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Abstract 
 

The purpose of this thesis is to examine which data captured by experiential learning 

technology can be used to understand more about students!"perspectives, mindsets and skills. The 

objective is to examine how technology-enabled real-time analysis of learner data can be used by 

learning facilitators and instructional designers to improve the practice of experiential learning in 

higher education institutions. The study adopts an anti-positivist perspective that acknowledges 

habit as a driver of deterministic behaviour and that deterministic behaviour can be examined 

using scientific methods. The data used in this research is retrospectively de-identified student 

learning data captured by an experiential learning technology which has been used to structure 

and support the facilitation of an experiential business project program. 

 

The research findings outline the quantitative outcomes followed by an integrative 

qualitative discussion that explores how the findings could be used to inform the practice of 

experiential learning design and facilitation. Specifically the methodology outlines: the 

experiential business project program design, the classification of learning tasks into independent 

variable categories, and the results of student responses to three surveys. The three surveys 

being: the Revised Implicit Theories of Intelligence Survey, Revised Two Factor Study Process 

Questionnaire and a learning history survey and the manner in which these surveys were dummy 

coded into dependent variables, with a detailed description of how the regression analysis is 

conducted. The results section presents and examines the five regression models developed. The 

purpose of the examination is to explore the extent to which learner data from an experientially 

developed learning technology could be used to understand more about students!"perspectives, 

mindsets and skills.   



4 

 

 

The integrative discussion examines each of the three research questions explicitly. The 

discussion focused on research question one examines the nature of the learning tasks that have a 

significant relationship with one or more of the learning theory based dependent variables. It 

investigates whether there is an alignment between what is known about the nature of learners 

who exhibit or employ a particular mindset, approach to learning or learning history and the 

learning task categories use as independent variables in the five regression models presents in the 

results. The discussion focused on research question two examines what additional learning data 

could be captured to improve the predictive power of the five regression models. The discussion 

focused on research question three examines how displaying predictive insights, using learner 

data, alongside learning theory insights could be used by instructional designers and learning 

facilitators. The discussion explores how facilitators and learning designers could use the 

information to customise facilitator support, aid in the development of incentives that encourage 

learners to engage with learning content that they do not naturally lean towards and support the 

adaption of learning content to align better with a learner's motives. 

 

This study further proposes an example of the benefits of integrating learning analytics 

and learning theory, how learning theory based analysis could enable more use of experiential 

learning within higher education institutions, enable experiential learning facilitators to provide 

more tailored support of students during experiential learning programs and how the results of 

the analysis could help students extract more of the benefits from the available learning out of 

experiential learning programs.  
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Chapter 1 Introduction 
 

Introduction 

Higher education is at a significant transition point. On a macroeconomic level global 

demand and student mobility are increasing (OECD, 2017) resulting in inflated and 

internationalised classrooms (OECD, 2010). Simultaneously, higher education itself is making 

the transition from elite to mass education (Milliken, 2004) and attempting to respond to the 

pressure of the market to focus on more instrumental outcomes (Strohl, 2006) that tend to focus 

on work readiness (Bandaranaike & Willison, 2015) and 21st Century skills (World Economic 

Forum, 2016). 21st Century skills extend beyond foundational knowledge to competencies and 

character qualities including collaboration, creativity, leadership and adaptability (World 

Economic Forum, 2016) that literature suggests are best acquired through experience (Blackwell 

et. al, 2001; Proctor, 2011; Wilton, 2011; Nenzhelele, 2014) through the use of higher order 

thinking skills. 

 

In my work as a learning facilitator, instructional designer and educational technologist, I 

have observed that when students are sent to complete their learning through the use of field 

experience on experiential learning programs like internships, service learning and co-ops,  

facilitators lose visual and verbal feedback loops that allow them to understand the nuance of 

each student's learning process, assess students' level of understanding and identify when 

students need support.  As a result, a facilitator’s ability to tailor support based on feedback loops 

is inhibited. Employing an integrative educational technology has the potential to re-establish the 

feedback channel in an experiential learning program but what is not yet clear is whether the data 
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captured and generated by these types of technologically based, experiential learning platforms 

could be used to display theoretically sound insights about students in order for facilitators to 

better understand their students’ learning needs and provide more tailored support. 

 

My Purpose & Motivation for this Research 
 

Prior to my work as an experiential learning facilitator, designer and technologist I was a social 

innovator, investing much of my time coaching social entrepreneurs in Australia, the USA, 

China and Tanzania. In 2013 I was in Tanzania to launch a social entrepreneurs training 

program. A series of events including teaching friends how to add fractions with a stick in the 

dirt and a revelation about the complexity of the problems the social entrepreneurs I was working 

with were trying to solve made me acutely aware of the disparity between my access to 

education and the access of my Tanzanian peers and colleagues. This awareness led me to return 

to Australia to re-skill and acquire the knowledge and skills I need to be able to contribute to 

opening up access to quality learning in low resource economies. Upon completion of this 

research my goal is to return to my work as a social innovator with a focus on improving access 

to quality education on a global scale.  

 
My Learning Facilitator Journey & Learning Philosophy 
 

When I started teaching  I had no theoretical foundation for understanding learning. As a 

result, my approach to teaching evolved through experience. In essence, I learned to teach 

utilising an emergent process that was similar to the experiential learning cycle (Kolb, 1984). I 

used the experiential learning cycle to examine my practice and how I could change it in order to 
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improve my impact on students!"acquisition of concepts. While teaching leadership, teamwork 

and innovation, I came to realise that to learn these concepts required not only the ability to 

understand the theoretical concepts associated with them but to be able to apply them in daily 

life. The application of leadership, teamwork and innovation to daily life was twofold. Firstly, as 

a lens to examine current behaviour and determine whether altering behaviour would result in a 

better outcome. Secondly, as a diagnostic tool to help leader and manage others.  

 

Retrospectively I became aware of theoretical concepts that helped explain what I was 

experiencing. I became aware of Bloom's Taxonomy of Educational Objectives, first introduced 

by Bloom et al. in 1956.  Bloom"s Taxonomy has three domains one of which is the cognitive 

domain. The cognitive domain is based on the notion that there are levels of complexity to 

learning a concept based on what a person can do with that piece of knowledge. For example, the 

ability to recall or restate a theoretical concept is more straightforward than analysing how the 

theoretical concept is impacting a real-life situation. Additionally, I came to know the concept of 

constructive alignment (Biggs & Tang, 2011) that further explained and added depth to what I 

was experiencing in my teaching.  

 

After more than a decade using this experiential approach to learning and retrofitting 

theory as I became aware of it, I developed the capability to sense and intuit a learner"s behaviour 

and intervene with additional perspective, insight and knowledge that helped unearth habitual 

behaviours that may need to be re-considered. When I started my doctoral thesis, I learned that I 

was using critical reflective practice (Brookfield, 1998; Schon, 1983) to develop my facilitation 

skills. Moreover, with this process of supporting students to bring a habit into conscious thought 
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for re-consideration through experiential learning I was attempting to cultivate the same 

capability in my students.  Enabling a learner to consider whether a process of un-learning, a 

conscious choice #to give up, abandon, or stop using knowledge, values or behaviours to acquire 

new ones,” is required (Cegarra-Navarro & Wensley, 2018) was, in my view, developing their 

lifelong learning capability and metacognition.  

 

As online education and the use of technology in higher education began to increase in 

Australia, I was challenged by the need to transfer my preferred learning and teaching 

methodology of experiential learning (Kolb, 1984) into the online learning paradigm. When 

using experiential learning methods to achieve learning goals, my role as a facilitator is to create 

an experience and react with support, insight and questions in response to how students are 

engaging with the experience. 

 

Crawley, Fewell and Sugar (2009) identified that facilitators lose valuable affective cues 

when transitioning into online instruction. The affective cues I lost included facial expressions, 

body language and tone of voice. This loss inhibited my ability to assess student engagement and 

learning. At the time, learning management systems did not provide an alternative feedback loop 

to replace these affective cues (Coppola et al., 2001).  

 

The loss of affective data points impacted my ability to tailor my support of students in 

the dynamic and immediate way I was used to. The technology was restricting my pedagogical 

choices. The learning management systems I had access to were optimised for pedagogical 

approaches that leaned towards teacher-centred learning (Gibson, 2001) and lower-order 



13 

 

thinking skills on Bloom's Taxonomy (Anderson & Krathwohl, 2001). At the time, research into 

online learning focused on how teaching should be adapted to fit the available technology (Juan 

et al., 2011; Kebritchi et al., 2017) instead of exploring how technology could evolve to replace 

affective data points and support different pedagogical practices. This situation resulted in a 

frustrating move back to more traditional pedagogies before transitioning out of teaching into 

instructional design and instructional technology development. The goal of this transition was to 

contribute to building technology that supported experiential learning. 

 

Instructional design lacks a widely accepted definition. Merrill, Drake, Lacy and Pratt 

claim that instruction is a science and instructional design is the use of the principles of this 

science that are founded on empirical evidence (1996). Alternatively, Reiser and Dempsey define 

it as a #systematic process that is employed to develop education and training programs in a 

consistent and reliable fashion” (2007, p.11; 2012, p.8). A third definition that is widely cited 

and accepted in literature is attributed to both George Siemens and Curtis Broderick: it claims 

instructional design as an art and a science that transitions a learner from a stage of not knowing 

to knowing. Both originating websites are no longer accessible, but the definition itself is widely 

cited in academic journals and textbooks. Despite the lack of an agreed definition, the common 

theme across the definitions implies the use of a structured process that facilitates a learner from 

not knowing to knowing.   

 

My work in the fields of instructional design and instructional technology, #the 

systematic study of designing, developing and evaluating instructional programs, processes and 

products that must meet the criteria of internal consistency and effectiveness" (Seels & Richey, 
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1994, p. 127), over the last five years has informed my beliefs about the use of technology in 

learning and teaching. One of those beliefs is that learning programs where the design and 

technology are integrated enable the use of learning analytics, specifically, the use of real-time 

learning analytics to provide the data points facilitators need to sense and intuit the needs of their 

learners. This belief is supported by learning analytics research that suggests real-time learning 

analytics can provide useful insights that will help facilitators intervene in the learning process 

(Gasevic, et al., 2017; James et al., 2018). However, the current learning analytics research that 

clusters students into categories to personalise the learning experience lacks a connection to 

learning theory (Bannert et al., 2014; Kirschner, 2017; Kovanovic et al., 2015). Using these same 

learning analytics techniques with learning theories like learners!"mindset (Dweck, 2017), 

approaches to learning (Platow et al., 2013) and learning history (Kwak, 2016) could enrich the 

research and improve the impact of real-time learning analytics and the development of machine 

learning algorithms designed to transition these intervention processes into the predictive 

paradigm. 

 
Aggregating Learning Analytics & Learning Theory 
 

A review of the learning analytics literature indicates the potential for real-time learning 

analytics driven by machine learning algorithms to augment teaching and facilitation in 

technology-enabled learning environments (Hernandez-Lara et al., 2019; Alblawi & Alhamed, 

2017). However, both the educational research and learning analytics research community 

indicate a need for learning analytics research that is underpinned by learning theory (Gasevic et 

al., 2017; Gašević et al., 2016; Lodge & Lewis, 2012; Rogers et al., 2016; Wise, 2014; Wise & 

Shaffer, 2015; Avella et al., 2016; Gasevic et al., 2014; Kirkwood & Price, 2013; Lodge & 
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Corrin, 2017; Lockyer et al., 2013; McArthur et al., 2005; Reimann, 2016). The potential gap is 

identified by researchers and practitioners from the learning (Reimann, 2016) and technology 

fields (Gašević et al., 2014; 2016; 2017). Lockyer, Heathcote & Dawson (2013) specifically 

highlight the need for aligning learning analytics with instructional design.  The alternative to 

aggregating learning analytics and learning theory research is for the two research communities 

to continue to operate in parallel. This situation could result in the automation of learning 

analytics in instructional technology features that have no impact on learning (Tuomi, 2018) and 

teachers using instructional technology that restricts instead of optimises their pedagogical 

choices (Justus, 2017).  

 

The call for learning analytics research to be underpinned by learning theory highlights 

an opportunity for research and exploration into how learning analytics, educational data mining 

and machine learning grounded in learning theory could improve educational practice. The 

literature suggests that aggregating learning analytics and learning theory can improve learning 

processes and learning design (Avella et al., 2016; James et al., 2020; Reimann, 2016), thus 

supporting the intention of this research to explore how learning analytics, educational data 

mining and machine learning, underpinned by learning theory, can be used to improve 

technology-enhanced experiential learning that utilises the experiential learning cycle. 

 

Rationale for the study 
 

The aim of this research project is to explore how learning theory combined with learning 

analytics analysis (LA) can be used to predict a learner’s perspective, mindset and skills when 

participating in experiential learning programs for developing competencies and character 
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qualities needed for the 21st Century (World Economic Forum, 2016). The first objective is to 

understand how data produced by a learner during an experiential learning program that is 

supported by an experiential learning management system (eLMS) could be used to gain insights 

about a learner’s perspectives, mindsets and skills. The second objective to identify additional 

data that needs to be collected to automate the analysis or improve the predictive model.  The 

knowledge produced through this research project could define predictive insights that enable 

educators to provide tailored support to students engaging in experiential learning.  

 

Purpose 

The primary purpose of the study is to inform the creation of instructional technology 

built to facilitate experiential learning programs designed to develop 21st Century Skills. A 

secondary purpose of the study is to inform the use of instructional technology in both the 

instructional design and facilitation of experiential learning programs designed to develop 21st 

Century Skills. 

 

As businesses, governments and not for profit organisations place demands on higher education 

institutions to produce work-ready graduates higher education institutions are turning to 

experiential learning programs to meet these demands. However, instructional technology being 

used to facilitate experiential learning programs does not adequately support this pedagogical 

practice. A deeper understanding of how emerging technologies including machine learning, 

learning analytics and educational data mining could inform the practice of experiential learning 

for 21st Century Skill development. The study has the potential to make a contribution to current 

international discussion about the integration of learning analytics and learning theory and its 
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impact on higher education teaching and learning. And, more specifically, to the practice of 

experiential learning designed to develop 21st Century Skills. The study is small scale but 

provides insight that could inform the development of artificial intelligent systems designed 

specifically to support the teaching and learning of experiential learning and 21st Century Skill 

development. 

 

Thesis Structure 

 

The thesis is organised as a narrative journey. Chapter 2 begins by reviewing literature 

about the nature of the Fourth Industrial Revolution, its challenges and its impact on learning. It 

then explores the emergence of 21st Century Skills and examines the conversations surrounding 

the role of higher education institutions in developing 21st Century Skills, looking specifically at 

the literature surrounding the use of experiential learning and emerging technologies in the 

development of 21st Century Skills. The chapter reviews the literature surrounding experiential 

learning theory, specifically homing in on Kolb"s Experiential Learning Cycle, its use in the 

development of 21st Century Skills and how technology is currently perceived and being used in 

this practice. The chapter concludes with an examination of emerging technologies currently 

being used in higher education teaching and learning, and explicitly examines the consistently 

highlighted gap when it comes to the integration of learning analytics and learning theory 

research. 

 

Chapter 3 explains the experiential business project program that provides the context 

and the data used to conduct this research. Chapter 4 highlights and justifies my methodological 
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approach and presents my research questions, sampling choices and ethical considerations.  

Chapter 5 outlines and discusses the results of the research. The chapter first explains the 

instruments used to classify students into learning theory-based categories and presents the 

overall results. The results are laid out and discussed in the order in which the research was 

conducted in order to make the process explicit. The chapter concludes by presenting the results 

of the multiple regression analysis performed by combining user behaviour data engaging with 

the different categories of learning tasks and their self-assessment scores on the instruments.  

 

Chapter 6 uses the results presented in Chapter 5 to explicitly address and discuss the 

three research questions. Finally, Chapter 7 presents the potential implications of the research on 

the integration of learning analytics and learning theory, on the use of experiential learning for 

21st Century Skill development and perhaps most importantly my personal current and future 

practice.  

 

Terminology 

 

Throughout the study the term $21st Century Skills!"is used to explain the non-academic 

skills needed for work in the Fourth Industrial Revolution. These skills are often referred to as 

employability skills, human skills, soft skills and professional skills.  

 

!  
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Chapter 2: Literature Review 
 

Introduction 
 

This study sits at the intersection of four rapidly developing fields of research in higher 

education. The purpose of the study is to aggregate the four fields into a socio-technical system 

and examine how the socio-technical system can impact learning and teaching. The four fields of 

research are the 4th Industrial Revolution (4thIR), 21st Century Skills development, experiential 

learning theory and emerging technology. This study holds the potential to generate insights that 

will contribute to the transformation of higher education learning and teaching so that it can meet 

the demands of the 4thIR. 

 

This literature review will outline the nature of the 4thIR, the challenges it is presenting 

and how it is impacting the nature and role of higher education, narrowing in on the need for the 

development of 21st Century Skills. The literature on 21st Century Skill development will focus 

on the nature of 21st Century Skills, how higher education institutions are supporting their 

development with a specific focus on examining the literature surrounding the use of the 

experiential learning cycle. Then it will continue by examining how the emerging technologies 

of the 4thIR are used to support higher education learning and teaching that uses the experiential 

learning cycle for 21st Century Skill development. Finally, the literature review will provide an 

overview of educational data mining, learning analytics, machine learning, and how they are 

currently used in higher education learning and teaching. The review will examine the widely 

acknowledged gap in research that aggregates learning theory and emerging technology research. 

Moreover, it will identify how the proposed potential research could add to higher education 
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learning and teaching as a whole and specifically the development of 21st Century Skills needed 

for the 4thIR. 

 

The criteria used for sourcing literature to review was determined for each of the four 

fields of the literature review. Literature focused on the 4thIR included both academic literature 

and global economic, development and futures reports since 2013. The literature on 21st Century 

Skills was limited to literature specifically referring to 21st Century Skills and the World 

Economic Forum 21st Century Skills framework since 2014, explicitly excluding employability 

skills and professional skills due to their short-term nature.  The review of experiential learning 

theory and the experiential learning cycle reached further. Foundational research that led to the 

initial presentation of the cycle, its core developments and critiques are included alongside 

literature from the past five years focused on how experiential learning theory and explicitly the 

experiential learning cycle is used in higher education. Finally, the literature review of emerging 

technology focuses on learning analytics, educational data mining, and machine learning, a 

subset of artificial intelligence. The review discusses how each of these technologies is used in 

higher education learning and teaching. This literature review covers all research literature from 

the past five years, but due to the emergent and fast-paced status of this body of knowledge 

conference proceedings from the Society of Learning Analytics Research and Educational Data 

Mining conferences are also included, in order to cover the most recent developments. 

 

Each section begins with an overview of the field of research and its value. The overview 

is followed by subsections that focus on how each field is linked to the three other fields. The 

4thIR literature highlights the demand and needs for change in higher education learning and 
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teaching. The 21st Century Skills literature presents 21st Century Skills as the skills needed for 

success in the 4thIR and overviews how the development of these skills is embedded in higher 

education, with a particular focus on experiential learning pedagogies. This review is followed 

by an overview of how technology is used to support the learning and teaching of 21st Century 

Skills in higher education. The experiential learning theory section explains the nature of the 

theory and the experiential learning cycle, how it is being used in higher education and 

specifically for the development of 21st Century Skills, finally narrowing in on how technology 

is used to support programs that use experiential learning theory and the experiential learning 

cycle in the development of 21st Century Skills. This section closes with a particular focus on 

how emerging technologies are used or in this case, the lack of emerging technologies used in 

the learning and teaching of 21st Century Skill development that uses experiential learning 

pedagogies.  

 

The final section of the literature review describes the nature of learning analytics, 

educational data mining, machine learning, and how they are used in higher education. The 

literature review then focuses on their use to support experiential learning and 21st Century Skill 

development. The most pertinent point discussed is the pervasive call for research in these fields 

to include learning theory and specifically how this could impact 21st Century Skill development 

that uses experiential learning pedagogies. 

 

The Historical Context for this Research  
 
 

Higher education is at a significant transition point. On a macroeconomic level, global 

demand and student mobility are increasing (OECD, 2017). This demand and mobility are 
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resulting in inflated and internationalised classrooms (OECD,2010). Simultaneously, higher 

education itself is making the transition from elite to mass education (Milliken, 2004) and 

attempting to respond to the market's pressure to focus on more instrumental outcomes (Strohl, 

2006). These instrumental outcomes tend to focus on work readiness (Bandaranaike & Willison, 

2015) and 21st-century skills (World Economic Forum, 2016) needed by the fourth industrial 

revolution workforce market. 21st Century skills extend beyond foundational knowledge and 

lower-order thinking skills to competencies and character qualities including collaboration, 

creativity, leadership and adaptability (World Economic Forum, 2016). Literature suggests that 

these competencies, character qualities and higher-order thinking skills are best acquired through 

experience and opportunities to practice (Blackwell et al., 2001; Proctor, 2011; Wilton, 2011; 

Nenzhelele, 2014).  

 

In addition to higher education itself having a history of elitism (Milliken, 2004) and 

misogyny (Morley, 2011) that it is attempting to change, the transition to models of learning like 

cooperative education and internships has followed its historical trend. Although cooperative 

education and internships are proven to be beneficial and successful in preparing students for the 

workplace (Ambrose & Poklop, 2015), they have not been designed with all learners in mind. In 

response, governments, philanthropists and businesses are investing in research designed to 

broaden participation in alternative models of experiential learning. There is particular interest in 

models that are accessible for non-traditional students and students from underrepresented 

minority groups (Jona & Rosca, 2017; Santo et al., 2020).  
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Preliminary research (James et. al., 2018; James et. al., 2020; Joksimovic et. al. 2020) suggests 

that the integration of technology into cooperative education and internships could provide 

structure, facilitate communication and provide data to educators that empower them to inject 

support and additional learning content based on each students' needs. This introduction of 

technology, and explicitly emerging technology like learning analytics, into experiential learning 

programs, like capstone projects and virtual internships can: 

• Maintain and in some cases, improve learning outcomes (Modestino, 2021).  

• Make these opportunities more accessible for non-traditional and underrepresented 

students (James et al., 2020), if the technology, pedagogy and content development are 

integrated (Lockyer & Dawson, 2012).  

• Be leveraged to understand an individual student's unique experience so that educator 

support can be equitable and intentional (Santo et al., 2020). 

The integration of technology into existing models of learning higher education institutions are 

using to address the needs of the market in the fourth industrial revolution will continue to grow 

access to these opportunities for traditional students. Whereas, the use of technology to enable 

new models of experiential learning like remote capstone projects and virtual internships will 

open up access to these opportunities for all learners. This will provide higher education 

institutions with a pathway forward that will allow them to continue to break down their 

traditionally elitist and misogynistic attitudes and structures while also responding to the fourth 

industrial revolution's market needs. Resulting in a higher education system that is designed for 

and accessible for everyone. 

!  
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The 4th Industrial Revolution 
 

Characteristics of the 4th Industrial Revolution  
 

The 4th IR presents an era of human and machine augmentation (Bonciu, 2017) that the 

World Economic Forum (WEF) poses as an #unprecedented challenge for the human future” 

(Flowers et al., 2018, p179). The current era"s nature of #abrupt and radical change” in the way 

economic and social activities are now done and the speed, scope and impact of change on 

society identifies it as a new industrial revolution (Schwab, 2017, p. 11). This change in the way 

things are done is attributed to the emergence of the Internet of Things (IoT), big data, artificial 

intelligence and robotics (Bonciu, 2017; Djankov & Saliola, 2019; Philbeck & Davis, 2018; 

World Economic Forum, 2018). Philbeck and Davis highlight the ease by which these 

technologies are embedded into our physical environment and caution of their ability to 

influence our #physiological condition and cognitive faculties” (26, p.2).  

 

On the macroeconomic level, Buckup (2017) highlights that industrial revolutions have 

the propensity to enable two opposing forces, economic benefit for all and concentration of 

wealth. Bonciu (2017, p.8) agrees with and extends this concern claiming a systemic pattern of 

the past three industrial revolutions being #diffusion of economic benefit” at the start and a 

#concentration of power” due to the #concentration of capital” towards the end. This concern is 

about the 4thIR and highlights that realisation of the opportunity for economic prosperity in the 

4thIR depends on the ability of all stakeholders to instigate reform in human capital development 

(World Economic Forum, 2018 p. iii). 
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Another unique element of this industrial revolution is its pervasiveness and speed due to 

global connectivity (Bonciu, 2017). However, the pervasiveness does not correlate to equity, 

particularly when it comes to developing economies (Shvetsova & Kuzmina, 2018). Lambrechts 

and Sinha (2019) highlight South Africa's unique challenges that conflict with the 

decentralization that the 4thIR enables. Similarly, Mehta and Awasthi (2019, p. 10) claim that 

studies on technology change focus on industrialized economies and state that negative impacts 

in India will be more severe due to the Indian workforce being engaged primarily in "low-skilled 

and low-paid informal sectors". 

 

4th Industrial Revolution and its Challenges 
 

This 4thIR that is characterized by human-machine augmentation and rapid change is 

depicted in the literature as presenting two fundamental challenges. The first is a disparity in the 

number of positions available and number of people looking for work (Deloitte Insights, 2018; 

WEF, 2018; Whysall et al., 2019); the second is the different and rapidly changing knowledge 

and skills required when compared to the 3rd Industrial Revolution (Deloitte Insights, 2018; 

Djankov & Saliola, 2019; Kondakov, 2017; Shvetsova & Kuzmina, 2018). 

 

The disparity in the number of positions available and the number of people looking for 

work will impact different industries at different times and different velocities. Traditional 

industries like manufacturing are already starting to see a paradigm where #the number of open 

jobs exceeds the number of people looking for work” (Deloitte Insights, 2018. p. 2) and the 

Deloitte Insights report goes on to qualify that this situation is impacting the ability of 
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manufacturers to meet the supply needs of their customers. Whysall, Owtran and Brittain (2019, 

p.119) looked at the challenge from a human resource perspective, and highlight that in addition 

to the shortage of workers, organisations are impacted by an emerging trend of "poaching 

readymade talent"; yet challenge the fundamental assumption of this practice that the skills 

already exist in the system.  Moreover, research highlights a talent attraction challenge, a shift in 

core competencies (Djankov & Saliola, 2019, p. 123) and #a distinct lack of work readiness 

amongst newly graduated employees.”  

 

The shift in core competencies or skills required by workers in the 4thIR is the most 

prolific claim in the literature to date, yet there is a lack of studies that focus on the changing 

nature of the workforce (Djankov & Saliola, 2019; Ebhard et al. 2017; Kazancoglu & Ozkan-

ozen, 2018; Van Wyk, 2016). Schwab (2017) and Djankov & Saliola (2019, p. 5) highlight the 

need for organisations and governments to transition their thinking and see "human capital 

investment as an asset rather than a liability,” a challenging proposition in the face of the above 

mentioned "poaching" trend. Despite the increased use of robots, artificial intelligence and 

machines in the 4thIR humans #will determine the overall production strategy, monitor the 

implementation of this strategy, and if need be, intervene in the cyber-physical production 

system” (Gorecky, 2014, in Pfeiffer, 2015, p. 7). Humans will no longer do the physical or 

mental work but facilitate the doing (Kazancoglu & Ozkan-ozen, 2018; Shvetsova & Kuzmina, 

2018); a fundamentally different set of tasks and required skills (Ghislieri et al, 2018).  

 

The shift in skills the job market is demanding has increased the amount of research 

focused on teaching and learning practice designed to develop competencies required in this new 
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paradigm (Caratozzolo & Alvarez, 2018; Kazancoglu & Ozkan-ozen, 2018; Shvetsova & 

Kuzmina, 2018; Van Wyk, 2016). Skills originally called $soft skills", now presented as 

professional skills or by the World Economic Forum as 21st Century Skills (WEF, 2016), are 

increasingly on employers!"preference list and subsequently being introduced into the 

curriculum. Caratozzolo and Alvarez (2018) highlight that the introduction into the classroom of 

21st Century Skills, particularly creativity and critical thinking, tended to be done by infusing 

activities into the classroom or by the introduction of technology. About the use of technology in 

teaching these skills, they argue that it is a "structured mental process", not the technology itself, 

that produces learning. Perhaps more concerning for the higher education sector is the claim that 

higher education institutions cannot keep pace with the rate of change of the 4thIR (Shvetsova & 

Kuzmina, 2018) and the need to prepare students for roles that do not yet exist "using technology 

that is not invented to solve problems which, up till now, we did not face." (Ebhard et al. 2017, 

p.48).  

 

4th Industrial Revolution and Learning  
 

The exponential rate of change predicted in the 4thIR means that learning needs to be 

lifelong and that higher education models need to evolve based on that demand (Ostergaard & 

Nordlund, 2019). The line between work and learning is no longer well-defined, calling for 

innovation in the existing education system and new learning models (Régio et al., 2016). 

