar test object and in vivo data. In this work it was necessary to 

address the challenge of developing tools which could reliably estimate T2-related 

parameters from real-world MRI data which in general may have not been acquired 

under ideal experimental conditions. In subsequent chapters the methods’ 

performance is further tested by application in two different neuromuscular disease 

natural history studies. 

3.1 Noise and SNR measurements 

In realistic experimental conditions the presence of noise combined with low signal 

intensities, i.e. low signal-to-noise ratios (SNRs) may compromise the effectiveness 

of our analysis methods. Before proceeding it is therefore instructive to obtain a 

quantitative indication of the SNR available in typical MESE datasets.  

There are a number of alternative methods for quantifying the noise levels in MRI 

images: one of the established techniques is the signal-background method, where 

we delineate regions of interest (ROIs) avoiding motion and filter roll-off artefacts, 

usually square ROIs near the image edges as shown in Figure 3.1 and then calculate 

the mean signal intensity of the included pixels (McRobbie et al., 2006).  
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Figure 3.1: Measuring noise or SNR from phantom image data. With the signal-background 
method the noise will be the corrected mean (see text) of the signal in uniform square 
background areas (1). With the NEMA method the SNR will be the corrected ratio of the 
signal in a large ROI of the phantom (area within the white circle) to the noise SD from the 
subtraction of two identical images from that ROI (2). A third method is to fit a curve on the 
signal from smoothly varying image profiles, so that the standard deviation of the residual 
following subtraction of this curve from the image line profile will give an estimate for the 
image noise (3). The ground truth T2 values (per manufacturer) of the regions of interest 
(spheres) used during the relaxometry experiments presented in later sections were between 
32 and 133ms (details in section 3.2.10), to be comparable with in vivo datasets.  

The underlying σN (the Gaussian generating-distribution SD in the Rician noise PDF) is 

recovered by dividing the mean magnitude image background signal intensity by a 

factor of 1.25 which comes from the analytical expression for the mean of a Rayleigh 

distribution (Equations 9, section 2.1.9), which is the special case of the Rician 

distribution in areas with no signal (Gudbjartsson and Patz, 1995).  

As an example, CPMG imaging data were obtained from an ISMRM/NIST System 

Phantom (High Precision Devices, Inc. 1668 Valtec Lane Suite C, Boulder, CO, 80301) 

examined at 3T (Siemens Magnetom Prisma) using a transmit/receive (‘TxRx’) head 

coil with a multi-echo spin-echo sequence (TR= 3000ms, 17 TEs from 9.9-168.3ms 
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with 9.9ms interval, a single 2 mm slice at the T2 spheres level, matrix 210x210, in-

plane resolution 0.8x0.8 mm). The mean value yielded from several background ROIs 

(squares in Figure 3.1) in a test-image was to 2 significant figures 36 greyscale units 

translating to an image noise σN of 29 units. Mean signal intensities for ROIs within 

the test object body, e.g. within the T2 spheres, were typically above 1800 units for 

the highest intensity echo image (the 2nd in this case), yielding an SNR exceeding 50 

with this noise estimation approach. Commonly – and also throughout this work – 

SNR for multi-echo signals is defined as the highest magnitude echo intensity to noise 

σN ratio, except where otherwise stated.            

In a similar method proposed by the National Electrical Manufacturers Association 

(NEMA) the mean signal from a large uniform ROI  from within the phantom is divided 

by the SD from the same ROI in a subtraction of two identically acquired images as 

the noise estimate, multiplied by √2 to correct for the noise propagation in the 

subtraction of two images, to provide an SNR estimate (area within the circle marked 

‘(2)’ in the left main panel of Figure 3.1 and the same area in the top right panel for 

the subtraction image) (NEMA, 2015). These calculations produced an SNR of 40 for 

this example, with a noise σN estimate of 36 greyscale units in absolute value, a factor 

of 1.25 higher than the previous signal-background method estimate. Plausible 

reasons for this difference in the noise value might include scanner instabilities, 

vibration, temperature variations or fluid flow within the test object.     

A third practical method to estimate the noise σN is by fitting a smoothly varying 

image profile (line) from relatively uniform areas with a suitable function (typically a 

polynomial) and find the SD of the subtraction of the true signal from the signal 
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modelled by the function (Figure 3.1, bottom right). The mean estimated noise σN 

from such calculations was 40 greyscale units, translating to a similar SNR estimate 

with the previous two methods.   

The last two methods could not be applied to in vivo images from the patient-study 

datasets available - the second due to the lack of repeat-acquisition images and the 

third due to difficulty in modelling the underlying true signal variation due to the 

dominance of anatomical structures with rapidly varying spatial features (e.g. nerves, 

fascia etc.). However application of the first method to representative images from 

the dataset analysed in chapter 4, showed noise levels of 3 to 5 units for the 

background noise σN, where the mean signal intensity for most anatomical ROIs was 

roughly 250 to 300 units (SNR range from 35 to 100). Correspondingly, images from 

the dataset analysed in chapter 5 produced an estimate for the noise σN between 20 

and 30 units while intensities in ROIs within the imaged anatomy were seen to range 

between 1000 and 2000 units (SNR range from 50 to 100) (Figure 3.2).    
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Figure 3.2: Applying the signal-background method (McRobbie et al., 2006) to estimate the 
SNR in representative images from patient datasets (acquisition characteristics described in 
sections 4.2 and 5.2).  

Therefore SNR in in vivo images analysed here lay generally between 35 and 100, 

broadly consistent with values from the phantom images.        

3.2 Numerical Simulations 

In order to test the effectiveness of T2 and other transverse magnetization relaxation 

parameters estimation across different signal models and fitting methods, we 

adopted the approach of numerical simulations where the ground truth parameter 
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values are defined a priori. Monte Carlo simulations is a technique used widely to 

characterise methods for parameter estimation in quantitative MRI (Hardy and 

Andersen, 2009, Walker-Samuel et al., 2009, Lebel and Wilman, 2010, McPhee and 

Wilman, 2017). A large number of replicates of the modelled signal are generated, 

each with independently generated random noise added conforming to the known 

underlying statistical distribution. The model in question is then fitted to each 

replicate, the combined results from these allowing a statistical assessment of the 

precision and accuracy (bias) of the parameter estimates. In the context of this work 

the modelled signal reflects the spin behaviour in multi-pulse MRI sequences and the 

aim is to investigate the accuracy of estimated T2 and other parameters, their 

associated uncertainties, and the impact of image noise levels on their estimation.     

3.2.1 Number of repetitions 

In order to obtain reliable simulation experiments it is important to determine the 

number of replicates required to adequately characterise the fitting process in each 

case. Typically powers of 10 are used (e.g. 100 or 1000 repetitions) and commonly 

their number is justified in terms of the statistical properties of the simulated signal 

replicates, which are considered to be a sample from an infinitely large population of 

events or trials. The mean and standard deviation of the parameter estimates across 

this sample can be used to estimate the number of repetitions required to obtain a 

specified uncertainty in the parameter estimates. These sample-obtained quantities 

are considered to represent the parent population: the mean of the means of a large 

number of such samples is expected to converge to the parent population’s mean. 

The uncertainty of this estimate with respect to the true population mean is 
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estimated via the sample σN: for instance we can be 95% confident that a sample’s 

mean will be within ± 1.96 times the σN of the population mean, which in turn is 

estimated by the sample σN divided by the square root of the sample size (in this case 

number of replicates). The proportion of the estimated population σN corresponding 

to a specified confidence level is called the confidence interval and in the general case 

is given as 𝛥𝛥𝑒𝑒
𝜎𝜎𝑁𝑁
√𝑁𝑁

 , where zc (the confidence level) is the interval width in multiples of 

the standard deviation, σN the sample’s standard deviation and N its size. In order to 

determine the required number of repetitions, a maximum acceptable percentage 

error for the mean can be specified via the above expression. By considering the (two-

sided) confidence interval to represent this maximum error, this will be 

𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟𝑖𝑖𝑚𝑚𝑥𝑥 = 𝛥𝛥𝑒𝑒
𝜎𝜎𝑁𝑁
√𝑁𝑁

 , or written as the percentage error of the mean ε, it becomes 

 𝜀𝜀 = 100  𝑧𝑧𝑒𝑒 𝜎𝜎𝑁𝑁
mean √𝑁𝑁

  (Naval Postgraduate School, 2004). Solving for N this gives  

 𝑆𝑆 = �100 𝑧𝑧𝑒𝑒 𝜎𝜎𝑁𝑁
𝜀𝜀 𝑖𝑖𝑖𝑖𝑚𝑚𝑏𝑏

�
2
   

As will be shown later, typical values for muscle-water T2 – the most important of the 

MRI parameters investigated in this work – lie in the range 30 to 40ms with a typically-

obtained standard deviation of 1 to 2ms, both in real data and simulations. If an error 

of 0.29%, which would translate into a 0.1ms error in estimating a true T2 of 35ms 

was considered acceptable, for a 1.96 confidence level factor and σN of 1ms the 

estimated number of repetitions required would be 384. This theoretical estimate 

can also be justified empirically via simulations with varying numbers of replicates. 

An example using the physics and statistical model adopted in the final stages of this 
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work presented in section 3.2.5 (single component case) is given here. In this test 

noise was included in the simulations at a level such that SNR (highest echo amplitude 

/ noise standard deviation) was 35, close to that observed in datasets from real 

acquisitions (section 3.1). The experiment was repeated with an increased number of 

repetitions each time in order to reach an asymptotically optimised estimation 

(Sijbers et al., 1998b), producing a T2 estimate of 34.3ms.  

 

Figure 3.3: Dependence of the mean and standard deviation of the estimated parameters on 
the number of repetitions. For T2 - the main parameter of interest – convergence is observed 
from 500 repetitions within a range of 0.1ms (compared to the value yielded by very large 
numbers of repetitions), as predicted by the statistical analysis. A single component sEPG 
model was used (section 3.2.5) with ground truth parameters B1f=100%, T2=35ms, 
T1=1400ms, amplitude α=4000a.u. and Rician noise σN (SNR≈35) in order to estimate B1f, T2, 
α and noise σN.       
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As shown in Figure 3.3 the T2 estimate converges within an interval of 0.1ms (|34.2-

34.3|=0.1ms) for 500 repetitions or above, consistent with the result predicted by 

the above statistical reasoning. The remaining parameter estimates behaved similarly 

as will be described and explained in later sections.   

Therefore for this particular experiment, use of 500 or more repetitions provides a 

maximum divergence of 0.1ms (or 0.29% error in relation to the 35ms ground truth 

value) in the estimation of T2. There remains an inherent bias of 0.7 ± 0.1ms 

(T2,estimated-T2,nominal=|34.3-35|=0.7ms) in the estimated T2, characteristic of the 

estimation algorithm used. The latter is a known property of MLE methods, predicted 

in theory (Poot et al., 2013) and also seen in practice (McPhee and Wilman, 2017). It 

will also be further addressed in later sections (section 3.2.6 and onwards).   

3.2.2 Exponential model and Gaussian noise 

To thoroughly explore the issues involved in T2 estimation the simplest possible 

model of signal behaviour was used as a starting point. This first step in the 

investigation of T2 fitting considered a simple single component exponential decay 

model. The first set of simulations therefore examined the fitting of five data points 

created by such a model at different echo times (TEs) with the addition of randomly 

varying noise. This simulated realistically individually acquired physical single spin 

echo (SE) measurements with successively increasing TE. In the first examples the 

noise levels were rather low, such that we expect the signal distribution to be 

approximately Gaussian so that the LSQ and MLE methods are expected to return 

near identical results. The physics model in this case therefore was    



132 
 

𝑠𝑠(𝑇𝑇𝐸𝐸) = 𝛼𝛼 · 𝑒𝑒−
𝑛𝑛𝑛𝑛
𝑛𝑛2                                                                                                     Equation 13 

where s is the signal at echo time TE, α the signal amplitude (intercept) and T2 the 

decay constant, TEs and T2 given in ms. Random noise was generated by the Matlab 

built-in function ‘randn’, producing random numbers drawn from a Gaussian 

distribution with a unit SD (MathWorks, Massachusetts, United States). Therefore by  

multiplying this number in each case by the desired noise σN and adding it to the spin-

echo magnitudes calculated according to (Equation 13) signals with the desired SNR 

were synthesized. LSQ fitting was implemented with use of the ‘lsqcurvefit’ Matlab 

built-in function which solves nonlinear curve-fitting (data-fitting) problems in least-

squares sense, and MLE was implemented using Equation 13 to model the signal in a 

Gaussian PDF calculation as the objective function to be minimised by ‘fmincon’ 

(MathWorks, Massachusetts, United States) as described in section 2.2.3 and Figure 

2.31.       

Thus we consider fitting the simulated signal from a single component exponential 

decay model with parameters amplitude (α) and time constant (T2) of 1000 units and 

30ms respectively, sampled at successive TEs of 30, 60, 90, 120 and 150ms. Random 

Gaussian distributed noise was added with σN varied systematically to create 5 SNR 

levels varying from 50 to 10, the signal magnitude used to calculate the SNR being 

here again defined as that of the highest (1st) echo. In Figure 3.4 an example set of 

simulations is shown for the intermediate SNR of 30.  
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Figure 3.4: Example of 1000 simulations for SNR 30, exponential model with added Gaussian 
noise, ground truth parameters: amplitude α=1000 (arbitrary units), T2=30ms. Grey dots 
represent the simulated signals, blue circles the signal predicted using mean values of the 
MLE parameter estimates and red crosses the ground truth signal without added noise. The 
mean parameter estimate-predicted signal closely overlaps the ground truth signal.  

As can be seen the synthesized signals with the added noise (grey dots) are 

symmetrically distributed around the ground truth signal (red crosses) which in turn 

is closely approximated by the signal predicted by forward calculation using the mean 

parameter estimates (blue circles) obtained by MLE. Figure 3.5 compares MLE and 

LSQ minimisation T2 estimates for this model and parameter set across the range of 

SNRs investigated.  
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Figure 3.5: Comparison of T2 estimates returned by LSQ and MLE fitting to 1000 simulations 
of an exponentially decaying signal (amplitude α=1000 units, time constant T2=30ms) with 
added Gaussian noise SNR varying from 50 to 10. Under these conditions means and SDs of 
the T2 estimates are virtually identical for ML estimation (left) and LSQ minimization (right).  

Estimated T2 mean, bias and σN were virtually identical using both methods; some 

minor differences were seen after the 3rd decimal digit in a few individual fits. Both 

the bias and the SD increased with decreasing SNR. This demonstrates the 

equivalence of the two approaches (LSQ and MLE) under appropriate conditions, 

satisfied in this case for a single component exponential model with normally 

distributed noise. It should be noted that this equivalence is predicated on the 

respective fit routines converging to the correct global minimum: as will be explored 

in later sections, this may depend on correct choice of the algorithm control 

parameters, especially any parameter bounds imposed, and the initial parameter 

estimates used to initialise the fitting process. In this comparison initial parameter 

values were chosen close to the true values (approximately from 10% to 50% 

deviation) and similarly their bounds were kept to physically meaningful ranges, for 

example only positive values for both α and T2.  
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MLE, unlike the LSQ method, involves explicit estimation of the noise levels: noise σN 

is one of the parameters estimates returned by the routine and was seen to 

reasonably approximate the true values of added noise σN, although with some 

negative bias. As an example, for SNR 30 ground truth noise and the same α and T2 

as in Figure 3.5, the ground truth σN was 12.3 units while the mean estimated value 

was 8.8±3.8 (Figure 3.6).  

 

Figure 3.6: The MLE noise σN estimates for SNR 30 (Figure 3.4) arranged in ascending order 
for the entire set of simulations, showing overall a tendency to underestimation compared 
to the ground truth value.    

The estimated noise σN was in general smaller than the ground truth value. This is 

likely to be correlated with the systematic positive bias in the T2 estimate with 

increasing levels of noise due to an interaction between the proportion of signal 

explained by the model and the proportion of the signal assigned to noise. This 

concept is further explored in the following chapters and is particularly important 

when analysing physical in vivo data, since in that case the noise parameter must be 
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estimated as it is usually unknown, and its distribution with respect to the signal 

amplitude is governed by complicated factors such as non-uniform receive sensitivity 

and multi-coil acquisition schemes.      

3.2.3 Exponential model and Rician noise 

The next more complicated test case for which parameter estimate behaviour was 

investigated was the same mono-exponential decay model as in the previous section, 

but this time with Rician rather than Gaussian noise. First considering the forward 

model, Figure 3.7 illustrates, for a high SNR condition 105 replicates with added 

Gaussian (top panel) and Rician (lower panel) noise (equal noise σN in each PDF), for 

the same ground truth forward model used in the previous section, how the signal is 

distributed per simulated echo. Data shown are the 2nd to 5th TEs presented from 

right to left (decreasing SNR): the shortest TE has been omitted for clarity since the 

Rician distribution effect has least impact for this echo with highest local SNR. The 

graphs represent distributions of simulated signals generated as previously (section 

3.2.2), with σNs calibrated to achieve a SNR of 40 for the 1st echo. For this relatively 

high SNR the distributions appear approximately Gaussian with widths about 6 times 

σN (corresponding to 99.7% of the counts) as expected for normally distributed data. 

Figure 3.8 illustrates the simulated signal histograms with the ground truth noise σN 

calibrated to achieve a lower SNR of 20 for the 1st echo.  
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Figure 3.7: Histogram distributions of signal intensity for simulated spin echoes with 
successively longer TEs across 100000 repetitions with noise σN calibrated to give SNR = 40 
for the shortest TE. Top: Gaussian noise distribution, bottom: Rician noise distribution. 2nd to 
5th echo signals (highest to lowest intensity) are plotted from right to left (echo with shortest 
TE omitted for clarity).  
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Figure 3.8: Histogram distributions of signal intensity for simulated spin echoes with 
successively longer TEs across 100000 repetitions with noise σN calibrated to give SNR = 20 
for the shortest TE. Top: Rician noise distribution, bottom: Gaussian noise distribution. 2nd to 
5th echo signals (highest to lowest intensity) are plotted from right to left (echo with shortest 
TE omitted for clarity). 

The signal model with the Rician distribution is in practice obtained by taking the 

square root of the sum of the squared modelled (exponential) signal plus noise (1st 
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channel) and the squared noise (2nd channel). This mathematically equals the sum of 

true signal plus noise expected to be acquired in each channel for magnitude 

reconstructed images (McRobbie et al., 2006). In good agreement with the literature 

(Walker-Samuel et al., 2009) (Gudbjartsson and Patz, 1995) visual assessment of the 

histogram shapes in the lower panel shows that these vary from approximately 

Gaussian for high SNR in the first echoes to close to a Rayleigh distribution towards 

the last echo where the signal level and hence SNR is markedly lower, approaching 

zero. This also confirms the points made in sections 2.1.8 and 3.1 for theoretical and 

practical considerations with regards to noise in MRI.  

Turning now to consider the behaviour of the parameter estimates with each fitting 

method, example results for LSQ and MLE fitting of 1000 simulated datasets for an 

exponential model with α=1000 and T2=30ms with Rician giving a shortest TE SNR of 

10 (the lowest SNR here investigated) is shown in Figure 3.9 - Figure 3.11. The 

minimisation parameter start values were the ground truth values for α and T2 for 

both methods, and additionally 1 (a.u.) for the noise σN in the Rician PDF for MLE. The 

Levenberg-Marquardt method was used for LSQ which does not offer the option to 

specify bound constraints (sections 2.2.2 and 3.3.1). For MLE (section 2.2.3) bounds 

were highest echo amplitude < α < 2500a.u., 10ms < T2 < 200ms and 0.1a.u. < σN < 

highest echo amplitude. Routine settings and convergence criteria are discussed in 

more detail during the stages of the final algorithm optimisation, from section 3.2.5 

and onwards. In Figure 3.10 the parameter estimates’ means and SDs yielded for all 

5 SNRs between 50 and 10 from 1000 replicates at each noise level are compared for 

MLE fitting and LSQ minimization. 
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Figure 3.9: Example of a set of 1000 simulations for an exponential model with Rician noise 
SNR 10 (first echo), ground truth parameters: amplitude α=1000 (arbitrary units), T2=30ms. 
Grey dots represent the synthesized signals, green circles the signal reconstructed using the 
mean MLE parameter estimates, blue circles the signal reconstructed using the mean LSQ 
parameter estimates, and black circles the ground truth signal without noise. MLE-derived 
signal amplitude estimates deviate from the nominal value for early echoes while T2 
estimates remain overall accurate (see subsequent figures). 

 

 

Figure 3.10: Comparison of T2 estimates (means and SD) returned by LSQ and MLE fitting to 
simulations of exponentially decaying signals (amplitude α=1000 units, time constant 
T2=30ms) with Rician noise yielding SNR from 50 to 10 (103 repetitions each). MLE T2 
estimates (left) are overall more accurate than LSQ T2 estimates, which appear increasingly 
biased as noise increases (right).  

Figure 3.11 shows the estimated parameter histograms for the lowest SNR of 10. 
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Figure 3.11:  The distributions of the MLE parameter estimates for the exponential model 
with Rician noise; these appear to be non-symmetrical (skewed) in general.   

The non-Gaussian, or more generally non-symmetrical shape of these histograms – 

such that the sample means differ from their modes, indicate that these parameter 

estimators are biased for both the MLE and LSQ cases. This is supported by Figure 

3.12, showing that the parameter modes  are overall closer to the ground truth value 

than the mean values shown in Figure 3.10. The 15.9 and 84.1 percentiles (or mode 

± 34.1 percentiles) are presented in Figure 3.12 as an indication of the data spread 

approximately equivalent to a 1 SD error bar, which includes approximately 68.2% of 

the data for a normal (Gaussian) distribution. ML estimates are again less biased than 

those from LSQ.     
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Figure 3.12: Comparison of T2 estimates (modes and ±34.1 percentiles) returned by LSQ and 
MLE fitting to simulations of an exponential decay signal (amplitude α=1000 units, time 
constant T2=30ms) with Rician noise yielding SNRs from 50 to 10 (103 repetitions each). 
Biasedness is in general decreased compared to means and SDs (Figure 3.10), while ML 
estimates still appear less biased than the respective LSQ ones.   

For further clarity in Figure 3.13 T2 estimate distributions comparing MLE and LSQ are 

presented with the use of boxplots and whiskers – reporting medians, quartiles and 

considering extreme values as outliers.  

 

Figure 3.13: Comparison of T2 estimate distributions with boxplots (medians and percentiles),  
returned by LSQ and MLE fitting to simulations of exponential decay signals (amplitude 
α=1000 units, time constant T2=30ms) with Rician noise yielding SNR from 50 to 10 (103 
repetitions each). Behaviour in terms of bias is for LSQ closer to the results expressed by 
means and σNs (Figure 3.10) and for MLE closer to results expressed by modes and percentiles 
(Figure 3.12), making the apparent differences between the two methods more conspicuous 
due to their conceptually different PDF structure.   
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While medians are closer to modes for MLE (showing relatively less bias), they are 

closer to means for LSQ (more bias), revealing more clearly the differences between 

the two methods.  

It was previously noted that for the lowest SNR of 10, the signal reconstructed using 

the mean of the estimated parameters across all of the simulated replicates 

significantly deviated from the ground truth signal, as shown in Figure 3.9. This was 

not least due to many cases (repetitions) for which the ML estimation for amplitude 

α substantially departed from the true values for the initial echoes, thus raising the 

mean returned values (1st and 2nd echoes). This was mainly an effect of echo trains 

which by chance were created with a markedly low second echo due to the added 

noise (SNR = 10) – markedly negative for these cases, plausibly also emphasised by 

the relatively wide bound constraints for the amplitude. This adds steepness to the 

echo succession (i.e. between the two first) and combined with the additive Rician 

noise effect for the later echoes leads to a combination of increased α estimate and 

reduced T2 estimate for MLE compared to LSQ. A typical example is shown in Figure 

3.14. This is a phenomenon that applies also to EPG models as will be seen in later 

sections.     
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Figure 3.14: An example fit (simulation repetition) returning spuriously high amplitude 
(intercept) and relatively low T2 estimates, due to the (high) added noise creating a markedly 
low second echo. This was seen in roughly 10-20% of that set of simulations.  

This apparent deviation of the expected values in Figure 3.9 is however related also 

to the way that results are reported. Re-plotting the signal re-composed from the 

estimates’ modes, namely the values used in Figure 3.12 for SNR = 10, we obtain a 

more representative characterization of the fitting process, as shown in Figure 3.15.  
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Figure 3.15: The example set of 1000 simulations for SNR 10, from Figure 3.9, here with the 
signal reconstructed using the estimated parameters modes instead of means. In this manner 
MLE results express more accurately both the Rician PDFs of the synthesized (‘raw’) data and 
any skewness in the estimated parameter distributions. On the other hand the LSQ method 
results tend to produce reconstructed signals that pass closer to the middle of data 
distributions as these are considered Gaussian.  

The signal reconstructed using the MLE method parameter estimates is expected in 

general to pass under the hypothesized Gaussian peak of the synthesized signal for 

two reasons, as is apparent in this graph. First, because MLE accounts correctly for 

the Rician noise; this is particularly apparent where SNR is low, typically for high noise 

images and in any case for later echoes. Second, because of the estimator bias that 

is inherent in the MLE method and is dependent upon the specific experimental 

conditions, as exemplified in the results presented above. The skewed distributions 

of the parameter estimates are related to this inherent estimator bias. Conversely, 

the signal re-composed using the LSQ estimates is expected in general to pass 

through the peak of the approximate Gaussian distribution of data points, according 

to this method’s assumptions, and this is partly apparent in the above graph. There 
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is however the additional tendency for the first and particularly for the last LSQ 

estimate-mode-reconstructed echoes, to pass under the ground truth data points. 

This is due to the inability of the LSQ method to account for the additive nature of 

the Rician noise most apparent in the latter, low signal echoes; this Rician noise adds 

some extra ‘curvature’ to the echo trains, which the mono-exponential function 

cannot adequately describe. This effect is well known and reported in the literature, 

and can be partly mitigated by the addition of a constant to the mono-exponential 

model (Milford et al., 2015). 

The examples above confirm that MLE T2 estimation in general appears to perform 

better than LSQ minimization estimation in terms of accuracy: bias when using MLE 

reduces to only a fraction of that when using LSQ minimization. The use of 

exponential type models is an historically established way to describe and extract 

signal parameters (e.g. the T2 time constant) for multi-echo spin echo acquisitions (as 

the CPMG sequence), however more advanced and accurate models also exist. These 

are now discussed in the following sections.  

 

3.2.4 Single component EPG model and Rician noise     

The purpose of this section is to extend the methods developed for exponential 

model parameter estimation presented above by application to estimating EPG 

model parameters, a formalism which more accurately predicts real-world MRI 

CPMG echo train amplitudes (section 2.1.7).  Taking first an idealised single-

component EPG model in which slice profile effects are not considered, the 
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parameters to be estimated are the flip angle φ – assuming the refocusing angle to 

be twice the excitation angle, T2, amplitude α and noise SD (σN). Within the EPG model 

T1 is also a parameter, however variation of T1 over a reasonable range has been 

shown to have negligible effect upon the accuracy of T2 estimation (Marty et al.) and 

for that reason T1 will be fixed in the following work at 1400ms, a T1 value for muscle 

commonly reported in the literature (Azzabou et al., 2015).     

 

Figure 3.16: 1000 simulations for a single component example EPG model with Rician noise 
giving an SNR of 10, ground truth parameters: amplitude α=1000 (arbitrary units), T2=30ms, 
flip angle φ=90˚ (180˚ for refocusing). Grey dots represent the synthesized signal, green 
circles the signal reconstructed using the mean of the MLE parameter estimates, blue circles 
the signal reconstructed using the mean of the LSQ parameter estimates and black circles the 
ground truth signal values. Reconstructed signal values based on the MLE parameter 
estimates deviates significantly less from the ground truth signal than from the equivalent 
LSQ estimated parameters.  

LSQ and MLE parameter estimation behaviour for an EPG model simulated dataset 

with Rician noise is exemplified in Figure 3.16, for the SNR 10 case (the lowest SNR 
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here tested), with T2 30ms, amplitude (α) 1000 arbitrary units (a.u.) and excitation 

and refocusing angles 90˚ and 180˚ respectively (no B1 field errors).   

The echo train length (ETL) of the synthesized signals was 17 with 9.9ms echo spacing. 

For fitting, parameter start values and bounds were once again kept within physically 

meaningful limits (e.g. no negative or extreme values) – a more detailed investigation 

of their impact on fitting behaviour will be presented later during the evaluation of 

the final versions of the finally deployed algorithm. In Figure 3.17 the means and σNs 

of the estimated T2, modes (and percentiles) and medians (and quartiles) yielded for 

5 SNRs between 50 and 10, fitting to 1000 simulations for each are compared for the 

MLE and LSQ methods. In Figure 3.18 the parameter estimates’ histograms are 

presented for the 5th, lowest SNR of 10. Reconstruction of the signal based on the 

returned MLE-estimated parameter means is systematically much closer to the 

ground truth signal than the signal reconstructed from the LSQ estimates.  
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Figure 3.17: The dependence on SNR of MLE and LSQ T2 estimates presented in terms of 
means and SD (top row), modes and percentiles (middle row) and medians and quartiles 
(bottom row) over 1000 replicates of modelled EPG signals (amplitude α=1000 units, time 
constant T2=30ms, refocusing angle = 2 x excitation angle = 90˚); Rician noise was added to 
yield SNR from 50 to 10 (103 repetitions each). There is systematically less bias in ML 
estimated T2 in comparison with LSQ T2 estimation as well as a marked effect of the 
distribution shapes upon the mode values, for the given histogram binwidths and number of 
samples (counts). 
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Figure 3.18: The distributions of the parameter estimates for the EPG model with added 
Rician noise (highest level σN or lowest SNR = 10), appearing non symmetrical (skewed) in 
general (extreme values/outliers were omitted for clarity).    

The predominantly positive deviation in the α estimates is consistent with the 

skewness of the amplitude estimates’ distributions shown in Figure 3.18 (2nd row, 1st 

graph) while MLE estimated T2 remains broadly more accurate, i.e. closer to the 

ground truth value of 30ms (1st row, 1st graph). However the shape of the estimated  

T2 distribution explains the larger departure of its mode (27.1ms with ± 34.1 

percentiles -2.8 and +8.7ms) from the nominal value (30ms) in comparison with its 
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mean (29.9 ± 5.9ms) and median (29.2ms with quartiles -3.5 and +4.2ms). The one-

sided shape of the excitation angle MLE estimate distribution is due to the symmetry 

in the EPG function for equal flip angle deviation above and below 90˚. An upper 

bound of 90˚ was therefore used as this was not seen to have significant effect on the 

rest of the parameters. The role of the excitation and refocusing angles in the fitting 

process will be examined in more detail via the slice profile effects introduced in 

following sections.  
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Figure 3.19: Example of a set of 1000 simulations for an EPG model with Rician noise, SNR of 
10, ground truth parameters: amplitude α=1000 (arbitrary units), T2=30ms, flip angle φ=90˚ 
(180˚ for refocusing). Grey dots represent the synthesized signal and black circles the ground 
truth signal values. Top panel: green circles represent the signal reconstructed using the 
modes of the MLE parameter estimates, blue circles the signal reconstructed using the modes 
of the LSQ parameter estimates. Bottom panel: green circles represent the signal 
reconstructed using the medians of the MLE parameter estimates, blue circles the signal 
reconstructed using the medians of the LSQ parameter estimates. Once again re-composed 
signal based on the MLE parameter estimates deviates significantly less from the ground 
truth than that reconstructed from the equivalent LSQ estimated parameters. 
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The graphs in Figure 3.19 show how the re-composed signal based on the modes and 

medians of the returned parameter estimates’ histograms behave, in the case of MLE 

and LSQ fitting, for the case of SNR = 10. Less bias is seen than with use of the 

exponential model as presented in the previous section (3.2.3) which is likely to be 

due to the longer and more densely spaced echo train used in this case. Further 

exploration of this topic is presented in Chapter 6.        

It is informative now to examine the behaviour of MLE fitting in the case that the 

noise σN in the Rician PDF is not considered a parameter to be estimated but is instead 

fixed. This would correspond to the practical circumstances where an independent 

estimate of σN was available, e.g. from the image background. There is extensive 

literature on both noise estimation and denoising methods in MRI (Henkelman, 1985, 

Mohan et al., 2014) and this is particularly relevant for MLE methods since the 

question of whether a priori or simultaneous with MLE noise estimation is optimal 

may be posed (Sijbers and den Dekker, 2004). In the following examples results from 

MLE fitting performed with the noise σN fixed at the ground truth values, that is at 

the noise σN levels added to the EPG signal when synthesizing the signal replicates to 

be fitted during simulation, were compared with results (as previously presented) in 

the case that noise σN was one of the estimated parameters (Figure 3.20). Fixing the 

noise σN was not seen to offer any improvement in the fitting experiment, rather 

there was a slight overall deterioration of the parameter estimates as noise levels 

increased. This is likely to be related to both the non linear nature of the EPG model 

and the not necessarily normalised PDFs (section 2.2.3) participating in the log-

likelihood minimization. 
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Figure 3.20: Comparison of T2 estimates with the use of means and SD (top row), modes and 
percentiles (middle row) and medians and quartiles (bottom row) on results returned by MLE 
fitting to simulations of EPG modelled signal (amplitude α=1000 units, time constant 
T2=30ms, refocusing angle = 2 x excitation angle = 90˚) with Rician noise yielding SNR from 
50 to 10 (103 repetitions each). In the left column noise σN was an estimated parameter while 
on the right column it was fixed at its nominal value during the fitting process. Using fixed 
noise σN at the nominal (correct) levels was not seen to improve results.   
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Nevertheless this is a useful validation step for the method development, 

demonstrating that the proposed MLE method does not require input from separate 

noise σN determination methods.  

3.2.5 Inclusion of slice profile effects in the EPG model 

In the analysis so far presented slice profile effects have been ignored in modelling of 

CPMG signal. However these effects have been shown to have significant impact 

upon parameter estimation (McPhee and Wilman, 2017). As will be described below 

the effective flip angles vary across the slice profile so that the above EPG model 

applying at each slice position is calculated and then summed and averaged to be 

thus transformed to the slice selective EPG model (sEPG). The effect of this correction 

is demonstrated in a simple example (Figure 3.21) where a signal calculated using the 

sEPG model, with no B1 calibration imperfections and no added noise, was fitted with 

both a simple EPG-MLE model as presented in the previous section and with the 

sEPG-MLE method introduced here.  

For selective excitation and refocusing, excitation and refocusing angles vary at 

different locations across the slice profile due to the combined effect of the non-ideal 

RF pulse shapes available in practice and the applied gradients (section 2.1.8); the 

signal finally detected is the vector sum (resultant) of the different signals arising at 

successive locations across the slice profile. This was performed for 40 uniformly 

spaced divisions across the slice profile and for each division the flip angles were 

calculated by approximating the RF pulse time domain shape using the hard pulse 

method, successively applying the appropriate rotation matrices (pseudocode in 
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Figure 2.29, section 2.1.8).  Based on these effective flip angles the signal at each slice 

division is calculated (‘slice profile EPGs’) and then averaged over the slice width to 

produce the final apparent echo train (‘sEPG’). Consequently – even if there are no 

B1 field imperfections as in this example (i.e. the nominal excitation and refocusing 

angles are 90˚ and 180˚ respectively), the resultant signal (black circles) deviates 

substantially from a pure exponential decay.  

 

Figure 3.21: Ground truth simulated noiseless sEPG signal with 100% B1 field factor (scaling), 
fitted with EPG-MLE (cyan line) and with sEPG-MLE (dark green line) models, showing how 
the first, non-slice selective EPG version, cannot match the ground truth signal, the 
unaccounted for slice profile effects also creating flip-angle and T2 estimate errors.   

The figure demonstrates that even in the case of zero noise, the best fit of the non-

slice selective EPG model to the simulated signal (cyan line) cannot match the ground 

truth signal, and even this best fit returns an incorrect overall flip angle (or 

equivalently B1) value and T2 estimate error of about 30%; the effective flip angles 

are a distribution from the nominal value (in this case) in the middle of slice to 
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gradually reduced towards its edges. In contrast the sEPG model accounts for this 

distribution (figure inset) and the reconstructed signal parametrized with its 

estimated values (dark green line) are virtually identical to the ground truth values.  

The differences between the two models are further illustrated in Figure 3.22. In the 

case of a uniform and correctly calibrated B1 field, the sum of the EPG signals across 

the slice will include perfectly excited and refocused signals from the middle of the 

slice as well as a variety of coherences from Hahn and stimulated echoes due to 

suboptimal flip angles towards its edges (Section 2.1.8). Typical features of the 

resulting echo train signals are the relative elevation of all echoes relative to the 1st, 

with signal elevation remaining apparent towards the end of the echo train, and the 

alternate echoes amplitude modulation effect. This alters significantly the shape and 

curvature of the signal evolution with time, compared with the exponential decay 

resulting from the simple EPG model with perfect excitation and refocusing flip 

angles. The contribution of Rician noise in amplitude reconstructed images further 

alters the signal’s apparent evolution due to its additive behaviour particularly 

evident towards the end of the echo train as SNR decreases. When it comes to model 

parameter estimation, there is a potential interaction between the sEPG signal and 

the noise contribution. In the simulation here this was seen to contribute variably 

due to random noise contributions occasionally mimicking features of a plausible EPG 

signal. In addition in the sEPG case the SNR of the later echoes relatively to the first 

is substantially higher than the of the EPG case (Figure 3.22, lower graph, inset), 

which is of note since we have adopted the convention of defining the overall SNR as 

the ratio of the highest (generally first or second) echo amplitude to the noise level 

(σN) added for each set of simulations. 
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Figure 3.22: Behaviour of the sEPG model: the slice profile effects on the EPG signal, without 
(top panel) and with (bottom panel) added Rician noise. The slice profile effects clearly 
increase SNR markedly towards the end of the echo train.    

Therefore sEPG signal data sets compared to EPG signals of the same nominal SNR 

will exhibit significantly higher SNR at their later echoes.   

In order to more comprehensively characterize sEPG parameter estimation, the 

simulation experiments conducted at this stage were expanded to sets of 10000 
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repetitions for 10 different noise levels (SNR from 50 to 3). The workflow algorithm 

for signal synthesis and MLE fitting is shown in Figure 3.23. For comparison, LSQ 

parameter estimation was additionally performed: because the sEPG formalism is in 

essence a complex number problem (section 2.1.7), it was necessary to use the 

Levenberg-Marquardt algorithm which cannot handle bound constraints (Matlab, 

MathWorks, Massachusetts, United States). Initialization parameter values for the 

LSQ routine were identical to those used for the MLE calculations.     
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Figure 3.23: A schematic illustrating the implementation of the simulations parameter 
estimation tests at this stage. Signals are synthesized by adding Rician noise to the sEPG-
produced echo train (upper box), and subsequently fed into the fitting routine (lower box) 
where their joint negative log-likelihood is minimized in order to yield the (MLE) parameter 
estimates, subject to specified start values, bound constraints and algorithm settings.    
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LSQ and MLE fitting to sEPG model simulated data with Rician noise are compared 

for the case of SNR 10 in Figure 3.24. The marked elevation, relative to the ground 

truth values, of the reconstructed signal based on both LSQ and MLE estimated 

parameter means (upper graph) is due in part to the estimates’ skewed distribution. 

This is mitigated to an extent by using estimate distribution modes or medians 

(middle and lower graph) to reconstruct the signal. The parameter estimate 

distributions for this SNR = 10 case are shown in Figure 3.25, their general asymmetry 

supporting these observations. The highest estimate skewness is observed for the 

amplitude α, showing a prolonged upper tail, presumably explaining in a large part 

the reconstructed signal departures seen in Figure 3.24(a). This amplitude 

distribution upper tail feature is correlated with the opposite skewness in the 

estimated T2 distributions. In Figure 3.26, it is shown that α estimates above 1500 

a.u. are associated with low T2 estimates, and account almost entirely for T2 estimates 

less than 20ms in the complete dataset. Removing those amplitude estimates 

effectively removes the lower tail in the estimated T2 histogram. This observation is 

consistent with effects seen in fitting the simple exponential model discussed in 

section 3.2.3 (Figure 3.14) where random noise can elevate initial echoes and/or 

diminish later echoes relative to their corresponding ground truth values in a way 

that causes the decay to appear markedly faster than it would in the absence of noise. 

Comparison with the respective LSQ estimates (excluding the same subset of α 

estimates) reveals that MLE T2 distributions are tighter and closer to the ground truth 

value (bottom graphs).     
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Figure 3.24: Example of a set of 10000 simulations for an sEPG model with Rician noise 
yielding SNR of 10, ground truth parameters: amplitude α=1000 (arbitrary units), T2=30ms, 
100% B1 field factor). Grey dots represent the synthesized signals and black circles the ground 
truth signal values. Top (a): green circles represent a signal reconstructed using the means of 
the MLE parameter estimates, blue circles the signal from the means of the LSQ parameter 
estimates. Middle (b): green circles represent a signal reconstructed using the modes of the 
MLE parameter estimates, blue circles a signal reconstructed using the modes of the LSQ 
parameter estimates.  Bottom (c): green circles represent a signal reconstructed using the 
medians of the MLE parameter estimates, blue circles a signal reconstructed using the 
medians of the LSQ parameter estimates. Re-constructed signals based on the MLE 
parameter estimates deviate in general markedly less than from the equivalent LSQ 
estimated parameters.  

 

 

Figure 3.25: Histograms showing distributions of the parameter estimates for the sEPG model 
of Figure 3.23 and Figure 3.24 with added Rician noise (SNR = 10), which appear non 
symmetrical (skewed) in general (extreme values/outliers were omitted for clarity).     
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Figure 3.26: T2 estimate histogram distributions corresponding to all 104 SNR 10 replicate EPG 
signals (top left), to the subset of replicate signals yielding α estimates above 1500a.u. (top 
right) and the remaining subset yielding estimated α below 1500a.u. (bottom left) and the 
latter’s comparison with LSQ T2 estimates (bottom right) as compared to the entire estimated 
T2 distribution (top left). The fits yielding amplitude estimates above 1500a.u. are almost 
entirely those yielding T2 estimates below 20ms.  

In Figure 3.27 an example sEPG model simulation demonstrating the above effect is 

shown. Due to the random added noise the initial two echoes were in this case higher 

than the ground truth signal while the next three (3rd, 4th end 5th) conversely by 

chance were markedly lower, and this combination causes a significant T2 

underestimation with both MLE and LSQ methods.  
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Figure 3.27: An example fit (simulation repetition) returning spuriously high amplitude 
(intercept) and relatively low T2 estimates, due to the added noise distorting echo heights in 
a manner that causes acceleration of the apparent signal decay.   

Interestingly in this case LSQ actually returned parameter estimates closer to the 

ground truth due to the relatively high added noise: this additive Rician noise is, 

under the LSQ assumptions (Gaussian homoscedastic noise), incorrectly attributed in 

part as elevated signal, and this partly compensates for the apparent accelerated 

decay early in the echo train. MLE properly accounts for the Rician noise and is 

affected only by the intrinsic bias described here related to the steepness of specific 

echo train formations as in the above paradigm.  

A sub-population of such fits manifesting low T2 and simultaneously high α values 

existed for each noise level. The value of 1500a.u. can be chosen (as above) as an 

approximate lower bound indicator for this pool of fits because in general amplitude 

estimates did not fall below 500a.u. at the opposite end (left tail) of the distribution 

– only a very small percentage (up to 1.5%) for the last three highest noise levels. As 

is shown in Table 3.1 for MLE, the number of such fits approaches half of the cases 
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for the lowest SNR, while for LSQ it also increases for SNR down to 7.5 almost in 

parallel with MLE, largely comprising of the same synthesized signals.  

Table 3.1: The sub-populations of simulations (out of a total of 104 signal replicates) returning 
amplitude estimates above 1500a.u. grow larger with increasing noise for both the MLE and 
LSQ methods, while largely overlapping. However the noise-distribution-related bias for LSQ 
effectively starts compensating this type of fitting error and eventually dominates results for 
lower SNR (below 10).   

 

 

Then the opposite bias introduced by the increasing Rician noise floor – as it appears 

for the LSQ minimization – reduces the effect and dominates the LSQ fitting process 

as SNR further decreases.    

The above trends can be also seen in the overall results presented in Figure 3.28 and 

Figure 3.29, as a relatively stable small negative bias for the first 3 or 4 high SNRs 

which continues in a similar fashion for MLE but eventually reverses towards the 

opposite direction (overestimation) for LSQ. Distribution medians (including quartiles 

and outliers) appear to more accurate characterise the results as means (and SD) can 

take extreme values, e.g. top right graph for LSQ, and modes can collapse for 

extremely skewed distributions, e.g. middle left graph for MLE where the mode 

becomes the lower T2 bound of 10ms (Figure 3.23) for very high noise. For those 

reasons and because the SNR range of interest mostly seen in our in vivo data sets 

SNR 50 40 30 20 15 10 7.5 5  4 3 

αMLE>1500a.u.        0 1 8 149 548 1405 2233 3459 4210 4835 

αLSQ>1500a.u.        0 1 10 171 517 1071 1300 1135 905 651 

αMLE>1500a.u.∩ 
αLSQ>1500a.u.               

