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ABSTRACT 

Various characteristics of a programming -~nguage, or of the 
hardware on which it is to be implemented, may make interpretation a 
more attractive implementation technique than compilation into machine 
instructions. Many interpretive techniques can be employed; this 
thesis is mainly concerned with an efficient and flexible technique 
using a form of interpretive code known as indirect threaded code 
(ITC). An extended example of its use is given by the Setl-s 
implementation of Sett, a programming language based on mathematical 
set theory. The ITC format, in which pointers to system routines are 
embedded in the code, is described and its extension to cope with 
polymorphic operators. The operand formats and some of the system 
routines are described in detail to' illustrate the effect of the 
language design on the interpreter. 

Setl must be compiled into indirect threaded code and its 
elaborate syntax demands the use of a sophisticated parser. In Setl-s 
an LR(1) parser is implemented as a data structure which is 
interpreted in a way resembling that in which ITC is interpreted at 
runtime. Qualitative and quantitative aspects of the compiler, 
interprP.ter and system as a whole are discussed. 

The semantics of a language can be defined mathematically using 
denotational semantics. By setting up a suitable domain structure, it 
is possible to devise a semantic definition which embodies the 
essential features of ITC. This definition can be related, on the one 
hand to the standard semantics of the language, and on the other to 
its implementation as an ITC-based interpreter. This is done for a 
simple language known as X10. Finally, an indication is given of how 
tnis approach could be extended to describe Setl-s, and of the insight 
gained from such a description. Some possible applications of the 
theoretical analysis in the building of ITC-based interpreters are 
suggested. 
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CHAPTER 1 

INTERPRETERS 

1.1 INTERPRETATION AND COMPILATJON 

1 

- An interpreter-based implementation of a programming language is 

a system in which some representation of the source program is used at 

runtime to direct the flow of execution through system routines. This 

is commonly distinguished from a compiler-based implementation, in 

which the source program is translated into a sequence of instructions 

which can be executed by hardware. Idiomatically, the words 

•compiler• and 'interpreter• are used loosely: 'compiler' is 

sometimes used to mean the same as a compiler-based implementation, 

and srnnetimes used to mean any program or part of a system which 

translates from a source language into any lower-level representation. 

Similarly, 'interpreter' can mean that part of a system which performs 

the runtime operations, but can also be used to mean an entire 

interpreter-based implementation. The way in which the two words are 

used at particular points in this thesis should be obvious from their 

context. 

These two terms provide an important distinction between 

implementations of programming languages, because of the different 

sorts of dependence on the machine hardware which they imply, although 



this cannot be a sharp distinction because most implementations 

possess some of the characteristics of each and certain techniques 

defy·this classification. (For example, the machine code produced by 

some compilers consists almost entirely of subroutine calls.) In both 

cases, the execution of a program ultimately consists of the execution 

of a series of machine instructions, but, as will be seen, an 

interpretive system provides an extra degree of flexibility and 

independence from the facilities of the hardware. 

The main advantage attributed to systems generating hard code is 

that no software is required to decode the compiled program and so the 

maximum execution speed is obtained. However, the instruction set of 

a particular computer is unlikely to be optimal for implementing the 

operations required by any particular language, and the memory 

organisation will not necessarily be well-suited to representing the 

data types the language provides. As a consequence of this, it can be 

the case that conceptually simple operations in the source language 

require long sequences of machine instructions for their 

implementation; consequently, the compiled version of a program can 

be very bulky. This effect can be mitigated by the use of 

optimisation techniques in the compiler, but this may slow down the 

compilation process considerably and increase the amount of workspace 

required by the compiler. 

The organisation of interpreter-based systems varies 

considerably; several possible organisations are described in Section 

1.3. If the source language is appropriate it can be interpreted 

directly, but more often it is translated into an internal form 
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(referred to as 'interpretive code') which is then used by the 

int~rpreter to direct the execution. The individual elements of the 

interpretive code will be chosen so that the source program can 

conveniently be expressed in terms of them. The runtime system will 

consist of a set of routines corresponding to the elements of the 

interpretive code. (These routines may be written in a high level 

language rather than the machine code of the computer.on which the 

system is to run.) Since the runtime routines comprise code sequences 

to perform the operations of the source language, they will be as 

bulky as the compiled code produced for the same operations. However, 

only one copy of each routine is required and the interpretive code 

itself will be compact. Therefore, if each operation occurs many 

times in a program (as is usually the case) the total size of the 

interpretive system and code will be smaller than the corresponding 

compiled version of the program. 

Although it will be practically important to the implementor of a 

language to retain the distinction between compiler-based and 

interpreter-based systems, it can be instructive to consider all 

implementations as including both a compiler and an interpreter. The 

compiler extracts a certain amount of information from the source 

program and uses it to perform a translation into some interpretive 

code which is then used to direct execution. At one extreme, the 

interpretive code is identical with machine language, the 'system 

routines• are implemented in hardware, and the flow of execution 

simply consists of the sequential execution of the instructions, which 

may ·include branching instructions. At the opposite extreme, the 

interpretive code is identical with the source language and all the 



information in the program is extracted by the interpreter. In 

between these extremes~ is a continuum of implementations with 

different. levels of interpretive code, in which different amounts of 

information are extracted by the compiler and interpreter. 

4 

Since any system must extract the syntactic information contained 

in the source in order to determine the structure of te program, all 

implementations must deal somt:how with the problems associated with 

parsing. If the internal form used by the implementation is not 

identical with the source language some form of code generation will 

also be required. 

Figure 1.1 is intended to illustrate the variety of 

implementations. 

Before going on to practical matters relating to implementations, 

there is one other aspect of interpreters which deserves mention. One 

way of defining the semantics of a programming language is by 

appealing to the behaviour of a particular compiler. This has obvious 

drawbacks, in particular, the dependence on the operation of a 

particular computer and the difficulty of relating the behaviour of 

any other compiler to the standard in anything other than an 

experimental manner. Therefore, the idea arose of defining semantics 

by the use of an ab§!!lli in!~!E!!!~!, the operations of which can be 

precisely defined mathematically. Early work on such definitions goes 

back to [McC66,LAN64J; the most successful application is the Vienna 

definition of PL/l [LW71J. An account of different approaches to the 

use and specification of abstract interpreters, as well as some of the 

difficulties arising therefrom is given in [REY72J. 
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1.2 THE CHOICE OF IMPLEMENTATION T~rHNlQUE 

A number of programming languages may be said to constitute a 

mainstream in language design at present. This would certainly 

include Algol68, Cobol, Fortrun, Pascal and PL/1. There is also an 

identifiable mainstream in hardware design and, perhaps not 

surprisingly, the facilities provided by the latter are well-suited to 

implementing mainstream languages. These facilities include integer 

and real arithmet;c, conditional branching, loops controlled by 

counters, subroutine calls, and index registers suitable for 

implementing array-like data structures •. All other things being 

equal, the superior execution speed obtained in a compiler-based 

system will make this the preierred implementation for such a language 

on such a machine. It may be the case, though, that there are 

restrictions on space on a small machine or one with an addressing 

mechanism which imposes a limit on the address space. If this is so, 

then an interpreter-based system may be preferred because of the 

compactness of interpretive code. 

For this reason, the choice between an interpreter and a compiler 

is often presented as a choice between a small, slow system and a 

large, fast one. This naive view is inadequate. Both the nature of 

the language and of the machine may affect the choice in a variety of 

ways and so may the environment in which the system is to be developed 

and used. 

Outside the mainstream of language design there are some 

languages which deal with objects which are not directly implemented 

by hardware; the phrase 'high level data types' is used to describe 
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such objects. Snobol4 (strings, tables) and APL (vectors) are 

~ell-known examples of such languages. Primitive operations in these 

languages require complex machine operations for their implementation, 

compared with which the decoding overhead of a suitably designed 

interpretive scheme may be acceptable, whereas the size of the machine 

code produced by a compiler may be unacceptable on all but the largest 

machines. 

The choice between compilation and interpretation is also 

influenced by the amount of manifest information (information 

contained in the source text) available to a compiler. If sufficient 

information is available for the compiler to select a sequence of 

machine instructions which will not be affected by the runtime values 

of variables in the program, compiled code of very high quality can be 

produced. A particular requirement is for the type of variables to be 

determinable at compile time, since, if they can vary, type checking 

code must be generated. For programming languages with dynamic data 

types interpretation is usually preferred, particularly since dynamic 

typing is often found in languages with high level data types such as 

those mentioned in the previous paragraph. 

In summary, if, for reasons such as those just outlined, the 

overhead of executing a system routine considerably exceeds the 

decoding overhead associated with the use of interpretive code, then 

the use of a compiler producing hard code ceases to be necessarily the 

best method of implementing the language. Whether this is so will 

depend on the machine or machines on which the system is to run, as 

well as on the language. The introduction of the first generation of 
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micro processors has seen a return to primitive instruction sets, 

which are not adequate for implementing high level languages: a prime 

example is the lack of floating point operations. For this reason, as 

well as the restricted addressing space, implementations of high level 

languages for micros are almost always interpreter-based. 

Interpreters possess other advantages. It is easier to write an 

interpretive system which performs acceptably than it is to write a 

code generator to produce high quality machine code. furthermore, a 

system generating machine code is je§Q !s£!Q machine dependent, but an 

interpreter need not be so. The system routines can be written in a 

widely available programming language, and the interpretive code 

format can be designed so that it is not dependent on particular 

machine characteristics. There is no need to redesign the generated 

code sequences or produce register allocation schemes to cope with new 

processor configurations, so the task of transporting a system becomes 

considerably less complex. 

Finally, the environment in which the system is to be used must 

be taken into consideration. Interpreters are usually thought 

preferable for interactive use (see, for example [BR079J). Even in a 

non-interactive environment, if more time is spent developing programs 

than actually running them when they work, then compilations will be 

frequent. The obvious example of such an environment is a university, 

in which students• programs are rarely run at all once they work 

sufficiently well to satisfy a course requirement. Under these 

circumstances, a fast translation into a suitable interpretive code 

may be preferable to a compilation involving considerable 



optimisations aimed at producing the most efficient machine code 

possible. The Latter option would, however, be preferred in a 

production environment, where the costs of compilation will only 

rarely be incurred and it is desirable that execution be as efficient 

as possible. 

9 

Interpreters can usually produce better run-time diagnostics than 

compiler-based systems and in an environment where much debugging goes 

on this may be considered important. There are many Languages in 

existence for which a compiler cannot provide complete security; 

since an interpreter retains at run-time much information (such as the 

symbol table) which is thrown away before execution of a compiled 

program, it is able to produce more helpful post-mortem dumps if a 

run-time error occurs and can often provide sophisticated tracing 

facilities. 

1.3 INTERPRETIVE STRATEGIES 

If the source language itself is used as the interpretive code, 

the path of execution is determined by the syntax of the language. 

For example, the interpreter might use some form of shift-reduce 

parser, with the interpretive routines being called whenever a 

reduction was made. (The use of any parsing algorithm which requires 

back-tracking is ruled out for this purpose.) This approach is 

particularly simple and does not require the generation of any form of 

intermediate code; it can be implemented in such a way that parts of 

the program which are not executed on a particular run will not get 

parsed at all. The objection to interpretation of the source is that 



57 er: 7TW□fCT 1 C 27 El 7 

10 

if the program contains a Loop or a procedure which is called more 

than once, then the overhead of syntax analysis is incurred every time 

the body of the loop is executed or the procedure is called. Unless 

the language is very unusual, the information extracted by this 

analysis will be the same every time, and it is clearly preferable to 

perform the analysis once only. For this reason, direct 

interpretation of the source is rarely used. 

More often, lexical and syntactic analysis are carried out on the 

source language before execution. If it is appropriate to the 

particular language, semantic attribute processing (e.g. type 

checking and d~claration processing) will also be carried out. The 

output from this phase may take several forms. Perhaps the simplest 

to produce is a parse tree: the corresponding interpreter would be a 

tree automaton, which performed a tree walk. This form of internal 

representation is suitable for incremental compilers and systems where 

the user can edit the program during execution. 

Greater efficiency of execution can be obtained by using an 

interpretive code which is a flattened representation of the parse 

tree. The obvious choice is a reverse Polish string, which can be 

evaluated on a stack. The operators appearing in the string can be 

the same as the source language operators, with system routines being 

written to correspond to them. Such a Polish string probably provides 

the most econanical representation of the program. If the operators 

and operands are encoded carefully, the interpretive code can be made 

extremely compact, but the ultimate in code compression can only be 

obtained at the expense of portability, as it depends on machine 
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features such as the number of bits in a word and the address size. 

If more processing is performed by the compiler, a lower level of 

interpretive code can be generated, in which the source language 

operations are represented by the composition of more primitive 

operations which more closely resemble machine instructions. This may 

permit the detection of special cases for which shorter sequences of 

code can be generated. As the level of the interpretive code becomes 

Lower, the code becomes bulkier and, up to a point, the execution 

speed increases. There comes a point where the effect of the 

interpreter's decoding overhead has to be taken into account and the 

system's performance deteriorates. 

The lowest level of interpretive code which is widely used is 

designed in imitation of the machine codes of real computers. A 

virtual machine is defined, sometimes with a stack architecture, but 

often with one or more virtual registers. A set of instructions is 

provided for the virtual machine. An instruction is packed into a 

virtual machine word (which has to be mapped onto real machine words) 

and contains fields with an opcode, possibly a register and some form 

of effective operand address, which may involve indexing and 

indirection. The interpreter performs the function of the control 

hardware or microprogram in decoding the instruction and performing 

the operation. This form of interpretive code is most useful for 

specialised applications, connected with the generation of actual 

machine code. Examples are provided by Intcode CRIC72J, which is used 

during the bootstrapping of BCPL, and by the Janus interpretive 

testbed CP0078J. 

C 
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The remainder of this thesis is concerned with investigating the 

properties of a form of interpretive code known a indirect threaded 

code, which differs somewhat from those just described. Although the 

code is organised as a reverse Polish string, pointers to the system 

routines are embedded in the code in such a way that no interpreter is 

required to select the routine - in a sense, it may be said that the 

code interprets itself, as will become clear. The next four chapters 

provide a detailed description oi one_ system in which indirect 

threaded code has been successfully used. Following this, a more 

abstract description of such interpreters will be presented. 
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CHAPTER 2 

INTRODUCTION TO SETL-S 

2.1 PRELIMINARY DESCRIPTION 

13 

Setl-s is the name given to a portable and compact implementation 

of a large subset of the language Setl. The language derives its name 

from the fact that finite sets are one of its basic data types, and 

notations derived from mathematical set theory appear in the syntax, 

allowing operations such as union and intersection to be written in 

programs in a natural way using infixed operators (although the 

restricted character set available on most computers does not permit 

the full range of symbols). The language is designed to relieve the 

programmer of the job of specifying the storage structures to be 

employed to represent sets in the memory of a computer, and the access 

and updating algorithms which go with them. No mechanism is provided 

for the specification of programmer-defined data types nor for the use 

of pointers, so the viability of Setl rests on the contention that 

algorithms are most conveniently expressed as operations on sets. 

Also, typing is-dynamic so that Setl programs do not contain the 

redundant information required for extensive compile-time checking or 

for verifying the correctness of programs. The design philosophy has 

been summed up as one of 'making it easy to write good programs' as 
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against 'making it hard to write bad programs' [DEW78J. An account of 

the design of Setl can be found in [SCH76J and a full description of 

the current version in [DEW79J. 

Setl was designed and first implemented at New York University. 

The NYU system (which will be referred to as NYU Setl or full Setl) is 

large and slow, consisting of four separate, overlaid phases. It was 

written in a specially designed implementation language known as 

Little, which is not widely available and although it was designed to 

be portable has proved to be difficult to transport. <Furthermore, 

since the language is particularly unattractive there is no great 

incentive to implement it widely.) Consequently, NYU Sett itself is 

not very portable and, indeed, its excessive size rules out the 

possibility of implementing it on small machines. (See Chapter 5 for 

some figures on the size of the system.) 

The-sin Setl-s stands primarily for 'subset' but it also stands 

for 'small', reflecting the basic design objective of producing a 

compact system, especially suitable for use on mini computers and 

large micros. The subset of the language which is implemented 

comprises roughly 75¾ of full Sett, the most important omissions being 

the 'representation sub-language', a system of declarations which 

gives the programmer some control over data structure choice, and the 

ability to break programs into separately compiled modules. 

The following section describes the language features which are 

implemented in Setl-s; Figure 2.2, which appears at the end of the 

description, lists the differences between Setl-s and the full 

language. The listings of several Sett programs, which will be 
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discussed in Chapter 5, appear in Appendix 1. 

2.2 THE SETL LANGUAGE 

2.2.1 Data Types 

Setl provides the familiar types integer, real, boolean and 

string. In Setl-s, both numeric tyµes have a range limited to that 

available on the host machine; literals are written in the normal way 

(e.g. 124, 3.14159, 2.0E7). Strings are sequences of characters of 

arbitrary length (subject to an implementation dependent limit); they 

can be written enclosed in single quotes (e.g. 'hello'). Tuples are 

ordered sequences of values, which again may be of arbitrary Length. 

They resemble one dimensional arrays or vectors; the values need not 

all be of the same type. Sets are unordered collections of values 

which do not include duplicates - an attempt to add a value which is 

already present to a set has no effect. Both sets and tuples may 

include sets and tuples among their members. Literals are provided 

for both types: a list of values separated by commas is written 

between set brackets {and} or tuple brackets C and J Ce.g. 

{1, 3.4, {'a', 'b'}}, [1, 2, 3]). The values may be any sort of 

expression. 

Sets all of whose elements are tuples of length 2 (pairs) are 

referred to as maps. The first element of each pair is treated as a 

domain value, with the second element providing its corresponding 

range value. A functional notation (see 2.2.2) is provided for 

accessing and updating maps. It is by using maps which represent the 



relationships between elements of a structure that a Sett programmer 

can represent structures such as graphs. 
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Objects known as atcxns are used to build data structures when 

unique tags are required, for example to label nodes of a tree 

containing duplicated values. The only property of an atan is that it 

has a value which is different from anything else. A supply of atoms 

is provided by the system function NEWAT. 

Values of all these types can be a5signed to variables. The type 

of a variable is dynamic and depends only on the last value assigned 

to it. Initially, all variables have an undefined value, omega, 

(written OM); this value is also yielded by certain erroneocs 

operations. A test for equality is the only operation which can be 

performed on omega without an error. 

2.2.2 Expressions 

Expressions can be built out of literals and identifiers using 

the monadic and dyadic operators listed in Figure 2.1 (full Setl 

provides a larger number of more elaborate operators). These 

operators provide a full range of integer and real arithmetic and 

reasonably sophisticated string manipulations. The operators on sets 

perform the usual set-theoretic operations as explained in the table. 

The With and Less operators provide a convenient shorthand for adding 

and removing single elements; s With x is equivalent to s + {x}. 

This operator is commonly used to build up sets one element at a time. 



Figure 2.1 Setl-s Operators 

a) Monadic Operators 

+------ --------------------------+ 
Operator Operand Type I Meaning 

+-----~i----------+----------------------------------+ 
I + 
I 

integer 
real 

affirmation 

+----- ---------+-----------------------------+ 
I - integer I negation 
I real I 

+----------+--------------+----------------------------------+ 
I set I cardinality 

# I tuple I number of elements 
I string I number of characters 

+----------+--------+-----------------------
ABS 

integer 
real 
string 

' absolute value 
I 
I character code value 
I (#string= 1 only) 

-----+ 

+-----·-+----------+----------------------------
ARB 1 set I arbitrary element 

+------+-------------+-------------
DOMAIN I set I if set is a map, yields domain set 

+------+-------------+---------------------------------+ 
FIX real I convert to integer 

+-------------- -----+----------------------------+ 
I FLOAT I integer I convert to real 
+----------+----------f---------------- ------------+ 

NOT - boolean logical negation 
+----------+-------------------------------------------+ 

RANGE set if set is a map, yields range set I 

+----------+--------+-----------------------------+ 
STR any I yields string representation I 

+-------+-----·----+---------------------------------+ 
TYPE I any I yields string giving type 

+--·---+-----------+---------------------------------
VAL I string I for suitable strings, converts 

I I I to numeric value 
+----------+----------+-----------------------------------+ 
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Figure 2.1 Setl-s Operators 

b) Dyadic Operators 

+-----------+-----·-+------------+------ ------+ 
I Left opnd Operator I Right opnd Meaning 
+------f..-------+--------+----

integer 
real 
set 
string 
tuple 

I 
I + 
I 
I 
I 

integer 
real 
set 
string 
tuple 

integer addition 
floating point addition 
union 
concatenation 

..,__------+-------+-------------1-----------------------------+ 
integer I I integer integer subtraction ) 
real I - I real floating point subtraction! 
set I I set set difference I 

+----- ..,__----+---------+-----------------------+ 
integer 

real 
set 
string 

I 
I 
I * 
I 
I 

integer integer multiplication 
string replication 
real floating multiplication 
set intersection 
integer replication 

+-----•-I------+------------------------------+ 
integer / integer floating division 
real real 

+----------+----·---+---- ----.----------- -------+ 
any = I any equality test 

+--------+-----·-+------+--------------------+ 
any /= any inequality test 

+------------ --------+---------------------·+ 
integer) integer comparisons 
string) 
real ) 

( integer 
(string 
(real 

lexical comparisons I 
floating point comparisons) 

I 

+----------+-----+------------------·---------+ 
integer DIV integer integer division 

+-------'-------+------------+--------------------------+ 
I string string sub-string test 
I any IN set membership test 
I tuple 
+-----------+---------+------+--------------------+ 

set INCS I set inclusion test 
+---------+--------+-----------+--------------------+ 

set LESS any removes element 
+-----..... ---+--------+--------·-------------+ 

set I LESSF any if set is a map, removes 
I I pairs for given domain 

+---------ii---•---+------------+---------------------+ 
I string I I string 
I any I NOTIN I set inverse of IN 
I I I tuple 
+--------+-----+-----+----------------,---+ 
I integer I REM I integer I remainder after division 
+----- +-----+------+--------------------+ 
I ...... + I C::IIDC::i::'T I <.-~+ I c:11h<:Pt 1-P<e:.t f 
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Several additional forms of basic operano·~re available. 

Elements of a tuple can be written as, for example, t(i) which selects 

the ith element. If i exceeds the current length of the tuple omega 

is yielded as the value. Similarly, map references can be written: 

f(x) searche$ the set f for a pair whose first element is equal to x 

and returns the second element of the pair. If no such pair exists 

omega is returned; if the set contains more than one such pair or any 

elements which are not pairs an error occurs. In the former case the 

notation f{x) is used to give the set of all range elements for the 

domain value x. 