Lifelong learning is visualised in the WEF 21st Century Skills framework as a $wraparound!"skill 

(WEF, 2017). Lifelong learning competencies include #self-management, learning to learn, 

initiative and entrepreneurship, information retrieval, and decision making” (Hursen, 2014 as 
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cited in Régio et al., p. 25). This shift towards lifelong learning calls for not only the redesign of 

qualifications to meet skill needs (Venkatraman et al., 2018) but also an understanding that 

students can no longer learn all the knowledge they need in a four-year degree (Jeganathan et al., 

2019).  

 

An emergent theme of the 4thIR literature is a need for change in higher education 

(Ostergaard & Nordlund, 2019; Penprase, 2018; Schleicher, 2019): a change in the overall 

system to better align education with the workplace (Deloitte Global Business Coalition for 

Education, 2018, Jeganathan et al., 2019; Venkatraman et al., 2018); a change in career 

development and career education (Hirschi, 2017); a change in the priorities of governments 

(Djankov & Saliola, 2019); and a change in the way teaching and learning is done (Caratozzolo 

& Alvarez, 2018, Venkatraman et al., 2018). In reference to engineering, Jeganathan, Khanm 

Raju and Narayanasamy (2019, p.1) call for a #discipline-independent framework for 

curriculum”. The suggestion of a general engineering curriculum at the undergraduate level is 

about engineers being able to engage with and create cyber-physical systems that a functionally-

focused engineer would not have the capability to do. Perhaps this thinking on generalisation 

needs to extend beyond the walls of engineering education to the whole higher education 

institution.    

 

Venkatraman, de Souza-Daw and Kaspi (2018) highlight the fault in the system between 

employers and higher education. Universities claim to prepare students for the future of work 

and employers claim that students lack employability skills. There is a call for employers to be 

more engaged in the higher education system from the design of curriculum through to 
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assessment of students' skills (Ferrandez-Berrueco & Kekale, 2014; The Australian Industry 

Group, 2016; Universities UK, 2016; Venkatraman et al., 2018). Almeida and Simoes (2019) 

challenge the education system to adopt the technologies of the 4th Industrial Revolution in the 

classroom suggesting that past education paradigm shifts took place as the education system 

adopted the emerging technology of the current industrial revolution.  The technologies of the 

4thIR enable more autonomy (Demartini & Benussi, 2017), personalisation and flexibility 

(Bartolome et al. 2018), suggesting that perhaps it is the technology of the 4thIR that will enable 

a lifelong learning paradigm where the line between work and learning no longer exists.  

 

!  
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21st Century Skills 
 

A primary claim of the literature surrounding the 4thIR is the shift in the skills, abilities 

and character qualities humans need to participate in an era of human-technology integration 

successfully. This shift is a direct result of the transition from routine physical and cognitive 

work to non-routine work that requires critical thinking, decision-making and interpersonal skills 

(Perry, 2018; WEF, 2015). A body of literature has emerged focused on: 

• the nature of these skills (Mohd Zaid et al., 2018; Niemi & Multisilta, 2016; Soffel, 

2016; Tan, 2016; Wolff & Booth, 2016);  

• who is responsible for cultivating them (Csapó & Molnár, 2017; Tasso et al., 2017; 

Yates, 2015);  

• how they are best developed (Ahuna et al., 2014; Morgan, 2016; Snape, 2017; Tasso 

et al., 2017); and 

• what role emerging technology can play in the process (Songkram et al. 2019; WEF, 

2015).  

 

The nature of 21st Century Skills  
 
 

The literature surrounding exploration and articulation of the skills required for the 4thIR 

tend to call these skills, abilities and character qualities 21st Century Skills (Ganayem & Zidan, 

2018; Mohd Zaid et al., 2018; Morgan, 2016; Niemi & Multisilta, 2016; Soffel, 2016; Songkram 

et al. 2019; Tan, 2016; WEF, 2015; Wolff & Booth, 2016). These skills are presented as lists 

broken down into domains (Kivunja, 2014; WEF, 2015) that group the skills not into functional 

areas but by how humans approach the external environment with the particular skill (Wolff & 
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Booth, 2016). There is a large body of literature focused on the development of 21st Century 

Skills but #since they involve social, psychological and emotional processes” the effective 

capturing and measurement of them is still problematic (Morgan, 2016, p.807). This problem is 

also identified by Breslow who claims a significant gap in understanding when it comes to how 

21st Century Skills are learned (2015, p.420), suggesting a gap in the closed-loop instructional 

system (Wolff & Booth, 2016) when it comes to tracking outcomes and measurement of 

interventions. 

 

A common theme emerging from the literature is the desire to develop frameworks that 

articulate and categorise a set of 21st Century Skills (Ganayem & Zidan, 2018; Germaine et al. 

2016; Morgan, 2016; Snape, 2017; Songkram, 2017a; Songkram et al. 2019; Tasso et al., 2017; 

WEF, 2015; Wolff & Booth, 2016). Two of the most discussed are the World Economic Forum 

21st Century Skills (WEF, 2015) and the P12 set of skills (P21 Partnership for 21st Century 

Learning, 2015). The WEF list breaks the skills into foundational literacies, that include the 

skills that are the traditional focus of education along with literacies in ICT, finance and culture; 

competencies needed to solve complex challenges; and character qualities that highlight 

behaviours or intents that are part of one"s identity (WEF, 2015). In the WEF Framework, the list 

of 16 21st Century Skills is encircled by the 17th skill, lifelong learning.  

 

The P21 skills list is similar to the WEF list, developed by a consortium including 

government, educational leaders and business leaders (National Education Association, n.d.). 

The emergence of these and other lists have enabled a common language and framework for 

global, national and institutional discussion and action around measurement (WEF, 2015; Wolff 
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& Booth, 2016) of both the skills themselves and interventions identified as holding the potential 

to develop them effectively. 

 

The call for 21st Century Skills in the literature seems to stem from the workplace with 

employers and industry bodies publicly ranking the skills they are looking for in potential 

employees (Kyllonee, 2013; Perry, 2018; Roohr et al. 2019; The Boston Consulting Group. 

2018). Boyles highlights that creativity, critical thinking and leadership are ranked highest by 

companies in the United States of America (2012). A global macro analysis identified an 

increasing "demand for non-routine analytical and interpersonal skills" across many industries 

(The Boston Consulting Group. 2018, p. 5). An employer survey in the UK found teamwork, 

positive attitude and adaptability to be the most sought-after skills (Kyllonee, 2013). In 

developing countries, the focus on these more complex skills has perhaps gone too far with 

international agencies suggesting a #de-emphasis of basic knowledge” to focus on #complex 

cognition”, forgetting the $stackable!"nature of learning and cognition (Abadzi, 2016, p.253). The 

terms used to describe these sought-after skills - complex cognition and higher-order thinking - 

suggests that although 70% of employers indicate the importance of critical thinking (AMA, 

2012 as cited in Roohr et al. 2019), they should be considered a valuable addition, not a 

replacement for, basic cognitive skills. 

 

21st Century Skills and Higher Education  
 
 

The proliferation of industry and employer surveys highlighting the skills they require 

(Kyllonee, 2013; Perry, 2018; Roohr et al. 2019; The Boston Consulting Group. 2018) coupled 
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with claims that university graduates are not prepared for work (Wolff & Booth, 2016) is 

presenting a fundamental challenge to the higher education sector. Wolff and Booth (2017) 

highlight multiple factors that could contribute to higher education graduates being unprepared 

including a disagreement between employers and higher education about whether the skills are 

sufficiently taught, mismatch in educational programs and employer needs and ultimately 

whether it is even the role of higher education institutions to create work-ready graduates.  

 

The question about the role higher education should play in the 4thIR and 21st Century 

Skill development is common in the literature (Csapó & Molnár, 2017; Tasso et al., 2017; Yates, 

2017). Wolff and Booth (2016, p. 52) note a tendency in academic literature to critically examine 

the claims of employers suggesting that this pressure to produce work-ready graduates lies in 

tension with the "greater public good mission that is the heart and soul of higher education." The 

crux of this debate and tension lies in whether the mission of higher education institutions should 

continue to take a longer term and holistic approach that prepares students for a life of meaning 

and service or should pivot to include and emphasize producing graduates that are immediately 

desirable to the employment market. Although this tension is worthy of the attention it receives, 

the inclusion of 21st Century Skill development in higher education transcends the debate. A 

character quality of persistence, the ability to engage in lifelong learning and effectively 

communicate are essential skills humans need irrespective of why higher education institutions 

choose to focus on them.  

 

In contrast, employer-focused literature takes the position that the debate has already 

been decided, and higher education is responsible for developing the talent they need (Carnevale 
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& Hanson, 2015; Jacobs, 2014; Tasso et al., 2017). Employer-focused literature seems to come 

from a perspective where it is the role of higher education to develop 21st Century Skills and 

prepare graduates for work (Andrade, 2016; Chamorro-Premuzic & Frankiewicz, 2019; 

Hodgman, 2018; The Boston Consulting Group. 2018). As a result, the discussion has moved on 

to second-order claims that include a fundamental shift in the nature of higher education. In some 

reports, higher education institutions are blamed for students being unprepared for employment 

(Chamorro-Premuzic & Frankiewicz, 2019; Hodgman, 2018; The Boston Consulting Group. 

2018). Moreover, industry reports highlight the need for "educational practices that involve 

students in active, effortful work – practices including collaborative problem solving, 

internships, research, senior projects, and community engagement" (Hart Research Associates, 

2013, para 6 as cited in Andrade, 2016). These educational practices require active industry and 

higher education collaboration, suggesting that perhaps the industry's perspective that it is higher 

education's role to develop 21st Century Skills is premature and inaccurate. A large volume of the 

literature that identifies and examines learning and teaching practices used to develop 21st 

Century Skills that fit within the higher-order skills and complex cognition domains include 

work-integration (WACE, 2019), real-world problems (Songkram et al. 2019) and learning by 

doing (Frache et al., 2017).  

 

On a global level, the United Nations General Assembly adopted the Sustainable 

Development Goals in 20151, as part of a refreshed global strategy focused on sustainability. 

Sustainable Development Goals Four and Eight focus on education and highlight a transition in 

the global conversation from formal education to lifelong learning (United Nations General 

 
1 For more information on the Sustainable Development Goals see https://sustainabledevelopment.un.org/ 
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Assembly; 2015). In 2019 the key themes discussed at the World Economic Forum"s annual 

meeting were training talent, developing talent and a call for new education and career models 

(Mphuthing, 2019). Finally, the World Association for Cooperative Education's 2019 charter 

focuses on increasing the volume of work-integrated learning experiences and developing a 

framework for the evaluation of work-integrated learning experiences as they increase in volume 

and popularity (WACE, 2019). It is evident that the global conversation of governments, the 

business community and higher education is focusing on 21st Century Skill development and 

higher education"s role in that process, as opposed to higher education institutions being fully 

responsible. 

 

21st Century Skills and Higher Education Learning & Teaching  
 

As noted above, the literature and global conversation surrounding the role of higher 

education in 21st Century Skill development is increasing in volume. In parallel, there is an 

increase in the volume of literature examining the teaching and learning of 21st Century Skills in 

higher education institutions. A large volume of the literature focused on how higher education 

institutions are developing students!"21st Century Skills examines how specific pedagogical 

practices are used to develop 21st Century Skills in general. Sabat et al. (2015) examine the value 

of Service Learning for 21st Century Skill development. Service learning is #a form of 

experiential learning that combines academic coursework with voluntary service in the 

community” (Deeley, 2010, p.2). The research found a non-significant difference in perception 

of 21st Century Skill development between the control group and the students offered the service-

learning intervention. Limitations cited the low volume of participants being a cause of the non-
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significant findings (Sabat et al., 2015). Perry conducted a similar study to examine the value of 

film production for the development of 21st Century Skills (2018). Qualitative analysis of 

students!"post-intervention assessments found student perception of 21st Century Skill 

development to be positive. However, the study did not include any educator or industry 

perceptions and relied solely on the reflective writing of the students upon which to draw their 

conclusion. Project-based learning (Rabacal et al., 2018; Songkram et al. 2019), service learning 

(Sabat et al. 2015), filmmaking projects (Perry, 2018), a maker space (Sheffield et al., 2017), 

technology education (Snape, 2017), serious games (Romero et al., 2015) and game-based 

learning (Qian & Clark, 2016) are all highlighted and examined as pedagogies for the 

development of 21st Century Skills in higher education teaching and learning.  

 

Another section of the literature focuses on broader pedagogical practices and a specific 

21st Century Skill (Ahuna et al., 2014; Dieu et al., 2018; Egan et al., 2017; Khlaisang & 

Songkram, 2017b; Kivunja, 2014; Mohd Zahid et al., 2018; Qian & Clark, 2016; Romero et al., 

2015). Dieu et al. (2018) look at experiential learning for the development of collaborative 

problem-solving (CPS). The analysis found a significant increase in CPS after the intervention 

with the research concluding that "doing experiential learning assignments help students to 

develop their CPS competency in a sustainable way" (p. 510). Despite the positive result, the 

immediacy of the post-intervention survey calls into question whether the experiment is a real 

test of sustained learning. Mohd Zahid et al. (2018) found that active learning, in the form of 

peer instruction, increases students!"conceptual knowledge of a topic.  However, once again, a 

low sample size of twenty students calls into question the generalisability of the results. 

 



37 

 

It appears that a common limitation of research focused on the teaching and learning of 

21st Century Skills is small and homogenous sample sizes (Mohd Zahid et al., 2018; Sabat et al. 

2015) and the self-perception-based nature of data analysed (Dieu et al., 2018; Mohd Zahid et 

al., 2018). Perhaps these cited limitations highlight the need for combining learning theory 

research and learning analytics research, a common theme of learning analytics research 

discussed in more detail below (Avella et al., 2016; Gasevic et al., 2014; Kirkwood & Price, 

2013; Lockyer et al., 2013; Lodge & Corrin, 2017; McArthur et al., 2005; Reimann, 2016) 

 

The overarching theme of the literature surrounding 21st Century Skill development in 

higher education is $learning by doing!"also known as experiential learning (Council, 2018; Coy 

et al., 2017; Dieu et al., 2018; Fischer, 2018; Fry, 2017; Guerra, 2017; Lotti, 2015; Ornstein & 

Hunkins, 2012; Servant-Miklos, 2018; Sipes, 2017; Smith, 2017; The Boston Consulting Group, 

2018; Tasso et al., 2017), with reflection (Dieu et al., 2018; Niemi & Multisilta, 2015), industry 

feedback (Kivunja, 2015; Songkram, 2017b) and peer feedback (Niemi & Multisilta, 2015; 

Wanner & Palmer, 2018) facilitating the identification and extraction of learning from 

experience. The literature surrounding 21st Century Skills acknowledges that experiential 

learning teaching practices are complex to deliver. This acknowledgement is often followed by a 

discussion about the potential emerging technologies to augment teaching and learning in order 

to help close the skill gap (Csapo & Molnar, 2017; Khlaisang & Songkram, 2017; Morgan, 2016; 

Songkram, 2017b; Songkram et al. 2019; WEF, 2015). 

 

21st Century Skill development and the use of Technology 
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In most cases, research focused on 21st Century Skills in higher education institutions 

does not explicitly involve technology. However, discussion of the potential of technology in 

21st Century Skill development is prevalent (Ganayem & Zidan, 2018; James et al., 2018; James 

et al. 2020; Songkram et al., 2019; The Boston Consulting Group, 2019). The World 

Government Summit Report highlights personalisation, opening up access to education in 

underserved communities and the development of higher-order thinking skills as three of the 

core benefits technology can bring to 21st Century Skill development (Boston Consulting Group, 

2018). The World Economic Forum"s report on the potential of technology for 21st Century Skill 

development found that technology is used to:  

• support instruction in nations without well-trained teachers; 

• open up access to education through scalability that results in cost reduction; 

• understand students’ learning and free teachers from operational tasks in 

order to focus on teaching (2015).  

This potential is explored by James et al. (2020) who present a technology enabled Virtual 

Internship that integrates instructional design, the learning management system and real-time 

learning analytics to automate operational tasks and augment elements of instruction. This model 

supports the report"s hypothesis that the potential of technology is "most effective if applied 

within an integrated instructional system" (p. 8) particularly when it comes to competency and 

character quality development. 

 

Academic literature focused on the use of technology for 21st Century Skill development 

in higher education presents evidence-based theoretical models of what a virtual learning 

environment for skill development would need to include (Khlaisang & Songkram, 2019; 
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Songkram, 2017; Songkram, 2017a; Songkram et al., 2019). However, some authors make the 

qualification that learning will "occur only with an effective and good design of online learning" 

(Songkram, 2019, p.7). This qualification supports the notion that technology and instructional 

design should be more integrated in this practice (Boston Consulting Group, 2018; Hickman & 

Akdere, 2017; James et al. 2018; James et al., 2020; WEF 2015). This further supports the call 

for education technology-based research, like learning analytics, to better integrate learning 

theory into their educational technology practice (Avella et al., 2016; Gasevic et al., 2014; 

Kirkwood & Price, 2013; Lockyer et al, 2013; Lodge & Corrin, 2017; McArthur et al, 2005; 

Reimann, 2016). 

Experiential Learning Theory 
 
Introduction  
 

Research and practice focused on 21st Century Skill development uses #learning by 

doing” or experiential learning theory and pedagogies at its core (Council, 2018; Coy et al., 

2017; Dieu et al., 2018; Fischer, 2018; Fry, 2017; Guerra, 2017; Lotti, 2015; Ornstein & 

Hunkins, 2012; Servant-Miklos, 2018; Sipes, 2017; Smith, 2017; The Boston Consulting Group, 

2018; Tasso et al., 2017). Experiential learning theory is founded on the following propositions: 

that learning 

• is a process, is re-learning; 

• requires resolution of conflict;  

• is an adaption to the world;  

• is transference between environment and individual and is a constructive process 

(Andersen et al., 2000; Kolb & Kolb, 2005a).  
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These propositions are shared by scholars including Dewey, Lewin and Piaget whose work and 

research are considered the foundation upon which experiential learning theory is built (Kolb, 

1984, 2015; Kolb & Kolb, 2005a, 2017, 2018). Experiential learning theory defines learning as 

"the process whereby knowledge is created through the transformation of experience" (Kolb, 

1984, p.41), a definition that has been accepted, acknowledged and reinforced in research and 

literature on experiential learning since it was first proposed (Andersen et al., 2000; Dishke et al., 

2015; Mainemelis et al., 2002; Martinez et al., 2010; Ozar, 2015).  

 

Over the years, the literature focused on experiential learning theory has extended to 

include practical models and frameworks that can be applied and examined in learning and 

teaching practice. These elements and models include the experiential learning cycle (Kolb, 

1984) and nine learning styles and a framework for analysing the social system surrounding the 

learning environment (Kolb & Kolb, 2005a). Experiential learning, intermittently referred to as 

experiential education, is discussed as an umbrella term for service learning, global learning, 

work-integrated learning, adventure education, career education and many other pedagogical 

practices used in higher education (Ozar, 2015; Tiessen et al., 2018). Furthermore, and most 

pertinent for this research, the experiential learning cycle is used as the underlying framework 

for 21st Century Skill development (Sandlin et al, 2018; Tiessen et al, 2018).  

 

The nature of the Experiential Learning Cycle 
 
 

To learn by doing requires an immersive experience, a way of extracting information and 

a means of integrating the information with existing knowledge. This cyclical process is referred 

to as an experiential learning cycle (Botelho et al. 2015; Kolb & Kolb, 2005a; Kuk & Holst, 
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2018; Miller & Maellaro, 2016; Sandlin et al, 2018). Kolb"s experiential learning cycle, a model 

that steps learners through four distinct cognitive processes, is the most widely-used and 

acknowledged cycle in the literature (Botelho et al. 2015; Kolb, 2015; Kolb & Kolb, 2017, 2018; 

Kuk & Holst, 2018; Leonard & Roberts, 2016; Miller & Maellaro, 2016; Sandlin et al., 2018; 

Wallace, 2019). The cycle is founded on Lewin, Dewey and Piaget"s models of learning, all 

cyclical and all acknowledge learning as a process of transformation, not an outcome (Kolb, 

1984).  

 

The four learning modes of Kolb"s experiential learning cycle are concrete experiential, 

reflective observation, abstract conceptualization and active experimentation. The cycle steps 

learners through "a process of constructing knowledge that involves a creative tension among the 

four learning modes" (Kolb & Kolb, 2005a, p.194). Kolb"s research and the subsequent literature 

extend these learning modes into learning styles, suggesting learner preferences based on our 

biology, experience and present situation (Kolb & Kolb, 2005a).  

 

Kolb's experiential learning cycle is critiqued by Javis, who challenges the model's ability 

to articulate the complex process of extracting learning from a social context (1987). This 

critique is followed by an attempt to propose a more complex model that Kuh and Holst (2018, 

p. 151) re-integrate with Kolb"s Cycle, highlighting the core premise of both cycles as #reflection 

play[ing] a mediating role between experience and learning”. Michaelson"s feminist lens on 

experiential learning challenges a perceived mind-body split occurring within the experiential 

learning cycle. Michaelson (2015) questions the removal of the $reflector!"from the social 
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context. However, in the explanation and use of the experiential learning cycle in literature, there 

is no explicit articulation of reflective observation and abstract conceptualization requiring 

removal from the social context. 

 

Jones and Bjelland add pre-reflection to Kolb"s experiential learning cycle based on the 

premise that pre-reflection enables a higher degree of reflective observation within the cycle 

(2004). Sandlin, Price and Perez (2018, p.24) applied pre-reflecting finding that it "allowed 

students to be cognizant of the expectations” suggesting that perhaps the impact of pre-reflection 

is a clear articulation of learning objectives that can be achieved by other means as opposed to an 

essential addition to the cycle. Furthermore, Leonard and Roberts (2015) found that 'performance 

pressure' short-circuited the learner's journey through the experiential learning cycle impacting 

the learner's ability to aggregate the new knowledge into their existing knowledge. They are 

suggesting that perhaps the benefit of pre-reflection could be a result of the time and space 

allocated to the learning outcomes.  

 

Instead of attempting to add to the cycle Miller & Maellaro (2016) combine Kolb's 

experiential learning cycle with the 5 Whys problem-solving tool that gives the learner a 

structured thinking process to help elicit more insight in the reflective observation mode. 

Providing a structured process to the reflective observation mode of the cycle appears to give 

learners with lower levels of reflective capability a pathway to generate more insights from the 

specific learning experience that could also help them develop a more advanced reflective 

capability.  
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Kolb"s Experiential Learning Cycle is reinforced in the literature beyond educational 

theory. Linking neuroscience to experiential learning, Zull (2002; 2011) proposes that the 

learning cycle emerges from the biology of the brain, with each of the four learning modes 

engaging a different quadrant of the brain. Perhaps a more compelling argument for the 

widespread use of Kolb"s experiential learning cycle is its dominance in both research and 

practice highlighted in experiential learning theory literature reviews from 2015 - 2018 (Kolb, 

2015; Kolb & Kolb, 2017, 2018). The latest bi-annual bibliography of experiential learning 

research found an additional 219 references with valid contributions to the research and practice 

of experiential learning (Kolb & Kolb, 2019). A 1999 bibliography analysis of over one thousand 

references highlighted the pervasiveness of experiential learning research, with articles found as 

broadly as management, education, medicine and law (Kolb et al., 2001). 

 

Experiential Learning Cycle and Higher Education 
 

In higher education, experiential learning theory and the experiential learning cycle is 

used across a broad spectrum of faculties including engineering (Mills & Teagust, 2003; 

Widiastuti & Budiyanto, 2018), business (Dixon, 2014; Henderson, 2018; Leal-Rodrigues & 

Albort-Morant, 2019) and health (de Groot et al., 2018, Graber et al., 2017; Pangelinan et al. 

2018). The research literature mimics this breadth as educators examining their practice and 

publishing insights. Widiastuti and Budiyanto (2018) present the use of the experiential learning 

cycle as a pedagogical basis for curriculum design in engineering education and highlight the 

need for a longer-term study to validate the perceived positive impact further. Dixon (2014) 

presents an MBA course based on experiential learning and the experiential learning cycle 

developed as a differentiator in the MBA course market. The market differentiator motivation of 
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this study unearths a caution when it comes to the quality of experiential learning in the 

curriculum. Henderson (2018) highlights the labour intensity and complexity of course re-design 

in order to implement effective experiential learning. However, as research and literature 

continues to validate the positive impact of experiential learning (Henderson, 2018, Jackson, 

2013, Tiessen et al., 2018), Jorgenson & Shults (2012), Qiubo et al. (2016), and Tiessen et al. 

(2018), all express increasing concern regarding the consumerist orientation of experiential 

learning that may not have a learning impact.  

 

As the percentage of non-traditional students accessing higher education rises (National 

Center for Education Statistics, 2016) and institutions evolve to accommodate their learning 

needs, the use of experiential learning has expanded (Buglione, 2012; Burns & Danyluk, 2017). 

Petrovic-Dzerdz and Trepanier (2018) present a model of online experiential learning where 

students hunt for and gather information about learning goals online, share it with the class and 

ultimately co-design the curriculum with the teacher. Although there is an apparent use of the 

experiential learning cycle in the course design, the concrete experience element of the 

experiential learning cycle is research and analysis with the rest of the cycle focused on the 

course content, thus breaking the cycle. Beckem and Watkins investigate the use of immersive 

experiential learning simulations to move online students from lower-order processes of learning 

to higher-order processes of learning (Beckem & Watkins, 2012). These immersive simulations 

appear to stay more faithful to the experiential learning cycle and include natural assessment in 

the simulation but are costly and complex to develop. James and Humez (2020) present a 'virtual 

internship' model that leverages a technology-enabled pedagogy of structured feedback and 

reflection that steps learners through the experiential learning cycle. They suggest that the use of 
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technology to drive pedagogical outcomes enables the scalability of the program while 

maintaining the efficacy of the learning. This hypothesis still needs to be examined, tested and 

validated, a process this thesis research can make a contribution to. 

 

The use of the experiential learning cycle is as prevalent outside the classroom as it is 

inside the higher education classroom, particularly in global mobility programs (Tovar & 

Misischia, 2018) and career development (Maguire, 2018; Tiessen et al., 2018). When it comes 

to career development, experiential learning eases the transition from university to the workforce 

(Mate & Ryan, 2015), improves 21st Century Skills (Billet, 2011; Martin et al., 2011) and, from 

the student perspective, has a positive impact on career advancement (Tiessen, 2018). Maguire 

(2018) examined the use of experiential learning in the early stages of a degree and found that it 

significantly lifted students' confidence in their chosen field of study and subsequent career. 

Tiessen et al., (2018) examine the impact of experiential learning and career outcomes more 

holistically, finding that participating in experiential learning programs positively impacts career 

trajectory. Nevertheless, they point out the need to continue to optimize experiential learning 

programs and make them more accessible.  

 

Experiential Learning Cycle and 21st Century Skills in Higher Education 
 

The development of 21st Century Skills is a common theme in literature associated with 

the use of experiential learning and the experiential learning cycle in higher education (de Groot 

et al., 2018, Graber et al., 2017; Jackson, 2013; Pangelinan et al., 2018; Petrovic-Dzerdz & 

Trepanier, 2018; Sandlin et al., 2017; Tiessen et al., 2018; Widiastuti & Budiyanto, 2018). The 

prevalence in the literature aligns with practice, specifically, in the emergence of university-
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mandated experiential learning as a part of graduation requirements (Isaak et al., 2018; Laws et 

al., 2016).  In some cases, these mandates are meeting resistance from faculty who already teach 

experiential learning courses that meet the mandated criteria. Issak et al. (2018. p.34) explain 

their resistance to their institutions mandate highlighting #choice as the sine qua non of 

experiential learning”.  

 

Literature that includes the use of the experiential learning cycle for the development of 

21st Century Skills in higher education is just as broad as literature about the use of the 

experiential learning cycle in general. The literature examines particular pedagogies like 

cooperative education (Flemming & Haigh, 2017), service learning (Henderson, 2018), 

simulations (Birt et al., 2018; Widiastuti & Budiyanto, 2018), team-based projects (Gundala, 

Singh & Cochran, 2018; Sandlin et al., 2017) and online learning (Petrovic-Dzerdz & Trepanier, 

2018) that use the experiential learning cycle. Flemming and Haigh (2017) examine the 

perceptions of cooperative education, a prevalent form of experiential learning, stakeholders 

when it comes to its overall purpose. The study found that $employability!"was the agreed 

intended outcome of this form of experiential learning. However, the authors go on to caution 

against the short-sighted nature of this outcome proposing that cooperative education should be 

designed to develop 21st Century Skills that prepare graduates for a career in the 21st Century not 

just their first job. 