0 1 7 126 444 1022 1277 1107 850 532 
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was predominantly between 50 and 10 (section 3.1) the results for that range 

(50>SNR>10) are also shown in closer detail in Figure 3.29 – consistent also with the 

type of figures in previous sections for completeness. In this case there are no 

extreme values or estimate values restricted by bounds imposed in the fitting 

process. While trends can be seen to be the same an additional feature more clearly 

seen in this figure is that down to SNR=15 LSQ appears to be superior overall in terms 

of T2 estimate bias. This is visible in the graph for means, and also true for medians 

(Table 3.2).  

 

Table 3.2: The MLE and LSQ estimated T2 medians for 50<SNR<15 with LSQ estimates being 
closer to the ground truth value of 30ms.   

SNR 50 40 30 20 15 
T2 MLE (ms)       29.698 29.633 29.504 29.263 29.055 
T2 LSQ (ms)        29.790 29.794 29.830 30.067 30.607 

 

The initial negative bias similar to that seen with MLE becomes gradually 

compensated due to the LSQ Rician noise-related opposite bias, such that all metrics 

(means, modes and medians) cross the ground truth value at SNRs between 30 and 

20, suggesting an erroneous apparent superiority for LSQ over MLE for this range.   
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Figure 3.28: Comparison of T2 estimates from 104 simulations presented in terms of means 
and SD (top row), modes and percentiles (middle row) and medians and quartiles (bottom 
row) of results returned by LSQ and MLE fitting to simulations of sEPG modelled signal 
(amplitude α=1000 units, time constant T2=30ms, B1 field factor = 100%) with Rician noise 
producing varying SNR from 50 to 4. There is in general less bias in MLE estimated T2 in 
comparison with LSQ T2 estimation while choice of the specific statistical metrics to be used 
(i.e. means and SD or otherwise) markedly affects the way that results are presented.   
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Figure 3.29: Comparison of T2 estimates with the use of means and SD (top row), modes and 
percentiles (middle row) and medians and quartiles (bottom row) on results returned by LSQ 
and MLE fitting on simulations of sEPG modelled signal (amplitude α=1000 units, time 
constant T2=30ms, B1 field factor = 100%) with Rician noise producing varying SNR from 50 
to 10 (104 repetitions each). Both methods exhibit similar negative model-related bias for 
initial high SNR, however with increasing SNR for LSQ fitting the effective positive bias in 
estimated T2s due to the rising apparent Rician noise floor in that case reverses this trend.    
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Figure 3.30: Comparison of T2 estimates with the use of means and SD (top row), modes and 
percentiles (middle row) and medians and quartiles (bottom row) on results returned by MLE 
fitting on simulations of sEPG modelled signal (amplitude α=1000 units, time constant 
T2=30ms, B1 field factor = 100%) with added Rician noise of varying SNR from 50 to 10 (103 
repetitions each). On the left column noise σN was an estimated parameter, on the middle 
column it was fixed at its nominal value during the fitting process and on the right column it 
was fixed on the previous mean MLE σN estimate for each SNR. In both cases using fixed noise 
σN was not seen to improve results.  
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The behaviour of MLE fitting in the case that the noise σN in the Rician pdf is not a 

parameter to be estimated but rather is known a priori and fixed is shown in Figure 

3.30. The first 1000 synthesized signals from the previous experiment were fitted 

while fixing σN at both its nominal ground truth value of the noise added to each 

channel (middle column) and the mean value yielded from the previous simulations 

when it was fitted as a free parameter by the MLE method (right column) – for those 

first 1000 counts. The mean of the MLE estimate was used as its distributions were 

seen to approach a close to normal (symmetric) shape in general (last graph of Figure 

3.25). In both cases fixing the noise was not seen to offer any significant improvement 

overall in bias and precision when compared to the results from the case where it 

was also estimated from the data (left column), once again demonstrating that the 

proposed MLE method does not require input from separate noise σN determination 

methods (Walker-Samuel et al., 2010).    

3.2.6 Behaviour and fine tuning of the single component sEPG-MLE 

algorithm    

Having established in principle a working algorithm to fit CPMG signals with the use 

of the sEPG formalism accounting for the presence of Rician noise, we then have to 

investigate its effectiveness and reliability under varying real-world conditions. A first 

step in that direction is to examine the dependence of the parameter estimate bias, 

if any, upon the parameter values across the practical range of interest for each. We 

can next consider strategies to implement the method, and potentially ways for 

further optimisation in the context of real-world data.   
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The previous experimental work suggested the existence of bias affecting the set of 

model parameter estimates with different underlying causes which are likely to 

dynamically interact. In this section a more detailed investigation of the behaviour 

and limitations of the fitting routine will be presented, leading to further 

improvements in the method. For this section, results are presented in terms of 

medians and percentiles via box and whisker plots only, for the main range of interest 

of SNR between 50 and 10. 

Parameter start points (initial values) and bound constraints, imposed when 

initialising the fitting routine, directly influence the algorithm speed and ability to 

converge to an accurate parameter estimate vector, in particular with regards to a 

global vs. local minimum. The general approach with regards to setting parameter 

constraints was empirical such that the fitting proceeded reliably producing 

physically meaningful results. There are 4 possible types of fitting outcomes, 

returning parameter estimates corresponding to: i) a global minimum, ii) a local 

minimum, iii) the bound values or iv) failure to converge. The aim of the work now 

presented was to develop strategies favouring convergence to global minima, 

avoiding as far as possible the remaining suboptimal outcomes. Estimates returned 

at the bound values can serve as alerts for cases where the fitting fails or is 

suboptimal. This may occur for example when parameter start points are far away 

from the true values or data are very noisy and/or for physical reasons ill-posed e.g. 

very low B1 field. For those cases bounds also had to be kept reasonably wide, in order 

to retain the possibility of converging to the correct values. The B1f parameter 
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estimation is particularly sensitive to these factors, and it is also strongly affected by 

the existence of local minima as will now be explained. 

Since the loglik space is multidimensional (with number of dimensions equalling the 

number of estimated parameters) this work is based on studying variations along one 

dimension with the other parameters at fixed or narrowly confined, representative 

physically realistic points, mainly focused on the range of interest for T2, and for 

multi-component models (section 3.3) also for ff. A full study would require a 

multidimensional analysis, however the findings presented next are sufficient to 

characterise the key functionality of the proposed method and physical 

meaningfulness of the yielded results. The existence of a physical model predicting 

the shape of the loglik surface with respect to B1f, based on prior knowledge from 

MR theory, is particularly relevant in this analysis.       

3.2.7 The role of B1f in the fitting process  

Effects of start points (parameter initialization) 

The B1f parameter variations appear to have a major impact upon both the signal 

construction (in simulation) and its fitting via the behaviour of the sEPG model in the 

minimization algorithm. As a percentage scale factor accounting for B1 transmit 

inhomogeneity it scales the magnitude of the RF pulse, taking a value of 100% for a 

slice profile with 180° effective refocusing angle at its centre. Depending on the 

specific scanner software and settings there might an additional scale factor between 

the excitation and refocusing pulse amplitudes. B1f thus combines with the RF pulse 

waveshape to determine the precise excitation and refocusing flip angles across the 
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slice profile. Previous work fitting slice profile corrected models constrained B1f as 0 

< B1f < 100% (Lebel and Wilman, 2010, Petrovic et al., 2015); i.e. it was assumed that 

for example a nominal 170° refocusing pulse produces the same echo train as a 190° 

pulse. Later work showed that this assumption fails for slice-selective pulses (McPhee 

and Wilman, 2017). The existence of closely similar solutions for B1f values symmetric 

about 100% causes, particularly in the presence of noise, redundancy and hence 

instability in the parameter estimates. Since B1f equally above or below the correct 

value produces similar but not identical signal models (Figure 3.31) this may lead to 

errors in the final parameter estimates. This type of B1f variation has therefore been 

considered a potential confound in relevant published work (Lebel and Wilman, 2010, 

Azzabou et al., 2015). Hence characterizing the role of B1f is a key point in optimising 

the fitting process.     

   

Figure 3.31: T2 decay curves with T2=50ms and B1f 85, 100 and 115% computed using a slice 
selective Bloch equations based simulation showing asymmetry in the signals produced for 
B1 amplitude symmetric about the ideal value (McPhee and Wilman, 2017).  
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It is informative for that reason to first examine the case of a noiseless signal and 

investigate the effect that changing the B1f initial value for the iterative fitting routine 

has on the final parameter estimates. In Figure 3.32 this behaviour is shown for the 

case of a noiseless single sEPG signal with an 80% B1f ground truth value. This 

corresponds to experimental cases where a B1 field deviation is present (e.g. RF field 

spatial inhomogeneity) but at the same time SNR is overall very high.  

 

Figure 3.32: The effect of B1 field factor start point (initial guess) on the sEPG-MLE 
minimization, with all other start point and parameter bounds kept equal. If, as in this 
noiseless signal case, the ground truth B1f was 80% and we start with an initial value of 100% 
(or higher), spurious incorrect parameter estimates will be returned (indicated by the grey 
dotted line). 

In this example it can be seen that in the B1f starting value region around 80% at 

convergence the global minimum log-likelihood (loglik) is reached and the ground 

truth parameters are returned. However it can also be seen that there exists a region 
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for B1f start values above 100%, centred around 120%, where the algorithm 

converged such that loglik reaches a secondary local minimum, and here the resulting 

parameter estimates deviate from the ground truth. Using for example a B1f 100% 

initial value in the algorithm (as a natural choice if a single common value is required 

for all pixels across an entire image) would return these incorrect parameter 

estimates – even if the estimation precision is very high due to the lack of noise. The 

algorithm returns in that case an erroneous B1f estimate of about 118.9%, 

corresponding to a B1 deviation from 100% of opposite sign to the ground truth, i.e. 

one with similar absolute error but above rather than below 100% (in this example 

close to 120% rather than the correct value of 80%). Due to the non-symmetrical slice 

profile behaviour – as also explained in section 3.2.5 – converging to this opposite 

polarity (but not equivalent) B1f error value results in erroneous values also for the 

remaining parameters, e.g. significantly underestimated T2 of 28.5ms vs. the 30ms 

true value. Notably, solutions converging to the non-global minimum yielded non-

zero values for the model noise σN, contrasting with the zero noise ground truth in 

this case.  

In Figure 3.33, for the range of B1f initial values, the corresponding steps of the log-

likelihood iterative minimization, and final number of iterations needed, are shown. 

The minimization process is tracked by plotting the entire loglik curve as a function 

of B1f initial value (top graph) as it proceeds through the minimization: each curve 

presents the current loglik for a specific iteration step, for minimisations initialised 

with B1f start values along the x-axis. 
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Figure 3.33. Above: behaviour of the loglik minimization from its initial loglik(B1f) vector 
(green curve) for a range of B1f values as start points, to the final minima showing a two-
stepped behaviour: the global minimum range around the true (80%) value and a local 
minimum around the opposite region of B1f around 120% (bottom blue line). Below: the 
corresponding number of iterations. It can be seen that the most rapid convergence is 
achieved at the global minimum region and close to the ground truth value of 80%.      

While convergence was most rapid in the global minimum region (bottom graph), 

where initial values were close to the ground truth B1f value (80%), within the non-

loglik(B1f) vector, 1st iteration 
(based on the start point values) 

2nd iteration  

3rd iteration  

Final minimised loglik vector   

…  
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global local loglik minimum region for B1f > 100%, minimization was also relatively 

fast close to the near-symmetric opposite final estimate of 118.9% - the fastest for 

the upper B1f region. This is a useful piece of information to be used next to further 

improve the fitting routine.   

The above experiment demonstrates that model-related systematic parameter 

estimate bias, due to the RF pulse non-symmetric behaviour for scaling imperfections 

above and below the optimal (close to 100%) B1f may exist. This is due to the non 

global, local minimum that the log-likelihood may fall into as a consequence of the 

chosen start values and bound constraints. A common way to address the existence 

of local minima in a test statistic minimization process is to adequately grid (scan) 

initial values across the associated parameter space (Bevan, 2013), in this case the 

entire range of possible B1f initial values.  

However, in the present case, we have a priori from MRI theory that there will exist 

both the global minimum and a secondary non-global minimum in the loglik 

parameter space, with these approximately symmetrically positioned about B1f = 

100%, and the apparent two, upper and lower B1f regions are clearly separated. The 

correct parameter estimates are those corresponding to the lowest final loglik in turn 

closest to the ground truth values. Taking together the above ideas – including the 

minimum iterations information – a more efficient fitting strategy than scanning 

across the entire range of B1f initial values for every pixel to be analysed can be 

constructed by making use of the initial loglik turning points. In Figure 3.34 it is shown 

that the position of both the loglik central turning point and the two minima with 

respect to initial B1f depend on the choice of the other parameter start point values. 
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In addition, the central turning point may not necessarily be a central local minimum 

as it can coincide with a single minimum, or a wider plateau-shaped minimum-region 

between the local minima may exist (right panel).              

 

Figure 3.34: The shape of the initial loglik vs B1f for different sets of the remaining parameter 
start point values, for a noiseless signal of 30ms T2 and B1f 80% (left) or 100% (right). The 
separation of minima, the existence of a secondary minimum and the position of the 
provisional minima and turning points is influenced by the choice of parameter start points.      

Therefore to avoid converging into the incorrect non-global local loglik minimum with 

respect to B1f, the conventional approach of repeating the entire fitting routine for a 

comprehensive range of plausible B1f initial values can be reduced to testing the two 

most probable candidates, the B1f initial values corresponding to the two minima 

(global and local) if these are separated by a loglik central turning point. An additional 

step must be taken otherwise, for the case that a single minimum emerges for the 

initial loglik, because it can be truly single – as is the case for the 100% B1f shown at 

the right graph of Figure 3.34 – or only apparently single, driven by parameter start 

values substantially different from the ground truth. This is manifested by one or both 

minima coinciding with the turning point. In that case updating the provisional loglik 

with use of the previous step’s parameter estimates resolves the ambiguity: the 

recalculated loglik will subsequently lead to resolution to either two minima (global 
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and local) or the global minimum and the turning point value again (updated); when 

the latter happens, because the loglik minimisation has already reached the true 

single global minimum, the local minimum/turning point value is also very close to 

that and slightly higher. In both cases the global minimum can be identified through 

its lower loglik. This strategy can be seen as a special, more efficient (condensed 

version) of the well-known parameter grid (or parameter scan) technique previously 

mentioned. A schematic representation of the process is shown in Figure 3.35. 

Examples of implementing this strategy are shown in Figure 3.36.   

 

Figure 3.35: Flow diagram of the B1f gridding strategy to efficiently determine the correct 
global minimum  

In all cases the global minimum corresponding to the ground truth is reached, 

however if the initial loglik manifests a single minimum the extra step described 

above is required to clarify whether this is truly so also for the final (minimized) loglik. 
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Finally in the case of a (true) single minimum this can again coincide with the central 

turning point for both sides (B1f regions), with the minimization producing that same 

result (example not shown here).   

 

Figure 3.36: Examples of the fitting strategy for different initialization conditions for a ground 
truth noiseless signal of 30ms T2 and B1f either 80% (left) or 100% (right), similarly to Figure 
3.34. The upper graphs depict the case of 25ms T2 start point where the initial loglik showed 
a single minimum and by recalculating it with the results of this loglik minimization it revealed 
the true existence (left) or not (right) of a secondary local minimum. The lower graphs depict 
the case of 35ms T2 start point where two minima where shown at the initial loglik and by 
minimizing it, either a true secondary local minimum was revealed (left) or the minimization 
for that region finished at the turning point bound, producing an apparent local minimum 
which similarly to a true local minimum was rejected because of its higher loglik (right).            

The presence of noise in more realistic datasets can complicate the clearly separated 

bimodal loglik behaviour with respect to B1f expected theoretically. Noise introduces 

additional uncertainty even in the case of a B1 field without error, i.e. for ideally 

scaled RF pulses. This can be demonstrated with the following simulation experiment: 

first a synthesized image is produced using a forward sEPG model with ground truth 
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B1f varying from 50% to 150%, increasing in steps of one unit per pixel along the y-

axis, and T2=30ms and amplitude α=1000a.u. To each pixel the same level of random 

Rician distributed noise is added for 100 repetitions along the x-axis, to produce 6 

SNRs between 1000 and 100 for the B1f = 100% pixels. This would translate to real 

SNR – using the previous more common definition of highest echo to noise σN ratio – 

up to 4 times lower (due to the sEPG model), with SNR further diminishing up to 3 

times from the middle of the images to their edges (due to the increasing B1f 

deviations).  

 

Figure 3.37: Examples of simulated images with varying B1 field (from 50 to 150% from 
bottom to top) for nominal SNR 800 (left) and 200 (right). 

These values were chosen to simulate real experimental conditions where the 

physical processes of randomly added thermal noise and B1 field deviations are both 

present. Examples of two of those images are shown in Figure 3.37.  

Then the fitting process described above was performed for these images. According 

to this strategy, for the lower part of the images (up to the middle horizontal red line 

representing uncompromised, 100% B1f field) the loglik corresponding to the lower 
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B1f range minimization – below the B1f turning point and with utilization of the lower 

B1f start point – would be expected to be lower, returning the correct parameter 

estimates. Similarly for the upper parts (above the red line) of the images, the loglik 

corresponding to the higher B1f region minimization would be expected to be lower 

and therefore to prevail. However the presence of noise alters this behaviour and a 

significant proportion of simulations returned the minimum loglik for the opposite 

polarity B1f error region than the ground truth. This increasing cross-B1f-region 

contamination with increasing noise levels is shown in Figure 3.38.   

  

Figure 3.38: Effect of noise on the loglik minimization. In red the points for which the lower 
B1f region loglik was minimum, in blue the points for which the upper B1f region loglik was 
minimum and in white the points for which a single (global) minimum was produced. Nominal 
(intercept defined) SNR decreasing from 1000 (upper left image) to 100 (lower right image). 
This cross-B1f-region contamination appears to increase with increasing noise.  
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The result of this noise-driven contamination of correctly estimated parameters in a 

region with results corresponding to the opposite B1f polarity region is erroneous 

variation in the estimated parameter values. The middle bottom graph in Figure 3.38 

matches well with images from real datasets, where the receive coil sensitivity is low. 

Its nominal 200 SNR would translate to a real – due to B1 field inhomogeneity and 

noise – observed SNR of 60 to 20, as mentioned above.  

 

Figure 3.39: The effect of noise to the parameter estimation when this is done with use of 
the minimum loglik (right) compared to the estimation using the a priori knowledge of the 
correct B1 image region (left). While the entire image’s B1f distributions are broadly similar 
(left boxplots for each image), there are significant differences seen when constraining B1 
factors only lower or only higher than the central turning point (approximately 100%) with 
use of the loglik minimization (middle and right boxplots for each image). For clarity T2 
estimates for lower B1f < 60% and upper B1f > 140% (areas in yellow boxes) are shown in 
Figure 3.40.      
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A comparison between the T2 estimates obtained first with B1f constrained to lie 

within the correct B1f region versus the estimates obtained by minimizing the loglik 

(without B1f constraints) is shown in Figure 3.39.   

In each case all pixels across the entire image show a T2 similar distribution centred 

around 30ms, the ground truth value. However in the case of using minimum loglik-

based convergence with B1f unconstrained there are systematic differences in 

median T2 seen for the two constituent parts of the image, with B1f above and below 

100% respectively.  

Overall these systematic median T2 differences appear to be of the order of 1ms, 

however the phenomenon is more marked near the image edges rather than towards 

the centre. As shown in Figure 3.40 the differences seen in the loglik-estimated T2 

near this synthesized image edges, where the B1 field factor falls below 60% or above 

140% simulating a markedly compromised RF field, can reach or exceed 2ms.    

 

Figure 3.40: The departures in T2 due to minimization owed to the opposite B1f region loglik 
are more prolonged towards the image edges where the RF field is more compromised: T2 

results for lower B1f < 60% and upper B1f > 140% (areas in yellow boxes) from Figure 3.39.    
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In order to better understand this behaviour, it is beneficial to examine the way that 

the added noise interacts with the ground truth signal echo train. For that reason a 

similar simulation as for the previously studied image (Figure 3.39) is created, for 

ground truth signals of B1f either 80 or 120% and the same levels of added noise in 

order to create an SNR of approximately 50.  The signals returning the lowest loglik 

for the correct B1f (global minimum) in each case were compared with those 

returning the lowest loglik for the opposite region B1f (local minimum), for each of 

the 2 B1f cases (80 or 120%) (Figure 3.41).      

 

Figure 3.41: Behaviour of the fitting strategy for opposite B1f regions, with the dashed lines 
denoting minimum loglik emerging for the correct B1f region and the dotted lines minimum 
loglik emerging for the opposite B1f region. It can be seen that this is related to the way that 
the noise gets distributed along the echo train.  
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It is evident that random noise can preferentially amplify or diminish certain echoes 

in combinations that can switch the minimum loglik to the opposite B1f region. For 

the ground truth B1f = 80% case there is an obvious trend for signals that cross around 

the middle of the echo train from below the ground truth noiseless signal to above, 

to minimize their loglik for the opposite B1f, around 120%. Contrariwise, for the 

ground truth B1f = 120% case, signals that cross around the middle of the echo train 

from above the ground truth noiseless signal to below, to minimize their loglik for the 

opposite B1f, around 80%. This demonstrates that there are cases where the 

differences between the two opposite B1f signals can be masked with the addition of 

noise to the extent that the original (ground truth) parameters cannot be recovered 

by the estimation process.  

It is therefore informative at this point to examine the differences between closely 

matching noiseless signals from opposite but nearly equivalent B1f regions, as shown 

in Figure 3.42.  

 

 

Figure 3.42: Fitting of the noiseless ground truth 80% B1f signal at the two opposite B1f 
regions.  The returned signal from the upper (spurious) B1f parameter estimates (dashed line) 
crosses from lower to higher values of the ground truth signal (continuous line) at echo 10. 
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Similarly to the previous experiment’s trend, the fit corresponding to the incorrect 

upper B1f region crosses from lower than the ground truth signal values to higher 

ones at echo 10. This is due to the structure of this noiseless signal; its fit showed that 

from the upper B1f region it is the 118.9% B1f-valued signal that best matches the 

80% ground truth valued signal, and it exceeds the latter in amplitude at the latest 

echoes: the dashed line corresponding to the B1f = 118.9% signal is below the solid 

line corresponding to the B1f = 80% signal until the 10th echo, and above it afterwards. 

This behaviour is shown in more detail in Figure 3.43 where the echo train projections 

are expanded across the B1f range. Dashed vertical lines indicate the previous 

example values for B1f = 80% and its closer match B1f = 118.9% (left) or their 

subtraction (right).       

 

 

Figure 3.43: Noiseless 30ms T2 signal along the echo train (17 echoes) and the B1f range (left), 
with each curve respresenting the behaviour of one (e.g. the nth, n=1, 2, …, 17) echo in the 
series. In general signals for the lower B1f ground truth region are larger than the closer 
equivalent upper B1f region signals (that best match them), but not for all echoes and B1f 
values (right). Δα(B1f) = echo train amplitude (lower B1f) - echo train amplitude (best 
matching upper B1f).  Dashed vertical lines show the echo heights for B1f = 80% and its closer 
equivalent B1f = 118.9% signal (left) or their subtraction (right).                     

It appears therefore that random noise can modify specific echoes along the echo 

train in a way that alters the emerging loglik, causing it to switch to a region of the 
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parameter space associated with spurious parameter estimates. As an example, 

modifying the above noiseless signal by 10 (arbitrary) units at the 8th and 10th echo 

only, can switch its minimum loglik to the opposite B1f region, causing a considerable 

difference (of 1.7ms) in the T2 estimation (Figure 3.44).  

 

Figure 3.44: Altering two echoes of the ground truth noiseless signal (simulating the added 
noise effect, left) switches the minimum loglik to the opposite B1f region with concomitant 
spurious parameter estimates (right).   

These findings are linked to both the slice profile effects described in section 3.2.5 

and the echo train behaviour described in section 3.2.3: the fast T2 and high 

amplitude sub-pool of simulations seen there, were in a similar fashion due to the 

effects of noise seen along the echo train, and lead to deviations for the parameter 

estimates and overall bias for the method. As it has been demonstrated in this section 

B1f effects play a key role in the echo train formation and can be classified via the 

loglik. This will next be combined with the spatial distribution properties of the B1f 

behaviour to further improve the method by means of spatial regularization.  
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3.2.8 Spatial regularisation of B1f error polarity 

In MRI acquisitions B1f typically varies smoothly, with few or no oscillations below 

or above optimal calibration levels through images; relevant examples from the 

literature are shown in Figure 3.45 (Sinclair et al., 2012).        

 

Figure 3.45: B1f (or "error") maps presented in published work from our group. Left, for calf 
and right for thigh images (Sinclair et al., 2012).   

These examples were produced by an established method using 2 different excitation 

flip angles (the “double angle method”, DAM) with B1f determined from the relative 

amplitudes of the detected signals (Stollberger and Wach, 1996). For the purposes of 

this work, we are mainly concerned with the polarity of the B1f error, which may be 

assigned to one of 2 conditions, i.e. below or above optimality as explored in the 

above sections. B1f magnitude maps, such as those in Figure 3.45 may therefore 

usefully be reduced to simpler binary maps representing the B1f polarity error 

condition for each pixel. In Figure 3.46 the basic idea of such a map is demonstrated, 

in the case of the established DAM method B1f mapping.  
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Figure 3.46: Transformation of conventional DAM method B1f maps (left) to B1f error polarity 
maps (right) from data available in our department from calf (above) and thigh (below).   

 

These maps are informative of the overall behaviour of B1f; they corroborate that it 

varies smoothly as mentioned above, and takes relatively large image areas before it 

changes from above to below the nominal correct value (B1f =100%) and vice versa. 

Knowledge of these patterns suggests a simple method to partially regularise the 

parameter estimation procedure by enforcing local consistency in the B1f error 

polarity relative to 100%. In this way a simple spatial filter can be created to mitigate 

the problem of ambiguous fitting due to the close-to but imperfectly symmetric 

behaviour of the echo trains with respect to B1 amplitudes either side of the nominal 

100% value.  

The B1f polarity maps corresponding to the B1f maps initially produced using the 

sEPG-MLE routine without constraining B1f, have the mottled appearance shown at 

the left of Figure 3.47, similar with the simulation experiment results previously 

shown in Figure 3.38.   
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Figure 3.47: Applying a 20 pixel radius disc-shaped median filter in the loglik-B1f error polarity 
map obtained for a healthy volunteer with a preliminary estimation procedure with B1f 
unconstrained, produced a more credibly physically consistent B1f polarity map similar to 
those obtained from the conventional DAM B1f-mapping in Figure 3.45 and Figure 3.46.  

 

In principle, a local median filter can be used at each pixel to correct its B1f (error) 

polarity, based on the majority vote of its neighbouring pixels. By assigning 1 for 

lower and -1 for upper B1f region pixels as in the initial B1f-loglik dependent maps 

presented in Figure 3.38, this majority vote is simply the median of the B1f polarity 

sign of the pixel in question and its neighbouring pixels within a defined ROI: if 

positive the pixel in question is assigned as a lower B1f region pixel (whether it was 

already or not) and if negative as an upper B1f region pixel. In this work the 

neighbourhood was defined as a circular ROI centred on the pixel in question, which 

was itself included in the neighbourhood. To avoid edge distortion or discontinuity 

issues, empty or single minimum (assigned a zero value) pixels in the neighbourhood 

are not included. Empirically it was found that a ROI with radius 20 pixels produces 

smooth B1f spatial variation while avoiding merging equal sign but clearly separated 

regions (over-smoothing and loss of contrast) (right part of Figure 3.47).   
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In practice from the preliminary estimation procedure both parameter estimates’ 

vectors are kept for the cases that 2 minima exist, and the spatial regularisation 

scheme is used to choose the one corresponding to the correct B1f polarity in the 

region of the pixel in question. For comparison purposes and for clarity – for this 

particular example only – any single minimum B1f-loglik pixels were also included, 

assigned a value according to the B1f polarity that this minimum had with respect to 

the turning point bound, as shown in Figure 3.36 – whereas after the minimisation is 

concluded the true turning point is effectively the minimum. It can be seen that the 

resulting B1f polarity map is similar to the conventional DAM maps from similar 

acquisitions, without evidence of issues like over-smoothing, edge distortion etc. 

However in general it seems favourable to keep single minimum B1f-loglik fits neutral 

(zero valued in terms of B1f polarity). This is because the location of their minimum 

typically is around 100% B1f, very close to the loglik turning point bound, and on 

either side. This can be misleading for the B1f polarity map since such fits would be 

given equal representation in the majority vote (median filter) as significantly 

compromised B1f pixels when in reality their B1f is optimal or very close. Application 

of the filter to the simulated data set analysed and presented in Figure 3.39, including 

this amendment is shown in Figure 3.48.  
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Figure 3.48: Applying a 20 pixel radius disc-shaped median filter in the initial B1f polarity map 
produced for the simulated image analysed and shown previously in Figure 3.39.   

As it can be seen (right panel) the B1f polarity map after the spatial regularisation 

process is almost entirely consistent with the ground truth B1f values, i.e. 1 (red) for 

B1f < 100%, -1 (blue) for B1f > 100% region pixels and 0 (white) for the single minimum 

(and B1f) in the central part of the image. In that region (centre) very few pixels 

retained the opposite (spurious) B1f polarity which has negligible effect on the 

estimated parameters due to the approximately optimal B1f scaling: the associated 

numerical results for the parameter estimates here emerge virtually identical with 

the ones already presented at the bottom left boxplots of Figure 3.39 since 

application of the median filter largely collected the parameter estimates 

corresponding to the ground truth, a priori known B1f polarity and respective loglik.    

The above experiments while exploring the effect of choice of B1f start points have 

also led to further structuring (fine tuning) of the proposed method. This discussion 

is continued next for the bound constraints applied for B1f.  
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Bound constraints for B1f  

To investigate the behaviour of the fitting process with respect to the B1f bounds a 

simple simulation experiment was carried out in which ground truth B1f was varied 

across its entire range i.e. 0 < B1f < 200%, and the remaining parameters were kept 

constant: amplitude α=1000a.u, T2=30ms and noise σN=0a.u. (noiseless signal). The 

returned B1f estimate shows departures from the ground truth values for the 

extreme ranges lower than 20% and higher than 180% (Figure 3.49). At those B1 levels 

very low signals are available (as shown in Figure 3.43) with echo heights up to 106 

times smaller than the nominal amplitude, irregular evolution of the echo train (not 

the expected mainly decreasing behaviour) and therefore little signal contrast 

available along the echo train. On the other hand these conditions are generally out 

of the range of interest in real datasets (and practically rarely seen), as it has been 

seen in real data, presented later in this thesis.           

 

Figure 3.49: Parameter estimates and loglik for noiseless signals (T2=30ms, α=1000a.u.) of 
the entire B1f range of 1 to 199%. Significant departures from the ground truth are seen for 
very low (below 20%) or very high (above 180%) B1f values.     
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For those reasons B1f bounds were set to 20% and 180% - as in fact they were also 

used in generating all the results presented so far and for all further work in this 

thesis.   

3.2.9 Remaining parameters’ initial values and bound constraints  

T2: Decay constant.  

Initial values 

The fitting routine as presented and developed so far appears to be broadly 

insensitive to T2 starting value variations in terms of the numerical results for the 

parameter estimates. This was tested for different levels of noise (from noiseless 

signal to low SNR) and different ground truth T2 and B1 values (optimal and 

suboptimal B1f) (Figure 3.50, Figure 3.51). However the T2 initial value choice 

influences the evolution of the loglik behaviour during the fitting process, and this is 

worth examining to further characterise the method. The T2 initial value choice’s 

main effect is to influence the shape of the loglik vs. B1f curve (initial or updated 

version) in the first iterations as explained in the beginning of the previous section 

regarding the dependence of the fitting procedure on the B1f start values (Figure 3.32 

through Figure 3.36). The exact position or existence of the provisional loglik minima 

(i.e. if there appear to be two minima or only one) and B1f polarity central turning 

point depend also on the T2 start point. As it can be seen in Figure 3.50 for the case 

of noiseless signals, higher T2 start values lead more often to 2 apparent loglik minima 

(instead of a single minimum) and to increased distance between them.       
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Figure 3.50: Dependence of the initial loglik (vertical axes) vs. B1f start value on the T2 start 
point for ground truth T2 30 (above) or 40ms (below), T2 start points from 20 to 50ms in steps 
of 10ms (shaded blue to green curves correspondingly) and for different ground truth B1f (RF 
field) values (horizontal axes). Higher T2 start point values tend to produce separate initial 
(apparent) loglik minima and place them further away from each other.   

This does not seem to affect the final convergence of the minimization process (i.e. 

the returned parameter estimates and related metrics) but only the intermediate 

path. This can be demonstrated by a set of simulations of 100 repetitions fitting a 

noisy (SNR ≈ 20) 30ms T2 signal, for 10 different T2 start point values at each 

repetition, from 20 to 65ms in steps of 5ms. The medians of the parameter estimates 

and related metrics for each set of 100 repetitions are shown in Figure 3.51.   
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Figure 3.51: Medians of the parameter estimates (B1f, T2, amplitude α,noise σN) and related 
metrics (min loglik, B1f-loglik minimum and central turning point start values) of 100 
repetitions of fitting a 30ms T2, 80% B1f, SNR 20 signal with varying T2 start point. Parameter 
estimates and min loglik are stable while the path of minimisation can vary as manifested 
from the B1f-loglik initialization minimum and turning point respective values and the 
number of iterations. These are the only curves that are non constant, reflecting the 
behaviour seen in Figure 3.50. 

The parameter estimates are stable, even though slightly different to the ground 

truth values due to the relatively low SNR of 20 (estimates: B1f=80.2%, T2=30.1ms, 

α=997a.u., σN=8.6a.u. – ground truth: B1f=80%, T2=30.0ms, α=1000a.u., σN=10a.u.). 

The final minimum loglik (the minimised objective function) is also stable. However 

the shape of the initialization loglik vs B1f curve changes substantially for different T2 

start point values as denoted from the location of its central turning point (dashed 

thick blue curve) and more notably its initial minimum (thick blue curve). This 

different path through the parameter space for different T2 start points is reflected 

in the number of iterations required for convergence, which increases for increasing 

start point T2. The latter is in turn related to the initial minimum loglik position, which 

as seen above for higher T2 start points is further away from the central loglik(B1f) 

turning point, and necessitates more iterations or loglik updates to reach 

convergence. These findings validate the structure and corroborate the reliability of 
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the fitting strategy described previously (as demonstrated in Figure 3.36) in terms of 

the yielded parameter estimates, while at the same time provide useful insight to 

further optimise the method.   

T2 Bound constraints 

Similarly to the choice of T2 initial values, the choice of T2 bounds did not seem to 

have a major effect on the fitting process. While not necessarily biologically realistic 

in this specific context, low T2 estimates, down to 5ms, occasionally served as markers 

of suboptimal fitting, or signals artefacted in terms of noise, RF field etc. For T2 values 

below that, fitting is unfeasible because the algebraic solutions of the sEPG model 

are very close to zero and some (late) echoes may become negative. Signals with T2 

> 150ms are out of the range of interest in this work, since muscle and fat typically 

have T2 below 150ms. Therefore the lower and upper bound T2 values used in the 

fitting algorithm were – at this initial stage – set to 5 and 150ms respectively.   

α: amplitude (intercept).  

Start points 

The fitting routine appears to behave very stably with regards to α (amplitude) start 

point variation, in a fashion similar to that for T2 start point values described above. 

The dependence of the position or existence of the provisional loglik minima (i.e. if 

there appear to be two minima or only one) and B1f polarity central turning point 

upon the initial value of α is shown in Figure 3.52 for different ground truth T2 and B1 

conditions.  
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Figure 3.52 Dependence of the initial loglik on the amplitude α start point for ground truth 
T2 30 (above) or 40ms (below), α start points from 250 to 1500a.u. in steps of 250a.u. (blue 
to green curves respectively) and for different ground truth B1f (RF field) values. Higher α 
start point values tend to produce separate initial (apparent) loglik minima and place them 
further away from each other.    

Higher α start points lead more often to two apparent loglik minima (instead of a 

single minimum), with their separation increasing with initial α. A simulation of 100 

repetitions was performed, fitting a SNR ≈ 20, 30ms T2 sEPG signal for 10 different α 

start point values at each repetition, from 500 to 1500a.u. in steps of 250a.u. The 

medians of the parameter estimates and related metrics for each set of 100 

repetitions are shown in Figure 3.53.  
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Figure 3.53: Medians of the parameter estimates (B1f, T2, amplitude α ,noise σN) and related 
metrics (min loglik, B1f-loglik minimum and central turning point start values) of 100 
repetitions of fitting a 30ms T2, 80% B1f, α = 1000a.u., SNR = 20 signal with varying α start 
point. Parameter estimates and min loglik are stable while the path towards minimisation 
can vary as evidenced by the B1f-loglik initialization minimum and turning point respective 
values and the number of iterations.  

The median parameter estimates returned are close to the ground truth values 

(median estimates: B1f=79.7%, T2=29.7ms, α=1017a.u., σN=9.2a.u. – ground truth: 

B1f=80%, T2=30.0ms, α=1000a.u., σN=10a.u.), and the minimised loglik is also 

independent of the initial value of α. Consistently with the results for noiseless signals 

shown in Figure 3.52, the local minima separation and the number of iterations taken 

increase in general with higher α start points, suggesting that choice of the α initial 

value does within the range investigated not affect the final convergence.     

α bound constraints 

The fitting routine returns the amplitude estimate by means of the initial nominal 

value of α before any decay, slice profile or phase history effects. Even in the case of 

an infinite T2 value (constant echo amplitude with increasing TE) and perfect slice 

profile and flip angle conditions, α cannot be smaller than the maximum echo signal, 
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therefore the latter was set as the lower bound for α. No upper bound was specified 

as this was not found to be necessary. These rather wide amplitude bounds have 

been useful in the investigation of the returned parameter distributions seen in 

previous sections (e.g. Figure 3.18, Figure 3.25, Figure  3.26).       

σN: underlying Rician noise standard deviation  

Start points 

The overall behaviour of the final parameter estimates and the B1f-loglik related 

metrics with varying σN start points are shown for an example ground truth signal in 

Figure 3.54.  

 

Figure 3.54: Medians of the parameter estimates (B1f, T2, amplitude α, noise σN) and related 
metrics (min loglik, B1f-loglik minimum and central turning point start values) of 100 
repetitions of fitting a 30ms T2, 80% B1f, SNR 20 signal with varying σN start point. Parameter 
estimates and min loglik are stable while there are subtle differences overall in the path of 
minimisation with regards to the B1f-loglik initialization minimum and turning point values 
and the number of iterations.   

Once again the final parameter estimates were constant and independent of initial 

values, while there were minor differences apparent for the loglik(B1f) minimum and 
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central turning point location and hence for the minimization path. The number of 

iterations shows a clear minimum at the ground truth value (10a.u.) – unlike the 

roughly monotonic behaviour seen for the T2 and α start points. However it seems 

favourable to initiate the fitting with higher σN start point values rather than lower. 

This can be illustrated by an example of how the routine proceeds for two symmetric 

σN start points – 5 and 15a.u. – for one example of the simulated signals, as shown in 

Figure 3.55.          

 

Figure 3.55: The path of minimization for a σN start point lower than the ground truth value 
(above) as compared to higher (below). During the fitting process the negative logarithm of 
the Rician pdf along the echo train (dotted curves) is being adjusted through successive 
iterations and its smallest value (the loglik) compatible with the applying sEPG model is the 
final convergence point. Even though the number of iterations is almost the same the process 
appears more efficient in the second case.      
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Trajectories are more direct in the case of the higher start point, while in the case of 

the lower start point for many echoes the local initial loglik was lower than its final 

value and was readjusted via a more complex path. This can be seen also in the 

parameter space (Figure 3.56) – in this case in the loglik, T2 and α dimensions – where 

a shorter and smoother trajectory can be observed for a higher σN start value, 

reflecting a smaller number of iterations as also shown in Figure 3.54. The rapid 

vertical motion of the loglik is predominantly due to σN as the scaling factor 

(denominator) in the Rician pdf equation, while the influence of the other parameters 

increases in the horizontal directions (Equation 7, Figure 3.23) (Bates, 1988).      

 

Figure 3.56: The path of minimization for a σN start point lower than the ground truth value 
(left) as compared to higher (right) in the T2 and α parameter space. For the case of the higher 
σN start point, changes of the parameters are much smoother and the loglik range also 
smaller.    

   

σN bound constraints 

When fitting to very noisy and low quality data, σN can interact strongly with the α 

estimation and lead to suboptimal fitting: typically spuriously high estimated noise 

can mask the other parameters true behaviour, in an analogous way to the role of 

the noise floor in the LSQ simulations results shown in previous sections. The 
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potential impact of this may be reduced by defining an upper bound for σN. Setting 

the σN upper bound to half the maximum echo signal was empirically seen to 

maintain stable fitting for the vast majority of cases and at the same time, return of 

this bound noise value in the final parameter estimate vector served as an indicator 

for potential outliers from the expected parameter estimate behaviour. More 

concrete examples on this point are given in section 3.3.2. A similar effect was seen 

at the opposite end of the noise σN distributions, if the noise lower bound was set to 

zero: even for high SNR signals there is a tendency within the algorithm for the noise 

estimate to often reach zero, as its σN is in the Rician pdf denominator and can rapidly 

increase it (the pdf) – or equivalently decrease the loglik as previously seen. However 

for exactly zero noise σN loglik is algebraically always also zero and the minimisation 

cannot continue (the noise σN cannot be negative), returning spurious parameter 

estimates. In both simulations and real data noise σN typically shows rather tight 

distributions, with a slight underestimation (about 10%) and well above zero, e.g. for 

a 1000a.u. signal intercept minimum noise will be at least 2-3a.u. (Figure 3.18, Figure 

3.25). For that reason a very small value (just above zero) was set as the noise σN 

estimate lower bound: for both the simulations and real data examined here 0.1a.u. 

or grey scale units respectively, in order to prevent it from becoming zero.     

The above investigation refers to the role of start points and bounds in MLE 

parameter estimation in limited parameter space regions, relatively close to the 

ground truth values, and where the data accurately represent a single component 

sEPG signal, i.e. without multi-component or confounding physical effects occurring. 

More challenging cases closer to real experimental conditions, as for example 
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suboptimal image quality and parameter interdependence in multi-component 

models, will be addressed in the following sections, after a consideration of phantom 

validation.                  

3.2.10 Phantom data validation 

The sEPG-MLE fitting routine tool development described above was performed 

principally with simulations, and subsequently will be further optimised by tailoring 

it to the characteristics of real in vivo image data. At this stage the validity of the 

method, at least for single component models, was also tested on phantom data 

since the ground truth parameters (T1, T2, proton density) are known and given by 

the manufacturer. The ISMRM/NIST System Phantom and MESE sequence described 

in section 3.1 were used (TR= 3000ms, 17 TEs from 9.9-168.3ms with 9.9ms interval, 

a single 2 mm slice at the T2 spheres level, matrix 210x210, in-plane resolution 0.8x0.8 

mm), using a simple 2-channel quadrature transmit/receive (‘TxRx’) head coil. For this 

experiment 5 ROIs corresponding to T2 from 32 to 133ms were segmented as shown 

in Figure 3.57. This is the range of interest for T2 for this work, since as seen before 

these are the values associated with musculoskeletal anatomy from lean muscle to 

pure fat.  
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Figure 3.57: The phantom experiment. From the T2 array of the ISMRM/NIST System 
Phantom, 5 disc-shaped ROIs were segmented out corresponding to the T2 spheres in the 
range of interest between 32 and 133ms.  

For this experiment a single value of T1 of 1000ms was used and the start point for T2 

(single component sEPG model) was set at 80ms, with all other algorithm settings 

kept as introduced in sections 3.2.6 and 3.2.8. This was seen to better fit the higher 

T2 of 133ms sphere which is near the algorithm upper T2 limit (150ms) – this step 

removed one outlying fit (single pixel) that was seen with the original settings. 