Set and tuple operands can be formed using special notations. 

Tuples which consist of sequences of integers are written in a style 

exemplified by [2 ••• 100], which gives a tuple whose members are the 

integers from 2 to 100. The general form is Cfirst,next ••• lastJ, 

where first is an expression giving the initial value, next is an 

expression giving the second value, which indicates the step size and 

direction, and last is an expression giving the final value. This 

notation can also be used to form sets, the ordering not being 

significant; thus, an idiosyncratic way of forming a set of even 

integers less than 100 would be {100,98 ••• 1}. 

A more general type of set and tuple former uses an iterator. 

The general form of iterator is identifier IN expression, where 

expression yields a set or tuple. The notation {expression: iterator} 

yields a set whose elements are the successive values of the 

expression obtained as the identifier in the iterator takes on the 

value of each element in its expression, in turn. Thus 
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{[a*a, aJ: a IN [1 ••• 10J} gives a square root map (e.g. t(16) = 4). 

The iterator can be followed by a test to indicate that only some 

elements are to be used; thus to skip the pair [25, SJ the previous 

example would have to be {[a, a*aJ: a IN [1 ••• 10J I a/=S}. The bar I 

is used to ~eparate the test; it may be read as 'such that'. 

Function calls, both of ~y!:item functions and user-defined 

functions (see 2.2.4) can be used in expressions. 

2.2.3 Statements 

Most of the statement forms in Setl are conventional, resembling 

a hybrid of Pascal and Algol68. An assignment is of the form 

left_hand := expression, where left_hand is either an identifier, a 

tuple reference or map reference. It is legitimate to assign to a 

non-existent element of a tuple or map - the effect is to create an 

extra member. Assigning operators, such as+:= are also supplied. 

One special assigning operator is From. x From sis equivalent to the 

sequence x := Arb s; s Less:= x. It is thus unusual in that it 

implicitly assigns to both operands. Both assigning operators and the 

assignment can be used within an expression as well as standing alone 

as a statement. 

Conditional execution is provided by an If-statement and a 

Case-statement with the familiar semantics. A point of syntax to note 

is that Sett does not have blocks delimited by Begin and End. Instead 

keywords such as If and Then act as block delimiters as in Algol68. 

The keyword End is used to close all constructs (as against Fi, Od 



etc.). If-expressions and Case-expressions are also available for 

convenience. 
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There are two forms of loop in Setl. The first, sometimes called 

a 'full iterator' is a portmanteau construct with several clauses: an 

lnit clause to be performed on entry, a Doing block to be performed at 

the start of each iteration; this is followed by a While test, after 

which the body of the loop is performed. Next comes a Step block, 

which is periormed at the end of every iteration, followed by an Until 

test. Finally, a Term block is performed on exit from the loop. Any, 

or all, of these clauses may be omitted, which permits the synthesis 

of a wide variety oi Loops. 

The other form of Loop is controlled by an iterator of the type 

described in connection with set formers. It has the syntax: 

(For identifier IN expression) body End. The effect is to execute the 

body of the loop with the variable in the iterator taking the value of 

each member of the set or tuple yielded by expression; if the 

expression is a tuple the values are yielded in order, if a set they 

are yielded non-deterministically. As with formers, an iterator 

controlling a loop may include a 'such that• test. Iterators may be 

combined (e.g. (For x IN s, y IN ss)) giving the effect of nested 

loops. 

Loops can also be used as Boolean expressions in the so-called 

•quantified tests•. These are of the form keyword iterator I test, 

where keyword is any of Exists, Notexists or Forall. The effect is to 

perform the test on each value yielded by the iterator; the final 

value agrees with the intuitive meaning of the keyword. Once the 



...., . 

7•M 
' ' 

value has been established an exit is taken from the loop and the 

variable in the iterator may have a value depending on the coRdition 

causing the exit. These tests are not the quantifiers known in 

symbolic logic. 

22 

Within the body of any loop the commands Quit and Cont~nue may be 

obeyed. The former causes immediate exit from the loop, the latter 

causes the rest of the body to be skipped and the next iteration to be 

performed. 

Commands can be made to yield a value by the use of Expr. Within 

the scope of an Expr commands are obeyed until the command 

Yield expression is encountered when the value of the expression 

becomes the value of the Expr block. 

2.2.4 Miscellaneous 

A Setl program consists of a header followed by the main body 

followed by procedure declarations, which are conventional in format. 

Setl-s insists that procedure names be pre-declared in a Procedure 

statement following the heading, to facilitate one-pass compilation. 

All procedures return a result, which is omega if there is no explicit 

one; the procedures may be called either as functions within 

expressions or as routines standing alone as statements, in which case 

the result is ignored. In Setl-s all parameters are passed by 

reference, which is more a bug than a design feature. 
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In reading the programs in Appendix 1 it should be noted that 

Setl allows the keywords Program, Procedure and Continue to be 

abbreviated Prog, Proc and Cont respectively. Also, to cope with the 

possibility that{,},[, J and I may not be available these may be 

replaced by<<,>>,(/,/) and ST. Iterators at the head of loops may 

be surrounded by parentheses as described in previous sections or by 

the keyword pair Loop and Do. In full Setl the keyword End may be 

followed by tokens copied from the head of the construct it closes, to 

aid readability and provide a check on matching of Ends. Setl-s does 

not support this feature in full, but it allows If, Case and Loop to 

be matched by End If, End Case and End Loop; likewise Prog and Proc 

may be appended to the matching End. If the keywords do not match an 

error is reported. 

This description of Setl has necessarily been rather sketchy; 

interested readers are referred to the references. Some other 

detailed points will be described as required in the account of the 

Setl-s system. 

2.3 THE SETL-S SYSTEM 

2.3.1 Background 

The design of Setl-s was influenced by the macro Spitbol 

implementation of the Spitbol dialect of Snobol4CD"77J. This has 

proved to be an efficient and highly portable implementation of that 

language. Given the similarities between the Spitbol and Setl 

languages, and the design objective of Setl-s, it would seem feasible 



Figure 2.2 Differences between Setl-s and full sett 

Major Omissions 

Module structure 

Representation sub-language 

Macros 

Backtracking 

Compound operators 

Labels and GOTOs 

User-defined operators 

Some operators 

String and tuple slices 

Arbitrary precision integers 

Restrictions 

No tuples on left hand of assignments 

No multi-dimensional map references (e.g. f(a, b)) 

Only simplest iterator forms 

Procedures must be pre-declared 

Arguments passed by reference 

Limitations on tokens following End 

Constants in Const and lnit declarations restricted to numbers 
and strings 
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to suggest that the implementation approach used in macro Spitbol 

could profitably be adapted for use in Setl-s. A comparison of the 

two Languages, which brings out the relationship between the two 

systems is summarised in Figure 2.3. The main point of similarity is 

the high Level data types supported, which in both cases demand the 

use of a heap-based storage allocation scheme, which in turn calls for 

an efficient garbage collector. To correspond with these data types, 

both Languages provide operations which are not supported by 

conventional hardware, so that interpretive code is an attractive 

implementation technique. This is confirmed by the fact that both 

Languages are dynamically typed. 

There are however sufficient differences between Setl and Spitbol 

to demand extensive modifications to the design of macro Spitbol if a 

sensible implementation of Setl is to be produced. The precise nature 

of the Languages' data types differs considerably, and the approach to 

polymorphism and mixed-mode operations is quite different. The 

biggest difference is that Setl requires a much more sophisticated 

syntax analysis than Spitbol does, although since there is no runtime 

compilation of code, this analysis can be entirely separated from the 

runtime system. 

Figure 2.4 shows the structure of Setl-s. For reasons outlined 

in Chapter 1, the source is translated into a form of interpretive 

code. The part of the system which performs the translation is 

referred to as the Setl-s compiler, and forms the subject matter of 

Chapter 4; it uses a novel form of LRC1) parser to perform syntax 

analysis. The code which is generated from the parse tree is the 



Figure 2.3 A Comparison of Snobol4 and Setl 

-------------+--------------------+ 
Snobol4 Setl 

+------------------+------------------------+ 
I 
I dynamic types 
I 
I sets, maps, tuples 
I 

set operations, iterators 
map references 

many polymorphic operators 

no mixed mode operations 
no coercions 

conventional program 
structure 

complex syntax 

dynamic types 

strings, patterns, tables 

pattern matching 

some polymorphic operators 

coercions 

modified Markov algorithm 

simple syntax 

run time compilation 
of code 

+----------·--------+------ -------+ 
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Figure 2.4 Structure of the Setl-s System 

+-----+ 

Setl +l source 

+--*--+ 
+---*----

* * 

.. , 

+---------------*---------------------·------+ 
Compiler * 

* 
* * +------+ 

-----v-------+ +--------------+ 1+----+ I scanne/ I I tree-builder l*****!treel 

+--------1-~-• +-[-l ---! ~~=~. 
+----------+ +-v-v-----•-v-+ +------v---+ 

linitialisatio I -! LRC1) parser 1-----!code generator! 
I I I 
+------------- -+ +------- -+ 

+-----------r-
+--------v------+ 

* Space Allocation 
and 

Garbage Collection 

+----- ---+ 

* * * 
* +-------------•---+ 
* +---*-+ 

E:~i 
+---*-+ 

* * * * 
.a-----! lnterpret:=-+1 I Routines 

+--------t, 

·---------> 
I Interpreter 
+------------------+ 

--> control flow 
**> data transmission 
* components derived from macro Spitbol 
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indirect threaded code, briefly mentioned in 1.3; the code format and 

interpretive routines will be described in Chapter 3. A space 

allocation scheme interacts with all part of the system. 

2.3.2 Minimal 

Setl-s is written in the implementation language Minimal, which 

had been developed for macro Spitbol. This has allowed parts of the 

former system to be directly incorporated in the new one. 'Minimal' 

is an acronym for Machine Independent Macro Assembly Language. As 

this suggests, it resembles the assembly language of real machines, 

but is defined in a machine-ir~ependent way, as the assembly language 

for a non-existent virtual machine. It is implemented on a particular 

machine by macro-expansion into the target machine-code. This is a 

fairly efficient process, with expansion ratios from Minimal to target 

code as low as 1:1.2 for machines with a modest set of registers, and 

so Minimal programs execute with an efficiency approaching that of 

machine code. It is important for the runtime interpretive routines 

of a system such as Setl-s to be coded as efficiently as possible, 

hence the attraction of Minimal, despite the inconvenience of 

programming in it. 

Minimal is described in some detail in CDM77J. Its design was 

influenced by the original application, so it has features which are 

particularly useful for string processing. The Minimal virtual 

machine resembles most conventional machine architectures 

(particularly that of the PDP11). It has two general-purpose index 

registers, XL and XR, a stack pointer register XS, three work 



registers and separate ·integer and real accumulators. Operations are 

provided for integer, addr:ss and (optionally) real arithmetic, jumps 

and tests as well as the character handling operations alluded to 

above. 

Some features of the language are provided specifically to assist 

with the coding of interpreters, notably a code pointer CP, and 

appropriate operations on it. Machine-dependent quantities, such as 

the number of bits in a word, and the size of basic addressing unit 

and address, are incorporated as parameters in the Minimal program. 

2.3.3 Memory Organisation 

Given the basic design approach to Setl-s, it is possible to take 

parts of the actual code of mucro-Spitbol and incorporate it into 

Setl-s, thereby saving a certain amount of routine coding. The major 

saving afforded in this way comes from using the Spitbol garbage 

collector, an efficient, compacting garbage collector, which is 

already debugged and well understood. It does, however, impose 

certain restrictions, which have to be rigorously observed. The ones 

which affect the implementation strategy are: 

1. no data object in collectable memory may have pointers to it, 

other than to its first word. 

2. a structure containing pointers must have them all in a 

contiguous block, possibly interspersed with recognisable 

non-pointers. 



3. small integers must be distinguishable from pointers; this 

is done by restricting dynar. .. c memory to start at some 

threshold value: all pointers therefore exceed this 

threshold, with small integers falling below it. This 

imposes a limit on the maximum permissible size of objects 

whose size is specified by such an integer. 

Additional restrictions on the contents of registers when the 

collector is called have specific eifects on the coding. 
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Implicit in the adoption of the garbage collector is the adoption 

of the particular memory organisation used with it in macro Spitbol. 

Memory is divided into a static area, which is allocated once and for 

all and not subject to garbage collection, and a dynamic area in which 

space is allocated and released as execution proceeds, with freed 

space being recovered by the collector. 

As well as the collector-imposed restrictions, a further 

restriction, imposed by Minimal, to assist portability, is that 

pointers must occupy a full word. (Hence, it is not possible to pack 

a pointer and, for example, some marker bits into a single field of a 

block.) The combination of these factors exerts a powerful influence 

on data structure choice, but, in fact, the structures fit in 

comfortably with the interpretive scheme, and starting from such a set 

of restrictions avoids the problem of having to fit a garbage 

collector into the pattern of data structures chosen by the 

implementer according to other criteria. 



CHAPTER 3 

THE SETL-S INTERPRETER 

3.1 REPRESENTATION OF CODE 

3.1.1 Indirect Threaded Code 

The distinguishing feature of the Setl-s interpretive scheme is 

the format used for the interpretive code, which is known as indirect 

threaded code, abbreviated ITC. The code consists of a series of 

codewords, arranged as a reverse Polish string, with operands 

preceding their operators. Evaluation proceeds by loading operands 

onto a stack, and applying operators to the top stack items. 

Each codeword is a word which contains the address of a word 

which in turn contains the entry point address of a system routine, 

which performs the function of loading operands onto the stack or 

applying operators. Such a pointer to a pointer will sometimes be 

referred to as an iD2i!~f1 pointer. The code pointer register (CP) 

points to the current codeword, in a manner analogous to a hardware 

program counter. Each system routine ends in a sequence of code which 

increments the code pointer, loads the new current codeword into a 

register CXR), and makes an indirect branch through the pointer in 

that register, i.e. control passes to the address in the word pointed 
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at by the codeword, which will be the system routine entry point. 

This is achieved by t~e following sequence of Minimal inst1uctions: 
if'\+o )(f. 

LCW XR load the codeword, incrementing CP I a.iw:f_ fOS:;,t 4--(; 
MOV (XR),XL XL now points to entry point a£ £"tf O ~i ~ 

::(L.. 
BRI XL make indirect branch 

The BRanch Indirect instruction transfers control to the location 

pointed at by its operand - Minimal restricts such jumps to locations 

which are explicitly defined in the program to be 'entry points'. 

Figure 3.1 illustrates this flow of control. 

Note that this interpretive cycle leaves a pointer in XR. This 

is exploited, in the case of operands, by representing each value by a 

block, whose first word points to a routine to load the value. This 

load routine can access the value (i.e. the block) via XR, so that 

the code produced to load any value is merely a pointer to the first 

word of the block. Similarly, if an operand is a variable, the 

codeword points to the first word of a variable block (VRBLK, see 

figure 3.4h), which points to the routine to load the value, while 

another field in the VRBLK points to the block which is the current 

R-value of the variable. (Following Strachey [STR67J, I use the terms 

L-value and R-value of a variable, to distinguish between the 

'location' denoted by the variable in a particular environment, its 

L-value, and the contents of that location, its R-value.) In the case 

of variables, however, another pointer is required - one to a routine 

to store a new R-value into it upon assignment. This pointer is held 

in the VRSTO field of the VRBLK, which is its second word. A simple 
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Figure 3.1 ITC flow of control 
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* * 
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assignment to a variable is represented in the code by a pointer to 

this field of the appropriate VRBLK. Since this means that there are 

pointers into the middle of VRBLKs, which violates a basic garbage 

collector restriction, VRBLKs are kept in the static region, and are 

not collected. 

Figure 3.2 provides a simple example of the code format; it 

shows operators as simple indirect pointers to operator routines, 

which was the format used in macro-Spitbol. The modified operator 

representation used in Setl-s will be described later. 

Although this format seems to be extremely elaborate, it 

possesses several desirable features: 

the code consists of nothing but addresses, and since most 

computers have words which can hold an address, the code format 

is portable. 

the code is compact. 

only one copy of each system routine is required. 

the decoding overhead is small. 

These points will be elaborated in Chapter 5. 

3.1.2 Transfer Of Control -

So far, the ITC has been described as if it were a Linear series 

of words, with control passing through each codeword as the code 

pointer is incremented. In order to represent the control structures 

of Setl it must be possible for control to be transferred, by 

conditional or unconditional jumps. A branch of this nature will be 



Figure 3.2 ITC generated for x:=y*2 when y=S 
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represented by an indirect pointer to a routine to reset the code 

pointer and perform an indirect branch through the new codeword. This 

routine will have to be supplied with the destination codeword for the 

jump. To do this conveniently, codewords are arranged in codeblocks, 

the first word of each of which contains a pointer to the routine to 

transfer control. An unconditional jump is simply a pointer to the 

codeblock which is its destination; a conditional jump is implemented 

as an indirect pointer to a skip routine followed by an unconditional 

jump. The skip routine tests the truth value of the top stack item 

and either increments the code pointer or not accordingly, so as to 

obey the jump or carry on with the next word of the current codeblock. 

Both forms of conditional jump - jump on true and jump on false - are 

used, as well as more specialised conditional jumps used in iterators 

and set formers. Figure 3.3 shows the arrangement of codeblocks 

corresponding to the Setl IF-THEN-ELSE construct. Notice that control 

cannot drop through to CBn+2, because pointers may only be to the 

heads of blocks. 

This format has two interesting effects: it is quite easy to 

ensure that these codeblocks obey the restrictions imposed by the 

garbage collector, so that codeblocks can be built by the code 

generator in dynamic memory. This means that, as code becomes 

unreachable Ce.g. after the last exit from a loop, or the final 

return from a procedure) the space occupied by it can be recovered by 

the garbage collector, and made available as workspace to the 

executing program. This may prove a valuable feature where memory is 

limited. The other thing to note about the code format is that the 

code can be looked at statically as a directed graph representing the 
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flow of control in the program. This graph, therefore, contains 

information which would be useful in performing optimisations on the 

generated code, and it is hoped that it will eventually be possible to 

make some such use of it, or else to perform optimisation dynamically 

as the code pointer 'traverses' the graph. 

The representation of procedures has been chosen to extend these 

benefits to procedure calls. There is an entry in the symbol table, 

corresponding to the name of each procedure, which is created when the 

forward declaration of the procedure is processed and which has its 

value set to be a pointer to a procedure block CPCBLK). This PCBLK is 

filled in when the procedure body is encountered with a pointer to the 

code and certain administrative information required for handling the 

procedure call. When a call is found in the Setl program, a codeword 

is generated which points to the relevant PCBLK - the first word of 

the PCBLK points to a routine to call a procedure, the rest of the 

block providing the information required to preserve the calling 

environment, and associate arguments with their values (see 3.4.2). 

Sett does not permit function-valued variables, and so there is never 

any ·need to load a function value (i.e. a PCBLK) onto the stack; 

this means that the first word of the PCBLK is free to be used for the 

call instead of holding a load routine pointer, as is the case with 

most other blocks. The chosen code format is sufficiently flexible 

for this arrangement to fit in comfortably. After code generation has 

been completed, the value fields of the symbol table entries for 

procedures (which are chained together for easy access) are cleared to 

zero. Hence the PCBLKs are 'set loose' and become accessible only 

through the code. This means that the PCBLKs and their associated 



code can be reclaimed by the garbage collector when they become 

unrea~nable. 
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Labels and GOTOs are not permitted in Setl-s, since the language 

contains adequate control syntax for them to be unnecessary as well as 

undesirable; furthermore, the implementation of labels involves 

restoring the environment after a jump, a problem which would 

complicate the sy~tem to little purpose. 

3.2 REPRESENTATION OF VALUES 

3.2.1 Operand Blocks 

Every value is represented by a contiguous block of two or mere 

words, divided into fields; there is a separate block type for each 

Setl datatype, with pairs and maps being treated as distinct types. 

Figure 3.4 shows the various block formats. Several conventions are 

used in these diagrams and the following text. 

The block and field names follow the Minimal rules for names, 

each being five characters long, the first three of which must be 

alphabetic. There is a 2 letter code for each type, e.g. IC for 

integer (constant), ST for set, and the block is referred to as an 

xxBLK, where xx is the code. Similarly, all fields' symbolic names 

begin with the type code, the remaining three letters being a mnemonic 

for the field's use. In the diagrams, fields shown delimited by solid 

vertical lines are one machine word long, those delimited with* are 

one or more words long, depending on the value of some machine 

parameter (e.g. the length of the RCVAL field of an RCBLK will be the 



Figure 3.4 Setl-s Block Formats 

a) ICBLK - integer 

+---------+ 
ICGET 

.i.-----+ 
* ICVAL * 
------+ 

b) RCBLK - real 

+--------+ 
RCGET 

+---------+ 
* RCVAL * 
+---------+ 

c) SCBLK - string 

+--·----+ 
I SCGET 
+---------+ 

SCLEN 
+---------+ 
I I 
/ SCHAR / 
I I 
+------.--+ 

d) ATBLK - atom 

+---------+ 
ATTYP 

+----+ 
* ATVAL * 
+--------+ 

e) STBLK - set 

type pointer 

value 

type point er 

value 

type pointer 

no o1 characters 

characters (packed) 

type pointer 

print value (integer) 

(MPBLK - map is identical) 

+------+ 
STTYP 

+-------+ 
STLEN 

+------+ 
STNEL 

+-------+ 
I I 
/ STELS / 
I I 

type pointer 

block length 

number of elements (cardinality) 

pointers to elements 
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Figure 3.4 Setl-s Block Formats 

f) TPBLK - tuple 

+---------+ 
TPTYP 

+----+ 
I TPLEN 
+-----+ 

type pointer 

block length 

TPNEL number of elements (cardinality) 
+---------+ 
I I 
/ TPELS / 
I I 

g) PRBLK "'.' pair 

+---------+ 
PRTYP 

+---------+ 
PRDOM 

+---------+ 
PRRNG 

+---------+ 
PRNXT 

+---------+ 

pointers to elements 

type pointer 

pointer to first element 

pointer to second element 

link pointer 

h) VRBLK - variable 

+-------. 
I VRGET 
+--------+ 

VRSTO 
+------+ 

VRVAL 
+--------+ 

VRNXT 
+--------+ 

VRNML I 
+-------+ 
I I 
/ VRCHS / 
I I 
+-------+ 

pointer to load routine 

pointer to store routine 

pointer to current value 

hash chain link pointer 

name length (proc number in leftmost bits) 

characters of name (packed) 
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number of words required to hold a floating point number). Areas 

delimited with/ indicate a variable number of identical, one-word 

fields (e.g. the members of a set in a STBLK). Blocks with such an 

area have also a fixed number of administrative fields; the variable 

sis used for the number of these fields, in the following 

descriptions. Comments on the zignificance of each field are appended 

to the right of each diagram. 