 

Henderson (2018, p. 59) critically examines the use of service-learning in economics 

education. The study explicitly takes a more critical view of the use of the experiential learning 

cycle for the development of 21st Century Skills calling it an "opportunity cost" that takes "time 
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away from economics instruction". The research goes on to examine the use of the experiential 

learning cycle and service-learning to facilitate the application of economics concepts to a real-

life situation. Overall, the literature that includes the use of the experiential learning cycle in the 

development of 21st Century Skills focuses on a particular application of the cycle and not the 

experiential learning cycle itself.   

 

Throughout the literature, there is a discussion about roadblocks and challenges when it 

comes to implementing experiential learning programs that focus on 21st Century Skill 

development. In Wurdinger and Allison"s (2017, p.25) study, 97% of faculty respondents agreed 

that experiential learning programs developed 21st Century Skills but saw the class size and class 

duration as a contextual roadblock to implementing experiential learning. The study explicitly 

stated that if "universities are committed to high-quality pedagogy" they will have to evolve not 

only their curriculum and teaching but also the structures and environment surrounding it. 

Henderson (2018) identifies a third roadblock to the implementation of experiential learning for 

21st Century Skill development is the cost of developing and implementing courses and goes on 

to present solutions to the cost of developing and implementing experiential courses that include 

larger class sizes and pooling industry recruitment resources with others in the institution. 

 

Extending beyond the operational issues of implementing experiential learning programs, 

Wright et al. (2018) examine the $shadow!"sides of the student experience. Access to technology, 

transportation to travel to learning sites and available time to invest are all cited as issues that 

could lead to an inequitable experience for students from low socio-economic areas and other 

non-traditional students who are juggling study, work and family commitments. Psychologically, 
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the study highlights that the context of experiential learning experiences could "impose a burden 

on a vulnerable student's psychological well-being" (p.764). On a pedagogical level, there is a 

risk that students' learning does not align with the intended learning and learning goals (Hibbert 

et al, 2017; Kolb & Kolb, 2005). 

 

These above-mentioned roadblocks and challenges create barriers when it comes to the 

implementation of programs that use the experiential learning cycle for 21st Century Skill 

development. However, emerging literature suggests that perhaps emerging technologies can 

play a role in minimizing and in some cases eliminating these challenges. James, Humez & 

Laufenberg (2020) present a technology-enabled 'virtual' internship that opens up access to 

experiential learning for non-traditional students. James et al. (2018) examine the use of learning 

analytics for providing better insight into the overall experience of students participating in 

experiential learning programs, suggesting that access to the data can enable facilitators to 

provide more effective support for students when they need it.  These conceptual studies are 

starting to shape the role emerging technologies could play in enabling more experiential 

learning programs, designed to develop 21st Century Skills. This use of technology could result 

in more experiential learning embedded in higher education curricula and therefore make 

experiential learning more accessible to more students.   

 

Experiential Learning and the use of Technology  
 

There is a lack of research and literature about how technology is used in experiential 

learning within higher education institutions, specifically, on how emerging technologies like 

artificial intelligence, machine learning, educational data mining and learning analytics could be 
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used to support experiential learning. The bulk of the literature that does include or highlight the 

use of technology in experiential learning relegates the technology to facilitating operational 

tasks (Beckem & Watkins, 2012; Pangelinan et al., 2018) or providing a communication channel 

(Widiastuti & Budiyanto, 2018). In most research, the technology is viewed as a fixed 

infrastructure that learning designers build $on-top-of!"and facilitators use to push information 

back and forth (Beckem & Watkins, 2012; Pangelinan et al., 2018; Widiastuti & Budiyanto, 

2018) as opposed to being a flexible and dynamic element of a socio-technical system that can 

play an integral role in the design and facilitation of learning (James et al, 2018; James et al., 

2020) 

 

An exception is the use of virtual reality (VR) and augmented reality (AR) in simulations 

that mimic the real-world in the physical and online classroom (Birt et al., 2018; Widiastuti & 

Budiyanto, 2018). Birt et al. (2018) examine the use of different mobile mixed-reality tools in 

medical simulations finding that students prefer the more immersive nature of virtual reality. 

Widiastuti and Budiyanto explore the use of simulations in mechanical engineering employing 

the experiential learning cycle as the underlying pedagogy (2018). Although there is the use of 

technology and the experiential learning cycle, the use of the technology is limited to enabling 

the 'concrete experience' and plays no role in facilitating the rest of the learning cycle. 

 

The emerging technologies of the 4thIR hold much more currently underutilized potential 

(James et al., 2018). The USA Office of Educational Technology (2018) highlights emerging 

technologies!"potential to personalize the learning experience, organize learning around real-

world challenges and break down the walls of the classroom enabling learning everywhere. In 
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experiential learning specifically, Watson and Ogle (2013) highlight the benefits of smartphones 

and internet connectivity in enabling the transition of learning from the lab to the real-world. 

However, in their model, the teacher is still physically present where the learning is taking place. 

This model makes the use of the technology no different from that of simulations where the 

technology is enabling a real-life $concrete experience!"and not enabling the rest of the learning 

cycle. 

 

James, Humez and Laufenburg (2020) present a model of online experiential learning 

where instructional design is integrated with technology design enabling the teaching and 

facilitation to be augmented by machine learning and learning analytics. James et al. (2018) 

propose that this integration of the instructional design with the technology also enables the use 

of learning analytics to measure the impact of experiential learning programs and support data-

driven course re-designs. Unlike the already-mentioned uses of technology in simulations and 

real-world learning, this model utilises the technology to support the entire experiential learning 

cycle. The technology provides insights to facilitators so that they can intervene with support 

when students are stuck in the cycle and provide feedback that may lead to deeper reflection and 

insight.  

 

!  
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Emerging Technology  
 

Introduction  
 

Emerging trends in the use of advanced computing technologies include artificial 

intelligence (AI), machine learning (ML) and big data analytics (BDA). Artificial intelligence is 

a machine mimicking cognitive functions of the human brain. Over the years since its inception, 

it has been defined as #the exciting new effort to make computers think” (Haugeland, 1996 p.2) 

and #the study of how to make computers do things at which, at the moment, people are better” 

(Rich & Knight, 2009, p.3). Machine learning is research that #seeks to develop computer 

systems that automatically improve their performance through experience” (Mitchell et al. 1990) 

and expands upon the effort of make computers think through adding the ability of technology to 

acquire information that improves its ability to perform tasks without being explicitly 

programmed.  

Artificial intelligence was conceptualised in the 20th century popular culture before 

researchers and philosophers began exploring the theoretical possibility. Turing (1950), proposed 

that if humans use both information and reason, technology could do the same. However, 

bringing this theoretical possibility into practical reality was inhibited by the processing power of 

computers, their structure and cost as well as the macroeconomic forces to drive the change. In 

the subsequent years these barriers and obstacles where overcome. Today, the development of 

artificial intelligence follows a cyclical process of saturating the existing storage and 

computational capacity of computers, then waiting for storage and computational capacity to 

expand to another magnitude of scale and repeat.  
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In education today, artificial intelligence, particularly machine learning, is being used to 

detect early student drop out rates (Dalipi et al., 2018; Kondo et al., 2017;  Berens et al., 2018; 

Tai Chui et al. 2018); predict academic performance (Alkhasawneh & Hobson Hargraves, 2014; 

Alsuwaiket et al., 2019; Hernandez-Blanco et al., 2019; Sohail et al., 2018); and make 

recommendations to administrators about business decisions (Baskota & Ng, 2018; Ipina et al., 

2016; Samin & Azim, 2019). When comparing the nature and use of machine learning in 

education to that of educational data mining and learning analytics, Sciarrone (2018) finds that 

its primary use and differentiator is the prediction of future behaviour. Ciolacu et al. (2018, p. 

23) claim that "artificial intelligence is the new electricity," meaning that artificial intelligence is 

an underlying capability and infrastructure that enables or powers other things — suggesting that 

machine learning could be considered an enabler of educational data mining and learning 

analytics. The prevalence of machine learning algorithms being used in educational data mining 

and learning analytics research (Al-Shabandar et al. 2018; Hernandez-Blanco et al. 2019; 

Ifenthaler, 2017; Mimis et al. 2018; Wongwatkit & Prommool, 2018; Zhang & Qin, 2018) 

reinforces this notion. Hernandez-Blanco et al. (2018) take this reinforcement one step further by 

collating and examining the use of deep learning (a machine learning technique) in educational 

data mining, finding that it is an emergent field that is increasing in prevalence. 

 

The increase in prevalence and transformational potential of artificial intelligence, 

machine learning and big data in education is being met with caution. Williamson (2017) 

reminds us that code is not objective and to consider the bias and world view of technicians and 

the commercial interests of the corporations who own the technologies. And, despite the above 

mentioned positive benefits for both teachers and students the reliance on technologies and 



53 

 

technology companies that have an underlying commercial interest is contributing to a shift in 

the balance of power in the educational system (Buchanan & McPherson, 2019).  

 

Big data is #the information asset characterized by such a high volume, velocity and 

variety to require specific technology and analytical methods for its transformation into value” 

(De Mauro et al., 2016, p. 122). In literature, the emergence of big data is discussed for the 

positive and negative potential impacts on society and individuals. Boyd and Crawford (2011) 

highlight the need to critically examine the concept of Big Data, and related assumptions and 

biases. They specifically challenge the claim of objectivity, assert that bigger is not always better 

and highlight the need to understand the forces and systems driving the development of systems 

and processes that leverage big data.   

 

The use of BDA in education and specifically in higher education has emerged in two 

communities of practice, educational data mining and learning analytics. Linan and Perez (2015) 

define the two practices through a comparison based on use, approach, origin and method. For 

example, they claim that educational data mining is reductive, automated discovery emerging 

from educational software development that leverages human judgement. This claim is in 

contrast to learning analytics which aims to leverage human judgement, empowers instructors 

and students, is holistic and originates from web-intelligent curricula (Bronniman et al., 2018; 

Clow, 2013; Long et al., 2011). Essentially they state that education data mining is machine first 

and learning analytics is human first. Literature from both research communities reinforces and 

refutes this perspective. Some of the literature places learning analytics as a sub-section of 

educational data mining (Aldowah et al., 2019), whereas other authors reinforce the separation 
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suggesting that educational data mining #tends to focus more on the technical challenges than the 

pedagogical challenges” (p 687) and learning analytics #on the pedagogical questions” (Clow, 

2013, p. 687).  

 

The Nature of Emerging Technology in Higher Education  
 
Artificial Intelligence and Machine Learning in Higher Education 

 

Artificial intelligence is "computing systems that are able to engage in human-like 

processes such as learning, adapting, synthesizing, self-correction and use of data for complex 

processing tasks" (Popenici & Kerr, 2017, p. 2). Ciolacu et al. (2018) break artificial intelligence 

in education into five areas: machine learning, natural language processing, computer vision and 

hearing, responding and decision-making. They highlight that the main ways machine learning is 

used in education to date are to self-customise learning, mine data, detect plagiarism and, of most 

interest to this research project, to develop cognitive technologies. Balica (2018), taking a macro-

economic and metaphysical perspective of the current state of machine learning, the distribution 

of machine learning talent and the perceived benefit of machine learning to global education, 

found that out of a 3200 respondent sample 71% believe the likelihood artificial intelligence will 

aid global education is very high (41%) or high (24%).  

 

The foundational driver of machine learning is an algorithm, a set of processes followed 

in a problem-solving calculation, that adjusts itself in order to increase its accuracy.  Machine 

learning research is broken down further based on the task an algorithm is developed to do.  For 

example, Naïve Bayes Classifier is used to classify objects. Hayati et al. (2018) use Naïve Bayes 
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Classifier to assess a learner"s cognitive presence. Sivakumar and Reddy use Naïve Bayes 

Classifier to determine the sentiment of learners' writing (2017). Breaking down machine 

learning in education research based on purpose, there are two prominent groups: prediction of 

performance (Alkhasawneh & Hargraves, 2014; Cui et al., 2019; Pang et al., 2017; Sandu & 

Gide, 2018; Sohail et al., 2018; Xu et al., 2019) and prediction of dropouts (Aulck et al., 2016; 

Dalipi et al., 2018; Kondo et al., 2017; Berens et al., 2018; Tai Chui et al. 2018;) with multiple 

outliers doing more exploratory work.   

 

When it comes to students dropping out of university, Berens et al. (2018, p. 20) are 

using administrative data to predict drop-out with an early detection system and after four 

semesters working with an institution can 'train' the algorithm to improve its predictions from 

79% to 90% accuracy. Their work intends to predict dropout and "optimize (prevent or speed up) 

student attrition through diagnosis and intervention" in order to avoid unnecessary cost for 

students and prevent wasting public funds. Used ethically, an early detection system holds 

significant value when it comes to student success in higher education. However, an early 

detection system itself is morally neutral and could be used by institutions to deny entry or force 

dropout if students are predicted to drop out. Moreover, as the detection system learns, it can 

learn a bias or error that is difficult to detect resulting in the algorithm producing false positives 

and institutions being responsible for decision bias that could significantly impact an individual"s 

future (Bostrom & Yudkowsky, 2014).  

 

Narrowing in on the learning and teaching environment, researchers are examining the 

use of machine learning algorithms to identify students who #require extra attention” (Dambic et 
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al., 2016, p. 1) and to predict academic motivation based on their use of learning management 

systems and engagement with learning content (Babic, 2017). Babic (2017) compared artificial 

neural networks, classification trees and support vector machines!"performance on categorizing 

students on Vallerand et al.'s (1992, p. 455) Academic Motivation Scale. The researcher asserts 

that all three methods "gained acceptable results" with neural networks outperforming the other 

methods. However, the neural network only had a 77% classification accuracy. It accurately 

predicted below-average motivation but dropped to 65% accuracy with its positive motivation 

predictions. This drop in accuracy suggests that there is a group of students with low motivation 

exhibiting indicators of positive motivation without actually being positively motivated. The 

researcher concludes by highlighting the potential value for academic teachers but does not 

mention the need for teachers to understand the $false positive!"errors that could result in some 

students with low motivation being missed and therefore being overlooked when it comes to 

executing interventions.  

 

Although the use of machine learning in education holds lots of future potential when it 

comes to predicting performance and dropout there are limitations in the body of research itself 

when it comes to identifying the implications for practice. A significant portion of the research 

presents results with minimal discussion about the benefits and challenges when it comes to 

implementation (Aulck et al., 2016; Kondo et al., 2017; Pang et al., 2017; Santur et al., 2016; 

Sohail et al., 2018; Soobramoney & Singh, 2019). The lack of discussion about machine learning 

implementation suggests that perhaps machine learning and the use of specific machine learning 

algorithms is best positioned as a research method that enables education data mining and 

learning analytics. This notion reinforces Ciolacu et al."s (2018) suggestion that artificial 
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intelligence is the underlying electricity that enables educational data mining and learning 

analytics research and practice.   

 
Educational Data Mining in Higher Education 

 

According to Linan and Perez (2015, p. 100) educational data mining #adapts statistical, 

machine-learning and data-mining methods to study educational data.”  Zhang and Qin (2018) 

offer a more abstract definition and purpose of solving educational problems using data mining  

that is similar to Siemen and Baker's (2012) definition at the second Learning Analytics and 

Knowledge Conference  that is cited widely in the subsequent literature (Baker & Inventado, 

2014; Blaikie & Priest, 2019; Romero & Ventura, 2012; Siemens, 2013). Although there is no 

agreed definition such as there is for learning analytics, there appears to be a common 

understanding amongst researchers and practitioners.  

 

Educational data mining practice is iterative (Linan & Perez, 2015), with researchers and 

practitioners testing, evaluating, adjusting practice and testing again. The educational data 

mining analysis process is similar to most research analysis processes with data preparation, data 

mining, analysis and evaluation phases. However, in many cases, the data is from existing 

educational data sets as opposed to being purposefully collected and therefore requires more data 

cleaning in the preparation phase (Zhang & Qin, 2018). As educational data mining practice has 

grown, the research community has attempted to sub-divide the practice down in different ways.  

 

Aldowah, Al-Samarraie and Fauzy"s (2019) recent review identified four sub-sections: 

learning analytics, predictive analysis, behavioural analytics and visualisation. They suggest that 
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educational data mining is the underlying infrastructure or processes that are used for multiple 

purposes. Linan and Perez (2015) organise the existing research based on how educational data 

mining is being used. Some of the uses, like predicting student performance (Ba Saleh, 2017; 

Mimis et al., 2019; Rojanavasu, 2019) and predicting dropout (Simon et al., 2019; Sukhbaatar et 

al., 2018; Tasim et al., 2019) are utilized more like business analytics to predict and plan for 

institutional performance. Other uses, like adaption of content based on predictive models 

(Appalla et al., 2017; Jugo et al., 2016; Wongwatkit & Prommool, 2018) and student grouping 

and profiling (Kurdi et al., 2018; Linan & Perez, 2015; Nuankaew et al., 2019), are utilized for 

learning and teaching. There are several other attempts at classifying the educational data mining 

literature (Bakhshinategh et al., 2017; Manjarres, Moreno Sandoval & Salinas Suarez, 2018; 

Regis Lyra Bezerra da Silva et al., 2019; Thakrar, Jadeja & Vadher, 2018) suggesting that the 

field has hit adolescence and is trying to define itself.   

 

Overall, there are three main types of literature available in the educational data mining 

body of knowledge:  

• research that attempts to classify and define the overall practice of educational 

data mining (Aldowah et al., 2019; Bakhshinategh et al., 2017; Manjarres, 

Moreno Sandoval & Salinas Suarez, 2018; Regis Lyra Bezerra da Silva et al., 

2019; Thakrar, Jadeja & Vadher, 2018); 

• research focused on evaluation or comparison of different educational data 

mining methods (Abdar, Zomorodi-Moghadam & Zhou, 2018; Rambola et al., 

2018; Ramos et al., 2016); and  
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• research that uses educational data mining as a research method to generate 

insights (Appalla et al., 2017; Ashraf et al., 2018; Jugo et al., 2016; Simon et 

al. 2019; Wongwatkit & Prommool, 2018).  

 

There is also a lack of research that combines data-mining techniques with educational 

theory. Kurdi, Al-Khafagi and Elzein (2018) attempt to understand students' behaviour using 

data-mining techniques but fail to leverage existing educational theory such as learning 

orientation (Elliot & McGregor, 2001), growth mindset (Dweck & Yeager, 2019) or approaches 

to learning (Asikainen & Gijbels, 2017) as a lens, relying solely on random clustering to generate 

meaning. Nuankaew et al. (2019) utilise educational data mining to explore student perceptions 

regarding self-regulated learning but do not find a correlation between learning style and 

behaviour. They intend to collect more data in the future in order to overcome the perception-

based bias of students, but it will still be self-perception-based.  

 
Learning Analytics in Higher Education  

 

Unlike educational data mining research, learning analytics researchers have defined their 

research as #the measurement, collection, analysis and reporting of data about learners and their 

contexts, for the purposes of understanding and optimizing learning and the environments in 

which it occurs” (Long et al., 2011, p. iii). This definition is widely acknowledged and supported 

within the literature (Clow, 2013; Gasevic et al., 2015; Gasevic et al., 2017; Kim & Moon, 2018; 

Long & Siemens, 2011). The definition frames the purpose of learning analytics to be the 

improvement of learning and teaching (Clow, 2013) in contrast to educational data mining that 

appears to focus on educational business decision-making and customer (student) retention.  
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Despite the difference in purpose, the iterative processes and research methods used in 

learning analytics research are similar to educational data mining (Clow, 2013). The primary 

distinction between the two is the requirement that learning analytics research asks "clear 

pedagogical questions" (Bronniman et al., 2018, p.354). Learning analytics research uses a wide 

variety of methods for generating insight and understanding learning and the learning 

environment, but the overall approach tends to follow a process of select, capture, aggregate, 

report, predict, use, refine and share (Jeong, 2016; Kim & Moon, 2018; Lias & Elias, 2011).  

 

The literature on the use of learning analytics in higher education is split into two areas: 

how to capture data in useful ways and how data and insights can be used in the practice of 

learning and teaching (McKee, 2017).  The latter is less prevalent (Ferguson  et al., 2014; 

Lockyer et al., 2013; McKee, 2017; West et al., 2016; Wise, 2014; Wise et al., 2016) perhaps 

due to the notion that learning analytics research builds on educational theory (Gasevic et al., 

2017). This notion may be why there is such a prevalent call for a deeper connection between 

learning analytics, learning theory and learning science (Avella et al., 2016; Gasevic et. al., 2014; 

Gašević et al., 2016; Gasevic et al., 2017; Kirkwood & Price, 2013; Lockyer et al., 2013; Lodge 

& Corrin, 2017; Lodge & Lewis, 2012; McArthur et al., 2005; Reimann, 2016; Rogers et al., 

2016; Wise, 2014; Wise & Shaffer, 2015). The integration of learning analytics and learning 

theory holds significant benefits to students, including the optimization of learning pathways, 

personalized interventions and scaffolding (Bronnimann et al., 2018). It can also be used to 

provide a more holistic view of the learner so that the teacher can use the information to 

intervene in the learning process (Hernandez-Lara et al., 2019; Alblawi & Alhamed, 2017). 
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The core ethical concerns surrounding the use of big data in processes like learning 

analytics lies in the use of personal data (Drachsler & Greller, 2016; Hoel & Chen; 2019; 

Ifenthaler & Schumacher, 2016; Polonetsky & Tene, 2013; Rubel & Jones, 2016; Slade et al., 

2019; Young, 2015). Knight et al., (2016) conducted a research study to understand the 

perspectives of instructors and students when it comes to learning analytics. The research found 

that students expressed concerns about what elements of their data faculty should have access to 

suggesting the option of either opting in or out (p. 222); a sentiment mirrored by instructors 

when it came to individual student data, preferring overall insights based on the cohort data to 

avoid bias (p.229).  

 

The concern about data privacy is mirrored if not elevated in the literature when it comes 

to using student data for learning analytics research (Cormack 2016a; Cormack 2016b; 

Datatilsynet, 2013; Hoel & Chen; 2018; Hoel & Chen; 2019; Zeide 2017).  This concern is 

particularly pertinent when personal data is being used by parties outside the learner/teacher 

relationship for the training of algorithms and development of predictive models. The 

conversation about data privacy in this context centred around legitimate interest; whether the 

action is for public benefit. In learning analytics and machine learning within an education 

paradigm, education technology companies and higher education institutions would argue that 

the algorithms and predictive models developed serve the public interest. GDPR and other data 

privacy law raises a caveat to legitimate interest with the impact and risk for the individual’s data 

being processed (Cormack, 2016a). One of the ways the impact and risk to individuals is being 
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minimised is through data de-identification and the development of risk matrixes and processes 

to test for re-identification (Khalil & Ebner, 2016).   

 

The literature highlights notable limitations when it comes to the use of learning analytics 

in teaching and learning (Bronnimann et al., 2018; Davis et al. 2017; Wise et al. 2016). 

Bronnimann et al. (2018) found that academics are still apprehensive about learning analytics 

and have the propensity to think in terms of small data, thus limiting the potential impact 

learning analytics could have when augmenting the teacher/student relationship. Davies et al. 

(2016, p. 1) found a limitation when it came to learning designers if their approach to design 

focused only on "content and control" at the surface and failed to consider the deeper layers like 

data-management. This sentiment is reinforced by Behrens and DiCerbo (2014) and Wise et al. 

(2016) who suggest designers should design with data capture and use in mind as opposed to 

settling for whatever happens to be collected. On the institution level and perhaps even the 

macroeconomic level, there is a lack of available resources when it comes to physical and human 

resources with the necessary skills (Bronniman et al., 2018).  

 

Despite the ethical concerns and current challenges of learning analytics research, the 

literature highlights a vast array of potential particularly when it comes to how learning analytics 

are used in the practice of teaching and learning (Wise et al., 2016). Three areas of future 

potential in the use of learning analytics in teaching and learning that are relevant to this research 

are the use of personality factors to better understand learners; the increasing prevalence of 

learning analytics in classes utilizing active learning pedagogies; and real-time measurement of 

motivation. Alblawi and Alhamed (2019, p.128) examined the use of natural language 
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processing (NLP) for improving student performance predictions and found that “taking 

sentiment into account alongside other personality factors produced more accurate results”. They 

are suggesting that personality factors impact learning and, therefore, should be considered when 

supporting a student through a learning experience. 

 

Hernandez-Lara et al. (2019), use NLP to better understand the interactions of learners in 

a simulation game where learning happens through social construction (Kent, et al., 2016). The 

study examined and classified the social interactions in order to understand the different types of 

interactions and whether there was a correlation between specific interactions and outcomes. The 

study shows the potential for the use of learning analytics in courses that use active learning 

pedagogies and requires learning analytics to extend beyond content consumption and log data 

analysis. The preliminary identification of links between particular social interactions and 

performance suggests that learning analytics can be used by educators to examine students’ 

acquisition and use of concepts ‘in-progress’ as opposed to evaluating a summative assessment. 

This notion is reinforced by Knight et al. (2014), who frame the way teachers use learning 

analytics as their pedagogical choice and suggest that constructivist learning analytics focus on 

learning progress, not outcome. Wise et al. (2016), take the use of learning analytics in active 

learning one step further, suggesting student use of learning analytics to support the 

metacognitive function of self-regulation required in active learning. 

  

Gasevic et al. (2017), attempt to understand the real-time motivation level of students in a 

learning experience by combining emergent study strategies based on trace data and self-report 

results based on a well-known instrument for identifying learning motive and learning strategy 



64 

 

based on Biggs’ (1987) approaches to learning. The research found correlations between four 

emergent study strategies and the four categories of the self-report instrument, suggesting that 

perhaps trace data can be used to identify motivation in real-time and be used by instructors to 

“derive specific recommendations for their students” (Gasevic et al., 2017, p. 123).  

 

Emerging Technology in Higher Education Experiential Learning and 21st Century Skill 
Development 
 
 

Although the literature focused on emerging technologies in classes that utilize active 

learning pedagogies is increasing, there is limited focus on the use of emerging technologies in 

courses that use experiential learning pedagogy to develop 21st Century Skills. A conceptual 

paper at the 2018 Australian Cooperative Education Network conference suggested the potential 

use of learning analytics to the community of educators focused on this practice but did not 

present any research findings (James et al. 2018). James, Humez & Laufenburg (2020) present a 

$virtual!"internship model that is designed for data management, overcoming Davies et al.'s. 

(2016) highlighted limitation when it comes to the design of learning. However, the research 

project is yet to present any explicit research findings.  

 

The only literature found on the use of machine learning, educational data mining or 

learning analytics with either experiential learning or 21st Century Skill development focused on 

the use of games for measuring persistence in elementary school students (DiCerbo, 2014). 

However, Wise et al. (2016) present a process model of self-regulation informed by learning 

analytics analysis that is markedly similar to Kolb's experiential learning cycle (Kolb, 1984) 

without making the connection to the existing educational theory: a specific example of the 
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acknowledged and highly cited 'gap' in learning analytics research (Avella et al., 2016; Gasevic 

et al., 2014; Kirkwood & Price, 2013; Lockyer et al., 2013; Lodge & Corrin, 2017; McArthur et 

al., 2005; Reimann, 2016).   

 

!  
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Conclusion 
 

This review of literature on the 4th Industrial Revolution, 21st Century Skills, the 

experiential learning cycle and emerging technologies within the context of higher education 

covers a broad base of literature. The objective of this broad-reaching review was to present a 

conceptual hypothesis for the need for this research project and perhaps the development of a 

new research field. The broad base of the literature makes it difficult to identify any explicit 

main agreements and disagreements of the literature overall. However, it does highlight the lack 

of connectivity between these four bodies of research and the potential their integration holds. 

The overarching commonality from the four bodies of literature is that higher education needs to 

not only incrementally innovate but transform itself in order to continue to add value in the 4th 

Industrial Revolution. 

 

From my perspective, the literature determines that successful contribution to work in the 

4thIR requires not only domain knowledge but lifelong development of 21st Century Skills. The 

literature highlights that using experiential learning and the experiential learning cycle to develop 

21st Century Skills holds potential, but research examining this is limited in volume and scope. 

The notion that a revolution's emerging technologies hold the keys to solving the problems it 

creates suggests that perhaps artificial intelligence and big data analytics, if used with caution, 

could be utilized to enable more use of experiential learning pedagogies for the development of 

21st Century Skills. The next chapter offers an illustration of an experiential learning program 

and technology platform that integrates learning theory and learning analytics in the design of the 

technology, the instructional design of the experiential learning program and the facilitation of 

the experiential learning program.  
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Chapter 3: Learning Context 
 

Introduction 
 
 

This study will be conducted using de-identified and retrospective data from an experiential 

learning program. Firstly, this chapter will outline the experiential learning program, its context, 

program structure and assessment items. This will also include a detailed explanation of two 

reflection exercises and a demographic survey that results in the choice of learning instruments 

and theory used and examined in the study. Secondly, this chapter will discuss the nature of the 

three learning theories and how they can contribute to how students engage in learning. 