Ground truth T1 was ranging from 458ms (T2 32ms sphere) to 1332ms (T2 133ms 

sphere), reversely than real data where for muscle (T2 30-40ms) T1 is around 1400ms 

and for fat (T2 130-140ms) T1 is around 370ms. The sEPG-MLE results are compared 

to the ground truth values in Table 3.3.   
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Table 3.3: Comparison of the proposed sEPG-MLE method results with the ground truth (per 
manufacturer) values for the phantom ROIs chosen.  

Ground truth T2 and SD (ms) 

sEPG-MLE method parameter 
estimates  

T2 and interquartile ranges (ms) 

31.97   (0.083) 

46.42   (0.014) 

64.07   (0.034) 

96.89   (0.049) 

133.27   (0.073) 

32.13   (30.78   33.45) 

46.29   (45.12   47.39) 

66.24   (64.98   67.64) 

96.80   (93.98   99.040) 

142.00   (138.20  145.69) 

 

Good agreement was seen in general. Estimated noise σN were varying from 25 units 

(T2 32ms sphere) to 50 units (T2 133ms sphere), broadly consistent with the 

experimentally estimated noise level of 29 units seen in section 3.1. This corresponds 

to an observed SNR from 50 to 30 respectively, which might explain the larger 

departure seen for the highest T2 sphere of 133ms. Noise σN may also be dependent 

upon the system calibration differences within the raw images (Figure 3.1). The T2 

ground truth SD similarly increases for the higher T2 spheres – with the exception of 

the first – which might be related to the manufacturing specifications (e.g. solution 

characteristics) or with slower decays (longer T2 and more signal) intrinsically 

associated with bigger uncertainty.    



209 
 

3.3 Transition to real-world data and optimisation 

3.3.1 2-component sEPG model and Rician noise        

A single component sEPG model is not adequate to describe the transverse 

magnetisation decay in muscle affected by neuromuscular diseases. A multi-

component sEPG model is now developed to account for the compartmentalization 

of tissue in neuromuscular diseases. This will involve a relatively fast decaying 

component describing the signal emanating from intra- and extracellular tissue water 

(Foster and Hutchison, 1987) – often referred to as “structured” water (McRobbie et 

al., 2006) – corresponding to lean muscle, a second slower decaying component 

corresponding to infiltrating fat, together with a fat fraction (ff) parameter describing 

the amplitude ratio between these two components. To reduce the number of fitted 

parameters and improve convergence, commonly agreed fixed values have been 

adopted for both the fat and the muscle-water compartments’ T1s – as these values 

in general have little effect on the remaining parameters’ estimation (Marty et al., 

2016). The fat component T2 may also plausibly be fixed, based on the assumption 

that it is not expected to change with disease, and that fat and water molecules may 

be considered physically separated with little or no exchange occurring between 

them. The objective here is to facilitate the fitting process by limiting the number of 

free parameters compared to the number of data points available per pixel – defined 

by the echo train length and number of averages (i.e. separately acquired repeat 

acquisitions – usually one) – thus maximizing the available degrees of freedom and 

therefore statistical power (Azzabou et al., 2015). Typical values for T1 and T2 for the 

fat compartment (T2f) at 3 Tesla are 400 and 130ms respectively (Han et al., 2003); at 
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this stage of the algorithm development T2f was set at 138ms as this was the average 

value produced from single sEPG component fitting in several subcutaneous fat 

regions from our datasets. LSQ and MLE yielded parameter estimates for a 

representative 2 component simulated sEPG dataset with different SNRs were firstly 

compared, as now described, with results presented in Figure 3.58.  

All simulations were performed in Matlab. A forward sEPG model was implemented 

incorporating Bloch equation calculations of the excitation and refocusing angles 

across the slice profile, using known RF pulse shapes in use on our 3T scanner 

(Siemens Prisma). This model was used to generate 1000 replicates at each of 3 levels 

of randomly generated additive Rician noise, of an echo-train with ground truth 

parameter values representing a typical in vivo situation, and acquisition parameters 

matching in vivo protocols in use in our centre: water T2=30ms, fixed T1=1400ms,  B1f 

=90%, ff = 8%, fixed fat T2=138ms and T1=400ms, α = 1000a.u., inter-echo spacing = 

10ms, no of echoes = 17. Three fitting approaches were investigated: 1) MLE for a 2-

component sEPG signal model with 5 free parameters: muscle-water T2, B1f, ff, α and 

noise σN 2) Standard LSQ for the same sEPG model with free parameters muscle-

water T2, B1f, ff and α, 3) Standard LSQ for the same parameters with the same free 

sEPG parameters as in 2) estimated for the same sEPG model with an added constant 

baseline to partially account for the effects of rectified noise. Start values were set 

close to the ground truth values and identical for both MLE and LSQ: 100% B1f, 35ms 

(water) T2, 5% ff, 1000a.u. α and 5a.u. for the noise σN (case 1, MLE) or the baseline 

constant (case 3, LSQ).  
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Figure 3.58: Two component (fat &water) sEPG model T2 (T2m),  fat fraction, B1 factor  and 
underlying noise SD estimates for simulated data, comparing LSQ, LSQ+baseline and MLE 
methods, for a ground truth model with T2=30ms, ff=8% B1f=90% and SNR=50, 30 and 20 
Rician noise signals. MLE showed superior accuracy (less bias) compared to LSQ.     
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Bounds for MLE were as described in sections 3.2.7 to 3.2.9, plus 0.1 and 100% for ff 

(lower and upper respectively), while no bounds could be used for LSQ as explained 

in section 3.2.5.  

The addition of the constant to the model for LSQ estimation for the most part was 

not helpful resulting for these ground truth parameters in frequent spurious ff 

estimation, with the parameter mainly taking non-physical negative values. This is 

consequential to the inability to specify bound constrains for LSQ due to the algebraic 

implementation of the method in this case (the Levenberg-Marquardt algorithm). 

The previously observed trend for LSQ single component sEPG model parameter 

estimation of increasing T2 bias with decreasing SNR was in this case reversed, partly 

due to the now possible interaction between the effects of the ff and noise 

parameters at long TE, and partly due to B1f overestimation biasing the other 

parameter estimates; relatively short water T2 (T2m) estimates were returned due to 

the LSQ estimated B1f being mainly above 100%, related to slice profile asymmetry 

effects (section 3.2.7) which cannot be accounted for with LSQ (a very small 

proportion of B1f estimates were at the correct region below 100%).  

For the MLE approach, B1f estimation was largely accurate and less overall bias was 

seen in the rest of the parameters. The method of majority vote, the principle used 

in the spatial regularization with respect to B1f estimation described in the previous 

section, can help towards that direction. In this case it is based on the B1f polarity 

that showed majority in the total number of repetitions for each set of simulations: 

about 60% of the non-single minimum fits proved to be from the lower (below 100%) 

B1f region – as expected due to the 90% ground truth B1f – thus enabling switching 
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to that region and therefore to return the associated correct parameter estimates. 

This is a similar but more simplified version of the paradigms shown in Figure 3.38, 

Figure 3.39 and Figure 3.48.             

3.3.2 Behaviour and robustness of the 2-component sEPG – MLE fitting 

algorithm 

In contrast to the single-component sEPG model previously investigated, the 2-

component sEPG model here includes three additional parameters, the fat fraction 

(ff) and the T1 and T2 decay rates associated with the fat compartment (T1f, T2f). In 

Figure 3.59 a ground truth noiseless signal, calculated with the example parameter 

values used in the previous section is shown, simulating the signal from a fat-

containing muscle tissue.   

 

Figure 3.59: Simulation of a decay of a slice-selective CPMG signal and its two sEPG fat and 
water components with 8% ff.    
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Since in this work T1m, T1f and T2f decay rates are fixed at specific values, in the 2-

component sEPG-MLE fitting routine, compared with the single component case, the 

only additional estimated parameter is ff. For the remaining free parameters (B1f, 

T2m, amplitude and noise σN), testing the effects for each parameter upon the fitting 

process of its start point and bound constraints showed behaviour very similar to that 

described in sections 3.2.6 through 3.2.9 for the single component model. However 

additional considerations arise due to the role of the ff parameter which introduces 

complex interplay between the two signal components and the remaining free 

parameters. Therefore first the ff generic behaviour is presented here, followed by 

features of the overall 2-component model behaviour owing to parameter 

interaction.  

ff: fat fraction.  

Start points 

Fat fraction can show great variability within typical imaging datasets. For healthy 

volunteers ff in muscle is usually below 10% and for patients mostly up to 50% but it 

is not uncommon for ff to be anywhere up to 100% for completely fat replaced areas. 

Dixon methods typically return by design ff values mostly up to 50% (Fischmann et 

al., 2012, Morrow et al., 2016, Ricotti et al., 2016), although precise values depend 

also on the particular implementation (2 or 3 point technique, field strength, 

corrections etc.). Other modalities have yielded higher values up to 85%, as for 

example MR spectroscopy (Forbes et al., 2014) and IDEAL-CPMG (Sinclair et al., 

2016), again depending on the particular application and the disease examined. In 
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more recent work published on post hoc multicomponent modelling methods (similar 

to the sEPG-MLE method presented here) ff upper range values reach about 70% 

(Azzabou et al., 2015, Marty et al., 2016) while in earlier work higher values up to 

90% or above have been reported (Kan et al., 2009). While intramuscular fat 

infiltration is generally associated with disease, there are also additional inter-

muscular fat regions, fat around nerves, and adipose tissue that may contaminate 

analyses due to imperfect image segmentation. For all of the above reasons, the 

entire range of possible ff is of interest, potentially from 0 to 100%. The effect of ff 

start points on the estimation process is examined here for a wide range of ff ground 

truth values (Figure 3.60). For this example set of simulations, start points for T2m and 

amplitude were set at the forward model ground truth values of 30ms and 1000a.u. 

respectively without adding any noise. Initial B1 values were variable, determined 

according to the local loglik minima detection algorithm described before. Start 

values for ff were varied systematically between 0 and 100% as the parameter under 

investigation. Noise σN start point was 5 units at this stage in accordance with its 

fitting behaviour seen in section 3.2.6. Interestingly a higher T2m start point of 50ms 

produced more stable results, as shown in Figure 3.61.   

The routine mostly returns the expected ground truth values, especially for mid-

range and upper ff start point values. For that reason a 50% ff start point was chosen 

for the general case moving forward. However there are regions of ff start point 

values that even for this case of noiseless signal, returned spurious parameter 

estimates. This was typically due to suboptimal loglik minimisation to a local 

minimum choosing an erroneous B1f estimate of the opposite polarity to the true 
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value, as seen previously, introducing bias to the remaining parameter estimates.  

  

Figure 3.60: Parameter estimates (B1f, T2m, ff, amplitude α,noise σN) and related metrics (min 
loglik, B1f-loglik minimum start point and turning point) from fitting a 30ms T2m, varying ff 
(between 0 and 100%), 90% B1f, noiseless signal vs varying ff start point. Parameter estimates 
and min loglik are relatively stable however regions of ff start points exist where spurious 
parameter estimates are returned, due to erroneous loglik minimisation associated with B1f 
polarity. The path of minimisation again can vary as manifested from the respective B1f-loglik 
initialization minimum and turning point values and the number of iterations. 
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Figure 3.61: The same experiment as presented in Figure 3.53, in this case for a 50ms T2 start 
point instead of 30ms – all other start points and bounds equal. A more stable fitting 
behaviour is seen with ground truth valued parameter estimates and minimum loglik 
returned in almost all cases.  

This is related to an apparent effect of the suboptimal B1 start value on the turning 

points for the initialisation loglik seen in several cases of low ff start points, as for 

instance for 10, 50 and 75% ground truth ff (Figure 3.60). This is likely to be associated 
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with the tendency for increased separation of the local B1f-loglik minima with higher 

T2 start value, as seen in section 3.2.6. However this in essence is a matter of 

parameter interdependence which is further examined below. 

ff bound constraints 

Bound constraints for ff were not seen to have any impact in the fitting process and 

were kept within the physically meaningful limits of 0 and 100%.  

Combined parameter attributes (interdependence).  

In the following examples simulated signals are examined in order to link the 

simulations with the validation stage of this work.    

A suboptimal fitting example seen in Figure 3.60 that is an interesting case of 3 

parameter interaction, is the low ff start point region for ground truth ff 10% (3rd 

graph of the top row). Here, even for an 8% ff start point (close to the ground truth 

ff 10%) and a noiseless signal, initial values of T2m (30ms) and α (1000a.u.) at the 

ground truth, and a 5a.u. σN start point, the first-pass loglik curve had a single 

minimum for B1f 104%. The subsequent final loglik minimisation (applying the upper 

and lower B1f range algorithm described in section 3.2.6, Figure 3.35) produced the 

parameter estimates:   
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B1f (%)    T2 (ms)   ff (%)      α (a.u.)    σN (a.u.)  loglik     iterations 

 96.1        148.8      100         428.5      15.2        0.1886    190      (lower B1f region) 

 108.8       29.4        9.6         1022.2      0.2       -0.0050    16        (upper B1f region)     

Since the lowest loglik appears for the upper B1f region, in this simulation experiment 

the corresponding final parameter estimates would be recorded. However in real-

world imaging applications the spatial regularization / majority vote strategy would 

be also possible to retain the lower B1f region results which are clearly spurious since 

3 out of 5 final parameter estimates were at or very close to bound values: T2m (close 

to upper bound of 150ms), ff (upper bound 100%) and noise σN  (upper bound 

15.2a.u., 1/20 of the maximum echo intensity). The issue could be resolved by 

increasing the T2m start point to 50ms, which in turn changed the lower region B1f 

start point and bound to 65 and 99.1% respectively and led the minimisation reach 

its true minimum (Figure 3.61). Due to this more efficient fitting behaviour T2 of 50ms 

has been used as the (T2) minimisation start point from hereafter.  

Role of the σN upper bound 

While a σN start point value somewhat higher than the ground truth was seen to aid 

efficient minimisation, an excessively high upper bound can inhibit the process. In the 

previous numerical example this effect was obvious because the σN upper bound was 

returned as the final estimate, thus revealing the problem. However there can be 

situations where such a high bound can permit the minimisation to follow a 

problematic path with erratic outcomes. In Figure 3.62 examples of this are shown, 



220 
 

for the same noiseless ground truth signal experiment, but in this case with the σN 

estimate upper bound raised ten-fold.  

 

Figure 3.62: The experiment of Figure 3.60 repeated for 75 and 100% ground truth ff 
noiseless signals, in this case for the noise σN upper bound set to 1/2 the maximum echo 
intensity – instead of 1/20 – all other start points and bounds as before. Several ranges of ff 
start points are seen where loglik minimisation suboptimally produced spurious parameter 
estimates. Notably an erroneous B1f polarity estimate (above 100%, dotted black lines) is 
returned for those fits (ground truth B1f was 90%).   

In those cases the high noise σN upper bound was reached after only a few iterations 

keeping the minimisation away from the true global loglik minimum, producing 

similar results as in the previous example when parameter estimates reached bound 

constraints. Choosing a much lower noise σN upper bound (1/20 of the maximum 

echo intensity) resolves this issue, in this case of a noiseless signal. However for real 

data an initial σN of ½ of the maximum echo signal produced stable fits when 

combined with the T2m and ff start points given above (50ms and 50% respectively), 

without reaching bound constraints (for any of B1f, T2m, ff and σN) or other 

manifestations of problematic fitting.    
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3.3.3 Fat compartment signal model and calibration  

Due to the multi-peak proton resonance spectrum of fat and the possibility of tissue 

compartmentalisation (sections 2.1.2 and 2.1.4), fat tissue CPMG signals are not 

necessarily expected to be adequately described by a single T2 component model. In 

this section the topic of optimising the fat signal model is explored. The overall aim is 

to establish a fixed parameter 2-component fat signal model which combined with a 

single water component will enable accurate estimation of T2m by fixing as many 

parameters as possible, while maintaining an empirically accurate model of the fat 

signal.  

2-component behaviour of fat signals     

The simulations experiment described in Figure 3.62 above revealed an important 

behaviour occurring when fitting a 2-component sEPG model to ground truth 2-

component signals with ff at, or close to, 100%: there can occur a numerical 

degeneracy whereby, even for a noiseless signal, a set of estimated parameters 

different to the ground truth values yields a lower global loglik minimum than the 

true values, and predicts a signal virtually identical to that parameterized by the true 

values.  

As it can be seen from the right graph in Figure 3.62, for simulated ground truth 

ff=100% tissue there is a considerable range of ff start points close to 100% (about 75 

to 95%) for which the final minimisation was suboptimal, returning a lower ff 

estimate of 97.2%, a corresponding small amplitude short T2=13.9ms, and an 
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erroneous 109.1% B1f. The actual ground truth signal and both the correct and 

erroneous parameter predicted signals are shown in Figure 3.63. 

    

Figure 3.63: Comparison of the correctly (yellow line) vs. the erroneously (green dashed line) 
predicted signal with reference to the ground truth signal (grey dots). Even for noiseless 
signals there are regions of the parameter space for which, as in this case, an erroneous 
estimation can emerge favourable (lower loglik).  

The predicted signals are virtually identical and since the actually incorrect parameter 

estimates produced a lower loglik, these will be the preferred values recorded for 

parameter estimation. While this behaviour was subsequently generally avoided by 

more careful algorithm initialisation (i.e. increasing the T2m start point to 50ms) it 

points to a probability that may arise in real data with high ff. While this in essence is 

a numerical issue – since it emerged here for theoretically simulated noiseless signals 

– for high ff regions similar effects may co-occur with true multi-component sEPG 

signal behaviour due to physical compartmentalization.     

The multi-component behaviour of very high ff tissue is demonstrated by conducting 

an analogous experiment using in vivo data. In Figure 3.64 an example fit is shown for 
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signal from adipose tissue (subcutaneous fat) from the lower limb of a healthy 

volunteer. To be comparable with the noiseless simulation examples, a pixel with 

minimal visible echo train alterations due to noise or artefacts was selected from a 

good quality dataset as a representative case. The multi-echo imaging CPMG dataset 

used is taken from the motor neuron disease study explored in Chapter 4, with 

acquisition methods as described in section 4.2. A longer echo train (22 echoes) was 

available with these data, a difference which at this high SNR would have negligible 

impact in the parameter estimates, as explained in section 6.2.  

    

Figure 3.64: Comparison of fitting a single pixel adipose tissue (subcutaneous fat) signal with 
a single-component and a 2-component sEPG model. The latter is seen to more adequately 
explain the signal, both visually and via its lower loglik.  

A single component model was tested (yellow line fit) which consistently with 

observations reported by other authors (Burakiewicz et al., 2017) returned a 

relatively long T2 for fat of 138.7ms. However fitting to a 2-component sEPG model 

as above significantly improved the fit quality, both visually (green solid line) and 

through its reduced loglik and other fitting metrics (reduced noise estimate and 
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higher R2). For a fixed long component (T2fl) at 137ms, the estimated short 

component T2 (T2fs) was 7ms and the amplitudes ratio (αl/(αs+αl), where αl and αs are 

the long and short component amplitudes respectively) was 62.8%. Both models 

returned the same, credible value of B1f after spatial regularisation. Since in this case 

the fitting routine has already been optimised (with regards to initialisation and 

bounds) this finding suggests a true multi-component behaviour of fat signals, as also 

reported elsewhere (Azzabou et al., 2015). Therefore, in order to determine a better, 

optimal model for the fat compartment generally applicable to our in vivo data, 

investigations were extended from the single pixel case here described to consider 

multiple subcutaneous adipose ROIs.   

Biased B1f estimation for high ffs 

An issue arising with 2-component fitting of signals from regions of high ff is that 

under these conditions there is a tendency to overestimate B1f, shifting the majority 

of (the non-single minimum) fits predominantly to the upper (>100%) B1f polarity 

region. This is demonstrated in the following simulation. A synthesized image is 

produced using a forward sEPG model with B1f varying from 50% to 150% in the 

vertical direction, increasing in steps of one unit, and a simulated ground truth 2-

component fat signal – as above hypothesised – with a fast T2fs=5ms component and 

a slow T2fl=137ms component in equal (50%/50%) proportion and overall amplitude 

α=1000a.u., and adding random Rician noise distributed with σN = 5a.u., with 100 

repetitions along the x-axis. This σN would in practice result in observed SNRs in the 

highest amplitude echo-image of between 50 and 20, imitating conditions affecting 

real data.    
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 Figure 3.65: Behaviour of the 2-component fat model fitting in terms of B1f estimation, for a 
synthetic image of varying B1f and SNR between 50 and 20. The 2-component model tends 
to preferentially lead the minimisation to the upper B1f region (B1f > 100%, circled values).  

The simulated data was fitted with a 2-component sEPG model for fat, as described 

previously (Figure 3.64); Figure 3.65 presents, for 3 ranges of ground truth B1f, the 

proportion of pixels in each for which the final minimization converged giving final 

B1f estimates above, below or approximately at 100%. The loglik(B1f) minimum 

gridding strategy (section 3.2.6, Figure 3.35) was used here without spatial B1f 

polarity regularization. The 2-component model fitting to data generated from a 

forward model with ground truth parameters close to those obtained in the example 

described above (Figure 3.64), shows a clear tendency to converge to a non-local 

minimum located in the upper B1f region when in reality B1f is equal or less to 100% 

(middle and lower delineated zones respectively in the simulated image). If the 

spatial regularisation majority vote strategy presented earlier was applied for 

example to these 2 regions this would lead to incorrect final parameter estimates as 
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can be seen from the leftmost 2 columns of B1f proportion values – the rightmost 

column percentages being neutral with regards to the regularisation scheme because 

in those cases the minimisation has led to a single minimum. For instance for the 

lower 70-90% B1f zone the 56.1% majority of (erroneous) B1f > 100% pixels would 

according to the spatial regularisation algorithm lead to also switching the 34.8% of 

(correct) B1f to the upper region; this was seen to actually return a median loglik 

lower than the correct B1f (<100%) did. This is likely to be linked to the combination 

of the added noise and the shape of the particular echo trains, as seen for the B1f 

effects in section 3.2.7.  

The above findings suggest that for the purposes of fitting experiments to determine 

the optimal signal model in very high ff adipose regions, the B1f polarity spatial 

regularisation scheme as previously implemented should be suitably modified. This 

can be done by using prior information regarding local B1f polarity obtained by fitting 

first to the muscle compartments only, using the spatial regularisation as previously 

implemented, since this was seen to adequately address the discrepancies due to B1f 

deviations (sections 3.2.8 and 3.3.1) – these being relatively low ff regions for which 

the above overestimation problem does not occur. If thereafter relatively small 

subcutaneous fat ROIs are chosen near muscle areas of homogenuous B1f, fitting in 

these ROIs can then be performed imposing the B1f polarity condition existing in the 

neighbouring muscle pixels (Figure 3.66). If it is in the lower, positive polarity region 

(broadly under 100%), perform the minimisation regularising towards the lower B1f-

loglik minimum, and conversely if the muscle B1f is of the opposite polarity.       
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Figure 3.66: A schematic representation of the spatial regularisation strategy used for the fat 
model determination in subcutaneous adipose ROIs. Relatively small adipose tissue ROIs 
were used in order to allow the local B1f polarity condition to be obtained as the adjacent 
tissue (muscle areas) B1f polarity classification.    

In the case that the minimisation in the muscle area has shown a single minimum 

(white areas in Figure 3.65) the fat ROI pixels will in the general case be a mix of 

different B1f types (lower, upper and neutral) and no regularisation can be 

performed; the direct parameter estimates for each pixel can simply be recorded.  

Fine tuning of T2s for the 2-component fat model 

On fitting the 2-component simulated signals with a single component in the previous 

simulated image experiment, the returned single component T2f estimate was in 

general lower than the ground truth value (137ms) for the 2-component forward 

model long component T2 (T2fl) signal. This suggests that the optimal T2fl estimate in 

the 2-component fat model is likely to be higher than the typical 130-140ms values 

found when fat signals are fitted with a single component model. The behaviour of 
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the 2-component fitting for fat signals introduced above (Figure 3.64) suggests that 

there is commonly a fast T2 (T2fs) component – so far seen to be below 20ms, a long 

T2 component (T2fl) above 120ms and their ratio is typically around 40-60% or higher. 

Following the reverse process and testing the single component fitting of such signals 

reveals that T2fl should be at the range of 200ms if T2f (the ground truth value for the 

single component fat model) is around 135-140ms respectively – the value commonly 

seen in real data and consistent with published work (Burakiewicz et al.). Examples 

of this relationship are shown in Figure 3.67. An important outcome of this process is 

that the longest T2fl (198ms) provides the best matching ground truth 2-component 

model signals to the single component model being fitted, keeping 137 < T2f < 150ms, 

for the 50 < B1f < 150% range.  

   

Figure 3.67: T2f (single component) estimate dependence on B1f for a 2-component fat model 
ground truth noiseless signal of T2fs = 5, 6 and 32ms, T2fl = 153 or 198ms and inter-component 
ratio of 50, 60 and 70%. For a broad range of B1f values the single component fitting returns 
values similar to the values commonly seen in real datasets. 

Further experimentation with fitting to in vivo subcutaneous adipose ROIs data also 

revealed that setting T2fl at a fixed value at 198ms instead of 137ms was seen to 
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significantly improve fitting, as for example with the signal used in Figure 3.64, now 

re-fitted as shown in Figure 3.68.    

  

Figure 3.68: Optimising the 2-component fat model fitting: setting the long component T2fl at 
198ms significantly improves the quality of fit. The same single pixel adipose tissue 
(subcutaneous fat) signal as in Figure 3.64 was used.  

This value was seen to best match the 2-component fitting to the single component 

fitting estimates (of T2f 135-140ms) for B1f close to 100% (as demonstrated from the 

noiseless signals fitting examples in Figure 3.67) which in turn correspond usually to 

the majority of pixels in typical images – as for instance the white areas in Figure 3.66. 

The way that T2fl and the rest of this 2-component fat model parameters were 

determined was by repeating the subcutaneous fat ROIs investigation using prior 

spatial regularisation information as suggested above (Figure 3.66) for three different 

sEPG-MLE method versions for fat: the single component, the 2-component when 

fitting for both T2fs and T2fl and the 2-component when fitting for T2fs while T2fl takes 

fixed values within a chosen range. Using again good quality datasets from the 

previously mentioned motor neuron disease study (Chapter 4) including amyotrophic 

lateral sclerosis (ALS) patients, Kennedy’s disease (KD) patients and healthy 



230 
 

volunteers, 8 subjects’ images were chosen, showing the highest quality in terms of 

both SNR and of relatively mild or absent artefacts (motion, flow, chemical shift etc.): 

4 healthy volunteers, 2 ALS and 2 KD patients; from each image 4 fat ROIs of 56 pixels 

each were defined. In Table 3.4 the overall results are shown as medians plus 

interquartile ranges for the sets of 8 by 4 by 56 individual pixel (echo train) fits. The 

2-component sEPG-MLE fitting using a variable but fixed T2fl yielded the most precise 

(smaller interquartile ranges) and accurate (lower loglik and σN and higher pseudo-

R2) results. The pseudo-R2 introduced here is a variation of the conventional R2 

statistical metric: 𝑅𝑅2 = 1 − ∑ (𝑦𝑦𝑖𝑖−𝑦𝑦𝚤𝚤� )2𝑁𝑁
𝑖𝑖=1
∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�)2𝑁𝑁
𝑖𝑖=1

 where N is the number of observations in the 

model, y is the dependent variable, 𝛥𝛥� is the mean of the y values, and 𝛥𝛥� is the value 

predicted by the model. The numerator of the ratio is the sum of the squared 

differences between the actual y values and the predicted y values, or the 

unexplained variance.  The denominator of the ratio is the sum of squared differences 

between the actual y values and their mean, or the explained variance. The model 

used in the calculation of the unexplained variance here was defined as the squared 

root of the summed squares of the modelled via the estimated parameters sEPG 

signal, plus the estimated noise σN (1st channel), and the estimated noise σN alone 

(2nd  channel): 𝛥𝛥� = �(𝑠𝑠𝐸𝐸𝑃𝑃𝐺𝐺(𝑝𝑝,𝑇𝑇𝐸𝐸) + 𝜎𝜎𝑁𝑁)2 + 𝜎𝜎𝑁𝑁2, where p are the estimated sEPG 

parameters and TE the echo times. This takes into account the theoretical and 

practical aspects of Rician noise in MR images previously discussed (sections 2.1.9, 

3.1, 3.2.3), since as the MLE method applied here estimates both the sEPG model 

parameters (p), and the underlying Rician noise levels (σN), and these may interact in 

the model fitting process, noise is in essence part of the model. It should however be 
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noted that its additive effect only has major impact in the low amplitude final echoes 

where any negative noise contribution becomes positive through the magnitude 

image reconstruction. This implies that this pseudo-R2 is actually positively biased, 

since it always increases the model-explained signal via the above σN additive effect, 

while in reality Rician noise can also decrease signal, especially at the initial high 

echoes. Nevertheless this pseudo-R2 provides an operational, approximate but 

pragmatically useful goodness of fit metric: empirically this approach returned 

higher, more credible pseudo-R2 values (closer to unity), than when using the sEPG 

function alone to model the predicted y values (𝛥𝛥� = 𝑠𝑠𝐸𝐸𝑃𝑃𝐺𝐺(𝑝𝑝,𝑇𝑇𝐸𝐸)), in an approach 

that may be considered a simplified version of Efron’s pseudo-R2 (UCLA, 2011). While 

estimated noise levels (Rician σN) and loglik (the main MLE statistic) are quantitatively 

specific to the individual signal fitted, pseudo-R2 as a normalised quality of fit metric 

offers complementary information. The Akaike information (AIC) and Bayesian (BIC) 

criteria (Box et al., 2015) were also calculated as conventional meaures of statistical 

model quality.   
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Table 3.4: Overall results for estimates of the fat model parameters: T2fs, T2fl, the 2-
component ratio, B1f, σN and the related metrics loglik and pseudo-R2 (see main text for its 
use and definition), Akaike information (AIC) and Bayesian information (BIC) criteria, for 3 
variations of the sEPG model within the sEPG-MLE algorithm. The models were fitted to pixel 
data from a total of 32 subcutaneous adipose ROIs from 8 participants (see text). Median 
estimate values are stated, with interquartile ranges are given in brackets. A clear superiority 
both in accuracy and precision was seen with the use of a 2-component model with fixed T2fl 
(last column; Here fitting was repeated with fixed T2fl tested across a range between 100 and 
500ms in steps of 1ms, with the value yielding the minimum overall loglik being reported).           

 

single 

component 

sEPG-MLE for T2f 

2-component 

sEPG-MLE fitting 

T2fs & T2fl 

2-component sEPG-

MLE with varying 

fixed T2fl (‘grid’) 

T2fs (ms) 

140  (136  145) 

19  (12  30) 40  (38  42) 

T2fl (ms) 165  (155  181) 
198 

(tested range: 100 – 500ms) 

fat 

components’ 

ratio (%) 

- 69  (65  73) 67  (64  69) 

B1f (%) 95  (86  96) 115  (75  119) 97  (77  110) 

σN (a.u.) 18.2  (13.8  25.3) 5.8  (3.9  10.0) 3.5  (2.9  4.4) 

loglik (a.u.) 95  (89  102) 70  (61  82) 59  (55  64) 

AIC / BIC 198 / 220 152 / 185 128 / 155 

pseudo-R2 

0.986 

(0.983  0.988) 

0.998 

(0.997  0.999) 

0.999 

(0.999  1.000) 
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In Figure 3.69 the medians and interquartile ranges for the single- and 2-component 

sEPG-MLE fitting per each fat ROI across all subjects for loglik, σN and pseudo-R2are 

shown.  

 

Figure 3.69: Comparison of the single- and 2-component sEPG-MLE fitting per fat ROI for all 
8 subjects tested via the loglik, noise σN and pseudo-R2 distributions as quality of fit metrics. 
The 2-component model results appear superior than the single component while healthy 
controls and the two types of patient groups produced similar results.     
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The 2-component model consistently returned lower loglik, lower, more physically 

consistent σN, and higher pseudo-R2, close to one.  

An additional feature seen here is that there was no significant difference in the 

yielded fat parameters between the three groups of subjects (controls, ALS and KD 

patients), for both T2fs (p=0.137) and the fat components’ amplitudes ratio (p=0.363), 

thus further validating the results of Table 3.4. In Figure 3.70 the T2fs, 2-fat-

component ratio (long over short fat component amplitudes ratio as a percentage) 

and T2f (single component fitting) distributions are shown for completeness, per 

subcutaneous adipose ROI and across all subjects included.     
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Figure 3.70: The yielded T2fs, 2-fat-component ratio and T2f (single component) distributions 
per fat ROI and across all 8 tested subjects. 

Behaviour and robustness of the 2-component fat model 

As can be seen in Table 3.4 the optimal model and parameter combination, i.e. the 

2-component fat model with fixed T2fl, produced also the B1f estimate closest to 100% 
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compared to the other methods. From the 32 ROIs examined – and based on the 

adjacent muscle tissue B1f behaviour (Figure 3.66), 14 were in neutral B1f regions 

close to 100%, 10 in lower B1f (<100%) regions and 8 in upper B1f regions (>100%). 

This is a meaningful outcome consistent with the variations across the B1f spectrum 

(above and below optimality) expected in real conditions. It also follows that the B1f 

estimation errors seen with the other two methods, most notably with the 

alternative 2-component method (when fitting both T2fs and T2fl), is accompanied by 

suboptimal estimation performance for the remaining parameters.  

 

Figure 3.71: The effect of varied parameters within the fat model on the loglik determining  
T2fl, for a ground truth signal with parameters equal to the final 2-component fat model 
parameters (T2fs=40ms, T2fl=198ms and 2-fat-componant ratio=67%) and an approximate 
signal (T2fs=35ms, T2fl=198ms and 2-fat-componant ratio=70%) (blue lines). It can be seen that 
increased B1f (dark green lines) and varied T2fs and the 2-fat-component ratio in the model 
(light green lines) are associated with decrease of the T2fl and increase of the loglik estimates        
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In Figure 3.71 a few theoretical examples (noiseless signals) are presented showing 

the impact that erroneous parameter values in the fat model used for fitting have on 

the T2fl determination.   

In the first case the final 2-component model best describing fat (B1f=97%, T2fs=40ms, 

T2fl=198ms and 2-fat-componant ratio=67%) – as extracted above – is examined, for 

the identical (ground truth) signal and an approximate signal (T2fs=35ms and 2-fat-

componant ratio=70%), to simulate the variations expected in real samples, e.g. 

anatomical ROIs. The lower blue and dashed blue lines show their respective loglik 

behaviour, demonstrating that the parameter departures in the approximate signal 

do not affect the T2fl estimate since the minimum loglik still appears at 198ms. In the 

second case B1f in the fat model is changed to 115% - the median estimate for the 

alternative 2-componant model (Table 3.4) – and the T2fl estimate substantially 

decreases and loglik increases, as depicted by the middle dark green and dashed dark 

green lines. Finally in the last case, when changing also T2fs and the 2-fat-component 

ratio in the model to the respective alternative model values (approximately 

T2fs=20ms and 2-fat-componant ratio=70%), estimated T2fl further decreases and 

loglik increases – depicted by the lighter green and lighter green dashed lines. This is 

likely to be related to the dependence of loglik on the echo train shape as well as 

parameter interdependence, as seen in the preceding paragraphs and in section 

3.2.7. It seems in general that fitting data with a model within which both T2fs and T2fl 

are free (Table 3.4, 2nd column) tends to emphasize the slow fat component (the fast 

component is reduced in terms of both T2fs and ratio) and this in turn is associated 

with incorrect B1f estimates and higher loglik.  
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The fat ROI presented in Figure 3.72 below is a typical example of the effectiveness 

of the spatial regularization strategy described above.  

 

Figure 3.72: An example fat ROI (yellow rectangle) where according to the adjacent muscle-
area-based spatial regularization, B1f was switched to the lower region. The minimization 
performed under those conditions was seen to produce parameter estimates much closer to 
the average values across all subjects and ROIs.    

These anatomical regions (anterior medial) of the lower limbs are common areas of 

B1 transmit field deviation (Figure 3.45). Without correction, of the 56 pixels in the 

fat ROI, 33 produced lower loglik for B1f in the upper region (>100%) and 23 in the 

lower region (<100%). This, according to the basic majority voting spatial 

regularization introduced in section  3.2.8 – would lead to switching of B1f for all pixels 

in the ROI to the upper region; this would return the following median results: 

T2fs=35.0ms, 2-fat-component ratio=62.6%, B1f=126.6%, σN=4.1a.u., loglik=62.5a.u. 

and pseudo-R2=0.999 
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However, to account for the B1f bias effects seen both in real adipose tissue data 

(Table 3.4) and simulation (Figure 3.65), our improved scheme dictates that the 

spatial regularization will be driven by the B1f polarity condition pertaining in the 

adjacent muscle tissue, rather that intra-ROI majority voting, since this was seen to 

be more robust in general (Figure 3.48, Figure 3.66, Figure 3.72). In this case B1f for 

all of the ROI pixels will be switched to the lower region, with the minimization then 

producing the median results: 

T2fs=39.3ms, 2-fat-component ratio=67.6%, B1f=71.9%, σN=4.2a.u., loglik=62.7a.u. 

and pseudo-R2=0.999 

These results are markedly closer to the average values extracted from all ROIs 

(Figure 3.70) thus corroborating the validity of this approach.  

Water content within fat - choice of T2m lower bounds  

While it might be assumed that adipose regions have effectively 100% ff, histological 

results have shown that the proportion of pure fat in subcutaneous fat  tissue is in 

fact broadly below 90% (Thomas et al., 1962).  This is now explored by fitting the 

previously chosen fat ROIs this time with an updated multi-component model, which 

consists of the 2-sEPG-component model for fat established above (T2fs=40ms, 

T2fl=198ms and 2-fat-component ratio=67%), plus a single sEPG component 

representing water, linked through the ff parameter:     

𝑠𝑠(𝑇𝑇𝐸𝐸) = (1 − 𝑓𝑓𝑓𝑓) · 𝑠𝑠𝐸𝐸𝑃𝑃𝐺𝐺(𝐵𝐵1𝑓𝑓,𝑇𝑇2𝑖𝑖,𝛼𝛼,𝜎𝜎𝑁𝑁 ,𝑇𝑇𝐸𝐸) + 𝑓𝑓𝑓𝑓 · [0.33 · 𝑠𝑠𝐸𝐸𝑃𝑃𝐺𝐺(𝐵𝐵1𝑓𝑓,𝑇𝑇2 =

40𝑚𝑚𝑠𝑠,𝛼𝛼,𝜎𝜎𝑁𝑁 ,𝑇𝑇𝐸𝐸) + 0.67 ·  𝑠𝑠𝐸𝐸𝑃𝑃𝐺𝐺(𝐵𝐵1𝑓𝑓,𝑇𝑇2 = 198𝑚𝑚𝑠𝑠,𝛼𝛼,𝜎𝜎𝑁𝑁 ,𝑇𝑇𝐸𝐸)]               Equation 14 
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where s(TE) is the signal at echo time TE and the model is MLE fitted to the measured 

data to estimate B1f, T2m, ff, α (amplitude) and σN (Rician noise SD). 

Note: In this case T2m represents signals from water components within the fat 

compartment rather than muscle.  

This model was used in three variations of the fitting routine, respectively setting the 

T2m lower bound (lb-T2m) to 5, 10 and 15ms. Constraining T2m in this way was seen to 

affect the quality of fitting and the final parameter estimate distributions – in a 

somewhat similar way that assigning different discrete values to a fixed T2fl in the 

model did previously. Figure 3.73 shows that the returned loglik for lb-T2m=5ms is 

higher, and both T2m and ff reduced, compared to the results for lb-T2m=10 or 15ms, 

resembling the trends in the results for the alternative 2-component fat model seen 

previously (Table 3.4). This suggests a lower quality of fit and at the same time loss 

of physical meaning of the results since it appears that part of the otherwise very high 

fat content is substituted by a very fast decaying component combined with 

somewhat lower ff. As it has been seen before (for instance the paradigm shown in 

Figure 3.64) fat signals under this type of fitting can commonly return mid-range ff 

estimates combined with a short T2m introducing difficulty or error in classifying the 

type of tissue: fat regions can appear as two compartmental, muscle and fat 

infiltrated regions. Since – on the other hand – no substantial difference in the 

behaviour and quality of fit is observed between the results for lb-T2m=10 and for lb-

T2m=15ms, 10ms can be set as a reliable working lower bound for T2m in order to not 

further restrict results (i.e. as a lb-T2m=15ms would do) in the muscle areas, the main 

anatomical regions of interest.           
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Figure 3.73: Comparison of the muscle-fat-component sEPG-MLE fitting applied to 
subcutaneous fat ROIs for all 8 subjects, for 3 different T2m lower bounds (lb-T2m) of 5, 10 and 
15ms, with respect to the final loglik, T2m and ff. The results for lb-T2m=5ms return higher 
loglik and lower T2m and ff compared to the results for lb-T2m=10 or 15ms which are quite 
similar.     

This on the one hand resolves the above issue of interpreting results and on the other 

hand can serve as means to identify pure fat or very high fat content regions. From 

the results in Figure 3.73, for lb-T2m=10ms, 31 out of 32 ROIs have ff above 90% and 



242 
 

24 out of 32 T2m below 20ms, and this parameter combination could form a criterion 

for characterizing fat tissue when using this model through an entire image.   

The above criterion, based on the results seen so far regarding B1f bias in high ff areas, 

can also be used to improve the spatial regularization process. By visual comparison 

of the initial B1f binary maps before applying any regularization (as for example in 

Figure 3.47, left) and the raw T2 weighted images it can be seen that high fat content 

areas or structures coincide with B1f estimate in the upper region (negative polarity, 

coloured in blue) as shown in the examples in Figure 3.74 below.  

 

Figure 3.74: Examples of high fat content structures in one subject of each group (healthy 
volunteers, ALS and KD patients) raw images (right column) showing a correlation (green 
arrows) with the corresponding upper B1f region estimation in areas showing otherwise 
neutral (single minimum, white areas) B1f behaviour (left column)     

Therefore non-participation of pixel fits manifesting this combined B1f, T2m and ff 

estimation behaviour to the spatial regularization part of the algorithm is likely to 
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increase its overall efficiency. More in particular, pixels for which estimated T2m was 

less than 15ms and simultaneously estimated ff more than 90% - for which B1f is 

typically overestimated – are not participating in the spatial regularization part of the 

algorithm.   

3.3.4 Final multi-component model 

Having established the overall form of the multi-component model for water and fat 

as expressed by Equation 14, it is informative to seek now more insight to its 

statistical behaviour. The tissue fat content (ground truth ff) seems to have an impact 

on the uncertainty introduced in the parameter estimates. Since previous studies 

limited ff mainly up to 50% (section 3.3.2), one of the main aims of this work was to 

explore the behaviour of the proposed methods across the full ff range. This was 

demonstrated in a simulation using the multi-component sEPG model (Equation 14) 

with the representative fixed values and initial values as defined in the previous 

section, for a range of ground truth ff values; majority voting regularisation was also 

included. The results are shown in Figure 3.75 where it can be seen that the 

dispersion of the T2m and ffa estimates (ffa: the ‘apparent’ ff) around the ground truth 

value increases with increasing (ground truth) ff, is also restricted by respectively the 

lower and upper bounds, imposed in the particular MLE minimisation.  
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Figure 3.75: Dependence of the parameter estimation on the ground truth ff – for 12 discrete 
intervals between 0 and 100% ff, 1000 simulations at each, ground truth T2m=30ms, B1f 90%, 
SNR ≈ 50: (a) T2m, (b) ffa, (c) noise σN and B1f estimates and (d) the respective log-likelihood 
and pseudo-R2.   

 

Bias (skewness) in the parameter estimate distributions of the T2m and ffa estimates 

is also evident, as shown in Figure 3.76 and Figure 3.77.        
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Figure 3.76: Distributions of the estimated T2m for the 12 discrete values of ground truth ff 
from 0 to 100%. A general tendency for T2m underestimation (bias) is seen. Red lines indicate 
the ground truth T2m of 30ms.   

 

Figure 3.77: Distributions of the estimated ffa for the 12 discrete values of ground truth ff 
from 0 to 100%. A tendency (bias) for ffa underestimation is seen in general – despite the 
exception of the 3 first ground truth ff levels. Red lines indicate the ground truth ff.   
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It is important to emphasize that these observations as well as the overall conclusions 

with regards to the behaviour of the multi-component final model within the 

proposed sEPG-MLE algorithm might not be generalisable for the entire possible 

parameter space. Our main goal was to optimise the fitting routine for the estimated 

parameters’ ranges of interest expected in the in vivo datasets studied in later 

chapters.      

3.3.5 Corrections for acquisition conditions 

To this point the development of the physical modelling has not taken into account 

additional physical factors affecting quantification relating to real world acquisition 

conditions. The computational steps described here aim to address these.   

Magnetization transfer (MT) effects. 