Most blocks are allocated in dynamic memory and are subject to 

relocation by the garbage collector, as well as being reclaimed by it 

when they cease to be active.The exceptions are system constants, ~uch 

as OM, TRUE, FALSE and the null set (map), tuple and string, and also 

atoms created by NEWAT. These all reside in static, in a single copy, 

so they can readily be identified or compared using only their 

addresses. 

As explained above, the first field of every block contains a 

pointer to a system routine to load its value onto the stack. Since 

the stacked value is merely a pointer to the block, and all pointers 

are just words containing addresses, it might be thought that a single 

Load routine was all that was required. In practice, a different 

routine entry point is defined for every type, although the routines 

all share code. In this way, the pointer serves as a type code for 

the block, as we~l as performing its function .as part of the 

interpretive scheme. 

The blocks can be divided into two groups. The first of these 

consists of !!9mi~ values whose internal structure is not 

decomposable, and which are never modified once built. This group 



comprises ICBLKs, RCBLKs, SCBLKs and all of the static blocks. Any 

operation yielding an atomic value creates a new block to hold it: 

e.g. performing the addition 2 + 2 Leads to the creation of a new 

ICBLK with value 4. The cost of this is low, and a great deal of 

potential trouble with shared pointers is avoided. All the other 

blocks have a decomposable structure, and can be modified in place -

the latter is inevitable on efficiency grounds, since creating, for 

example, a new MPBLK every time a map was modified would rapidly 

exhaust memory, as well as slowing down execution intolerably. 

3.2.2 Sets And Tuples 
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The structures chosen for sets and tuples are very simple. Sets 

are represented as linear hash tables. Pointers to the elements of 

the set are kept in the STELS fields, with empty slots being occupied 

by OMs. The•fields at the head of the block hold the total block 

length, which is used by the garbage collector as well as by the 

routines for accessing set elements, and the number of elements, which 

is the cardinality of the set. Overflow of the hash table is dealt 

with by rehashing the entire set into a new, larger block. When a 

block of length N + s becomes full, a new block of length 2N + 1 + s 

is allocated. The smallest value of N is 11, giving the sequence 11, 

23, 47, 95,191,383, ••• for the number of hash slots in sets. Most 

of these are primes, which should help reduce collisions. A block is 

deemed full if n/CN+s) >= 0.7 which varies between 70 to 80% occupancy 

as the effect of s changes. This would seem to be fairly optimal 

[HOP69J. Since a linear regime is used to deal with collisions, a 

) 



deletion marker must be lef~ after an element has been removed. o is 

used for this purpose. 

A tuple has a length field, giving the total number of words in 

the block, a cardinality field, which gives the index of the highest 

element which is not OM, and then pointers to its elements, in order. 

A tuple with cardinality n will be a block of length N >= n+s, with 

elements beyond the nth filled witl1 pointers to OM. When the block 

gets full (n > N-s), a larger one is allocated, using the same 

allocator as for sets, with all the values being copied from the 

original. Accessing t(x) is easy - if x <= n, then return the element 

at the appropriate offset, otherwise return OM. Updating t(x) is more 

complex,since the cardinality may be affected, if either x>n, or if 

x=n and the value assigned is OM, when it is necessary to find the 

last non-OM value, which need not be t(x-1). The details are 

straightforward, albeit tedious. 

Set and tuple blocks are never contracted again once they have 

expanded. 

3.2.3 Pairs And Maps 

Maps are a distinctive feature of Setl, and the way in which they 

are defined in the language presents particular implementation 

difficulties. According to the Setl language definition, a pair is 

merely a tuple of length 2, and a map is a set containing only pairs. 

However, elements of a map can be accessed using the map notations 

f(x) and f{x}. It is desirable to use a representation for maps which 
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facilitates such references without complicating the treatment of maps 

as sets where the context requires it. This is achieved by using the 

standard linear hash table set representation for maps, and using a 

special pair representation which is suitable for map references when 

stored in the table. The type word of the map block serves as an 

indicator that the set is known to consist entirely of pairs. 

The pair representation is shown in figure 3.4g. When added to a 

set or map, the pairs are hashed on the domain value cnly, so that 

pairs with the same domain value will hash to the same location in the 

MPBLK; the PRNXT field is used to chain such entries together for the 

multi-valued map case. To facilitate iteration through maps, such 

chains are terminated by a pair whose PRNXT field contains the offset 

to the next entry in the MPDLK - a simple test for a pointer will 

detect the end condition, so iteration can be controlled by a location 

which contains either an offset into the block, or a pointer to a pair 

in a chain. 

Although this scheme means that special action must always be 

taken to add a pair to any set or map, and that iteration is 

complicated somewhat, sets and maps are indistinguishable for most 

purposes, and map references are straightforward. (In the case of 

multi-valued map references f{x} it is necessary to form the result 

set explicitly, but the alternative of keeping the range as a set has 

its own disadvantages, such as the need to distinguish between 

{C1, {1,2}J} and {[1, 1J, [1, 2J}.) A slight problem with not making 

the distinction between single-valued and multi-valued maps is that a 

reference f(x) to a multi-valued map is supposed to produce an error, 
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whether or not the range for x is itself multi-valued. In Setl-s the 

error cannot be detected until reference is actu,Lly attempted to a 

range with more than one element. 

Making pairs and maps into different internal types introduces 

the problem of conversion between types. 

Whenever a pair or tuple is created or modified it is 

straightforward to detect whether its cardinality has become equal to 

2; however, changing a tuple into a pair (or vice versa) involves a 

restructuring of the object which will not always be worthwhile,. since 

a tuple which is being built up either by an iterator or a series of 

assignments will pass through the stage of being a pair. Instead of 

always doing this check, therefore, tuples which are created 

explicitly with two elements are made into pairs. This reflects the 

typical ways of forming maps: 

{C1, 1J, [2, 4J, C3, 9J, [4, 16]) or 

{Ca, a*a]: a IN C1 ••• 4J) 

If elements are added to a pair, or OM is assigned to either of 

its elements, the pair is converted to a tuple. By suitable additions 

to and deletions from tuples, it is possible to create one of length 2 

which is not in pair format, so when context demands a pair, and the 

value is a tuple, a check is made, and if it turns out to be a pa,r, 

it is rebuilt as a PRBU(. 
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A similar strategy is adopted with respect to maps. The null set 

can be treated as a map whose range is everywhere undefined; sets are 

always created by adding elements to the null set or to an empty block 

which will also have type map and the procedure which adds the 

elements can easily determine whether an element being added is a 

pair. If it is, the object continues to be a mup, and this will be 

reflected by the type word. If, however, a non-pair is added, the 

type is chan£)ed to set. lt may be the case that all non-pairs are 

subsequently removed, but it is difficult for the system to keep track 

of this. The result is that the type word of a map serves to indicate 

that the object is known to contain only pairs, and so map references 

may be performed. If the type word indicates that an object is a set, 

this merely implies that it is not known whether it is a map, so if 

context demands a map a check is made before an error is announced. 

If the object turns out to contain only pairs its type word is reset. 

Union and intersection are implemented in such a way that the result 

set is formed by adding elements to an initially empty set. The 

checks are performed as each element is added, in the usual way so the 

result automatically has its type word correctly set. 

It seems quite clear that the implementation problems associated 

with maps, which are quite out of proportion to their importance, 

derive from a muddled piece of language design and that maps and sets 

should be separate types. This may offend some purists, but is a 

minor compromise compared to some which the language already makes. 



1 
48 

3.2.4 Assignment And Copying 

Conceptually, the way in which Setl defines the assignment of 

aggregate values is straightforward. Dewar describes it as follows: 

'Setl treats tuples [and sets] as values when it comes to assignment.' 

[DEW79]. For example, after execution of the following sequence: 

t1 • (1, 2, 3, 4]; 

t2 := t1 ; 

t2(4) .- 999; 

the value of t1 is still (1, 2, 3, 4]. Notionally, the right hand 

side of an assignment is evaluated to produr.e a value which is then 

used to update the location associated with the left hand. This 

location must be considered elastic in order to accomodate type 

changes and objects whose size may vary dynamically. In practice, a 

heap-based storage allocation scheme is used, and location5 hold only 

pointers. However, in order to preserve the semantics defined for 

assignment it is insufficient to copy a pointer, the entire block 

which is pointed to must be copied, and a pointer to the copy used to 

update the location. Since the copying of objects such as sets is 

expensive it is desirable to avoid this operation whenever possible • 

. The difference between a copying assignment and a pointer 

assignment only becomes important when the value to be assigned is 

already the R-value of some variable, or else is a member of an object 

which is the R-value of some variable, because it is only when 

subsequent modifications can affect the value of more than one 

variable that any difference will be detected in the behaviour of a 

program. Fortunately, this condition can be detected at compile-time 
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by inspection of the parse tree, and the code generator can insert 

'copy' instructions into the code, before the assignment. The syntax 

of expressions which must be copied is given by the following 

mini-grammar, where the grammar symbols represent nodes of the parse 

tree, rather than symbols of the input, hence precedence and 

parentheses need not be considered. 

copyvalue ::= name 

copyvalue assigning_operator expression 

copyvalue subscript 

Examples are t1, t1(5), y +:= 3, Cx := y)Ci). 

The syntactic forms of right hands which can safely be assigned 

or added to a set or tuple by a simple pointer-moving operation are 

expressions with operators, set and tuple formers and enumerations, or 

constants. Examples would be: 

{1, 2, 3} 

{x: x IN s I x > 4} 

X + y 

X + y +:= 3 

x WITH y 

The correctness of this copying rule depends on the fact that an 

expression produces a new block to hold its value. Most of the 

routines for operators have been coded so that they build this block 

and do not modify their operands. However, the routines for WITH and 

LESS have been written so that the operation is performed in place on 

the left operand: these operators are frequently used in assigning 

form, when it is undesirable to produce a new block. This is 
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exemplified by the following: 

s := {}; 

(For X IN SS) s With:= X; End; 
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which represents a typical way of building a set. It is more 

convenient to insert an instruction to copy the left operand on 

occasions when the operator is not in assigning form, than to try and 

optimise the assigning case, by generating a special codeword. Thus, 

in the last example given above, the result of the expression can 

still be safely assigned, because an explicit copying operation will 

have been inserted into the code. 

Althou~1 this discussion has been restricted to assignment, it 

should be apparent that similar considerations apply to any operation 

whose execution can result in the storing of a value. In particular, 

the addition of an element to a set or tuple must be performed so that 

shared pointers to aggregate values do not occur. 

It will be noticed that the rules just given are unnecessarily 

strict, inasmuch as the R-value of a variable might be an atomic 

value, and, as has been described, atomic values cannot be modified, 

so there is no harm if pointers to them are shared. It is not,in 

general, possible for the compiler to detect this situation, so a copy 

instruction is always inserted as described. The runtime system can 

make use of the extra type information available to it in order to 

lessen the number of copying operations performed. If, on entry to 

the copy routine, the top stack item which is to be copied is an 

atomic value, then no copying is performed. The cost of the operation 

is just one indirect threading cycle, and the production of 
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superfluous blocks is avoided. In a similar way, when a set or tuple 

is to be copied, normally all of its elements must be copied. In 

fact, atomic objects are never copied, and pointers to them inside 

objects such as sets may be shared without trouble. 

The foregoing discussion should indicate that the problem of 

copying on assignment is one of the greatest sources of complexity and 

potential insecurity in the wl1ole system. Depending on one's feelings 

on these matters, this can eitl1er be taken as a Lesson on the dangers 

of pointers, or an indication of the inappropriateness of a strict 

value semantics in practically implemented Languages. It is felt, 

however, that the strategy adopted (which is original to Setl-s) 

provides a workable solution; alternatives will be examined in 

chapter 5, to illustrate further the complexity of the implementation 

issues raised. 

3.3 REPRESENTATION OF OPERATORS 

3.3.1 Polymorphism In Setl 

Referring back to Figure 2.1, it can be seen that certain 

operator signs in Setl represent several entirely different operations 

depending on the type of operand to which they are applied. Such 

operators are referred to as Q2ll~2!ebi£ operators; an example is+ 

(dyadic) which can mean integer addition, real addition, string or 

tuple concatenation or set/map union. Since the type of a variable 

changes dynamically, it is not possible for the compiler to determine 

it and select the appropriate operation to be performed (or signal a 



type incompatibility error). The type checking must be done at 

runtime. This fact has already been mentioned, since it is of 

importance in the design of the system, being a major factor in the 

decision to use an interpretive scheme. 
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With polymorphic operators it is not sufficient to determine 

whether an operand is of a particular type or not,the actual type must 

be found, in order to select the required operation. In contexts 

where a simple check of a particular type is sufficient, the indirect 

pointer in the first word of the block can be tested, since there are 

different entry points for each type. A series of tests would also be 

sufficient to establish the type of an object, but this would involve 

the coding of such a series of tests at the head of each operator 

routine, with each routine having to deal with all possible cases. 

This would, of course, be straightforward, but the stereotyped nature 

of such code suggests that a more systematic approach could be used. 

The scheme which has been devised and implemented for this purpose 

provides a reasonably efficient, flexible method of type 

determination, as well as improving the structure of the runtime 

routines. 

Two points should be noticed. There is an element of hidden 

polymorphism from the implementer's point of view, since sets and maps 

and also tuples and pairs have different internal representations and 

are separate types to the runtime system, although they are not 

distinct in Sett. Secondly, it is the case that once the type of one 

operand of a dyadic operator has been found it severely limits the 

valid types for the other operand, so that a type determination on the 



second operand can reasonably be Left as a series of tests of the 

indirect pointer Cat most, there will only be two of these). 

3.3.2 Operator Implementation 
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An operator is represented by a block (OPBLK), the first word of 

which points to a routine to apply an operator, the remaining words 

being pointers to routines which perform the operation appropriate to 

that particular operator for each type of operand (some of these will 

be error actions). There are two routines, APPL1 and APPL2 which 

apply monadic and dyadic operators respectively. They are referred to 

collectively as APPLn. The code generated for an operator is a 

pointer to the first word of its OPBLK; there is one block for each 

operator provided in the Setl language, an example is the block for+ 

shown in fig 3.5. The OPBLKs a,e set up by data definition statements 

in the Minimal code and hence are built in static, although in 

principle there is no reason why they should not be built dynamically 

and garbage collected. 

It should be apparent that this organisation Leads to a modular 

arrangement of small operator routines, each performing a Limited 

function, and that the type determination has been separated from the 

operation. Nothing has been said yet about the way in which the 

actual routine to be performed is selected. If the APPLn routines 

only performed a series of tests on the type pointer of a value the 

scheme would be somewhat inefficient. Instead, use is made of the 

fact that, on entry to the routine, XR contains a pointer to the 

OPBLK. If types can be mapped onto (small) integers t;, 1<= t; <= tn, 
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Figure 3.5 OPBLK for+ 

-1---------+ I -~---> APPL2 
+------+ 

otom \ --1----> + error routine 
+---------+ 

integer\ -f----> integer addition 
+-----+ 

map\ -1----> map/set union 

I 
I 

omega\ -f----> + error routine 

+--------+ 
I 
1 

I 
pair\ --f----> pair/tuple concatenation 

+·-----+ 

real \ -f----> real addition 
+------+ 

string\ -1----> string concatenation 

+-----+ 

set \ -f----> map/set union 

+-------+ 
tuple' -1----> pair/tuple concatenation 

+------+ 

truth-value\ -f----> + error routine 
+--------+ 

' i 

I 
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where tn is the number of types, then a simple indexing operation on 

XR selects the correct routine. Such a mapping is provided by the 

entry point id, a constant which Minimal associates with each entry 

point. This can be loaded into a register and used as required. This 

does mean that all OPBLKs have to have entries for all types, even 

though some of these will correspond to errors; this overhead seems 

to be acceptable. (See[CM79J) 

Figure 3.6 is an example of this scheme. 

Since there is a significant number of operators for which only 

one operand type is legitimate, an escape mechanism is provided to cut 

down on the space overhead. An alternative OPBLK format has a pointer 

to the routine APPX1 or APPX2 (collectively APPXn), then the type code 

(indirect pointer) for the legitimate type, followed by a pointer to 

the operator routine, and a pointer to an error routine. APPXn merely 

compares the first word of the operand block with the second word of 

the OPBLK, and transfers control to either of the two routines, as 

appropriate. This format is shown in Fig 3.7, for the operator VAL. 

The code for APPLn and APPXn is presented in fig 3.8. 



Figure 3.6 Modified ITC generated for x:=y*2 when y=S 

codewords 

I +-------------+ 
+-----!.., -----♦,-+------>, stack an I 

integer 
+------+ 

+--------+ 
+------+ 

+--> ---+ 
+-----+ 
I I +------+ 

integer blocks 
in dynamic storel 

operators 
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Figure 3.7 OPBLK for VAL 

+--------+ I -t----> APPX1 
+---------+ 
' -1----> load string routine 
+-------·--+ I -f----> VAL operation routine 
+-----+ I -f----> VAL error routine 

+---------+ 



Figure 3.8 APPLn and APPXn Routines 

* * APPL1 - apply a monadic operator 

* * The operator block has a vector of routine entry points 
* On exit merges to APPLY to select the correct one 

* APPL1 ENT 
'10V (XS),XL load operand 
BRN APPLY 
EJC 

* * APPL2 -- apply a dyadic operator 

* * The operator block has a vector of routine entry points. 
* On exit, merges to APPLY to select the correct one, 
* according to the type of the LEFT operand Cat 1(XS)) 

* APPL2 ENT 

* 

MOV OFFS1(XS),XL 
BRN APPLY 
EJC 

load left operand 

* APPX1 - apply a monadic operator 

* * The operator block has the legitimate type code, 
* the operator routine address, and an error routine 
* address 

* * On exit merges to APPX to do the checking. 

* 
APPX1 ENT 

* 

MOV CXS),XL 
BRN APPLX 
EJC 

load operand 

* APPX2 - apply a dyadic operator 

* * As APPX1, but checked on LEFT operand 

* 
APPX2 ENT 

MOV OFFS1CXS),XL 
BRN APPLX 
EJC 

load left operand 
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Figure 3.8 APPLn and APPXn Routines (continued) 

* * APPLX - apply an operator 

* * In the case where an operator is applicable to only 
* one type of operand, APPLX is entered to check the 
* type and enter the evaluating routine if ok. 

* * (XL) operand of monadic operator or 
* left operand of dyildic operator 

* APPLX RTN 
ICA 
BEQ 
lCA 

APP10 ICA 
MOV 
BRN 
EJC 

* 

XR 
(XL) ,CXR) ,APP10 
XR 
XR 
XR,XL 
APPEX 

point took type word 
h it what we have 
no bump pointer 
point to routine 
copy entry point 
merge to enter 

* APPLY -- apply an operator 

* 
* 
* 
* 
* 
* 
* 
* 
APPLY 

* 

APPLY selects an appropriate operator routine, by 
chhoosing one of the entries from its jump vector, 
indexing by the EPI obtained from the operand in XL 

CXL) operand of monadic operator or 
left aperand of dyadic operator 

RTN 
MOV CXL) ,XL 
LEI XL 
WTB XL 
ADD XR,XL 

get entry point 
load EPI 
convert to BAU offset 
point to appropriate routine 

* Continue by falling into APPEX 
EJC 

* APPEX - enter operator routine 
* This is the common exit for APPLX and APPLY 

* * CXL) operator routine entry point 

* APPEX RTN 
MOV 
MOV 
BRI 
EJC 

(XS)+,XR 
CXL),XL 
XL 

pop right operand 
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3.4 SOME FEATURES Of THE RUNTIME ROUTINES 

3.4.1 Iterators 

The Setl-s runtime system includes specialised routines to 

implement loops controlled by iterators of the form: 

(For name in expression). The code generated for such loops may be 

represented in a pseudo-machine language as follows: 

{code to evaluate exrression} 

PRPIT 

->LO 

LO: JNEXT 

->L1 

L1: 

STORE name 

{code for loop body} 

->LO 
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The labels indicate the heads of codeblocks and the notation ->L 

indicates a pointer to the corresponding block; note that the blocks 

have to be chained together explicitly. The pseudo-opcodes PRPIT and 

JNEXT are indirect pointers to system routines which each perform a 

fairly complicated function. The routine for PRPIT prepares a 

temporary to control the loop. The form of this temporary depends on 

the type of the controlling expression, which is the top stack item on 

entry. For pairs, tuples and strings, the temporary is a small 

integer which is initially the index of the first item (1 for tuples 

and pairs, O for strings as a result of the internal representation 

used by the system). For set-like objects the temporary is an offset 
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into the block, which gives the first word which can potentially hold 

an element. 

The routine for JNEXT performs a composite function: it checks 

whether all elements of the expression have been exhausted and, if so, 

cleans off the top two stack items and executes the next codeword, 

which causes a jump out of the loop; otherwise, it extracts the next 

element, updates the temporar)" and increments the code pointer so that 

the assignment to the loop variable and the body of the loop will be 

executed. In the case of tuples, pairs and strings the action is 

simply performed, since the blocks for such values contain a field 

giving the number of elements and this can be compared with the 

temporary to see whether all elements have been used. If they have 

not, a procedure to access the appropriate element is called and the 

value which it returns is stacked. When the controlling expression is 

a set or map the situation is more complicated. Initially, the 

temporary is an offset into the block, and a procedure is called to 

return the value held at that offset. If this is a pair chain, the 

first item is returned and the iterator is updated to point to the 

next, as explained in 3.2.2; otherwise it is incremented to point to 

the next hash slot. If the offset exceeds the length of the block it 

is reset to the initial offset and a flag is set, which can be used by 

the calling routine to determine whether the set is exhausted. Since 

there will usually be 'empty' slots in a set block filled with OM 

values, the JNEXT routine must test for these and skip over them. 
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One special case of the iterator involves the arithmetic former: 

e.g (for i in Cfirst,next ••• last)). It is obviously inappropriate to 

build a tuple and then extract its elements, so this case is detected 

by the code generator which produces code for a conventional 

arithmetic loop resembling a Fortran DO-loop. Loop temporaries for 

the current value, the limit and the step are held on the stack; 

special routines are used to load their values onto the top when 

required. The only point of interest in this is that the form of loop 

permitted in Setl is so general that it is not possible to determine 

until runtime whether the loop variable is increasing or decreasing. 