 
 

Experiential Learning Program 
 
 

Practera is an experiential learning technology start-up that provides experiential learning 

services and technology to higher education institutions. Practera"s experiential business project 

program (hereafter referred to as EBP) offers university students, studying in Australia, the 

opportunity to do a three-week real-world business analyst project for an industry client. 

Students participating in the EBP are a mix of domestic and international students, undergraduate 

and postgraduate students studying in multiple faculties from over ten different universities. The 

majority of international students participating in the program are from the Asia and Pacific 

regions, particularly China and India. The majority of student participants are from engineering, 

technology and business faculties.  

 

During the EBP students work in teams of four or five to deliver a real project to an 

industry client. Practera's learning facilitation team recruits industry clients. Each industry client 
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brings a real project to their team of students and is required to provide feedback and support to 

their team as they deliver the project. The industry clients are a mix of small businesses, 

technology start-ups, large corporations, not for profit organisations and government 

departments. The types of real-world projects student teams work on include social media 

analysis, competitor analysis and product comparisons. 

 

The EBP is designed to develop students 21st Century Skills (WEF, 2015) and is 

delivered using Practera"s experiential learning management system (eLMS). Before the start of 

the EBP students are allocated to a team, assigned a client and project, then enrolled on the 

eLMS. The eLMS is facilitating the learning of theoretical learning content and capturing the 

results of learning that takes place as students complete their industry client"s project. The eLMS 

contains all the learning content, facilitates all submissions of work to and feedback from 

industry clients and other team members. The eLMS steps each team through all the learning 

content and tasks required to complete their client"s project. Practera's facilitation team uses a 

learning analytics dashboard to monitor team progress, team cohesion, and client engagement, 

and to offer support through gamification-based incentives and tailored facilitator interventions.  

 

The EBP acts as the catalyst for students to develop their teamwork skills, communication 

skills, critical thinking skills and business analysis skills. The learning outcomes of the program 

are: 

• Generate, manage and execute a business project using agile project management 

methodology; 

• Apply theoretical concepts and skills in a real work environment; 
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• Apply reflection techniques to identify key learning points; 

• Engage relevant stakeholders to seek feedback and apply insights to a business project. 

 

Program Structure 

 
The EBP is delivered over three weeks and is highly structured. The structure enables 

scalability and drives learning outcomes for students and project outcomes for the clients. Figure 

1 outlines the structure of the EBP, including when student teams focus on different activities 

related to their client's project and when they are required to submit project tasks to their client 

for feedback.  

 

Figure 1 

The EBP - Structure and Learning Content 

 

!  
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Client Project Submissions  

 
Throughout the EBP, student teams submit items related to their client's project for 

feedback. Additionally, student"s complete reflection exercises, self-assessments and peer-

assessments on collaboration skills. Figure 2 provides a brief overview of the project deliverables 

and assessment items and their relevance to the learning outcomes.  

 

Figure 2 

The EBP - Assessable Items 

 

 

!  



71 

 

Reflection Exercises 
 
 

Throughout the EBP students have the opportunity to complete reflection exercises 

designed to help students examine their overall approach to the industry project they are 

completing. These reflection exercises were designed into the EBP to: 

1. Facilitate the development of students’ metacognition 

2. Provide a structured reflection process that explicitly stepped the students through the 

experiential learning cycle in order to extract learning that extended beyond the 

application of their technical skills. 

 

In these two reflection exercises, the students complete a self-assessment instrument and 

provide instructions that help them reflect on the results of the instrument and how the insights 

gained from the survey could help them understand their past behaviour and plan their future 

behaviour. The two instruments used for these reflection exercises are: 

 

1.  Revised Two Factor Study Process Questionnaire (Appendix 1) 

2. Revised Implicit Theories of Intelligence Survey (Appendix 1) 

 
Demographic Data Survey 
 
 
 Prior to starting the EBP students are asked to complete a demographic data survey. The 

original intention was to gain practical information about the learner that helped provide insights 

that enabled the program facilitators to match the student with an appropriate team and an 

appropriate industry client. Three of the questions on the demographic survey ask about the 

students learning history. After facilitating the EBP multiple times it appeared that students with 
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different learning histories were experiencing different types of challenges engaging in the EBP. 

As a result, the information from the learning history survey began to be used to identify students 

that the facilitators needed to proactively support in order to ensure they have a successful first 

engagement with their industry client.  

 

Learning Theories 
 

The concept of learning styles suggests that each learner comes to the learning 

environment with their unique traits, characteristics and behaviours. These include cultural 

dimensions (Hofstede, 1983), ethics of learning (Kwak, 2016), learning orientation (Beaty, Gibbs 

& Morgan, 1997) and habits (Lally, van Jaarsveld, Potts & Wardle, 2010). Moreover, each 

learner uses different approaches to learning (Entwistle, 1988), have different learning styles 

(Fleming, 2006; Kolb, 1984) and are at different stages of knowledge acquisition and use with 

each subject matter (Dreyfus & Dreyfus, 1984). Meta-analyses of individual learning theories 

and approaches found varying degrees of empirical evidence when it comes to learning theories 

that attempt to identify different characteristics and behaviours of learners (Pratt et al., 2009).  

 

It is also important to note the substantial critique for the notion of learning styles in the 

literature. In 2004, Coffield et al. provided a systematic and critical review specifically 

highlighting the lack of unity within the field and conflicting assumptions that different learning 

style theories are built on. These fundamental critiques of the notion of learning styles are still 

present in the literature today. A common argument against the categorisation of students into 

learning styles today is that the process used to categorize students is subjective. Moreover, that 

studies using more objective and quantitative research methods have not found any evidence to 
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substantiate the categorisation (Kirschner & van Merrienboer, 2013; Knoll, Otani, Skeel & Van 

Horn, 2016; Rawson, Stahovich & Mayer, 2016). The subjectivity of learning theory 

categorisation is attributed to the self-reporting nature of instruments. Rawson et al. (2016) claim 

that students do not have the ability or willingness to accurately assess themselves. Despite the 

substantial critique the intuitive notion that a student"s beliefs, motivations, habits and past 

experience impact student"s behaviour while learning is still intact.  Perhaps the use of learning 

analytics in the examination of how student"s mindsets, approaches to learning and learning 

history interplay in an experiential learning program could provide a more objective method of 

identifying a learners!"behaviour in real-time. Moreover, using learning analytics to perform the 

analysis in real-time may pick up the fluidity as students behaviour changes in response to the 

environment, task at hand and other factors known to influence a learner"s behaviour.  

 

An additional gap in the literature related to the concept of classifying learners based on 

their characteristics is in how research aggregates these characteristics, behaviours and 

preferences, particularly how they interplay in a learning experience (Narciss, Proske & 

Koerndle, 2007; van Seters, Ossvoort, Tramper & Goehart. 2012). Practera’s EBP outlined 

above provides an opportunity to examine the behaviour of learners engaging in the EBP and 

identify relationships between particular behaviours and their self-assessment scores on validated 

instruments and their answers in a demographic survey. The data-set available from the EBP 

provides the opportunity to examine the relationship between learning history, approaches to 

learning and mindset and a learner’s behaviour while participating in the EBP. 
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Learning History 
 
 

Learning history brings into the equation the notion that a learner’s history of learning or 

past learning context predisposes them to different learning outcomes and processes (Kwak, 

2016). High and low context culture first introduced by Edward T Hall in the 1950’s continues to 

be used today, as a vehicle with which to examine the differences between learners from 

different cultures (Bent, 2018; Qureshi et al., 2017). Yu (2005) proposes that a Socratic learner is 

encouraged to question social values as opposed to a Confucian learner who is encouraged to 

conform to social values. Moreover, Heng (2013) proposes that one of the fundamental 

differences between these two educational philosophies is their perspective on engagement in the 

political arena, insofar as Socrates preferred to #find truth within one"s self” (p.86) and Confucius 

believed that #holding office in the government would be the best future” (p.87). This difference 

in perspective has contributed to the cultural difference of individualism (Socratic) and 

collectivism (Confucian) that underpin the approaches to education in each context.   

 

Approaches to Learning 
 
 

Marton and Saljo (1976) present two distinct learning processes humans use: surface 

learning that focuses on memorisation of facts and main points and deep learning that extends 

beyond memorisation of facts and points to meaning-making. A third learning process called 

strategic learning was introduced by Entwistle (2000). This third learning process suggests that 

learners who select the most appropriate learning process for the situation presented to them as 

opposed to always adopting the same learning process. In 2001, Biggs Kember and Leung 

(2001), published The Revised Two Factor Study Process Questionnaire designed to evaluate the 
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learning approaches of students.  This survey has been used to understand the nature of a 

student’s approach to learning and how their approaches are impacted by their environment and 

learning content. Sengodan and Iksan (2012) found that intrinsic motivators like effort and self-

efficacy are significantly linked with a students!"approach to learning. Dolmans et al., (2016) 

found that interest in a topic, having an appropriate amount of time and prior learning 

experiences that are positive can contribute to a student selecting deep approaches to learning. 

Alternatively, a lack of interest in the topic, not enough time and lack of background knowledge 

can contribute to a student selecting surface approaches to learning (Biggs, 1999; Entwistle, 

1998; Ramsden, 1992). 

 
Mindsets 
 
 

‘Mindset’ is the term used by Dweck (2017) to describe the self-concepts people use to 

drive their behaviour. Dweck’s theory suggests two different self-concepts related to learning 

ability that drive motivation and achievement: 

1. Fixed Mindset: the notion that human abilities and intelligence are fixed traits; 

2. Growth Mindset: the notion that human abilities and intelligence can be 

developed with persistence. 

In 2015, De Castella and Byrne developed The Revised Implicit Theories of Intelligence (Self-

Theory) scale in order to measure student’s belief about their own intelligence. Holistically, 

people who lean towards a fixed mindset invest time proving their level of intelligence to others. 

Conversely, people who lean towards a growth mindset believe their intelligence is just a starting 

point and invest their time developing it (Dweck, 2017; Hochanadel & Finamore, 2015; Zhang et 

al., 2017). 
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Conclusion 
 
 

Using the data from the EBP to aggregate learning analytics analysis and these learning 

theories will help me explore connections between what is known about learning history, 

approaches to learning and mindsets and learners’ behaviour while engaging in an experiential 

learning program.  This exploration will help me understand how technology might be able to 

identify these characteristics and recommend tailored interventions for individual learners that 

are underpinned by insights from learning theories.  

 

 The choice of learning theories is limited to these three as the surveys mentioned were 

already built into the design of the EBP program that produced the de-identified retrospective 

dataset. These learning theories are often positioned in the literature as binary choices. However, 

the use of learning analytics and regression analysis based on a learner"s score that indicates a 

tendency towards fixed mindset, growth mindset, deep approaches to learning, surface 

approaches to learning, Confucian learning history and Socratic learning history enabled them to 

be dealt with on a spectrum instead of a binary choice.  

 

Focusing on these theories also helps me explore how learning designers and facilitators 

can use these specific real-time insights about learners to tailor learning programs and support 

for students. Hence, a focus on these three theories, despite the limited choice, helps me to 

answer the research questions identified and discussed at the start of the next chapter. !  
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Chapter 4: Methodology  
 

This chapter explicitly works through the methodology and research methods used in this 

research project. Beginning with the hypothesis,  the methodology outlines the philosophical 

foundations of the research design, my position and the lens I intended to look through when 

conducting this research and a detailed description of the research design. Finally some critical 

ethical issues are identified, and the following steps that were taken to mitigate the risks 

described. 

 
The Hypothesis 
 

The hypothesis at the heart of this research project; and the research questions and the 

objectives that have driven the research design (particularly the decision to use multiple 

regression analysis) as my method of analysis is: that data created by learners and captured 

by an experiential learning platform can be predictive of learners!"perspectives, mindsets 

and skills. Moreover that those perspectives, mindsets, and skills can impact the extent to which 

a learner acquires the technical skills of focus in an experiential learning program. Furthermore  

displaying the current state of learners’ perspectives, mindsets, and skills to an experiential 

learning facilitator using a learning analytics dashboard could enable the facilitator to intervene 

in a student"s learning experience with a more tailored support and feedback model. This tailored 

feedback could provide an increased positive impact on the extent to which a learner acquires the 

learning outcomes of the course. 

 

Theoretical Justification for Hypothesis 
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The theoretical justification for the above-mentioned hypothesis that is driving this 

research, draws on the broad base of literature presented and discussed in Chapter 2: Literature 

Review. Specifically Heslin and Keating (2017) examined this phenomenon within the context 

of using experiential learning for developing leadership capability. They describe #how the 

extent to which leaders are in learning mode stems from salient mindset cues and guides whether 

they work through the experiential learning process with a predominantly self-improvement or 

self-enhancement motive” (Heslin and Keating, 2017, p. 367). Their research suggests that 

learners’ mindsets impact their acquisition of knowledge in an experiential learning program. 

Suggesting that learners’ mindsets are an important element for experiential learning facilitators 

to attend to. Perhaps being able to use learners data to identify mindsets and other components of 

learners behaviour would be valuable for both facilitators and students.  

 

Educational research has a long history of examining learners’ traits, perspectives, and 

behaviours; particularly developing and using self-reporting instruments.  Araka et al (2020) and 

Covacevich (2014) use self-reporting instruments to measure the impact of an educational 

intervention and its intended learning outcomes. Conversely learning analytics researchers claim 

that #there is no real scientific basis” (p. 167) for the notion of learning style inventories and 

instruments (Kirschner, 2017). A prior study by Kirschner & van Merrienboer (2013) concluded 

that cognitive abilities rather than learner styles should be considered when designing 

interventions. Moreover that they #should be objectively measured on an ordinal scale” (p.6) 

rather than based on subjective and #more arbitrary criteria” (p. 6).  
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If learning data created by learners and captured by an experiential learning 

platform is predictive of learners’ perspectives, mindsets, and skills it could be used as an 

objective measure of learners’ styles, where learning styles are used in the broader sense of 

dichotomous learning styles in the literature, as opposed to the VAK learning styles specifically 

(Coffield et al., 2004). In addition to the value of this research for experiential learning 

facilitators, it could provide a specific point of collaboration for educational researchers and 

learning analytics research practitioners. A direct response to the call from both research 

communities for deeper integration and collaboration (Avella et al., 2016; Gasevic et. al., 2014; 

Gašević et al., 2016; Gasevic et al., 2017; Kirkwood & Price, 2013; Lockyer et al., 2013; Lodge 

& Corrin, 2017; Lodge & Lewis, 2012; McArthur et al., 2005; Reimann, 2016; Rogers et al., 

2016; Wise, 2014; Wise & Shaffer, 2015). 

 

Potential Impact on the Facilitation of Experiential Learning  

 

At present to display the insights about learners’ perspectives, mindsets and skills in 

learning management systems used to support experiential learning programs would require a 

significant amount of work for the facilitator. The facilitator would need to: 

• select the insight they think is meaningful when supporting their students, 

• examine the academic literature to find an instrument for measuring meaningful insight, 

• embed the validated instrument in their course, 

• use customizable data dashboard graphs to display the information in their interface.  

At present, Jona and James (2021) embedded the PRO-SDLS (Stockdale & Broket, 2011) as a 

measure of self-direction to evaluate a $Virtual Internship’ intervention (James et al., 2020) and 
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used the approach mentioned above to display the responses to each question on the teacher 

dashboard. In an analysis focused on the impact of teacher movements and how those 

movements are echoed in learners’ behaviours (Jona & James, 2021), the study of teachers 

support did not suggest any usage of the displayed responses from the PRO-SDLS (Stockdale & 

Broket, 2011).   

 

Suppose that the data created by learners and captured by an experiential learning 

platform predicts learners’ perspectives, mindsets, and skills. In that case this analysis could be 

built into the technology itself and not require the use of the self-reporting instrument. Perhaps 

this analysis addresses learning analytics researchers concerns about the subjective nature of self-

reporting instruments (Kirschner, 2017) and the ethical concerns raised about learning analytics 

being used in an evaluative way to predict performance (Ba Saleh, 2017; Mimis et al., 2019; 

Rojanavasu, 2019) and dropout (Simon et al., 2019; Sukhbaatar et al., 2018; Tasim et al., 2019).  

 

One way to achieve this goal is to test the hypothesis; that is the cornerstone of this 

research, to examine whether any data from the eLMS has any predictive power when it comes 

to learner perspectives, mindsets and skills. If any learning data appears to have any predictive 

power the results of the analysis could be used as a baseline for developing machine learning 

algorithms (Li et al., 2020) for measuring perspectives, mindsets and skills. With the goal of 

testing the hypothesis and developing baselines for machine learning algorithms that measure 

perspectives, mindsets and skills in mind the objective of this research project is: 

• To see if learning data from an eLMS could be used to predict a learners 

perspectives, mindsets and skills. 



81 

 

• Present baselines (Li et al., 2020) that could be used to develop machine learning 

algorithms for measuring students’ perspectives, mindsets and skills. 

• To gain insight from the relationships between the learners data and their 

perspectives, mindsets and skills that might lead to additional data and analysis 

techniques that could contribute to the algorithm development.   

 

Research Questions 

As mentioned above my aim for this research is to understand how data produced by a 

learner during an experiential learning program that is supported by experiential learning 

technology could be used to understand more about students’ perspectives, mindsets and skills.  

A secondary aim is to examine whether this understanding could provide learning designers and 

experiential learning facilitators insights that could help them to tailor programs, designs and 

facilitator supports to improve student learning.  

 

The learning program that provided the context for this research was a technology-

enabled experiential learning program (outlined in Chapter 3) where students work in teams for 

three weeks to deliver a business project for a client.  

  

The specific questions of focus are: 

1. Which data captured by an experiential learning technology can be used to understand 

more about students’ perspectives, mindsets, and skills? 

2. How can data captured by experiential learning technology be used to understand more 

about students’ perspectives, mindsets, and skills? 
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3. How can understanding more about students’ perspectives, mindsets, and skills be used 

by learning designers and facilitators to support their practice in experiential learning 

environments?  

 
Philosophical Foundations 
 

To effectively present the methodological approach for this doctoral research project it is 

vital to understand my philosophical perspective. My philosophical perspective has driven the 

design and subsequently the data analysis and interpretation of the data. Cohen et al., (2007) 

presents two conceptions of social reality: the subjectivist approach and the objectivist approach. 

Which stems from Burrell and Morgan's scheme for analysing assumptions in social science 

research (2005). The subjectivist approach includes a normalist ontology and anti-positivist 

epistemology. Conversely the objectivist approach includes a realist ontology and positivist 

epistemology. Given my philosophical perspective, I leverage assumptions from both the 

subjective and objective dimensions. I believe that looking at a phenomenon from both vantage 

points can offer two truths that lie in tension with one another and perhaps offer more value 

when used together as opposed to denying one perspective for the other. 

 

This doctoral research project stems from a realist, anti-positivist idiographic perspective 

(Cohen et al., 2007) that perceives agency (Bandura, 2001) as the driver of an individual"s choice 

between determinism and voluntarism (Burrell & Morgan, 2005) at each point of actuality 

(Sachs, 2005).  The anti-positivist idiographic epistemological and methodological stance comes 

from the subjectivist perspective that humans are unique, irrational and therefore unpredictable. 

This anti-positivist perspective suggests that using learning analytics and learning theory-based 
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classification of learner behaviour is impossible. However, overlaying this with the human 

neurological behaviour of wiring synapses together causing chain-reactions and habits that are 

harder to break based on the duration and pervasiveness of the behaviour suggests that although 

humans are in essence unique and irrational our learned behaviour can be predicted (Wood & 

Runger, 2016). Neurological research (Mendelsohn, 2019) suggests that although we have the 

capacity for future goals to drive our decisions and actions, a significant amount of our daily 

behaviour is driven by habit. However as humans we can change the biological and behavioural 

functions of our brain (Ford, 1987) and at each point of actuality we either rely on habit 

(deterministic) or intentional choice (voluntarism) in our response.  It is this perspective and 

notion that underpins the foundational stance of this research.  

 

Positionality 
 
 

Both my philosophical perspective and professional experience outlined in Chapter 1 

have driven the intent, purpose, methodology and methods of this research design. However a 

secondary driver of the research design and specifically the methodology choice is for the 

research to impact my practice in eLMS design. My practice sits in the middle ground between 

computer science, learning analytics, instructional design, learning theory and experiential 

learning. Each of these domains has a common body of knowledge and community of practice, 

some of which conflict with each other. For example learning theory research practice is 

knowledge-driven, and learning analytics and machine learning research is data-driven (Kitchin, 

2014). Experiential learning research tends to relegate technology to facilitating operational tasks 

(Beckem & Watkins, 2010; Pangelinan et al., 2018), whereas technology is an assumed element 

of learning analytics research. Furthermore both learning analytics research and educational 
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research highlight the need for collaboration (Gasevic et al., 2017; Gašević et al., 2016; Lodge & 

Lewis, 2012; Rogers, Gašević, & Dawson, 2016; Wise, 2014; Wise & Shaffer, 2015; Avella et 

al., 2016; Gasevic, Dawson & Siemens, 2014; Kirkwood & Price, 2013; Lodge & Corrin, 2017; 

Lockyer, Heathcote & Dawson, 2013; McArthur, Lewis & Bishay, 2005; Reimann, 2016) but 

this collaboration is yet to emerge in any substantial way. 

 

To build technology that not only aligns with but is integrated with experiential learning 

design and facilitation, requires computer scientists, learning analytics researchers, instructional 

designers, learning scientists and experiential learning facilitators to innovate collaboratively 

together. Kristinsson, Candi & Sæmundsson (2015, p. 464) found that #informational diversity is 

positively related to both idea generation and the implementation of ideas.” Hence, the diversity 

of perspective of these Communities of Practice (Lave & Wenger, 1998) is an asset and holds the 

potential to not only generate ideas but implement them. However this potential cannot be 

realised without teamwork.  Katzenback & Smith found that a team needs not only a common 

purpose and goals but a common approach (2015). The design of this research aims to show an 

approach that these diverse perspectives can use to collaborate to improve learning and teaching 

of 21st Century Skills through experiential learning. 

 

Research Design 
 

To achieve the research objectives and answer the research questions, I will use data 

produced by learners during an experiential learning program in several multiple regression 

analyses. Multiple regression analysis “allows researchers to assess the strength of the 

relationship between an outcome (the dependent variable) and several predictor variables as well 
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as the importance of each of the predictors to the relationship” (Petchko, 2018, p 259). 

Researchers can use multiple regression analysis to predict outcomes and make causal inferences 

(Pederson, 2018). Two types of data can be used in multiple regression analysis, continuous 

variables (e.g. Likert scales) and categorical data (e.g. Categorisation of learning tasks) 

(Pederson, 2018). This research project will use continuous variables and categorical data for the 

dependent variables and categorical data for the independent variables. How I selected these 

variables, and the approach I used to categorise the data is described below.    

 

Intuition that drives the hypothesis 
 

When using multiple regression analysis in research a hypothesis is formulated based on 

the researcher"s intuition or expert knowledge (Pederson, 2018). Pederson (2018, p 2) asserts that 

#researchers develop a hypothesis about how aspects of a particular phenomenon are related to 

one another and test those relationships by creating a model that explains the various 

relationships.” In essence the hypothesis is the cornerstone of the research design. It drives the 

decision-making when it comes to the methodology, results reported, and the research 

implications for further research and in practice. 

 

The hypothesis at the heart of this research design is that data created by learners and 

captured by an experiential learning platform can be predictive of a learner’s perspectives, 

mindset and skills. This hypothesis stems from my years of experience designing and 

facilitating experiential learning programs in face-to-face and technology-mediated contexts. In 

essence my professional experience designing and facilitating experiential learning programs 

was where I developed my hypothesis “about how aspects of” this particular “phenomenon 
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related to one another.” This research project allows me to “test those relationships by creating a 

model that explains the various relationships” (Pedersen, 2018, p 2). 

 

Throughout my professional practice (or hypothesis development phase) I invested time 

in designing experiential learning programs and facilitating and assessing students participating 

in them. Throughout this time I have seen patterns in my behaviour and the behaviour of the 

students. In my behaviour facilitating and assessing I noticed patterns in the way I framed 

feedback for different students. In students’ behaviour I saw various common patterns in 

program engagement after feedback points from either peers or clients. This pattern 

identification suggests that students time on task could indicate a learners" engagement in the 

experiential learning program, similar to Kovanovic et al. (2015) and Stallings (1980) assertion 

that time on task contributes to learner success. Suppose students" engagement patterns were 

notably changing after feedback from peers and industry clients. This phenomenon is aligned to 

research into the impact of feedback on human behaviour from both a behavioural and cognitive 

perspective (Baker & Buckley, 1996), suggesting that perhaps time on type of task is a more 

specific unit of analysis to use in this research project.   

 

This intuition was further confirmed in 2015 when I facilitated more than five cohorts of 

50 students each, a total of 250 students, in an innovation and teamwork experiential learning 

program. At the same time I was undertaking a course of my EdD focused on learning theory and 

realised the differences in students" patterns of behaviour could be linked to the learning theory I 

was learning about in class. Furthermore I observed that time on type of task could contribute to 

closing the gap between educational research and learning analytics research and the explicit 
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criticism by Kirschner (2017) that #there is no real scientific basis” (p. 167) for the notion of 

learning style inventories (discussed earlier in this chapter).  

 

Since that time utilisation of these patterns and my understanding of learning theories like 

growth mindset (Dweck, 2017) and approaches to learning (Marton & Saljo, 1976) has helped 

me improve the design of multiple experiential learning programs. Moreover I intentionally 

consider these patterns of behaviour and my understanding of learning theory in my feedback to 

students when I am facilitating experiential learning programs. Ultimately my curiosity has led 

me to explore whether these behavioural patterns picked up in the learner data link to learners’ 

perspectives, mindsets, and skills and whether they could provide a baseline (Lieu et al., 2020) 

for objective measurement of learning styles using a machine learning algorithm.  Furthermore 

examining whether displaying this information for teachers could improve and perhaps enable 

the scalability of experiential learning programs. 

 

Choice of data and learning theories used as dependent and independent variables 
 
 

I did not have complete agency over the choice of learning theories focused on in this 

analysis or the instruments used in this analysis. As mentioned in Chapter 3: Learning Context, 

the questionnaire for learning history (Kwak, 2016) and instruments used for mindset (Dweck, 

2017) and approach to learning (Marton & Saljo, 1976) where embedded in the Experiential 

Business Project (EBP) that the de-identified, retrospective data used in this analysis came from. 

Despite the lack of choice I did not feel that it limited my ability to answer the research questions 

or achieve the objectives outlined earlier in this chapter. In fact, similar to Callahan, Ito, 

Campbell and Wortman’s (2019) study focused on career identity development in experiential 
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learning programs, the choice of instrument is not critical to the analysis. The focus of this 

research is centred around whether learning data could measure learner preferences, mindsets 

and skills not which preferences, mindsets and skills it could be used to measure. Therefore I 

chose to use the de-identified and retrospective dataset that is available to me for this research.  

As a learning designer and facilitator of experiential learning programs in Practera I have used 

the company"s eLMS Practera to design and facilitate experiential learning programs focused on 

21st Century Skill development for five years. Use of this de-identified and retrospective data set 

in this study afford me an insider perspective that is useful for this project. 

 

Beyond convenience I chose this context and this data because it is where the above-

mentioned hypothesis emerged. As previously discussed Pederson (2018) highlights that when 

multiple regression analysis is used in research it is centred around a hypothesis that emerges 

from the researcher"s intuition and expert knowledge. Since the hypothesis emerges within the 

context of the Experiential Business Project, outlined in detail in Chapter 3: Learning Context, it 

seems appropriate to conduct the research within this context. Additionally my intricate 

knowledge of the learning outcomes of the Experiential Business Project (EBP), the theoretical 

and pedagogical foundations of the EBP design and first-hand experience facilitating the 

program (in previous years before the data used in this research was captured) affords me a level 

of expert knowledge when it comes to the interpretation of the analysis.  

 

Independent Variable: Learning tasks and their categorization 
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In a multiple regression model the independent variables can be used to predict an 

outcome (Pederson, 2018). The de-identified and retrospective data set acquired for this research 

includes: 

•  Student responses to learning theory survey instruments,  

• Self and peer assessments on collaboration skills from the start, middle and end of 

the learning experience, 

• Student responses to yes/no questions about team cohesion and project 

confidence, 

• Learning content completion data, 

• Client evaluations of team performance on project deliverables, 

• Facilitator support intervention logs for teams and individuals, 

• Post-program student reflections highlighting key learnings, 

• The time and date learners started and completed each learning task in the EBP. 

 

For this research project I chose to use the time a learner spends on different types of 

learning tasks as the independent variable. This choice stems in part from my intuition and 

experience facilitating experiential learning programs using the technology platform. 