The example in vivo images presented in the above analysis appear as single slices. In 

reality however MESE/CPMG acquisitions are typically used producing multi-slice 

datasets, from which one or more slices are selected for analysis. Due to the high 

density of off-resonance RF pulses used to select neighbouring slices in such multi-

slice acquisitions and for the relaxation rates seen in muscle (typically relatively short 

T2 and long T1) magnetization transfer (MT) effects might affect its signal intensity, 

while fat (relatively long T2 and shorter T1) is in general considered to be unaffected 

by MT (Marty et al., 2016, McRobbie et al., 2006). In order to quantify MT effects 

empirically the pixel signal intensities from a multi-slice acquisition were compared 

to a single slice acquisition for a healthy volunteer, with all other sequence settings 

equal to those used in the in vivo data examined so far. The ratio of the single slice 
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intensity and the intensity of the middle slice of the multi-slice acquisition was in 

average 1.20±0.01 for muscle (ROIs) and 1.02±0.01 for fat, corroborating that MT 

effects are negligible in fat. Therefore ff for this multi-slice multi-echo (MSME) type 

of acquisitions should be corrected as:  

𝑓𝑓𝑓𝑓 = 𝛼𝛼𝑓𝑓 (𝛼𝛼𝑓𝑓 + 1.2 · 𝛼𝛼𝑖𝑖)⁄                                                                                       Equation 15   

where αf and αm are the respective amplitudes of the fat and the water component in 

the acquired signal. Since in this work calculation proceeds according to Equation 14 

above, this can be re-written in terms of the initially estimated ff0 = αf / (αf + αm) (as 

a ff correction, ffCORR):    

𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑓𝑓𝑓𝑓0 (1.2 − 0.2 · 𝑓𝑓𝑓𝑓0)⁄                                                                           Equation 16                                                                                     

in order to produce the final ff maps. This is an important correction in order to 

achieve more meaningful comparisons with results from other methods of fat 

content estimation, for instance with the Dixon method which is considered the 

golden standard in MRI.  

Note: At the time of production of this report this was the only available experimental 

data with which to estimate MT effects, and was based on acquisition conditions 

similar to those pertaining for the ALS and KD data presented above and in detail in 

Chapter 4. This correction was applied throughout the results produced hereafter, 

with the reservation that it might be slightly inaccurate for different acquisition 

settings and datasets with different numbers of slices. The corrections used were 



248 
 

based on comparing a single vs. 7 slice acquisition whereas in most cases the patient 

study acquisitions consisted of 8 or 9 slices.      

Incomplete T1 recovery effects 

This version of the sEPG-MLE algorithm described thus far assumes that each echo 

train starts from fully relaxed magnetization, i.e. fully recovered to M0 along the z 

direction. However in general this might not always be the case, depending on the 

relationship between the tissues’ T1 and the repetition time (TR) used. The entire z-

magnetization – accounting for the sequence (sEPG) history effects – available before 

each TR recovery period should be rescaled by the T1 recovery term (1-exp(-TR/T1)) 

where T1 is tissue specific, because this will represent the z-magnetization available 

to participate in the next repetition cycle in the steady state (McRobbie et al., 2006). 

Therefore in a relaxometry experiment, the fat and water signal amplitudes and their 

relative proportion will effectively depend on this mechanism. In Table 3.5 typical 

values characterising this behaviour are shown.  

Table 3.5: Examples of T1 recovery ratios for 2 representative TRs – i.e. those used in the 
patient study protocols that produced the results presented in this thesis – for typical muscle 
and fat T1s: for this calculation T1 muscle=1400ms and T1 fat=370ms. 

TR (ms) Fat T1 recovery ratio 
at TR 

Muscle T1 recovery 
ratio at TR 

Muscle proportional 
T1 recovery ratio at 
TR 

3500 0.9999 0.9179 0.9180 
3000 0.9997 0.8827 0.8829 

 

In the case of the muscle-fat component sEPG-MLE model, the proportional muscle 

T1 recovery ratio at TR (last column) is the proportion of muscle-emanating signal 
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participating in the echo train with respect to the overall signal (including fat-

emanating signal), and dividing by this value will correct the true muscle content in 

the ff equation (Table 3.6 below, 3rd column). Rearranging the equations in terms of 

the initial sEPG-MLE-yielded fat fraction ff0 = αf / (αf + αm) – which is not corrected for 

incomplete T1 recovery – leads to the final ff correction expression (4th column).   

Table 3.6: Examples of ff correction due to differential T1 recovery rates for typical acquisition 
and tissue characteristics 

TR 
(ms) 

Muscle proportional 
T1 recovery ratio at TR 

Correction (reciprocal) for muscle 
amplitude αm in ff (αf : fat amplitude) 

ff T1 recovery 
correction ffT1-CORR 

3500 0.9180 ff = αf / (αf + 1.0893·αm) ff0/(1.0893-0.0893·ff0) 
3000 0.8829 ff = αf / (αf + 1.1326·αm) ff0/(1.1326-0.1326·ff0) 

   

Finally, in real world MESE/CPMG acquisitions the flip-angle profiles across the 

imaging slice for the protons in fat and those in water may not be in general aligned 

due to chemical-shift displacements. This is potentially most significant if for 

example, as is common in practice, the slice-selection gradient magnitude during the 

excitation pulse is different from the slice-selection gradient magnitude for the 

refocusing pulse, resulting in a different refocusing for the fat protons compared to 

the water protons and alterations in the overall signal echo trains, especially for high 

ffs and certain combinations of gradient amplitudes (Keene et al., 2020). Even though 

differently scaled excitation and refocusing gradients were also used in the data 

acquisitions analysed in this thesis (section 5.5.1), numerically simulating the above 

effect based on the sequences and scanner settings used, produced differences in 

the parameter estimates (e.g. T2m and ff) only after the second decimal digit. For that 

reason no such corrections were included in the analyses presented here.      
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3.3.6 Quality control steps and presenting results 

After pixel-wise fitting the appropriate multi-component sEPG model to in vivo CPMG 

data, before extracting pixel parameter estimates for statistical analysis, evaluation 

of the values obtained and the associated goodness-of-fit measures are necessary to 

identify remaining erroneous values. An example of this process was presented at 

the end of section 3.3.3, namely identifying fits which exhibit both low T2m and high 

ff as ‘pure fat’ rather than muscle, as a form of quality control (QC) towards 

presenting only physically meaningful results. Such QC can be incorporated in the 

estimation algorithm pipeline itself, or performed as a form of post-processing, 

depending on the specific application. For example, the above high fat pixel 

identification and exclusion criterion has been used both to improve the spatial 

regulation phase of the algorithm, and before the final data presentation to exclude 

very high or pure fat regions from the final maps. However, its use may change if 

investigating adipose tissue is also of specific interest. Other post-fitting processing 

steps that were integrated in the software tool developed in this work were a 

minimum R2 threshold, and ‘zero signals’ detection. For this R2 threshold criterion the 

pseudo-R2 described in the previous section was used, which in general for good 

quality signals takes high values near 100%. However, there were exceptions due to 

image artefacts, for instance due to flow, and segmentation imperfections, where 

pseudo-R2 could take extreme negative values; therefore a threshold for pixel 

exclusion was set as pseudo-R2 > zero. The second condition was useful where, due 

to similar acquisition related issues, the amplitude of several or more echoes in the 

echo train were virtually zero (below the noise) and the rest very low and random – 
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i.e. without following any meaningful pattern such as representing coherent decay or 

the noise floor (baseline); therefore any pixels with more than half their echo train 

being zero were discarded. Below (Figure 3.78) is presented an example raw image 

showing such features, and the resulting T2m map after applying the above post-

processing procedures. Fat areas mostly numbered in the range of a few tens of pixels 

(for instance for healthy controls) to a few hundred pixels (patients with severe fat 

infiltration); non-analysable signals (zero echoes, non-monotonic etc.) occurred 

much less frequently, about 5 to 10 pixels per image.  

 

Figure 3.78: Example of a T2m map for a healthy volunteer, after having excluded pixels of 
pure fat (T2m<15ms & ff>90%) and of bad quality of fit (pseudo-R2<0). 

In the next section 3.3.7 examples of T2m and ff maps are shown, with associated 

histograms and summary metrics.                
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3.3.7 In-vivo data examples 

This section presents examples of the sEPG-MLE fitting methods applied to data sets 

of varying quality. Figure 3.79 presents example in vivo T2m and ff maps, obtained 

using the sEPG-MLE muscle-fat-component model as optimised in sections 3.3.2 and 

3.3.3 and after the basic post-processing steps described on section 3.3.4. Before 

fitting all datasets were segmented, yielding predefined anatomical ROIs as described 

in the specific patient group studies presented in Chapter 4 and Chapter 5. These 

examples all represent good quality data without obvious artefacts due to motion, 

flow, chemical shift etc. or large signal drop-outs due to B1 or other inhomogeneities; 

also disease involvement for these patients appears to be relatively mild. Marked 

differences between patients and controls can be seen visually and via the 

histograms, most noticeably in patients the elevation in T2m (about 10%) and 

widespread ff increases (up to more than 100%).  

The examples in Figure 3.80 are from data exhibiting more obvious artefacts, 

predominantly from flow and motion (yellow and orange arrows) and other possible 

sources, sometimes in combination – for instance the B1 inhomogeneity and 

edge/partial volume effects in subject (b). While B1f plays a central role in the sEPG-

MLE algorithm, it seems that even large departures from ideal conditions (100% B1f) 

can be tolerated. Flow or motion effects can have a much bigger effect, especially 

when combined with B1f departures – as in case (b) – since this both affects the 

accuracy of phase encoding and can severely distort the echo train. The minimization 

routine when applied blindly to signals from such artefactual areas often terminates 

at the parameter bound constraints, resulting for instance in the histogram spikes at 
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10ms for T2m and 100% for ff. This can complicate the presentation and interpretation 

of results, in particular since opposite values of the distributions can cancel out – e.g. 

when results are reported as medians or means from a ROI or entire image, as seen 

for instance from the relatively lower T2m of the compromised data compared to the 

previous good quality examples (for patients, e.g. ALS T2m medians).   
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Figure 3.79: Examples of sEPG-MLE T2m and ff maps and histograms for good quality data 
from a healthy volunteer (a), an ALS patient (b) and a KD patient (c).  
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Figure 3.80: Examples of sEPG-MLE T2m and ff maps and histograms for data with flow (yellow 
arrows), motion (orange arrows) and other apparent artefacts (RF field, partial volume 
effects etc.) from a KD patient (a) and two ALS patients (b-c). The grey scale panels are the 
raw T2-weighted images (2nd highest amplitude echo).       
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Depending on the dataset – the proportion and severity of signal problems – 

additional post-processing and quality control steps can be necessary to objectively 

detect and remove non-meaningful or ambiguous parameter estimates from final 

analyses (Chapter 4, Chapter 5).   

3.4 Summary and Conclusions 

3.4.1 Conclusions 

The aim of developing an optimised, fat-corrected T2 (T2m) fitting tool was 

accomplished in four main steps. Firstly, the sEPG formalism was used to achieve a 

model suitable to accurately describe neuromuscular CPMG image data. While the 

two main parameters of interest were initially T2 and global signal amplitude 

(intercept) α, the B1 field factor (B1f) behaviour was also explored in modelling 

realistic RF pulse profile responses to avoid degenerate solutions; this led to the 

majority vote spatial regularisation scheme which was a key contribution towards 

improved accuracy. Second, the Rician distributed noise present in the images was 

addressed using MLE statistical modelling which incorporates the Rician noise σN as 

an additional parameter in the sEPG-MLE model. Third, the algorithm was extended 

to include a fixed-parameter 2-component approximation for the fat signal within a 

multi-component model, also estimating fat fraction (ff) as a parameter of the final 

model, relevant to in vivo data acquisitions in the patient studies. Finally, 

intermediate fit quality improvement and post-fitting QC steps, including spatial 

regularisation, principled setting of parameter bound constraints and start points, 

and parameter scanning strategies were implemented for robust and accurate fitting. 
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Final post-fitting QC procedures and means of presenting the quantitative analysis 

results are in general specific to the purpose of a particular study – examples will be 

presented for the neuromuscular disease natural history studies presented in 

Chapter 4 and Chapter 5.                      

3.4.2 Chapter Summary 

Important methods developed and results presented in this chapter: 

• Estimation of the Rician noise levels present in magnitude reconstructed MR 

images can be achieved with use of MLE methods which can explicitly account 

for non normal distributions.   

• Combined with the sEPG model, MLE can provide accurate T2 estimation from 

data acquired using MESE-CPMG sequences as was validated using phantom 

experiment data.  

• Application of the current implementation of the sEPG formalism to MESE-

CPMG data reveals non symmetry (non equivalence) of such signals with 

respect to B1 field factor deviations below and above its nominal levels; this 

can be accounted for by integration of spatial regularisation into the log-

likelihood-based sEPG-MLE fitting tool. 

• A 2-component sEPG model with fixed parameters can adequately describe 

tissue-fat signals, under the assumption that inter- and intra-muscle fat 

produces signals equivalent to pure adipose tissue.  

• This can be combined into an effective multi-component sEPG-MLE fitting 

tool for quantitative water and fat skeletal CPMG imaging data.   
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• Experimenting with parameter initial value grid techniques (parameter 

‘scanning’) and bound constraints can be useful in optimising the fitting 

process and physical interpretation of the parameter estimates.   

• The accuracy of fat-water quantification provided by the multi-component 

sEPG-MLE fitting tool can be further improved by correcting for additional 

phenomena affecting magnetization magnitudes in real-world acquisitions.   
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Chapter 4. sEPG-MLE T2m estimation in motor neuron diseases: 

application in amyotrophic lateral sclerosis and Kennedy’s 

disease 

4.1 ALS and KD background 

Amyotrophic lateral sclerosis (ALS) and Kennedy’s disease (KD), also known as spinal 

bulbar muscular atrophy (SBMA), are two major motor neuron diseases. ALS is a 

rapidly progressive and fatal disorder characterised by severe impairment of motor 

function following the degeneration of the upper and lower motor neurons (UMN, 

LMN) and with a median time of 2-3 years from diagnosis to death (Keren et al., 

2014). KD is a disabling disorder characterised by bulbar impairment and progressive 

weakness of the limbs, occurring at a slower rate than in ALS, and where life 

expectancy is not impaired (Grunseich et al., 2014). The cause of most ALS cases 

remains unknown, and the responsible genetic defects so far identified are 

heterogeneous, while KD always results from an expanded cytosine-adenine-guanine 

(CAG) repeat in the first exon of the androgen receptor (AR) gene inducing LMN 

degeneration leading to muscle denervation and weakness (La Spada and Wilson, 

1991). At onset, ALS and KD may show similar symptoms, and distinguishing the two 

diseases is of clinical interest (Parboosingh et al., 1997).   

Despite the efforts over recent decades, there are still no effective therapies available 

for both diseases. Promising targets for prospective therapeutics have been 

identified (Rinaldi et al., 2016), however a serious limitation for clinical trials is the 

lack of effective outcome measures for monitoring and assessing disease progression 
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(Mitsumoto et al., 2014). Together with these diseases’ significant clinical 

heterogeneity, this limits the investigators’ ability to detect effects of drugs on ALS 

progression, requiring clinical trials to be potentially extremely large and costly in 

order to be informative. There is therefore a strong need for biomarkers to refine 

disease stratification and identify more homogeneous patient groups and more 

sensitive outcome measures to better detect disease progression and treatment 

effects.  

Skeletal muscle MRI can sensitively detect muscle involvement in neuromuscular 

diseases (Willis et al., 2013, Burakiewicz et al., 2017), and identify distinct 

pathological features, such as muscular fat infiltration or intra-muscular oedema 

(Straub et al., 2012). In our centre reproducible and responsive skeletal muscle MRI 

candidate outcome measures have been previously established, focused on 

quantification of muscle fat infiltration and replacement, and oedematous changes 

associated with inflammation. These measures have been validated in generally more 

slowly progressing neuropathies (CMT1A) and myopathies (IBM, LGMD2I) (Morrow 

et al., 2016) and are therefore likely to be highly responsive in this disease group. 

MRI investigations of ALS and KD have so far focused predominantly upon the brain 

(Bede and Hardiman, 2014, Ferraro et al., 2016) while quantitative muscle MRI has 

been relatively overlooked (Bryan et al., 1998, Dahlqvist et al., 2019, Evans et al., 

2014), and has mainly dealt with fat deposition (Dahlqvist et al., 2019, Hamano et al., 

2004). In this chapter are described analyses by the author of multi-echo MRI data 

obtained as part of a large collaborative study performed by colleagues at the UCL 

Queen Square Institute of Neurology. A first report describing the study and cross-
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sectional Dixon ff and STIR signal intensity findings has recently been  published 

(Klickovic et al., 2019).     

4.2 Tools and methods 

For this study two patient groups were recruited, KD (N=21) and ALS (N=21), along 

with healthy controls, selected from two control sub-groups (N=16 each) with 

appropriate age and gender matching to the two patient groups. Mean age was 50.7y 

(SD 17) and 54.4y (SD 14.6; p=0.53) in the KD and KD-control group respectively. 

Mean age was 57.3y (SD 14.8) and 55.4y (SD 13.5; p=0.69) in the ALS and ALS-control 

group respectively. Height and weight did not significantly differ between the two 

patient groups and controls, except for ALS patients having a significantly lower body 

mass index (BMI) compared to their control group (p=0.009). Patients with 

genetically confirmed mutation of AR gene were included in the KD group while 

patients presented with a history of at least clinically possible disease according to 

revised El Escorial criteria were eligible for the ALS group. Additionally all participants 

underwent functionality tests according to established functional rating scales and 

detailed assessment with respect to their medical history and clinical and 

neurological status (Klickovic et al., 2019).   

Several datasets were not available for analysis due to incomplete scans or 

participants dropping out from the study, or were excluded due to image or 

segmentation quality criteria, as described in the results section (4.4). The study was 

approved by the local ethics committee and all participants provided written 

informed consent. Healthy volunteers were scanned at two time points, from 
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November 2015 until January 2017 for the baseline examination and from November 

2016 until January 2018 for the one year follow up; ALS patients were examined at 

three time points, from December 2015 until January 2017 at baseline, between June 

2016 and May 2017 for the 6 months follow up and from November 2016 until 

November 2017 for the 1 year follow up examination; and KD patients at two time 

points, from December 2015 until November 2016 at baseline and from January until 

November 2017 for the one year follow up examination.      

For the quantitative T2 imaging the thighs of all participating subjects were examined 

at 3T (Siemens Magnetom Skyra) using a surface ‘flex’ body coil and a 12-element 

spine coil (integrated into the patient table) to cover proximal thighs, and a 

‘Peripheral Angio’ (36-channel) lower limb coil, with a MESE sequence (TR= 

3630/3500ms, 22 TEs from 10-220ms with 10ms interval, 9 x 6 mm slices, 12mm slice 

separation, matrix 320x160, in-plane resolution 1.3x1.3 mm). For all three groups 

twenty thigh muscles were manually segmented on one of the central slices – mostly 

the 5th (out of 9 or 8 slices in total). Individual muscles were outlined and separated 

from the surrounding subcutaneous fat, connective tissue and fascia etc. A single 

observer (U.K.) blinded to subject groups defined the muscle ROIs (excluding adipose 

or connective tissue, nerves, bones etc.) on images derived from the respective 

unprocessed shortest TE Dixon acquisition (TE = 3.45ms, see following paragraph) in 

all subjects using the itk-snap software (Yushkevich et al., 2006). This was done for 

the purposes of the collaborative study and publication mentioned above (section 

4.1). Since the resulting segmentation masks were defined in the space of an 

acquisition different to the MESE sequence (i.e. the 3-point Dixon raw images), it was 
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necessary for these to be spatially adjusted by the current author using a custom-

written software tool in order to match to the space of the T2-weighted raw images. 

An additional tool was created to then apply these ROI segmentations to the raw T2-

weighted images. Selection of inter-subject comparable slices was assured by 

identification of specific anatomical landmark structures in the lower limb (lateral 

tibial condyle).  

The main aim of the following analyses performed by the author were, following 

some further post-processing optimisation, to assess the effectiveness of the signal 

model and fitting method developed in Chapter 3 to extract useful information from 

this dataset, and compare these results with those obtained using previously existing 

methods, specifically the Dixon ff determination method and (STIR) fat suppressed 

imaging, described in the next paragraph and sections 2.1.2, 4.4 and 4.5. The 

proposed method uses the sEPG model as finally described in section 3.3.2, Equation 

14; this is its generic mathematical expression (it cannot be written in closed form) 

describing the aggregated EPG (function) calculations across the slice profile for the 

combined muscle and fat compartments, which is subsequently fitted pixel-wise to 

the study data using MLE minimization in a custom-written Matlab tool (section 

2.2.3). The parameters to be determined for each pixel are muscle water T2 (T2m), fat 

fraction (ff), B1 field factor (B1f), overall amplitude (α) and noise standard deviation 

(σN). While T1 for muscle and fat were fixed in accordance to existing literature values, 

and the fat compartment T2 behaviour determined separately (section 3.3.2), the 

remaining sEPG model parameters (TE, ETL, RF excitation and refocusing profiles and 

duration vectors) were set according to sequence and scanner settings, as listed at 
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the top of this paragraph. A summary of the main algorithm settings used is listed in 

Table 4.1 below and also in Figure 4.2, section 4.3.1, via a comprehensive graph of its 

usage.   

Table 4.1: sEPG-MLE fitting tool settings 

Estimated 
parameters 

Start points Bounds 
lower                  upper  

Fixed parameters 

B1f (%) Initial loglik(B1f) 
vector troughs  

20                  180 T1m (ms) 1400 

T2m (ms) 50 10                  150 T2fs (ms) 40 
ff (%)  50 0                     100 T2fl (ms) 198 
Amplitude α (a.u.) 5·max(echo) max(echo)    Inf T1f (ms) 370 
Noise σN (a.u.) 20 0.1            max(echo)/2 fats/l ratio (%) 67 
Convergence settings: Matlab ‘fmincon’ (constrained minimisation) function 
                                         ‘sqp’ algorithm 
                                         max # iterations: 200 
                                         step size tolerance: 10-6                                              

 

To provide comparative data collected using the Dixon technique, three-point-Dixon 

(Glover and Schneider, 1991) images were analysed (2D gradient-echo 

TE1/TE2/TE3/TR= 3.45/4.60/5.75/102ms, flip angle 10°, 9x6mm axial slices, slice gap 

12mm, FOV 42x21cm, matrix 320x160, pixel size 1.3x1.3mm, NEX=4). Images were 

post-processed offline with a Python programming language pipeline implemented 

by a colleague (Dr Christopher Sinclair), according to Glover and Schneider’s 

algorithm (section 2.1.2) and separated fat (f) and water (w) images were used to 

calculate pixel-wise fat fraction (ff) maps according to ff(%)= 100*f/(w+f). This was 

performed for the same segmented muscles as above.  

To compare the performance of the sEPG model with a more conventional 

exponential model, a multi-exponential function: 
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𝑠𝑠(𝑇𝑇𝐸𝐸) =  𝛼𝛼 · (1 − 𝑓𝑓𝑓𝑓) · 𝑒𝑒−
𝑇𝑇𝑆𝑆
𝑇𝑇2𝑖𝑖 + 𝛼𝛼 · 𝑓𝑓𝑓𝑓 · �0.3 · 𝑒𝑒−

𝑇𝑇𝑆𝑆
45 + 0.7 · 𝑒𝑒−

𝑇𝑇𝑆𝑆
214� 

where s is the signal at each TE and muscle water T2 (T2m), fat fraction (ff) and overall 

amplitude (α) were the parameters to be estimated, was fitted pixel-wise to the data 

using nonlinear least squares minimization (section 2.2.2) in a custom-written Matlab 

tool. The fat component parameters were determined separately as the mean values 

obtained when fitting to data from 4 subcutaneous fat ROIs in 8 representative 

subjects. In terms of quality control, values were excluded from the maps for pixel 

data which failed to meet empirically determined fit-quality criteria: R2 (goodness of 

fit)>0.8, amplitude α lower confidence interval (CI)>0, amplitude α<10 times the 1st 

TE image amplitude, T2m-CI-width/ T2m <100%, ff<50% and T2m <100ms.  

Additionally  transverse  short  tau  inversion  recovery  (STIR) acquisitions (TR = 

5200ms, TE = 39ms, TI = 220ms, NSA = 1, iPAT = 2, 31 slices, FOV = 420 mm, voxel  

size  =  1.1  × 1.1 ×  6.0  mm,  slice  gap  =  6  mm)  were  performed  separately  at  

the  level  of  the  mid-thigh for  both  limbs.  

4.3 Analysis optimisation  

For this somewhat heterogeneous data set the post-fitting quality control steps 

introduced in section 3.3.3 needed further refinement to maximise the accuracy and 

precision of the parameter estimates. Even though in this study data were of high 

quality overall, there are common imperfections in many images, even in the good 

quality ones, that required better characterisation to avoid misleading interpretation 

of the results. Typical examples are motion and flow artefacts (even at mild levels), 
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B1 field non-uniformity, and issues evidenced by parameter estimate histogram 

spikes. Importantly, these are common across different anatomical features in the 

acquired images, from healthy tissue to regions of severe pathology.   

As seen in Chapter 3, iterative minimisation returning parameter estimates at or close 

to pre-defined bound values can be a manifestation of suboptimal fitting. An 

important example in the present context is T2m estimates returned at or closely 

adjacent to the T2m lower bound (10ms). The return of such values was characteristic 

of pixel subtypes with specific types of signal behaviour. A first subtype already 

discussed were those returning lower bound T2m values in combination with high ff, 

identified previously as volumes containing effectively pure fat, already largely 

excluded by the previously established post-processing steps (section 3.3.6). Another 

pixel region subcategory returning lower-bound T2m values occurred due to image 

artefacts as discussed previously (section 3.3.7). These were identified by significant 

spikes around 10ms in the respective T2m histograms. It was found necessary in this 

study to further characterise these pixel subtypes – since both exhibit shortened T2m 

– in order to distinguish intermediate to high fat content pixels from pixels returning 

non-meaningful spurious results due to artefacts. The former may ideally be retained 

for the analysis while the latter may be usefully discarded. 

4.3.1 Assessment of preliminary fitting performance 

Examples of obviously sub-optimal quality raw images found in the current dataset, 

in terms of artefacts, SNR and RF field homogeneity are presented in Figure 4.1, 

alongside images demonstrating severe neuromuscular pathology, which also 
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creates data fitting challenges. Good quality healthy volunteer raw images are also 

shown for comparison. 

  

Figure 4.1: Examples of good quality healthy volunteer raw images (T2-w, 2nd echo, TE=20ms) 
(CTR, top row) shown for comparison with those with the most severely suboptimal image 
quality (2nd and 3rd row), and those most severely affected by pathology within the study 
dataset (bottom row). Artefacts were mainly seen for patients (ALD/KD, 3rd row) and to a 
lesser extent for healthy volunteers (CTR, 2nd row).    
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Figure 4.2: A scheme illustrating the implementation of the sEPG-MLE fitting algorithm for 
the in vivo data, including start point and bound constraint specifications and algorithm 
settings.   

A preliminary data analysis using these exemplar CPMG data from the study was first 

performed to enable fine-tuning of the fit post-processing procedure before the final 
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parameter estimate mapping was performed for the full dataset. The workflow for 

the core part of the fitting procedure is shown in Figure 4.2 including the listed 

parameter estimate start and bound values.   

A majority vote-based B1f error polarity spatial regularisation strategy was 

incorporated in the pipeline to achieve physically consistent B1f behaviour avoiding 

spurious estimates from non-local log-likelihood minima (section 3.2.6 and 3.3.2), 

and problematic (non-physical) or truncated-signal pixel data, as well as pure fat 

signal pixel data, were discarded (section 3.3.6), before the parameter estimate maps 

were stored. To more clearly explore various aspects of the fitting process, 

correlation graphs for the sEPG-MLE T2m and ff estimates (after applying the above 

quality control steps) corresponding to the example datasets shown in Figure 4.1 are 

plotted in Figure 4.3: for each pixel from the thigh-level cross-sectional segmentation 

(as illustrated in Figure 4.2) the T2m estimate is plotted against the respective ff value.   
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Figure 4.3: Pixel-wise T2m and ff estimate correlation plots corresponding to the example data 
sets shown in Figure 4.1. T2m is broadly uniform with increasing ff however on occasion the 
minimisation returned bound constraint values, mostly the 10ms lower T2m bound.  
Normative T2m from good quality healthy volunteer datasets (top row) appears constant and 
tightly clustered (around 30ms) across the majority of the ff range.    

While T2m appears in general uniform across the ff range, its lower bound (10ms) is 

returned in a number of cases, suggesting a failure of fitting. This is not seen in the 
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good quality healthy volunteers’ datasets where T2m appears clustered around a 

mean value of approximately 30ms for all values of ff up to approximately 60%, 

showing greater dispersion thereafter (top row). Bound T2m values were returned for 

a small number of pixels for the relatively poor quality controls’ acquisitions (2nd row), 

evidence as the sparse band of T2m = 10ms data points at the upper ff range. This was 

seen more markedly in the poorer quality patient data sets, occurring e.g. across the 

entire ff range for the patient images in the 3rd row. For the bottom row of data from 

good quality images with severe fat infiltration this effect is confined to mostly higher 

ff – as expected from the multi-component sEPG-MLE algorithm behaviour (section 

3.3.2 and 3.3.3). The excluded group of pixels with T2m below 15ms combined with ff 

above 90% (i.e. those identified as ‘pure’ fat pixels, section 3.3.3) corresponds to the 

blank square at the bottom right corner of all graphs. As explained in section 3.3.2 

these thresholds were set considering the average results – medians, percentiles and 

distributions – from the subcutaneous fat ROIs (Figure 3.70). The 10ms T2m and 

mostly high ff pixel sub-group in the middle graphs can be considered a remaining 

category of fat pixels for which the model-fitting failed, in which the signal 

component assigned to T2m actually represents an additional component emerging 

from fitting to the multi-component fat signal, rather than a true muscle water T2 

(T2m) estimate (section 3.3.3). The continuous range of T2m and ff values seen away 

from these cut-off values is expected to describe biologically meaningful T2m and ff 

changes due to pathology. For this to be true, non-meaningful fits occurring within 

that distribution due to inadequate quality data should ideally be eliminated.  
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4.3.2 Quality control steps 

Even though returned parameter estimates for a particular pixel may lie within 

biologically plausible ranges, as suggested above inadequate data quality may still 

affect the quality of fitting and resulting in unreliable estimated parameters. To 

identify such pixels pseudo-R2 was next investigated as an additional quality control 

metric. Considering first the relationship between the returned T2m estimates and 

pseudo-R2 (Figure 4.4), a combination of returned T2m at or close to the 10ms bound 

and low pseudo-R2 was a prominent feature in quality-compromised patient data (3rd 

row), while being mostly absent in the healthy volunteer data (1st and 2nd row). It is 

also apparent that the short T2m pixel regions ascribed above to meaningful features 

of high fat regions in the last row images exhibited the same high pseudo-R2 as the 

remaining pixels, suggesting that that the model thus parameterized is actually a 

good fit to the data, supporting the interpretation of these results as physically 

meaningful.   
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Figure 4.4: The correlation plots of T2m estimates vs. the corresponding pseudo-R2 metric 
corresponding to the Figure 4.1 raw images. It can be seen that pseudo-R2 decreases with 
decreasing image quality (2nd and 3rd row, in order of increasing severity) but not with T2m 
changes due to pathophysiological features (last row).  

In other words, excluding all pixels returning a pseudo-R2 ≤ 80 – 90% would 

preferentially remove unreliable fits due to poor data quality without significantly 
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impacting the pixel population returning meaningful T2m values which might deviate 

from the normal range due to pathological processes.  

 

Figure 4.5: Correlation plots of ff estimates vs. the corresponding pseudo-R2 values 
corresponding to the Figure 4.1 raw images. It can be seen that pseudo-R2 is more commonly 
reduced with decreasing image quality (2nd and 3rd row, in order of increasing severity) 
uniformly along the ff range.   
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Next, considering the relationship between pseudo-R2 and ff (Figure 4.5) it can be 

seen that as expected pseudo-R2 tends to decrease with decreasing quality of data, 

but is otherwise independent of ff in each image.   

Taking together the above, for this study data set, an additional post-processing step 

eliminating pixels returning pseudo-R2 below 80% or T2m below 11ms was considered 

appropriate. The effects of this are demonstrated in Figure 4.6 showing an example 

for each of the above cases.  

 

Figure 4.6: The effect of excluding pixels near the 10ms lower T2m bound (10<T2m<11ms) for 
two pixel subgroups of interest: left, from fat pixels where such values represent in reality an 
additional component within fat, and right, from pixels with data quality compromised by 
artefacts. In both cases the previous post processing steps of eliminating pixels for which 
T2m<15ms and ff>90%, and pseudo-R2<80% have already been applied.      

For the left image manifesting severe pathology (fat infiltration), the pseudo-R2 

threshold had negligible effect (only 4 pixels eliminated) due to the good quality data 

and fitting, however several hundred pixels still contributed to an apparent 10ms T2m 
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histogram peak. These were identified as high fat content pixels, as denoted by their 

ff distribution shown in the histogram below (extending the initial subgroup of 

T2m<15ms and ff>90%), for which T2m could not be reliably determined. For the right 

hand data set, manifesting severe motion artefacts, several hundred pixels were 

eliminated by both criteria, a significant proportion of which were identified by the 

T2m lower band between 10 and 11ms. These are identified in colour in the bottom 

right ff map adjacent to pixels already missing due to the previously established 

quality control steps (section 3.3.6) (void pixels corresponding to the dark strips 

formed by motion artefacts), showing the complementary action of the different 

steps in the post-processing strategy.  

Once the above criteria are used to as far as possible eliminate data from pixels 

returning unreliable T2m values, as a final step returned ff estimates should be 

corrected for the sequence-parameter specific inter-TR T1 recovery difference 

between muscle and fat (section 3.3.2). Since the TR for the protocol used was in 

most cases 3500ms (section 4.2) ff should be corrected by the expression ff/(1.0893-

0.0893·ff) (Table 3.5). In addition an MT correction (section 3.3.2, Equation 16) was 

also applied. For the Dixon ff estimation a closed form correction similar to that 

proposed elsewhere (Azzabou et al., 2015) was used, namely by means of the 

expression ffd-corrected=ffd/(0.45ffd+0.55), to account for the multiple lipid resonance 

frequencies.   
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4.4 Results 

4.4.1 Data quality overview 

At baseline there were no analysable data available for 3 participants: one ALS patient 

dropped out of the study, for one KD no thigh data were collected and for one more 

KD patient no compatible segmentation was available. The latter occurred because 

segmentations were performed on Dixon images and the patient in this case 

repositioned themselves during the scanning session. Data were collected at 6 

months follow up only for the ALS group for 17 patients – 3 patients dropped out. At 

1 year follow up 6 more ALS patients dropped out, 2 datasets were not analysable 

due to incompatible segmentation and one dataset lacked thigh images, leaving 8 

ALS patient datasets at that stage. Also at the 1 year point, 1 volunteer and 1 KD 

patient also dropped out and 2 more KD datasets lacked thigh images, leaving 15 and 

18 datasets respectively. Datasets were processed offline, using the sEPG-MLE 

algorithm (Chapter 3, Figure 4.2) and the quality control strategy described in section 

4.3, with duration mostly between half and one and half hour per set of respective 

parameter maps. All results were computed on a 2.70-GHz Intel CPU and 8-GB RAM 

system.        

To assess the overall data quality an overview of the parameter estimates at baseline 

by means of pixel-wise T2m vs ff plots is shown in Figure 4.7 for all available segmented 

datasets and after the post-processing steps introduced so far.  
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Figure 4.7: Overview of the estimated T2m (0 – 150ms) vs ff (0 – 100%) for the thigh-level 
cross-sectional area maps for healthy volunteers (grey colour, top), ALS patients (green, 
middle) and KD patients (purple, bottom) at baseline. MA denotes motion artefacts, B1A 
denotes compromised B1 field / low SNR and SP denotes severe pathological involvement.   

For healthy volunteers T2m is clustered around 30ms, largely independent of ff, which 

itself was clustered at values mostly below 50%, with very few pixels having a ff 

exceeding that range. An exception was one data set (labelled “MA”) which exhibited 

marked motion artefacts. For patients T2m appears largely independent of ff, 

exhibiting larger dispersion for higher ff ranges associated with severe disease, and 

more for KD than for ALS patients. Mild dispersion was also seen for low to middle 

range ff in some cases with poor image quality. The latter cannot be determined by 

histogram evaluation alone, as can be seen in the examples in Figure 4.8, Figure 4.9, 

Figure 4.10 and Figure 4.11, where the T2m and ff maps corresponding to the 

histograms are presented to allow visual assessment. Sub-optimal quality datasets 

are presented first, followed by good quality datasets.   
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Figure 4.8: Examples of T2m maps and histograms for representative (same as in Figure 4.1 
through Figure 4.4) datasets with severely suboptimal data quality, and/or severe pathology 
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Figure 4.9 Examples of ff maps and histograms for representative (same as in Figure 4.1 
through Figure 4.4) datasets with severely suboptimal data quality, and/or severe pathology  
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Figure 4.10: Examples of T2m maps and histograms for representative good quality datasets 
including cases of severe pathology 
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Figure 4.11: Examples of ff maps and histograms for representative good quality datasets 
including cases of severe pathology 
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This tends to validate the quality control strategy adopted in producing these results 

and shows also in more detail examples of the parameter estimates’ behaviour 

described above.  

Examples of parameter estimates per muscle ROI by means of boxplots are shown, in 

Figure 4.12 for T2m and Figure 4.13 for ff, from the good quality datasets used also in 

Figure 4.10 and Figure 4.11, for the same 2 healthy volunteers, 2 ALS patients and 2 

KD patients.  
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Figure 4.12: Example whisker-and-box plots of the estimated T2m for the individual thigh-level 
muscle ROIs  for 2 healthy volunteers (denoted CTR, green colour, top), 2 ALS patients (blue, 
middle) and 2 KD patients (purple/red, bottom) at baseline, from the good quality images 
shown in Figure 4.10 and Figure 4.11. 20 muscles ROIs per subject are shown, 10 for each 
limb (individual muscles are identified by number in the key above) excluding bone marrow. 
Note: the muscle ROI numbering used by the segmentation specialist (U.K., section 4.2), 
namely from 1 to 10 and from 13 to 22 for right and left limb respectively was also used here.   
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Figure 4.13: Examples whisker-and-box plots of the estimated ff for the individual muscle 
ROIs for 2 healthy volunteers (denoted CTR, green colour, top), 2 ALS patients (blue, middle) 
and 2 KD patients (purple/red, bottom) at baseline, from the good quality images shown in 
Figure 4.10 and Figure 4.11. 20 muscles ROIs per subject are shown, 10 for each limb 
(individual muscles are identified by number in the key above) excluding bone marrow. 

The presence of muscle pathology appears to correlate in general with wider 

distributions (longer whisker-and-box plots), while T2m distributions show departures 

from the normative values (around 30ms) both upwards and downwards and ff 

predominantly upwards (roughly above 10-15% ff). Individual muscle differences are 

also apparent, most prominently for the ROIs that were in some cases spared from 

severe disease, as for example the Sartorius and Gracilis inner thigh muscles, 

especially for severely affected KD subjects (bottom panels, last two muscles of each 
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limb); however no generalizable pattern was observed in disease severity differences 

between individual muscles in these example datasets.                      

Moving now to the patient and control dataset as a whole, Figure 4.14 shows an 

overview of the entire thigh cross-section T2m and ff boxplot results, for all subjects 

(healthy volunteers, ALS patients and KD patients) longitudinally at baseline and at 6 

months and 1 year follow-up. Each boxplot represents an individual subject, 

summarising the values from all pixels from all of the thigh cross-section muscles 

which, after the quality control steps, contributed to the final T2m maps (top panel) 

and ff maps (bottom panel); outlier pixels are represented by cyan dots.     
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Figure 4.14: Overview of the estimated T2m (0 – 150ms) and ff (0 – 100%) whisker-and-
boxplots from the entire thigh-level cross-section muscles for healthy volunteers (CTR, green, 
n=16), ALS patients (blue, n=20) and KD patients (red, n=19) at baseline, 6 months and 1 year 
follow-up; outlier values (pixels) are represented by the cyan dots. MA denotes presence of 
motion artefacts, B1A denotes compromised B1 field / low SNR and SP denotes the presence 
of severe pathology. These results are overall consistent with those seen in the majority of 
muscles for each example subject shown in Figure 4.12 and Figure 4.13.     

The trends in the parameter estimates followed by the majority of muscle ROIs for 

the representative subjects in Figure 4.12 and Figure 4.13, are in general also seen in 

these results, despite the variations observed between specific individual muscles. 

Wider T2m distributions (longer whisker-and-box plots) and higher ff – especially in 

KD – are the predominant observations for patient data. Presence of artefacts 

(boxplots denoted as MA and B1A) seems to correlate with parameter 

underestimation, and more prevalently for T2m than for ff. The presence of pathology 
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seems to translate to broadening parameter distributions, predominantly upwards, 

and more so for ff than for T2m.   

4.4.2 Quantitative results – Histogram metrics 

The results presented via Figure 4.6 and Figure 4.7 show that the T2m and ff 

distribution plots can help distinguish between compromised data (and consequent 

suboptimal parameter estimation) and true biological changes, and this can be a 

useful tool to identify and discard inappropriate or confounding datasets. There were 

6 severely compromised datasets, mainly due to motion artefacts (from 1 healthy 

volunteer at baseline and at 1 year follow up, and 2 ALS patients at baseline, and for 

one of these also at 6 months follow up) and 1 due to non-uniform B1 field and locally 

low SNR (from a KD patient at baseline). These are denoted also in Figure 4.14. Other 

imperfections due to flow or edge (chemical shift, partial volume) artefacts or 

segmentation were also often present but usually were restricted to much smaller 

regions (strips under veins/arteries, ROI edges etc.). The above 6 datasets are 

excluded from the following group analysis. In Figure 4.15 the previous T2m median 

values only (without whisker and box plots) are shown per muscle across all 

remaining subject datasets – including follow up scans, and in Figure 4.16 the 

respective ff median values.  
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Figure 4.15: Left & right combined individual   thigh muscle median T2m across the 3 
experimental groups.  Note: In some highly fat infiltrated muscles, e.g. those indicated (*), 
where the muscle water signal was low, although the MLE parameter estimation performed 
well, the physical interpretation of the model parameters in terms of fat and water 
compartments appeared more complex than in the majority of the less affected muscles.  

 

Figure 4.16: Left & right combined individual   thigh muscle median apparent ff across the 3 
experimental groups.   

Visual inspection of these results also suggests that neuromuscular disease may 

cause both increase and decrease in the parameter estimates – compared with 

healthy controls – predominantly in T2m and potentially also ff, while also affecting 

their distributions. Short T2m appeared to be associated with high ff in many cases, 

which may pose challenges in the physical interpretation of the model parameters in 

terms of fat and water compartments (section 4.6, Chapter 7). It is therefore 
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instructive to examine and compare histogram metrics. In Figure 4.17 an illustrative 

example is given for a dataset with potentially the most severe pathological 

manifestations found in the entire study cohort.         

 

Figure 4.17: Example sEPG-MLE T2m map from a KD patient with severe disease. Left: the 
Sartorius, Gracilis and other muscles return normative range T2m (spared) while in several 
other regions many pixels did not survive the post-processing thresholds (dark grey arrows), 
in this case mainly due to severe pathology (high fat content) but potentially also due to mild 
artefacts, e.g. the flow artefact column of data in the phase direction (blue arrow). Right: the 
corresponding T2m histogram, constraint by the MLE algorithm T2m lower bound (10ms) and 
threshold (11ms) described in the text (dark grey arrow), and the related metrics: mean, 
mode, median, full width at quarter maximum (fwqm), 75th percentile and skewness of the 
distribution.    

Some of the features mentioned previously are seen, such as the consistently spared 

muscle ROIs, artefacts, data post-processing and bound constraints effects, and 

conventional histogram metrics providing candidate outcome measures are 

illustrated in the right hand panel. The outlying T2m results denoted with an asterisk 

in Figure 4.14 were from this same patient; due to the complications in the physical 

interpretation of these particular results this dataset was also excluded from the 

following quantitative analysis.  In Figure 4.18 extracted T2m histogram metrics are 

shown for all participants and scanning time points of the study – except the 

aforementioned datasets excluded according to quality of fit criteria and physical 

meaningfulness. Presented are the median, full width at quarter maximum (fwqm), 

75th percentile and skewness from the estimated T2m distributions, from all the 
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muscle ROIs (thigh cross-section) combined. In Figure 4.19 the corresponding ff 

histogram metrics are shown. In terms of T2m ALS patients results appear more 

elevated vs. controls, and with consistently higher (medians, 75th percentiles) 

compared to their KD counterparts, and in terms of ff KD patient results appear to be 

higher overall and longitudinally more stable than those for ALS. At the same time 

distributions for both parameters are consistently broader and more varied (fwqm, 

skewness) for KD compared to ALS patients. These trends and the results overall are 

further discussed in section 4.6.    