This leads to the bizarre necessity of including in the code a test to 

determine whether the step value is negative and, if it is, to swap 

the current and l irnit values before comparing them at the end of the 

loop, since the condition to be satisfied on termination is reversed 

by a negative step. 

Set and tuple formers are implemented as special cases of loops. 

That is, an expression of the form {expression: iterator} is expanded 

as if it were: 

Expr 

tempo:={}; 

CF or iterator) 

tempO with:= expression; 

End; 

Yield tempO; 

Similarly, an arithmetic former is expanded into a loop in which the 

current value of the loop variable is added to an initially empty set 

or tuple. 
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These iterators offer an example of the flexibility of the 

interpretive code format, and the compact representation of loops 

which is permitted can be contrasted with the machine code which would 

be required. 

3.4.2 Procedure Call And Return 

It was noted in 3 .1 .2 that a procedure ea l l is rcpresc·nted in the 

code as a pointer to a PCBLK th~ first word of which is a pointer to a 

routine to call procedures. On entry to this routine, the values of 

the arguments being passed to the procedure are on the stack and the 

next codeword holds an argument count (thus slightly upsetting the 

purity of the code format). Because of the way in which space is 

allocated in the static region during compilation, the VRBLKs for the 

arguments and local variables of the procedure being called will be 

contiguous; during compilation of the procedure body, pointers are 

set in the PCBLK to point to the start and end of this contiguous 

region of static. The procedure call routine performs the 

unconventional action of stacking the pre-entry values of the 

arguments and locals of the f~!!~Q procedure, and then initialising 

the arguments to the values passed on the stack. On first entry to a 

procedure a pointer is set in the PCBLK to point to the stacked values 

of the locals; on recursive entries, this pointer is used to obtain 

initial values for any locals which had been set by Const or lnit 

declarations. This mechanism means therefore that such declarations 

can be dealt with by the compiler and do not produce any code to be 

executed. 
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Certain link inform~tion has to be placed on the stack. The old 

stack pointer is required to identify the start of the information 

stacked by the call. A return link is also needed: this is stacked 

as a pointer to the catting codeblock and an offset to the codeword to 

be executed next, because no pointers into the middle of blocks may be 

stacked. A pointer to the PCBLK is also stacked. Setl does not 

permit reference to non-local variables except globals, so no static 

chain or displdy is needed. Finally, the code pointer is reset from 

the PCBLK to point to the procedure's entry point and the procedure is 

entered. 

On return, the link i ntormati on is recovered from the stack, the 

locals are restored to their pre-entry values, the stack is cleaned up 

and execution of the calling code is resumed. 



CIIAPTER 4 

THE SETL-S COMPILER 

4 .1 THE PARSER 

4.1.1 Parsing Algorithm 

Syntactic analysis in Setl-s is carried out by a parser for an 

SLR(1) grammar, using essentially the algorithm given by DeRemer in 

[DER71J. Since the formulation of this algorithm in Setl-s is 

somewhat different from the best-known implementations of LR(k) 

parsers (see, for example [AJ74J, [AU77J or [JOH78J), it will be 

useful to review the basic ideas behind this class of parser. The 

notation and terminology used follow those of [DER71J and [AJ74J. 
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An LRCO) parser for a context-free grammar with start symbol Sis 

constructed by computing its £QD!i9~£~1i2n ~!!~ - each member of a 

configuration set is known, not surprisingly, as a configuration, and 

consists of a production with a special marker, indicated by a dot, in 

its right part. The sets are computed as follows: the grammar is 

augmented by a production S' -> I- S -1, where I- and -I are special 

terminal start- and end-markers, and S' is a new start symbol. The 

ini!i!! £.2!l!iSY!!llE!! !ll is s0 = {S' -> .I- S -I}. Each 

configuration set which is not empty has one or more successor 
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configuration sets, computed from a ~!~i~ ~t!, obtained by moving the 

dot to the right over one symbol; in general, a configuration set has 

ans-successor for each symbols that is preceded by a dot in any 

configuration of the set. If the dot in a configuration in the basis 

set precedes a non-terminal, N say, then a closure set is added to the 

basis set. The closure set consists of configurations wherP His the 

subject of the production, and the dot precedes the f i rs1: ~ymbol in 

the right part. This closure operation is repeated until no new 

configurations are required. If the dot appears at the right hand end 

of a configuration, then the successor is the empty configuration set, 

called the #p successor, where p is the number of the corresponding 

production. 

Figure 4.1 shows the configuration sets for the grammar: 

s -> I- E -I 0 

E -> E + T 1 

E -> T 2 

T -> p / T 3 

T -> p 4 

p -> i 5 

p -> ( E ) 6 

(This example originally appeared in [DER71J) 

The parser for an LR(O) grammar can be represented by a 

deterministic pushdown automaton, consisting of a finite control known 

as the characteristic finite state machine (CFSM) and a stack - the 

states of the CFSM correspond to configuration sets, which, in a 

sense, represent •states of the parse', and the transitions correspond 



• 

\ 

I 

Figure 4.1 Configuration Sets for Example Grammar 

+---------+-----------·-- ---------+---------------+ 
I State I Configuration set I Successor I 
+----------+--------------- ----------+ 
I o s-> .. I-E-1 1- ==> 1 

+---------+-----------------------+---------------+ 
1 S -> I- .. E -I E ==> 2 

E -> .E + T 
E -> .T T ==> 6 
T -> .P / T P ==> 7 
T -> .P 
P -> .i i ==>10 
P -> .( E) ( ==> 11 

+------+---------------------------+------------------+ 
I 2 I s -> I- E .-1 -I==> 3 
I I E ->E.+ T + ==> 4 
+- -+---------------------------+--------------------+ 
I 3 I s -> I- E -1. #0 ==> {} 
+-------+----------------------- -----------------+ 

4 E -> E + .T 
T -> .P / T 
T -> .P 
p -> .i 
p -> .( E) 

+----------+----------
1 5 I E -> E + T. 

T ==> 5 
p ==> 7 

i ==> 10 
C ==> 11 

----+--------------------+ 
I #1 ==> <l 

+----------+---------------------------+------------+ 
I 6 I E -> T. I #2 ==> {} I 
+----------+-------------------------------+--------------------+ 
I 7 I T -> P ., T I / ==> 8 
I I T -> P. I #4 ==> {} 
+--------------------------------+-------------------+ 

8 I T -> P / .T T ==> 9 I 
I T -> .P / T P ==> 7 I 
I T -> .P I 
I P -> .i i ==> 10 I 
I P -> .( E) C ==> 11 I 

+-----➔ -------+-------------+ 
I 9 I T -> P / T. #3 ==> {} 
+--------+--------------------- -------------------+ 

1 o I P -> i. #5 ==> <l 
.f-----+-------------------·---------------+ 
I 11 
I 
I 
I 
I 
I 
I 

I P -> C .E > 
I E -> .E + T 
I E -> .T 
I T -> .P / T 
I T -> .P 
I P -> • i 
I P -> • C E ) 

I E ==> 12 I 
I I 
I T ==> 6 I 
I P ==> 7 I 
I I 
I i ==> 10 I 
I c ==> 11 I 

+---------+---------------➔-------------+ 
I 12 P -> C E .) I > ==> 13 
I E ->E.+ T I + ==> 4 
+--------+---------------------+---------------+ 
I 13 P -> C E ) • I #6 ==> {} 
+-------+-------------·------+--------------------+ 
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to the successor relations. F;gure 4.2 shows the CFSM for this 

example. There are three kina~ of state in the CFSM: 

1. Shift State: all transitions are under symbols in the 

vocabulary. 

2. Reduce state: there is exactly one #p transition. 

3. Inadequate state: ~ny state which is neither a reduce state 

nor a shift state. It will have either one #p transition and 

one or more transitions under vocabulary symbols 

(shift-reduce conflict) or more than one #p transition 

(reduce-reduce conflict). 

A grammar is LR(O) iff its CFSM has no inadequate states, in which 

case the following parsing algorithm, in which the stack is used to 

remember left contexts, so the parser can 'restart' after a reduction, 

can be used. 

$( 

Set current state= initial state 

If current state is a shift state then read the next symbol from 
the input, and push it onto the stack. 

Select the successor state according to the CFSM transitions. 

Push the successor state, and set current state to successor 
state. 

Otherwise 

If current state is a reduce state, pop the appropriate number of 
items from the stack (2 * number of symbols in right part of the 
production being applied). 

Prefix the subject symbol of the production to the input. 

If subject of the production is the sentence symbol, then accept. 



Figure 4.2 CFSM for the example grammar. 

+---+ +---+ 
I I I T I I 

+---> 8 ------> 9 

i-1-! i---! 
+--------- P,i,C<-----

1 +---+ +---+ 

+---------2-t 10f-!~-t {}I 
+---+ +---+ 

+ 

+---+ 

#3 t nl 
+---+ 

I ->>----------------
+---+ +-1-+ +---+ +---+ 

+-------~-i ,,!--~--i 12! __ ! __ J 13-1 -11-6 -t
1 
{}I 

I I I I I I 
+- -+ +---+ +---+ +---+ 

T,P,i,( 
+----------------<--+ 
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Set current state to state on top of the stac: .• 

$) Repeat steps between$( and S). 

Note that in fact it is not strictly necessary to push the 

symbol in a shift state, but this provides a convenient way of 

remembering semantic information associated with it. 
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In general, the grammar tor a practical language will not be 

LR(O), and so lookahead is u~ed to resolve parsing conflicts in 

inadequate states. There are several algorithms for computing 

appropriate lookahead sets - in Setl-s the most straightforward of 

these is used to compute the simple 1-lookahead sets associated with 

each transition from an inadequate state. For a transition under a 

vocabulary symbols, the set is{~}, for a transition under Up, where 

p is a production A-> w, the set used is: 

* {sin VT I S ==> aAsp, for some strings a,p} 

i.e. the set of all terminal symbols which may follow A in any 

sentential form. If all the lookahead sets for transitions from any 

inadequate state are disjoint, the grammar is SLRC1). (In general,. 

the simple 1-lookahead set contains symbols which could not possibly 

be read from this particular state, hence the SLRC1) algorithm cannot 

produce parsers for some languages which are nevertheless LRC1) or 

LALRC1), see [AJ74J.) The CFSM is modified by replacing each 

inadequate state N by a !EQ~!h~!Q !!!!~ N', such that, for each 

transition to a state M from N under s with associated lookahead set 

L, there is a transition from N' under L to a state M' which has 
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exactly one transition; t~at under s to M. Here 'transitio~ under s' 

includes the #p transitions to the empty state. The modification to 

replace state 7 in the example CFSM is shown in figure 4.3. 

The parsing algorithm has to be augmented with: 

If current state is a lookahead state then investigate (but do 
not read) the next symbol from the input, and change state 
according to the transitions of the CFSM. 

4.1.2 Setl-s Parser Representation 

Any table-driven parser resembles an interpreter, the tables or 

their equivalent being used to direct the execution of the parse. 

This suggests that the interpretive scheme used in the Setl-s runtime 

system could profitably be adapted for use in a parser. This has been 

done successfully in Setl-s where the CFSM is represented by a 

directed graph. Nodes in this graph are represented by blocks: 

SSBLKs for shift states, RSBLKs for reduce states and LSBLKs for 

lookahead states. The block formats are shown in figure 4.4. The 

first word of each block points to the entry point to one of the 

routines which perform the parsing actions shift, reduce or lookahead, 

thereby embedding these actions in the data structure. Parsing is 

accomplished by interpreting the data structure in a manner resembling 

that in which the ITC is interpreted at runtime. 

The successor to a shift or lookahead state is selected by 

comparing the next symbol from the input stream with each of the 

symbol entries in the state block. When a match is found, the pointer 

in the following word is loaded and stacked, and an indirect branch is 



Figure 4.3 Replacement of inadequate state 

+------+ +---- +-----+ 
I I <-1,+,n I I 114 I 

---> 7 ----------> 14 1 +--------> {} 
I I I I I +----+----+ +---------+ +---------+ 

+---------+ +---------+ 
---~~~-----! 8 • +-I-' ---l 8 l 1 ___ 1 J ________ _ 



Figure 4.4 Parser Block Formats 

a) SSBLK - shift state 

b) 

+---------+ 
I SSACT 
+---------+ 

SSLEN 
+---------+ 
I I 
/ SSACT / 
I I 
+---------+ 

RSBLK - reduce 

+---------+ 
I RSACT 
+- + 
I RSSYM 
+- --+ 

RSLEN I 
+-------+ 

RSNUM 

Pointer to shift routine 

Block length 

Symbols and successors 

state 

Pointer to reduce routine 

Subject symbol of production 

No of symbols to pop 

Production number 

c) LSBLK - lookahead state 

+---------+ 
LSACT 

+---------+ 
LSLEN 

+--------+ 
I I 
/ LSSSS / 
I I 
+-------+ 

Pointer to lookahead routine 

Block length 

Lookahead sets and successors 

d) LABLK - lookahead set with multiple entries 

+-----+ 
I LATYP I 
+-------+ 

LALEN 
+------+ 
I I 
/ LAMEM / 
I I 
+--------+ 

Dummy type pointer 

Block length 

Members 
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taken through the first word of this successor state block. Thus tne 

routine to perform the next parsing action is entered with register XR 

pointing to the state block for the current state. The entries in an 

SSBLK are simply pairs of grammar symbols and pointers to successors. 

The entries to in LSBLKs are slightly different, since the lookahead 

sets corresponding to #p transitions will have multiple entries. 

These are therefore gathered into a block; the entry in the LSDLK 

points to this, and the routine to perform the lookahead action 

searches the block appropriately .. The lookahead itself is handled by 

having a global re-scan switch, which, if set, causes the scanner to 

return the same result as on the previous call. A lookahead act1on 

sets this switch, a shift action does not, and thus absorbs the token 

as required. 

If no match for a token is found in a shift or lookahead state, 

an error is reported. 

An RSBLK contains the information required to perform the 

reduction: the number of items to pop off the stack, the number of 

the production being applied (this is used to direct semantic 

processing, see 4.3.1) and the subject symbol of the product1on which 

will be prefixed to the input stream. Another global switch is used 

to indicate to the scanner that a non-terminal is available. 

Figure 4.5 gives BCPL routines to perform the parsing act1ons -

this form of presentation permits the elision of irrelevant details in 

the Minimal code, for example the saving of registers. In fact, the 

organisation of the code in the actual system· is organised slightly 

differently to accomodate error recovery, but it is not much Longer. 



Figure 4.5 Parsing Action Routines 

LET shift O BE 
$( 

$) 

LET symbol= nextsymbolC) 
push C symbol) 
xr := ssmatch(xr, symbol) 
IF xr = error DO error_recovery() 
push(xr) 
BR! ! xr 

ANO lookahead() BE 
$( 

$) 

LET symbol= investigatesymbol() 
xr := lamatch(xr, symbol) . 
IF xr = error DO error_recovery() 
BR! !xr 

ANO reduce() BE 
$( 

$) 

LET symbol= r.symbol!xr 
ANO Len, prod_number = r.length!xr, r.pnum!xr 
semantic_actionCprodno) 
xs -:= Len 
prefix_to_input(symbol) 
xr := !xs 
BRl !xr 

Notes: 
BRI is a fictional command performing an indirect branch. 
On entry to each function, xr points to the state block. 
xs is a stack pointer. 
The functions lamatch and ssmatch search an LSBLK and SSBLK 
respectively, returning the successor pointer, or error. 

I _, 
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4.1.3 Parser Generation 

The parser is produced by a system known as Slrgen, which 

consists of two programs: Slrgen itself and Slropt. The first of 

these is a straightforward implementation of the constructor algoritnm 

given in 4.1.1. It is written in BCPL and is intended to be portable; 

it has run successfully on both the t>EC-10 and Amdahl 470/V? machines 

at Leeds University. No particular effort was made to produce great 

efficiency in Slrgen, but on the Amdahl it can process the Setl-s 

grammar (containing about 240 productions) in about 30 seconds of cpu 

time, which is acceptable, especially as it is to be hoped that the 

parser will not have to be re-generated often. 

Slrgen accepts as input a BNF description of the syntax; no 

extensions such as the use of regular expressions in productions are 

accepted, and a set of lexical conventions must be observed. Appendix 

2 is an example of the input required, being the grammar for a very 

simple programming language to be described in Chapter 6. Slrgen 

computes the parser states from the grammar and diagnoses grammars 

which are not SLRC1). The output is in a readable form and can be 

edited to resolve ambiguities in the grammar or to make it possible to 

parse languages described by non-SLRC1) grammars. In fact, the Setl-s 

grammar is not SLRC1), because of the over-use of .the symbol IN both 

as an operator and as a connective in the syntax of iterators. Two 

inadequate states for which the parsing conflicts cannot be resolved 

by one symbol Lookahead arise from this, but it is easy to resolve the 

conflict by removing IN from lookahead sets. This makes the 

construction {x INS} illegal, but as its meaning is unclear this does 



not seem unreasonable. 

The output from the Slrgen program forms the input to Slropt. 

This program performs three major optimisations: it merges states 

which are identical, it merges identical lookahead sets and it removes 

reductions by 'single productions' [AJ74J. These are productions of 

the form A-> a where Jal=1. Reductions by such productions are 

merely wasteful and can slow down the parser considerably. If the 

productions have no semantic actio11s associated with them, as is 

generally the case when the right part is a single non-terminal, they 

can be removed from the parser. The states corresponding to these 

reductions need never be built, so there is an additional saving of 

space. Section 5.3 contains some statistics on the efficacy of these 

optimisations in Setl-s. 

The output from Slropt is a linear representation of the CFSM 

graph known as PCX which consists of a series of symbols, separated by 

newlines. The symbols are grouped in states as follows: 

state number 
state type 

{length) some types only 
members 

The state number is used to identify the state. The state type 

is a 2 character code beginning with Q; the possible types are: 

@S shift state* 
@R reduce state 
SL lookahead state* 
SA lookahead set* 
SD duplicate state 
@B duplicate lookahead set 



State types marked* have a length field, which is the total 

length of th~ ~tate group. The entries for shift and lookahead states 

come in pairs consisting of a symbol followed by its successor. The 

symbol is either a terminal, represented by itself, a non-terminal 

represented by a code number, or, in the case of a lookahead state, a 

lookahead set. The successors are simply state numbers. 

A reduce set has three members: the number of symbols to be 

popped on reduction, the subject symbol oi the production, and the 

production number. 

A lookahead set is just a list of symbols. 

A duplicate state has only one member, the number of the 

original state of which it is the duplicate. Similarly, a duplicate 

lookahead set has a pair of members, the state containing the 

original, and the offset within it to the required set. 

To illustrate this novel compiler structure, Figure 4.6 shows 

the PCX and data structure corresponding to the CFSM fragment of 

Figure 4.3. 

4.1.4 Initialisation 

The CFSM graph is built in dynamic memory during the 

initialisation phase of Setl-s. The PCX produced by Slrgen is read 

in, and used to build the blocks. Initially, the blocks are built 

with successor fields holding state numbers as read from the PCX; as 

each state block is built, an entry corresponding to its state number 
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Figure 4.6 Data structure and PCX fragments 

+------+ 
I --f-->LOOKAHEAu 

+----+ 

I 6 I 
+-------+ 

I --',----------- +-------+ ------> I ~ummy 

I ---,--> +-------+ 

I I +------+ +-------+ 
------> I R[l)UC[ L I 

I I -----> 5 +-------+ I I I +-------+ ------i 
+---~---+ I 2 l I -, l L -f--• 1--:---, +-------

+------• J ___ : ___ l 

type pointer 

I T I I ) I 
+-------+ 

+----+ 
+-> I SHIFT 
I -,-> 
+-------+ 

I 4 I 
I , I 
+-------+ I --: -> state 8 

+---+ 

7 16 
ell @R 
6 2 

@A 4 
5 101 (code for T) 

-1 
17 + 

) @S 
16 (i.e. 14 I) 4 

I I 
17 (i.e. 8') 8 



is made in a state table - this entry is a pointer to the block 

itself. When all blocks have ~een built, a pass is made through them, 

and the successor entries are replaced by the appropriate pointers. 

The result of this process is a data-structure which is garbage 

collectable. After parsing has been completed, the pointer to the 

root of the parser is cleared, and the garbage collector is called to 

reclaim the space formerly occupied by tl1e CFSM graph, thereby 

providing a form of overlay for the system's workspace. If the 

operating system interface provides tl1e capability, this space can be 

returned to the system, leaving a small executing program. For Setl-s 

the space recovered is nearly 10,000 words; the amount of code left, 

including error recovery, parser setup and parsing action routines is 

less than 500 words. 

This setting up of the parser is, however, a time-consuming 

process, typically taking 12 to 13 seconds on the DEC-10. Incurring 

this overhead on every run would be quite unacceptable in most 

environments in which Setl-s is envisaged as being used. It should 

properly be regarded as an extra phase in the building of the system 

following translation and loading, which should only be repeated when 

a new version of the grammar or interpreter is introduced. In the 

context of Minimal it is possible to de-couple the building of the 

CFSM graph from compilation of users' programs. The operating system 

interface specification includes a procedure SYSXI, which, when 

called, releases i-o associations and halts execution, permitting the 

user to save a core image. (It was originally called for to provide 

the exit function for macro-Spitbol - see [MHD76J.) So, after the CFSM 

graph has been set up, the garbage collector is called to remove 
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garbage created by the scanner during setup, and then SYSXI is called. 

The core image ~aved after this call is what the Setl programmer sees 

as Setl-s. All initialisation is complete, and parsing commences on 

entry. 

4.1.S Syntactic Error Handling. 

It has become a truism of compiler construction that the 

diagnosis of and recovery from syntax errors is of major importance. 

In the current Setl-s system, however, the treatment of errors has not 

received a great deal of attention, since it is not a primary aim of 

the project to build a production compiler. The mechanism which is 

used is similar to that used in Yacc [JOH78J: the grammar is 

augmented by productions for 'major' non-terminals which include the 

special terminal symbol Serror. When an error is detected, the 

current input symbol is replaced by $error .and the stack is popped 

until a state is found which has a parsing action on $error. This 

state is then entered, and parsing continues until a reduction is made 

by one of the error productions, at which point an error message is 

given and recovery is attempted by discarding input symbols until one 

is found on which a legal parsing action is possible - further error 

messages are suppressed until a specified number of successful shifts 

has been made, in an attempt to prevent an avalanche of messages. 