Furthermore the choice is backed by learning theory research where time-on-task is 

acknowledged as a contributing factor of learning success (Kovanovic et al., 2015; Stallings, 

1980). Kovanovic et al. (2015, p82) posit that #the amount of time students actually spent on 

learning has been identified as one of the central constructs affecting learning success.” Time-on-

task is a quantitative measure. Use of more qualitative data like reflective text analysis or 

industry client feedback on project artefacts could lead to richer predictions of learners’ 
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perspectives mindsets and skills. Selecting time-on-task as the independent variable in this 

research is achievable for the project and will provide insight into which additional data available 

in the data set could be useful to improve the baseline (Lieu et al., 2020), answer the research 

questions further or inform the development of a machine learning algorithm for measuring 

learners’ perspectives, mindsets and skills.  

 

Choosing time-on-task or more specifically $time on type of task requires a layer of 

dummy coding to reduce each of the learning tasks in the EBP into candidate independent 

variables. As discussed earlier in this chapter the time on type of task centred around client and 

peer feedback points or lack of feedback points. Table 1: Candidate Independent Variables below 

lists each learning task (submission or learning content name) and the candidate independent 

variable category it was placed in (Independent Variable column). For example the 

Assessment_Draft category includes two items, both items are submissions (type column) of 

project artifacts (as per Figure 2 in Chapter 3: Learning Context). In contrast the Project_Draft 

(independent variable column) category contains the learning content embedded in the EBP to 

guide learners through the process of producing the Draft Project Report in the 

Assessment_Draft category. Similarly the Self_Peer_Assessment category (Table 1, independent 

variable column) includes the two submission items where students rate themselves and their 

peers teamwork skills (as per Figure 2 in Chapter 3: Learning Context) and the Skills_Teamwork 

category (Table 1, independent variable column) includes the learning content embedded in the 

EBP to guide learners through the self and peer assessment process.  

  

Table 1 
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Candidate Independent Variables  

Independent 
Variable 

milestone Type Submission or Learning Content Name 

Assessment_Draft Week 2 - Project 
Report 

Submission Project Report (Draft) - Mentor 
Submission Project Report (Draft) - Client 

Assessment_Plan Week 1 - Project 
Plan 

Submission Project Plan - Submit to Mentor 
Submission Project Plan - Submit to Client 

Assessment_Repo
rt 

Week 3 - Project 
Presentation 

Submission Project Report (Final) - Mentor 
Submission Project Report (Final) - Client 

Orientation Welcome Learning Content Welcome to the Program 
Learning Content What You Will Learn 
Learning Content How does this Program Work? 
Learning Content Program Overview 
Learning Content How do I get Help? 
Learning Content Practera Tips 
Learning Content Welcome to Global Scope! 
Submission Photography Consent 
Learning Content Next Steps and Orientation Details 
Learning Content How does this program work? 
Learning Content How do I get Help? 
Learning Content Practera Tips 
Learning Content Mentoring Tips 
Learning Content Cross-Cultural Teams 
Learning Content Welcome to Global Scope! 
Submission Photography Consent 
Learning Content Next Steps and Orientation Details 
Learning Content How does this Program Work? 
Learning Content How do I get Help? 
Learning Content Practera Tips 
Learning Content Practera’s Fair Work Policy - Summary 
Learning Content Useful Resources 
Submission First Team Submission on Practera 
Submission First Individual Submission on Practera 
Submission End of Orientation Checklist 

Other Welcome Learning Content How to Confirm your Participation 



92 

 

Submission Enrolment Form 
Conclusion Learning Content Engaging in continuing work  

Submission Feedback Survey 
Submission Participant Feedback and Certificate Survey 

Project_Draft Week 2 - Project 
Report 

Learning Content Week 2: Project Report Overview 
Learning Content Project Report Outcomes 
Learning Content Key Questions - Project Report 
Learning Content Week 2: Project Report Overview 
Learning Content Draft Project Report 

Project_Plan Week 1 - Project 
Plan 

Learning Content Week 1: Project Plan Overview 
Learning Content Project Plan Outcomes 
Learning Content Key Questions - Project Plan 
Learning Content Week 1: Project Plan Overview 
Learning Content Project Plan 
Learning Content Project Plan Explained 
Learning Content Project Plan Task List 
Learning Content  Seven Step Loop 
Learning Content Minto Pyramid 
Learning Content SCQ Analysis 

Project_Report Week 3 - Project 
Presentation 

Learning Content Week 3: Final Report and Project Presentation 
Learning Content Project Presentation Outcomes 
Learning Content Key Questions - Project Presentation 
Learning Content Week 3: Final Report and Project Presentation 
Learning Content Project Presentation 

Self_Assessment Welcome Submission Self-Assessment & Skill Development 
Week 1 - Project 
Plan 

Learning Content Attitudes of Learning Explained 
Submission Attitude Towards Learning 
Learning Content Attitudes Towards Learning and Your Project 

Team 
Week 2 - Project 
Report 

Learning Content Mindset for Learning 
Submission Mindset for Learning 
Learning Content Mindset for Learning and your Project Team? 

Self_Peer_Assess
ment 

Week 2 - Project 
Report 

Submission Self & Peer Assessment #1 

Week 3 - Project 
Presentation 

Submission Self & Peer Assessment #2 

Skills_Aggregate Learning Content Aggregate Findings Task List 
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Week 2 - Project 
Report 

Learning Content Project Report & Presentation Explained 
Learning Content How to Synthesize Research 
Learning Content Synthesis Tool: Mind Mapping 
Learning Content Synthesis Tools: Finding Themes 

Skills_Collaborati
on 

Welcome Learning Content Introduction to Collaborative Project Learning 
Learning Content Introduction to Self 
Learning Content Emotional Intelligence 
Learning Content Leading Self 
Learning Content Skill Development Planning 
Learning Content Key Collaboration Skills 

Skills_Networking Conclusion Learning Content Create your LinkedIn Profile 
Learning Content Add Global Scope on Linkedin 
Learning Content Add your program badge on LinkedIn 
Learning Content Introduction to Networking 
Learning Content Engaging in continuing work  

Skills_Presentatio
n 

Week 3 - Project 
Presentation 

Learning Content Project Presentation Task List 
Learning Content Project Report & Presentation Explained 
Learning Content Presenting Tips: Know your Audience 
Learning Content Presenting Tip: Powerpoint 

Skills_Reflection Week 2 - Project 
Report 

Learning Content Introduction to Learn 
Learning Content Feedback 
Learning Content Reflection 
Learning Content Reflective Writing 
Learning Content How to give Effective Feedback 

Skills_Research Week 2 - Project 
Report 

Learning Content Research & Analysis Task List 
Learning Content Research Tools 
Learning Content Research Tools: SWOT Analysis  
Learning Content Research Tools: User Personas 

Skills_Teamwork Welcome Learning Content Actively Participates  
Learning Content Communicates Effectively 
Learning Content Demonstrates Reliability 
Learning Content Exhibits Openness and Flexibility 
Learning Content Solutions Orientated 

Week 1 - Project 
Plan 

Learning Content Introduction to Team 
Learning Content Team Formation 
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Learning Content High Performance Teams 
Learning Content Diversity in Teams 
Learning Content Conflict in Teams 
Learning Content Introduction to Project 
Learning Content Project Fundamentals 
Learning Content Goals & Objectives 
Learning Content Approaches & Methods 

Week 3 - Project 
Presentation 

Learning Content Tips for Receiving  Constructive Feedback 
Learning Content Actively Participates  
Learning Content Communicates Effectively 
Learning Content Demonstrates Reliability 
Learning Content Exhibits Openness and Flexibility 
Learning Content Solutions Orientated 

 
 

As mentioned in Chapter 3: Learning Context, in the EBP students engage with clients to 

deliver a real-world project. Therefore students participating in the EBP have to juggle both real-

world project outcomes and learning outcomes focused on 21st Century Skill development. 

Additionally students were required to complete administration tasks like photography release 

forms and feedback surveys. With this in mind, each task outlined in Table 1 above was 

considered through the lens of the following types of tasks: 

1. Operational Task – An administration task required to participate in the EBP. For 

example pre-program surveys and program explanations.  

2. Project Tasks – Tasks related to the effective delivery of the real-world client project. For 

example a project plan or project report. 

3. Skill Development Tasks – Tasks related to students 21st Century Skill development. For 

example learning content about collaboration skills, self-assessments and reflections.  
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This breakdown identified 30 operational tasks, 39 project tasks, and 45 skill development tasks.   

Table 2 shows the breakdown of learning tasks through this lens and which categories of tasks 

were considered operation tasks, project tasks and skill development tasks for the purpose of this 

research.  

 

Table 2 

Categorisation of Program Tasks 

 
Category Number of Tasks 

Operational Tasks 30 
Orientation 25 
Other  5 

Project Tasks 39 
Skill_ Plan  10 
Assessment_ Plan 2 
Skills_Research 4 
Skill_Aggregate Findings 5 
Project_Draft  5 
Assessment_Draft  2 
Skill_Presentation 4 
Project_Report 5 
Assessment_ProjectReport 2 

Skill Development Tasks 45 
Skill_Collaboration 6 
Self-Assessment 7 
Skill_Teamwork 20 
Self_Peer_Assessment 2 
Skill_Reflection 5 
Skill_Networking 5 
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Dependent Variables: Responses to survey instruments 
 
 

In this research project I am using multiple regression analysis to test whether the 

candidate independent variables mentioned above in Table 1: independent variables are tested to 

see if they can contribute to an accurate prediction of five independent variables (outlined 

below). For this analysis to answer the research questions and achieve the objectives of this 

research project the dependent variables need to be representative of learners" perspectives, 

mindsets and skills. As outlined in Chapter 3: Learning Context the EBP has two survey 

instruments and a demographic questionnaire that could be used for this purpose.  

 

As part of the EBP students complete the demographic data survey and two reflective 

activities that are designed to help develop their ability to learn from the experience. From the 

demographic data survey and the two instruments used in the reflective activities, demographic 

data about students learning history as well as information about student's self-perception of their 

mindset and approach to learning was extracted. The following section explains the three surveys 

mentioned in Chapter 3: Learning Context. 

 

  The demographic data survey is completed before students are allocated to a team. The 

reflective activity focused on approaches to learning is completed after students submit a project 

plan to their industry client. The reflective activity focused on mindset is completed after 

students submit their draft project report. The demographic data survey (hereafter referred to as 

Learning History Survey (Survey 1) captured a variety of questions about the student's age, area 

of study and educational background. The reflective activity focused on approaches to learning 
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starts with students completing the Revised Two Factor Study Process Questionnaire (Survey 2) 

followed by students stepping through a structured reflection task designed to help them consider 

their responses to the survey in relation to their approach completing the Project Plan activity in 

the EBP. The reflective activity focused on mindset starts with students completing the Revised 

Implicit Theories of Intelligence Survey (Survey 3) followed by the same reflection task used for 

the Revised Two Factor Study Process Questionnaire activity. 

 

The student responses to the demographic questionnaire, the revised two factor study 

process questionnaire and revised implicit theories of intelligence survey are captured in the de-

identified and retrospective data used in this research project. The student responses to the two 

surveys and the questionnaire are reduced to five dependent variables: 

1. Learning History 

2. Deep Approach to Learning 

3. Surface Approach to Learning 

4. Fixed Mindset  

5. Growth Mindset 

How the students!"responses to the two surveys and questionnaire was reduced to these five 

dependent variables and why they were characterized with these names is outlined in detail 

below. However prior to outlining these five dependent variables and the data used one 

limitation requires acknowledgement, the sequencing of the questionnaire and surveys used to 

capture this data. Cognitive Load theory posits that the capacity and duration of a person"s 

working memory affects learning (Zambarano et al. 2019). Furthermore Sweller et al. (2019, 

2020) proposes that the success of educational technology is affected by human cognition 
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particularly the extent to which human cognition is considered in instructional design.  Cognitive 

load theory proposes the use of sequencing to facilitate knowledge acquisition (Clarke, 2005). 

The use of sequencing for good learning design suggests that when repeating a learning task, a 

portion of the improved performance could be attributed to prior knowledge and experience. 

Taking this into consideration it is relevant to examine how the sequence of the surveys and 

instruments were embedded in the EBP could impact the results presented and conclusions 

drawn from them.   

 

Cognitive load theory suggests that students!"responses to the survey"s and instruments 

could be impacted by how they are sequenced in the program design—for example, the reflective 

activity surrounding the Revised Two Factor Study Process Questionnaire (Survey 2) is identical 

to the reflective activity surrounding the Revised Implicit Theories of Intelligence Survey 

(Survey 3). Therefore students!"past experience completing the first reflective activity could have 

resulted in an improved performance in the second activity. It is possible to conclude that a 

student"s ability to accurately self-assess their mindset could have been higher than their ability 

to assess their approaches to learning based on sequencing. Although this is a consideration, this 

research project is not measuring or comparing student"s ability to accurately self-assess 

themselves or comparing the performance of the multiple regression models derived from each 

of the surveys. However it is worth considering cognitive load as a contributing factor when 

examining the multiple regression models specifically when it comes to outlier scores that appear 

to skew the models and when considering how the models could be improved. 

 
Dependent Variables: Survey Questions, Data Components and Dummy Coding 
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The scoring of the student responses to the two validated survey instruments and 

demographic questionnaires used as dependent variables in the regression analysis are: 

1. Learning History Questionnaire  

2. Revised Two Factor Study Process Questionnaire (Biggs et al., 2001) 

3. Revised Implicit Theories of Intelligence Survey (De Castella and Byrne, 2015) 

As previously mentioned in detail, these surveys and questionnaire are embedded in the EBP 

program that the de-identified and retrospective data set used in this study comes from. 

 

Dependent Variable One: Learning History 
 

The Learning History Survey (Survey 1) is not a validated instrument designed to 

measure learning history. Taherdoost (2016) posits that a valid social science instrument is an 

instrument that measures what it is intended to measure. Based on this definition the Learning 

History questionnaire could be valid for measuring learning history. However the learning 

history questionnaire was not developed for this purpose and has not been tested for its ability to 

measure learning history. The Learning History questionnaire was developed as a part of the 

EBP to capture demographic data about student participants as opposed to being designed to 

measure a student"s learning history. The intention of the Learning History questionnaire in the 

EBP was to give facilitators more insight so that they can more effectively support students. The 

questionnaire was added to the EBP in 2018, two and a half years after the initial design. At the 

time over 3000 students had participated in the program, with over 80% of participants 

identifying as international students. An evaluation of the program found that a large portion of 

the international students were not only struggling with transferring their theoretical knowledge 
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to the real-world but transferring from a high context Confucian learning culture into Australia's 

Socratic and low context learning culture (Hall, 1976) and business environment.  

 

Low context and high context are terms used to describe the way meaning is transferred 

in communication (Nam, 2015). In low context communication the majority of the meaning in a 

communication exchange is transferred in the verbal message whereas in high context 

communication the non-verbal cues matter more. Further what is communicated is more 

important than how it is communicated in low context communication, whereas this is reversed 

in high context communication. Students used to high context communication learning in 

technology-enabled low context cultures lose non-verbal cues they would use to interpret the 

meaning of an exchange (Westbrook, 2014). As a result it is more probable that students 

participating in the EBP who are transitioning from a high context culture to a low context 

culture experience a higher cognitive load than students who are not transferring context. 

 

Transfer is the ability to take insight from one situation or context and apply it to another 

(Jackson et al., 2018) in experiential learning students are transferring theoretical knowledge 

from the classroom to real-life situations, switching physical contexts like this is considered far 

transfer (Kober, 2015). Adding a transition of social context to this already cognitively complex 

task (Irvine, 2017) increases the complexity to another order of magnitude and therefore, the 

cognitive load on each learner.   

 

An example of the context shift required in the EBP for students is highlighted in the first 

engagement student teams have with their client. Australian industry clients tend to gauge their 
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student team"s understanding of the project by the clarifying questions students asked after 

reading the project brief. Students from high context cultures would find it essential to read 

between the lines of verbal communication and consider silence as golden (Nam, 2015) whereas 

an industry client from a low context culture would expect direct verbal messaging and all of the 

communication about the project to be explicit (Nam, 2015). This difference in understanding 

can result in subsequent actions of students not being aligned to the expected action of the client. 

In the EBP this often resulted in a lack of project confidence from the client and their subsequent 

disengagement. 

 

To address this situation the instructional designers and facilitators developed the 

learning history survey in order to identify students they needed to provide additional support to 

in order to have a successful first client meeting. At present students who identify as completing 

the majority of their learning in a low-context Confucian culture in the survey received extra 

learning content and were encouraged to read the project brief in advance of the meeting with the 

specific intention of formulating questions to ask the client. The impact of this intervention is yet 

to be methodically measured however the EBP feedback surveys and program engagement data 

shows an anecdotal improvement.  

 

The Learning History questionnaire developed to fill this need asks each student where 

they completed their primary education and secondary education. This data is categorical data, 

the dummy coding used in this survey for this research project and each of the location options 

were attributed to either a high-context Confucian culture or a low-context Socratic culture. A 

third category:$!other", was used for locations that did not fit into either of these categories. The 



102 

 

other category is less than 3% of the cohort. The $other!"category included students who had 

completed their education in African, Latino and Arab countries. Although most countries in 

these countries are considered high context cultures they were not discussed in the literature 

about Socratic and Confucian learning history so it was unclear which category they would fit 

best.  

 

It must be acknowledged that while this questionnaire is not a validated instrument the 

questions are asking for facts about where the student completed their past studies. The survey is 

a demographic data questionnaire not a psychological instrument. The researcher transferred the 

survey data into the Socratic and Confucian groupings.  The students completing the survey did 

not have to understand the theoretical concepts surrounding Socratic learning history, Confucian 

learning history, high context cultures and low context cultures in order to accurately answer the 

survey.  

 

Dependent Variable Two and Three: Deep Approach to Learning and Surface Approach to 
Learning.  
 
 

The Revised Two Factor Study Process Questionnaire (Survey 2) was developed by 

Biggs et al. (2001). The survey was designed as a tool for teachers to examine the learning 

approaches of students. In the EBP this survey is embedded in a reflective exercise where 

students examine their approach to learning. The survey contains 20 questions (see appendix 

one) that explore students!"attitude towards their study and their usual way of studying. Half the 

survey questions examine the student's deep approaches to learning, and the other half examine 

the students surface approaches to learning. 
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An individual who employs a deep approach to learning is focused on the meaning of 

what is being learned. In contrast an individual who employs a surface approach to learning is 

focused on capturing the entirety of the material that is currently being communicated (Jackson, 

2012). Each question has five answers on a Likert Scale: 

1. this item is never or only rarely true of me 

2. this item is sometimes true of me 

3. this item is true of me about half the time 

4. this item is frequently true of me 

5. this item is always or almost always true of me 

The survey questions are action-based and in most cases, orient the individual to consider 

their past behaviour towards learning. For example question one is designed to understand the 

extent to which the individual has a deep approach to learning and asks "I find that at times 

studying gives me a feeling of deep personal satisfaction.” In contrast question twelve (a surface 

approach to learning question) asked the individual to consider the phrase "I generally restrict 

my study to what is specifically set as I think it is unnecessary to do anything extra." A full list of 

the questions and their categorisation is available in appendix one. 

This survey uses a Likert scale to capture students" responses and is a continuous 

variable. Multiple regression analysis is a statistical analysis method and is a procedure that 

requires the use of quantitative data to conduct the analysis (Pederson, 2018). With this in mind 

each students" responses to the survey questions were attributed a numerical value as per the 

scoring on the instrument (See Appendix 1). The scores were split into two groups. One group 

for the scores from questions identified as questions related to deep approaches to learning and 
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one group for questions identified as questions related to surface approaches to learning. Each 

students" deep approach to learning question scores were summed to get a numerical value that 

could be used as the dependent variable for deep approach to learning. Each students!"surface 

approach to learning question scores were summed to get a numerical value that could be used as 

a dependent variable for surface approach to learning.  

 

Dependent Variable Four and Five: Fixed Mindset and Growth Mindset 
 
 

The Revised Implicit Theories of Intelligence Survey (Survey 3) was developed by De 

Castella and Byrne (2015) to identify fixed and growth mindset in learners. The scale was 

designed to #assess students!"belief about their ability to mould their own intelligence in contrast 

to their beliefs about the malleability of intelligence in general" (2015, p. 245). The survey 

contains eight questions (see appendix one) that explore students' belief about their ability to 

change their level of intelligence. Each question has six answers on a Likert scale. The 

instrument is presented as a list of eight questions that were divided into two sections. Questions 

one through four are designed to understand the extent to which an individual has a fixed 

mindset. Questions five through eight are designed to understand the extent to which an 

individual has a growth mindset. 

 

An individual with a fixed mindset assumes their intelligence and character are static and 

unchangeable, whereas an individual with a growth mindset assumes their intelligence and 

character can be developed with intentionality (Dweck, 2019). Question one on the survey asks 

individuals to consider to what extent they agree with the statement #I don"t think I personally 
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can do much to increase my intelligence.” Whereas question five asks individuals to consider to 

what extent they agree with the statement #With enough time and effort I think I could 

significantly improve my intelligence level.” The questions focused on both fixed and growth 

mindset position the individual as the agent of change using phrases like #I think I have the 

capability” and #I personally can"t”. Finally the questions focus on current belief as opposed to 

past action. For example question six asks the individual to consider the statement #I believe I 

can always substantially improve my intelligence” as opposed to asking how often they have 

changed their intelligence in the past.   

 

This survey uses a Likert scale to capture students!"responses and is a continuous 

variable. Each students!"responses to the survey questions were attributed a numerical value as 

per the scoring on the instrument (See Appendix 1). The scores were split into two groups. One 

group for the scores from questions identified as questions related to fixed mindset and one 

group for questions identified as questions related to growth mindset. Each students!"fixed 

mindset question scores were summed to get a fixed mindset dependent variable. Each students" 

growth mindset question scores were summed to get a growth mindset dependent variable. As 

mentioned above when discussing dependent variable two and three, a multiple regression 

analysis is a statistical analysis method and is a procedure that requires the use of quantitative 

data to conduct the analysis (Pederson, 2018) 

 

Sampling 
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This study uses retrospective and de-identified data from Practera’s eLMS. The eLMS is 

designed to support higher education learning programs that incorporate the experiential learning 

cycle as a core feature of the design. Practera uses real-time learning analytics analysis and data 

visualisation as a vehicle to extract learning issues for potential facilitator intervention.  

 

Sample options were narrowed down through the use of a convenience sampling 

approach (Etikan et al., 2016). The learning programs in the sample were already run on the 

eLMS, designed by me and facilitated by Practera’s facilitation team. The data extracted is 

already anonymised.  The use of learning analytics and educational data mining processes in my 

study design enables a larger data set to be used for both the qualitative and quantitative analysis 

(Reinman, 2016) somewhat limiting the challenges of mixed-method research sampling 

strategies (Onwuegbuzie & Collins, 2007). 

 

The sample for the study consisted of retrospective learning data of all learners, clients 

and facilitators in the EBP (explained in Chapter 3) that agreed to their data being used for 

research purposes. In the EBP students worked in teams of four or five on a project for an 

industry client. Selecting this learning experience resulted in a sample size of over 600 students 

and five facilitators. 

 

Data Collection 
 

The de-identified and retrospective data set available for this research project contained: 

• Student responses to learning theory survey instruments;  
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• Self and peer assessments on collaboration skills from the start, middle and end of 

the learning experience, 

• ‘Pulse check’ data used to highlight team dissonance, 

• Learning content completion data, 

• Client evaluations of team performance on project deliverables, 

• Facilitator support intervention logs for teams and individuals, 

• Post-program student reflections highlighting key learnings, 

• Timestamped trace data for all inputs and outputs of students into the eLMS for 

the duration of the learning program. 

 

Although all of this data is available in the data set the data used in the analysis includes 

the student responses to learning theory survey instruments (dependent variable) and the learning 

content completion data (independent variables). Combining these data sources allows for 

exploration into the three research questions. Firstly using these data sources as the independent 

and depended variables in a regression analysis will determine the extent to which there is a 

relationship between the learning data captured by the eLMS and the students’ scores on the 

survey instruments. Furthermore which independent variables end up in the regression model 

could provide insight into additional data and analyses that could improve the accuracy of the 

model in predicting students’ perceptions, mindsets and skills. 

 

As mentioned previously this research stems from my work as an experiential learning 

facilitator and designer. As an insider I have a unique insight into the overall learning objectives, 

program design and facilitation strategies. The data collected by Practera’s eLMS is rich in detail 
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and is generated by students participating in an experiential learning program that I designed.  In 

light of the research questions, I thought that the data selected showed potential for testing the 

hypothesis and answering the research questions.  

 
Data Analysis Process 
 

The following technology-enabled data analysis process and approaches are used in the 

following order in this research project. 

 
Step 1: Identifying the Dependent Variable (Score and Code Learning Instruments Data) 
 
 
  As mentioned above, students participating in the EBP completed the Revised Two 

Factor Study Process Questionnaire R-SPQ-2F (Biggs et al., 2001) (Appendix 1) and The 

Revised Implicit Theories of Intelligence (Self-Theory) Scale (De Castella & Byrne, 2015) 

(Appendix 1). Furthermore they identified the context in which they completed their primary and 

secondary education in a Learning History Questionnaire. These instruments and learning history 

questionnaire were used to attribute a numerical value to each student for each of the five 

dependent variables: 

1. Fix Mindset. 

2. Growth mindset. 

3. Surface approaches to learning.  

4. Deep approaches to learning. 

5. Learning history. 
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Step 2: Identifying the Independent Variables (Dummy Code Learning Data)  
 

As mentioned above, each learning task students could complete while participating in 

the EBP was reduced into candidate independent variable categories (Table 1: Candidate 

Independent Variables). The following naming conventions were used for the different content 

categories: 

1. Other – program informational data. 

2. Orientation – Programmatic information about the learning experience. 

3. Skills_x  – Learning content on learning content related to a particular skill or 

capability (indicated by x).  

4. Self_Assessment – a reflective task that is submitted for feedback. 

5. Assessment_X – Experiential Task submissions related to particular assessment 

(indicated by x).  

 Table 3 

Variables  

Dependent Variables Independent Variables 
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Learning History 
Deep Approaches to Learning 
Surface Approaches to Learning 
Growth Mindset 
Fixed Mindset 

Assessment_Draft 
Assessment_Plan 
Assessment_Report 
Orientation 
Other 
Project_Draft 
Project_Plan 
Project_Report 
Self_Assessment 
Self_Peer_Assessment 
Skills_Aggregate 
Skills_Collaboration 
Skills_Networking 
Skills_Presentation 
Skills_Reflection 
Skills_Research 
Skills_Teamwork 

 

Step 3: Multiple Regression Analysis 
 

The first step in identifying whether learning data captured by the eLMS (candidate 

independent variables) can be used to predict the five dependent variables: learning history, deep 

approaches to learning, surface approaches to learning, growth mindset and fixed mindset is to 

examine the extent to which any combination of the candidate independent variables can predict 

any of the five dependent variables. This research project is an exploratory study that starts with 

seventeen candidate independent variables (outlined in Table 1: Candidate Independent 

Variables) for each of the five dependent variables.  As a result of the size of the candidate 

independent variable pool it is likely there will be more than one viable regression model. 

Therefore the second step will be to use a systematic process to select the ‘best fit’ model 

(Ripley, 2003).  
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Ratner (2010, p. 65 asserts that “identifying the best subset among variables to include in 

a model – is arguably the hardest part of model building.”  The paper overviews the history of 

model selection from a time when the number of candidate variables and observations were 

small enough to use ordinary least squares (OLS) regression models that could be used alongside 

exploratory data analysis techniques to examine each data point and make adjustments for gaps, 

clumps and outliers. The paper further explores the characterised emergence of All-subset and 

Stepwise model selection processes and nine key limitations. Perhaps the most poignant 

limitation Ratner (2010) highlights is that “the data analyst knows more than the computer … 

and failure to use that knowledge produces inadequate data analysis” (p 66). The subsequent 

overuse of these approaches by those with limited formal training on statistics and experts who 

believe a “suitable computer program can objectively make substantive inference without active 

consideration of the underlying hypothesis” (p.66). 

 

The number of candidate independent variables and observations in the data set used in 

this research rules out regression models like OLS builds and tested in a small-data set paradigm. 

This coupled with my positionality as a novice data analyst required me to leverage the expertise 

of seasoned data scientists and learning analytics researchers. After consulting the expert advice 

of learning analytics researchers I collaborate with on research projects that examine the use of 

learning analytics in work-integrated learning (James et al., 2018) and more specifically the 

importance of metacognitive regulation in work-integrated learning (Joksimovic et al., 2020). 

 

I used a combination of the above-mentioned expert advice and learning analytics 

literature (Joksimovic et al., 2015; Van Sebille et al., 2018) to make key decisions in my 
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approach to the multiple regression analysis, including software package choice and methods for 

‘best fit’ model selection. As “the data analyst knows more than the computer … and failure to 

use that knowledge produces inadequate data analysis” (Ratner, 2010, p 66). I was fortunate 

enough to leverage the knowledge of the data scientists and learning analytics researchers 

mentioned above throughout each state of the regression analysis.   