 

Figure 4.18: Histogram metrics comparison between healthy volunteers (in green), ALS 
patients (blue) and KD patients (red), at baseline, and at 6 months and 1 year follow-up scans, 
for median (top left), full width at quarter maximum (top right), 75th percentile (bottom left) 
and skewness (bottom right) of the T2m estimates distributions. 
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Figure 4.19: Histogram metrics comparison between healthy volunteers (in green), ALS 
patients (blue) and KD patients (red), at baseline, and at 6 months and 1 year follow-up scans, 
for median (top left), full width at quarter maximum (top right), 75th percentile (bottom left) 
and skewness (bottom right) of the ff estimates distributions. 

Within this quantitative framework it might be worth noting that noise σN estimation 

across all subjects and time points converged to a mean value of 4.36±0.97a.u., 

calculated from the extracted medians from each thigh cross sectional sEPG-MLE 

estimated noise σN map. This shows remarkable stability across subjects and is 

consistent with the 3 to 5a.u. noise σN levels measured in a representative data set 

using the signal-background method in section 3.1. No marked differences were 

found in terms of this estimated noise σN between the three study groups (ALS and 

KD patients and healthy controls) or longitudinally. The compromised quality images 
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presented in Figure 4.8 and Figure 4.9 returned elevated noise level estimates (at 

6.12a.u. on average), suggesting a correlation of increased (true or estimated) noise 

with artefactual data; the good quality images of Figure 4.10 and Figure 4.11 returned 

an average of 4.55a.u., close to the overall mean as expected. 

To summarise, in both the ALS and KD patients there was evidence of varied patterns 

of T2m changes at the level of individual muscles, predominantly elevation, and CTR 

median T2m distributions were consistent between muscles. Whole thigh-level muscle 

group mean ± SD T2m was 29.6 ± 1.0ms in controls, 31.3 ± 1.4ms in ALS, and 31.2 ± 

1.6ms in KD (p=0.0004 and p=0.0007 vs. controls respectively) at baseline. Median ff 

across all thigh–level muscles was increased in ALS and more markedly in KD vs. 

controls. Statistical ANOVA comparisons are presented in the next section which 

considers also in comparison Dixon method results.  

4.4.3 Comparisons with existing methods 

The results obtained using the proposed sEPG-MLE algorithm are at this stage 

compared with more commonly used methods. The Dixon method is considered the 

de facto gold-standard MRI modality for fat quantification in muscle (Wary et al., 

2015, Marty et al., 2016, McRobbie et al., 2006), while exponential model based LSQ 

fitting methods EXP-LSQ) have been widely implemented for single- or multi-

component T2 estimation (sections 2.2.2 and 3.2.2).   
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Dixon method 

The equivalent of Figure 4.19 where the sEPG-MLE ff (henceforth ffa, ‘apparent’ fat 

fraction) histogram metrics behaviour was illustrated, is shown in Figure 4.20 for the 

Dixon ff (ffd) histogram metrics, for all participants and study time points. In the 

available segmented ffd maps (section 4.2) spurious (pixel ffd values) outside the 

expected (0-100%) range (i.e. not physically meaningful) were occasionally present, 

often reaching extreme values: these were excluded.  

Figure 4.20: Histogram metrics for healthy volunteers (in green), ALS patients (blue) and KD 
patients (red), at baseline, and at 6 months and 1 year follow-up scans, for median (top left), 
full width at quarter maximum (top right), 75th percentile (bottom left) and skewness 
(bottom right) of the ffd (Dixon ff) estimates distributions. 
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While both ffd and ffa medians are in the range from 0 to 75%, ffd medians show the 

tendency to cluster more towards lower values, and more so for patients. This may 

explain the markedly lower ffd than ffa fwqm, and similar but milder differences in 

the 75th percentiles and skewness.     

Initial one way ANOVA revealed significant differences in the sEPG-MLE estimated ff 

between male and female participants – with ff for females elevated – for both 

healthy controls (p=0.0069) and ALS patients (p=0.0021) at baseline (KD patients are 

only male). Similar trends were seen also for the follow up data, and also for T2m 

which appeared visually about 0.5 to 0.8ms elevated for female participants 

compared to the males – without however reaching statistical significance. For the 

above reasons all subsequent ANOVA tests were conducted including also gender as 

a covariate.      

In Table 4.2 one way ANOVA comparisons between the three groups (healthy 

volunteers, ALS patients and KD patients) per gender are shown, for the 

aforementioned T2m, ffa and ffd histogram metrics at baseline. Overall differences 

between healthy controls (CTR) and patients (both ALS and KD) are observed with 

respect to T2m. However group size appears to also affect this, with the p-value for 

the female CTR vs ALS group only marginally exceeding the 0.05 significance 

threshold, whereas the respective p-values for the male and the entire (both genres 

combined) groups (in lighter font) were much smaller. This is likely related to female 

groups being much smaller than the male groups (roughly half in size) for both the 

CTR and ALS cohorts. All three groups appear statistically separated from each other 

with respect to ffa. For both T2m and ffa more clear differences were revealed for 
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fwqm and skewness than for medians and 75th percentiles. Conversely median and 

75th percentiles were clearly statistically separable for the ffd results between the 

three groups, but not its fwqm and skewness – except between KD and both the CTR 

and ALS groups for the latter.        

Table 4.2: One way ANOVA comparisons between healthy volunteers, ALS patients and KD 
patients), for the T2m, ffa and ffd histogram metrics per gender at baseline; p-values for 
statistically significant differences (p<0.05) are shown in blue colour, otherwise in red. The 
middle column of results in lighter colours is for the merged (mixed) male and female CTR 
and ALS groups comparison.  

Histogram metrics ANOVA  
(p-values) 

CTRmale vs 

ALSmale 
CTRfemale vs 

ALSfemale 
CTR vs ALS 

(mixed) 
 CTRmale vs 

KD(male) 
ALSmale vs 

KD(male)  

T2m 

median 0.0011 0.0538 0.0002 0.0034 0.8743 
fwqm 0.0153 0.0062 0.0004 0.0021 0.0097 

75th percentile 0.0007 0.0166 0 (<10-4)  0.0009 0.1335 

skewness 0.0066 0.0004 0 (<10-4) 0.0001 0.0054 

ffa 

median 0.0114 0.0083 0.0023 0.0039 0.0072 
fwqm 0.0048 0.0066 0.0008 0.0004 0.0004 

75th percentile 0.0205 0.0153 0.0043 0.0007 0.0007 
skewness 0.0126 0.0016 0.0013 0 (<10-4) 0.0002 

ffd 

median 0.0180 0.0115 0.0013 0.0291 0.0228 
fwqm 0.0249 0.0079 0.0014 0.0131 0.0113 

75th percentile 0.0281 0.0491 0.0041 0.0081 0.0068 
skewness 0.0168 0.0049 0.0009 0 (<10

-4
) 0.0004 

 

In Table 4.3 one way ANOVA longitudinal comparisons for the T2m, ffa and ffd 

histogram metrics are shown for each of the three groups (healthy volunteers, ALS 

patients and KD patients) per gender. For female ALS patients only, T2m appeared to 

change (increase) significantly with time – from the baseline to the 6 months and 1 

year follow up examinations. This can be seen as a further justification of the 

previously established separation by gender. As expected the CTR group results were 
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highly stable with time (between baseline and the 1 year follow up scan for this 

cohort), with p-values approaching unity in many cases.     

Table 4.3: One way ANOVA comparisons for each group (CTR, ALS patients and KD patients) 
for the T2m, ffa and ffd histogram metrics longitudinally and per gender; p-values for 
statistically significant differences (p<0.05) are shown in blue colour, otherwise in red. 

Histogram metrics 
ANOVA (p-values) 

CTR
male

 
baseline–

1year 

CTR
female

 
baseline–

1year  

ALS
male

  
baseline-

6m–1y 

ALS
female

  
baseline-

6m–1y 

KD
(male)

 
baseline-

1year 

T2m 
median 0.9635 0.6172 0.9808 0.0192 0.4982 
fwqm 0.4648 1 0.2196 0.0182 0.7123 

75
th

 percentile 0.7902 0.7245 0.9217 0.0208 0.4112 
skewness 0.9368 0.6788 0.1301 0.0535 0.8309 

ffa 
median 0.7584 0.833 0.3419 0.2294 0.8766 
fwqm 0.9232 0.7245 0.2861 0.2411 0.9093 

75th percentile 0.8401 0.9208 0.1791 0.1922 0.8137 
skewness 0.593 0.9779 0.2905 0.2838 0.9607 

ffd 
median 0.8136 0.4299 0.4781 0.1414 0.8975 
fwqm 0.9659 0.7328 0.3722 0.1272 0.9952 

75th percentile 0.9521 0.6968 0.5445 0.1279 0.9718 
skewness 0.9986 0.9253 0.3424 0.2379 0.8777 

 

An important observation from the above ANOVA investigations is that p-values for 

ffa comparisons are markedly lower than for ffd comparisons, and especially for the 

statistically significant differences between the 3 main groups (CTR, ALS and KD) 

presented in Table 4.1, which may be related to the previous observation of the 

apparently more narrowly distributed ffd values compared to ffa in Figure 4.20 vs. 

Figure 4.19, i.e. the histogram metrics for ffd being overall more narrowly distribured 

than those for ffa. This may support the validity of ffa as a reliable outcome measure 

in such studies.  
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Both the ffa (Figure 4.19) and ffd (Figure 4.20) results appear to be somehow stratified 

in two subgroups, of low and high ff, above and below 25% and 10% respectively. 

This distinction together with the corresponding T2m is illustrated in Figure 4.21.  

 

Figure 4.21: Division of ffa and ffd in two subgroups of low (in red) and high (in purple) ff 
respectively, and the corresponding T2m (in blue and cyan respectively).   

One way ANOVA revealed that T2m of the high ff group is also significantly higher than 

the T2m of the low ff group (p=0.0013) suggesting that elevation of T2m correlated with 

elevated ff is a probable manifestation of disease severity.  

A comparison of ffa vs ffd is shown in Figure 4.22. Each data point (circle) represents 

an individual subject, by means of the median from the pixels from collectively all the 

thigh cross-section muscles (after pixel-level quality control) participating in the 

corresponding ffd map vs. the median from the respective ffa map.   
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Figure 4.22: Plot of ffa (%) vs. ffd (%). Each data point represents the thigh cross-section 
median ffa value vs. the corresponding ffd value, for all subjects and time points. There appear 
to be two ffd outliers, likely due to segmentation and phase unwrapping artefacts.  

 

Similarly, the sEPG-MLE T2m median relationship with the ffd median is shown in 

Figure 4.23.  



301 
 

 

Figure 4.23: Plot of sEPG-MLE T2m (ms) vs. ffd (%). Each data point represents the thigh cross-
section median T2m value vs. the corresponding ffd value, for all subjects and time points.  

 

T2m appears largely independent from ffd, however ffa markedly deviates from ffd, 

exhibiting marked overestimation at the lower end of the range, an effect which gets 

gradually mitigated with increasing ff and finally reversed at the upper end of values. 

A small number of outlier data points, which appeared on visual assessment to be in 

an inconsistent position with respect to the line of unity compared with other nearby 

points are visible in Figure 4.22. Closer inspection of the source data suggested that 

they are likely to be due to segmentation imperfections (outlier 1) and phase 

unwrapping inadequacy within the Dixon method algorithm (outlier 2) contaminating 

the resulting ffd distributions. This is demonstrated in Figure 4.24, where these 

potential artefacts linked to them are shown.  
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Figure 4.24: The ffd maps that yielded the outlying results observed in the graph of Figure 
4.21, exhibiting segmentation (top left, green arrows) and phase (top right, red arrows) 
unwrapping imperfections that potentially caused them. The corresponding ffa maps are also 
presented (bottom).   

 

Segmentation-related high values (most likely subcutaneous fat contamination) also 

exist in the corresponding ffa maps (bottom images), these however have less impact 

on the overall ffa distributions and consequently on the cross-section median (outlier 

1), because these generally yield increased values compared to ffd. Besides the 

apparent localised phase unwrapping imperfection in the ffd map, this map appears 

to be inverted throughout when compared to the ffa map, suggesting a phase-related 

mislabelling of the water and fat components leading to ffd elevation and outlier 2.       

In Figure 4.25 one-to-one comparisons of sEPG-MLE and Dixon ff maps are presented 

for good quality example datasets from each group (CTR, ALS and KD).   
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Figure 4.25: One to one comparison of ffa and ffd maps and histograms for good quality 
datasets from healthy volunteers (CTR, top), ALS patients (middle) and KD patients (bottom). 
The trends seen in Figure 4.21 for overestimated ffa compared to ffd at the low end of the ff 
range and vice versa are seen also in these ff maps.     
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Higher ffa estimates in comparison to ffd are seen in the CTR and ALS maps which 

predominantly contain values at the lower end of the ff spectrum, and conversely the 

KD ffd map appears brighter than the ffa map at the higher end of the spectrum – in 

agreement with Figure 4.21. The Dixon method ff is systematically more narrowly 

distributed than its sEPG-MLE counterpart.  

There are several candidate mechanisms that might lead to the above differences. 

Dixon underestimation of ff is known and attributed to the fact that it relies on the 

main fat peak frequency (of the methylene group) and the respective correction 

introduced (Azzabou et al., 2015) – and also used in this work – may not fully address 

the issue. For the ffa estimation on the other hand, separated non-exchangeable fat 

and water compartments in tissue are assumed, which might be an oversimplified 

model (sections 2.1.3 and 2.1.4). Parameter interaction and uncertainty in the fitting 

process might be an additional practical issue as seen previously (section 3.3.2). For 

example the combined ffa underestimation and T2m overestimation at the upper ff 

range seen in Figure 3.75 might be related to the ffas being lower than ffds at the 

upper ff range. Inaccuracies might also be introduced due to the approximations used 

in the correction steps used in the ffa estimation to account for the incomplete T1 

recovery and MT effects. At the pixel level, ffd map ROIs are in general smaller and 

potentially different than their ffa map counterparts, mainly due to the post 

processing steps used with the sEPG-MLE fitting tool which acts in the main to 

exclude pure fat or artefactual signals (pixels).  Finally, apart from the segmentation 

and phase unwrapping imperfections seen in ffd maps, occurrence of calculated ffds 

outside of the expected physically meaningful bounds (between 0 and 100%), in 
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many cases reaching extreme values (up to thousands), suggests that there might be 

errors from the same sources in the results also within the useful range. This could 

possibly explain the uneven density of the ffd results along the ff range, where values 

appear more clustered towards the two ends of the spectrum and rather sparse in 

the middle, whereas ffa shows a more linear distribution (Figure 4.21). These 

differences cause the curved (‘banana’-shaped) appearance above the diagonal 

equivalence line in their correlation graph.                    

Exponential models and LSQ minimization 

The exponential model used for comparison at this stage was the analogous 

equivalent of the final muscle-fat component sEPG model, incorporating a single 

component term for muscle linked through the ff parameter to a fixed parameter 2-

component model for fat (section 4.2). The fat component fixed parameters were 

again estimated from subcutaneous fat ROIs, as was the case for a similar approach 

previously reported (Azzabou et al.). The estimated values used for the fixed 

parameters were similar to the ones found from the sEPG-MLE method (45ms, 214ms 

and 70% respectively for T2fs, T2fl and the amplitudes ratio). In order to limit any 

confounding effects due to artefacts, signal dropouts or obvious segmentation 

imperfections, good quality datasets only were compared. 

 In Figure 4.26 one-to-one comparisons of the sEPG-MLE and EXP-LSQ estimated T2m 

maps and histograms for representative example datasets are presented, and in 

Figure 4.27 the corresponding comparisons for the estimated ff results.  
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Figure 4.26: One-to-one comparison of sEPG-MLE and EXP-LSQ T2m maps and histograms for 
representative good quality datasets, for healthy volunteers (CTR, top), ALS patients (middle) 
and KD patients (bottom). T2m estimates from the EXP-LSQ method are systematically higher 
and more widely distributed than from sEPG-MLE.   
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Figure 4.27: One-to-one comparison of sEPG-MLE and EXP-LSQ ff maps and histograms for 
representative good quality datasets, for healthy volunteers (CTR, top), ALS patients (middle) 
and KD patients (bottom). ff estimates from the EXP-LSQ method are overall higher than from 
sEPG-MLE.    
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The EXP-LSQ yielded T2m is systematically higher (about 6.5ms) and more widely 

distributed than its sEPG-MLE counterpart. EXP-LSQ ff was also higher than sEPG-MLE 

ff. This important outcome was seen consistently throughout the study data.   

The finding of positively biased T2m estimates with the EXP-LSQ approach were 

consistent with similar results obtained comparing single-component sEPG and 

exponential models or fitted to phantom data.  Re-fitting the 5 disc-shaped phantom 

T2 ROIs shown in Figure 3.57, section 3.2.10, using an exponential plus constant 

baseline model and LSQ minimization, while omitting the 1st echo (Milford et al., 

2015), produced the results shown in Table 4.4 (middle column), where for reference 

the ground truth (calibration) values are also given (left column).  

Table 4.4: Comparison of the EXP-LSQ method and sEPG-MLE results, together with the 
manufacturer’s calibration values for the phantom ROIs analysed. 

Ground truth T2 and σN 
(ms) 

EXP-LSQ method parameter 
estimates  

T2 and interquartile ranges 
(ms) 

sEPG-MLE method 
parameter estimates  

T2 and interquartile 
ranges (ms) 

31.97   (0.083) 

46.42   (0.014) 

64.07   (0.034) 

96.89   (0.049) 

133.27   (0.073) 

38.47   (37.00   39.65) 

54.86   (52.70   57.60) 

80.87   (76.51   84.68) 

120.21   (115.29   124.58) 

177.51   (171.32   183.12) 

32.13   (30.78   33.45) 

46.29   (45.12   47.39) 

66.24   (64.98   67.64) 

96.80   (93.98   99.040 

142.00 (138.20  145.69) 
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The EXP-LSQ T2 estimates substantially deviate from the reference calibration values 

– and the respective sEPG-MLE values (shaded column at the right, copied from Table 

3.4) – and departures become larger for longer T2. Comparing the estimates for the 

two shortest T2 ROIs (discs), which are comparable to the relaxation times commonly 

encountered in in vivo muscle tissue (Saab et al., 1999) and the real in vivo example 

datasets presented above (Figure 4.25), shows that they are increased by 6.34 and 

8.57ms respectively with use of EXP-LSQ fitting instead of the sEPG-MLE tool. This is 

in good agreement with the 6.5ms approximate increase that was seen in the 

aforementioned experiment in patients and healthy controls. This is particularly 

relevant for the shortest T2 ROI of 32ms (T1=458ms), because it is reasonably close to 

the case of lean healthy muscle (T2≈30ms, T1≈370ms) where ff is very low and the 

signal decay approaches single component behaviour, as the model used in the 

phantom experiment. Since the results for the two methods (EXP-LSQ and sEPG-MLE) 

are very similar for the two experiments (phantom and healthy in vivo muscle data 

fitting) this is a point worth mentioning in terms of support for the validity of the 

sEPG-MLE fitting tool.       

  

4.5 T2m and STIR contrast mechanisms 

Nominally T2-weighted short tau inversion recovery (STIR) imaging is useful in 

radiological assessment of neuromuscular pathologies, with hyper-intensity in 

muscle interpreted as reflecting increased water content due to inflammation or 

increased blood flow (Kumar et al., 2016, Lovitt et al., 2006). Systematic grading of 

changes on STIR MRI has been used as a semi-quantitative disease severity index 
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(Morrow et al., 2013), complementing Mercuri grading of T1-w images (Mercuri et al., 

2002). Important aspects of the technique’s contrast dependence and the 

consequent physical interpretation of contrast changes came to light at this stage of 

the study, prompting the following separately presented discussion. It is shown that, 

in fat-infiltrated tissue, STIR signal intensity (SI) may be strongly affected by factors 

independent of muscle water T2, specifically the relative proton density (PD) of fat 

and water in each voxel, as well as imperfect fat signal nulling. 

The STIR imaging results at baseline from this patient study were presented in a semi-

quantitative classification (Figure 4.28) in a paper published separately to the work 

of this thesis (Klickovic et al., 2019) by colleagues within the wider collaborative MRI 

project at our centre mentioned in section 4.1. Muscle tissue STIR hyperintensities 

were more pronounced in KD than in ALS patients and almost absent in controls; they 

also increased from the medial to the anterior compartment and further to the 

posterior compartment.  
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Figure 4.28: At the top row the proportion of participants with each of the Morrow rating 
scale scores (Morrow et al., 2013) for thigh muscle compartments are shown in all study 
groups, CTR, ALS and KD. STIR hyperintensities were observed in both patient groups. No 
marked signal abnormalities were observed in healthy controls. In the bottom row 
corresponding example STIR axial images are shown for the right and left thigh in KD (left), 
ALS (middle) and CTR (right) (Klickovic et al., 2019).  

 

The inter-muscle STIR contrast differences observed above are in broad agreement 

with the trends seen in the T2m results presented in section 4.4 (Figure 4.15, results 

at baseline, 3 first columns). However a notable difference is that within the patient 

T2m distributions, as well as a clear tendency for T2m increase, there is also evidence 

of decrease to a lower value in some individuals, in particular in the KD group, 

resulting in a higher overall elevation (T2m median per muscle ROI) for the ALS 

compared to the KD group as well as significantly higher fwqm and skewness (Table 

4.1). This suggests that decreases in T2m may also be associated with disease, a 

tendency which is not shown in the STIR results analysis – indeed the STIR rating scale 

used in that analysis by design captures only signal hyper-intensities presumed to 

reflect T2m increases.  
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In fact there are distinctive regional intensity features in STIR images, different to 

those apparent in the corresponding sEPG-MLE T2m maps. For instance, in the circled 

image regions in Figure 4.29, elevated T2m (in the sEPG-MLE T2m map) is not matched 

by a corresponding hyper-intensity in its respective T2-w STIR image counterpart, in 

which this region is actually hypointense.          

 

Figure 4.29: Comparison in the case of a KD patient, of the nominally T2-weighted STIR image, 
with the corresponding sEPG-MLE method T2m map; An image region where the two methods 
disagree exists (circled).       

 

The basic equation describing the single component signal behaviour in terms of 

relaxation effects for an inversion recovery sequence is:         

𝑠𝑠𝐼𝐼𝐶𝐶 = 𝑃𝑃𝑃𝑃 �1 − 2𝑒𝑒−
𝑛𝑛𝑇𝑇
𝑛𝑛1 + 𝑒𝑒−

𝑛𝑛𝑇𝑇
𝑛𝑛1� 𝑒𝑒−

𝑛𝑛𝑛𝑛
𝑛𝑛2                                                                    Equation 17 

where sIR, PD are respectively the signal and proton density in the image, TI the 

inversion time, TR the sequence repetition time, TE the echo time, and T1 and T2 the 

decay constants specific to the imaged anatomy (McRobbie et al., 2006). The TI, TR 

and TE intervals are sequence specific (specified by the operator) and therefore 

known. For a STIR sequence TI is typically set at a value where the recovering, 

previously inverted magnetization for fat protons will be approximately zero, i.e. so 
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that TI≈T1f·log(2), where T1f is the longitudinal relaxation decay rate for fat. For the 

particular STIR sequence used for the above images TI was 220ms which signifies that 

T1f was considered to be around 320ms (at 3T). However – as seen in other parts of 

this thesis and in published work – this estimation can vary substantially. It follows 

that if PD and T2 were known the STIR signal intensity could be calculated. 

Tissue-specific estimates of relevant parameters obtained by T2-relaxometry 

measurements, as already described, and assumed reasonable fixed values for the 

remaining parameters, allows such calculations. This provides a means to clarify the 

relationships between nominally T2-w STIR contrast and corresponding regional T2m 

variations. To apply this to real world data as in the context of this work, a 2-

component signal model is required, accounting for the co-existence of fat in the 

same pixel region. In that case, the PD parameter may be replaced by the global 

amplitude (intercept) α returned by the sEPG-MLE (or any alternative algorithms for 

that matter) and an estimate for muscle T2 is the T2m estimate; T2f can be fixed to a 

commonly accepted value for fat tissue (e.g. 137ms), similarly to T1f, and the same 

applies for T1m (e.g. 1400ms). Finally, an estimate for the fat fraction is the ff estimate 

(ffa). With these modifications Equation 17 becomes 

 𝑠𝑠𝑁𝑁𝑇𝑇𝐼𝐼𝐶𝐶 = 𝛼𝛼 · 𝑓𝑓𝑓𝑓𝑚𝑚 · �1 − 2𝑒𝑒
− 𝑛𝑛𝑇𝑇
𝑛𝑛1𝑓𝑓 + 𝑒𝑒

− 𝑛𝑛𝑇𝑇
𝑛𝑛1𝑓𝑓� 𝑒𝑒

− 𝑛𝑛𝑛𝑛
𝑛𝑛2𝑓𝑓 + 𝛼𝛼 · (1 − 𝑓𝑓𝑓𝑓𝑚𝑚) · �1 − 2𝑒𝑒−

𝑛𝑛𝑇𝑇
𝑛𝑛1𝑖𝑖 +

𝑒𝑒−
𝑛𝑛𝑇𝑇
𝑛𝑛1𝑖𝑖� 𝑒𝑒−

𝑛𝑛𝑛𝑛
𝑛𝑛2𝑖𝑖                                                                                                             Equation 18 

To support a detailed comparison, T2m and T2-weighted STIR images and the 

associated T2-weighted raw CPMG images and ff maps – both the apparent (sEPG-
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MLE) ff map (ffa) and the Dixon ff map (ffd) – are shown in Figure 4.30 for the previous 

(Figure 4.29) KD patient. The raw CPMG image corresponds to the 4th echo of the 

CPMG sequence (i.e. at TE=40ms) to match with the 39ms TE in the STIR sequence. 

Included in these figures is also a ‘STIRCPMG’ synthetic image (2nd image in the middle 

row of each figure) calculated by substituting the sEPG-MLE parameter estimates as 

described above in Equation 18. This was done on a pixel-by-pixel basis from the 

respective sEPG-MLE parameter estimates maps, i.e. the T2m, ffa and α maps 

produced previously.     

 

Figure 4.30: Comparison in the case of a KD patient of the sEPG-MLE method T2m map with 
the corresponding T2-weighted STIR image (top row); image regions where the two methods 
disagree exist (circled). Also shown are the corresponding raw CPMG data (4th echo) and a 
synthesized ‘STIRCPMG’ image computed using the sEPG-MLE parameter estimates as 
described in the main text (middle row), and the apparent (sEPG-MLE) ff map (ffa) and Dixon 
ff map (ffd)(bottom row). 
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As can be seen the ‘STIRCPMG’ synthetic image corresponds well to the original T2-

weighted STIR image. At the same time they both show distinctive regional intensity 

features, different to those apparent in the sEPG-MLE T2m map and the corresponding 

T2-weighted CPMG image. For instance, in the circled image regions in the top row of 

Figure 4.30, elevated T2m (in the sEPG-MLE T2m map) is not represented by a 

corresponding hyper-intensity in its respective T2-w STIR image counterpart. This 

suggests that, in addition to the expected T2-weighting, STIR contrast may be heavily 

dependent on factors other than local T2. The signal modelling experiment 

incorporated in this figure corroborates that total PD and ff significantly impact STIR 

contrast: in this case the increased ff (bottom row) would result in reduced STIR signal 

intensity. This strongly suggests that there is danger in STIR image interpretation that 

increased ff may mask oedema effects and vice versa.  

The theoretical dependence of STIR signals intensity on fat content (ff) for a fixed T2m 

of 30ms, and for values of T1 (T1f) that deviate from the inversion recovery nulling 

condition in muscle tissue is demonstrated in Figure 4.31.   
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Figure 4.31: Theoretical dependence of STIR imaging signals on fat content (ff) and fat T1 
decay rates (T1f) in musculoskeletal tissue. As Equation 18 predicts STIR signals are 
approximately inversely proportional to ff, i.e. have significant PD weighting in addition to 
the expected T2 weighting. Imperfect fat signal suppression, i.e. when T1f≠TI/log(2) also 
influences the STIR signal intensity and its dependence on ff.   

 

The predicted STIR signal intensity decreases approximately linearly with ff (fat tissue 

PD), while imperfect fat suppression (when T1f≠TI/log(2)) is predicted to cause 

elevated signal strength in regions of high ff. These STIR contrast mechanisms will be 

explicitly explained through the following examples.    

The STIRCPMG image in Figure 4.30 was synthesized assuming perfect fat suppression 

(T1f=TI/log(2)). The good correspondence between the synthetic image and the real 
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STIR image suggests that this condition held true in this case, and therefore ff affected 

image intensity only via the decreased water PD it implies. However according to 

Equation 18 and as shown in Figure 4.31, mismatch between the TI and T1f, should 

this occur, can also have an additional mild effect, especially for high ff ranges, where 

part of the signal can now emanate from fat protons. The predicted effect is 

demonstrated in the middle row of synthetic images in Figure 4.32, based on a 

different KD patient dataset.  

 

Figure 4.32: Comparison of the sEPG-MLE method T2m map for a KD patient with the 
corresponding T2-weighted STIR image (top row). Inaccurate choice of TI with respect to T1f  
would mostly amplify the image intensity in regions of high ff as shown by the synthesized 
‘STIRCPMG’ images comparison for perfect and imperfect fat suppression (middle row, red 
arrows, see main text); the apparent (sEPG-MLE) ff map (ffa) and Dixon ff map (ffd) are also 
shown (bottom row). 

In this dataset ff was overall very high which allows better examination of the signal 

increases due to incomplete fat suppression which are more intense towards the 

upper end of the ff range. The right hand example in the middle row of Figure 4.32 
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illustrates the case where true T1f is larger than the value assumed for IR-nulling, 

where muscle water signals and signals from non-suppressed fat are co-adding 

mitigating the decreasing water PD effect due to increasing ff. This behaviour 

corresponds to the right side of the top surface in Figure 4.31, or equivalently the 

bottom right graph in that figure.  

As it can be seen in the ffa map at the bottom right of Figure 4.32 the right part of the 

outer thigh example muscle ROI chosen has low ff (light grey arrow) while its left part 

has high ff (red arrow). If fat suppression was optimal, i.e. T1f=TI/log(2), this would 

translate to a brighter right side STIR intensity in this ROI, and a darker left side, as 

shown at the left panel of the middle row of the figure. However as both the 

synthesized STIR image for T1f>TI/log(2) (middle row, right) and the true STIR image 

(top right) show, the entire ROI has a relatively uniform bright appearance. This could 

be explained by a combination of high water PD / low ff at the right of the ROI (light 

grey arrow), and the T1f>TI/log(2) / high ff condition at the left of the ROI (red arrow). 

In the case that true T1f was smaller than assumed (T1f<TI/log(2)), signal from fat 

would further reduce the overall observed intensity with increasing ff (in addition to 

the decreasing water PD effect), until the point that both ff and the T1f discrepancy 

relative to the choice of TI were so large that all apparent signal emanated from fat 

(folded part of the surface at the top graph of Figure 4.31 and bottom left graph). 

Therefore for very high ffs and large departures of T1f from TI/log(2), the 2 conditions 

(T1f>TI/log(2) and  T1f<TI/log(2)) would be equivalent; it is only more probable and 

thus an assumption that indeed T1f>TI/log(2), since this condition signifies elevated 

STIR signal for the entire ff range. It should be noted that the main feature in the 
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Figure 4.32 paradigm remains the increased signal intensity at relatively low ff 

regions, however the overall uniformity of the STIR image – e.g. at adjacent regions 

of high and low ff – may be explained by signal amplification due to imperfect fat 

nulling where ff is high, as described above.     

Conversely to the previous paradigm of Figure 4.30, where T2m increase was not 

matched by STIR hyper-intensity, the opposite condition may prevail, i.e. hyper-

intense STIR image regions do not always correlate with elevated T2m, as 

demonstrated by the circled areas in the top row of Figure 4.33 below.   

 

Figure 4.33: Comparison in the case of an ALS patient of the sEPG-MLE method T2m map with 
the corresponding T2-weighted STIR image (top row); image regions where the two methods 
disagree exist (circled). Also shown are the corresponding raw CPMG data (4th echo) and a 
synthesized ‘STIRCPMG’ image computed using the sEPG-MLE parameter estimates as 
described in the main text (middle row), and the apparent (sEPG-MLE) ff map (ffa) and Dixon 
ff map (ffd)(bottom row). 

The similar appearance of the synthesized STIR image with the true STIR image 

suggests that the STIR hyper-intensity in that region was due to either locally 
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increased total PD or decreased ff, or a receive coil sensitivity effect, since STIR signal 

hyper-intensity may clearly arise in the absence of increased T2m, i.e. STIR hyper-

intensity does not always reflect T2m increases.   

These observations suggest that, in addition to the expected T2-contrast weighting, 

image intensity on STIR images is inversely proportional to fat content, or in other 

words, STIR images should also be considered water PD weighted. This is 

corroborated by the STIRCPMG images (which depict the cumulative fat and muscle 

water signal) which broadly match with the original STIR images and Equation 18. 

Loss of tissue water proton density due to water replacement by fat in certain regions 

may in this way mask expected STIR signal intensity increases due to T2m increases in 

the same area. On the other hand B1 transmit or receive coil non-uniformity may 

cause apparent STIR hyperintensity in regions where in fact T2m is normal. Imperfect 

fat suppression can also have a mild effect, causing STIR hyper-intensity independent 

of T2m, in regions of high ff. STIR contrast in diseased muscle is therefore complex, 

depending on both the effective muscle water proton density, which decreases as fat 

content increases, and oedema related changes in T2m.  

In conclusion, despite STIR imaging being useful both as a research tool and in 

radiological assessment, the above findings suggest that STIR contrast interpretation 

requires caution, and may be improved by comparison with quantitative T2 maps.             

4.6  Discussion 

The initial aim of the work presented here was to explore the usefulness of a multi-

component sEPG-MLE model method to estimate T2m in this patient study and then 
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use the data to characterise changes in ALS and KD, assessing its relevance and 

potential use as a biomarker. As demonstrated in Chapter 3 a fixed parameter 

secondary 2-component approximation for the fat within a multi-component model 

would serve this purpose. Application of a set of robust quality control criteria was 

also shown to be helpful to obtain interpretable results. Estimates obtained for the 

median of thigh level T2m in both healthy volunteers and from patients with this 

method were overall in accordance with similar previous measurements, supporting 

the validity of our approach. In comparison with healthy control findings, 

substantially wider distributions about these median values were seen in the 

patients, both in T2m and ff. Statistically significant differences (one way ANOVA) were 

revealed in histogram metrics, between both patients and controls and between ALS 

and KD patients. Median values for T2m and ff were significantly different between 

healthy controls and patients, predominantly higher in both conditions (ALS and KD), 

and these differences appear to increase longitudinally.   

T2m results were also compared with Dixon ff values, available for the same patient 

dataset from a separate acquisition; Mean T2m appeared broadly independent of fat 

content, indicating that the aim of obtaining T2m estimates that were independent of 

fat fraction has been achieved. This is in contrast with global T2 estimated via a mono-

exponential fit which is highly dependent on fat content. Estimation of ff from the 

multi-component (muscle-water and fat) model was also shown to be plausible. 

Direct correlation with the mean muscle ff values yielded by the Dixon data (ffd) 

revealed marked departures from the apparent ff (ffa) estimates – even after 

adjusting corrections – but similar trends overall. There are various explanations for 
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this disparity, from theoretical model limitations to more practical aspects related to 

fitting (sEPG-MLE tool) and fat-water separation calculation approaches (Dixon 

method), and post processing of results, as described in section 4.4 above. This will 

also be further explored in Chapter 5 (section 5.6). An important feature seen here is 

the extended range of the Dixon ffd values below 0% and above 100%, which were 

discarded. This might be a reason for the uneven distribution of ffd also within the 

useful range and could partly explain the non-linear relationship with the sEPG-MLE 

ffa estimation, especially near the two ends of the respective distributions.  

Nevertheless Dixon method obtained ffd distributions were qualitatively similar to the 

sEPG-MLE method based ffa maps.   

Our method for improved T2m-mapping, and concomitantly also ffa-mapping, 

involved two main aspects. First, with regards to the Physics model, use of the of the 

specific sEPG formalism used here better accounts explicitly for the effects of B1 field 

variations in the slice selection process (Chapter 3, sections 3.2.6 and 3.3.2) 

compared to other versions presented so far (McPhee and Wilman, 2017). Second, 

with regards to the statistical modelling, use of the MLE approach explicitly accounts 

for noise floor effects apparent in this type of acquisitions. These innovations (i.e. the 

sEPG-MLE fitting tool) led to increased accuracy and precision in parameter 

estimation when compared to more conventional methods (e.g. the EXP-LSQ 

approach). The changes in parameter estimation when transitioning from EXP-LSQ to 

sEPG-MLE using in vivo data from healthy muscle closely matched the changes due 

to the same transition using comparable phantom data and acquisition conditions, 

validating the abovementioned improvements. It was shown that the widely used 
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exponential model fitting overestimates T2 by a factor around 20% or more, which 

the sEPG-MLE approach can correct for. The healthy muscle sEPG-MLE T2m estimates 

were also consistent with the widely accepted values, for instance from spectroscopy 

studies (Forbes et al., 2014, Saab et al., 1999) and T2-spectrum CPMG techniques 

(Araujo et al., 2014). Consistency of the MLE estimated noise levels with independent 

noise measurement methods further supported the validation of our method.       

Another novel aspect of this work was to introduce the 2-component model with 

fixed parameters mentioned at the beginning of this section to describe pure fat 

signals, and subsequently combine it with a water component to achieve the final 

CPMG fat-water quantification. While this is a novelty in the context of an EPG 

application (Marty et al., 2016), the concept in fact is similar to its equivalent 

exponential version, used in published work and referenced earlier (Azzabou et al., 

2015). Unlike the latter exponential approach where there was some correlation 

found between the dominant fat component and the main methylene group 

spectroscopic peak – namely about 80ms T2 and 67% relative amplitude – in both 

EPG-based approaches mentioned here this was not the case. This might simply 

reflect an intrinsic unsuitability of MESE data fitting to assign specific T2 decay 

constants as per corresponding spectroscopic analyses, for instance as discussed for 

water T2 in section 2.1.4. Nevertheless as a fixed model for fat – used in a ‘black box’ 

approach – the 2-component model describing fat was shown here to be superior to 

a single component model and useful in the interpretation of the resulting overall fat-

water model fitting behaviour. The role of parameter bound constraints and quality 

of fit metrics used to optimise the analysis (section 4.3) helped as well in this respect, 
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predominantly by identifying the regions of pure fat and artefactual signals. There 

appear to be limited pixel cases where this interpretation becomes challenging, 

mainly for very high fat content (but not artefactual) pathological tissue ROIs, where 

more sophisticated experiments could elucidate these observations, for instance 

comparison with biochemical analyses. 

Interesting findings emerged by comparing the sEPG-MLE T2m maps with the 

corresponding T2-weighted STIR images. Both the comparisons of these images and 

a closer examination of the basic assumptions for STIR imaging revealed that this 

modality’s contrast depends in addition to T2 also on water proton density. This 

introduces ambiguity and potential difficulty in the interpretation of the features 

seen in such images. Increased fat content in general leads to reduced image 

brightness and vice versa, and this can mask the expected T2-weighted contrast. If 

additionally fat suppression is imperfect (incomplete) this can reverse or further 

enhance this effect in variable combinations. Therefore direct comparison of STIR 

signal intensity with quantitative T2 imaging results can be challenging – STIR signal 

hyperintensity is not a direct unambiguous surrogate for increased T2. An additional 

important observation is that the way that STIR images are interpreted clinically is 

that commonly only signal hyper-intensities are considered as a manifestation of 

abnormalities.  This is a clear difference with T2m-mapping where also lower range 

values are evident and play a substantial role in the overall evaluation of results as 

discussed in this section and also in Chapter 5.                    

Many processes can contribute to the aforementioned changes in the T2m 

distributions reported in this chapter. Muscle denervation due to motor neuron 
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degeneration is a key characteristic of ALS and KD and at the early stages of disease 

is associated with oedematous changes which are thought to lead to increased T2 

before they eventually give way to fat replacement (Lovitt et al., 2006, Bryan et al., 

1998). This fat deposition also causes T2 elevation in conventional T2-mapping (e.g. 

using single-component or mono-exponential models), and it can be alleviated – in 

principle – with fat corrected T2-mapping techniques, in order to consistently depict 

muscle water T2 (T2m) (Yao and Gai, 2012). The main purpose of obtaining pure T2m 

assessment is to efficiently monitor changes and potentially intervene at the early 

stages of disease before wide spread fat infiltration and deterioration of symptoms 

(Wary et al., 2015). The acute denervation and inflammatory stages expected in the 

fast course of ALS seem to correlate with its higher T2m relative to both controls and 

KD patients, showing promise for the above purpose. Similarly the wider KD T2m 

distributions (both upwards and downwards) seem to correlate with the intense fat 

deposition and inter-muscle variations (diffuse patterns and ‘mottled’ appearance) 

typical in this condition. This widening may occur both because inflammatory stages 

and therefore increases in T2m are rather transient, and because of the challenges 

that high fat content introduces in the water component characterisation in terms of 

uncertainty and tissue compartmentalisation. Additionally muscle fibre destruction 

may play a role (Klickovic et al., 2019). These differences were evident also from other 

histogram metrics; for instance increased fwqm values were seen for KD patients, 

significantly higher than for the ALS group. Therefore the observed relatively higher 

T2m distributions in ALS as opposed to wider ones in KD, along also with time, are 

consistent with dominance of the inflammatory as opposed to fat infiltration effects 

respectively for each condition, as described at the beginning of this chapter.  
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The above findings are also consistent with the ffa estimation results (and to a lesser 

extend with ffd). All three groups (ALS, KD and healthy volunteers) showed 

significantly different ffa distributions and metrics between each other. ALS patients 

showed a marginal (not significant) tendency for increase in ffa longitudinally, which 

may imply that KD patients reach rather promptly a stage of saturation in the 

occurring fat deposition and replacement. This may be related to the rather transient 

aforementioned oedematous stages for KD patients, and does not preclude the 

varied patterns and spared ROIs seen in their ffa-maps.    

4.7 Summary and Conclusions 

As a final conclusion, the findings of this study suggest that inflammation/oedema 

and fat infiltration both progress with disease evolution but in different proportions 

and rate between the two diseases studied (ALS and KD). Additional tissue 

compartmentalisation processes may as well play a role. These findings were 

demonstrated by the trends observed in the T2m and ffa estimates’ distributions and 

histogram metrics yielded using the sEPG-MLE algorithm.  

In summary: 

• While arising from different pathogenic processes, ALS and KD may show 

similar symptoms at their initial stages and distinguishing the two diseases on 

imaging is of interest.  

• The multi-component sEPG-MLE fitting tool including a fixed parameter 

secondary 2-component approximation for the fat signal as described in 
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Chapter 3 was used to estimate T2m and ffa for a cohort consisting of ALS and 

KD patients and healthy volunteers, and within time frames of one year. 

• Additional post-processing steps were included in order to avoid 

contamination from pure fat and artefactual signals in the overall results. 

• ALS patients manifested significant elevation in both thigh-level muscle T2m 

and ffa suggesting that inflammation and fat infiltration both progress with 

time. 

• KD patients manifested predominantly severe fat deposition and replacement 

in diffuse patterns in the corresponding ffa maps and significant T2m changes 

suggesting inflammatory and potentially other effects.  

• Despite the MT, T1-weighting and spectroscopy-based corrections used, ffa 

results did not quantitatively match their Dixon (ffd) counterparts; however 

ffa- and ffd-maps were qualitatively similar. Between group comparison p-

values for ffa were lower than for ffd, potentially supporting the validity of ffa 

as a reliable outcome measure.  

• T2m changes appear to be in general independent from fat fraction (ffa and ffd) 

elevation, suggesting that the two processes are not affecting each other due 

to the estimation (measurement) method.   

• The changes seen when shifting from the conventional EXP-LSQ to the sEPG-

MLE method in a phantom experiment were consistent with equivalent 

experiment results using in vivo data (in comparable conditions), providing 

validation for the sEPG-MLE fitting tool. 

• Caution should be taken interpreting STIR image contrast in fat infiltrated 

muscle and comparing STIR acquisition results with sEPG-MLE T2m-mapping. 
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The relative proton density of fat and water tissue in each voxel, imperfect fat 

signal nulling and receive coil sensitivity effects are confounding factors, 

possibly challenging the inherent assumptions in STIR imaging.    