·erroneous statements are flagged in the listing, with a pointer 

below the symbol at which the error was detected, hence giving the 

user as much information as possible from the parser's early 

error-detecting capability. The message produced is generally rather 



vague ('syntax error in expression', for example). 

It appears that very much better error handling is possible in 

LR parsers [GHJ79J, and it should be a fa1rly stra,ghtforward job to 

make use of more powerful techniques in a production Setl-s compiler. 

This development is not entirely trivial, however. The main idea is 

to attempt several repairs to the input and then to allow the parser 

to make a forward move, and evaluate the success of the repair. This 

necessitates buffering input tokens and copying the stack, as well as 

requiring the parser to operate in an error mode in which no 

irrevocable actions are p~rformed. This work does not introduce any 

new ideas into the system and so, although it is important to a 

production compiler, it has not presently been pursued. 

4.2 LEXICAL ANALYSIS 

4.2.1 The Scanner 

Whenever the parser requires a symbol from the input, it calls 

the routine SCANE, which returns a pair of values: a token type code 

in register XL and a token 'value' in XR. Most of the tokens are 

conventional, corresponding to basic symbols such as+ and 

'micro-syntactic' constructs such as integers. Each of these has a 

unique type code, and where appropriate, the value returned in XR is 

the semantic information associated with the particular token just 

scanned. For example, if the element scanned were 1356 then XL will 

contain the type code for number, and XR will contain a pointer to an 

ICBLK built to hold its value. In the case of operators, the token 
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type designates the priority class of the operator and the value is a 

pointer to its OPBLK. 

During initialisation, SCANE is also used to read the PCX. 

Since terminal symbols have their normal character representation, 

SCANE naturally returns their internal token form to the 

block-building routines, which use these as the symbol entries in 

SSBLKs and LSBLKs so they can be directly compared with the token 

types returned from the Setl source during parsing. Because 

non-terminals are represented by numbers, a condition is imposed that 

the token types for terminals must be distinguishable from these 

numbers (state numbers can be identified from their position in the 

PCX). The highest non-terminal value is known (it is passed as a 

parameter to Slrgen) so this condition is satisfied by ensuring that 

all token types exceed this value. In the grammar, classes such as 

name, number or class 3 operator appear as terminal symbols: $name, 

Snumber and $op3. When the grammar is read during initialisation, 

SCANE recognises names beginning with Sas classes and returns the 

type code for the class. This means that during initialisation tne S 

symbol must be treated differently, as must some other symbols, but 

the overhead of this is negligible and is rarely incurred, since$ 

otherwise only introduces a comment and the other symbols concerned 

are illegal in Setl. 

During parsing, it is the type code which is used to select 

successor states in the CFSM, while the token value is put on the 

stack for use by semantic routines. 



4.2.2 The Symbol Table And Reserved Words. 

The symbol table used by Setl-s is organised as a hash table, 

with collisions being handled by chaining entries together. Entries 

for identifiers consist of the VRBLKs built for them, chained together 

via their VRNXT fields (see fig 3.4h). Reserved words are entered 

into the table as special WDBLKs. The format of these is identical to 

that of VRBLKs, as regards the position of length field and 

relocatable fields, uut the VRVAL and VP.STO fields are used to hold 

the type code and value for SCANE - the VRGET field is set to a 

special type, so that it can be recognised as a reserved word and 

treated accordingly. Identifiers declared as the names of functions 

also have special table entries: the type word of the block is set to 

indicate that the variable is, in fact, a function, and since the 

VRSTO field is redundant it is used to chain together all the entries 

for functions, to make them easily accessible. 

In Setl programs, upper- and lower-case letters are treated as 

being identical, so all alphabetic characters are converted to 

lower-case before a table lookup is attempted. On the source listing 

which can be produced by the system all identifiers are printed in 

lower-case and all reserved words and names of system functions in 

upper. As well as producing a more readable listing, this has a 

useful side-effect, in that any reserved word inadvertantly used by 

the programmer as an identifier will be upper-cased on the listing. 

This will permit an easier identification of the source of the error 

than the resulting syntax error message might. Such accidental use of 

reserved words is a source of particularly obscure syntax errors, and 



this listing convention provides an economical aid to their 

pin-pointing. 

The scope rules for identitiers in Setl are especially simple. 

There is no block structure, and a variable is purely local to the 

procedure in which it is declared (explicitly or implicitly). The 

only exception to this is that variables explicitly declared at the 

head of the main program block are global, only those used without 

declaration are local to the block (5ic). These rules mean that a 

variable can be uniquely identified by its name and the procedure in 

which it is declared. This is done by assigning numbers to procedures 

as they are declar~d, and logically 0R-ing this number into the left 

hand end of the VRNML field of the VROLK. Because local variables 

need not be declared explicitly, the table lookup routine must firsL 

look for an entry for a global symbol, by masking out the procedure 

number, and, failing this, a local symbol. If this search fails a 

VRBLK for the local is built and entered into the symbol table. 

Global declarations cause a minor problem. If, as seems 

natural, the procedure number were initialised to zero and variables 

were entered into the symbol table as globals until the reduction for 

declarations had been performed, all would be well unless there were 

no globals. In this case, lookahead would be required before the 

reduction could be made, and this might cause the creation of a global 

symbol table entry for a name which was genuinely local to the main 

block. To avoid this, globals are entered into the symbol table as 

locals of the main program block, and the symbol table entries are 

amended when a reduction associated with the declaration is made. 



4.3 SEMANTIC ACTIONS AND CODE GENERATION 

4.3.1 Building The Parse Tree 

Whenever the parser performs a reduction, it calls a routine to 

perform any semantic action which may be appropriate. In nearly all 

cases, the appropriate action is to build a node of the parse tree. 

There is very little attribute processing to be done, because of the 

dynamic typing; the only semantic actions other than building tree 

nodes relate to dealing with syml,ol tahlt- entries for procedures, 

fixing the scope of globals and processing the declarations of 

initialised variables and constants. 

The parse tree building is directed by the grammar. That is, 

whenever a production is applied, the descendants of the node being 

built will be related only to the grammar symbols in the right part of 

the production. Single terminals on the right give rise to leaves in 

the tree; more complicated right parts have their essential structure 

abstracted to produce interior nodes. The values corresponding to the 

grammar symbols of the right part will have been placed on the stack 

during earlier shift moves. The position of each on the stack can be 

found from the position of the occurrence of the corresponding symbol 

in the production. After construction of the node, a global variable 

is set to point to it; when SCANE is next called it will return the 

non-terminal which was the subject of the production in XL (see 4.2.1) 

and the pointer to the tree node as the value in XR. This means that 

sub-trees corresponding to non-terminals get placed on the stack, to 

become available to the tree-builder. 



87 

4.3.2 Generation Of ITC. 

A code generator is called for each procedure, and for the main 

program block, to flatten the tree and produce appropriate codewords. 

The approach taken is a simple one: the parse tree is walked 

recursively, with stereotyped code sequences being produced for the 

various constructs in Setl. No uptimisation of special cases is 

attempted. 

The final size of each codcblock is not known until it is 

complete, but it is necessary for the partly-built block to be 

protected from the garbage-collector. The scheme used for building 

CDBLKs is inherited from Spitbol - a code construction block CCCBLK) 

is allocated, and the codewords are generated in it. The garbage 

collector knows that only certain fields are in use, and processes the 

CCBLK accordingly. When a codeblock is complete, it is cut off as a 

CDBLK from the CCBLK with the remaining words being re-set to form a 

new reduced CCBLK. The size of block allocated for code construction 

greatly exceeds the size of typical codeblocks, so it is only rarely 

that there is not sufficient room to generate codewords. However, 

when this does happen, a fresh CCBLK has to be allocated, and the 

codewords generated so far have to be copied into it. 

This causes complications in the setting of pointers within the 

code, to handle jumps. The overall strategy adopted is simple. The 

compiler generates label numbers for jumps inside loops and for 

conditionals, and uses a label table to keep track of them, with 

forward references being chained together from the table entries. 

Since there can be no pointers into the middle of collectable blocks, 
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the chain entry for a forward reference consists of a pointer to tne 

base of the codeblock in which the reference occurs, and an offset to 

the codeword which will ultimately hold the pointer to the destination 

of the jump. A label is set at the head of a codeblock, but the 

ultimate address of the codeblock will not be known until it is 

finally cut off from the CCBLK, since the latter may run out. Hence, 

resolution of forward references must be deferred until the codeblock 

is complete. Similar complications arise in connection with forward 

ref~rences occurring within the current block, since the base of the 

descriptor for the forward reference cannot be set. Dealing with 

these involves, essentially, keeping a chain of 'pending' forward 

references, in which the base field is used to hold the label number. 

When the block is complete, these are turned into normal table 

entries, and then the references to the head of the block can finally 

be resolved. (Care must be taken to treat a block which jumps back to 

the head of itself correctly.) 

Since compiler generated labels are used for constructs which 

are defined in a nested manner, they can be issued and de-allocated in 

a nested fashion, hence the size of the compiler's label table can be 

kept small without imposing undue limitations on programs. 



CHAPTER 5 

DISCUSSION OF SETL-S 

5.1 ASSESSMENT OF THE SYSTEM 

5.1.1 Performance 
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The listings reproduced in Appendix 1 show some typical 

performance figures for Setl-s; some explanation of their 

significance is required. The programs were run on the Leeds 

University DECsystem-10, which has a KI10 processor and 256K words of 

memory. Although the timing system on this machine is notoriously 

inaccurate, the times given provide an indication of the execution 

speed of Setl-s. (The runs of these programs have been repeated 

several times and the figures in the appendix are about average.) The 

actual terminal response time of the system depends on the load on the 

DEC-10, but it is consistently acceptable, comparing well with other 

language processors available on the machine. 

The figures for •store used' and •store left' give the number of 

occupied words and free words respectively in the dynamic area; the 

initial size of the dynamic area can be set by the user, the default 

being 15K CK=1024) words. If during a run the garbage collector 

cannot reclaim more than a specified number of words the dynamic area 
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is increased, if possible, by claiming more memory from the operating 

system; this was not necessary on these tests. Under these 

circumstances, the system consisted of a 36 page impure 'low segment' 

(a page on the DEC-10 is 512 words) and a potentially shareable 'high 

segment' of 20 pages. The fact that even for the first small program 

a garbage collection was required dt1ring compilation suggests that the 

default value for the size of dynamic memory may be too small. 

The figures for 'statements executed' should be largely ignored, 

since they do not correspond to source statement executions in the 

expected way, although with the 'mcsec/statement' figures they do 

provide a comparative measure between the programs. (The problem of 

getting the statement counts to correspond has not been pursued, 

because it is not considered very important and because it overlaps 

with other work on performance measurement which lies outside the 

scope of the present project.) 

Each of the programs in the appendix has some noteworthy 

features. The first program, which computes the prime numbers up to 

1000, printing the last few, is an example of the conciseness 

obtainable in the Setl language and the way in which Setl constructs 

resemble those of orthodox mathematics. When the implementation is 

considered, it also illustrates some shortcomings of this approach, 

since the set primes has to be allowed to grow dynamically, being 

copied several times in the process (note the two storage 

regenerations) and is represented internally as a linear hash table, 

which is not the most appropriate data structure for the application 

(to put it mildly). The 'representation sub-language' of full Setl 



addresses itself to problems such as these but its efficacy is still 

not proven. 

Another point should be mentioned in connection with the primes 

program. According to the Setl definition, the expression controlling 

a loop is evaluated once before the Loop starts, so that any 

modification of its constituents inside the Loop has no effe~t on the 

number of times it is executed. (Consider, for example: 

(For x in t) t with:= x End) This is merely ar1 extension of the value 

semantics of assignment. A naive approach to this problem, whereby 

the routine which sPts up the iterator for a Loop first copied the 

value controlling it was at one point implemented; since a quantified 

test conceals a loop, this copying operation was performed every time 

the Notexists test was executed. The result of this was that the 

primes program ran over 100 times slower. A more appropriate solution 

would be to perform a check at code generation time to determine 

whether the loop expression had one of the forms described in 3.2.4, 

and insert an explicit copy instruction into the code, but, in this 

particular case, even this would have had the same effect. 

Consequently, the attitude adopted at present is that if the 

expression controlling a loop is modified inside that loop the effect 

of the loop is 'undefined'. 

The remaining programs in Appendix 1 have been adapted from the 

Setl test library developed at NYU to test the full Sett system. The 

first is an implementation of the O(nlogn) sorting algorithm known as 

Heapsort. It is notable that the total execution time is 

significantly greater than the time taken actually to sort the items. 



The extra time is spent printing the two sequences, or rather building 

stri~gs out of the tuples, preparatory to printing them. The 

algorithm used to build strings out of tuples is very crude Ca 

concatenation of strings produced recursively from each component in 

turn) and the figures here suggest it should be improved. Finally, 

the third test is an implementation of a linear-time median finding 

algorithm. A brief examination of some figures obtained from the 

program showed its performance to be practically linear, so that the 

Setl-s system has not introduced any gross non-linearities into the 

behaviour. 

Table 5.1 summarises these performance figures and compares them 

with the results obtained running the same programs on the full Setl 

system on the same machine. The first example was recoded in BCPL, 

using the same algorithm, and figures for this program are included in 

the table. These figures give a clear indication of the superiority 

in speed of execution, speed of compilation and system size of Setl-s 

over NYU Setl. Without delving deeply into the details of NYU Setl it 

is not possible to give authoritative reasons for the performance 

discrepancy, but several factors can be suggested. 

1. NYU Setl is written in a relatively high level language and, 

moreover, one whose abstract machine model (based on 

arbitrary length bit strings) cannot be mapped comfortably 

onto real machine architecture. 

2. The full Setl language is significantly more complex than the 

subset used in Setl-s. Consequently, compilation is more 

costly and the runtime system more complicated. It appears 
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Figure 5.1 Performance Comparisons 

a> Speed 

+-----------------------------+---------------+ 
I Program Compile time/ s Execution time/ s 
l +------+--------+--------+--------+----+----+ 
I NYU Setl-s I BCPL NYU I Setl-s I BCPL 
+--------+----------+--------+-------+--------+--------+ 

primes 5.18 0.44 I 1.10 38.16 I 7.26 1.90 
+---------------+--------+--------+-------+--------+--------+ 
I heapsort 10.84 I 1.62 I - 18.2 I 6.52 I -
+-----------+--------+----+-----+--------+--------+----+ 

median 11.70 l 1.82 I - 4.32 1.14 I -
+-----------+--------+--------+--------+--------+--------+--------+ 

b) System Size 

+------+-----------------------+----------------------------+ 
System Executing program/ pages I Source files/ disk blocks I 

Clo+ hi> I I 
+-·----+---- -----------+----------------------------+ 

NYU ) 76 + 117 I 2980 I 
+----------+---- -----------+------ ----+ 

Setl-s 36 + 20 I 7M I 
+---------+-----------------------+------------------------+ 



that the overhead of this added complexity is incurred even 

by programs which d~_not use the extra features. CSetl-s 

implements roughly 75% of full Setl.) 

3. There appears to be a real efficiency gain from the ITC 

interpretive scheme. 

Supporters of NYU Setl might argue that this comparison is not 

entirely fair, since NYU Setl is intended to have a global optimiser 

and a feature whereby 'nubbins' of hard code are generated in-line for 

some constructs, thereby speeding up execution Cat the expense of 

portability). Neither of these features is currently available 

outside NYU, however, and neither of them would prevent the system's 

being intolerably large, even for a medium-sized machine such as the 

DEC-10. On the contrary, both would increase the size still further. 

5.1.2 Portability 

Setl-s is only currently running on the Leeds DEC-10 on which it 

was originally implemented, so its portability can only be 

extrapolated from experience with macro Spitbol. This has proved to 

be a highly portable system, being implemented on the following 

machines: CDC 6000 series, CII Iris, DEC PDP11, DEC-10/20, DEC VAX, 

Honeywell 6000, ICL 1900 and 2900 series, Interdata 7/32, Modcomp IV, 

Odra, Xerox Alto. The production of a macro Spitbol implementation 

for a new machine is now quite routine, typically taking between 3 and 

6 months. Minimal translators and operating system interfaces are 
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available for the machines just listed, and in theory all that is 

necessary to move Setl-s is to translate the Minimal source into the 

target machine's assembly language, assemble the resulting program and 

load it with the interface routines. In practice, various problems 

might be expected to arise. Firstly, since the DEC-10 is a 

word-addressed machine all the Minimal features which depend on the 

difference between word- and byte-addresses have not been exercised 

and so bugs in the Setl-s source might show up in this area. 

Secondly, in practice, it appears that some Minimal translators have 

been written with the single aim of translating macro Spitbol, hence 

setting translator-defined symbols (see 2.3.1) may necessitate 

modifications to th~ translator itself. Finally, the necessity to 

save a core image of the compiler (see 4.1.4) may cause problems, 

since this is difficult to provide on some machines (e.g. 

IBM360/370). 

The use of translator-defined symbols for all character codes and 

conditional assembly directives to cope with the possibility that 

certain characters such as { may not be available on a particular 

target machine should, it is hoped, eliminate the character code 

problems which are often encountered by portable software. Naturally, 

since Setl-s is interpretive, the different machine architectures will 

not present problems, except indirectly via the Minimal translator. 

Experience will be required to determine whether addressing space 

restrictions, as well as physical memory size, will have a severe 

effect. 



One problem related to portability which has not received much 

attention in Setl-s concerns input and output, and the association of 

files. In Spitbol, the meaning to be ascribed to the arguments of 

INPUT and OUTPUT has been a source of constant dispute among 

implementers. The underlying model of file organisation varies so 

widely between operating systems that producing some meaningful, 

system-independent way of representing an external file inside a 

program seems almost impossible. This seems to be a problem best 

tackled at the lanuuage design Level, and in Setl no clear definition 

has yet emerged. Similar questions arise from the interface between 

Setl-s and the host system's JCL (or equivalent) and at other points 

where operating system concepts interact with the system. Although~ 

set of operating system interface procedures is defined, implementers' 

experiences with Spitbol have shown that these definitions are not 

always appropriate, and do not make sense on all systems. There is 

little to indicate that if Setl-s becomes widely available there will 

be fewer such problems for this system. Already several minor changes 

have been required to the DEC-1O operating system interface to 

accomodate Setl-s. 

A major practical obstacle in moving any system to any machine 

lies in getting material on and off magnetic tape. This is a problem 

largely created by the manufaturers, and one with no immediate 

prospect of a solution. 
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5.1.3 Construction Of The Program. 

The actual writing of the Minimal code of the present version of 

Setl-s took about nine months. Some operators remain unimplemented 

and both the compile-time and runtime error handling are incomplete; 

nevertheless, the system is capable of executing Setl programs and can 

be regarded as an essentially complete prototype. The source for this 

version is approximately 16,500 lines long. Of these, 2,600 consist 

of symbol definitions ~ith substantial ulotks of comment giving data 

structure formats and so on; the constant and working-storage 

sections comprise another 2,500 linPs, which include the operator 

OPBLKs and the WDBLKs for reserved words. The parsing routines occupy 

a total of 150 lines, with the parser setup code occupying 275. The 

remainder is the code for the runtime system, including space 

allocation and input-output, the scanner and some system 

initialisation and cleanup code. Out of the total, some 4,500 lines 

contain code derived from Spitbol. The biggest pieces are the 

routines for converting between strings and numbers, the scanner and 

the garbage collector. The last two required significant 

modifications for inclusion in Setl-s. This extraction and adaptation 

of Spitbol code was mostly carried out by A. P. McCann. The rest of 

the system was written by myself. 

That such a relatively complex piece of software could be written 

in an assembly language in what is considered to be a short space of 

time for such a project seems largely attributable to two factors. 

First is the quantity of code that has been taken from an existing 

system, and second is the structure of the system. Compilers lend 



themselves to a modular arrangement, with lexical analysis, syntactic 

analysis and code generation being treated separately. The use of a 

systematic parsing algorithm has contributed further to the ease with 

which the compiler could be constructed. The interpretive scheme also 

imposes a structure on the runtime routines which only interact in 

tightly controlled ways. The system is composed of small modules with 

well-defined interfaces, so each part can be considered in isolation. 

During development of the system, for example, the code generation 

scheme has twice been extensivel)1 revised, and these revisions have 

been carried out without upsetting any other part of the system. 

Features have been added to the runtime system without the need to 

worry that existing features will cease to work. This is in no way 

remarkable, but the amount of recent writing on programming 

methodology suggests that there is a prevailing misunderstanding of 

the way in which systems can be structured to assist development. 

CCNEE76J is a typical example of this sort of writing.) Top-down 

design and the use of high level languages cannot claim a monopoly in 

this area. 

As an implementation language, Minimal has its drawbacks. The 

most important of these is the difficulty of doing input and output, 

which makes it hard to add certain kinds of diagnostic information. 

This can be offset, in a suitable environment, by the fact that the 

target code produced is closely related to the source, so that full 

advantage can be taken of interactive debugging systems, such as OEC 1 s 

DDT. (It is also possible, albeit inadvisable, to patch small bugs 

without incurring the considerable cost of translating the entire 

system.) 

{ 

' t 
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In the early stages of the system's development, models of parts 

of it were written in BCPL; in particular, a complete parser was 

written to debug the Setl-s grammar. These early models were intended 

to be disposable, and the different criteria applying to them implied 

that BCPL was more suitable than Minimal. 

The main pay-off from using a low-level implementation language 

is, of course, increased efficiency. lhis is particularly important 

in the construction of an interpreter, owing to the amount of time 

spent in the runtime interpretive routines. Also, the degree to which 

the flow of control can be specified permits the ITC interpr~ting 

cycle to be efficiently implemented, using the branch indirect 

instruction. Such a control construct is not supplied in higlrlevel 

languages, although the effect can be simulated in various ways (most 

conveniently if procedure or label variable are permitted) with a loss 

of efficiency. 

The preceding remarks would apply equally to any low-level 

implementation language; the following are specific to Minimal. 