 

To conduct the multiple regression analyses used to answer the research questions in this 

research project I used Glmulti, an R package for automated model selection to find the optimal 

regression model for each of the five dependent variables. Glmulti implements information-

theoretic methods for model selection and model inference (Calcagno & Mazancourt, 2010). 

Calcagno and Mazancourt (2010, p 5) assert that Glmulti “generates all possible model formulas, 

fits them with glm, and returns the best models”   Leveraging the power of Glmulti means that 

each possible unique combination of independent variables is built and tested so that the best fit 

non-redundant models are identified.  

 

Once all the possible combinations for each of the five dependent variables were tested 

the regression model with the best fit and predictive power  was selected using Akaike 

Information Criteria (Hastie et al., 2009) and presented in the results (see tables 9,10 and 11, in 

chapter 5). When using Akaike Information Criteria for model selection, the model with the 

lowest AIC value is the best fit model. The AIC formula rewards goodness of fit, however it 

counters for overfitting by penalizing an increase in variables. AIC is calculated for each 

candidate ‘best fit’ model then the AIC for each ‘best fit’ model is compared to the lowest 

scoring model to identify the probability of information loss when comparing the two models. A 
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‘best fit’ multiple regression model is selected if the probability of information loss of all the 

comparison models is low.  I chose to use Glmulti over OLS and stepwise regression analysis 

process and AIC because it enabled automated and systematic testing of each possible multiple 

regression model, including the consideration of main and interaction effects. Moreover this 

approach is  used by learning analytics researchers (Joksimovic et al., 2015; Van Sebille et al., 

2018) one of the educational research communities that has called for more integration of 

learning theory and learning analytics research (Gasevic et al., 2017; Gašević et al., 2016; Lodge 

& Lewis, 2012; Rogers, Gašević, & Dawson, 2016; Wise, 2014; Wise & Shaffer, 2015; Avella et 

al., 2016; Gasevic, Dawson & Siemens, 2014; Kirkwood & Price, 2013; Lodge & Corrin, 2017; 

Lockyer, Heathcote & Dawson, 2013; McArthur, Lewis & Bishay, 2005; Reimann, 2016).  

 

 One key interaction effect that is important to attend to when using multiple regression 

analysis is multicollinearity. Multicollinearity occurs when there is a high degree of correlation 

between variables analysed in a multiple regression equation (Allen, 1997). Existence of 

multicollinearity in a regression equation can impact the efficacy of the equation depending on 

how the equation is intended to be used. There are two types of multicollinearity.  Perfect 

multicollinearity is when “one independent variable is a perfect linear function of one or more of 

the other independent variables in a regression equation” (Allen, 1997, pg. 176). Perfect 

multicollinearity can occur when one candidate independent variable is constructed out of other 

independent variables. In this research project none of the seventeen independent variables are 

constructed using part or all of other independent variables. As highlighted in Table 1 above, the 

time spent on each learning task is only attributed to one candidate independent variable. 
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 Extreme multicollinearity is when “an independent variable is very highly correlated with 

one or more other independent variables” (Allen, 1997, p177). The presence of extreme 

multicollinearity in a regression model can be checked for by examining the standard error of the 

coefficients and the significance levels of the coefficients.  In order for a regression coefficient to 

be statistically significant it must be larger than its standard error. In specific, at a 0.05 

significance level the coefficient must be twice as large as the standard error. Furthermore, if 

there is interaction among the variables the significance level of the coefficients decreases. 

Akaike Information Criteria (AIC) attends to multicollinearity when scoring models to determine 

the best fit model (Polidori, 2020). Therefore, use of AIC in ‘best-fit’ model selection means that 

multicollinearity has been considered in the decision.  

Ethical Considerations 
 

Using learning analytics in educational decision-making is examined and debated in the 

literature and practice with the ethical issues surrounding the use of new technology in learning 

and teaching being no different. Slade and Prinsloo (2013) break down the ethical concerns 

surrounding learning analytics into three categories broadly related to where the data is captured, 

how it is used, and how it is stored. Rubel and Jones (2016, p. 147) specifically focus on the 

privacy concerns acknowledging that knowledge gained from the data is “exponentially more 

valuable for the institution than the data subject,” thus opening up the potential for institutions 

and the commercial enterprises they are working with to bias interventions and optimise for their 

own gain over the student benefit. This imbalance is further accentuated by Prinsloo and Slade 

(2016) who highlight both ethical challenges when it comes to the power balance between 

institutions and students and the complexities of student agency in learning that can be impeded 

by the use of learning analytics.  
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Sclater’s (2017) discussion of the ethical issues surrounding the use of learning analytics 

includes concerns around insufficient data, invalid analytics, loss of autonomy and students’ 

behaviour when using learning analytics in educational practice. Pardo and Siemens have 

explored the possibility of learning analytics being real-time research and requiring the same 

rules and ethics as any research (2014). In contrast Kay, Korn and Oppenheim (2012) highlight 

specific differences in consent parameters with research consent having an explicit direction and 

agreed outcome.  

 

To more fully understand the potential of learning analytics, machine learning and 

educational data mining, for the purpose of designing educational practice that would lead to 

improved learning outcomes, my research addressed ethical concerns in the following manner: 

• Data was fully anonymised before extraction from the eLMS (Practera) and used 

in any EDM, LA and ML processes;  

• Data collected for this study was part of the regular operations of my organisation 

(Practera); 

• Practera obtained consent from participants of the learning programs and the 

educational institutions they attend before their participation; 

• No program coordinator or facilitator was aware of the consent status of each 

participant before, during or after the learning program. 

 

A specific concern for this particular research project was the internationalised nature of 

the research and subsequent ethical and legal implications. The University of Liverpool was 
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located within the European Union and is under the jurisdiction of the EU General Data 

Protection Regulation (GDPR). The data was captured in Australia and is under the jurisdiction 

of the Australian Privacy Principles (APP). Finally, the student researcher and thesis supervisor 

reside in the United States of America where there is no single principal data protection 

legislation but various laws enacted at the state and federal level. To examine the legal and 

ethical considerations of data privacy for this research, a Data Privacy Impact Assessment was 

conducted and is available in Appendix 2. The result of the Data Privacy Impact Assessment 

resulted in three key restrictions: 

1. The de-identified data set in its entirety was not to be transmitted electronically over 

international borders; 

2. If specific de-identified data was to be transferred electronically, only the minimum data 

required could be transferred, and traces of the transfer were to be deleted from email 

logs; 

3. The de-identified data set was stored on an encrypted computer that the researcher cannot 

connect to the internet. 

As a result, the student researcher had to travel from Boston to Sydney to collect the de-

identified raw data and conduct the initial analysis. The de-identified raw data was provided on 

an encrypt MacBook Pro that could not be connected via wifi or Bluetooth to any other device or 

the internet without a password that was unknown to the student researcher. Initial data cleaning, 

scoring and coding of instruments and surveys, and initial regression analysis was conducted in 

Sydney. This was done to confirm which specific data from the data set was required for the 

analysis. Data that was not required for the analysis was removed from the encrypted MacBook 
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Pro before the MacBook Pro was physically taken back to Boston on a plane. Only the following 

data was physically transferred to Boston:  

1. Scores of survey instruments. 

2. Action Log. 

3. Technical Program Map.    

 
Conclusion 
 

The research approaches employed in this study are underpinned by my philosophical 

foundation and beliefs about learning that emerged from my teaching practice and were refined, 

examined and iterated using the lens of learning theory. Moreover, the chapter explains the 

interaction between my philosophical foundation and positionality working at the intersection of 

education technology, learning analytics, learning theory research and experiential learning that 

led to the research hypothesis, research questions and methodological choices.  Finally ethical 

issues, including data privacy and security, were addressed and controls added to limit the risks. 

This research methodology resulted in a research design that leverages strength from both 

learning analytics research and learning theory research in an integrated way.    

 

!  
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Chapter 5: Results 
Introduction 
 
 

The analysis and findings presented in this chapter are from a de-identified and 

retrospective learning dataset captured by technology from the 612 students who participated in 

an experiential learning program. The results presented were produced by aggregating the data as 

a result of a deconstruction of the program design, analysing the student"s behaviour engaging 

with the program and the students!"self-assessment scores on instruments and surveys that 

identify mindsets, approaches to learning and learning history. Specifically, students time-on-

task, identified in the literature as a #constructs affecting learning success” (Kovanovic et al., pg 

82), is used to derive seventeen candidate independent variables and student"s responses to two 

validated survey"s and a questionnaire is used to derive five dependent variables.  The chapter 

presents the results of the self-assessment instruments and questionnaire. This is followed by a 

detailed overview of each of the five multiple regression models identified as the best fit model 

using Glmulti to test all possible models (Calcagno & Mazancourt, 2010) and Akaike 

Information Criteria (Hastie et al., 2009) to select the best fit model. This is a common approach 

used by learning analytics researchers (Joksimovic et al., 2015; Van Sebille et al., 2018). The 

discussion following the presentation of each of the five best fit regression models examines the 

models to highlight strengths and limitations of these quantitative models that are taken into 

consideration when using the model to answer the qualitative research questions in chapter six.   

 

Throughout the chapter, analysis and results are presented through tables, graphs and text 

explanations. The results are presented, along with how these results relate to the research 
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questions. The results are presented in the order the analysis was conducted so that the research 

process is clearly outlined.  

 

The results chapter is organised into two sections. The first section, the scoring of the 

survey and questionnaire responses used as dependent variables, explains the nature of the five 

dependent variables derived from the two surveys and questionnaire. Presenting the results of 

scoring and a distribution graph of the scores gives an overview of the five dependent variables 

used and any considerations that need to be attended to in the qualitative discussion. The second 

section, the presentation of the multiple regression analysis, includes an explanation of the tests 

conducted, s the five regression models chosen and and how both these elements inform the 

answers to the research questions. 

 
Dependent Variables: Survey and Questionnaire Scoring Results 
 
Survey 1: Confucian and Socratic Learning History 

 

As part of a pre-program questionnaire, students provided information on the location of 

their primary and secondary schooling in a learning history questionnaire (Survey 1). This data is 

categorical data and requires dummy coding to derive dependent variables (Pederson, 2018). The 

answers to these questions were used to distribute the learners into nine categories based on their 

learning history, these categories are displayed in Table 4 below. 

 

Table 4 

Learning History Categories 
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 Secondary  
Confucian Socratic Other 

Pri
mar

y 

Confucian 475 3 1 
Socratic 11 45 2 
Other 0 0 7 

 

The coding of this data indicates a substantial weighting towards a Confucian education 

history. Furthermore, two categories have no data and four have less than ten. In regression 

analysis it is acknowledged that a minimum of 10 observations per category is required (Austin & 

Steyerberg, 2015). As a result I removed the #other” category and the sample data associated with 

that category and re-coded the data for use in an ordinal logistic regression (Harrell, 2015) with 

learning history represented in three groups that have a natural order: Confucian learning history, 

mixed learning history, and Socratic learning history depending on whether their K-12 education 

was entirely in a Confucian context, fully in a Socratic content or a combination of both. Table 5 

presents the re-coding of the student responses to learning history questionnaire.  

 

Table 5 

Final Learning History Categories used as dependent variables 

Confucian Mixed Socratic 
475 14 45 

 
Survey 2: Deep and Surface Approach to Learning 
 
  

Table 6 shows the results of the Revised Two Factor Study Process Questionnaire 

(Survey 2) embedded into a reflection activity in the EBP, outlined in chapter 3. The student 

responses to the survey captured in the data set were scored based on the scoring process 

developed by Biggs et al. (2001) the authors of the survey. Figure 3 shows the asymmetrical 
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distribution of the survey results indicating there is an orientation towards deep approaches to 

learning compared with surface approaches to learning. Over half of the cohort sit in the middle 

fifty per cent of the scoring on both deep and surface approaches to learning resulting in 

significant overlap of the distribution curves.  

 

Table 6 

Revised Two Factor Study Process Questionnaire 

 <12.5 12.5 - 25 25 – 37.5 >37.5 No Score 

Deep Approaches 
to Learning 

0 42 304 212 78 

Surface 
Approaches to 
Learning 

3 344 179 32 78 

 

 
 
Figure 3 

Approaches to Learning Distribution 
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Students!"score of their self-perceived tendency towards surface approaches to learning 

and deep approaches to learning is used as the dependent variables two and three in this research 

study. The first regression analysis to identify the best fit model for predicting a learner score on 

the questions related to deep approach to learning (dependent variable 2) on the Revised Two 

Factor Study Process Questionnaire (Biggs et al. 2001). The second regression analysis to 

identify the best fit regression model for predicting a learner score on the questions related to 

surface approach to learning (dependent variable 3) on the Revised Two Factor Study Process 

Questionnaire (Biggs et al. 2001). If the time-on-task independent variable candidate categories 

(Outlined in detail in Chapter 4) can be reduced to regression models that can predict a learners 

scores on the Revised Two Factor Study Process Questionnaire it could be used as a proof of 

concept for learner behavior capture by an eLMS being used to identify a learners tendency 

towards deep approaches to learning and surface approaches to learning.  

 

The regression model itself could be used as the baseline for a machine learning 

algorithm that monitors a learner"s approach to learning. In machine learning research, #a 

baseline is a simple model that provides reasonable results on a task and does not require much 

expertise and time to build” (Li et al., 2020). A baseline can also help identify help identify the 

gaps in the baseline analysis that we can use to guide the development of a more complex and 

accurate model.  Being able to predict a student"s  approach to learning using data captured by an 

eLMS  could help facilitators identify students that may need more support with particular 

learning goals.    
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Survey 3:  Fixed vs Growth Mindset  
 
 

Table 7 shows the results of the Revised Implicit Theories of Intelligence survey (Survey 

3) embedded into a reflection activity in the BPP. The student responses to the survey captured 

in the data set were scored based on the scoring process developed by De Castella & Byrne 

(2015), the authors of the survey. 335 of the 636 student participants scored above 19 of an 

available 24 on the growth mindset questions indicating that there is an orientation towards a 

perceived growth mindset in the sample. Figure 4 shows the normal distribution of the student 

participant scores. Students" score of their self-perceived tendency towards growth mindset and 

fixed mindset is used as the dependent variables four and five in this research study. The first 

regression analysis to identify the best fit model for predicting a learner score on the questions 

related to growth mindset (dependent variable 4). The second regression analysis to identify the 

best fit regression model for predicting a learner score on the questions related to fixed mindset 

(dependent variable 5).  

 

Similar to the deep and surface approaches to learning, if the time-on-task independent 

variable candidate categories (Outlined in detail in Chapter 4) can be reduced to regression 

models that can predict a learner"s scores on the Revised Implicit Theories of Intelligence survey 

(De Castella & Byrne, 2015) it could be used as a proof of concept for learner behavior capture 

by an eLMS being used to identify a learners tendency towards a growth mindset and fixed 

mindset and the regression model could be used a baseline for a machine learning algorithm (Li 

et al., 2020.  
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Table 7 

Revised Implicit Theories of Intelligence Survey Results 

 <6 7-12 13 - 18  19 – 24 DNC 

Fixed Mindset 156 293 92 10 86 
Growth Mindset 9 23 183 335 86 

      
 
Figure 5 

Mindsets Distribution 

 

 

Further development of these analyses and displaying them  to facilitators could help 

them provide more tailored support to each student. For example, facilitators could use this 

information to encourage students to complete learning tasks they do not naturally lean towards. 

Later in this chapter, the results highlight that students who identify as having a fixed mindset 

invest their time on learning tasks related to presenting or communicating their skills as opposed 
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to learning tasks that will help them develop their skills. Facilitators could use this understanding 

about students with a fixed mindset and knowing which students in their cohort have a fixed 

mindset to encourage and even incentivise the completion of learning tasks that will help them 

develop their skills. 

 
Multiple Regression Analyses 
 
Use of Multiple Regression Analyses 
 
 

Regression analysis is used to explain the relationship between variables (Pederson, 

2018) and can be used  to study how one variable changes as a result of its dependence on 

another variable (Weisberg, 2015). The variable under examination is the dependent variable, 

and the other variable or variables are the independent variables. Multiple regression analysis is a 

method of statistical analysis used to examine and understand the relationship between a variable 

(dependent) and multiple other variables (independent) (Allen, 2017). In this research project a 

suite of seventeen independent candidate variables is used to systematically identify the best fit 

multiple regression model for the five dependent variables outlined in Chapter 4 and presented in 

this results chapter. Glmulti is used to test all possible model combinations (Calcagno and 

Mazancourt, 2010) and the best fit model for prediction was selected using Akaike Information 

Criteria (Hastie et al., 2009) 

 The use of multiple regression analyses, a traditionally quantitative research method, is 

used in this thesis to infer qualitative insights that inform the research, present a proof of concept 

for how data captured by an eLMS can be used to identify and display a learners perspective, 

mindset and skills and potentially present one or more regression models that can be used as 
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baselines for the development of machine learning algorithms for measuring mindsets and skills.  

g The characteristics of the best fit multiple regression models presented and discussed: 

 

1. Residuals: Residuals are the difference between the student’s actual score and the 

score the regression model predicted. The model's fit is determined by the symmetry 

of the points on the mean value of zero. Table 7 shows the Residuals for each of the 

five regressions run.   

2. Independent Variables in the Model: Lists all of the independent variables that are 

in the best fit multiple regression models presented below.  

3. Estimate: The estimate indicates the slope of the model. In this regression, the 

estimate indicates the effect of an increase of one point on each independent variable 

has on the dependent variable.  

4. p-value (indicated by significance codes): The p-value indicates how likely it would 

be to observe a value greater than or equal to t. In the results displayed below, the 

significance of the p-values for each independent variable in each of the five best fit 

models has been reported based on significance codes ranging from <0.001 through 

to 1.  

5. Standard Error: The standard error indicates the average amount the model 

estimates vary from the actual averages of the data set. The lower the standard error 

means a lower the variance if the model was run again and again. An ideal model has 

a lower standard of error relative to the estimate. 

6. t-value: The t-value indicates how many standard deviations the estimate is away 

from zero. The further the t-value is from zero, the higher the likelihood there is a 
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relationship between each of the independent variables in the best fit model and the 

dependent variable. 

7. Standardised Coefficient: Standardising each of the independent variables enables 

the identification of which independent variable have the most significant effect on 

the dependent variable. In the reported regression models below, standardising the 

coefficients enables the identification of the independent variables that has the most 

significant impact on the students self-reported answers on the surveys and 

questionnaire. 

8. Adjusted R-Squared: R- squared identifies how well the overall model fits the actual 

data. In multiple regression models, adjusted r-squared is used as it adjusted based on 

the number of independent variables in the model. In the reported multiple regression 

models, r-squared identifies the percentage of the variance in the students self-

reported answers on the surveys and questionnaire that can be explained by the 

predictor variables. 

 

Examination of the Residuals  
 

The residuals for the five best fit multiple regression models for predicting the students 

self-reported answers on the surveys and questionnaire using independent variables using time-

on-task are reported in Table 8. These models are the best fit models using a subset of the data 

available in the data set available to conduct this analysis.   The purpose of reporting and 

examining the fit of each of the multiple regression models produced by this analysis is to 

identify the strength of the model for accurately predicting a learner self-report responses on the 

survey"s and questionnaires; without having to include the surveys in a learning program. 
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Additionally examining the nature of the relationship between the independent variables 

included in the best fit model and the dependent can offer insights into how the model could be 

improved with additional data or used as a baseline model for a machine learning algorithm Li et 

al., 2020.  

 

As mentioned above a regression model is a good fit if the distribution of the residuals is 

symmetrical. The residuals #should show a trend that tends to confirm the assumptions made in 

performing the regression analysis or failing them should not show a tendency that denies them” 

(Martin et al., 2017, p 1). The residuals are calculated by subtracting the model's prediction from 

the actual score of each student. The residual indicates how far above or below the prediction 

line, each of the actual student scores is. Table 8 (below) highlights the distribution of the 

residuals for each of the five models. When using a regression analysis in a research project that 

stems from a positivist epistemological perspective an extensive regression diagnostic would be 

undertaken to verify observed discrepancies and check for model adequacy (Fernandez, 1992). 

However this study stems from an anti-positivist perspective (Burrell & Morgan, 2005) and is 

using a traditionally quantitative method to infer qualitative insights, to answer qualitative 

research questions and present a proof of concept that is not intended to be used without further 

development. It is from this lens and perspective that the results reported below are presented 

and examined. 

 

Table 8 

Residuals 

Regression Min 1Q Median 3Q Max 
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Learning History -12.2785 -2.8880 0.5876 1.2311 14.2311 

Deep Approach -33.797 -2.039 1.5 1.5 20.101 

Surface Approach -22.6993 -2.6993 0.8362 0.8362 22.3007 

Fixed Mindset -7.9919 -0.9919 0.2937 0.2937 9.0081 

Growth Mindset -15.5038 -0.7297 0.2802 1.3140 6.4962 
 

 

The regression model that is the best fit model for predicting the dependent variable used 

for Learning History is symmetrical. The residual median is 0.58, indicating that the model 

under predicts more than 50% of the student scores in the natural order. The model is 

symmetrical, indicating a fit and provides no indicators of ways the model itself could be further 

improved in order to provide a more consistently accurate prediction. However the data set itself 

is skewed toward students from a Confucian learning history and could be impacting the strength 

and the accuracy of the model. Moreover, the skewed nature of the data set should be attended to 

when using the model to draw qualitative insights and when answering the research questions.     

 

The regression model that is the best fit model for predicting the dependent variable for 

Deep Approach to Learning is asymmetrical. Compared to the best fit models for Fixed 

Mindset, Growth Mindset and Surface Approach to Learning, the best fit model for Deep 

Approach to Learning appears to be less accurate. In one case, the predictive model has scored 

one student 33 points higher than their actual score and another student 20 points lower than their 

actual score. In the middle of the distribution, both the median value and 3Q value are 1.5, 

indicating that over 25% of the student's actual scores were exactly 1.5 points higher than their 

predicted score. This situation could indicate that an outlier score is impacting the predictive 

model. In a regression analysis #an outlier is an observation that is far removed from the rest of 
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the observations” (Maddala, 1992, pg 89). In theory if the score that is 33 points below the 

predictive line is removed the predictive model line would be higher bringing the medium and 

25% of the students' scores (150 students) closer to the predictive line. 

 

The regression model that is the best fit model for predicting the dependent variable for 

Surface Approaches to Learning appears to be the most symmetrical of the models, 

specifically when looking at the full distribution. Similar to the best fit model for Deep 

Approaches to Learning, at least 25% of the cohort (150 students) have the same difference 

between their actual score and the model's predicted score. A median of 0.83 also indicates that 

over 50% of the cohort's actual Surface Approaches to Learning scores are exactly 0.83 points 

higher than the predictive model line. This situation could indicate an unbalanced model, or 

perhaps that students!"behaviour indicates a slightly lower use of surface approaches to learning 

than students!"self-perception. Additionally the Surface Approaches to Learning Model has the 

lowest R_squared of all the models (discussed in the next section), so although the model 

appears to be symmetrical, it is currently the weakest model when it comes to the accuracy of the 

predictions.   

 

The regression model that is the best fit model for predicting the dependent variable for 

Fixed Mindset is symmetrical. The minimum and maximum residuals are similar whole 

numbers, and over 50% of the student's actual scores are within 1 point of the model's prediction. 

Despite the symmetry of the model, it does indicate that the prediction would score one student 

nine points above their actual score and one student eight points below their actual score. It is 

possible that these two students are outliers and removing their scores could result in a 
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significantly lower minimum and maximum residual. The outlier status of these two students is a 

viable hypothesis considering that more than 50% of the students' actual scores are within one 

point of the predictive line.    

 

The regression model that is the best fit model for predicting the dependent variable for 

Growth Mindset is symmetrical in the centre and asymmetrical at the extremities. A minimum 

residual of -15.5 indicates that for one student, the predictive model would have indicated they 

have a significantly higher growth mindset score than their self-evaluation. A recommended next 

step to improve this model would be to test whether this score is an outlier by removing it from 

the model. It is feasible that a student could inaccurately self-assess their mindset if they were in 

a situation of stress while completing the instrument. It is also feasible that there is an error in the 

data, and the student's score was miscalculated. Setting this potential outlier or error aside, over 

50% of the models' predictions are within 1.5 points of the student's actual score.   

 
The five $best fit!"multiple regression models that emerged from this analysis 
 
Dependent Variable 1: Learning History 
 

Table 9 

Dependent Variable 1: Learning History 

Program Tasks Coefficient 
Estimate 

Error t-value Standardised 
Coefficients 

Adjusted 
r.squared 

Self_Assessment 0.3519. 0.2117 1.662 0.1618184 0.4951508 
Assessment_Draft 0.4945** 0.1669 2.963 0.2111627 
Assessment_Plan 0.5484** 0.1944 2.821 0.2095597 

Skills_Collaboration 0.9351*** 0.1934 4.834 0.3353930 
Skills_Presentation 1.3598* 0.5765 2.359 0.2849612 



132 

 

Skills_Networking 1.3793*** 0.2218 6.220 0.3881705 
Project_Draft 29.0118*** 4.8681 5.960 1.8917882 

Self_Peer_Assessment -0.5838* 0.2578 -2.264 -0.1259924 
Skill_Aggregate -0.7589. 0.4565 -1.662 -0.1967880 

Other -3.1002*** 0.2352 -13.184 -0.7554623 
Project_Report -24.7071*** 4.8682 -5.075 -1.6040895 

 
Signif. codes:  0 !***"#0.001 !**"#0.01 !*"#0.05 !."#0.1 "#"!1 

 

The best fit multiple regression analysis for learning history was produced using 

students!"learning history on a sliding scale between Confucian and Socratic learning history. 

This was based on how much of their K-12 education was in a Socratic or Confucian 

environment. The coefficients with a negative slope (indicated by a negative coefficient estimate 

in Table 9) indicate that the higher the engagement with the learning category, the more likely 

the learner has a Socratic learning history. Conversely the coefficients with a positive slope 

indicate that the higher the engagement with the learning category, the more likely the learner 

has a Confucian learning history. 

 

These results indicate that seven of the subcategories of learning tasks indicate a 

likelihood of Confucian learning history and four of the subcategories of learning tasks indicate a 

likelihood of Socratic learning history. However it does need to be noted that the dataset had 

significantly more students who identified having a Confucian learning history compared with 

those identifying a Socratic learning history. Perhaps a more evenly weighted data set would 

produce a different result or find more of the other subcategories having a relationship with 

Socratic learning history. 
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The adjusted R-squared of the learning history model is as high as that of fixed mindset, 

growth mindset and deep learning (reported below). However this result needs to be considered 

in light of the difference in the quality of the data used in the analysis. The mindset and 

approaches to learning regression models were developed using the Revised Two Factor Study 

Process Questionnaire (Biggs et al., 2001) and the Revised Implicit Theories of Intelligence 

survey (De Castella & Byrne, 2015). Both instruments are validated and designed to elicit a 

student's perception of their mindset and approaches to learning. In contrast the data used to 

develop this model was a questionnaire asking which environment they completed their primary 

and secondary education in. 

 

Being able to identify a learner"s educational history could be useful for facilitators, 

particularly if the student is participating in an experiential learning program in a different 

learning context than their previous education. Understanding a student"s learning history and an 

awareness of common challenges students from different learning contexts have when 

participating in experiential learning programs could help facilitators provide tailored support to 

students who are switching contexts.  

 

The results indicate that there is a relationship between some of the independent variables 

and the dependent variable representing a students!"learning history. However the questionnaire 

used is not a validated instrument. Either going through the process of validating the current 

instrument or using an already validated instrument would automatically strengthen the model. 

Once a validated instrument is used as the baseline for the analysis, richer data analysis like 

natural language processing of reflective writing could be used to improve its predictive ability. 
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Dependent Variables 2 and 3: Deep and Surface Approaches to Learning 
 
Table 10 

Dependent Variables 2 and 3: Deep and Surface Approaches to Learning 

 Program Tasks Coefficient 
Estimate 

Error t-value Standardised 
Coefficients 

Adjusted 
r.squared 

Deep Approach to 
Learning 

Assessment_Draft -0.5902* 0.2978 -1.982 -0.13095622 0.5130537 
Assessment_Plan 0.4941 0.3411 1.449 0.09811586 
Self_Assessment 2.9311*** 0.4696 6.242 0.70020835 
Skills_Aggregate 2.3972** 0.9211 2.603 0.32296613 

Skills_Presentation -2.4155* 0.9547 -3.530 -0.26299391 
Skills_Reflection -2.7036*** 0.7290 -3.709 -0.35294767 
Skills_Teamwork 0.6457** 0.2225 2.903 0.30373774 

Surface Approach 
to Learning 

Assessment_Plan 0.3578. 0.1875 1.908 0.08858407 0.401287 
Self_Assessment 2.1854*** 0.4168 5.243 0.65102940 
Skills Reflection -1.5743** 0.5203 -3.26 -0.25629591 
Skills_Teamwork 0.3648 . 0.1960 1.861 0.21397742 

Other -0.4709 0.3186 -1.478 -0.07434800 
 

Signif. codes:  0 !***"#0.001 !**"#0.01 !*"#0.05 !."#0.1 "#"!1 

Looking at the best fit models for the dependent variables for deep approaches to learning 

and surface approaches to learning presented in Table 10 there are more sub-clusters of tasks 

(independent variables) that are included in the best fit model for deep approaches to learning s 

than the number included in the best fit model for surface approaches to learning. It is of interest 

to note that there are independent variables (from the suite of 17 outlined in the previous chapter) 

that are used in both models and have a similar nature to their relationships and contribution to 

the model, particularly the independent variable - self-assessment. Self-assessment has the most 

significant effect on both models, as indicated by the standardised coefficients. Understanding 

the significance this category of tasks has on predicting students!"approach to learning could 
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indicate a $hot-spot!"for more in-depth analysis and when using this regression model as a 

baseline for machine (Li et al., 2020). 