• The proposed method could potentially be applied to individual examinations 

and clinical trials to add to the diagnostic sensitivity of clinical MRI. In the 

longer term it can aid towards facilitating drug development and validating 

MRI clinical outcome measures.  
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Chapter 5. The non-ambulant DMD MRI natural history study 

This chapter presents work based on data acquired in an MRI natural history study in 

non-ambulant DMD boys performed at our institution. While lower limb MRI has 

been more extensively investigated in DMD as a potential measure of disease 

progression, upper limb measurements have received little attention to date. 

Forearm muscle MRI measurements may be important because upper limbs are 

affected by the disease at a later age than lower limbs thus offering the opportunity 

to meaningfully monitor disease progression for older patients. 

5.1 DMD background 

Duchenne muscular dystrophy (DMD) is one of the most common inherited skeletal 

muscle degenerative diseases, with a frequency of occurrence of one in 3,500 boys. 

It is caused by mutations in the X-linked dystrophin gene (Xp21), leading to muscle 

membrane deficiencies which render them susceptible to injury from eccentric 

muscle contractions, progressing to oedema and finally to irreversible fatty 

infiltration and fibrosis. Patient symptoms start with weakness by the age of 5 years, 

will typically progress to wheelchair use in their early teens, and die of 

cardiorespiratory complications by the second or third decade of their life span 

(Arpan et al., 2013). The disease is in general considered incurable, however it has 

been shown that it can be decelerated with early steroid treatment (Kim et al.). 

Oligonucleotide treatment inducing increased muscle dystrophin expression and 

benzoquinone administration improving functional late stage cardiopulmonary 

parameters are recent advances (Fischmann et al.).  
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The aim of this longitudinal study was to examine the ability of the sEPG-MLE fitting 

tool presented in the previous chapters of this work to quantify disease progression 

related changes in the upper limbs of non-ambulant DMD boys, comparing 

measurements between baseline and 6 and 12 month intervals, and also with those 

from healthy volunteers. Previous analyses of data from this cohort study performed 

by colleagues in our centre, the UCL Queen Square Institute of Neurology, have 

demonstrated the efficiency of dynamic MRI in extracting lung and diaphragm 

measures to monitor DMD (Bishop et al., 2018), and – more pertinent to this work – 

the sensitivity of muscle Dixon method ff as a biomarker to monitor disease 

progression in the upper limb in non-ambulant DMD, for a cohort size and time 

intervals typically used in clinical trials (Ricotti et al., 2016). While fatty infiltration in 

muscle typically appears at later stages of the condition, muscle water T2 may be 

hypothesised to show abnormalities early in the disease course, likely to reflect 

changes in the water content due or oedema (possibly but not necessarily related to 

inflammation), denervation, fibrosis and other pathological manifestations (Mercuri 

et al., 2007, Lovitt et al., 2006, Arpan et al., 2013).    

The CPMG MRI data acquisition protocol generating the data for the following 

analysis (as detailed in section 5.2 below) was in retrospect considerably sub-optimal 

in comparison to other datasets seen so far. This is for historical reasons – at the time 

of acquisition ff was the primary outcome measure of interest, and the team had not 

yet considered CPMG sequence optimisation – and also for practical reasons specific 

to forearm anatomy. The limited echo train length of 12 echoes, and the unavoidable 

positioning of the scanned anatomy (forearm) at the periphery of the magnet bore 
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are the main issues. In addition issues of reported patient discomfort causing motion 

(e.g. tremor), stiffness, physical tension and similar effects may also have had 

negative impact on the data quality. These challenges offer an opportunity for further 

evaluation and improvement of the analysis approach developed so far, building on 

the implementation and optimisation of the proposed method (Chapter 3), and in 

comparison with its application to better (than the DMD) quality datasets (Chapter 

4).   

To address the aforementioned specific issues with this study, the credibility of the 

proposed sEPG-MLE method for these datasets is first explored in terms of model 

suitability and post-fitting quality control (section 5.3), followed by initial results 

(section 5.4). Then atypical CPMG signal behaviours encountered in the study are 

explored (section 5.5), followed by ff estimation considerations (section 5.6) and 

further results (section 5.7) and discussion (sections 5.8 and 5.9).                  

5.2 Tools and Methods 

The multi-echo MRI data analyses described in this chapter were obtained as part of 

a collaborative study performed by colleagues at the UCL Queen Square Institute of 

Neurology. A first report describing the study and cross-sectional Dixon ff findings has 

previously been published (Ricotti et al., 2016). 14 non-ambulant DMD boys were 

recruited with a mean age of 13.3 y, (range: 10.8-17.3 years) mean duration of non-

ambulation 20.2 months (range: 4.7-41.6) and mean BMI 26.5, range: 20.8-41.7). 

Assessments were performed at baseline, 3, 6 and 12 months. All but one subject 

were receiving glucocorticoids.  Nine age and gender-matched healthy control 
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subjects were scanned once (mean age: 14.6y, range: 13-17; mean BMI 21.5, range: 

16.5-25.4). Approval from the local research ethics committee was obtained for this 

study, which was performed in compliance with the Declaration of Helsinki.  

For the T2 weighted imaging the forearms of all boys were examined at 3T (Siemens 

Skyra) using a flexible matrix-coil (4-Channel Flex Coil) wrapped around one forearm. 

For that reason the imaged anatomy was in general away from the optimal position 

at the centre of the magnet bore and closer to its periphery. A multi-echo spin-echo 

(MESE) sequence (TR=3000ms, 12 TEs from 10-120ms with 10ms interval, 9 x 6 mm 

slices, matrix 320x320, or 320x190, in-plane resolution 0.5625x0.5625 mm) was used. 

Ten forearm muscles were manually segmented on the central slice of a reference 

image derived from the respective unprocessed shortest TE Dixon acquisition (TE = 

3.45ms, see next paragraph) by observers blinded to subject groups, using ITK-snap 

software (Yushkevich et al., 2006). This central slice was defined as the first axial slice 

distal to the supinator muscle; for consecutive longitudinal data from the same 

subject, the slices selected for analysis were matched to the baseline slices by visual 

inspection and reference to a coronal scout image. Due to the different acquisition 

spaces of the Dixon and the MESE, it was necessary for the segmented Dixon images 

to be spatially adjusted by the current author using a custom-written software tool 

in order to match to the T2-weighted raw images for this work. An additional tool was 

created to apply these ROI segmentations to the raw T2-weighted images. This was 

the core data set that was subsequently used throughout the work presented in this 

chapter, the main aim being to determine the most effective strategy to extract 

useful information by fitting this signal with the methods developed in Chapter 3.   



333 
 

Comparative data were available in terms of images collected using three-point-

Dixon technique (Glover, 1991) were acquired (2D gradient-echo TE1/TE2/TE3/TR= 

3.45/4.60/5.75/102ms, flip angle 10°, nine 6mm axial slices, slice gap 12mm, FOV 

18x18cm, matrix 320x320, pixel size 0.56x0.56mm, NEX=4). Images were post-

processed offline with a Python programming language pipeline according to Glover 

and Schneider’s algorithm (Glover and Schneider, 1991) and separated fat (f) and 

water (w) images were used to calculate pixel-wise fat fraction (ff) maps according to 

ff(%)= 100*f/(w+f). Data were extracted from the same segmented muscle ROIs as 

above.  

Finally, to allow comparison of the new sEPG-MLE method to the conventional 

exponential model approach to MSME data analysis, a multi-exponential function: 

𝑠𝑠(𝑇𝑇𝐸𝐸) =  𝛼𝛼 · (1 − 𝑓𝑓𝑓𝑓) · 𝑒𝑒−
𝑇𝑇𝑆𝑆
𝑇𝑇2𝑖𝑖 + 𝛼𝛼 · 𝑓𝑓𝑓𝑓 · �0.75 · 𝑒𝑒−

𝑇𝑇𝑆𝑆
76 + 0.25� 

where s is the signal at each TE and muscle water T2 (T2m), fat fraction (ff) and overall 

amplitude (α) were the parameters to be estimated, was fitted pixel-wise to the data 

using nonlinear least squares minimization (section 2.2.2) in a custom-written Matlab 

tool. The fat component parameters were determined separately as the mean values 

from 4 subcutaneous fat ROIs in 8 representative subjects. In terms of quality control, 

values were excluded from the maps for pixel data which failed to meet empirically 

determined fit-quality criteria: R2 (goodness of fit)>0.8, amplitude α lower confidence 

interval (CI)>0, amplitude α<10 times the 1st TE image amplitude, T2m-CI-width/ T2m 

<100%, ff<50% and T2m <100ms.  
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5.3 Analysis implementation 

To implement the proposed sEPG-MLE method three preliminary steps were taken, 

following the fitting strategy deployment and core optimisation strategy presented 

in Chapter 3, before moving onto a full evaluation of the patient study data. First, to 

validate the calibration of the fat signal model developed in Chapter 3 and in Chapter 

4 when applied to this DMD dataset. Second, incorporating the previous findings, to 

re-examine the behaviour of the overall (fat and water) multi-component model 

specifically with data from this study. Third, to test the post-fitting quality control 

steps so that physical meaningfulness of the yielded results is ensured.   

5.3.1 Forearm fat compartment calibration         

The proposed sEPG-MLE method in its optimised form (equation 14, section 3.3.3) 

relies on using a fat compartment two component model with fixed parameters, 

which were empirically pre-determined. The fat signal model consists of two sEPG 

components the most important parameters of which were a short and long T2 (T2fs 

and T2fl), and the ratio of the amplitude factors of their respective sEPG signals. It was 

considered essential to corroborate that the assumptions developed in earlier 

chapters supporting the use of such fat-signal model hold also for the data available 

in this study. For that reason the behaviour of the fat compartment model 

𝑠𝑠𝑓𝑓𝑚𝑚𝑖𝑖(𝑇𝑇𝐸𝐸) = 0.33 · 𝑠𝑠𝐸𝐸𝑃𝑃𝐺𝐺(𝐵𝐵1𝑓𝑓,𝑇𝑇2 = 40𝑚𝑚𝑠𝑠,𝛼𝛼, ,𝜎𝜎𝑁𝑁 ,𝑇𝑇𝐸𝐸)                                             

+ 0.67 ·  𝑠𝑠𝐸𝐸𝑃𝑃𝐺𝐺(𝐵𝐵1𝑓𝑓,𝑇𝑇2 = 198𝑚𝑚𝑠𝑠,𝛼𝛼,𝜎𝜎𝑁𝑁 ,𝑇𝑇𝐸𝐸) 
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established in section 3.3.3 was examined for selected subcutaneous fat ROIs from 

images from the DMD dataset, using only images which were of good quality, i.e. 

having relatively high SNR with no obvious B1 inhomogeneity, signal drop-outs or 

other artefacts. The workflow routine is summarised in Figure 5.1 including specific 

settings (bound constraints, start values, number of iterations etc.).   
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Figure 5.1: A scheme illustrating the implementation of the 2-component fat model sEPG-
MLE fitting algorithm, including specific start points, bound constraints and algorithm 
settings as discussed in Chapter 3 (section 3.3.2). Signals from selected forearm 
subcutaneous fat ROIs (here shown for an example dataset from a healthy volunteer) are fed 
into the fitting routine (lower box) where their joint negative log-likelihood is minimized in 
order to yield the (MLE) parameter estimates, which are subsequently averaged over all 
pixels of the ROI.     
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The above model for sfat was used, with this generic mathematical expression (it 

cannot be written in closed form) describing the aggregated EPG (function) 

calculations across the slice profile for the fat signals, which is subsequently fitted 

pixel-wise to the study data using MLE minimization in a custom-written Matlab tool 

(section 2.2.3). The parameters to be determined for each pixel were the fat short T2 

component T2fs, the ratio of the 2 fat components’ amplitudes, B1 field factor (B1f), 

overall amplitude (α) and noise standard deviation (σN). T1 for fat was fixed in 

accordance to existing literature values, and the remaining sEPG model parameters 

(TE, ETL, RF excitation and refocusing profiles and duration vectors) were set 

according to sequence and scanner settings, as listed in section 5.2. Finally T2fl was 

fixed at 198ms, its final estimated value from the discrete values-based technique 

used previously (Table 3.3). The model was then fitted to forearm subcutaneous fat 

ROIs from the current study, to test if the remaining free parameter estimates show 

any significant deviations which would challenge the validity of using the same fat 

component model also for this study. Examples of the yielded parameter estimates 

and quality of fit indices are shown in Table 5.1.  

Table 5.1: Fitting of the 2-component fat model introduced previously (section 3.3.2), and 
determined under different acquisition conditions, to subcutaneous fat ROIs from the DMD 
study, yields similar results (medians) and shows good quality of fitting. Fitting was 
performed with a fixed T2fl (fat compartment long T2 component) at 198ms, whereas fitted 
were B1f (B1 field factor), T2fs (fat compartment short T2 component), ratio (the 2 fat 
components’ amplitude proportion), amplitude (not shown) and noise (σN). Pseudo-R2 and 
loglik are as previously defined in sections 3.2.6 and 3.3.2.   

 B1f (%) T2fs (ms) ratio (%)  T2fl 

(ms) 
σN pseudo-R2 loglik 

patients 99.8 40.3 69.3  
198 
fixed 

23.7 99.7 55 
99.4 36.6 67 20.0 99.7 52.9 

Healthy 
volunteers 

99.2 43.1 66.3 39.9 99.1 61.3 
85.6 38.6 66 18.4 99.8 51.8 

 



338 
 

Two fat ROIs were analysed from 2 patients and 2 healthy volunteers.  

T2fs emerged around 40ms and the two fat components’ amplitude ratio was close to 

67%, which were closely matched to fat component parameters found previously in 

Chapter 3, with the minimization routine rapidly converging to these values. An 

example of performing the fitting with T2fl fixed to a value from 100 to 300ms in steps 

of 1ms (i.e. the discrete parameter testing technique) for an example ROI – the same 

as shown in Figure 5.1, corresponding to the 3rd example from Table 5.1 – is shown 

in Figure 5.2.  
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Figure 5.2: A numerical evaluation of the discrete parameter testing method for the ROI of 
Figure 5.1, showing that the lowest loglik corresponds to 198ms T2fl thus determining the 
choice of the rest of the parameter estimates used as fixed values in the fat 2-component 
model.    

These results corroborate the choice of 198ms as the T2fl value corresponding to 

minimum loglik, leading to the optimal remaining parameter values for the fat 2-

component model shown above. As can be seen in the inset of Figure 5.2, while the 

loglik vs. T2fl dependence shows a clear minimum at 198ms it is still a smoothly 

changing function: this is exactly the reason of taking negative logarithms of the pdf 

to be minimised (section 2.2.3). Pseudo-R2 and σN also appear to be smoothly varying 

– also due to the plots of the other parameters in the same graph (y-axis scaling) – 
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suggesting a sensible minimisation, despite the use of discrete T2fl values. Good 

quality 2-component fits to the subcutaneous ROI fat signals were thus obtained, 

despite the age-range and anatomical differences, and lower data quality in general, 

compared to datasets examined previously, e.g. from the ALS and KD patient study 

presented in Chapter 4 and the phantom experiments, as mentioned in section 3.1. 

Interestingly, loglik was here in the same range (between 50 and 70 units) as in the 

initial experiment in section 3.3.2, which given the non-normalised nature of loglik – 

since it expresses the pdf utilised for MLE minimization, in general an “unnormalised 

probability” (Myung, 2003) – supports the suggestion of a good quality of fit, 

correlated with high pseudo-R2.  

5.3.2 Multi-component model fitting on the DMD data  

The next stage was to perform the equivalent overall combined muscle-fat 

component model testing for subcutaneous fat ROIs as implemented before in 

section 3.3.3, in order to examine the role of the T2m lower bound in the 

interpretation of the parameter estimates. The fitting process as described for fat 

tissue in the previous section was repeated for the same ROIs, this time using the 

multi-component model expressed by Equation 14, Chapter 3, for 3 different values 

of the T2m  lower bound, namely 5, 10 and 15ms. In this case the parameters to be 

determined for each pixel are effective muscle water T2 (T2m), fat fraction (ff), B1 field 

factor (B1f), overall amplitude (α) and noise standard deviation (σN). T1 for muscle and 

fat were fixed, the fat compartment T2fs, T2fl and the 2 fat components’ amplitude 

ratio as above determined, and the remaining sEPG model parameters (TE, ETL, RF 
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excitation and refocusing profiles and duration vectors) were set to the values given 

in Figure 5.1. 

The purpose of this exercise was, by applying the full signal model including the water 

compartment to ROIs containing essentially only fat, to characterise and thus 

distinguish on the basis of the fitting algorithm outputs, pure fat from fat infiltrated 

muscle. This was necessary since the established (‘sfat’) fat model has been seen to 

be interchangeable (in terms of quality of fit) with the multi-component model when 

ff approaches 100% and T2m is equal or below 15ms. This experiment produced the 

results presented in Table 5.2.   

Table 5.2: Dependence of the overall multi-component sEPG-MLE model parameter 
estimates on the T2m lower bound, set successively at 10, 15 and 20ms, when fitting 
subcutaneous fat ROI data. T2m estimates coincide with the bound value in most cases. 
Setting the T2m lower bound at 10ms (results in bold) appears to be a good compromise for 
fat signals identification and improved quality of fit, as shown by the corresponding loglik, σN 
and pseudo-R2.     

 B1f (%) T2m (ms) ratio (%)  
T2fl , T2fl 

(ms) 
fixed 

σN 
pseudo-
R2 loglik 

Patients 

108.6 5 100  35 99.4 60.2 
109.7 10 100 40  198 35.2 99.4 59.7 
108.3 15.1 100  35.6 99.4 59.8 

98.4 5 94.3  22 99.7 54.1 
99.9 10 98 40  198 21.6 99.7 53.9 
99.5 15 98.8  20.6 99.7 53.3 

Healthy 
volunteers 

110.3 5 93.4  45.7 98.8 62.9 
109.3 10 100 40  198 43.2 98.8 62.2 
107.9 15.1 99.7  42.7 98.9 62 

79.7 5 76.2  27.5 99.5 56.8 
83.5 10 96.9 40  198 20.9 99.7 53.7 
84.7 15 98.5  20.3 99.7 53.1 

 

The apparent T2m estimate returned for pure fat regions mostly coincides with (or is 

restricted by) its lower bound, acting again as a criterion to identify them. The 



342 
 

experiment once again showed that raising the T2m lower bound upwards (from 5ms 

to 10 or 15ms) improves results, in terms of both physical meaningfulness of the 

parameter estimates for B1f (smaller departures from 100%), ff (dominance of the fat 

component as expected) and σN (lower levels), and in terms of goodness of fit via 

pseudo-R2 and loglik. On the other hand there is no clear superiority of using 15ms 

as a lower bound compared to 10ms, plus the former (15ms) would potentially 

restrict T2m estimation to suboptimally or undesirably high levels. Thus setting it 

finally at 10ms (as also concluded in Chapter 4) appears to be a good compromise 

between effectively identifying fat regions, optimising quality of fit and more 

importantly ensuring the efficiency of the overall model for its main objective, the 

estimation of muscle water T2 and muscle fat content.   

5.3.3 Post-fitting quality control 

Next, two example data sets from this study were analysed in detail to better 

understand aspects of the fitting process under these specific experimental 

conditions. Scatter plots representing all pixels in the segmented muscle areas are 

shown for each case in Figure 5.3. Both high fat or pure fat content pixels, and pixels 

from regions of sub-optimal data quality (due to e.g. flow or motion artefacts, B1 

inhomogeneities, signal drop-outs, segmentation imperfections) tended to return 

T2m estimates falling in the 10 to 11ms T2m range (top panels). However of these only 

the latter poor data-quality subgroup yielded poor quality of fit as indicated by 

decreased pseudo-R2, irrespectively of their associated ff (middle and lower panels).   
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Figure 5.3: The correlation plots for T2m vs ff (1st row), pseudo-R2 vs T2m (2nd row) and pseudo-
R2 vs ff (3rd row) estimates for a good quality patient dataset (DMD) and for a compromised 
quality healthy volunteer (CTR) dataset. T2m is broadly stable with increasing ff however on 
many occasions the minimisation has reached bound constraints, mostly the 10ms lower T2m 
bound. It can be seen that the pseudo-R2 distribution shifts towards lower values for the 
artefacted data set (middle image 2nd column for the healthy volunteer) but does not show 
a strong dependence upon T2m or ff changes caused by pathology (left column, DMD patient). 

In contrast, for the good quality patient dataset estimates of T2m at or close to the 

10ms lower T2m bound were returned mainly for high ff pixels, and were not 
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associated with decreased pseudo-R2. These results are consistent with the findings 

reported in section 4.3 with regards to the role of the T2m lower bound in the 

parameter estimation and interpretation. This distinction is demonstrated more 

clearly in Figure 5.4, where for the patient (good quality) dataset in Figure 5.3, the 

group-T2m estimates at 10 to 11ms corresponds predominantly to high fat content 

pixels, whereas the respective group for the sub-optimal quality healthy volunteer 

data corresponds to regions of data of poor quality.   

 

Figure 5.4: The effect of excluding pixels near the 10ms lower T2m bound (10<T2m<11ms) in 
the 2 example datasets of Figure 5.1, for two subgroups of interest: left (DMD patient), from 
fat pixels where such values represent in reality an additional fat component with short T2 as 
explained in the text in section 5.3.2, and right (healthy volunteer, CTR), from compromised 
quality data due to artefacts (ff map, bottom left). In both cases the previous thresholds for 
T2m<15ms and ff>90%, and pseudo-R2<80% have already been used (note: the T2m histograms 
only include pixels from the segmented muscle ROIs).         

Taking together these observations, it follows that an additional post-processing step 

eliminating  pixels of pseudo-R2 below 80% and of T2m below 11ms – as also proposed 
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in section 4.3 for the ALS and KD data – can be useful in eliminating such unwanted 

‘pure fat’ or heavily artefacted regions from the analysis.      

Finally ff estimates should be also corrected for the sequence specific TR-dependent  

T1 recovery factor difference between muscle and fat – in addition to the necessary 

MT correction (section 3.3.5). For the CPMG protocol used here TR was 3000ms 

(section 5.2), therefore ff should be corrected by the expression ff/(1.1326-0.1326·ff) 

(Table 3.5). The workflow of the final fitting tool pipeline used to analyse the CPMG 

data acquired in this study is shown in Figure 5.5, including the specified settings 

discussed in the preceding sections, as well as the B1f polarity spatial regularization 

strategy developed in Chapter 3.     
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Figure 5.5: A scheme illustrating the implementation of the sEPG-MLE fitting algorithm used 
for the DMD study data, including start point and bound constraints specifications and 
algorithm settings.    

The basic steps of identification and exclusion of fat pixels (i.e. T2m<15ms & ff>90% 

threshold values) are also included as a quality control step at the end of the fitting 
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routine. The algorithm is otherwise implemented in exactly the same way as in 

Chapter 4 (Figure 4.2) except for accounting for the different acquisition protocol 

parameters, notably the echo train length (ETL) and TR.                

5.4 Study analysis results I  

The parameter estimate distributions for each participant in terms of T2m vs ff plots 

obtained using the fitting procedure and final post-processing steps described in the 

previous section are shown in Figure 5.6.  

Note: Similarly to Chapter 4, the term ff is used in general for the sEPG-MLE estimated 

or ‘apparent’ fat fraction.  This is termed ffa for comparisons with Dixon ffd results 

(section 5.5.2).    
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Figure 5.6: Overview of the estimated muscle T2m (0 – 150ms) vs ff (0 – 100%) for the 
segmented maps for DMD patients at baseline (top panel), 6 months (2nd panel from top) and 
1 year (3rd panel from top) follow-up scans, and for healthy controls at baseline (top panel). 
Letter A denotes datasets with clearly visible artefacts (mainly inhomogeneous B1 field / low 
SNR, and motion) and P denotes datasets showing the most intense pathology. Integers serve 
to identify each patient at successive time points.   
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Shown are scatter plots of T2m against ff for all pixels in muscle compartment 

segmented regions in a single forearm image slice. Considering first the healthy 

control data sets, T2m largely lay in the range 10-40ms, while ff was restricted for the 

most part to below 20%. In the patient data, marked differences in the ff distributions 

were visually apparent between individuals apparently mildly or more severely 

affected, based on their imaging appearances. T2m appears to be distributed largely 

independently from ff, exhibiting larger dispersion for higher ff ranges associated 

with more advanced disease, while some mild T2m dispersion can also be seen for low 

to middle range ff likely associated to compromised image quality. There is no clear 

distinction between these subgroups since T2m changes along the ff range appear 

rather smooth and continuous. There is consistently a similar number of artefacted 

datasets in the control and patient baseline and follow up groups (3 or 2 for each 

group, 20-25% of the total number). 

Examples of T2m and ff maps and their respective histograms from representative 

datasets are shown respectively in Figure 5.7 and Figure 5.8. Comparing T2m maps 

from good quality source data, the patient examples showed substantial regions of 

elevated T2m compared with the control examples. Regions of elevated T2m in patients 

mostly overlap with regions of elevated ff. Again, some increase in the number of 

pixels at the lower end of values (in the histograms) for both parameters is seen in 

cases of sub-optimal source data quality.      
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Figure 5.7: Examples of T2m maps and histograms for representative example data, from 
patients with good image quality and marked pathological involvement (1st and 2nd row from 
top), a healthy control with good image quality (middle row), a patient with suboptimal 
image quality and marked pathological involvement (2nd from last row) and from a healthy 
control with suboptimal image quality (last row). 
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Figure 5.8: Examples of ff maps and histograms for representative example data, from 
patients with good image quality and marked pathological involvement (1st and 2nd row from 
top), a healthy control with good image quality (middle row), a patient with suboptimal 
image quality and marked pathological involvement (2nd from last row) and from a healthy 
control with suboptimal image quality (last row). 
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T2m and ff boxplots per individual muscle ROI are shown for all participants in Figure 

5.9 (T2m for healthy controls, including the muscle ROI key), Figure 5.10 (T2m for 

patients) and Figure 5.11 (ff for all groups).   

 

Figure 5.9: Overview of the estimated T2m boxplots for the individual muscle ROIs  for healthy 
controls at baseline; 10 or 11 muscles ROIs per subject are shown, from extensors (left) to 
flexors (right). The numbers along the x-axes identifying the individual muscles according to 
the key at the top were as specified by the segmentation experts (section 5.2). Outliers are 
identified by the cyan dots. While T2m lay mostly between 25-30ms (normative range) 
differences between individual muscles also exist.   



353 
 

 

Figure 5.10: Overview of the estimated T2m boxplots for the individual muscle ROIs  for DMD 
patients at baseline and at 6 months and 1 year follow-up; 10 or 11 muscles ROIs per subject 
are shown, from extensors (left) to flexors (right). Outliers are identified by the cyan dots. 
Individual muscles do not seem to be affected by disease all in the same manner in terms of 
both T2m median values and distributions.   
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Figure 5.11: Overview of the estimated ff boxplots for the individual muscle ROIs for healthy 
controls (1st panel) at baseline and for DMD patients at baseline and at 6 months and 1 year 
follow-up scans (2nd, 3rd and last panel); 10 or 11 muscles ROIs per subject are shown, from 
extensors (left) to flexors (right). Outliers are identified by the cyan dots. Individual muscles 
do not seem to be affected by disease in the same manner in terms of both ff median values 
and distributions  
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Clear variation is observed between different regions of the forearm cross section in 

patients, predominantly between flexors and extensors as compartments. There is 

evidence for more marked T2m and ff elevation in flexors than in extensors in general.   

This variation becomes masked to a certain extent when the entire forearm cross-

sectional T2m and ff boxplot comparisons are displayed (Figure 5.12).       

 

Figure 5.12: Boxplots of the estimated ff (0 – 100%) and T2m (0 – 150ms) from all muscle 
groups combined across the forearm cross-section for DMD patients longitudinally at 
baseline (blue), 6 months (green) and 1 year (cyan) follow-up scans and for healthy controls 
(CTR, black); outliers are represented by the cyan dots. Letter A denotes datasets with visible 
artefacts, P denotes marked pathological involvement and A/P datasets with both in the 
same DMD subject. Forearm cross-sectional results follow patterns in parameter elevation 
and dispersion due to pathology broadly consistent with those seen in individual muscles in 
Figure 5.9, Figure 5.10 and Figure 5.11.       

Each boxplot here represents the total distribution of T2m and ff estimates from all 

forearm muscle pixels for each individual, and at the different time points for the 

patients. For healthy controls T2m and ff are tightly clustered between 25-30ms and 

0-5% respectively. For patients T2m and ff appear to change in opposite directions 
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with T2m mainly decreasing and ff markedly decreasing. Distributions also appear 

wider for patients, with T2m showing a tendency to continue dispersing longitudinally. 

More detailed comparisons will be presented with the revised analysis results in 

section 5.6.       

5.5 Data quality and atypical CPMG signal behaviours  

5.5.1 Signal dropouts and motion artefacts 

In Figure 5.13 median T2m values (without whisker and box plots) are shown per 

muscle for all individual subjects – including follow up scans; and in Figure 5.14 the 

respective equivalent estimated median ff values are shown. One  healthy control 

dataset, indicated in Figure 5.13, was excluded from the subsequent analysis due to 

regions of severe signal drop-out causing complications in the interpretation of those 

results.  
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Figure 5.13: Individual forearm muscle median T2m for the controls (CTR) and patients (DMD) 
at baseline, and the DMD group at the follow-up time points. In brackets are the number of 
subjects for each group and time point. Note: The CTR data points indicated with an asterisk 
(*) are from an individual dataset manifesting severe signal drop-out (SNR < 10) and low SNR, 
where although the MLE parameter estimation performed reasonably well, there was a clear 
data quality influence on the distribution and interpretation of these results, which were 
therefore excluded from the subsequent analysis.  

 

Figure 5.14: Individual forearm muscle median ff for the controls (CTR) and patients (DMD) 
at baseline, and the DMD group at the follow-up time points. In brackets are the number of 
subjects for each group and time point.  
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Similarly there were occasional data quality issues in the DMD group, which were 

however much milder and did not appear to affect the estimates markedly. This is 

indicated in Figure 5.15 where data points identified as potentially influenced by 

motion or B1f  artefacts are seen to be consistent with the general T2m distributions, 

suggesting it is unlikely that in these cases the data quality introduced parameter 

estimation bias.   

 

Figure 5.15: Examining the effect of suboptimal raw data quality in the DMD group: points 
with a red dot were estimated from datasets with apparent motion artefacts and those with 
an orange dot from data with suboptimal B1 distributions. These appear distributed across 
the entire range of T2m and thus are unlikely to introduce bias. Datapoints indicated with a 
red cross (‘+’) are from the only patient that was not steroid treated. In brackets are indicated 
the number of subjects for each group/timepoint.   

A possible exception is one of the two mildly artefacted datasets at the 1 year follow 

up, where in this case high T2m estimates appeared to result. In fact however this data 

was from the only subject in the group that was not steroid treated, and thus it is also 

possible that this was a genuine T2m elevation due to alternative factors (uncontrolled 

oedema).    
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5.5.2 Atypical CPMG signal behaviours seen in this study data 

An additional complication in this study is the effect of acquiring data at the periphery 

of the magnet bore. This was unavoidable since, for reasons of patient comfort it was 

necessary that the participants’ forearms were positioned to the side of the abdomen 

for imaging, parallel to the body, with a flexible surface coil wrapped around them. 

This may be a contributing cause of the unexpected signal behaviour seen in wide 

areas of several datasets (Figure 5.4). In these regions spin-echo trains with signal 

intensity rapidly diminishing from the first to the second echo were obtained, often 

returning T2m estimates well below the expected range for muscle water (i.e. < 20ms). 

Recalling the basic concept of stimulated and alternate echoes characterizing the 

shape of CPMG sequence signals, such that the second echo amplitude commonly 

exceeds the first (Chapter 2, Figure 2.30), and that common experimental errors, e.g. 

erroneous B1f intensity reinforce this effect, suggests that this entirely different signal 

behaviour in these regions might be caused by an additional experimental confound 

associated with off-centre scanning.   

In Figure 5.16 examples of such fast decaying signals from the indicated image areas 

are shown together with sEPG model parameter estimates – manifesting short 

estimated T2m and low ff. For these pixels although the returned B1f estimate was 

100%, the model clearly cannot adequately describe the initial signal collapse (i.e. the 

situation where the second echo amplitude height is markedly less than the first). 

This is because even in the case of overall ideal B1 amplitudes, unavoidable variation 

in flip angles across the slice profile will generate additive signal from the slice edges 

and side lobes after the second echo, causing the total signal to be modulated with 
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respect to the ideally exponential (for B1f≈100% as in this case) decay from the middle 

of the slice (section 3.2.5, Figure 3.22).   

 

Figure 5.16: Top: example raw images where considerable areas (green arrows) of rapidly 
decaying signal intensity was observed. Middle: CPMG echo amplitudes from representative 
pixels showing marked modulation of the echo train with lack or reversal of the expected 
stimulated echo effect (1st < 2nd echo magnitude). Bottom: lack or severe alteration of both 
the stimulated echo and the alternate echoes effect. The parameters listed in each case are 
estimates returned by the sEPG-MLE algorithm assuming correct gradient waveforms. This 
behaviour was observed for many pixels returning short T2m estimates.     
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Since the position of the target anatomy was at the edge of the scanner magnet bore, 

we may speculate that non ideal magnetic field properties in this region may 

influence the signal evolution. This could cause the gradient amplitudes, timing and 

linearity experienced by the spins to differ from those specified in the pulse sequence 

design. A full simulation of these effects is beyond the scope of this work; however, 

to test the plausibility of this as explanation of the signal behaviour, the effects of an 

incorrect ratio between the magnitudes of the gradients associated with the 

excitation and refocusing RF pulses, will now be briefly explored. Figure 5.17 shows 

sEPG simulations of the echo trains for 3 different ground truth parameter sets where 

the magnitude of the refocusing RF pulse slice select gradient was changed to values 

below and above the sequence design value (algorithm, settings and post-processing, 

as in section 5.3). In Figure 5.17 panel (a), the examples with T2m=25ms clearly show 

an elevated amplitude of the second echo relative to the first, and alternating echo 

amplitudes along the echo train, whereas in the case of the lowest T2m and ff 

combinations (11ms and 0% respectively, bottom echo train) observed in practice, 

the latter effect was maintained, while the TE1 and TE2 echo amplitudes where 

reversed.  
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Figure 5.17: The theoretically expected effect of altered gradient amplitude ratio between 
excitation and refocusing pulses for typical sEPG model parameters encountered in this study 
data. The “echo-step-ratio” is the fractional difference (%) between the second and first echo 
amplitudes. A wider than expected slice profile due to departures in the prescribed gradients 
may be a plausible reason for the exacerbated decay apparent in parts of several images: a 
high degree of similarity is seen between the signals of Figure 5.15 and panel (b) of Figure 
5.17      

However, it might be that the slice width corresponding to the refocusing RF pulse is 

effectively much wider potentially driven by gradient non-linearity towards the 

periphery of the magnet bore the effects of which are demonstrated in Figure 5.17 

panel (b), where for the T2m=25ms signals the “echo-step-ratio” for the first two 

echoes is reversed, creating a signal very similar to that for the T2m=11ms case in 

panel (a). The effect is reversed in the case of an effectively increased refocusing 

pulse gradient magnitude (panel(c)), with intensified stimulated and potentially also 

alternate echoes.  
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Therefore we conclude that an instrumental effect causing the situation in Figure 

5.17(b), i.e. an effective decrease in the refocusing slice gradient magnitude with 

respect to the  excitation pulse gradient, is indeed a physically plausible explanation 

for the signal behaviours seen in some regions of this study data. The ratio of these 

gradient amplitudes differs from unity by design, accounting for the excitation and 

refocusing RF pulses being different, both in amplitude waveform and duration. Any 

deviations from the prescribed gradient amplitudes and their ratio, caused e.g. by 

gradient field non-linearity, eddy current gradients, or B0 non uniformity will result in 

slice selection distortions and echo train alterations. A number of other authors have 

highlighted the importance of the role of refocusing widths in T2 relaxometry 

parameter estimation, in historical and recent publications (Lebel and Wilman, 2010, 

McPhee and Wilman, 2017, Keene et al., 2020). This was the conceptual basis also 

for the work presented here.        

Alternative physical effects, in particular macroscopic and microscopic motion – 

including tremor and localised motor unit activation – may also be candidate 

mechanisms behind such signal alterations. The deviations in the echo heights seen 

in last 2 examples of Figure 5.16 – possibly due to consecutive dephasing effects – 

may be due to such mechanisms. On the other hand, noise does not seem to be a 

major contributor as SNR levels for such signals are reasonably high in general.  

While the precise physical origin of these atypical signal behaviours remains 

unknown, because of their prevalence in this study data we aimed to better 

characterise such processes and assess their impact on the parameter estimation; 

distinguishing them from sub-optimal B1f performance is also of interest.        
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The echo train shape dependence on factors which are not included in the standard 

sEPG model has direct consequences in the sEPG parameter estimation. While 

departures in B1f are accounted for in the sEPG-MLE algorithm, signal deviations 

either caused by, or similar to those caused by slice profile deviations due to gradient 

non-linearity are not, and this poses challenges in interpreting the resulting 

parameter estimates. The rapidly diminishing 2nd vs. 1st echo, i.e. the reversal of the 

expected stimulated echo effect appears to be a 1st order effect when compared to 

the alternate echoes’ and/or echo periodicity alterations which rather may be 

considered 2nd order effects. The signal height change in the first case can exceed 

50%: commonly a 2nd echo amplitude would be 10-20% higher than the 1st, while in 

the observed collapsing signals it often rather becomes 50% smaller: a 60-70% net 

decrease; whereas further along the echo train alternate echoes typically show more 

limited amplitude changes (oscillations) up to an order of magnitude smaller. 

Importantly, these two regimes probably represent independent processes: 

collapsing signals don't necessarily lose their alternate echo behaviour, at least not 

entirely, as in the 2 middle examples in Figure 5.16.  

Since it was the largest effect, it is therefore instructive to examine the T2m and ff 

estimation dependence on the signal behaviour characterised in terms of the relative 

amplitude difference (“step”) between the 2nd and 1st echo, defined for this purpose 

as the ‘echo-step ratio’,  𝑖𝑖𝑒𝑒ℎ𝑏𝑏 2−𝑖𝑖𝑒𝑒ℎ𝑏𝑏 1
𝑖𝑖𝑒𝑒ℎ𝑏𝑏 2

· 100%.  

This was initially investigated in simulation, with signals exhibiting this behaviour 

generated with forward sEPG models with varying excitation and refocusing gradient 
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amplitudes, accepting that the true origin of this signal behaviour may be different. 

Results shown in Figure 5.18 for a ground truth signal of 30ms T2m and 10% ff – to 

simulate values typical of real datasets.  

 

Figure 5.18: Dependence of the echo-step ratio (1st panel), the parameter estimates (2nd 
through 5th panel, excluding noise σN) and loglik on B1f (x-axis) upon the refocusing vs. 
excitation pulse gradients’ ratio (y-axis), for a noiseless ground truth signal with T2m=30ms 
and ff=10%. Note: the Grefoc/Gexc ratio value of 1 corresponds to a normalised representation 
of the correct design value. 

The sEPG-MLE algorithm was implemented as described in sections 5.2 and 5.3 and 

outlined in Figure 5.5, initially for noiseless signals. The RF excitation and refocusing 

profiles and duration vectors and the associated gradient pulses’ amplitudes were set 

according to sequence and scanner settings, as provided by the vendor (section 

2.2.3). The effect of fitting to signals with echo-step ratios different to those that 

would arise from the assumed ground truth signal model fixed parameters was tested 

by systematically varying the refocusing and excitation slice select gradient 
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magnitudes in the model generating the simulated data, while keeping the fixed 

parameters in the fitted model at their design values.   

More specifically the correct (design specified) refocusing gradient amplitude was 

0.7829 times the excitation gradient amplitude; this corresponds to the unit value 

(i.e. the prescribed value) for the refocusing and excitation gradient ratio (“Grefoc/Gexc 

ratio”) in Figure 5.18. The echo-step ratio for the forward model, the parameter 

estimates (B1f, T2m, ff and overall amplitude) and loglik are plotted as functions of 

varying ground truth B1f and the ratio of the forward model refocusing and excitation 

gradients amplitudes. Consistent with Figure 5.17, variation due, in this case, to 

incorrect slice selective gradient echo amplitude has a substantial impact on the echo 

train shape, exemplified by the 2nd to 1st echo step ratio (top left panel) and the 

subsequent fitting parameter estimates (middle 4 panels), and the goodness of fit as 

expressed by the loglik (last panel). This is evident from the features observed in the 

lower regions of the panels compared to the upper relatively more homogeneous 

parts. A typical feature is that the increased signal within the acquired slice for 

normalised Grefoc/Gexc < 1, leads to saturation of the B1f estimate, consistently tending 

to 100% as shown in the lower part of the 2nd panel.  

This is the probable reason that, as shown in Figure 5.19, image noise does not affect 

much the lower parts of the panels (normalised Grefoc/Gexc < 1) while it clearly has an 

impact in the upper parts. In this figure the same simulation experiment was 

repeated this time adding Rician noise to achieve an average SNR of 50 for all signals 

in the raw image (adjusted to their relative amplitudes). Importantly, for both 

experiments the lower parts of the B1f, T2m and ff panels – corresponding to 
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normalised Grefoc/Gexc < 1 – show markedly decreased values (appear darker) 

corresponding to significant underestimates vs. the ground truth T2m and ff values. 

The echo-step-ratio also becomes negative (i.e. 2nd echo lower than the 1st) only 

across the lower part of the respective panel.  

 

Figure 5.19: Dependence of the echo-step ratio (1st panel), the parameter estimates (2nd 
through 5th panel, excluding noise σN) and loglik on B1f (x-axis) upon the refocusing vs. 
excitation pulse gradients’ scaling (y-axis), for a ground truth signal of SNR≈50, with 
T2m=30ms and ff=10%. 

Taking together the above suggests that the rapidly diminishing echo trains and 

decreased parameter estimates seen in certain regions of the in vivo datasets could 

be due to a decreased rather than increased ratio of the refocusing and excitation 

gradient amplitudes.  

This tendency was corroborated in real data (sections 5.2 to 5.4) as shown in Figure 

5.20, where the echo-step ratio and B1f distributions are plotted for two good quality 
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healthy volunteer datasets from both the DMD study and the ALS-KD (Chapter 4) 

study.  

 

Figure 5.20: A comparison of the echo-step ratio and B1f distributions for good quality healthy 
control datasets between the DMD forearm study (top row) – where bore periphery effects 
are expected to play a role – and the ALS-KD thigh study (bottom row) where the acquisition 
was of higher quality overall. Both quantities’ distributions extend to lower range values for 
the DMD data compared to ALS-KD.  

The DMD datasets (acquired at the periphery of a 70cm bore magnet) show27 an 

extended left tail in both distributions compared to the ALS-KD study datasets 

(acquired close to the centre of a 60cm bore magnet) suggesting that there was a 

systematic effect in the DMD data consistent with the above mechanism. The 

dependence of the T2m, ff, B1f and amplitude α estimates on the echo-step ratio 

across the entire forearm segmented muscle area is shown respectively in Figure 5.21 

and Figure 5.22 for healthy volunteers and (DMD) patients at baseline.  



369 
 

 

Figure 5.21: Overview of the dependence of T2m (blue colour) and ff (orange colour) on the 
signal step between the 2nd and the 1st echo (𝑖𝑖𝑒𝑒ℎ𝑏𝑏 2−𝑖𝑖𝑒𝑒ℎ𝑏𝑏 1

𝑖𝑖𝑒𝑒ℎ𝑏𝑏 2
· 100%), plotted in bins of 5% 

range of this ratio for the range -50 to +50% and reporting also the 25th and 75th percentiles 
(dotted curves). Above: healthy volunteers, below: patients at baseline. While various 
processes may affect this relationship (as discussed in the text) parameter estimates are in 
general mildly affected from the signals’ echo-step ratio.      
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Figure 5.22: Overview of the dependence of B1f (green colour) and amplitude α (purple 
colour) on the signal step between the 2nd and the 1st echo (𝑖𝑖𝑒𝑒ℎ𝑏𝑏 2−𝑖𝑖𝑒𝑒ℎ𝑏𝑏 1

𝑖𝑖𝑒𝑒ℎ𝑏𝑏 2
· 100%), plotted in 

bins of 5% range of this ratio for the range -50 to +50% and reporting also the 25th and 75th 
percentiles (dotted curves). Above: healthy volunteers, below: patients at baseline. At lower, 
negative range of the echo-step ratio B1f takes maximum values near 100% in agreement 
with the simulation results while the amplitude α estimates are largely independent from the 
echo-step ratio.  