Firstly, the simplicity of the underlying virtual machine makes 

writing code simple and means that the programmer ;s freed from a 

concern with bit-level tricks to improve efficiency; this in turn 

makes the code more comprehensible and more stable. On the other 

hand, Minimal is unduly restrictive about statement formats, use of 

literals and program form. Some of the effects of these restrictions 

were alleviated by the use of special-purpose editors for the typing 

in of the source. A more serious defect arises from the mechanism 

supplied for handling errors: the opcode ERR and ERB cause a transfer 
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of control to the t!!Q! section with an error code in WA. This 

mechanism is superficially attractive, allowing the error handling to 

be grouped in one place, and it also supports a way of providing a 

file of error messages which the translator produces from the Minimal 

source, but the only information supplied to the error section is the 

error number - the action to be taken has to be deduced from this 

alone. There is no indication of where the error occurred, so control 

cannot be returned directly there. The net effect resembles an 

uncontrolled jump, the inadvisability of which is now well-known. An 

elaborate and obscure (even to Minimal implementors) mechanism for 

saving and restoring subroutine linkage information had to be 

developed when Minimal was designed, to permit cleaning up after ~n 

error. The result of all this in Setl-s is that the handling of 

errors is crude and complicated, relying on the setting of global 

flags and a strict division of error numbers corresponding to 

different types of error. At this stage it is obvious that a wiser 

course would have been to ignore the ERR/ERB mechanism (except, 

perhaps, as a panic response to system errors) and use ordinary 

procedures to deal with error situations. 

5.2 THE INTERPRETER 

5.2.1 The Interpretive Scheme. 

In Chapter 1, implementation strategies for high Level Languages 

were discussed in general terms; the arguments presented there can 

now be related to the Setl-s system, by considering the alternatives 

to the use of indirect threaded code. 
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Consider first the use of hard code. The main advantage of this 

is th~ ·increased execution speed obtainable by using instructions 

wired into the machine's hardware. To perform the set operations 

found in Setl programs, long complex sequences of the sort of 

instruction presently available would be required, leading to 

unacceptably bulky programs. This would be compounded by the need to 

generate type-checking code. Hard code is inherently 

machine-dependent and some form of bootstrap would be required to move 

a Setl compiler between machines. Also, in order to produce 

acceptable code making the best possible use of available hardware 

features, sophisticated optimisation techniques would be required, 

which l-!Ould slow dmm compilation. In an environment where production 

programs were run many times, this would be offset by the ability to 

preserve compiled programs in an executable binary form. However, the 

Setl language seems best suited to applications such as algorithm 

development, wher~ rauch time would be spent modifying and re-compiling 

programs. 

To reduce the compiled code to an acceptable size various 

compromises between hard code and interpretation might be attempted. 

The most obvious of these involves providing a library of runtime 

routines to perform, for example, the set operations. The compiler 

would then generate hard code inline for simple operations, such as 

integer arithmetic, and subroutine calls to these system routines for 

the more complex ones. Thus, the code would be more compact, but an 

additional overhead would be introduced by the subroutine call and 

return. Bell's threaded code scheme CBEL73J uses a different form of 

control flow to achieve a similar effect, with a reduced overhead. 
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Although the name 'indirect threaded code' is derived from this 

scheme, the diff~rences between the two are greater than their 

similarities. In threaded code, actual sequences of target code, 

linked by a threading mechanism are generated by the compiler. The 

equivalent of a codeword points directly to the entry point of a 

routine, but the routine does not receive an argument analogous to the 

pointer in XR, so separate routines have to be generated, for example, 

to load each variable onto the stack. The same routine can be used 

every time a particular variable is loaded, though, so there may be a 

considerable saving of space over the use of a compiler producing 

inline hard code. Nevertheless, threaded code is more bulky than 

ITC's single copies of system routines, despite the extra indirect 

pointer required by ITC, and again is not machine-independent. 

For producing a portable Setl system, especially if it is desired 

to run on small machines, the arguments in favour of using some form 

of interpretive code are very great. It is not feasible to interpret 

programs written in Setl directly from the source, so a compiler of 

some sort is necessary to produce a lower level representation of the 

program to be interpreted. 

Of the several other interpretive schemes described in 1.3, the 

use of a virtual machine with a conventional register architecture can 

be dismissed for this application, because Setl op~rations are not 

suitable for evaluation using registers and because such schemes use a 

code format in which certain fields of a word have special 

significance, which presents problems if a system is to be implemented 

on a variety of machines. Translation of Setl operations to sequences 



of lower level virtual machine code is not feasible, because the 

decoding overhead imposed in the interpreter will be unacceptable. 
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It would seem that a reverse Polish interpretive code of some 

description is the only practical choice for an efficient 

implementation of Setl. Any encoding of tt1e reverse Polish which 

depends on word size is ruled out, since portability is a mair. design 

objective. By insisting that operator~ can be distinguished from 

operands, by a rule such as that imposing a threshold on pointer 

values which is already present in Setl-s (see 2.3.3) the elements of 

a Polish string can be fitted into address-sized objects. The 

advantage of ITC over such a scheme comes from the low decoding 

overhead. A more conventional interr,reter will have a main 

interpretive loop, which repeatedly fetches the next instructi~n, 

performs a switch on its value and then calls the corresponding system 

routine. By embedding pointers to the routines in the code, an ITC 

based system short-circuits this process, thereby gaining greater 

efficiency. Coupled with the flexibility of the interpretive approach 

and the compact, portable nature of the interpretive code, this makes 

ITC an attractive method of implementation for this application. 

ITC would seem to be equally attractive for implementing any 

language with high level data types which can conveniently be 

represented as blocks on a heap. In order to obtain the maximum 

efficiency it is necessary that the interpreter be coded in a 

low-level language, so the necessary indirect branches can be made, 

but the flexibility of the format, resulting from the way in which the 

threading cycle passes arguments to the system routines,can be 

·--



obtained at any level. 

5.2.2 Miscellaneous Topics 

This section brings together several noteworthy features of the 

interpreter. 

The way in which codeblocks are generated in the dynamic area of 

memory so that they can be garLage collected once the code has become 

unreachable is a pleasing side-effect of the code format. Related 

schemes, such as throwaway compiling [BR076J as well as requiring a 

quite elaborate mechanism for jumps must allow for the possibility 

that code may have to be re-compiled. This means that the compiler 

has to be available at runtime. On the other hand, the effectiveness 

of the Setl-s approach as a space-saving mechanism is dependent on 

stylistic features of the Setl program being executed: a 

tree-structured program will benefit the most from the effect, a 

program such as the following, though, will gain no benefit at all. 

Program lupe; 
Init done:= FALSE; 
Loop 

Until done 
Do 

{long sequence of calculations} 

End Loop; 
End; 

If function-valued variables were allowed in Setl, the effect would be 

much less useful, since some symbol table entry would always point to 

the code for a function, which could never be recovered. At present, 

though, this feature promises to be of more use than it was in 



Spitbol, where the absence of control structures leads to the use of 

many labels, each of which permanently anchors part of the code. 

The implementation of type checking for polymorphic operators is 

a further demonstration of the flexibility of ITC; of particular note 

is the way in which two more or less separate operator application 

schemes (APPLn and APPXn) can co-exist, with the code generation being 

unaffected. The more unusual version of the type checking is the one 

which uses the APPLn mechanism. This is only economically feasible 

for heavily overloaded operators, but for them it provides totally 

secure type checking. There are resemblances between this scheme and 

the capability approach to protection in operating systems [NW74J. 

Every object of a particular type possesses a 'capability' in the 

shape of the entry point identification associated with the block 

action routine which defines its type. It is only through the EPI 

that the object can, as it were, gain access to the operator routines 

associated with that type. Such a mechanism might have a further 

application in an extensible language system based on the notion of 

abstract data type, since operator overloading is one way of providing 

an adequate syntax for specifying the operators on user-defined types. 

In Setl-s, the capabilities are associated with R-values and the type 

checking is performed at runtime. However, they could just as easily 

be associated, by declarations, with L-values (in practical terms, 

this would mean setting appropriate routines into VRBLKs) and the 

selection of appropriate operations could be done by the compiler, by 

using a routine resembling APPLn to select the correct codeword to 

generate or to detect a type incompatibility. 
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Perhaps surprisingly, there is little to be said about the data 

structures and algorithms chosen to implement Setl's high l~vel data 

types. Since set-like operations underlie a wide variety of 

algorithms, techniques for their implementation are well known (see, 

for example [AHU74J). Similarly well-known are the techniques for 

associative data storage needed for maps. The details of the Setl-s 

data structures are, to a large extent, determined by the garbage 

collector as described in Chupter 3. Undoubtedly, some of the fine 

details could have been subject to ruore analysis which might have 

altered some design decisions, but any such analysis would have 

depended on knowledge of the frequPncy of the particular set 

operations in typical Setl programs, and on the answers to such 

questions as: how frequent are deletions tram sets? are multi-valued 

maps more or less common than single-valued ones?- are set operations 

often performed on maps? Since no Setl implementation is widely 

available there is no sample of Setl programs from which to derive 

such knowledge. Consequently, strategies have been adopted which, 

experience shows, are most likely to be generally acceptable 

compromises between the various factors likely to affect the system's 

performance. 

The problem of copying on assignment deserves a final mention. 

The example of the primes program in 5.1.1 demonstrates that always 

copying values is not a feasible approach, since the copying imposes a 

considerable overhead which should be avoided wherever possible. In 

general, it is a very difficult problem to determine at compile time 

whether a value is modified. The usual alternative approach is to use 

reference counts. The simplest version of this involves having a 
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flag, which is clear when the object is created and becomes set once 

there is a pointer to it. If an object to be assigned or added to a 

set has this flag set, then it has to be copied. Given the 

restrictions imposed by Minimal and by the garbage collector such a 

flag would have to occupy a whole word, which is a significant space 

overhead. (An attempt to modi1y the block action field to provide a 

variation on such a scheme, described in [CM79J was abandoned, because 

it proved more useful to have this field as a unique type identifier.) 

A more sophisticat~d approach allows more than one pointer to a block, 

with the reference count actually being used to count them. In this 

way, a copy is not made until absolutely necessary, but in practice, 

keeping the counts correct turned out to be terribly complicated and 

error-prone, so the present compromise solution was adopted. Although 

it can lead to the production of blocks which are strictly 

unnecessary, this solution is safe. 

Since the interpretive routines produce new atomic values as the 

result of operations on such values, there is no harm in having shared 

pointers to them. This fact is already exploited in the way in which 

the copying routines do not, in fact, copy atomic blocks. A further 

space-saving economy could be made, to take advantage of the fact that 

multiple copies of integers and strings might arise in the course of 

execution of a program. It should be possible to add an extra pass to 

the garbage collector, in which all pointers to a specific atomic 

value would be reset to point to just one block, producing an 

'ultimate' compacting garbage collector. 
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5.3 THE COMPILER 

5.3.1 Implementation Of The Parser. 

The LRC1) parsers described in, for example, [AJ74J differ from 

Setl-s in the parsing actions they perform and the tabular 

representation of the parser employed, even though the parsing 

algorithm is the same. In such parsers, the parsing action lookahead 

is not distinguished, instead the lookahead token is used in every 

state to determine the action to be performed. The !hif! action 

absorbs the lookahead token and selects a successor state by 

consulting the parser tables; the successor state and symbol are 

stacked and the successor is entered. The r~2!:!£~ action does not 

absorb the lookahead token. The stack is popped the requisite number 

of times, and a successor state is determined according to the 

combination of subject symbol for the production being applied and the 

state now on top of the stack. Thus, the effort of prefixing the 

non-terminal to the input stream is avoided. Often, the parser is 

represented by a pair of tables: a 'parsing action' table has entries 

giving the parsing action Ce.g shift and enter state 111, reduce by 

production 94) for each combination of current state and lookahead 

token; a •goto• table gives the successor state for each combination 

of current state and non-terminal and is consulted after each 

reduction. If the states are allocated numbers and these tables are 

kept as matrices, a very fast lookup is possible. In practice, the 

size of the tables rules out this representation. (Assuming each 

table entry can be condensed into a single machine word, the space 

requirement would be S•Ct+N), which is over 160,000 for Setl-s.) 
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Consequently, sparse matrix techniques are employed, which leads to a 

representation similar to that used in Setl-s (see [AJ74J for 

details). 

By changing the format of RSBLKs to include pairs of entries 

giving the successor state to each current state exposed by the 

reduction, it would be possible to remove all the norr-terminal 

transitions from the CFSM (becc:iuse 1his is a deterministic machine 

[DER69J) and re-define the !f2~f£ c1rtion in Setl-s to be the same as 

that in the tabulur LRC1) parsers. lhis would entail extra work in 

the parser generator, and would affect the number of identical states 

which could be merged by the optimiser (sec 5.3.2) so that the space 

occupied might actually increase even though the non-termir.als would 

no longer appear explicitly in the RSBLK. Any possible increase in 

speed does not seem to warrant the effort; after all, although a 

great deal of attention has been devoted to it in the past, parsing 

only occupies a small amount of the time spent in compilation. 

Furthermore, the shift of the non-terminal provides a very neat way 

for the semantic routines to pass partly-built trees around and avoids 

the need to use a second stack for this purpose, such as Yacc, for 

example, requires. 

A more significant advantage of the tabular representation comes 

from its not duplicating the information in lookahead states, as 

Setl-s inevitably does. However, the only way to avoid this is to 

abandon the idea of having a unique parsing action in every state; if 

the parsing action is to be identified by an indirect pointer the 

overhead of having such a pointer for every table entry would be 



11 LI 

unacceptable, and any compromise scheme whereby special case were 

identified would introduce complications and inelegance. The only 

viable way of using this approach would be to use a totally 

conventional parse table representation, with the actions encoded into 

bits in the table entries. Portability considerations forbid packing 

extra bits into a word which already holds an address-sized object, so 

it would be necessary to give numbers to the states and decode the 

entries. Considerations similar to those given in 5.2.1 demonstrate 

the advantages of the present scliehle for this application. This is 

not surprising, since a table-dr·iven parser can usefully be looked at 

as a simple interpreter. 

The main advantage, and much o1 the novelty, of the indirect 

pointer representation of the parser comes from being able to call the 

garbage collector to remove the parsing data-structure thereby 

providing a form of overlay within the context of the normal space 

allocation scheme. Jn Setl-s, this enables the system to reclaim 

about 10,000 words of storage; when this space is returned to the 

operating system, the primes program, obtaining its own minimal 

workspace, executes in 17+20 pages (instead of 36+20). The necessity 

of setting up the parser first is nicely dealt with by the SYSXI call, 

although as explained this may cause portability problems. 

5.3.2 Semantic Actions And Code Generation. 

An attractive idea which has been pursued by many workers is to 

automate the production of the translation phase of the compiler as 

well as the parser. It would seem that interpretive systems are 
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particularly amenable to this sort of treatment, since the code to be 

produced is closely related to the source language, and the 

translation does not have to take account of peculiarities of machine 

architecture. The most attractive method is that of 'syntax-directed 

transduction•, first investigated by Lewis and Stearns [LS68J, in 

which 'transduction elements' indicating the translator output to be 

produced are appended to the productions of the grammar. Each 

production has two right parts then, and provided that each occurrence 

of a non-terminal in the right part of the original production has a 

corresponding occurrence in th~ transduction element, it is possible 

to ~erform 'parallel derivations• tor the two right parts, rewriting 

corresponding non-terminals at each step. A simQle Polish 

stntax-directed transduction of a grammar is one in which the 

non-terminals of a production appear in the same order in both right 

parts, with the non-terminals to the left of any terminals in the 

transduction element. Lewis and Stearns show that: 'Any translation 

performed by a (deterministic) pushdown [automaton] can be effectively 

described as a simple Polish SD translation on an LR(k) grammar.• 

Clearly, the translation from infix to postfix notation can be so 

described. 

It is open to question whether a DPDA is sufficient to perform 

the translation from Setl into the Polish ITC. In order to satisfy 

the simple Polish condition for the transduction, substantial 

manipulation of the Setl-s grammar would be required, which tends to 

upset the SLRC1) condition required by the parser generator. An early 

attempt to use such a scheme in Setl-s was, therefore, rapidly 

abandoned in favour of the present approach of building a parse-tree 
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and generating code from it by a recursive tree walk. The translation 

into the tree is so trivial that more work would be involved in 

automating it than in writing and modifying it by hand. 

Alternative schemes for embodying translations and semantic 

actions into the grammar for processing by the parser-generator 

involve the specification of actions to be performed at each 

reduction. These c.::m be specified either in some pseudo programming 

languaye which is translated by the parser-generator, or else in the 

parser implementation language, in which case the actions are 

incorporated into the parser with the parser-generating systtm taking 

care of certain book-keeping operations. This approach Leads to a 

critical interdependence between the parser and the parser-generator, 

which undermines the usefulness of both. For example, in Yacc 

[JOH78J, the ~emantic actions are written in the programming language 

C and the parser produced is a C program. Thus, any compiler which 

uses Yacc must be written in C. 

5.3.3 Parser Generation. 

LR parsing has become widely accepted, owing to its speed and 

early error detecting capability and the ease with which parsers can 

be generated automatically. Its main advantage over the LLCk) methods 

is that no restrictions, such as forbidding left recursion or null 

right parts, are imposed on the grammars from which the parsers are 

generated. It was thought desirable to use some parser generating 

method for Setl-s because during the system's early development the 

definition of the Setl language was changing constantly, and 



re-generating parsers from a modified grammar was thought preferable 

to cont~nually modifying a hand-built parser. 

The SLR(1), LALR(1) and LR(1) methods define increasingly Large 

classes of 9!sIDID2I~ (using values of k>1 does not significantly 

increase the class [HOR76J), but all produce recognisers for the same 

class of languages: the deterministic languages. The difference 

between the parser generating olgorithms is in the way in which they 

compute Lookahead sets. Since no parser gen~rator was availa~Le at 

Leeds it was necessary to construct one in a short time, so the SLRC1) 

algorithm was chosen, as it is significantly simpler than the otl1ers. 

lt has turned out that a certain amount of re-writing of the grammar 

has been required leading to some awkward-looking productions, before 

Setl-s could be made to satisfy the SLRC1) condition, and finally some 

purely syntactic restrictions have had to be imposed semantically. By 

examining the output from Slrgen, it is possible to see that some of 

this awkwardness could have been avoided if a more powerful 

constructor algorithm had been employed. The objections to an 

awkwardness in the grammar are not merely aesthetic, since the 

productions are used to direct the tree building and a corresponding 

awkwardness results in the tree building routine. To a large extent, 

the design of the Setl syntax is at fault, with too many features 

being packed in with no regard for the overall pattern, but Setl is by 

no means unique in this respect. 

Further improvements could be made to Slrgen to make it into a 

more useful tool. It is possible to modify the constructor algorithm 

so that it will accept regular expressions in the input grammar, which 
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would be more convenient and could lead to smaller parsers. The 

Slropt phase could also be improved: as a consequence of the parser 

representation chosen, the 'single reductions' which are successors to 

successors to lookahead states (i.e. those which are originally 

zuccessors to inadequate states) cannot be removed without a 

substantial computational effort, which so far has not been considered 

worthwhile, since over 96% of the single reductions do get eliminated. 

Unfortunately, the remaining few arise irom the grammar of 

expressions, and consequently, as a trace of the parse shows, the 

parser spends much of its time on them. 

Figure 5.2 gives a breakdown of the states oi the parser, and 

demonstrates the effect of the optimisations. The figures for the 

single reductions refer to the number of transitions into single 

reduction states. Although no duplicate lookahead sets are found with 

this grammar, in previous versions this optimisation has had some 

effect. (Slropt only makes a single pass through the parser merging 

duplicates; this and subsequent operations might produce further 

duplicates, so the process should be iterated.) The figures are for 

the grammar used during system development, without any error 

productions; the production grammar will probably be smaller, since 

certain features in the original design have been dropped. 



Figure 5.2 Parser states and optimisations 

Grammar 

no of productions 

no of terminals 

no of non-terminals 

total no of symbols 

Parser States 

shift 

reduce 

Lookahead 

total 

242 

69 

119 

188 

545 

257 

72 

874 

(2 inadequate states resolved by ha11d) 

Optimisations 

duplicate states merged 90 

duplicate sets merged 0 

single reductions eliminated 1262 

single reductions left 48 
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Notice that it is possible to alter the generating algorithm and 

add these extra optimisations and, as long as the PCX format is 

retained, the parser itself need not be altered. Equally, the PCX can 

be manipulated to produce tables for any LR parser. In cases where it 

is not possible to save a core image and memory is freely available it 

would be possible to generate Minimal declarations so that a 

non-collectable parser could be built in the working storage section. 

On the other hand a BCPL program or Fortran data statements might be 

generated to suit the requirements of completely different compilers. 

The processing required to transform the PCX in this way is relatively 
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straightforward. 

5.4 FURTHER WORK 

5.4.1 Improvement 

Setl~s could be used as a working system with the addition of 

some simple operators, tl1e completion of the error recovery scheme and 

a certain amount of tidying up, to prevent, for example, the use of an 

unimplemented feature causing chaos. I would estimate that, under 

favourable conditions, this work could be done in less than a 

fortnight. Significant improvements to tl,e system could, however, be 

made, most of which have already been mentioned in passing. Perhaps 

most important is the syntax error handling. On the one hand, a 

careful design of error productions to ~e added to the grammar could 

be carried out, in an effort to establish the right balance between 

specificity and accuracy of error messages. If too many error 

productions are used to produce highly specific error messages the 

grammar will inevitably become ambiguous, and arbitrary parsing 

decisions will have to made (equivalent to guessing what was meant) 

which might produce misleading error messages. On the other hand, a 

scheme to make use of local context information to catch such simple 

but elusive errors as omitted semi-colons could be added. 

The other area for improvement is optimisation. First some of 

the interpreter's code could be optimised, an example being the string 

building operation mentioned in 5.1.1. Secondly, some of the code 

sequences generated could be improved. Finally, a more far-reaching 



project would be to make use of the flow information in the code to 

perform more sophisticated optimisations. 

5.4.2 Additions. 
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The most pressing additional requirement is for a proper system 

of input and output. At present, these can only be performed to 

standard channels, established at compile-time, unless a crude ad hoe 

method of re-defining file associations which is DE.C-10 dependent is 

used. Read is still improperly implementell. There should be no 

particular difficulty in adapting Spitbol's i-c, routines, although 

some modifications will be required to deal with the particular 

external representations used in Sell. 

Another feature which could be added from Spitbol is the Trace 

facility (described in [DM77J). The ITC format permits easy trace 

association of variables, and Snobol4 programmers have found the 

tracing facilities of considerable value. No facilities exist in Setl 

for specifying tracing, so it would be necessary to design the 

semantics of this. It might also be helpful to provide a symbolic 

dumping facility. 