 

The results indicate that students!"score on surface approach to learning has a negative 

relationship with operational tasks. This means that the more students engage with the 

operational tasks, the lower their surface approaches to learning score was. Although the 

significance is greater than 0.1, this independent variable has only four tasks, two before the start 

of the program and two after the completion of the program. A minor independent variable 

having any potential relationship with a learning category could be significant in itself. 

 

The best fit regression model for dependent variable two suggests that 51% of variance in 

a student"s responses on the Revised Two Factor Study Process Questionnaire (Biggs et al., 

2001) can be predicted by the  seven independent variables listed in Table 10. This is 11% higher 

than the 40% proportion of variance the best fit regression model for dependent variable three 

can predict using the five sub-clusters listed in Table 10. The model for predicting a student"s 

tendency towards surface approaches to learning is by far the weakest of the five models and 

should be further developed. 

 
Dependent Variable 4 and 5: Fixed and Growth Mindset 
 

Table 11 

Dependent Variable 4 and 5:  Fixed & Growth Mindset 

 Program Tasks Coefficient 
Estimate  

Error t-value Standardised 
Coefficients 

Adjusted 
r.squared 
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Fixed 
Mindset 

Assessment_ Draft -0.2899* 0.1132 -2.560 0.1715 0.4964752 
Assessment_ Report 0.2416* 0.1045 2.311 0.1413 

Self_ Assessment 0.3281* 0.1476 2.222 0.2090 
Skills_Presentation 0.4960 . 0.2900 1.710 0.1440 
Skills_Reflection 0.7288* 0.2827 2.578 0.2537 

Growth 
Mindset 

Assessment_Report -0.13925 0.08505 -1.637 -0.0544 0.4960319 
Self Assessment 1.03126*** 0.19219 5.366 0.4390 

Self_Peer_Assessment 0.49174* 0.22547 2.181 0.0982 
Skills_Collaboration -0.34408* 0.16144 -2.131 -0.1142 

Skills_Reflection 1.69749*** 0.30150 5.630 0.3949 
 

Signif. codes:  0 !***"#0.001 !**"#0.01 !*"#0.05 !."#0.1 "#"!1 

Comparing and contrasting the regression analysis of fixed mindset and growth mindset 

the independent variable - assessment_report - has a positive coefficient with the growth mindset 

dependent variable and a negative coefficient with the fixed mindset score. A positive coefficient 

means that as the independent variable increases the dependent variable increases and a negative 

coefficient means that the independent variable increases the dependent variable decreases 

(Frost, 2019). This situation indicates that the more learning tasks in the independent variable -

assessment_report that students engage with the higher their score for fixed mindset on the 

Revised Implicit Theories of Intelligence survey is (De Castella & Byrne, 2015). Similarly, the 

more tasks in the independent variable - assessment_report that a student engages with the lower 

their score for growth mindset on the Revised Implicit Theories of Intelligence survey is (De 

Castella & Byrne, 2015). Conversely, the self-assessment and  skill reflection independent 

variables have a positive coefficient with both fixed and growth mindset dependent variables. 

However, the significance of the relationship between self-assessment and skill-reflection and 

growth mindset dependent variable is much higher (between 0.000 – 0.001) than the significance 

of the relationship between self-assessment, skill reflection and the fixed mindset dependent 
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varaible (between 0.01 – 0.05). Understanding what type of relation a student's engagement with 

a subcategory of learning tasks is predicted to have on a student's self-perception of their mindset 

could help facilitators tailor their support interventions. 

 

The standardised coefficients indicate that the skill_reflection independent variable has 

the most significant effect on the model when it comes to predicting a learners self-perception 

score of fixed mindset on the Revised Implicit Theories of Intelligence survey (De Castella & 

Byrne 2015) and self-assessment has the most significant effect on the model when it comes to 

predicting a learners self-perception score of growth mindset. Understanding which of the 

independent variables has the most significant relationship with self-perception of mindset could 

help identify additional data and alternative analysis techniques could be used to further improve 

the ability to predict a learner"s mindset. 

 

Overall these two multiple regression analyses found an almost identical proportion of 

variance (50%) in students" self-perception of their fixed and growth mindset available in the 

data set can be attributed to the independent variables listed in Table 11, indicated by the 

adjusted R-squared. Understanding what percentage of the learners score on the Revised Implicit 

Theories of Intelligence survey can be predicted by the best fit regression model provides a 

baseline for developing and validating a machine learning algorithm that can do this analysis. 
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Conclusion 

In summary, this results chapter presented the results from analysing an anonymised data 

set of 612 students participating in an experiential learning program designed to allow higher 

education students to complete a real-life industry project while simultaneously using the 

experience to develop their 21st Century Skills. The hypothesis driving this analysis is that data 

created by learners and captured by an experiential learning platform can be predictive of 

a learner"s perspectives, mindset and skills. Furthermore, this quantitative method was 

employed to answer three qualitative research questions: 

1. Which data captured by an experiential learning technology can be used to 

understand more about students’ perspectives, mindsets and skills? 

2. In what way can data captured by experiential learning technology be used to 

understand more about students’ perspectives, mindsets and skills? 

3. How can understanding more about students’ perspectives, mindsets and skills be 

used by learning designers and facilitators to support their practice in experiential 

learning? 

 

The first section of the chapter reported the results of scoring the Revised Implicit Theories of 

Intelligence Survey (De Castella & Byrne 2015), the Revised Two Factor Study Process 

Questionnaire (Biggs et al. 2001) and a learning history questionnaire. The second section of the 

chapter reported five best fit multiple regression models for predicting these dependent variables: 

1. Learning History  

2. Deep Approaches to Learning 
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3. Surface Approaches to Learning 

4. Growth Mindset 

5. Fixed Mindset 

All five best fit regression models include multiple independent variables of time spent on 

learning tasks that can be used to predict these depended variables, with some independent 

variables having a 0.001 level of significance. The Adjusted R-squared of four out of five of the 

models was close to 50% providing a substantial baseline that could be used to develop a 

machine learning algorithm for measuring perceptions, mindsets and skills. Finally standardising 

the coefficients has identified independent variables that had the most significant effect on the 

model, this highlights the types of learning data and analysis techniques that could be used to 

develop machine learning algorithms that can identify a learners perspectives, mindsets and 

skills in real time. Further research and in-depth analysis could lead to an algorithm that has a 

reasonable automated performance according to Ameisen"s (2018) four levels of performance 

and could then be embedded in the eLMS, deployed in a design-based research project to 

validate for use in the practice of experiential learning.   

 

The results of this analysis provided valuable insight into the types of data captured by an 

eLMS that can be used to predict students!"perspectives, mindsets and skills. Based on which 

independent variables are in the best fit regression model and the nature of their relationship with 

the dependent variables, it is possible to see how knowing this information about individual 

learners could help facilitators. A potential use case for this is the provision of insights that help 

facilitators provide tailored support in the current learning program. Additionally the insights 

could be used to help students develop their lifelong learning capability.  
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Chapter 6: Discussion 

Introduction  

 

This chapter presents interpretations and insights from the analysis conducted and 

reported in Chapter 5. The chapter first provides a summary of the overall intention of the 

research and research questions. The summary is followed by a discussion about each individual 

research question and how the results of the analysis have contributed insight that helps provide 

an answer to the question and where potential gaps that require further analysis still lie. 

Additionally the interpretations and insights in this chapter reflect my philosophical perspective 

outlined in Chapter 4: humans are unique, can change and exercise free-will yet are driven by 

habits that result in subconscious predictable behaviour.  

 

This chapter first discusses each of the three research questions in isolation, highlighting 

specific analysis results, the extent to which the questions have been answered and how they 

might be used within educational practice. Secondly the discussion brings the research questions 

together into a discussion on the overall objective of the research. The main focus of the 

discussion is an examination of how data created by learners and captured by an experiential 

learning platform can be predictive of learners!"perspectives, mindsets and skills. 

Furthermore, how  using learning analytics dashboards to display these insights could be 

meaningful for facilitators. The discussion in this chapter extends into Chapter 7 where the 

implications of this research are highlighted within the context of my personal practice and more 
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broadly for practitioners in higher education institutions using experiential learning pedagogies 

to develop students!"21st Century Skills.  

 

Research Questions 
 

My aim for this research was to understand how data produced by a learner during an 

experiential learning program, delivered using an eLMS, can be predictive of learners" 

perspectives, mindsets, and skills. Furthermore to understand how these predictive analytics 

could be provided to a facilitator in a way that enables them to tailor support of students and 

subsequently improve student learning.  

 

My research questions that will be discussed in this chapter are: 

 

1. Which data captured by an experiential learning technology can be used to understand 

more about students’ perspectives, mindsets, and skills? 

2. How can data captured by experiential learning technology be used to understand more 

about students’ perspectives, mindsets, and skills? 

3. How can understanding more about students’ perspectives, mindsets, and skills be used 

by learning designers and facilitators to support their practice in experiential learning?   

 
Research Question 1: Which data captured by an experiential 
learning technology can be used to understand more about 
students!"perspectives, mindsets, and skills? 
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As a part of the EBP students complete learning tasks that include content consumption, 

reflection activities, project deliverables and peer reviews. Practera"s eLMS tracks the time 

students spend on each of these tasks, which tasks they complete and in what sequence. The best 

fit multiple regression models outlined in Tables 9, 10 & 11 in Chapter 5 indicate a relationship 

between students!"scores on self-perception instruments and demographic data questionnaires, 

used to generate the five dependent variables. In fact, the results indicate that the independent 

variables generated using time spent on task (Konovic et al., 2015)  can  predict a significant 

portion of the variance in learners responses to the self-perception instruments used in the 

program. The Revised Two Factor Study Process Questionnaire (Biggs et al., 2001) and the 

Revised Implicit Theories of Intelligence survey (De Castella & Byrne, 2015) are rigorously 

tested and validated instruments used to identify students!"mindsets and approaches to learning. 

If the independent variables derived by categorising the learning content in the program can to 

some extent predict learners!"scores on the instruments it is possible to conclude that time on task 

data can be used to understand more about students" mindsets and skills.   

 

The following types of data created by learners participating in the EBP and captured by 

the eLMS were found to have a relationship with an element of predictive power towards one or 

more of the dependent variables - learning history,  deep approaches to learning, surface 

approaches to learning and growth mindset, fixed mindset: 

• Learning content consumption: Time spent on sub-categories of learning content 

including videos or text designed to help students complete project tasks, reflective tasks 

or feedback tasks. 
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• Submission of project tasks: Time spent understanding and completing submissions for 

project plans, draft and final reports related to the industry project. 

• Reflective task submissions: Time spent on tasks including self-assessments of 

collaboration skills, skill development plans to identify how the student planned to 

develop their collaboration skills in each phase of the project.  

• Peer Feedback submissions: Time spent on completing peer reviews of each 

teammate’s collaboration skills. 

• Administrative tasks related to the program: Time spent on post program surveys to 

provide feedback on the program, photography release forms and videos that explain the 

program and how the technology works.   

 

Interestingly, no individual type of task itself appears to have a direct connection with a 

particular dependent variable. This is highlighted by the best fit multiple regression models 

reported in the results, found in  Tables 9, 10 & 11 in Chapter 5. No one task type is connected to 

a specific perspective, mindset or skill. This indicates that it is the nature or context of the task 

that is relevant for categorisation, not the task type itself. For example independent variables that 

are present in the best fit regression model for growth mindset include learning content, project 

tasks, reflective tasks and peer feedback tasks. Furthermore, independent variables that had a 

relationship to deep approaches to learning include the tasks of learning content, project tasks as 

well as reflective tasks.  

 

The following three subsections of this chapter examine the five best fit regression 

models reported in the results. In particular they will discuss the connectivity between what is 
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known about learning history (Kwak, 2016), deep approaches to learning, surface approaches to 

learning (Marton & Saljo 1976), growth mindset and fixed mindset (Dweck, 2017) and the 

student"s behaviour engaging with different types of learning tasks in the EBP. Further it will 

highlight how facilitators could use these insights to provide tailored support to their students. 

 
Dependent Variable 1: Learning History 
 

The emergent conversation about differences between learners from western cultures and 

eastern cultures is unfolding through the exploration of the difference between Confucian and 

Socratic educational philosophies and high and low context cultures. Kwak (2016) proposes that 

a learner"s history in a Confucian or Socratic educational philosophy predisposes them to 

different learning outcomes and processes. Heng (2013) explains one of the fundamental 

differences between the two educational philosophies through the lens of politics. Socrates 

preferred to focus on self-development with public impact as a flow on effect whereas Confucius 

saw the public impact as the primary focus. This difference in perspective is believed to result in 

a cultural difference of individualism (Socratic) and collectivism (Confucian) that underpins 

education.   

 

This understanding of the difference between Socratic and Confucian educational 

philosophies could explain why the results of this research indicate that data from students with a 

Confucian learning background indicate a positive relationship to learning tasks in the 

Skills_Collaboration, Skills_Presentation and Skills_Networking independent variables. Each of 

these tasks are focused on helping students engage more effectively with their team and client. 
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Additionally it could explain why coming from a Socratic learning background has a positive 

relationship with learning tasks related to actually completing the project.  

 

Similar to the best fit multiple regression models for fixed mindset and growth mindset 

(discussed below), the learning tasks identified as having a relationship with a Socratic and 

Confucian learning history show connectivity to what is known about the different learning 

histories. For example a Confucian education philosophy builds a collectivist mentality, 

therefore positive perception of others is considered important. This aligns with the results of this 

research that highlight students!"engagement with learning tasks in the independent variables 

Skills_Collaboration, Skills_Presentation and Skills_Networking as having a positive 

relationship with the degree of orientation to a Confucian learning history. Understanding the 

individualistic vs. collectivist perspective that underpins the Socratic and Confucian learning 

philosophies suggests that educational technology could effectively categorise students into these 

learning categories if learning tasks were identified as either task-focused or relationship-

focused.  

 

It is essential to reiterate the limitations of the insight extracted from the results from the 

best fit multiple regression analysis for learning history based on the limitations of the data used 

to derive the dependent variable (discussed in Chapter 5: Results). However the alignment in the 

nature of the learning tasks in the independent variables that are in the best fit multiple regression 

model and knowledge about the differences between Confucian and Socratic learning history 

(Kwak, 2016, Yu, 2010) and high and low context cultures (Bent, 2018; Hall, 1976; Qureshi et 

al, 2017) reinforces the ability of the data captured by technology to predict this variance 
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however a more robust questionnaire and a more evenly distributed sample would be of value y. 

The above-mentioned limitation aside, the results of this research do indicate that data captured 

by an eLMS could be used to predict a learners perceptions and specifically a learners learning 

history. If the analysis was re-done with the caveats discussed about and the best fit model was 

used as a baseline to develop a machine learning algorithm for identifying students!"learning 

history and the algorithm was used to display insights to facilitators they could use the insights to 

encourage or even incentivise students to complete learning tasks that they do not naturally lean 

towards.  

 
Dependent Variable 2 and 3: Deep and Surface Approaches to Learning 
 

The notion that learners approach learning using deep or surface approaches to learning 

was first introduced by Marton and Saljo (1976). Surface learners focus on acquiring the 

knowledge they perceive as the primary learning objective. while in contrast deep learners 

explore the knowledge for what can be gained beyond the primary learning objective. The 

objective of the EBP is completion of the client project. However the client project also provides 

a real-world context for 21st Century Skill development. The best fit multiple regression model 

presented in Chapter 5 in Table 10 show that students!"completion of both project-based tasks 

and skill development tasks have a relationship to their reported self-perception scores on the 

Revised Two Factor Study Process Questionnaire (Biggs et al., 2001). For example time spent on 

reflection tasks as indicated by the Skills_Reflection independent variable  have a negative 

relationship with Deep Approaches to Learning score on the Revised Two Factor Study Process 

Questionnaire, used as the dependent variable in the analysis. Whereas self-assessment tasks, 

indicated by the y independent variable Self_Assessment, have a positive relationship with the 
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Deep Approaches to Learning score, used as the dependent variable in the analysis. These two 

sub-categories of tasks are similar in nature. Both sets of tasks require the learner to consult 

learning content about competencies that will assist them in the completion of the project, reflect 

on their own understanding and application of those competencies and consider how they could 

use the next stage of the EBP to improve their understanding or application of the competency. 

However one has a negative relationship with the deep approaches to learning score (the 

dependent variable) and the other has a positive relationship with the deep approaches to learning 

score. Compounding the complexity the y independent variable Self_Assessment also has a 

positive relationship with surface approaches to learning (indicated by a positive coefficient) and 

the Skills_Reflection (y independent variable) has a negative relationship with surface 

approaches to learning score (indicated by a negative coefficient).  

 

Perhaps this complexity as mentioned above is explained by the link between approaches 

to learning and motivation. Sengodan and Iksan (2012) found that intrinsic motivators like effort 

and self-efficacy are significantly linked with a student"s approach to learning. This suggests that 

in order for an eLMS to accurately predict a student"s approach to learning using a multiple 

regression model additional data related to the learner"s intention for participating in the learning 

program needs to be collected. 

 

In statistics adjusted r.squared is the coefficient of determination or the percentage of 

variance in the depended variable that is predictable from the independent variable (Allen, 2017). 

The results presented in Chapter 5 highlight that the best fit multiple regression model reported 

for deep approaches to learning has the highest (51%) adjusted r.squared of all the regression 
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models, displayed in Table 12 below, whereas the best fit multiple regression model for surface 

approaches to learning has a significantly lower adjusted r.squared. In fact surface approaches to 

learning has the lowest r.squared of all five of the regression models. Perhaps this result coupled 

with Sengodan and Iksan"s (2012) research indicates that asking students why they signed up for 

the EBP as part of the course design could provide the data needed to improve the multiple 

regression model for surface approaches to learning.  

 

Table 12 
 
Adjusted r.squared  
 

Regression Model Adjusted r.Squared 

Deep Approach to 
Learning 

0.5130537 

Surface Approach to 
Learning 

0.401287 

Fixed Mindset 0.4964752 

Growth Mindset 0.4960319 

Learning History 0.4951508 
 
 

When discussing the fixed and growth mindset multiple regression models below there 

appears to be a relationship between what is known about the nature of a fixed and growth 

mindset and the types of tasks that had a relationship with students!"scores on the Revised 

Implicit Theories of Intelligence Survey (De Castella & Byrne, 2015). However the independent 

variables identified as having either a positive or negative relationship with either a deep or 

surface approach to learning do not have any explicit pattern to them. In addition to this there 

does not seem to be any link between what is known about the nature of deep approaches to 

learning, surface approaches to learning and the types of independent variables of learning tasks 
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that have a relationship with students!"scores on the Revised Two Factor Study Process 

Questionnaire (Biggs et al., 2001). As mentioned above both deep and surface approaches to 

learning scores have a negative relationship with the Skills_Reflection independent variable and 

a positive relationship with the Self_Assessment independent variable.  

 

Perhaps this can be explained by factors identified as having an impact on students!"

approaches to learning. There is tension in the literature when it comes to whether a learner"s 

approach is a relatively stable pattern of behaviour or is malleable based on the learning context. 

There is a body of literature that highlights interest in a topic, having an appropriate amount of 

time and positive prior learning experiences can positively encourage deep approaches to 

learning (Dolmans et al., 2016). In contrast a lack of interest in the topic, not enough time and 

lack of background knowledge can positively encourage surface approaches to learning (Biggs, 

1999; Entwistle, 1998; Ramsden, 1992). This notion of malleability (based on context), 

differentiates the approaches to learning model from the concept of learning styles that suggests 

that a learner"s style is stable and fixed (Dolmans et al., 2016). The EBP is a fast-paced learning 

program. Students have three weeks to complete a business project with an additional week at 

the start for onboarding and orientation. Additionally students are assigned to a project at 

random. In some cases engineering students have completed marketing projects. Based on the 

notion that a learner"s approach to learning is malleable based on the learning context it could be 

said that the conditions of the EBP itself is creating an environment that encourages surface 

approaches to learning.  
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Taking all of this into consideration, an analysis that identifies and displays whether a 

student is employing deep or surface approaches to learning in real time could be beneficial to a 

facilitator. For example it could help facilitators identify students whose approach to learning 

transitions from a deep to surface approach at a particular point in the EBP. This insight about 

the changing nature of a student"s approach to learning in the program coupled with what the 

literature highlights about the contextual pressures that impact students!"approaches to learning 

could help educators not only identify the change but offer insight into why the change is 

happening and how they can intervene. In addition to the teaching and learning implications 

facilitators could also use this information to identify whether a particular learning program or 

element of the learning program is too difficult or complex for the student cohort in general. For 

example if a learning program consistently shows students exhibiting surface approaches to 

learning in one particular phase of the program it could indicate that the instructional design of 

the learning program needs adjusting. 

 

Dependent Variable 4 & 5: Fixed and Growth Mindset 
 

Research on fixed and growth mindset (Dweck, 2017; Hochanadel & Finamore, 2015; 

Zhang et al., 2017) identifies the fundamental difference between the two mindsets to be whether 

an individual believes their skills and performance can be developed or not. These two mindsets 

drive human behaviour when it comes to challenges, effort, feedback and success of others. 

Holistically people who lean towards a fixed mindset invest time proving their level of 

intelligence to others. Conversely people who lean towards a growth mindset believe their 

current level of skill is just a starting point and invest their time developing it.  
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Overlaying this understanding with the results of the multiple regression analysis could 

explain why the independent variables included in the best fit multiple regression model for fixed 

mindset tended to focus on things that others can see (submissions) and tasks that helped them 

$present!"better to others. For example one of the two skill-based independent variables included 

in the best fit multiple regression model for fixed mindset is skill_presentation. This independent 

variable  does not require the students to directly engage with others but it is designed to help 

students present their project to clients better. Conversely the independent variables included in 

the best fit multiple regression model for  growth mindset had more consumable learning content 

that focused on 21st Century Skill development, learning tasks that have an indirect impact on the 

project outcome. In addition to the indirect connection to the project outcome, completion of 

these tasks is invisible to everyone else in the learning collaboration (team members or client). 

There is no identifiable extrinsic motivator to incentivise the completion of these task.  

 

The learning tasks identified as having a relationship with a fixed or growth mindset align 

with what is known about the nature and subsequent behaviours of each of the mindsets in the 

literature (Dweck, 2017; Hochanadel & Finamore, 2015; Zhang et al., 2017). Embedding an 

analysis of this nature and displaying the results for facilitators could add value to the teaching 

and learning process. Identifying and displaying whether a student"s behaviour indicates a fixed 

or growth mindset could give insights to facilitators that help them intervene more effectively in 

each student"s learning process. For example facilitators could encourage specific students to 

complete learning content they do not naturally lean towards or use their understanding of the 

particular mindset a student is exhibiting to more clearly explain the connectivity of each 

learning task to the student"s overall learning and development.  
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Conclusion  
 

This research project has used data captured about students!"learning tasks completion 

and students!"scores on self-reporting instruments to see whether this data could be used to 

predict a learners perceptions, mindsets and skills without relying on the self-reporting 

instruments being embedded in the learning program. The results indicate that there are 

relationships between students"  behaviour while participating in an experiential learning 

program and their scores on self-reporting instruments designed to identify mindset and approach 

to learning and a demographic survey used to identify learning history. The results of this 

research suggest that there is value in such self-report instruments in terms of identifying stable 

patterns of behaviour. Moreover the analysis method developed and used in this research could 

be applied to test the predictive value of other self-report instruments.  

 

The results of the research suggest that objective evidence may be available to support 

students!"ability and willingness to accurately assess themselves.  Furthermore the results 

indicate that experiential learning technology could use data analysis of this nature to identify 

students!"mindset, approach to learning and learning history and display the results for 

facilitators. The literature surrounding mindsets (Dweck, 2017; Hochanadel & Finamore, 2015; 

Zhang et al., 2017), approaches to learning (Marton & Saljo, 1976) and learning history (Kwak, 

2016) already examines and highlights the usefulness of understanding these perceptions, 

mindsets, and skills for educators (Gaservic et al., 2017; Hochanadel & Finamore, 2015; 

Herrmann et al., 2017; Zhang et al., 2017). Therefore if experiential learning technology could 
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accurately identify  these perceptions, mindsets and skills and display the results for facilitators 

they could use these insights to tailor their support of students.  

 

In conclusion the results presented combined with an understanding of the existing 

literature surrounding mindsets, approaches to learning and learning history indicate that it is 

possible for experiential learning technology to use predictive analytics to understand more about 

students!"perspectives, mindsets, and skills. However in order to do this effectively the 

technology needs to capture data not only about the type of tasks students focus on but the skill 

each task relates to (mindset), students!"motivation or intention for undertaking the learning 

program (approach to learning) and whether the learning outcome itself is task-or relationship-

focused (learning history). Additionally the discussion has highlighted areas where additional 

data, analysis and  testing could lead to better fit multiple regression models for surface 

approaches to learning and learning history.  

 

Research Question 2: How can data captured by experiential 
learning technology be used to understand more about students!"
perspectives, mindsets, and skills? 
 

The results reported in Chapter 5 and answer to the previous research question suggest 

that data currently captured by experiential learning technology can contribute to the understand 

more about students!"perspectives, mindsets and skills. In particular, understand more about a 

students!"s mindset, approach to learning and learning history. But in order for the technology to 

predict and display insights about students’ further development is required including: 

1. Data not yet captured by experiential learning technology;  
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2. A framework for classifying learning tasks, 

3. Further development of the best fit regression models. 

 

Data not yet captured by experiential learning technology 

 

For technology to automatically predict a students!"perceptions, mindsets, and skills using 

the multiple regression models developed and presented in Chapter 5, the process of classifying 

the learning tasks into independent variables needs to happen prior to students starting the 

program and to be captured within the technology"s database. This classification of learning task 

could be done using metadata tagging.  Tags are machine readable traces that can be used by 

analytics tools to detect patterns (Duval, 2011; Sharma, 2017). In its simplest form, tagging is 

used in learning technology to recommend additional learning content based on learning pattern 

and learning style of the student (Sharma, 2017). Tagging can also be used to visualise learning 

goals and track achievement of those goals (Duval, 2011). Additionally research suggests that 

tagging and the use of learning analytics can be used to develop metacognition, one"s ability to 

examine one"s own thinking process (Marzouk et al., 2016). 

 

If instructional designers and facilitators building learning programs were able to 

attribute each learning task to a subcategory during the program design process the additional 

layer of post program coding would not be required. The technology would be able to conduct 

the analysis and display the predicted perceptions, mindsets and skills. At present, the technical 

capability to classify learning content using tags exists in Practera"s eLMS. This feature could be 

used to tag learning content. However the tagging functionality would need to extend beyond 
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learning content to submissions and reflection points in order to tag all of the learning tasks 

required to automate the regression analysis conducted in this research project.  

 

A Framework for Classifying Learning Tasks 
 

If instructional designers and facilitators are responsible for effectively tagging each 

learning task into subcategories used as independent variables in the multiple regression models 

it is essential that learning content, submissions and reflection tasks are accurately tagged. When 

using tagging to recommend learning content for consumption in e-learning, a knowledge map is 

used. A knowledge map is a hierarchical tree structure which resembles the prerequisites of 

concepts (Sharma, 2017). These knowledge maps need to be developed for each individual 

course delivered by e-learning technology.  

 

Based on the insight from the research reported in chapter 5 and discussion related to the 

previous research question it is possible to use a meta understanding of mindsets, approaches to 

learning, learning history and the nature of a learning task to develop a system wide framework 

for accurate tagging of learning content. Perhaps supervised machine learning could be used to 

recommend tags in order to establish consistency and improve the accuracy of tags.  

Ciurez et al (2019) have applied this approach to tagging learning content to another 

well-known learning styles model (VARK) and are working to improve the accuracy of the 

machine learning based recommendation. Ciurez et al (2019) are training a machine learning 

algorithm to analyse learning content based on learners!"preferences for how content is delivered: 

reading, listening, seeing or experiencing. Training a machine learning algorithm to analyse 

learning content based on what type of content display the learner appears to prefer is likely to be 
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much simpler than training a machine learning algorithm to accurately tag based on its ability to 

predict learners  mindset, approach to learning, and learning history. This could be overcome by 

embedding the learning theory-based instruments and demographic questionnaire to test the 

tagging prior to educators being able to use the newly tagged course in the analysis.  