Comparing these parameter estimates vs. echo-step ratio curves with the simulation 

experiment results suggests milder overall associations in real data, particularly for 

T2m and α – while of course additional, more complex and possibly competing 

processes that affect the acquired signal behaviour may exist. As can be seen short 

T2m is not associated with negative echo-step ratio (2nd echo < 1st echo) but is 

encountered also at the upper echo-step ratio ranges (2nd echo > 1st echo) 

corresponding to typical CPMG echo trains. In contrast the association between B1f 
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estimates returned at 100% and negative echo-step ratio, is entirely consistent with 

the simulation results. 

Based on the observations so far the following points can be made:      

- For negative echo step ratio (i.e. 1st echo higher than 2nd, consistent with a 

hypothetical slice select gradient amplitude ratio error), T2m and ff estimation 

appears markedly more self-consistent in the real results (Figure 5.21) than 

might be predicted from the simulations (lower regions of the 3rd and 4th 

panel in Figure 5.18 and Figure 5.19 respectively). Small (5-10%) downward 

changes in B1f or the gradients’ ratio predict several ms changes in T2m and 1-

2% in ff estimates in simulation, whereas in real data there is a much milder 

decrease in estimates with increasingly negative echo step ratios; this 

behaviour on the other hand is expected since it naturally corresponds to 

faster decays (shorter T2m and smaller ff, Figure 5.17).    

- The amplitude intercept α in particular clearly increases in simulation for 

increasingly negative echo step ratios, which is not the case in real datasets 

(Figure 5.22); B1f as predicted by the simulations is consistently close to 100% 

in that region, supporting the possibility of a slice-select gradient error effect.     

- Importantly, the lower range T2m estimates towards 11ms (as also the higher 

ff) are only seen in patients and not healthy controls, suggesting that, unless 

the patients found it more challenging to keep their arms away from the edge 

of the bore than controls, they are not driven by acquisition imperfections 

(Figure 5.21).  
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- Finally this hypothesised scanner settings errors at the magnet periphery 

might act in more complex ways than the simple changes in the slice profile 

and width due to gradients considered above.  

The previously established post-fitting quality control of returned parameter 

estimates also impacts upon the above observations: excluding non-meaningful or 

bad fits as described earlier (section 5.3) has already removed the most severely 

compromised fits. Fast T2m (and possibly relatively low ff) estimation is not only seen 

to emanate from markedly negative echo-step ratio signals, as it has also been 

demonstrated through the post-fitting quality control steps and the hypothesised 

role of ff, noise and artefacts. While echo-step ratio curves for healthy volunteers in 

Figure 5.21 are quite similar to the patient group ones, the latter manifest a slightly 

higher gradient in estimate magnitudes from lower to higher step-ratio values, as well 

as lower overall T2m values, higher ff and a lower absolute step-ratio values range, 

suggesting that these observations are associated with disease rather than 

artefactually collapsing signals. Values towards the upper end of the step-ratio range 

are expected to predominantly correlate with compromised B1 field effects, where 

the stimulated and Hahn echo phenomena are intense and typically the 2nd echo 

significantly exceeds the 1st. There is no clear trend towards lower or higher 

parameter estimates there, suggesting again that there is no marked bias introduced 

due to B1f deviation effects – unlike the clear increase that was seen in simulation for 

both T2m and ff (Figure 5.18, upper parts of the 3rd and 4th panels), even in the 

presence of noise (Figure 5.19). The only healthy volunteer dataset for which 

substantial numbers of fast T2m estimates were yielded is the one that was excluded 
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(Figure 5.21, upper panel), and these values were correlated to high echo step-ratio 

values corroborating their association with compromised B1f effects – as was seen 

also from the marked signal dropouts in the raw images.  

In summary, two subgroups of steep decaying (“collapsing”) signals were found in 

this study data. The first, associated with suboptimal acquisition conditions, was 

largely excluded from the analysis after the post-fitting quality control. The second, 

mainly found in the patient datasets was likely to be predominantly due to disease 

involvement, with acquisition imperfections having a rather minor effect in the 

overall results.  

5.6 Factors affecting the absolute accuracy of ffd  

Another issue important to discuss is the interpretation of the Dixon ff (ffd) results 

and their comparison with ffa – the ‘apparent’ sEPG-MLE-derived ff. There are a 

number of reasons that ffd might deviate from the notional “ground-truth” ff, for 

instance, the multiple spectral peaks of lipid resonances and the T2* weighting in the 

series of gradient echo images used for the Dixon imaging in this work, are potential 

sources of errors, while differences in T1 weighting between muscle and fat signal 

sources, and noise bias due to using magnitude reconstructed images are also 

potential factors (Burakiewicz et al., 2017). The last two may be determined by the 

acquisition settings (e.g. flip angle and readout/reconstruction technique) while the 

first two can be addressed via more sophisticated signal modelling. The closed form 

ffd correction used in Chapter 4 is an attempt to correct for the hypothesized 

underestimation of ffd due to its single peak representation within the Dixon 
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technique (Azzabou et al., 2015). However it is unclear if that correction takes into 

account T2* effects and, even if that is so, only a common decay rate for all tissue 

compartments is assumed. Such ‘global’ T2* corrections have been shown to be 

beneficial in chemical shift based fat quantification methods (Loughran et al., 2015, 

Hernando et al., 2010), however the additional step of using different T2* constants 

for the water and fat compartments (equal for all the fat resonance peaks) offers 

further scope for improvement (Siracusano et al., 2017, Chebrolu et al., 2010).  

The following paragraphs address theoretically the likely impact of such an approach 

in the context of the present study. The DMD study results presented so far showed 

a clear tendency for lower (than normative) range T2 values in the forearm muscles, 

both in healthy volunteers and particularly in patients, consistent with a previous 

publication (Wary et al., 2015). As mentioned by these authors, and also here, 

forearm T2 values are lower than commonly reported. This generally lower T2 

suggests that T2* may also be lower, given that T2 and T2* contrasts are considered to 

be very similar in general (McRobbie et al., 2006), and therefore T2* may play a more 

important role in ffd bias compared with previously reported situations. Therefore we 

will now consider in more detail a difference between the T2* of fat and water that 

could affect ffd. The effect of T2* in this context can be expressed via the equation 

describing the signal sd from a voxel containing water and fat with T2* differences 

between the water and fat compartments:   
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𝑠𝑠𝑏𝑏(𝑇𝑇𝐸𝐸) = 𝑊𝑊0𝑒𝑒
− 𝑛𝑛𝑛𝑛
𝑛𝑛2𝑖𝑖
∗ + 𝐹𝐹0𝑒𝑒

− 𝑛𝑛𝑛𝑛
𝑛𝑛2𝑓𝑓
∗
∑ 𝛼𝛼𝑖𝑖𝑒𝑒2𝜋𝜋𝑖𝑖𝜋𝜋𝑓𝑓𝑘𝑘𝑇𝑇𝑆𝑆                                            5
𝑖𝑖=1 Equation 19 

where W0 and F0 are the water and fat signal amplitudes, T2m* and T2f* the T2* of water 

and fat respectively, Δfk the (central) frequency offset of the kth fat peak, αk its relative 

proportion (∑ 𝛼𝛼𝑖𝑖 = 15
𝑖𝑖=1 ) and TE the echo time – taking values corresponding to the 

in- and out-of-phase conditions required within the Dixon method. Magnetic field 

inhomogeneities are ignored and Δfk and αk are presumed known (Azzabou et al., 

2015) – the values proposed in that work were used here. Taking advantage of the 

results presented so far in this work as an approximation we can set T2m* and T2f* at 

T2 values previously seen to describe muscle water and fat compartments, e.g. at 30 

and 140ms respectively (assuming a mono-exponential decay for fat), based on the 

above assumption of similar 𝑒𝑒
− 𝑛𝑛𝑛𝑛
𝑛𝑛2𝑖𝑖
∗  / 𝑒𝑒

− 𝑛𝑛𝑛𝑛
𝑛𝑛2𝑓𝑓
∗

 and 𝑒𝑒−
𝑛𝑛𝑛𝑛
𝑛𝑛2𝑖𝑖 / 𝑒𝑒

− 𝑛𝑛𝑛𝑛
𝑛𝑛2𝑓𝑓  ratios. The TEs 

corresponding to the in and out of phase images 𝑠𝑠𝑏𝑏(𝑇𝑇𝐸𝐸𝐼𝐼𝑁𝑁) and 𝑠𝑠𝑏𝑏(𝑇𝑇𝐸𝐸𝐶𝐶𝑂𝑂𝑇𝑇), can be 

calculated as follows: with a 435 Hz difference at 3.0 T, the signals are in phase 435 

times per second, so after the start, they are in phase again after 1/435s=2.3ms; thus, 

they will be out of phase for the first time at 1.15ms and every 2.3ms after that. In 

this calculation 4.6ms and 3.45ms were the TEs used for 𝑠𝑠𝑏𝑏(𝑇𝑇𝐸𝐸𝐼𝐼𝑁𝑁) and 𝑠𝑠𝑏𝑏(𝑇𝑇𝐸𝐸𝐶𝐶𝑂𝑂𝑇𝑇)  

respectively – however any other combinations (multiples) produce identical results. 

Then by substituting in Equation 19 and solving the equations 𝐹𝐹𝑏𝑏 = 0.5(𝑠𝑠𝑏𝑏(𝑇𝑇𝐸𝐸𝐼𝐼𝑁𝑁) −

𝑠𝑠𝑏𝑏(𝑇𝑇𝐸𝐸𝐶𝐶𝑂𝑂𝑇𝑇)) and 𝑊𝑊𝑏𝑏 = 0.5(𝑠𝑠𝑏𝑏(𝑇𝑇𝐸𝐸𝐼𝐼𝑁𝑁) + 𝑠𝑠𝑏𝑏(𝑇𝑇𝐸𝐸𝐶𝐶𝑂𝑂𝑇𝑇)) (where Fd, Wd the fat and water 

signals and TEIN and TEOUT the echo times for in and out of phase water and fat signals 

respectively according to the Dixon method, section 2.1.2) we obtain the 

relationships 𝐹𝐹0 = 𝐹𝐹𝑜𝑜+0.017
0.425

 and 𝑊𝑊0 = 𝐵𝐵𝑜𝑜−0.014
0.861

, and finally  𝑓𝑓𝑓𝑓𝑏𝑏−𝑒𝑒𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑏𝑏 =
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𝑓𝑓𝑓𝑓𝑜𝑜+0.017
0.506𝑓𝑓𝑓𝑓𝑜𝑜+0.504

  as a correction expression for ffd accounting for both the multi-peak 

issue and differing T2*s between the compartments. This correction resembles the 

expression (𝑓𝑓𝑓𝑓𝑏𝑏−𝑒𝑒𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑏𝑏 = 𝑓𝑓𝑓𝑓𝑜𝑜
0.45𝑓𝑓𝑓𝑓𝑜𝑜+0.55

) used previously (section 4.3.2) which 

accounts only for the multiple lipid peaks, and has a similar yet stronger effect on the 

ffd estimates.  

The impact of these successive corrective steps on ffd is demonstrated in Figure 5.23 

where a clear overall negative bias in ffd compared to ffa in panel (a) becomes 

substantially mitigated in panels (c) and (d) on applying the respective corrections. 

An additional simple correction was to discard any ff values below 0% or above 100% 

(the physically meaningful range), applied after panel (b).         
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Figure 5.23: The effect of applying corrections (described in the main text) to ffd: (a) ffa vs ffd 

without any ffd correction, (b) with any ffd values beyond the meaningful 0 to 100% range 
being discarded, (c) with additional correction for dephasing due to the fat multi-peak 
spectrum and (d) with additional correction for differential T2

* weighting between fat and 
water; ffa has been corrected for T1 weighting and MT effects (section 3.3.2)     

Notably the bias near the two extremes of the ff range continues to exist after all 

corrections (as in the last two panels at the bottom of the figure) as may be expected 

because it is associated with the noise properties of the magnitude images 

reconstruction (Burakiewicz et al., 2017) which has not been accounted for. By 

modelling the Dixon method acquired signal according to the above expressions (in- 

and out-of-phase signal, T2* decay and Equation 19) while considering a 2-component 

model for fat and for water and a corresponding ground truth ff, the theoretical plot 

shown in Figure 5.24 can be constructed. In this simulation ffd is thus calculated taking 

into account the effects of the fat multi-peak spectrum and differential T2* weighting 

between fat and water on the ground truth ff.   
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Figure 5.24: Comparison of ground truth and theoretically predicted measured Dixon ff, with 
the latter modelled to include the multipeak fat spectrum and differential T2

* decay during 
acquisition. 

This is broadly consistent with the divergence seen experimentally in real data (i.e. 

Figure 4.22 and Figure 5.23(a) between ffa and ffd.  

The assumptions underlying the hypothetical ffd correction approach explored above 

regarding T2* effects are approximate, and further work is needed to demonstrate its 

validity, including direct determination of the relevant T2* values. For these reasons 

only the previous corrections (section 4.3) are effectively applied in the results 

presented here, in consistency with the previous chapters.            

5.7 Study analysis results II 

It should be noted that the post-processing quality control steps described in section 

5.3, by which parameter estimates from pure fat, and problematic or physically non-

meaningful signals are already eliminated from the analysis, can significantly affect 

the different weighting of individual muscle ROIs’ contributions to the summary 
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measures in the quantitative comparisons. Typically in artefactual or problematic 

regions relatively less and in some cases very few pixels are left in the final parameter 

estimate maps. This affects the interpretation of the individual muscle ROI results 

presented in section 5.4 above. For example several ROIs from the datasets that 

yielded the lower range T2m estimates near 11ms, discussed in the previous section 

and evident in Figure 5.10, were – mainly due to the post-processing strategy – an 

order of magnitude smaller in size (0 to 100 pixels) than the average size (several 

hundreds of pixels) of individual muscle ROIs across all subjects. The segmentation 

process, deliberately excluding non-muscle tissue types as fat, nerves and fascia, has 

also had an impact on this by further reducing the size of muscle ROIs in many cases.    

Histogram metrics 

There is substantial variability observed between whole cross-sectional muscle 

median values (Figure 5.13) and distributions in individual ROIs (Figure 5.9 and Figure 

5.10) created in part by variations in pixel numbers of individual muscle ROIs. These 

data also imply that disease progression can cause both increase and decreased T2m 

as well as affecting ff, therefore impacting their distributions’ shape mainly by 

increasing their width. These observations are quantified in more detail in the 

histogram metrics analysis presented in this section. In addition to the excluded 

healthy volunteer dataset mentioned in the previous section, ffd for one patient (at 

the 6 months follow up scan) showed marked inconsistencies both quantitatively and 

qualitatively with the remaining data, possibly due to an error in the fat-water 

separation process (water and fat signal components’ mislabelled (swapping)), and 

this subject’s ffd data was therefore also excluded from the following analysis. In 
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Figure 5.25 summary histogram metrics are shown from all participants and study 

scanning time points, at this stage ignoring differences in the patients’ disease 

severity at baseline.  

 

Figure 5.25: Forearm single-slice all muscles T2m histogram metrics comparison for healthy 
controls (in grey) and DMD patients (blue) at baseline, 6 months and 1 year follow-up 
showing median (top left), full width at quarter maximum (top right), 75th percentile (bottom 
left) and skewness (bottom right) of the estimated T2m distributions. 

The metrics plotted are the median, full width at quarter maximum (fwqm), 75th 

percentile and skewness from the distributions of estimated T2m from the entire 

forearm cross-sectional area (using the parameter estimate maps of the segmented 

slice produced as described in section 5.2 and after the quality control steps 

described in section 5.3). Figure 5.26 and Figure 5.27 show the equivalent ffa and ffd 

histogram metrics. To compute and extract these histogram metrics and the 

corresponding text files containing them, custom-written software tools were 
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created by the current author using Matlab code, using default functions wherever 

possible (i.e. the main histogram chart, skewness and kurtosis). A unit binwidth was 

used for both T2m and ff (ms and % respectively). 

 

Figure 5.26: Forearm single-slice all muscles ffa histogram metrics for healthy controls (in 
grey) and DMD patients (blue) at baseline, 6 months and 1 year follow-up. Shown are median 
(top left), full width at quarter maximum (top right), 75th percentile (bottom left) and 
skewness (bottom right) of the ffa (apparent, sEPG-MLE ff) estimates’ distributions. 
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Figure 5.27: Forearm single-slice all muscles histogram metrics for healthy controls (in grey) 
and DMD patients (blue) at baseline, 6 months and 1 year follow-up. Shown are median (top 
left), full width at quarter maximum (top right), 75th percentile (bottom left) and skewness 
(bottom right) of the ffd (Dixon ff) estimates’ distributions.  

The main observations were decreased T2m and increased ffa and ffd for patients 

compared to healthy controls, with wider (increased fwqm) and more skewed 

(reduced skewness) distributions, and more dispersed ranges of values (broader 75th 

percentiles’ range). Results showed also a tendency to decrease longitudinally – 

except for skewness where numerical results are somehow reversed since higher 

skewness is denoted by smaller numbers. However, for the individuals for which 

longitudinal data were available, 4 subjects showed increases, and from the 4 that 

decreased 2 subjects had their minimum and maximum values respectively at the 

intermediate time point at 6 months. Increases were more marked for ffd, clearly 

manifested for 5 subjects while 2 appeared rather stable and 1 showed decrease.      
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ANOVA revealed significant differences between healthy volunteers and patients at 

baseline for all 3 parameters, with greater significance for skewness and fwqm than 

for 75th percentile and medians (Table 5.3). No significant differences were found 

between the patients’ longitudinal measurements.     

Table 5.3: One way ANOVA comparisons between healthy volunteers and patients and for 
patients longitudinally (baseline – 6 months – 1 year examination times) for the T2m, ffa and 
ffd histogram metrics; p-values for statistically significant differences (p<0.05) are shown in 
blue colour, otherwise in red.  

Histogram metrics ANOVA 
(p-values) 

CTR vs. DMD 
baseline 

DMD baseline – 
6m – 1y 

T2m 

median 0.0263 0.6121 

fwqm 0 (<10-5) 0.0604 

75th percentile 0.4315 0.4696 

skewness 0 (<10-5) 0.1168 

ffa 

median 0.0004 0.6633 

fwqm 0.0003 0.7628 

75th percentile 0.0001 0.7156 

skewness 0 (<10-5) 0.7237 

ffd 

median 0.004 0.1383 

fwqm 0.0165 0.2106 

75th percentile 0.003 0.1964 

skewness 0 (<10-5) 0.4009 

    

The longitudinal forearm cross-sectional median T2m plotted against the time for 

which each patient was recorded as being non-ambulant, a potential surrogate for 

disease severity, are shown in Figure 5.28 and the corresponding apparent (sEPG-

MLE) ff values in Figure 5.29.    
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Figure 5.28: Dependence of the forearm cross-sectional median T2m on time non-ambulant 
for DMD patients. Lines connect longitudinal results (between baseline, 6 months and 1 year 
scans) for the same individual where they exist. The red points are data for the non-steroid 
treated patient.    

 

Figure 5.29: Dependence of the forearm cross-sectional median ffa on time non-ambulant for 
DMD patients. Lines connect longitudinal results (between baseline, 6 months and 1 year 
scans) for the same individual where they exist. The red points are data for the non-steroid 
treated patient.  

The changes with time described previously (Figure 5.25) are more clearly shown 

here: a tendency for decreasing T2m with months non ambulant in 4 of the 8 
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individuals for which longitudinal data were available, and an apparent increase for 

the remaining 4. Additionally, in 3 of the 4 subjects for which T2m increased this 

occurred in the first 24 months non ambulant, while in 3 of the 4 subjects for which 

T2m decreased this occurred after the first 24 months non ambulant. Similar 

tendencies are observed in the median ffa results, suggesting transient changes in the 

dependence of disease involvement on the duration of time non ambulant.  

Representative T2m and ffa maps from the different time points of the study are 

shown below.  The examples shown in Figure 5.30 are from relatively good quality 

datasets of the study. While small numbers of pixels were excluded in both due to 

the post-fitting quality control, results for both subjects followed the main tendencies 

described above. For instance T2m for subject 3 (top row maps) show a decrease 

longitudinally (medians: 26.1, 19.9 and 19.5ms, all scans after 24 months non 

ambulant).     
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Figure 5.30: Examples T2m and ffa maps from relatively good quality DMD study datasets 
(subject 3 above and subject 4 below, as referenced in Figure 5.6, Figure 5.10 and Figure 5.11) 
along the different time points (columns). These may be considered as typical parameter 
maps in terms of quality of fitting and physiological results.   

In contrast the cases presented in Figure 5.31 however may be considered atypical in 

terms of quality of fit, and pathologically. Visible effects of motion artefacts and of 

signal dropouts are observed in the parameter maps of subject 6, especially at 

baseline, and this may be related to its somewhat reduced T2m values at the disease 

onset stages (only a few months non ambulant). Large numbers of pixels were 

excluded for subject 2 at the 6 months measurement due to the collapsing signals 

effect (section 5.5.1) while the reduced median T2m atvbaseline compared to 1 year 
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for this participant was visually inconsistent in magnitude with the T2m trajectories 

for all the other subjects.    

 

Figure 5.31: Examples T2m and ffa maps from atypical DMD study datasets (subject 6 above 
and subject 2 below, as referenced in Figure 5.6, Figure 5.10 and Figure 5.11) along the 
different time points (columns). Sub-optimal quality of fitting was observed for subject 6 with 
visible motion artefacts and signal drop-outs, while large numbers of pixels were excluded 
for subject 2 due to the collapsing signals effects described in section 5.5.1. They were also 
rather different in terms of physiological interpretation (inset, based on Figure 5.29) 
compared to the rest of the subjects.      
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However the quality of both the fitting and the raw data for the remaining pixels was 

at acceptable levels suggesting that this observation may be due to physiological 

processes (e.g. muscle compression, tremor, steroid treatment effects, unknown 

exercise changes etc.).                        

Comparisons with alternative established methods 

Dixon method 

As previously mentioned, a first report describing Dixon ff findings in this study has 

previously been published (section 5.1). However in that work no corrections for ffd 

were considered and additionally different data inclusion criteria (e.g. due to data 

quality) were used. This may be taken into consideration when comparing results and 

conclusions between that and the present work.      

The results presented in Figure 5.23 and in Figure 5.27 (as compared to Figure 5.26) 

give a detailed comparison between ffa and ffd. For completeness the dependence of 

T2m vs ffd is additionally shown in Figure 5.32 below.      
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Figure 5.32: Plot of the sEPG-MLE T2m (ms) vs ffd (%). Values shown are media values across 
the entire segmented muscle area  

The above graph reveals for the patients a largely uniform broad distribution of the 

estimated T2m vs. the independently determined ffd with a tendency to decrease as 

ffd increases. This is in agreement with the results shown previously for both T2m vs. 

ffa (Figure 5.6) and the dependence of T2m and ffa on time non ambulant (Figure 5.28 

and Figure 5.29). Taken together these results suggest that this marginal tendency 

for decreasing T2m correlates with both increasing ff and with time non ambulant, 

since increasing ff is also a manifestation of disease progression.   

Exponential models and LSQ minimization 

It is of interest, in particular to allow comparison of our results with those of older 

studies, to compare for this dataset the performance of previously used exponential 

T2 decay models (section 2.3) with the sEPG MLE approach developed here. The 

exponential model used here for comparison was the equivalent of the multi-

component sEPG model used to produce the above results, incorporating a single 
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component term for muscle linked through the ff parameter to a fixed parameter 

mono-exponential plus baseline (constant) model for fat (section 5.2). This model  

was fitted to the CPMG data from this study using a LSQ algorithm used in previously 

presented work by the author (Zafeiropoulos, 2016). Representative results 

comparing estimates obtained using the two methods, namely EXP-LSQ and sEPG-

MLE as they previously have been labelled (Chapter 4, section 4.4), are presented in 

Figure 5.33.      

 

Figure 5.33: Comparison between the EXP-LSQ and sEPG-MLE methods’ parameter estimate 
results, plotted in dark and light grey for healthy volunteers, and in blue and cyan for DMD 
patients respectively. Top: forearm cross-sectional median values for all time points available 
(for patients); bottom: individual muscle ROIs for controls and patients at baseline. Left 
column: T2m results; right column: (apparent) ff results. EXP-LSQ estimation produces higher 
overall values than the respective sEPG-MLE results.   

The clear elevation of the EXP-LSQ results compared to the sEPG-MLE estimates is 

consistent with the results from the respective experiment with phantom data and 
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with ALS-KD study data as described in Chapter 4, section 4.4. It can be seen that the 

LSQ approach leads to overestimated T2m compared with the sEPG MLE method, 

although the degree of dispersion and change with disease were generally similar.         

5.8 Discussion 

The sEPG-MLE fitting tool developed and presented in this work relies on a fixed 

parameter subsidiary 2-component model approximating the fat signal, combined 

with a single-component sEPG model for the water fraction signal to estimate T2m 

and ff as the main parameters of interest.  However the remaining model parameters 

– global amplitude α, the B1f field factor and the noise σN – are also of key importance 

in the optimisation of the method. In this work improvement in estimation accuracy 

has been achieved by the approaches used accounting for the behaviour of the latter 

two, B1f and σN. As shown in Chapter 3 and also in published work (McPhee and 

Wilman, 2017), the slice-selective RF pulse and gradient combination used to produce 

CPMG signals cause non-symmetric behaviour for symmetric B1f deviations above or 

below its ideal 100% value, and the sEPG model implemented here accounts for that. 

The use of the MLE method to fit to that model then properly accounts for the Rician 

noise floor in magnitude-reconstructed image data. Additionally, spatial 

regularisation of B1f polarity, careful post-fitting quality control and parameter space 

gridding strategies helped to improve the reliability of the finally presented 

parameter estimate maps.    

A main finding in this work is the overall reduction seen in T2m due to disease 

progression. This is primarily demonstrated by the significant reduction of T2m 
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between patients and controls (Table 5.3) and an additional tendency for mild 

decrease seen in both the follow up scans’ results (Figure 5.25) and the dependence 

on time non-ambulant results (Figure 5.28). These observations are consistent with 

the findings published in a quantitative MRI study on forearm data from DMD 

patients (Wary et al., 2015). One of the main conclusions from that work is that T2m 

in the more severely affected non ambulant patients, similar to the cohort examined 

here, decreases both with time and compared to controls; since fat content in 

contrast increases, this demonstrates that “inflammation/oedema and fat infiltration 

progress in opposite directions with disease evolution” as those authors concluded. 

An additional feature is that T2m in flexors appears slightly elevated compared to 

extensors along with time non ambulant (Figure 5.10, Figure 5.13, Figure 5.33), but 

this pattern becomes diffuse for the later disease stages. Other than fat content, T2m 

has been reported to be restricted also by treatment with steroids (Hogrel et al., 

2016). All these observations show clear similarities with the results presented in this 

chapter. The results from both previous findings and this work are also corroborated 

from spectroscopic studies showing that water T2 decreases with increasing ff in 

general (Schlaeger et al., 2019). While the overall trends shown in this work are 

similar with those presented in the above forearm DMD study (Wary et al., 2015), the 

range of T2m values with the sEPG-MLE algorithm used here are about 10ms lower 

overall compared to the results from the aforementioned paper which may be 

explained – at least partly – from the apparent overestimation of T2 when using 

exponential models as has been previously demonstrated (sections 5.6 and 4.4). An 

additional interesting feature revealed here is the dependence of the estimated 

parameters on time non ambulant, showing a tendency to also increase initially (i.e. 
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within the first 24 months) and then decrease (T2m, Figure 5.28) or potentially 

stabilise (ff, Figure 5.29) at later stages, suggesting transient changes during disease 

progression. Importantly, such transient changes may be convolved in the 

measurements with factors relating to muscle behaviours such as motion, both 

macroscopic (e.g. tremor) and microscopic, muscle compression or stiffness, effects 

of exercise, which were not controlled for here, and treatment effects. These may 

explain the large differences between the measurements at different time point seen 

in some cases.       

Similar findings have been reported in DMD MRI studies of the lower limbs, however 

a main difference in those cases is that despite disease progression causing 

progressive T2m reduction, it remains higher for patients than for controls in contrast 

with the results presented here. Increasing fibrosis – in addition to steroid use and 

fat infiltration – has been considered as an additional potential mechanism for the 

observed T2m reduction with time (Forbes et al., 2014, Arpan et al., 2014). Fibrosis 

therefore may be one of the physiological processes causing the fast decaying T2m 

signals in some muscle regions in patients, examined in section 5.5. An additional 

process might be disease related muscle motor unit fasciculation effects (Whittaker 

et al., 2019) causing loss of signal in a similar way to motion effects (artefacts). Even 

when attempting to correct for fat content, different modalities produce different 

absolute results; this can be more clearly seen in healthy controls where yielded 

values span between 25ms e.g. spectroscopic T2m in the thigh (Forbes et al., 2014) – 

consistent as well with the results presented here – and 35ms or above e.g. 

relaxometry T2m in the forearm (Wary et al., 2015). On the other hand, changes due 
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to disease often do not exceed a range of 2 to 3ms, thus obscuring the apparent 

trends. Overlapping ranges and opposite directions in the T2m longitudinal evolution 

are also seen in the results both here and in published work. For those reasons 

histogram metrics other than the median or the mean could more usefully describe  

T2m distribution changes, which might not be fully represented by measures of central 

tendency (e.g. Figure 5.25).  

Both the validation in this data set of the secondary 2-component fat model and the 

comparisons with established methods were seen to be largely successful. The fixed 

parameters for the fat model emerged virtually identical to the ones estimated when 

initially developing the method (Chapter 3) – a process accomplished with use of a 

higher quality dataset from a completely different anatomical location and 

participant demographic. The corrections used for ffd in order to better match it with 

ffa on the one hand confirmed the findings supporting their similarities already 

published (Azzabou et al., 2015), and on the other hand may indicate useful directions 

for further improvement. Finally, comparisons of the sEPG-MLE with the more 

conventional exponential LSQ signal model and parameter estimation methods were 

closely similar to the behaviour seen previously in overall higher quality in vivo and 

phantom datasets. Despite the encountered issues regarding the quality of data 

analysed here, i.e. shorter echo train, signal dropouts and artefacts etc., results were 

interpretable and consistent with other studies’ outcomes; careful attention to post-

fitting quality control seemed to play a key role in that achievement. Effects of the 

acquisition conditions and settings on the parameter estimation are further explored 

in a more general sense in the next chapter.                    
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5.9 Summary and Conclusions 

Overview of the results (as in section 5.7 mainly) suggests that competing processes 

contribute to the T2m reduction in DMD patients compared to healthy controls, and 

to further decreases with time non ambulant: increasing fat infiltration, steroid 

treatment combined with receding inflammation as disease progresses and possibly 

also increasing fibrosis, appear to be the main physiological mechanisms behind 

these observations. Additional factors such as patient discomfort, stiffness and other 

motion-including conditions may also play a role. On the other hand fat infiltration 

appears to increase steadily towards stable levels at later stages of the disease. 

In summary: 

• Calibration of the secondary 2-component fat model used within the sEPG-

MLE method was consistent with the behaviour seen during development of 

the main algorithm (Chapter 3). 

• Post processing of the results, i.e. discarding extreme or physically not 

meaningful values, is an important step in the interpretation and validation of 

results – for instance in comparisons with more conventional or established 

methods. It also appears to largely account for the acquisition imperfections 

(shorter echo train, motion artefacts, B1f and gradient errors etc.) existing in 

this dataset.  

• T2m emerges significantly lower for DMD patients than for healthy controls, 

largely stable across the ff spectrum, showing however a tendency to further 

decrease with time non ambulant and the underlying physiological processes.  
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• Comparison with Dixon method ff revealed a closer correlation when using 

corrections for both methods: MT and T1-weighting corrections for ffa and fat 

multi-peak spectrum orientated and T2*-weighting corrections for ffd.   

• sEPG-MLE T2m estimation is shown consistent with existing methods: both 

qualitatively with the trends seen in multi-component exponential model-

based approaches – which nevertheless are seen to generally overestimate 

results (in absolute values) – and quantitatively with spectroscopic methods. 

• Examination of the results longitudinally with time non-ambulant confirms 

that T2m generally decreases whereas ffa increases with disease progression.   
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Chapter 6. Acquisition design and optimisation 

In this chapter the impact of acquisition parameter choice upon CPMG parameter 

estimate bias and variance, as well as the impact of coil signal combination and 

imaging acceleration strategies will be discussed in detail. The intention is to better 

characterize these data collection aspects and to provide guidance helpful in the 

optimal design of practical imaging protocols for future clinical studies.   

Echo train length (ETL, number of echoes) and echo spacing (ΔTE, in ms) can be 

readily specified by the operator (at the scanner console) and their impact is explored 

in sections 6.2 and 6.3 respectively. Bandwidth is also operator-controlled and 

directly affects SNR as presented in section 6.4. Parallel imaging techniques and 

acquisition acceleration choices, which depend on the scanner manufacturer’s 

software, settings for this, and coils and coil combination methods used are discussed 

in section 6.5. Overall discussion and conclusions are given in section 6.6.        

6.1 Introduction 

Recalling the discussion regarding SNR in section 2.1.9, the generic expression 

describing the factors affecting this was given as 

 𝑆𝑆𝑆𝑆𝑅𝑅 ∝ 𝛥𝛥𝑥𝑥 · 𝛥𝛥𝛥𝛥 · 𝛥𝛥𝛥𝛥 · 𝐹𝐹𝑁𝑁𝑆𝑆�
𝑁𝑁𝑁𝑁𝑁𝑁·𝑁𝑁𝑃𝑃𝑛𝑛·𝑁𝑁𝐹𝐹𝑛𝑛

𝐵𝐵𝐵𝐵
  

where 𝐹𝐹𝑁𝑁𝑆𝑆 ∝ �1 − 𝑒𝑒−
𝑛𝑛𝑇𝑇
𝑛𝑛1� · 𝑒𝑒−

𝑛𝑛𝑛𝑛
𝑛𝑛2  is the sequence contrast-specific signal decay factor, 

in this case for a MESE type sequence. In practical terms the parameters that can 
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directly and easily be adjusted for a given MESE acquisition are the echo spacing (ΔTE) 

and echo train length (ETL), and the chosen bandwidth (BW). TR plays also a role via 

T1 contrast effects (section 3.3.2) and the total scan duration. Choice of the pixel 

dimensions affects SNR and influences partial volume and chemical shift effects, thus 

affecting also the parameter estimation. Multi-element coil use and parallel imaging 

reconstruction affect the acquired data quality predominantly by influencing the 

noise statistical and spatial distribution (compared to simple single coil 2-channel 

signal detection) and potential errors due to the k-space sampling trajectory.   

This chapter investigates the impact upon sEPG model parameter estimation of these 

acquisition parameter choices using simulation experiments, test object acquisitions 

and examples of in vivo data. For the phantom experiments described in this chapter 

the ISMRM/NIST System Phantom as described in sections 3.1 and 3.2.10 was 

examined again at 3T (Siemens Magnetom Prisma) using a transmit/receive (‘TxRx’) 

head coil, or alternatively for comparison a 20-channel head & neck receive coil 

(section 6.5), with a conventional MESE imaging sequence (TR= 3500ms, varying ΔTEs 

and ETLs as described in the following sections, with a single 2 mm slice at the T2 

spheres level of the phantom, matrix 210x210, in-plane resolution 0.8x0.8mm). For 

the in vivo experiments data from the motor neuron diseases study patient 

acquisitions (Chapter 4) were used with varying ETLs as presented at the end of 

section 6.2.    
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6.2 Echo train length  

It is important to establish the effect, assuming for the time being a constant inter-

echo spacing, of ETL upon parameter estimation. It might be assumed that increasing 

ETL will improve parameter estimation accuracy, but a compromise may be required 

since extended ETLs may reduce the number of slices that fit into a given TR in multi-

slice imaging, thereby reducing anatomical coverage.  

As a first step to explore the impact of varying ETL upon practical CPMG data 

acquisition parameter estimation accuracy, results from a single component sEPG 

model simulation experiment are presented in Figure 6.1 below. T2, B1f, α and noise 

σN were estimated by MLE minimization for a single component sEPG signal model 

using 1000 replicates at each SNR (25, 50 and 75, after adding Rician noise) for two 

representative ETLs (12 and 64) and with 10ms TE to match practical clinical 

acquisitions. The ETL of 12 was chosen to match the shortest test-object experiment 

value, and 64 as the longest likely to be practical for in vivo imaging, e.g. the longest 

that can fit into a reasonable TR to achieve the desired (multi-slice) anatomical 

coverage. An important additional reason for examining such long echo trains where 

practically all signal will have decayed after the 20th echo (for T2=30ms) is investigate 

the effect of more fully sampling the Rician noise distribution which plays an 

important role under the MLE approach proposed in this work. As can be seen in both 

cases there was a negative bias in median estimated T2 relative to the ground truth 

value, which decreased as SNR increased. In this case it appeared that this bias was 

slightly worse for the longer ETL. The comparative dispersion of the T2 estimates 

(inter-percentile ranges) was similar for both ETLs.     
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Figure 6.1: Comparison of the effects of the largest available differences in ETL (between 64 
and 12) for 3 different SNRs in a single component (T2) model simulations experiment. Lower 
SNR appears to compromise estimation in terms of bias and precision more than reduced ETL 
and longer ETL improves noise σN estimation but not T2 estimation. Dotted lines represent 
the ground truth T2 (30ms) (top panels) and ground truth highest noise σN (for SNR 25) 
(bottom panels).     

On the other hand the model Rician noise σN is more accurately estimated with longer 

ETL. A plausible explanation for these opposite trends in T2 and noise σN estimation 

bias may be that for shorter ETL, overall signal along the echo train is higher, since 

for the ground truth T2 in these experiments the signal reaches the noise floor after 

the 20th echo approximately. This would be expected to directly affect the cumulative 

loglik as the sum of the logarithms of the Rician PDFs of the entire echo train (section 

2.2.3), since noise σN impacts their widths.      
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To provide validation of the single T2 component simulations experiment results, the 

effect of ETL on parameter estimation was investigated experimentally in test objects 

acquisitions, fitting the data pixel-wise again with a single component model 

appropriate to the available phantom. A single component sEPG model and the MLE 

approach was used as described at the phantom data validation stage (section 3.2.10) 

of the proposed sEPG-MLE method introduced in Chapter 3. ΔTE was 9.9ms and ETL 

values of 17 and 12,  chosen to match the two in vivo protocols used in Chapter 4 and 

in Chapter 5, were compared yielding the results presented in Figure 6.2. Shortening 

the ETL from 17 to 12 caused a marginal increase (≤ 1ms) in the median estimated T2, 

for nominal T2s < 97ms, while overall estimates remain largely consistent with the 

manufacturer-provided calibration values. This tendency is consistent with the 

results of the simulations experiment (Figure 6.1) and additionally suggests that the 

phantom ground truth T2 values may in reality be higher than those estimated (and 

not lower). The larger deviation for the highest T2 133ms sphere may be due to a 

phantom calibration error or with slower decays (longer T2) being intrinsically 

associated with greater T2 uncertainty (section 3.2.10). The inter-percentile ranges 

appear to become larger with higher T2 and wider for the shorter ETL. The average 

SNR for this experiment (with respect to the highest echo, section 3.1) was estimated 

empirically to be 50, comparable level with the simulation experiments described 

above.  
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Figure 6.2: The effect of reducing the echo train length from 17 to 12 echoes in phantom 
CPMG data fitting for five different T2 m spheres. T2 estimates (reporting the median from 
each phantom T2 sphere/ROI) remain close to the ground truth values (in blue, dotted lines) 
however marginal increase is observed for the shorter echo train. 

An important point that should be taken into account here is that the accuracy and 

precision of the ground truth T2 values (as per manufacturer calibration) is not known 

and they can only be considered as the best available approximation.  

To proceed to cases comparable to real in vivo studies, further simulation 

experiments were conducted where, for a multi-component model including both 

water and fat signals as developed in Chapter 3, 1000 sEPG signal replicas were 

produced per ETL investigated and Rician noise added to achieve three different 

levels of SNR (25, 50 and 75), for a range of ff between 0 and 100%. ETL was initially 

varied across successive values between 12 and 64 and TE was 10ms to match typical 

protocol settings in clinical studies presented in this thesis and in the literature. 
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Simulations were performed in MATLAB using MLE minimization and the multi-

component sEPG model described in section 3.3.2, Equation 14, to estimate muscle 

water T2 (T2m), apparent fat fraction (ffa), B1 field factor (B1f), overall amplitude (α) 

and noise standard deviation (σN). This was also the forward model, with an 

incorporated secondary 2-component model describing fat signals.  

 

Figure 6.3: Overview of the dependence of the T2m and ffa estimates on varying ETL (in a range 
between 64 and 12 echoes) and 3 different SNRs (25, 50 and 75), and the corresponding B1f 
and σN estimates (here shown only for SNR 50), based on simulations (1000 repetitions for 
each set). Ground truth values were 30ms T2m, ff varying between 0 and 100% as shown on 
the x-axes of the last (σN) row, σN varied as per highest echo (between 5.8 and 8.1a.u.) to 
produce the desired SNRs mentioned above and B1f was 90%.          

Ground truth values were 30ms T2m, ff varying as above, σN varied as per highest echo 

(between 5.8 and 8.1a.u.) to produce the aforementioned desired SNRs and B1f was 

90%, as a representative value typical in real acquisitions and in agreement with the 
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experiments of Chapter 3. An overview of the resulting parameter estimation 

behaviour is shown in Figure 6.3.   

 

Figure 6.4: Comparison of the effects upon multi-component sEPG model parameter 
estimates of the most extreme in ETL and SNR conditions in the simulations experiment 
described in Figure 6.3. In general lowering SNR appears to impact on estimate bias and 
precision more than reducing ETL. The whisker and box plots are displayed in compact 
formatting where solid (middle) bars indicate the 25th and 75th percentiles, the whiskers are 
displayed as lines (extending to the most extreme data points not considered outliers), and 
the outliers are plotted as dots.     
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In Figure 6.4 results are shown in closer detail to compare in more detail the 

simulations most different in terms of the ETL and SNR, and in Figure 6.5 the 

corresponding differences in bias and SD are shown.     

 

Figure 6.5: The bias and SD in the parameter estimates corresponding to the results 
presented in Figure 6.4.   

SNR clearly appears to have a bigger impact upon the parameter estimation than ETL, 

and more in terms of accuracy (bias) than in precision (SD). 
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Bias with respect to T2m estimation is more marked for high ff values where it appears 

negative (T2m underestimation), and similar trends are seen for ffa where additionally 

some positive bias appears at low ff ranges.  

Analogous results for in vivo data acquisitions are demonstrated in Figure 6.7., using 

MLE minimization and the same multi-component sEPG model as described in the 

initial simulation experiment above (Figure 6.3) to estimate thigh cross-section 

median T2m, ffa, B1f, α and noise σN (Figure 6.6) for a healthy volunteer and an ALS 

patient (Chapter 4). This is to represent both the situation where variance is 

predominantly due to fitting variations (narrow parameter distributions, healthy 

volunteer) and the case where disease also impacts results (wider parameter 

distributions, patient).   

 

Figure 6.6: In this experiment all muscle ROIs were used to produce parameter estimate maps 
and provide the respective thigh cross-sectional (‘global segmentation’) median.   

SNR in these datasets was mostly above 50 (sections 3.1 and 4.4). Three different 

ETLs (22, 17 and 12) were investigated, selected as subsets of the echoes from a single 

ETL=22 acquisition.         
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Figure 6.7: The effect of reducing ETL from 22 to 17 and then to 12 echoes for CPMG in vivo 
data on muscle T2m and ffa estimates for a healthy volunteer and an ALS patient. Parameter 
estimates remain within the expected ranges, but with estimated T2m decreasing and ffa 
conversely increasing when reducing the ETL used in the fitting.    

Median estimated T2m remains very close to the expected values with and without 

presence of disease, showing a slight decrease for shorter echo trains – mostly less 

than 1ms – in healthy muscle, and more for the patient data. Conversely estimated 

ffa shows a clearer tendency to increase at lower ETL for the patient data while 

differences in the healthy muscle (very low ffa range) are rather imperceptible. The 

opposite trends seen in the single component T2 (phantom and simulations) vs the 
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multi component T2m (in vivo) behaviour (i.e. increase vs decrease) here are likely due 

to parameter correlation (interaction), predominantly between T2, ffa and σN, as this 

is demonstrated particularly for low ffs in Figure 6.5, and as was described in greater 

detail in previous chapters.    