Several improvements to the parser generating system were 

suggested in 5.3.4. To produce a significant improvement in this 

system, the present version which was simply designed as an 

implementation tool for Setl-s could be re-written to incorporate the 

recently published efficient LALRC1) constructor algorithm [DP79). It 

might also be worth investigating the use of precedence and 



associativity declarations, as used in Yacc, to produce a smaller 

parser from an ambiguous grammar. 
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CHAPTER 6 

INDIRECT THREADED CODE AND SEMANTICS 

6.1 PROGRAMMING LANGUAGE SEMANTICS 

6.1.1 Mathematical Semantics 

An interpreter is concerned with the semantic aspects of a 

programming language. The way in which a particular interpreter 

implements a language can only be described precisely if there is a 

precise means of describing the semantics of the language. The most 

appropriate description for this purpose is provided by the method 

known as denotational semantics, or mathematical semantics, which is 

associated primarily with the work of Scott and Strachey. Axiomatic 

semantics, although suitable for use in proofs about the behaviour of 

programs, cannot easily be related to implementations. Operational 

methods are equally unsuitable for the present purpose; by defining a 

Language in terms of an abstract interpreter, operational descriptions 

do not provide a basis for the description of another interpreter. At 

best, a similar description of the second interpreter could be 

compared with the first, but methods of interpretation can vary 

considerably, so that such comparisons become difficult and obscure, 

and by concentrating on the details of the interpreters obscure the 

role of the Language. Furthermore, neither interpreter can claim to 
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be canonical. More insight can be gained by defining the interpreter 

in terms of the abstract meaning of the language, as given by its 

denotational description. The operational description obtained in 

this way will be directly related to the semantics of the Language, 

and can be used to illuminate the internal workings of the 

implementation and possibly to prove its correctness. 

A denotational description of a language comprises a set of 

valuatiQD§, which are functions mapping constructs of the Language 

into their meaning in appropriate mathematical domains. A useful 

introduction to the denotational approach to semantic description is 

given in [T£N76] which summarises t~e work described in earlier papers 

[SS71, STR73, SW74]. The mathematical basis for the use of higher 

order functions and reflexive domains is given in [SC076]. The 

description of implementation techniques in terms of valuations which 

map program texts into transformations on stacks and stores was first 

presented in [MIL74J; the most comprehensive description of the 

subject appears in the book by Milne and Strachey CMS76]. 

The presentation of semantic descriptions in this chapter uses 

conventions which are commonly adopted, although the restricted 

character set available for printing has necessitated some departures 

from the most usual notations. A set of ~yntactic EQIDsiD~ is defined, 

which group together syntactic features of a language with common 

semantic properties; an example of this is the domain Com of 

commands. Each syntactic domain has an associated meta-variable, 

designated by an upper-case Roman letter. The syntax is presented in 

an idealised (or abstract) iorm as a set of BNF-Like productions 
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involving the syntactic meta-variables, possibly with subscripts or 

primes. The syntax is usually ambiguous and informal (for example, 

the ellipsis ••• is often used instead of recursion) being intended 

only to convey the essential structural features of the language, and 

not to provide the detailed information required for parsing. The 

idealised syntax may be thought of as describing nodes of the parse 

tree produced aHer a conventional syntax analysis. 

The semantic domains are designated by a single upper-case 

letter. They are built up by combining some basic domains using the 

operators+ (sum) x (product) and-> (which forms the space of 

continuous functions between its two operand domains). The references 

just cited should be consulted for the-precise technical meaning of 

these operators. The valuations take their first argument from some 

syntactic domain and may take other, semantic, arguments. Each 

valuation is specified by a set of equations, one for each clause in 

the syntactic definition for the relevant syntactic domain. 

Valuations are designated by capital letters with underlines, since 

the more usual script letters are not available. The syntactic 

arguments appear on the left hand side; the right hand side is 

written in A-notation, using standard conventions for associativity 

and the added convention that A.X.J.y.F is abbreviated to 4Xy.F. The 

arguments in these A-expressions are lower-case Greek letters, each of 

which is associated with a particular semantic domain (the 

associations are largely arbitrary, depending mainly on the 

availability of particular Greek letters). It is therefore possible 

to deduce immediately from the equations the domains of their 

arguments. The notation & : I> indicates that 6 is a proper member of 
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D. 

A member of a product domain D0xo1 is written <oo, 61 >. Extended 

products D0xD1x ••• D
0 

are permitted, giving rise to sequences 

<o0, 6,,•••6n>. Three operators are defined for manipulating 

sequences: 

<oo, 61,··-6n>im = 6n~1 

<oo, &,, ••• &n>tm = <om+1···on> 

<r.o, 61r••·0,ls<lim+1····6n> = <00· .. 0n> 

providing the arguments are all in range. # gives the number of 

elements in a sequence: 11<& 0 •••• • l\? = n+1. The domain of ~equences 

of finite length taken from a domain D is written 

* D = {<>}+D+DxO+DxDx~+ ••• 

6.1.2 Standard Semantics Of X10 

Figure 6.1 gives the standard semantics of a simple language 

known as X10, which has been designed to illu~trate the ideas of this 

chapter. The meaning of X10 program~ is here built up from abstract 

objects which are independent of the particular representations which 

might be used inside a computer, and which therefore give no 

information about how the language is to be implemented. The standard 

semantics is thus an appropriate standard with which to compare an 

actual implementation. 

The intention of most of the clauses in the grammar should be 

apparent. Expressions, which return a value, are distinguished in X10 

from statements, which do not. Expressions can be formed using 



Figure 6.1 Standard Semantics of X10 
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E : Exp 
C : Com 

Abstract Syntax 

E : : = 0 E E
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W E
1 -

C : : ==- COCI I := E 

While E Do C 

Semantic Domains 

a : L 
T = {tt, ff} 

B 
ll : V = B + T + undef 
e: : E = 8 + T + L 
p : u = lde ->L 

A 
e C = S ->A 
T : K = E -> C 
a : s = L ->V 

Valuations 

~ Bas.->K->C 
Q Mon -> K -> E -> C 
tl Dy a -> K -> E -> E -> C 
.5 : Exp ->U ->K ->C 
,b : I de -> U -> K -> C 
~ : Com -> U -> C -> C 

bases 
monadic operators 
dyadic operators 
identifiers 
expressions 
commands 

B 1 

locations 

basic values 
stored values 
expressed values 
environments 
answers 
command continuations 
expression continuations 
stores 
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inl'ixed dyadic operators and monadic operators from identifiers and an 

unspecified set of bases, which ~ight include the numerals and some 

representation of the truth values true and false. Typing is dynamic 

and there are no declarations; nor are there any procedures, as these 

would introduce complications which are tangEntial to the present 

discussion. The language is imperative, and it includes a simple form 

of assignment. Conditional flow of control is provided by a 

multi-armed conditional, shown as the third clause of the definition 

of c, in which each of the E. is evaluated in turn until one of them 
]. 

yields true, when the corresponding c. is executed. The while loop 
]. 

behaves in the conventional fasliion. Additional syntactic. details are 

contained in the grammar in Appendix 2, which was used by Slrgen to 

generate an X10 parser. 

The semantic domains include a domain of basic values B which 

corresponds to the syntactic bases, and includes the objects 

manipulated by the program; its structure will not be examined. The 

truth values have been distinguished from the basic values because of 

the way in which they are used in tests. The meaning of an identifier 

will be taken to be a location, and the environment p : U provides the 

mapping from identifiers to the locations they denote. In addition, a 

function from locations to their contents is required; this is the 

store ff. There is no reason why S should not be taken as Ide->V in 

this example, as locations cannot be shared and there is no way in 

which the location denoted by an identifier can be altered, but it is 

more customary to make the store and environment separate, and later 

on the presence of locations will be useful. The domain of stored 

values includes an undefined value undef which is the initial contents 



of all locations. The values of all expressions will always be 

coerced into R-values, hence no valuation Bis required. 

1£.0 

The remaining domains are the continuation domains, the use of 

which was first described in [SW74J. Continuations are required to 

provide a satisfactory account of transfers of control, resulting from 

jumps or the occurrence of certain sorts of error. It is possible to 

describe a language which does not permit unrestricted jumps without 

using continuations, but this makes the handling of errors very 

awkward. Later, when the ITC implPmentation of X10 is described, 

continuations will play an important part, so it is worthwhile 

reviewing their use. 

Early versions of mathematical semantics gave the meaning of a 

command C, f[ CJI, as a transformation from states (or stores) to 

states. Thus, if C were executed in an environment p and state a, the 

resulting state would be a•=£[ C] pa. To express the meaning of c0c1, 

that is of executing first c0 then c1, one would therefore write 

,&[ C0c1 l pa = £[ c1 ]pC~_[ c0] pa) which signifies the transformation 

corresponding to c1 being applied to the store resulting from the 

execution of c0 in the original store. Unfortunately, this is not 

adequate, since the execution of c0 may result in an error trap or may 

never terminate, in whi eh case f[ c0c1 JI pa should be equal to fU: c0 ] pa. 

The solution to this consists in defining a domain of 'answers' A, 

which contains, among other things, the results of erroneous 

computations. The meaning of a command is now a transformation from S 

to A; .such a transformation is called a continuation, and the domain 

of continuations C = s->A, with 8 being a typical member. In order to 
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accomodate sequencing, the valuation for a command is given a 

continuation as an extra ar·"')1..1ment. This continuation models the 

execution of the rest of the program (and presumably yields a final 

outcome). In the normal course of events, the continuation is applied 

to the store resulting from the execution of the command, to give the 

final outcome. If, however, a jump or an error occurs the 

continuation is thrown away. Ar. is cu5tomary, the arguments are 

supplied to the valuation one at a time, so that f.: Com->U->C->S->A, 

which is Com->U->C->C, and the equation for the sequential execution 

of two command becomes f.[ c0c1] pe = £[ c0D p(.Q.R c1] pS). A pleasing 

side-effect of this notation is that when semantic equations oi this 

sort are read from the left to right, the components are read in their 

order of execution. 

. 
The execution of an expression may also fail to terminate or may 

result in an error, so continuations must be supplied to the 

valuations for expressions as well. An expression yields a result as 

well as a possibly altered store (expressions in general being allowed 

to have side-effects), so that the functionality of expression 

continuations has to be E->S->A which is E->C. The domain of 

expression continuations is signified by K, with y as a typical 

member, and the valuation~ is taken in Exp->U->K->C. It should be 

clear how continuations are used in the other valuations in figure 

6.1; if it is not, the reader is referred to section 1.5 of [MS76J. 

One particular continuation of practical importance is wrong : S->A, 

which is applied when an error occurs. 
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6.2 INDIRECT THREADED CODE 

6.2.1 The Semantic Domains 

The ITC produced from an X10 program in a realistic 

implementation will consist of a series of codewords, each of which 

points to a block whose first word points to the entry point of a 

system routine. An abstract description of this code need not be 

concerned with these pointers, wl,ich are only necessary to accomodate 

the organisation of n~mory in a computer. lnsteed, the code can be 

considered as a sequence of blocks, each of which is a pair whose 

first component is a routine and whose second component is drawn from 

a suitable domain of block values. This domain of block values, H, 

will include all the stored values from the standard semantics and 

also locations, since one sort of block must resemble a VRBLK. In 

addition, H must include sequences of codewords, since the domain of 

blocks includes codeblocks. This leads to the following collection of 

domains: 

V 

M = XxH 

* w : W = M 

~ : H = V+L+W 

storable values 

blocks 

code sequences 

block values 

The fact that M* is embedded in M may look suspicious at first, but the 

use of such self-referencing domain equations can be justified on 

technical grounds, provided that certain restrictions on the domain 

structure are observed C[MS76J gives the full details). 
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The functions in X (of which t is a typical ~ember) take a member 

of Has an·argument and produce a state transformation, so it might 

seem that X = H->S->S. However, since the execution oft might cause an 

error or never terminate, considerations similar to those of 6.1.2 

suggest that the second argument to t should be some sort of 

continuation, rather than a store. In order to eliminate the 

distinction between expressions and commands, and to make explicit 

more of the implementation, a domain of stacks Y is introduced, where 

* Y = V, that is, a stack is a sequence of storable values. The domain 

of command continuations C is defined to be S->A as before. The 

continuations appropriate to codewords receive a stack as an 

additional argument, much as expression continuations received an 

expressed value. Therefore, a dcimain of 'pure continuations' is 

defined: Z = Y->C. It is then appropriate to write X = H->Z->Z. 

6.2.2 Block Action Routines 

A typical member of X is the routine to load an integer value 

onto the stack, which could be defined as: 

The structure of the domains which have been described shows the 

important feature of ITC: the state transformations are embedded in 

the blocks, along with the values being operated on. Thus, although 

the code is interpretive, no interpreter need be defined, except for 

the mechanism to apply the block action routines which form the first 

components of the blocks to the values which form their second 

components. 
I 
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What is required is a function lcw (load codeword) which takes as 

its operands a code sequence (in W) and a code pointer (offstt), and 

applies the function part of the corresponding block to its value; it 

must also supply it with a continuation which will execute the next 

codeword so that the indirect threading cycle will continue. A 

recursive definition is: 

lcw = A.Ci>n .c.1hr+ 1 C.,,hl 2) C lc'tl) Cn+1)) 

Technically, it is the least fixed point of this equation wh·ich is 

needed: 

lcw = A<,m .fix"-~· ((l)hf+ 1 fo1hr~ 2Hr,c,i C:n ➔ 1))) 

The appropriate function to use as the first component of a codeblock 

is thus: 

go = AT\6,: .lcw (11 I W) 11: 

The continuation 6 is discarded and control passes through the 

codewords of the codeblock, in sequence via a threading process. The 

continuation lcw(A)n 'remembers• the current code pointer and codeblock, 

so that these need not appear explicitly in the continuation domains. 

This does necessitate the adoption of a different implementation of 

conditional jumping from that used in Setl-s. A conditional jump 

consists of a block whose body is the destination of the jump, and 

whose first component is the routine jt ,defined by: 

j t = >..116,: • C't' i 1 ET-> C,: -1 1-> 1 cw 6) I W) Hi:: t 1) , 6 C,:-t 1)), wrong ) 

If the top stack item is a truth value and is true the continuation& 

(carrying on with the old codeblock) is discarded and execution of the 

body of the jump begins, otherwise the old code block is continued. 

This precludes the possibility of merging back after the conditional 

part has been executed but, as will be seen, the abstract model will 
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never require this. 

There remains the implementation of operators to be considered. 

It will be recalled that in macro Spitbol an operator is represented 

in the generated code by an indirect pointer to the routine to perform 

the operation. The corre~ponding abstract representation would be a 

block with a null second component. An example of the operator 

routines in such a scheme is given by the following routine to perform 

integer addition: 

intplus = i..Tt6't. Ci..fl
1

• (p
1 

IBEN/\p
2 

IBEN-> 

oC<~
1

4p
2

>§'tt2), wrong)) C'ti1)'ti2) 

No use is made of the argument 11-

In Setl-s, however, another implementation of operators has been 

adopted, to cater for the additional polymorphism. A typical dyadic 

* operator would be a pair <appl2, ~>where~: P was a sequence of 

functions in Z->Z which would perform the indicated operations on the 

top two stack items, and 

appl2 = >..T}f>'t. (11 i Ctype ('t i 2)) )o't 

where type : V->N will return an integer code for the value, 

corresponding to its type. The continuation 6 has to be passed on to 

.the evaluating routine as this may fail to terminate properly, owing 

to overflow for example. 

6.2.3 A Translator For X10 

To model the operation of an X10 interpreter, X10 programs have 

to be translated into code sequences of the sort just described. 
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Figure 6.2 shows a suitable translator. The equations of figure 6.2 

bear a close resemblance to those of figure 6.1. They may be 

interpreted (in the non-technical sense) in either of two ways. The 

code sequences produced might legitimately be considered as the 

meaning of the program as they are composed from sequences of state 

transformations. In this interpretation, the equations in figure 6.2 

provide an alternative definition of the semantics of the language, 

albeit not a very useful one. {However, see 3.5.4 of [MlL74J, in 

which a domain of answers consisting of state transformations is 

suggested as a possible means of supplying distinct meanings to 

separate unending computations.) Alternatively, the code sequences can 

be thought of as an interpreter for the program, which can be sent 

through the state transformatio~s to yield a final outcome. The 

second view is more suited to providing an understanding of ITC as an 

interpretive method. 

The essential difference between ITC and more conventional 

interpretive schemes, both practical and abstract, is that the 

translation only involves semantic domains: no new syntactic entities 

such as abstract machine instructions have been introduced, so there 

is no need to add an extra level of definition to describe the 

interpreter itself. In an actual implementation, this feature of the 

code is responsible for increased efficiency, as no decoding 

corresponding to this extra level of definition is required. 

The valuations provide a straightforward translation into a 

stack-based implementation. The extra argument supplied to f 

resembles a command,continuation in that it represents the rest of the 



Figure 6.2 The X10 Translator 
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program; it is necessary in order to translate the jumps resulting 

from condi~ionals and loops. There is no need to supply any analogue 

of an expression continuation to E since an expression in X10 cannot 

involve jumps, and the possibility of an improper termination is 

handled by the continuations in Z embedded in the blocks. The 

denotations of identifiers are taken in XxXxV, the members of which 

resemble VRBLKs in having two routines in them. band g build blocks 

in M from these. This method seems rather contrived, and it might be 

better to have an assignment operator, which would generalise more 

readily to more complex forms of assignment. However, the use of 

something resembling VRULKs helps to emphasise the links between this 

abstract interpreter and the actual implementation. 

6.2.4 Relation To Standard Semantics 

It may appear that the description of indirect threaded code just 

given differs from an implementation in a high level language merely 

in the notation used, so it is worth emphasising that the entities 

involved in the description belong to a class of mathematical objects 

with well understood properties, which makes it possible to prove 

theorems about their behaviour. In particular, it is possible to 

prove that an abstract ITC-based interpreter in fact implements the 

language which is described by the standard semantics. In practice, 

such a proof would be tong and tedious, so an outline of the reasons 

for believing it possible is all that will be given here. 
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In essence, the ITC description makes explicit the series of 

state transformations which the execution of the X10 program 

undergoes, by keeping the block actions in X separate from their 

arguments in H. By applying the functions to their arguments a 

function in Z->Z results. Thus, there is a straightforward 

relationship between the members oi W(=[XxHJ*> and members of [Z->ZJ*. 

Equally, the sequences in this domain can be composed to produce 

values in the dom~in [Z->ZJ. That is to say, members of W can be 

mapped into [Z->ZJ by successive appt-ication of the two functions: 

A = AW •).. <t , 11 > • ( #t,, = 1 -> ~ 11 >, <~ 'I) >§ A (eu t1) ) (u> J. 1 ) 

S = )..tl,.tlr, = 1 ->(tz!l1)&, S(~11)(~l1)& 

* where 12! : [Z-> ZJ • 

(Actually, A and Sare the least fixed points of these equations.) But 

[Z->ZJ is essentially the domain oi 'pure code' belonging to store 

semantics and stack semantics, which are two well-established sorts of 

semantics, developed in [MIL74J for describing implementations and 

implementation-dependent language features. (since the environment in 

X10 is a constant the difference between the two is immaterial). It 

is therefore possible to set up predicates relating the ITC valuations 

for X10 to its stack semantics, which express the requirement that the 

'answer' embedded in the ITC be the same as that in the stack 

semantics. The equivalence of the two sorts of semantics can be shown 

by a structural induction on the clauses of the valuations, although 

since A and S depend on the length of the sequences some induction on 

their length will also be required. An appeal can then be made to the 

proof in [MS76J of the congruence between stack and store semantics 

and standard semantics. 
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Since the proof contemplated here rests on the properties of the 

retracts associated with the semantic domains, it leads into an area 

of mathematics which is a substantial subject of study in its own 

right. Furthermore, it necessitates the setting up of a stack 

semantics for X10 as the intermediate step in the proof, which adds 

nothing to the understanding of ITC. Therefore an appenl will be made 

to the reader's intuition (or good will) and the relationship between 

the theoretical desr.riptions of this chapter and the nature of actual 

implementations will be taken up instead. 

6.3 REALISATION OF THE X10 SYSTEM 

6.3.1 The Introduction Of Pointers 

The equations of Figure 6.2 embody the interpretive scheme of 

indirect threaded code, but they are a long way removed from any 

actual implementation. The codewords in the abstract description are 

members of a domain built out of abstract function spaces; the 

codewords generated on a computer are bit patterns representing 

machine addresses. The model of the store which has been adopted 

makes it possible to incorporate this feature in the abstract model by 

making the code sequences be in L* instead of M*, and adding the 

appropriate indirection to the definition of lcw. This modification 

also permits the removal of fix from the equation for the While-loop, 

because, as is intuitively obvious, the effect of taking the fixed 

point of the recursive definition is achieved by building a code 

sequence which includes a pointer to the head of itself. This 

introduces the need for the function go intrcduced in 6.3.2 as 
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unconditional control transfers are now required. In order to model 

the translation int0 such a form of code, the valuations would require 

a mechanism for performing operations analogous to the setting and 

referencing of labels; this is probably best achieved by 

incorporating an element into the environment to record the address of 

the head of the loop. 

The locations pointed at by the codewords cannot contain the pair 

<t, 'I>, since the former is a mr:-mlier of an abstract space and the 

latter may be a structured object or may not fit into a machine word. 

The blocks then must be represented by two locations, one contai11ing a 

pointer to a piece of code, the other containing a pointPr to the 

value. The simple optimisation of placing the locations hol.ding the 

value next to the pointer to the code (assuming that store is arranged 

contiguously) leads to the representation used in Setl-s and 

macro-Spitbol for values. A similar approach leads to the VRBLK 

representation of variables. 

In a suitable programming language, it is possible to make use of 

higher order functions in the implementation language to provide such 

functions as lcw, if the parameter passing mechanism is appropriate. 

Few languages provide this facility so a further modification is 

required before the semantic equations can be used as the basis for an 

implementation. This modification is a desirable optimisation anyway, 

to prevent recursion reaching an unacceptable depth; it consists of 

some form of recursion removal, which, depending on the properties of 

the implementation Language may best be done by replacing calls of lcw 

by jumps or by placing a single-level call inside a Loop. 
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There is clearly a lot of work involved in developing such a 

description of an implementation, proving its correctness, writing a 

program based on it and proving that correct. It would seem that, 

with the technology of formal proof methods in its present state, it 

is better to use a description of the level oi that in figure 6.2 as a 

basis for an implementation and to rely on informal methods to show 

the correctness of the program. It is to be hoped, however, that 

general rezults might he proved to show the validity of the 

optimisations proposed in the preceding paragraph. 