The main outcome from the above experiments is that SNR appears to impact 

parameter estimation more drastically than ETL mainly in terms of bias. As was seen 

for many sub-optimal quality datasets in both Chapter 4 and Chapter 5, artefacts (due 

to B1 inhomogeneity, motion etc.) are in general associated with loss of SNR and 

negative bias in the parameter estimation. For reduced ETL the multi component MLE 

fitting to the sEPG model shows mostly negative bias in T2m estimation and positive 

bias in ffa at low ff ranges (up to 20% roughly) and changing to negative bias at higher 

ff as ETL is decreased. Decreasing SNR caused increasing T2 underestimation, 

consistent with observations for the single component sEPG model fitted to single 

component signals, however in contrast decreasing ETL in this case caused reduced 

bias in estimated T2, likely due to the effectively higher overall SNR of a shorter echo 

train, bringing the estimate closer to the ground truth values. Parameter estimate 

correlation and trade-off also occurs and depends in turn on the T2 and ff ranges of 

interest and on SNR; this may explain the differences between the single- and multi-

component model fitting results. Overall, intermediate ETLs (i.e. above 15) may best 

serve the purpose of achieving adequate precision while avoiding excessively long 

echo trains which may be impractical in terms of sequence design, power deposition 

and anatomical coverage, and typically provide low signal at the later echoes.                 
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6.3 Echo spacing 

This section investigates the effect upon T2m and ffa estimation of changing the inter-

echo spacing ΔTE for a fixed ETL. The approach adopted in this section is conceptually 

based on the work related to echo spacing optimisation published by Dula et al. (Dula 

et al., 2009). In that work the precision of the parameter estimation is assessed via 

each parameter estimate’s ‘SNR’, defined as its mean over its SD. This was 

investigated by those authors using both Cramer-Rao lower bound related 

calculations and simulations fitting to simulated signals with Gaussian noise added 

(similar to the work presented in previous chapters of this thesis). The model used in 

that work was bi-exponential with T2a, T2b and Ma, Mb the T2s and amplitudes of the 

two respective exponential components. Examples of their results are shown in 

Figure 6.8.  

 

Figure 6.8: Left: plots of SNR of four estimated parameters (indicated by line colour) for a bi-
exponential model of transverse relaxation, as a function of ΔTE and with fixed ETL = 200. 
Also shown as dashed lines are the results from the same calculations made without 
considering the minimum sequence ‘play-out time’ determined from the duration of the RF 
and gradients pulses required for a real world sequence used. Right: example plots of SNR of 
the short T2 component amplitude estimate as a function of TE, taken from a range of 
different T2a and T2b values (Dula et al., 2009)     
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It was demonstrated that the dependence of estimated parameter SNR upon ΔTE 

showed quite broad maxima, and the optimal TEs, i.e. those providing the highest 

parameter estimate SNRs, were independent of the two components’ relative 

amplitudes, the baseline SNR, and the number of echoes. Therefore a similar 

dependence of estimated T2 SNR for the single component case, where the amplitude 

of the second bi-exponential component is effectively fixed at zero, on ΔTE may be 

expected. Key to this approach however were the assumptions related to the 

available ΔTE choice. This is considered to be limited by the time required for fixed 

events like the RF refocusing pulse, spoiler gradients and ramp-time delays, such that 

the only way to minimise ΔTE is by reducing the acquisition time which will in turn 

increase bandwidth (BW). The inherent trade-off in this acquisition time reduction is 

that because the image SNR is inversely proportional to the square root of BW, so 

reducing ΔTE through increased BW also decreases the SNR. Reducing ΔTE in principle 

improves the parameter estimates’ precision, however the concomitantly increased 

BW leads to decreased SNR which deteriorates this precision. This appears to be the 

mechanism driving the behaviour of the parameter estimate SNRs which under this 

condition show a maximum (denoted by the diamond symbols) with respect to ΔTE, 

including in particular for the solid red and light blue curves at the left of Figure 6.8 

corresponding to the behaviour of the two components’ respective T2s. On the other 

hand the dashed red and light blue lines show the ΔTE dependence of the two T2s 

SNR in the theoretical case that the finite RF pulse and gradient durations may be 

ignored, where the estimate’s SNRs simply rise to maximum as TE tends to zero.  
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When attempting to use the above findings to inform the effect of ΔTE upon 

parameter estimation for real CPMG imaging data, the effects of finite RF and 

gradient duration are clearly significant, defining both the range of practically 

accessible minimum TEs for a particular sequence, and the effect of that choice upon 

estimate precision. In the following experiments acquiring data from a test object it 

was seen that in practical terms, due to the minimum RF and gradient pulse 

durations, the minimum TE available was 8ms for imaging parameters chosen (454 

Hz/pixel bandwidth, 2 mm slice thickness, matrix 210x210, in-plane resolution 

0.8x0.8 mm) (Siemens Magnetom Prisma scanner) since the sampling time must play 

out between the RF and non-read gradient pulses, the durations of which are fixed 

for a given bandwidth and slice thickness. Four data sets were acquired with ΔTE 

varied between 8, 10, 12 and 15ms, TR=3500ms, ETL=22, a single 2 mm slice at the T2 

spheres level from which five T2 ROIs (discs) of 113 pixels each were extracted, matrix 

210x210, in-plane resolution 0.8x0.8 mm using a simple 2-channel quadrature 

transmit/receive (‘TxRx’) head coil. T2s were estimated by fitting a single component 

sEPG model to the data using the MLE method. The dependence of the estimated T2 

SNR on varying TE is shown in Figure 6.9  (estimated T2 SNR= 𝑖𝑖𝑖𝑖𝑏𝑏𝑖𝑖𝑚𝑚𝑏𝑏 𝑇𝑇2
𝑏𝑏𝑖𝑖𝑑𝑑𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏 𝑇𝑇2

 , where 

‘deviation T2’ is defined as half the width between the 15.9 and 84.1 percentile ≈ 

68.2% of the data, equivalent to 1 SD of a Gaussian distribution, to account for non-

normally distributed data).  
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Figure 6.9: The effect of varying ΔTE between 8, 10, 12 and 15ms (circles) on T2 estimation, 
in phantom CPMG data fitting for five different T2 spheres. Estimated T2 SNR ( 𝑖𝑖𝑖𝑖𝑏𝑏𝑖𝑖𝑚𝑚𝑏𝑏 𝑇𝑇2

𝑏𝑏𝑖𝑖𝑑𝑑𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏 𝑇𝑇2
 ) 

appears to decrease in general when increasing ΔTE.  

As can be seen the effect of varying TE in these acquisitions broadly mimics the 

behaviour shown by the dashed curves in the left panel of Figure 6.8, corroborating 

the validity of the results of the previous calculations in real conditions. Estimated T2 

SNR ( 𝑖𝑖𝑖𝑖𝑏𝑏𝑖𝑖𝑚𝑚𝑏𝑏 𝑇𝑇2
𝑏𝑏𝑖𝑖𝑑𝑑𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏 𝑇𝑇2

 ) decreases with increasing ΔTE, even though not strictly 

monotonically, which is likely to be related to variabilities involved in real 

experimental settings and the fact that T2 SNR is a ratio of large numbers (T2 

estimates) over small (their SDs) with relatively small ROIs of 112 pixels each (section 

6.1). Importantly, Gibbs ringing effects were visible in most raw images, which 

combined with motion/object stability and RF standing wave effects may impact the 
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above ratio (T2 SNR). Nevertheless the overall behaviour seen in these experimental 

results is consistent with the theoretical predictions.   

In general shorter TEs are estimated more precisely, as expected due to the higher 

SNR at those times. The ability to study the effects of further decreasing TE obviously 

depends on the settings accessible within the software of individual scanners due to 

the time frames of the sequence dependent fixed events (RF pulse shapes and 

duration, spoiler gradients, slew rates etc.). Given the limitations of the available 

systems, investigating this further is beyond the scope of this work.                

6.4 Bandwidth and SNR  

Continuing now to a discussion of the effect of BW on parameter estimate precision 

and bias, in this section an experiment investigating the effects of varying the receive 

bandwidth is presented. A phantom acquisition as described in the previous section, 

with TE=10ms and all other parameters identical was conducted. This was followed 

by two additional acquisitions, one with a halved and one with a roughly doubled 

receive bandwidth, keeping all other parameters the same. The BWs for the 3 

sequences were 454, 227 and 930 Hz per pixel respectively (nominal, half and double 

bandwidth). Image noise levels were estimated, firstly directly from the images using 

the signal background method (section 3.1) and secondly as an estimated parameter 

on fitting the data using the sEPG-MLE method proposed in this thesis. The results 

are presented in Table 6.1 below.    
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Table 6.1: Noise levels dependence on sequence receive bandwidth 

Bandwidth  Nominal Half Double 
Noise σN (a.u.) –   
direct measurement   

35.3 25.3 50.6 

‘√2 rule’ based 
expectation 

SD0=35.3 SD0/√2=24.9 SD0·√2=49.9 

Noise σN (a.u.) – sEPG-
MLE estimated      

17.5 12.5 23.8 

  

The expected ‘√2 rule’ relating noise σN and BW based on the factors affecting SNR 

previously mentioned (sections 2.1.9 and 6.1) appears to accurately hold between 

the three acquisitions, both for the empirical/experimental measurements and for 

the sEPG-MLE estimation. While in general the sEPG-MLE method was already seen 

in previous chapters to mildly underestimate noise levels, in this case its noise σN 

estimates were consistently a factor of 2 smaller than the directly measured values. 

This may be related to the potential bias both in the sEPG-MLE estimation – where 

σN is also one of the estimated parameters – due to imperfections as motion artefacts 

(e.g. test object vibration effects) and magnetic field inhomogeneity, and in the direct 

measurement where the assumptions of invariant noise σN across the image 

background may not hold due to the implied coil conditioning and image 

reconstruction technique.     

The effect of increasing the acquisition bandwidth while maintaining all other 

acquisition parameters constant – on T2 estimation is demonstrated for the five 

phantom sphere-ROIs in Figure 6.10 below.        
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Figure 6.10: The effect of increasing bandwidth by a factor of 2 below and above the default 
settings in phantom CPMG data fitting for five different T2 spheres.   

The behaviour seen appears to be very similar with the respective (SNR related) 

simulations results produced in sections 3.2.5 and 3.3.1 where small changes in the 

T2/T2m medians were seen, predominantly an increasing negative bias as SNR 

decreases, accompanied by noticeable broadening of the parameter estimate 

distributions. 

Note: the T2 estimates yielded in this experiment were 3 to 8% lower in general 

compared to the phantom validation results of section 3.3.4. Temperature 

differences are likely to play a role in this. The temperature of the object during the 

initial validation acquisition was recorded as 19.9°C, very close to the 20°C (293°K) 

temperature where the ground truth values calibration was conducted according to 

the manufacturer, whereas during the latter acquisition the recorded object 
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temperature was 19°C. T2 values for this phantom have been shown to decrease with 

decreasing temperature (Keenan et al., 2016). Additional processes related to 

diffusion effects (temperature and bulk motion dependent) and phantom positioning 

and geometry, are also likely to contribute to the aforementioned T2 estimation 

variations between different scans.     

6.5 Coil combination and acquisition acceleration effects 

In routine in vivo acquisitions it is common to improve SNR and reduce scan duration 

by using different coil combinations methods (presupposing the use of multi-element 

coils) and image acceleration techniques, which may impact on parameter 

estimation, in addition to the effects of sequence parameter choices previously 

described. These effects are explored in this section.   

In acquisitions using multi-element coil combinations the signal in each image pixel 

after reconstruction is expected to follow a non central χ2 distribution with degrees 

of freedom depending on the number of coil elements, assuming equal and non-

correlated noise σN between them (Bevan, 2013). Within the sEPG-MLE algorithm 

developed in this thesis the signal is assumed to follow a Rician distribution , which is 

the simplest case of a non central χ2 distribution with 2 degrees of freedom, 

corresponding to the 2 quadrature modes of a 2-channel quadrature 

transmit/receive (‘TxRx’) coil used in the simplest type of magnitude reconstructed 

image acquisitions. In Figure 6.11 the theoretical dependence of the reconstructed 

signal distribution on the number of coil elements and SNR (based on the ground 

truth noiseless signal) is shown.    
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Figure 6.11: The Gaussian and non central χ2 signal distributions as a function of SNR (M/σN, 
where M is the measured signal and σN the noise SD) for different numbers of coil elements 
m. Results are shown for ground truth noiseless signal of 1, 30, and 80 units and unit σN, 
corresponding to low, moderate and high SNR respectively (Bouhrara and Spencer, 2018)  

As can be seen for SNR above 30 and number of elements less than 32 the signal 

distribution approximates the Rician reasonably closely. Since this corresponds 

roughly to the type of acquisitions (coils used and image quality) most commonly 

encountered in the datasets analysed in this thesis, the Rician pdf assumption within 

the algorithm used will also be considered to be an adequate approximation in the 

experimental work presented in this section.        

In the test-object acquisition experiments presented here the following steps were 

taken: 

M/σN 
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1. Use of the simple 2-channel quadrature transmit/receive (‘TxRx’) head coil, 

and ‘performance’ gradient option offered at the scanner interface. This 

system gradient option allowed the minimum TE of 8ms used in section 6.3. 

2. The acquisition was then repeated with the scanner ‘fast’ gradient option – 

the more commonly used option – selected, and everything else identical.  

3. The acquisition was then repeated using a 20-channel head & neck receive 

coil using the scanner sum of squares (SoS) option for combination of the 

signals from the multi-element coil (MC) and everything else identical. 

4. Repetition of the MC acquisition combined with GRAPPA and R=2 (phase 

encoding reduction factor due to k-space under sampling) parallel imaging 

mode. 

5. Alternative reconstruction of the above MC images using the on-scanner 

‘adaptive coil combine’ (ACC) reconstruction (instead of SoS). 

6. Reconstruction also of the MC-GRAPPA images using ACC.  

All other acquisition conditions were as described in section 6.3 above. Parameters 

were estimated using the single-component sEPG-MLE method and model described 

in section 3.2.10. A comparison of the result for each of the above described 

procedures is summarised in Table 6.2. Parameter estimate SDs for all acquisition 

methods were comparable and stable overall, and thus are not shown for the sake of 

clarity. 
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Table 6.2: Dependence of the sEPG-MLE parameter estimates (reporting the median from 
each phantom T2 sphere/ROI) upon RF coil-element signal combination method, gradient 
mode, and parallel imaging acceleration method  

Nominal T2 sphere (ms) 31.97 46.42 64.07 96.89 133.27 
                                 Estimated T2 (ms) 
‘performance’ gradient   30.59 43.08 61.53 88.85 126.80 
‘fast’ gradient (TxRx) 30.90 43.26 61.78 89.37 126.00 
+ multi-coil (sum of sq.) 30.78 43.48 62.99 90.06 129.08 
+ GRAPPA (R=2) 30.61 43.48 61.89 89.36 126.61 
multi-coil (ACC) 30.67 43.79 61.93 88.90 126.89 
+ GRAPPA (R=2) 30.87 44.02 61.36 87.48 125.94 
                                  Estimated B1f (%) 
‘performance’ gradient   106.52 110.45 107.54 99.20 108.09 
‘fast’ gradient (TxRx) 104.94 109.69 107.79 98.95 107.33 
+ multi-coil (sum of sq.) 111.58 112.05 106.53 99.60 95.16 
+ GRAPPA (R=2) 110.54 111.09 108.68 93.98 108.98 
multi-coil (ACC) 87.17 85.85 107.54 101.01 108.28 
+ GRAPPA (R=2) 88.06 86.86 109.28 108.40 109.10 
             Estimated amplitude α (intercept) (a.u.) 
‘performance’ gradient   5024.73 5104.51 4897.87 4628.56 4642.37 
‘fast’ gradient (TxRx) 4990.74 5059.61 4903.55 4631.22 4615.74 
+ multi-coil (sum of sq.) 9138.60 9073.79 7388.88 6464.88 7081.43 
+ GRAPPA (R=2) 9123.29 9031.92 7514.61 6518.64 7178.67 
multi-coil (ACC) 9067.80 8964.97 7477.99 6497.07 7161.19 
+ GRAPPA (R=2) 8993.74 8907.05 7543.43 6623.40 7185.91 
                            Estimated noise σN (a.u.) 
‘performance’ gradient   18.23 17.16 16.84 16.70 16.50 
‘fast’ gradient (TxRx) 17.88 17.47 16.64 17.28 16.25 
+ multi-coil (sum of sq.) 30.49 17.84 14.88 14.16 15.02 
+ GRAPPA (R=2) 29.21 24.18 21.38 21.92 22.87 
multi-coil (ACC) 20.22 17.91 15.21 14.36 15.15 
+ GRAPPA (R=2) 28.12 26.08 22.06 22.88 22.95 

 

As can be seen T2 estimates were the most stable compared to the remaining 

estimated parameters – despite the overall temperature-dependent reduction 

(section 6.4) relative to the calibration values. B1f estimation was seen to be most 

affected when switching (from TxRx or SoS-MC) to ACC-MC acquisitions and to a 

lesser extend due to use of GRAPPA and sum of squares MC techniques. Due to the 

different coils used, amplitude (intercept) α estimates were markedly increased 

when using MC acquisitions, and more so for the shorter T2s, whereas these appeared 
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broadly stable when using the simple 2-channel coil. The latter is also observed for 

the noise σN estimates which additionally appear to increase mainly due to GRAPPA 

and again more for the shorter T2 spheres. Choice of gradient type (‘fast’ or 

‘performance’) is not seen to significantly affect estimation, for all parameters. 

Repeating this experiment for in vivo data (thigh images from a healthy volunteer 

using the sequence described in section 4.2), this time using the multi-component 

model described in section 3.3.4, produced the results presented in Table 6.3.  

Table 6.3: Dependence of the sEPG-MLE parameters (reporting the median from each 
anatomical ROI) on parallel imaging and acceleration techniques from in vivo data 

Anatomical ROI anterior medial posterior 
                Estimated T2 (ms) 
multi-coil – sum of sq.   29.98 30.23 28.82 
+ GRAPPA (R=2) 29.45 29.50 28.12 
multi-coil – ACC 30.92 31.64 30.93 
+ GRAPPA (R=2) 30.50 30.83 30.49 
                 Estimated ffa (%) 
multi-coil – sum of sq.   4.81 8.93 8.36 
+ GRAPPA (R=2) 4.91 8.56 9.65 
multi-coil – ACC 2.82 6.39 5.06 
+ GRAPPA (R=2) 2.67 5.99 5.14 
                 Estimated B1f (%) 
multi-coil – sum of sq.  99.67 99.95 102.33 
+ GRAPPA (R=2) 99.73 100.11 104.08 
multi-coil – ACC  99.52 99.40 99.39 
+ GRAPPA (R=2) 99.52 99.50 99.43 
 Est. amplitude α (intercept) (a.u.) 
multi-coil – sum of sq. 1814.18 1349.17 1178.53 
+ GRAPPA (R=2) 1806.63 1384.85 1193.64 
multi-coil – ACC  1798.64 1330.15 1139.32 
+ GRAPPA (R=2) 1786.78 1356.11 1146.54 
           Estimated noise σN (a.u.) 
multi-coil – sum of sq. 3.26 2.91 2.62 
+ GRAPPA (R=2) 4.14 5.22 3.73 
multi-coil – ACC  3.32 2.95 2.55 
+ GRAPPA (R=2) 4.19 5.44 3.61 
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In this experiment 3 representative uniform ROIs were analysed, enclosing the 

anterior, medial  and posterior thigh muscle compartments, following the 

classification adopted in the collaborative work in our centre (Klickovic et al., 2019) 

mentioned in sections 4.1 and 4.5 (Chapter 4). Only MC data using the 20-channel 

head & neck receive coil were collected (the previous two first steps using a simple 

2-channel coil were omitted as such a coil suitable for limb imaging was not available) 

and the multi-component sEPG model used in all previous in vivo data analyses in this 

work was used again. Similarly to the phantom results, using ACC-MC instead of sum 

of squares image reconstruction appears to affect parameter estimation more than 

the choice of using GRAPPA or not. However in this case it is T2m, ffa and to a lesser 

extend B1f that are affected more, while noise σN and α appear largely stable. In this 

more complex model than that used for the phantom data, parameter 

interdependence between T2m, ffa and B1f may also potentially amplify the acquisition 

related disparities seen in their estimates. For instance relatively higher T2m values in 

general correlate with lower range ffa estimates. B1f appears relatively more stable 

through all of the acquisition technique combinations, and also consistent with the 

expected behaviour seen for example in Figure 3.45, section 3.2.6, where typically B1 

field deviations are seen at particular regions such as the posterior or anterior medial 

areas. This may introduce additional parameter estimation complexity in such 

regions, as might be the case for the last column (‘posterior’ ROI) of  Table 6.3, where 

for instance, differences in the aforementioned parameters appear greater 

compared to the remaining results. The behaviour of B1f for all types of acquisitions 

is shown in Figure 6.12, highlighting a posterior anatomical region where estimation 

results behaved oppositely for sum of squares and ACC-MC reconstructions. Here 
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there were marked increases in B1f and ffa, and conversely a clear decrease in T2m 

correlates with sum of squares, and the converse for ACC-MC, while grappa 

introduced only marginal differences.    

 

Figure 6.12: B1f maps and histograms for all four types of in vivo data acquisition and 
reconstruction conditions. In the delineated posterior region B1f is clearly overestimated for 
sum of squares reconstruction while it is underestimated for ACC-MC, and this is 
accompanied by clear disparities between the associated T2m and ffa parameter estimates.   
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Interestingly, in the case that B1f is deliberately switched from the lower to the upper, 

overestimated region for the lower two ACC-MC reconstruction cases, median 

parameter estimates for that ROI remain relatively close to the initial ACC-MCC 

results, at 30.90 and 30.61ms for T2m and at 4.38 and 4.60% for ffa respectively. 

Equivalently in the case that B1f is deliberately switched to the lower, underestimated 

region for the upper two sum of squares-MC reconstruction cases, median estimates 

for that ROI remain close to the previous sum of squares-MC values at 29.64 and 

28.70ms for T2m and at 10.87 and 12.71% for ffa respectively. These observations 

suggest substantial differences between the two reconstruction methods which 

affect parameter estimation beyond any parameter interdependence effects. Since 

the in vivo studies presented in this thesis (Chapter 4 & Chapter 5) were based on 

acquisitions using ACC and GRAPPA it follows that this introduces an additional 

plausible source of bias in those results. Even if ACC is indeed in general superior to 

SoS – which itself is a topic for further research – this may not necessarily be true in 

the case of marked B1 inhomogneities. The choice of method may introduce bias in 

the order of 1ms or one percentage unit in the T2m and ffa estimates respectively. 

Finally, in both phantom and in vivo data, noise σN appears to increase consistently 

with the expected √2-factor increase (roughly) when using GRAPPA due to the 

reduction (approximately halving) of the scan time.                       

6.6 Overall considerations and conclusions 

Acquisition conditions and sequence design choices seem to be influenced by the 

estimated parameter interdependence discussed in other parts of this thesis (mainly 

Chapter 3) as well as with the available SNR and data quality. In general they are seen 
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to affect the estimated parameters’ medians and distributions to a smaller degree 

than the changes caused by disease which are the primary target of the 

quantification. A clear exception is the disparity introduced in the parameter 

estimation by choosing adaptive coil combine (ACC) vs. sum of squares image 

reconstruction, where differences for T2m and ffa were seen to reach 2ms and 4.5% 

respectively on average, with even higher differences in particular cases of smaller 

ROIs. While a detailed analysis of the differences of the two methods (SoS vs ACC) in 

theory, design and application is beyond the scope of this work, it may be beneficial 

to suggest candidate reasons for the observed differences: 

• The ACC technique – unlike SoS – aims to address noise variations (e.g. at dark 

areas of the image) and propagation of motion or flow phenomena while 

taking also into account spatial phase variations in the underlying signal 

(Walsh et al., 2000)  

• This is particularly relevant for CPMG acquisitions where loss of signal may 

occur not only in regions of artefact or low coil sensitivity, but also at later 

echoes.  

• It follows that in regions of compromised B1, fast T2m and low ff it may be 

expected to obtain relatively higher SNR under ACC than SoS image 

reconstruction. 

• This may in turn explain the systematically longer ACC T2m estimates 

compared to SoS T2m. Similarly the concomitant lower ACC ffa (compared to 

SoS ffa) may be a result of the above signal modulations and additionally of 

parameter interdependence (since it signifies less signal in principle).  
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• The underlying assumption of simple quadrature Rician noise in the fitting 

algorithm instead of (either SoS or ACC) MC noise following a non-central χ2 

distribution (Bouhrara and Spencer, 2018) may play a role in the above 

processes.                

For the remaining available options (such as ETL and ΔTE) even drastic changes in the 

operator-controlled sequence parameters will hardly cause differences exceeding 

1ms in T2/T2m or 1% in ffa medians or clear/perceptible alterations in their 

distributions. Considering also that sequence settings are typically confined to 

relatively limited ranges and options for reproducibility purposes, leaves rather few 

and clear choices for establishing optimised and at the same time pragmatically 

useful acquisition settings and sequence versions.  

The above considerations seem to broadly follow the recommendations available 

from published work. A minimum TE is in general preferred for the reasons presented 

in section 6.3 and in the literature (Dula et al., 2009), and an additional advantage of 

minimising TE is to minimise diffusion weighting effects. However the scanner 

hardware and software determine the TE lower limit in practice, and therefore in 

order to allow reproducibility between different centres and vendors, TE might need 

to be compromised towards relatively higher values than the available minimum for 

a particular system. Longer ETL is typically preferred for improved accuracy and 

precision (section 6.2), depending also on the anatomical features of interest (e.g. 

volume to be scanned) (Hollingsworth et al., 2012, Uddin et al., 2013) however scan 

time and patient comfort restrictions can limit this (Burakiewicz et al., 2017). Multi-

coil (MC) acquisition techniques can both improve SNR and reduce scan duration 
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however they might pose challenges in the interpretation of the B1f behaviour and 

noise effects observed in such images (section 6.5). Additionally it has been shown 

that in MC acquisitions departures from normally distributed noise (additive noise 

effects following a non-central χ2 distribution) are more pronounced (Bouhrara and 

Spencer, 2018) which is a probable reason for the departures in the noise σN 

estimation observed with the proposed sEPG-MLE method.       

In more practical terms it seems that in most contemporary quantitative MRI work 

(section 2.3) sequence settings are usually confined within the ranges suggested 

above. Commonly recommended TE is between 8 – 10ms and ETL above 15 echoes 

(Hollingsworth et al., 2012), dependent also on acceptable scan durations, power 

deposition limits and anatomy volume choices. Receive bandwidth is typically kept at 

intermediate ranges as a compromise between reduced SNR at higher bandwidths 

and avoidance of artefacts due to chemical shift, motion, B0 field inhomogeneities 

etc. at lower bandwidths. Finally, combined coil and acceleration reconstruction 

techniques via MC use seem to be the norm in most acquisitions. The work presented 

in section 6.5 have shown that the choice of the coil combination method can impact 

on the parameter estimation.                                  
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Chapter 7. Discussion and Conclusions 

7.1 General considerations 

The three main aims of this thesis (Chapter 1) were to deploy and optimise the 

proposed methods, to test their performance on real test object and in vivo data and 

to develop useful recommendations and guidelines for future acquisition 

optimisation. The purpose of this chapter is to summarise and assess the 

corresponding outcomes that this work produced. Additionally, with regards to 

application to in vivo data, it is of interest to evaluate the methods’ clinical validity 

and overall findings in the patient studies.  

In evaluating and optimising quantitative MRI methods, various, possibly conflicting 

factors arise, e.g. measurement precision vs. acquisition duration, or for parameter 

estimation, the use of prior information vs. the bias that this may introduce. The main 

goal of developing such methods is to obtain accurate, precise and reproducible 

parameter estimates suitable as outcome measures. The work presented in this 

thesis has shown that using the proposed sEPG-MLE method it is possible from a 

single acquisition, to simultaneously estimate several important quantitative MRI 

parameters. Of these, T2m and ffa are the main parameters of interest, i.e. the 

candidate outcome measures or potential biomarkers, while B1f and the noise σN may 

be considered nuisance factors which typically must be accounted for, for the 

purposes of optimal fitting and quality control (McPhee and Wilman, 2017, Azzabou 

et al., 2015). The amplitude α as a surrogate for proton density is both a parameter 

of interest and useful in terms of interpreting fitting behaviour.   
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Comparison of a new approach with existing methods is integral to such analyses and 

a common way to assess the accuracy and precision of the method. This process can 

reveal shortcomings and peculiarities of both the proposed and established methods, 

and additionally suggest ways of making them compatible (e.g. with use of 

corrections). It can also be used to improve data interpretation in light of the patho-

physiological system being investigated, for instance compartmentalisation of tissue 

and aqueous vs. fatty tissue components. 

Optimisation pertains also to acquisition design and tailoring (Chapter 6). Scanner 

engineering and software design defined the capabilities and limitations of the MR 

system in question, and operator parameter choices with these then impact the final 

measurement performance. Therefore knowledge of both system specification and 

technical characteristics, such as RF pulse design, on the one hand, and on the other 

hand their interaction with operator sequence and parameter choices is required to 

optimise performance. With regards to parameter estimation, computational 

demands and processing requirements impact upon the time-efficiency and 

reliability of processing data, and therefore good practice in programming and data 

handling is needed.    

7.2 Method optimisation   

Detailed consideration of the RF transmit field scaling factor B1f estimation is one of 

the novel aspects of this work, both in terms of construction of the signal model used, 

and in the way that parameters were estimated and interpreted. Slice profile 

corrections incorporated in EPG model applications presented in previous published 
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work have used either the Fourier transform (FT) of RF pulse shapes (Lebel and 

Wilman, 2010) or the Shinnar-Le Roux (SLR) algorithm (Pauly et al., 1991). In the sEPG 

model used here slice profile correction was done using Bloch equations-based 

calculations (section 2.1.7) since these results were seen to closely match the full 

Bloch equation-based MESE signal simulations (Hargreaves, 2016). Bloch equation-

based models are considered theoretically (McRobbie et al., 2006) to fully account 

for the RF pulse responses and this has been corroborated in practice (McPhee and 

Wilman, 2017). It should be noted that the authors of the original work on EPG fitting 

with FT-based slice profile correction (Lebel and Wilman, 2010) subsequently also 

adopted the Bloch equations-based approach in the Matlab code for their algorithm 

which is freely available (Lebel, 2012). Under this approach slice profile asymmetry 

around perfect (close to 180˚) refocusing angles is observed, and this can lead to 

degenerate solutions for the B1 field factor estimates (McPhee and Wilman, 2017, 

Lebel and Wilman, 2010), as also described in this work (sections 3.2.6 and 3.3.2). 

Unaddressed, this translated to significant potential bias in both T2m and ffa estimates 

(up to several ms or percentage units respectively) and led to the introduction of the 

B1f spatial regularisation strategy into the fitting algorithm in the present work in 

order to address the problem. This was seen to solve the discrepancy for the vast 

majority of redundant (dual) B1f solutions – however, in future work, more 

sophisticated spatial regularisation techniques could further optimise the estimation 

method and improve results (Basiri et al., 2019). Our internal B1f determination 

approach has the advantage of bypassing the need to use separately acquired B1f 

maps and the uncertainties or discrepancies they might introduce (Lankford and 

Does, 2018).   
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The internal Rician noise parameter estimation is another novel aspect of the 

proposed method, since in applications of MLE in the MRI field published so far, the 

Rician noise standard deviation has been either pre-calculated (Walker-Samuel et al., 

2009) or the data have simply been considered to be normally distributed (Hardy and 

Andersen, 2009, Bonny et al., 1996). Our algorithm provided a broadly reliable Rician 

noise σN estimation, with a slight tendency for underestimation in simulation (section 

3.3.1, Figure 3.58) and a tendency mostly for overestimation in real datasets 

compared to the empirical methods presented in section 3.1. The impact of this σN 

estimate bias was however limited: importantly, a simulation experiment fixing σN at 

its nominal value in the fitted model, was not seen to improve results relative to a 

model with freely estimated σN (section 3.2.4, Figure 3.20). The MLE method used 

here, unlike the more widely used LSQ minimisation approaches, appears to better 

account for the (rectified) noise floor in magnitude reconstructed images rather than 

attempting to approximate it by assigning it a constant value (Milford et al., 2015), or 

discarding later echoes altogether (McPhee and Wilman, 2017). The proposed sEPG-

MLE method is therefore a less cumbersome but nevertheless robust alternative to 

methods where additional steps to account for the noise behaviour are needed. 

The algorithm predicted the phantom manufacturer-provided calibration values with 

high accuracy and precision overall. This was in marked contrast with previous 

attempts using an exponential or a non-slice profile corrected EPG model, where 

large differences were seen in the T2 estimates, in the range of 20-25% from the 

nominal values. This suggests that taking into account the slice profile information – 

requiring accurate knowledge of the shape and characteristics of the RF pulses and 
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their combination with the gradients – is essential for robust estimation of the 

desired parameters. However the assumed RF pulse and gradient waveforms 

(specified by the MR system manufacturer) might deviate from those achieved in real 

conditions, leading to mismatch between the assumed model and actual data 

compromising fitting. Such cases were encountered in some of the forearm DMD 

datasets (section 5.3) where challenging MR conditions at the periphery of the 

magnet bore may have led to erroneous slice profile definition or other errors. The 

suggested post processing steps helped to largely exclude pixel regions where this 

occurred, to keep the analysis meaningful and interpretable.                            

7.3 Clinical application 

The final multi component approach used as the final fat-water signal model emerged 

after the inadequacy of a single component sEPG model to robustly describe fat 

signals was demonstrated (section 3.3.2). Two-component exponential models have 

been used in published work over the past decade (Kan et al., 2009, Yao and Gai, 

2012) and recently also a three-component exponential model with two fixed 

parameter components representing the fat compartment was proposed (Azzabou 

et al., 2015), in what could be regarded as an exponential version of the model 

introduced here. In that paper, only pixels appearing to experience B1 field factors 

above a certain threshold were kept in the analysis, which was seen to improve 

results, but resulted in relatively large image regions being omitted; this approach 

also required availability of independently obtained B1f maps. Addressing the B1f 

limitation issue was attempted in subsequent work from the same group (Marty et 

al., 2016) which used a 2-component sEPG model in a dictionary-based fitting 
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method, with a single sEPG component corresponding to each assumed 

compartment, muscle water and fat. The work presented here attempted to address 

both the impact of acquisition factors, in particular B1f inhomogeneities, using a sEPG 

model, and physical meaningfulness using an optimised multi-component fat-signal 

model.  

While fit quality significantly improves when using a 2-component sEPG model for 

fatty tissue, the question of physical interpretation of the results remains. Careful 

calibration of this fat model led to a dominant component (67%) of long T2 (198ms) 

and a smaller component (33%) of shorter T2 (40ms). Including this model to the final 

multi-component sEPG model and fitting it to the available in vivo datasets revealed 

that for adipose tissue estimated T2m < 15ms and ff > 90%, which led to one of the 

main quality control criteria to distinguish muscle tissue from fat. These results are 

consistent with histological results where the proportion of pure fat in subcutaneous 

‘fat tissue’ is in fact broadly below 90% (Thomas et al., 1962), with a substantial 

fraction of the remaining 10% presumably comprising water. Both marked T2m 

elevation and marked decrease was observed in some regions of very high fat 

content, even for good quality images and optimal acquisition strategies, such as the 

datasets analysed in Chapter 4, as indicated by the corresponding ffa and ffd estimates 

(e.g. above 80%). This diverse T2m and high ff are consistent with the respective 

oedematous/inflammatory and fat replacement effects commonly reported in the 

literature.  On the other hand with the proposed method ff estimation can be 

extended to its entire range, resolving the limitation for ff only below approximately 

50% in the published work mentioned above.               
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Comparison of the sEPG-MLE algorithm results with the exponential model and LSQ 

fitting revealed a consistent systematic 15 to 20% decrease in T2m in all ALS, KD, DMD 

and healthy volunteer cohorts, in good agreement with the results seen both in 

simulation (Chapter 3) and in phantom validation (section 3.2.10 and Table 4.3). Slice 

profile effects can largely explain this difference due to the echo train modulation 

they cause (section 3.2.5) and the sEPG model as expected more accurately describes 

the cumulative slice profile signal decay. It should be noted that in similar work 

mentioned earlier (Marty et al., 2016), slice profile effects were not reported to be a 

major confounding factor. This may therefore also depend to specific scanner 

settings, i.e. RF pulse characteristics or magnetic field imperfections. T2m histogram 

distributions were markedly narrower with the sEPG-MLE approach (e.g. for healthy 

control data), suggesting overall improved parameter estimate precision, and may 

thus further support the validity of the method. This is also consistent with the 

theoretical assumption that ML estimators asymptotically approach the lowest 

possible variance – or equivalently increase the possibility for an estimator to be 

unbiased – in a given experiment. It should be noted that although this work has 

shown that exponential model and LSQ fitting approaches generally produce heavily 

biased parameter estimates, they still may be pragmatically useful not least because 

they are much less demanding in computational power and readily available – e.g. 

via built-in scanner software. However the bias in these methods makes it difficult to 

compare results from different studies, and the sEPG-MLE method developed here is 

therefore to be preferred.         
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In an exploration of more qualitative conventional radiological imaging in section 4.5, 

T2m maps were also compared with STIR images, which are of interest in this context 

since STIR images are commonly interpreted as providing fat suppressed T2-weighted 

contrast. Modelling STIR contrast based on the signal behaviour in terms of Physics, 

tissue compartmentalisation and the sEPG-MLE parameter estimates, revealed that 

STIR image contrast appears to be substantially affected additionally by fat content: 

increasing ff leads to water signal reduction by reducing its relative PD. In addition, if 

fat signal nulling is inaccurate, part of the remaining signal might be emanating from 

fat protons. These factors add to other complications (Brown and Semelka, 2005), 

such as the potentially complex contrast dependence of STIR images on both T1 and 

T2 (as also seen here, section 4.5). B1 field inhomogeneities can also markedly affect 

STIR imaging (Bley et al., 2010), something that was observed in several of the images 

examined here, whereas with the sEPG-MLE method they are explicitly accounted 

for. Therefore sEPG-MLE T2m is more likely to express true muscle water T2 behaviour, 

and these findings may have important implications for the radiological 

interpretation of STIR images in this context.    

Simple acquisition and fitting methods may cause artefactual correlation between 

the estimated parameters. Lack of such correlation provides evidence that yielded 

results are independent of the estimation method. In this work, this independence 

of the sEPG-MLE yielded T2m from fat content was demonstrated also using the Dixon 

method, with T2m variations appearing stable along the entire ffd spectrum. While in 

earlier publications this independence was not explicitly examined but rather taken 

for granted (Kan et al., 2009, Yao and Gai, 2012) more recent work related to multi-



435 
 

component models and quantitative MRI has shown that it is not always the case. For 

example independence was seen in application of a tri-exponential model on thigh 

data (Azzabou et al., 2015) but not when applying the same method on forearm data 

(Wary et al., 2015). In the present work overall independence of T2m from Dixon ff 

was observed in both thigh and forearm datasets. It should be noted that caution is 

required regarding this correlation since it also depends on the characteristics of the 

disease in question. For instance DMD progression appears to correlate with increase 

in fat content and decrease in water T2, therefore it would not be surprising for T2m 

to also show a tendency to decrease with increasing fat fraction. Additionally there is 

evidence from spectroscopic studies that decreasing water T2 with increasing ff is a 

general attribute of many neuromuscular disorders (Schlaeger et al., 2019), especially 

at the very high fat content ranges. These findings suggest that apparent associations 

between the estimated parameters, predominantly T2m and ff, do not necessarily 

reflect bias introduced by the estimation method.   

While sEPG-MLE method based ff maps were qualitatively similar to the Dixon 

method obtained ff distributions, numerical differences were quite marked ranging 

from multiple times higher (ffa than ffd) for the lower ff range, with this ratio 

decreasing towards the middle range ff and becoming a few percent lower for very 

high ff. This was manifested as a ‘banana’ shaped curve of the ffa values over the line 

of direct equivalence with the ffd spectrum of values. The sEPG-MLE ff was in turn 

also markedly lower than the EXP-LSQ estimated ff (about 10 to 25%) and closer to 

the Dixon ff values. While some basic strategies exist to correct ff estimates for 

experimental differences between the two approaches, namely for MT effects and 
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differential T1f vs. T1m weighting with regards to ffa, and for single vs. multi-peak fat 

spectrum with regards to ffd, in reality experimental conditions might be more 

complex. As mentioned before the assumptions behind the two-component 

transverse magnetisation decay model used for fat might not always hold and this 

would directly affect fat content quantification; and T1 effects might not be as 

negligible in sEPG models as in general considered. The sEPG model for fat used here 

doesn’t take j-coupling into account, and this may also contribute to differences and 

errors.  

7.4 Recommendations and future directions 

A challenge to MESE data fitting may arise from the difficulty of accurately modelling 

the slice-selective profile response, an issue often mentioned in the literature and 

central also in this work. Inclusion of additional parameters in the model could 

account for imperfections in the assumed CPMG signal behaviour, e.g. the excitation 

and refocusing widths relationship and phase errors propagation. However adding 

additional parameters to the specific model in this way would represent additional 

degrees of freedom, affecting the statistical stability of the method, and in practice 

this may not commonly be a major confounder (e.g. as discussed in section 5.5). 

Nevertheless introducing more sophisticated physical models in general is of great 

interest – at least theoretically – and this may suggest promising future directions. 

Macro- and microscopic level motion of muscle tissue may have influenced the 

results presented here, particularly in the DMD study. Recent work for example on 

muscle motor unit fasciculation effects suggests that physiological mechanisms can 
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directly impact the signal evolution (Whittaker et al., 2019) in diffusion- and likely 

also T2-weighted imaging. Modelling such diffusion effects or phase errors could help 

to both further optimise the method proposed here and broaden its range of 

applications.  

With regards to the operator controlled, sequence parameter choices, there appear 

to be practical limitations which do not in practice leave much room for 

improvement. This is mainly due to the limited options available on commercial MRI 

systems, scan duration concerns and the issue of reproducibility between different 

scanners and centres, as discussed in Chapter 6.  

The practical effectiveness of the method developed in this thesis may be further 

enhanced via improving the available computational power and software 

engineering. Useful advances – used already in this work – are parallel computing and 

use of compiled instead of interpreted programming code. In several parts of the 

algorithms used here replacing Matlab functions with compiled C code was seen to 

greatly accelerate fitting. Promising, more advanced computing approaches which 

may be helpful in future work are machine learning applications – with the B1f spatial 

regularisation concept being a concrete example – and trial of library-based fitting by 

pattern recognition.   

7.5 Addressing the overall objectives 

Despite the above limitations and the need for further work, the aim of obtaining 

reliable quantitative MRI outcome measures (Chapter 1) has been accomplished to a 

satisfactory level. Combination of the sEPG formalism with the MLE statistical 
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approach adequately addressed the core issues of B1 field inhomogeneity and 

ambiguity and the Rician noise effects. These were the fundamental steps that led to 

marked increase in accuracy, leading to correction of the 15-20% T2 overestimation 

manifested when using the established EXP-LSQ based methods, and good 

agreement with the best available ‘gold standards’, namely calibrated phantom 

measurements and literature values from MR spectroscopy. Accuracy was 

accompanied with increased precision which led to the detection of statistically 

significant T2m changes between patients and healthy volunteers as well as both 

increases or decreases longitudinally relating to disease progression. Interestingly, 

comparing diseases such as ALS and DMD revealed that the time course and direction 

of T2m changes differed in these patient groups, suggesting that the observed T2m 

changes may reflect more than one underlying pathological process. These findings 

demonstrate that T2m should be interpreted with caution, while at the same time 

reinforcing its potential usefulness as a marker of such processes.    

The multi-component (fat-water) representation used in the final model led to a 

concomitant estimation of ff as an additional outcome measure. The latter was 

compared with Dixon method results producing encouraging findings at least 

qualitatively. Similarly to T2m, yielding and comparing study group results was directly 

related to the post-processing and spatial regularisation strategies used. The 

outcomes corroborated the potential of the suggested method to better characterise 

subtle or subclinical changes (e.g. relying to oedematous or fibrotic effects as 

opposed to mere fat infiltration), and monitor their progression, including response 

to therapies.  
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7.6 Conclusions 

The potential of the proposed sEPG-MLE method as a novel and optimised technique 

for quantitative neuromuscular (MR) imaging has been demonstrated in this thesis. 

It was shown to offer adequate precision and accuracy in the estimated parameters 

to reproducibly characterise and distinguish disease from healthy presentation, thus 

suggesting these are useful outcome measures.  

Further optimisation may be achieved with the inclusion of additional factors in the 

physical modelling, more sophisticated regularisation methods for parameter 

estimation and the potential use of machine learning approaches. The proposed 

methods are also useful practically in testing specific acquisition settings and 

sequence design optimisation. As such, although these methods were developed 

here for the specific application of neuromuscular imaging, they may in future be 

adapted and extended to serve a broader field of research than the scope of this 

thesis.          
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