6.3.2 Interpretive Routines 

The members of the domain X can be implemented as pieces of pure 

code receiving an argument drawn from H. The recursion removal 

required for lcw can also be applied to these routines, so that they 

are entered not by an ordinary procedure call, but by some other 

mechanism. Clearly, the indirect branch used in Setl-s provides a 

particularly appropriate mechanism and passes the argument 

automatically via the pointer left in XR. The continuation argument 

is here sealed in to the code by ending all the routines with a jump 

to a piece of code to perform the lcw operation. (Perhaps this would 

be more clearly related to the abstract description had X been taken 

as Z->H->Z instead of H->Z->Z.) 

The description of an ITC-based system given so far is tacking in 

one important respect: the interpretive routines themselves. The 

only routines which feature in the description of X10 are jt and go 

(the tatter only when pointers have been introduced) which are 
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concerned with control transfers; any other such routines will arise 

from the valuations~, Q and~ which have been Left undefined. 

Between them, these three valuations define what can be talked about 

in the Language, whereas the others are concerned with the order in 

which the operations are performed. ln [WIL68J, Wilkes pointed out a 

distinction between what he called 'the inner and outer syntax' of 

programming languages; in his terms, the outer syntax is concerned 

with the org&nisation of the flow of control and the inner syntax is 

concerned with the operations performed on data objects. Wilkes' 

discussion was presented in terms of syntax, and as will be seen in 

7.1, for practical purposes the syntax of a Language must be 

considered when such a distinction is made. However, it is really a 

semantic distinction, and, following Wilkes, I will refer to the inner 

and outer semantics of a programming language. In the simple case of 

X10, the outer semantics comprises g, band~ and the inner~, Q and 

H; the valuations of Figure 6.1 provide a full definition of the 

outer semantics, without giving any indication what it is that 

programs in the language are about, which might be integers, personnel 

records, polynomials or even sets. There is a parallel between the 

inner semantics and the mathematical concept of an interpretation of a 

system. It would be tempting to identify the inner and outer 

semantics with the information extracted by an interpreter and a 

compiler, mentioned in 1.1, but, as described in 1.3, the Level of the 

interpretive code can be varied and different amounts of information 

can be extracted by each component of the system. In a system where 

the compiler is concerned exclusively with extracting outer semantic 

information, however, a clean separation of concerns is permitted and 
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experience shows that this provides a suitable framework for 

structuring system development. In addition, it ,dises the 

possibility of plugging different inner semantics into the same syntax 

and outer semantics, and U$ing the same compiler as the basis for the 

implementation of a family of specialised languages. 

.,,. -----
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The previous chapter showed that it is possible to describe an 

ITC-based interpretive system in a way which is related to the 

language being implemented. This suggests that an examination of some 

features of the semantics of Setl will provide an additional 

understanding of the workings of the Setl-s system. First, it is 

necessary to indicate briefly how some aspects of Setl which are not 

present in X10 can be accomodated. 

The most serious shortcoming of X10 is its lack of any mechanism 

for defining and calling procedures; the main reason for their 

omission is that the issues of parameter passing and free variable 

binding require additional complications in the mathematical models, 

which are not directly relevant to the description of ITC. These 

issues are discussed at length in [MS76J. In standard semantics, the 

value of a procedure is a member of the domain F = e*->K->C (Setl 

procedures always return results). In an implementation, the 

expression continuation here passed as an argument corresponds roughly 

to the return link placed on the stack; the function itself can be 

represented by an object resembling a closure [STR67J consisting of a 
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environment (in Setl this last component is restricted to the global 

variables of the program). In ITC, the value part of a procedure 

block would be this closure, with the block action routine being a 

function to apply it to the arguments supplied by a call. 

Since declarations do not play an important part in Sett they 

will not be considered. 

Naturally, the most important aspect of the Setl language is its 

set-theoretic data types, and the associated iterative constructs. 

Because sets can be formed out of other expressions, it is not 

sufficient to treat them as bases to be evaluated by§, as numerals 

for example might be. A domain of sets is required which will 

resemble theoretical sets: a predicate in will test for membership, 

and the operations of union, intersection and so on will be defined to 

have their normal meanings. Expressions such as {1, 3.142, 'hello'} 

suggest that sets can be formed from sequences of expressed values by 

a function formset, which will be in K->e*->c (thus modelling the 

evaluation of the complete list before the formation of the set); a 

similar function performs the analogous operation for tuples. The 

internal structure of sets need not be examined, but the fact that 

t(i) can appear on the left of an assignment means that the domain of 

* tuples Tp must be equal to L, with a suitable function selecting the 

appropriate location. Notice, therefore, that to preserve the 

semantics of assignment the function rv must take the R-value of all 

the components of its argument if this is in L*. 
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To accomodate expressions such as {x: x IN sl x>43}, a syntactic 

domain of formers Fmr is required, with a corresponding valuation f. 

To allow for the possibility of errors occurring during the evaluation 

of a former a new sort of continuation, a former continuation, is 

required, which is similar to an expression continuation except that 

its first argument is the partial result of evaluating the former, so 

this domain is equal to e*->c. The value of a former will be a 

sequence of expressed values, enabling one to write: 

f[ -0-")l = :>..py-f.[F] (formset 1 ) 

So far, this is straightforward and is obviously related to the 

way in i.:hich sets and tuples are formed by Setl-s. Difficulties arise 

however when the question of maps is considered. One would like to 

consider maps as members of E->L, but the language definition insists 

that maps are just special cases of sets. This means that functions 

operating on maps must first check that all members of their set 

operands are in Tp and that they are of length 2; in addition, to 

evaluate fCx) it is necessary to search the set for the pair whose 

first component's R-value is equal to x. This is the source of the 

practical difficulties discussed in 3.2.3. What the present 

discussion demonstrates is that these problems arise from the language 

design and not from the particular representations chosen for sets in 

Setl-s. 

If it is desired to keep maps as sets, a mechanism is required 

for the treatment of some types as sub-types of others. Shamir and 

Wadge CSW77J have proposed such a mechanism, but it is not clear how 

this could be incorporated into the framework of standard semantics, 
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nor how it could be mapped into an implementation. 

Loops controlled by iterators such as (For x ins) can be 

described easily by providing a function to select and remove an 

arbitrary element from a set and a predicate to test whether a set is 

empty. In Setl-~ these two have been combined into the JNEXT 

operation (see 3.4.1) but there is no particular virtue in this. The 

valuation f would make use of the valuations for loops to build its 

sequences. The arithmetic formers can be similarly defined in terms 

of an arithmetic loop. (This raises the interesting possibility of 

proving the legitimacy of the optimisation of arithmetic loops.) For 

both kinds of loop, a component in the environment is required to hold 

the temporary variables used. A further component will be required to 

hold the continuations to be applied when the commands Quit and 

Continue are obeyed. 

A complete definition of the semantics of Setl would be extremely 

lengthy and uninteresting, so none will be presented. 

7.2 APPLICATIONS OF THE THEORY 

It might be argued, quite rightly I think, that analysing an 

implementation in terms of the semantics of the implemented language, 

after the system has been built is doing things the wrong way round. 

Unfortunately~ this situation, resulting from the circumstances of the 

project's inception, is typical of the state of affairs in this 

particular branch of software engineering at present, and indicates 

the prevalent lack of understanding of semantic matters. This is in 
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marked contrast to the subject of syntax, which is thoroughly 

understood.- As the Setl-s compiler illustrates, this understanding is 

sufficiently complete to form the basis of an automatic parser 

generating system. 

Although there are still some unsatisfactory aspects to the 

theory, denotational semantics has been shown to be a powerful tool 

for describing the semantics of programming languages, and has been 

successfully applied to languages as diverse as Snobol4[TEN73J, 

Gedanken[TEN76J, Algol60[MOS74aJ, a superset of Pal and some features 

of Algol68[MIL74J; in addition, in [MIL74,MS76J it has been shown how 

the method can be used to describe features such as co-routines and 

parallel processing, type checking and coercion as well as methods of 

language implementation. All these applications are firmly based on 

the theoretical work originating with Scott, which both provides a 

clear understanding of the properties of semantic valuations and 

connects them with computability theory in a way which ensures that 

they provide a reasonable model of computation. 

One particularly useful property of denotational semantic 

descriptions is that obscure or undesirable language features require 

lengthy and convoluted valuations; because of the connection between 

the semantics and their implementation the semantic description will 

also show up language features which are difficult to implement, as 

the brief discussion of Setl-s in the preceding section will hopefully 

have illustrated. It is therefore to be hoped that, in the future, 

formal semantic definitions will play a more prominent role in 

language design and implementation. 
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The connection between standard semantics and indirect threaded 

code outlined in chapter 6 raises the possibility of a more direct use 

of the semantic descriptions in the building of interpreters. Mosses 

[MOS74,MOS76J has shown how to formalise the meta-language used to 

define valuations so that they can be viewed as mappings converting 

programs written in the defined language into programs written in the 

defining language.. By combining the the valuations with an 

implementation of the meta-language an implementation of the defined 

language ~an be produced. Pagan [PAG79J advocates the use of a 

conventional high level language as meta-language, which has an 

obvious appeal, but does not guarantee the correctness of the 

implementation in the way which a language such as Mosses' MSL, which 

can be defined in terms of Lambda [SC076J does. Such implementations 

may be expected to be very inefficient; this inefficiency can be 

overcome to a certain extent by the use of optimisation techniques, 

such as recursion removal, in the implementation of the meta-language. 

It has been shown that a relationship exists between the standard 

semantics of a language and an ITC-based semantics. Since the latter 

only involves semantic information, it can, in principle at least, be 

derived from the standard semantics and an account of the domains 

relevant to the two sorts of semantics. By concentrating on what l 

have called the outer semantics, a standard semantics could be 

transformed into an ITC-based semantics which, when implemented, would 

provide a code generator, producing codewords from programs written in 

the source language. This could then be combined with a set of 

interpretive routines implementing the inner semantics to provide an 

interpreter. To produce a complete implementation, a compiler would 
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be required, since the abstract syntax which is used in the semantic 

descriptions neglects many syntactic 1eatures and can best be regarded 

as a description o1 the parse trees produced by a compiler. 

E1ficiency considerations would seem to indicate that the interpretive 

routines would have to be hand written. 

The idens sketched in the preceding paragraphs adumbrate a whole 

new research project; the practical difficulties encountered in 1he 

building of Setl-s give some indication ot the range of problems such 

a project must at tempt to deal with. 



Appendix 1: Sample Setl-s Listings 

SETL-S VERSION 1.6(1) - Leeds University 
DSK:PRIMES.STL[10177,13J 21-Sep-1980 19:31:21 

1 1 PROG prime . , 
2 1 primes := {}; 
3 1 (FOR p IN [2 ••• 1000]) 
4 1 IF NOTEXIST~ pp 1N primes I p 
5 1 THEN primes \.JlTII:= p ; 

REM pp= 0 

6 3 lf p >= 990 TilEN PRINT(p); ENO; 
7 4 [ND 
8 6 END ; 
9 6 END F'ROG ; 

STORE USED 11895 
STORE LEFT 3352 
COMP ERRORS 0 
REGENERATIONS 1 
COMP r1,ie-MSEC 4,0 

991 
997 

NORMAL END 
IN STATEMENT 
RUN TIME-f.1SEC 
STMTS EXECUTED 
MCSEC / STMT 
REGENERATIONS 

6 
7260 
22873 
317 
2 

IF ; 

149 

PAGE 1 



1 so 

SETL-S VERSION 1.6 .. ) - Leeds University 
DSK:HEAPS.STL[1017- 13J 21-Sep-1980 19:35:04 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
3 
4 
4 
4 
4 
6 
6 
8 
8 
8 
9 
10 
11 
12 
13 
13 
13 
13 
13 
13 
13 
14 
14 
14 
14 
15 
17 
18 
19 
21 
21 
21 
21 
23 
23 
23 
24 

PROGRAM heapsort_test; 
PROC hcap_sort; 

CONST 
seqlen = SO, nstodo = 10; 

VAR 
te5tseq, sortseq, timcon; 

PAGE 1 

te~tseq := [ 01, 78, 56, 23, 17, 88, 05, 85, 65, 43, 
~3, 32, 78, 90, 31, 16, 10, 54, 99, 32, 
38, 55, 99, 02, 25, 07, 54, 88, 77, 66, 
55, 44, 57, 78, 83, 06, 16, 12, 18, 92, 
93, 54, 33, 10, 19, 20, 21, 23, 13, 10 J; 

PRINTC'start of heapsort test') ; PRINT; 
timeon := TlME; 

(FOR i IN (1 ••• nstodoJ) 
sortseq := hcap_sort(testseq, 1, seqlen) ; 

END; 

PRINT; PRINT; 

PRINTC'sorted ', seqlen, 'items•, 
nstodo, 'times in', TIME-timeon, 'ms') ; 

PRINTC'unsorted sequence= •, testseq) ; 
PRINT('sorted sequence = •, sortseq) ; 
PRINT ; 
PRINTC'end of heap sort test') ; 

PROC heap_sort(tseq, lo, hi) ; 
seq := tseq; 
(FOR i IN [lo+1 ••• hiJ) 

LOOP 
INIT m := i; 
WHILE 

DO 
m >lo/\ seq(m DIV 2) < seq(m) 

mm:= m DIV 2; 
temp:= seq(m) ; 
seq(m) := seq(mm) ; seq(mm) :=temp; 
m := mm ; 

END LOOP ; 
END; 

(FOR seqtop IN [hi, hi-1 ••• lo+1J) 
temp:= seq(lo) ; 
seq(lo) := seq(seqtop) ; seq(seqtop):= temp; 
LOOP 
INIT m := lo ; 
DOING 
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52 24 IF Cm*2+1) < seqtop /\ seq(m*2) < seq(m*2 + 1) 
53 24 THEN m*2 + 1 
54 24 ELSE m*2 
55 24 END; 
56 25 WHILE 
57 25 Cm* 2) < seqtop /\ seq(m) < seq(targ) 
58 25 DO 
59 25 
60 27 
61 28 
62 30 END 
63 32 END ; 
64 32 
65 33 RETURN 
66 33 
67 34 ENl> Pnoc 
68 34 
69 34 END PROG 

STORE USED 13755 
STORE LEFT 1492 
COMP ERRORS 0 
REGENERATIONS 1 
COMP TIME-MSEC 1620 

; 

; 

start of heapsort test 

temp:= seq(m) ; 
seq(m) := seq(targ) 
m := targ ; 
LOOP; 

seq ; 

sorted 50items 10times in 6140ms 

; seq(targ) := temp ; 

unsorted sequence= [1, 78, 56, 23, 17, 88, 5, 85, 65, 43, 43 
, 32, 78, 90, 31, 16, 10, 54, 99, 32, 38, 55, 99, 2, 25, 7 

, 54, 88, 77, 66, 55, 44, 57, 78, 83, 6, 16, 12, 18, 92, 
93, 54, 33, 10, 19, 20, 21 , 23, 13, 10J 
sorted sequence = [1 , 2, 5, 6, 7, 10, 10, 10, 12, 13, 16, 1 
6, 17, 18, 19, 20, 21 , 23, 23, 25, 31, 32, 32, 33, 38, 43 
, 43, 44, 54, 54, 54, 55, 55, 56, 57, 65, 66, 77, 78, 78, 
78, 83, 85, 88, 88, 90, 92, 93, 99, 99] 

end of heap sort test 

NORMAL END 
IN STATEMENT 13 
RUN TIME-MSEC 6520 
STMTS EXECUTED 33354 
MCSEC / STMT 195 
REGENERATIONS 2 
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SETL-S VERS10N 1.6(1) - Leeds University 
DSK:MEDIAN.STL[10177,13J 21-Sep-1980 19:35:48 

1 1 
2 1 
3 1 
4 1 
5 1 
6 1 
7 1 
8 1 
9 2 
10 2 
11 2 
12 2 
13 3 
14 5 
15 6 
16 7 
17 8 
18 9 
19 10 
20 12 
21 12 
22 12 
23 13 
24 15 
25 17 
26 19 
27 19 
28 19 
29 19 
30 19 
31 19 
32 20 
33 20 
34 20 
35 20 
36 21 
37 22 
38 22 
39 22 
40 24 
41 26 
42 28 
43 29 
44 31 
45 33 
46 33 
47 34 
48 34 
49 35 

PAGE 1 

PROGRAM medianfinder, 
PROC kthone, min2, max2; 

$ Based on the median finder from the NYU Setl test library, 
S coded by Dave Shi~Ld5 from a SETLA program by H. Warren. 

INIT kthonebln := 0; 
PRINlC'median test'); 
cases := (3, 20, SOJ; 

(FOR i IN [1 ••• £cases]) 
tim :::: TIME ; 
testset :::: {1 ••• cases(i)}; 
PRINT ; PRINT ; 
PIUNTC'case r.umber •, i, ' test set is:') ; 
PRINT(testset) ; 
median :::: kthoneCC£testset+1) DIV 2, testset) ; 
PRINTC'the median of the test set is', median) ; 
PRlNT('time taken=', TIME - tim, 1 ms'); 

ENI>; 

PROC kthone(kparam, setparam) ; 
IF setparam ={}THEN RETURN OM; END IF; 
k := kparam; sett:= setparam; 
kthonebln +:= 1 ; kthonebl := '' , 
(FOR i IN [0 ••• kthoneblnJ) kthonebl +:= 1 

LOOP 
WHILE £sett>= 3 

DO 
i := 2 ; 
rnidpts := {}; 
(FOR x lN sett) 

i := (i + 1) REM 3; 
IF i = 0 THEN u := x, 
ELSEIF i = 1 THEN V := x; 
ELSEIF i = 2 
THEN 

IF X < V THEN cas := 1 ; 
cas : = 0 ; END ; 
cas +:= 2; END; 

; ENI> ; 

ELSE 
IF u < x THEN 
IF v < u THEN 
midpts WITH:= 

cas := 3 - cas; END, 
Cu, v, xJ(cas) ; 

END IF; 
ENO; 

PRINT(kthonebl, (£sett DIV 3) * 3) ; 

median:= kthone((£midpts+1) DIV 2, midpts) ; 



52 36 
53 36 
54 36 
55 37 
56 38 
57 40 
58 40 
59 41 
60 41 
61 41 
62 41 
63 42 
6't 42 
65 43 
66 45 
67 45 
68 47 · 
69 47 
70 47 
71 48 
72 48 
73 48 
74 48 
75 49 
76 50 
77 51 
78 51 
79 51 
80 52 
81 52 
82 53 
83 54 
84 56 
85 56 
86 57 
87 57 
88 57 
89 57 
90 59 
91 60 
92 61 
93 61 
94 61 
95 61 
96 63 
97 64 
98 65 
99 65 
100 65 

(FOR x IN sett) 
IF x <= median 
THEN smallpile WITH:= x; 
ELSE bigpile WITH:= x; 
END IF; 

END; 

PRINTCkthonebl, £sett); 

IF k <= £smallpile 
THEN sett := smal lpi le ; 
ELSE 

sett := bigpile; 
k -:= lsmrtllpile; 

EtJD IF ; 

END LOOP; 

kthonebln := IF kthonebln > 0 

IF £sett = 1 
THEN 

THEN kthonebln - 1 ELSE O END; 

IF k = 1 THEN RETURN ARB sett; 
ELSE RETUl<N OM ; 

ELSE 
END; 

IF k = 1 
THEN RETURN min2(sett) ; 
ELSEIF k = 2 
THEN RETURN max2Csett) , 
ELSE RETURN OM; 
END IF ; 

END IF ; 

END PROC ; 

PROC min2(s); 
SS := S ; 

p FROM ss; q FROM ss; 
RETURN IF p < q THEN p ELSE q END; 

END; 

PROC max2(s); 
SS ;: S; 

p FROM ss; q FROM ss; 
RETURN IF p > q THEN p ELSE q END; 

END; 

END PROG; 

STORE USED 14988 
STORE LEFT 259 
COMP ERRORS 0 
REGENERATIONS 1 

OMP IME-M .. C 0 
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median test 

case number 1 test set is: 
{1 , 2, 3} 

3 
3 

the median of the test set is 2 
time taken= 60 ms 

case number 2 test set is: 
{1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 
17, 18, 19, 20} 

X9, 
, 32 
46, 

18 
6 
6 
3 
3 

19 
9 
20 , 21, 
, 33 , 34 
47, 48 , 
48 

15 
3 
5 
3 
3 

16 
6 
8 
3 
4 

50 
27 

9 
3 
3 

9 
3 
5 

22, 23, 24, 25, 26, 27, 28, 29, 30, 31 
, 35, 36, 37, 38, 39, 40, 41 , 42, 43, 44, 45, 
49 , 50} 



27 
12 

3 
4 

13 
3 
5 

the median of the test set is 25 
time taken= 740 ms 

NORMAL END 
IN STATEMENT 12 
RUN TlME-MSEC 1140 
STMTS EXECUTED 3991 
MCSEC / STMT 285 
REGENERATIONS 0 

155 
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Appendix 2:· An SLRC1) Grammar for X10 

<p> = 
X <program> l'il ; •O* <program> = 
<block> ; •1* <block> = 
$( <statements> $) •2• 
<statement> ; •3• <statements> = 
<statements> <statement> *4* 
<s t att·ment> ; *5"" <statement> = 
<assignment> *6* 
<if set> *7* 
<while> ; *8* 

<assignment> = 
$name Sas!iop <exp> ; "-9* <if set> = 
IF $( <choices>$) ; *10* 

<choices> = 
<choices> <choice> *11* 
<choice> . •12• , 

<choice> = 
C <exp>) -> <block> ; •13* <while> = 
WHILE <exp> DO <block> . 'l.·14* , 

<exp> = 
<exp> SopO <exp1> •15* 
<exp1> ; *16* 

<exp1> = 
<exp1> $op1 <exp2> •17* 
<exp2> ; •18* 

<exp2> = 
<exp2> Sop2 <exp3> •19• 
<exp3> . •20* , 

<exp3> = 
<exp3> $op3 <exp4> *21* 
<exp4> . *22• , 

<exp4> = 
Sop2 <bop> •23* 
Suop <bop> *24* 
<bop> . •25* , 

<bop> = 
$name I •26* 
<exp> ) I *21* 
$number I •28* 
$string I *29* 
TRUE I *30* 
FALSE .. , •31* 



·, 
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