 

In order to start this process a framework or knowledge map for the tagging needs to be 

developed and disseminated. The classification framework used in this analysis includes three 

categories of tasks and 17 subcategories of tasks. Although this is a comprehensive list for the 

EBP it is by no means exhaustive when it comes to experiential learning in general. Therefore 

the framework would need to be extended and be adaptable as the regression models are further 

developed and as the diversity of experiential learning programs using the experiential learning 

technology expands.  

 

Another important element to consider when developing a classification framework is the 

agreement and acceptance of the framework by the community of learning designers and 

facilitators using the technology. Irrespective of whether this research suggests that the 

technology can accurately predict a learners perceptions, mindsets and skills is possible, the 

classification and the process used to produce the classification needs to be accepted by the 

learning professionals using the technology in order for it to produce any value for students in 

experiential learning programs. The review of literature surrounding the use of developmental 

technologies in education identified a lack of focus on the adoption and implementation of the 

emerging capabilities that research is identifying (Santur, Karakose & Akin, 2016; Soobramoney 

& Singh, 2019; Sohail, Khanum & Alvi, 2018; Kondo, Okubo & Hatanaka, 2017; Aulck et. al., 
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2016; Pang et.al., 2017). Therefore the task classification framework needed for experiential 

learning technology to automatically conduct the regression analysis needs to be developed and 

tested in partnership with instructional designers and facilitators. 

 

Development of the predictive classification model 
 

Once learning tasks are effectively classified and the categories used as independent 

variables in the regression models is stored within the experiential learning technology database, 

the technology will contain all the data required to conduct the analysis without human 

intervention. Capturing the classification of learning tasks using tags will enable automatic 

analysis of students!"behavioural data using the multiple regression models developed by this 

analysis and reported on in Table 9, 10 and 11. This automatic analysis could predictively 

identify learners" perceptions, mindsets and skills and display them for use by facilitators.  

 

As mentioned above the results of this research suggest that predictive learning analytics 

could be used to identify learners" perceptions, mindsets, and skills using their past and current 

behaviour in an experiential learning program. These predictions could then be used by 

facilitators to provide tailored support, structure and incentives in order to support each 

individual student to extract as much learning as possible out of the learning program. Moreover 

the insights about the different mindsets, approaches to learning and learning history could be 

displayed alongside the predictions in order to provide the learning facilitator real-time learning 

theory knowledge that could assist them in deciding how best to support each student. 
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Displaying the learning theory insights alongside the predictive analysis could address utility and 

increased workload issues raised by teachers (Herodotou et al, 2017).  

 

In order to automate the predictive identification of learners" perceptions, mindsets and 

skills reported in this research, the categorisation of learning tasks needs to be stored in the 

experiential learning technologies’  databases. More importantly more research and development 

is needed before the predictive learning analytics are used in practice.  

 

The overarching result of the analysis reported in Chapter 5 is five best fit multiple 

regression models that attempt to predict learners’ self-perception of their mindset, approach to 

learning and learning history using their behavioural data while engaging with a learning 

program. Multiple regression analysis is a statistical method that uses two or more variables to 

predict a dependent variable. To date multiple regression analysis has primarily been used to 

predict academic performance in a course (Ellis et al, 2017; Mwalumbwe & Mtebe, 2017; 

Yamada et al, 2016). Although predicting performance has utility in teaching and learning it does 

not offer any insight into the cause of the outcome that could possibly support the facilitator with 

insight on how to effectively intervene. Predictively identifying learners" perceptions, mindsets 

and skills based on their current behaviour and displaying this, along with real-time learning 

theory insights, for facilitators could offer not only useful data but actionable insights that could 

lead to a change in behaviour and a change in performance.  

 

In this study students!"engagement with subcategories of learning tasks in the learning 

experience were used to predict a learner"s score on self-perception instruments and a 
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demographic questionnaire. The best fit multiple regression models report a significant 

correlation between students’ scores related to their self-perception of their mindset, approaches 

to learning and learning history and their behaviour engaging with the learning tasks in the EBP. 

The adjusted r.squared for each regression model highlighted between a 40 - 50% attribution of 

the subcategories of learning tasks in the model towards the students’ self-perception scores. 

This means that 40 – 50% of the student"s self-perception score can be explained by the 

predictive model. Although this is only half of the self-perception score that can be explained by 

the variables the significance of the relationship between the variables currently in the models 

and the self-perception score coupled with the insights gathered about the nature of the different 

mindsets, approaches to learning and learning histories offer insight into other available 

behavioural data that could be used to improve the models. 

 

At present the models do not take into consideration students’!response to peer and client 

feedback, students’ reflective writing captured in reflection assessment submissions or students’ 

feedback to peers. To use these elements of the student"s behavioural data in the multiple 

regression model would require text analysis, a significant time investment that was outside of 

the scope of this research project. However the significance of the relationship between the 

variables and students’ self-perception of their mindsets, approach to learning and learning 

history coupled with the explanatory power of these models suggests that adding these additional 

variables to improve the models is a worthy investment.   

 

Technology tools like natural language processing, a subcategory of artificial intelligence 

that combines linguistics and computing power to analyse human language (Ciolacu et al., 2018) 
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could be used to analyse reflective writing. Machine learning is a class of artificial intelligence 

that employs a self-adaptive algorithm that improves with time. Naïve Bayes Classifier is a 

machine learning algorithm used to classify objects. In higher education learning and teaching, it 

has been applied to the assessment of learners’ cognitive  presence (Hayati et al., 2018) and to 

determine the sentiment of learners’ writing (Sivakumar & Reddy, 2017). Naïve Bayes Classifier 

could be used to analyse the sentiment of reflective writing and peer feedback of learners in 

experiential learning programs and tested to see if there is a relationship between reflective 

writing sentiment and peer feedback sentiment and their self-perception scores on learning 

theory-based categories, though probably different learning theories than those used here.  

 

To extend the utility of the multiple regression models even further deep learning 

techniques could be used. Deep learning is a form of machine learning which uses a complex 

structure of artificial neural networks to examine raw data to progressively extract high level 

features (Deng & Yu, 2014). The artificial neural networks used in deep learning are built like 

the human brain and mimic human cognitive processes to explore and make meaning out of big 

data (Goodfellow et al., 2016). Deep learning could be used to explore the data set and find its 

own relationships between learner behaviour and their self-perception of their mindset, approach 

to learning and learning history. More specifically deep learning could be used to extend the 

model by exploring not only what learning tasks students invested time on in the learning 

program, but the sequences or order in which learners looked at learning content in relationship 

to project submissions. Deep learning is currently being used in higher education administrative 

data to predict dropout (Berens et. al, 2018). Perhaps this same process could be used by 
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experiential learning technology to categorise students so that facilitators can provide better 

support instead of accelerating attrition as it is currently being used.  

 

Research Question 3: How can understanding more about students" 
perspectives, mindsets, and skills be used by learning designers and 
facilitators to support their practice in experiential learning? 
 

This research suggests that data captured by experiential learning technology can be used 

to predictively identify learners" perspectives, mindsets, and skills using learning analytics 

analysis. However being able to predictively identify learners" perspectives, mindsets, and skills  

about  particular students is not a compelling enough argument for doing it. In order for value to 

be extracted from the prediction, it should be meaningfully used by facilitators for the purpose of 

supporting students and improving the design of learning or more holistically, to examine the 

nature of learning itself.  

 

At present the main use case for predictive learning analytics in higher education is in 

predicting a learner"s performance in a whole degree program (Herodotou et al, 2017; Herodotou 

et al, 2019; Sclater et al., 2016; Williamson, 2016) or specific course (Ellis et al, 2017; 

Mwalumbwe & Mtebe, 2017; Yamada et al, 2016). In fact, the emergent definition or 

explanation of predictive learning analytics is #to improve learning by identifying students at risk 

of failing their studies” (Herodotou et al, 2019, p. 85). However predictive analytics itself is the 

use of statistical techniques to analyse both current and historical data in order to make 

predictions about the future (Gandomi & Haider, 2015). This understanding suggests that 

predictive learning analytics could be much broader than the definition implies.  
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The results reported in Chapter 5 and the above discussion highlight which data can 

provide actionable insights for facilitators and how data can be used to identify learners" 

perspectives, mindsets, and skills. In response to this research question a potential use case for 

predicting a learner"s perspectives, mindsets, and skills and the subsequent predictions in the 

customisation of support, incentives and learning tasks in real time. 

 

The data reported in Chapter 5 suggests that predicting a learner"s perspectives, mindsets 

and skills  using learning analytics is possible. In addition to the analysis providing statistical 

results about how data collected could be used in this prediction also provides insights into the 

nature of learners behaviour as they participate in an experiential learning program. Perhaps this 

insight could be used by facilitators and instructional designers to further integrate and support 

the learning of 21st Century Skills in experiential learning programs. The learning analytics 

literature highlights the use of learning analytics for the development of learning content 

(Kovanović, Joksimović, Gašević, & Siemens,2017; Lockyer & Dawson, 2012; Lockyer, 

Heathcote & Dawson, 2013) but perhaps it could extend beyond content to structure and support. 

The following discussion will explore this by focusing in on the results of the Revised Implicit 

Theories of Intelligence instrument (De Castella & Byrne, 2015) and the best fit multiple 

regression models for predicting students’ scores on the instrument.  

 

The research results highlight that there is a significant relationship between growth 

mindset score and the learning tasks in the skill_reflection and self-assessment independent 

variables. Also of note there is a significant yet weaker relationship between a fixed mindset 
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score and the same two groups of learning tasks, indicated by the results in Table 11. In fact the 

Revised Implicit Theories of Intelligence survey used to self-assess growth and fixed mindset 

was a part of the independent variable skill_reflection. The results of the survey completion in 

Table 7 show a significantly higher number of students who completed the survey leaning 

towards a growth mindset. In contrast to this there are 86 students (13% of the cohort) who did 

not complete the survey. Based on the results of the multiple regression analysis, particularly the 

significance of the relationship between the skill_reflection and self_assessment sub-categories 

of tasks and growth mindset score, one could speculate that students who did not complete the 

survey would be more likely to lean towards a fixed mindset.  

 

This insight about learners who lean towards a growth mindset and learners who lean 

towards a fixed mindset could be used by facilitators and instructional designers to: 

1. customize support based on the mindset they are exhibiting;  

2. incentivise completion of learning tasks that students may not naturally complete on their 

own, 

3. adapt the framing of learning content to connect it better with a learner’s objectives.  

 

For example if a student participating in the EBP exhibits behaviour that classifies them 

as exhibiting a fixed mindset the facilitator could use this information to intervene early on in the 

program in order to encourage the student to extract all of the available learning out of the 

program. Specifically the facilitator could engage with the student and more explicitly explain 

how each learning task in the EBP will support their ability to demonstrate their skills. 

Essentially this is facilitating what is known about the nature of a fixed mindset to drive learning 
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outcomes. Knowing that learners with a fixed mindset give up easily when facing obstacles and 

see effort as fruitless (Dweck, 2017) facilitators could intervene with proactive encouragement 

and support when they are in the midst of grappling with an obstacle that is designed into the 

learning program.  

 

In addition to the facilitator support, instructional designers could use insights about 

learners who lean towards a fixed or growth mindset to alter the design of the learning program. 

Understanding that students who have a fixed mindset will focus on proving their skills could be 

used to add customisation to the design of the learning program for these students; for example, 

building in badges or other publicly available incentives based on the completion of learning 

content. This would offer them a mechanism to show proof of skills as an incentive to complete 

learning tasks that will develop their skills. Learning designers could also re-frame the titles and 

introduction of learning tasks for learners with different mindsets, for instance reframing tasks 

designed to develop their skills as tasks that will help them present their project better to their 

client.    

 

Conclusion  

 

This chapter has presented interpretations and insights from the analysis conducted and 

reported in Chapter 5 in order to systematically address these three research questions: 

1. Which data captured by an experiential learning technology can be used to 

understand more about students’ perspectives, mindsets, and skills?  
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2. How can data captured by experiential learning technology be used to understand 

more about students’ perspectives, mindsets, and skills?  

3. How can understanding more about students’ perspectives, mindsets, and skills be 

used by learning designers and facilitators to support their practice in experiential 

learning? 

 
This chapter discussed each individual research question and how the results of the 

analysis have contributed insights that help provide an answer to the question and where 

potential gaps that require further analysis still lie. Additionally the discussion has identified 

some potential future developments of the research that could help further improve the teaching 

and learning of experiential learning in higher education. The interpretations in this chapter stem 

from my philosophical perspective outlined in Chapter 3 and are by no means exhaustive in 

terms of what could be derived from the results. However it has provided insight into how data 

captured by experiential learning technology can be utilised to predict learners’ perceptions, 

mindsets and skills. Furthermore it shows how this prediction could be used by experiential 

learning facilitators and designers to customise real-time support, incentives and learning 

content.  

 

The discussion in this chapter has highlighted not only how the results of this research 

could be used to impact the practice of experiential learning facilitators but more broadly it has 

discussed the potential of this research to further operate as a propulsion point for further 

research into how experiential learning technology could be used to support 21st Century Skill 

development in experiential learning programs. The content of this chapter has identified how 

both the results of this research and further development of experiential learning technology 
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based on the results of this research could support the practice of experiential learning 

facilitators. In the next chapter the results and insights discussed here will be used to examine 

how the outcomes of this research could impact my practice as an experiential learning 

technology designer and as a researching practitioner. It will also examine the implications of 

this research for practitioners in higher education institutions using technology enabled 

experiential learning pedagogies to develop students!"21st Century Skills.  

!  
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Chapter 7: Implications for Practice 

Introduction 

The discussion in the previous chapter examined and interpreted the research results within 

the context of how they could improve the ability of technology to support experiential learning 

programs designed for 21st Century Skill development. The chapter concluded with an examination 

on how the results of this research could be used by facilitators and instructional designers to 

improve their practice of experiential learning design and facilitation. This chapter will extend on 

the insights generated from the discussion and consider potential implications for the integration 

of real-time analysis that integrates learning theory and learning analytics, within the practice of 

experiential learning in higher education, and within my own personal practice.  

 

It is essential to note that this study is a proof of concept aimed to present the potential 

power of aggregating learning theories and emerging technology enabled processes like machine 

learning and learning analytics. The results themselves are not generalisable outside of the EBP 

program because they are dependent upon this specific context, technology and course design. 

Despite these limitations the study does present a case for the use of learning analytics in 

experiential learning facilitator and for more generalizable research at the intersection of learning 

theory and learning analytics.  

 

This chapter will discuss how the improvements to education technology that stem from 

this research could contribute to improvements in higher education experiential learning programs. 

Specifically it will discuss ways the results of this research could be used to increase the volume 

of students each facilitator can support in experiential learning programs, support experiential 
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learning facilitators with real-time insights that help them provide better support to students, help 

student extract more of the available learning out of an experiential learning programs and perhaps 

even help students develop their lifelong learning capability. 

 

The second section of this chapter will address the call located in both learning analytics 

literature and education research literature (Gasevic et al., 2017; Gašević et al., 2016; Gasevic, 

Dawson & Siemens, 2014; Reinmann, 2016) for aggregation of learning analytics with learning 

theory that was highlighted in Chapter 2. The section will discuss how this research project 

provides a response to this call for the aggregation of learning analytics and learning theory, and 

demonstrates what is possible when learning theory and learning analytics research are combined.  

 

Finally the implications of this research on my own practice will be discussed. The 

discussion will start with my current practice in experiential learning facilitation, design and 

technology development, then switch to my intended practice in the development of learning 

programs, technology and research that focuses on the potential for implementation of scalable 

learning solutions in low resource economies. 

 

Implications for experiential learning in higher education 

 

The literature review of the 4th Industrial Revolution (4thIR) and 21st Century Skill 

development identified the need for higher education institutions to shift their focus towards more 

21st Century Skill development (Andrade, 2016; Chamorro-Premuzic & Frankiewicz, 2019; 

Hodgman, 2018). Literature about work in the 4thIR suggests that automation will disrupt physical 
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and cognitive work (Perry, 2018; WEF, 2015). This disruption will shift the role of humans away 

from repeatable tasks to problem-solving, innovation and collaboration (Ghislieri et al, 2018; 

Kazancoglu & Ozkan-ozen, 2018; Shvetsova & Kuzmina, 2018). In addition the literature 

highlighted that jobs that students would have in the future do not exist yet, resulting in higher 

education institutions needing to shift away from preparing students for a specific career towards 

developing capabilities and competencies that help them adapt and evolve as the nature of work 

changes throughout their career (Mphuthing, 2019; United Nations, 2015). The results of this 

research and further development of the findings could play a role in this transition towards 21st 

Century Skill development required in order for higher education institutions to play a useful role 

in the 4thIR. This could be achieved by further improving the predictive categorisation models and 

building the predictive categorisation models into experiential learning technology. This would 

enable experiential learning designers to use learning analytics insight to improve the design of 

the experiential learning programs. Perhaps more importantly experiential learning facilitators 

could use the insights from the predictive models to support larger cohorts of students without 

increasing the time invested. This could reduce the cost of delivery and open up access to the 

experiential learning programs to more students.  

 

The results of this research presented in Chapter 5 suggest that data from experiential 

learning technology can be used to predict learners!"perceptions, mindsets and skills . Moreover, 

the discussion in Chapter 6 highlighted how predicting learners" perceptions, mindsets and skills 

and displaying these predictions alongside learning theory insights could help experiential learning 

facilitators and instructional designers. Here the results and discussion will be drawn upon to 

examine how prediction of learners" perceptions, mindsets and skills and displaying this prediction 
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alongside learning theory insights could help experiential learning facilitators with actionable 

insights that help replace affective cues lost when students are not physically in front of them 

(Crawley et al., 2009). Moreover the discussion will examine how displaying the prediction and 

learning theory insights could assist learning designers to improve the design and introduce a layer 

of learner-centred adaption into experiential learning programs. Specifically how the results of this 

research could enable increased use of experiential learning, as a vehicle for curriculum 

development and delivery, enable facilitators to provide more tailored support,  and help students 

extract more of the available learning out of experiential learning experiences and perhaps even 

support the development of lifelong learning capability.  

 

Support for Experiential Learning Facilitators 
 
Enable Experienced Experiential Learning Facilitators to support more students 
 

Experiential learning programs are used across a broad spectrum of the higher education 

ecosystem (Mills & Teagust, 2003; Widiastuti & Budiyanto, 2018; Dixon, 2014; Henderson, 2018; 

Leal-Rodrigues & Albort-Morant, 2019; de Groot et al., 2018, Graber et al., 2017; Pangelinan et 

al. 2018). The literature continues to validate the positive impact of experiential learning on 

students!"learning (Henderson, 2018, Jackson, 2013, Tiessen et al., 2018). However it is commonly 

understood that experiential learning programs are labour-intensive, complex and therefore 

expensive to deliver (Beckem & Watkins, 2012; Henderson, 2018; James et al, 2020). Perhaps 

real-time theory-based insights about the perceptions, mindsets and skills of students participating 

in experiential learning programs could play a role in reducing the complexity and the time a 

facilitator needs to invest in each individual student. For example if the experiential learning 

technology could identify students who have switched from exhibiting behaviours (attributed to 
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deep approaches to learning) to exhibiting behaviours attributing to surface approaches to learning 

and highlight this to the facilitator they can jump in and provide support without the time 

investment of identifying the issue themselves. Leveraging the experiential learning technology 

and predictive models for problem identification could reduce the time facilitators invest in dealing 

with an individual issue.  

 

Increasing the volume of students a facilitator can effectively support without decreasing 

the quality of the learning outcomes could also enable more experiential learning components in 

foundational courses that tend to have higher student to teacher ratios. Being able to offer 

foundational courses using experiential learning pedagogies could mean that students have more 

opportunities to develop their 21st Century Skills much earlier in their degree and more times 

throughout their degree.  

 
Support for Less Experienced Experiential Learning Facilitators 
 

One of the barriers to the use of experiential learning in higher education, highlighted 

within Chapter 2 is the complexity and associated costs to deliver quality experiential learning 

programs (Henderson, 2019). Yet higher education institutions are under pressure to provide 

more experiential learning, particularly experiential learning that develops 21st Century Skills 

and prepares students for a career in the 4thIR. The literature cautions that these two challenges 

can result in a consumerist orientation or white washing of experiential learning that does not 

actually have the learning impact (Tiessen, Grantham & Cameron, 2018; Jorgenson & Shultz, 

2012; Qiubo, Shibin & Zha, 2016). Additionally, the increase in non-traditional students 

accessing higher education not only increases the need for real-world experiential learning 
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programs (Burns & Danyluk, 2017; Buglione, 2012) but adds to the complexity of the delivery 

and the support each student needs to be successful. 

 

This contextual pressure could result in institutions strongly encouraging faculty to embed 

more experiential learning elements into their courses without effective training and support. If the 

regression models developed in this research were further enhanced and results displayed for 

experiential learning facilitators in real-time perhaps it could help less experienced facilitators 

have more insight into each student and their team composition. This data-driven insight could 

help them develop their ability to facilitate experiential learning.  

 

How the experiential learning technology could support facilitators 
 
 

When looking specifically at the best fit regression models for predicting fixed mindset 

and growth mindset, visualization of the models!"prediction, coupled with interpretations of how 

mindset can play out in a learner"s behaviour based on learning theory, could help facilitators 

provide data and examples to the student team to help understand and overcome a challenge. For 

example if a diverse team were experiencing team-dissonance with students highlighting 

frustrations about other team members!"behaviours; having insight into the student"s mindset and 

interpretations of known challenges a diversity of mindsets can cause, could be utilised by 

facilitators in real-time to coach the team through the dissonance.  

 

Developing experiential learning technology to augment the facilitator"s ability to gather 

insight about each student"s experience and learning context, followed by the ability to leverage 
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the research and science of human behaviour in real-time to offer support, could help institutions 

ensure their experiential learning programs are generating the learning for which they are intended. 

The learning theory augmentation would also help experiential learning facilitators leverage 

learning theory about their diverse student cohort and personalise feedback, support and perhaps 

even the overall learning program structure for each student.  

 

Support for Students engaging in Experiential Learning Programs  
 
Enable facilitators to provide more tailored support for individual students 
 

Experiential learning offers an opportunity for students to learn from experience. This 

transitions the role of the facilitator from $expert!"to $guide.!"Embedding technology that provides 

a theory-based analysis of students’ learning behaviour while participating in experiential learning 

could help facilitators identify when guidance is needed and provide theory-based insight into the 

student's mindset, approach to learning and learning history that would enable more tailored 

guidance and support.  

 

For example the discussion in chapter 6 identified that students who exhibit behaviours 

that correlate with a Socratic learning history appear to focus more on project-based learning 

content and tasks as opposed to relationship-based content and tasks. An experiential learning 

facilitator can use this insight to engage specifically with students who are exhibiting behaviours 

correlating to a Socratic learning history and encourage or incentivise the completion of 

relationship-based tasks. Within the EBP facilitators could use learning theory-based insights to 

proactively encourage students that identify as being from a Socratic learning history to complete 

learning content about communicating and presenting their ideas. This encouragement might help 
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prevent all the value generated in their task based work from being lost because students were 

unable to communicate it effectively. 

 
Help students extract more out of an experiential learning program 
 

The experiential learning cycle is a structured process for extracting knowledge from 

experience (Botelho et al. 2015; Kolb & Kolb, 2005a; Kuk & Holst, 2018; Miller & Maellaro, 

2016; Sandlin et al, 2018). The experiential learning cycle steps a learner through four phases: 

1. Concrete experience: For example, a business project; 

2. Reflective observation: looking back on the business project in order to consider what went 

well and where improvement is required; 

3. Abstract conceptualisation: consideration of how theory from class could offer more in-

depth insight into what happened; 

4. Active experimentation: planning what could be done differently next time and 

implementing that plan at the next phase of the business project (Kolb, 2015).    

 

An experiential learning program that leverages the experiential learning cycle offers an 

opportunity for students to extract a larger volume of knowledge and meaning from a real-life 

situation. The Practera EBP, the context for this research is an example of an experiential learning 

program that leverages the experiential learning cycle in its design. Students participating in the 

program have the opportunity to: 

1. Develop their collaboration skills, 

2. Apply theoretical knowledge and technical skills to a real-world project, 

3. Learn how to engage an industry client effectively, 
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4. Learn how to manage and deliver a project effectively, 

5. Develop their networking skills, 

6. Test out a particular career. 

all by using the four phases of the experiential learning cycle. Experiential learning programs like 

the EBP offer a large volume of available knowledge for extraction however extracting it all 

simultaneously is cognitively complex (Irvine, 2017). In addition to the volume of knowledge 

available from an experiential learning program, students are also required to transfer past learning 

from the classroom to current real-world contexts (Jackson et al., 2018). 

 

The results of this research project indicate that students that have particular mindsets, 

approaches to learning and learning histories tend to focus on different types of learning tasks. For 

example, the discussion in chapter 6 highlighted that students who self-identified as having a 

surface level approach to learning tended to focus on learning tasks that had a direct connection to 

the industry project. If a student who identified as having a surface level approach to learning 

continued to lean towards specific learning tasks, they might be leaving a valuable learning 

opportunity on the table.  

 

Embedding technology and specifically the ability to analyse students' behaviours in real-

time in order to understand the mindset, approach to learning, and learning history they are 

exhibiting could help facilitators encourage students to focus on learning that they do not naturally 

lean towards and result in them extracting more of the available learning from the experience. 

Moreover experiential learning designers could use the information to create more explicit links 
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between knowledge acquired in a past classroom setting that could be transferred into this current 

real-world context.    

 

In time and with more development and research, the insights from this research could be 

used to adapt reflective writing tasks to focus students on particular skills that they may not 

naturally focus on. For example, the reflective writing task could be adapted for a student who 

identifies a fixed mindset to focus them on elements of the available learning that are not directly 

connected to their original intention for signing up for the learning experience.  

 
Development of Lifelong Learning Capability 
 

An additional and somewhat more abstract and future focused implication for this research 

is the ability for it to impact the development of a student"s lifelong learning capability. Lifelong 

learning is acknowledged as learning that is ongoing, self-motivated and pursuant of either 

personal or professional goals (Commission of European Communities, 2006; Laal, 2011; 

Longworth, 2019). Functionally effective and intentional lifelong learning requires metacognition; 

to examine how one thinks (Lai, 2011) or as Socrates put it, to know thyself, and learning 

flexibility, the ability to intentionally use a non-preferred approach to learning if that is what is 

required (Petersen, DeCato & Kolb, 2015). But in order to enact this change these capabilities need 

to be underpinned by a belief that change is possible (Dweck, 2017). Perhaps being able to predict 

learners!"perceptions, mindsets and skills could play a role in developing these attributes required 

for lifelong learning. 
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As highlighted in Chapter 4, the epistemological perspective that underpinned this research 

is that humans are unique, can change and exercise free-will. Yet the method used in this research 

design is positivist and deterministic. The tension within this choice is explained by the 

neuroscience of habit and the notion that although we can choose in the moment, we acquire habits 

that automate our choices and behaviour (Gardner, de Bruijn & Lally, 2011). Perhaps the ability 

to predict a learners perceptions, mindsets and skills in an experiential learning program could 

unearth subconscious learning habits by triggering metacognition about their learning process. 

This could enable students and facilitators to examine the approach to learning being used and 

whether it is the most effective for the knowledge, skill or ability being acquired. This process 

could help facilitators support not only the foundational skill development outcomes of the 

experiential learning program but also the student"s development of their learning flexibility. 

 

The research data reported in Chapter 5 indicates that education technology could be used 

to identify a student"s approach to learning while they are participating in an experiential learning 

program. Perhaps displaying this identification to the facilitator, and even the student, they could 

engage in a meaningful conversation about whether this approach to learning is appropriate for the 

task at hand or the experiential learning program overall.  This could be made possible by 

displaying the learner"s approach to learning on their dashboard and providing reflective tasks that 

are personalized to each student"s approach to learning, learning history and mindset. Each 

reflective task could be structured to focus each student to not only what they are learning and 

producing but how they are doing it. This reflection task could then be reviewed by the facilitator 

who would also be aware of the learner"s approach to learning; mindset, learning history and could 

provide tailored feedback.    
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Conclusion 
 

As mentioned above, the ability to predict learners perceptions, mindsets and skills 

according to relatively stable learning characteristics and preferences while in an experiential 

learning program by analysing students’ behaviour holds lots of potential for supporting learning 

designers, facilitators and students. This potential is particularly relevant for the practice of 

experiential learning in higher education institutions. Implementation of technology-enabled real-

time analysis of students' behaviour can leverage both theory and the expert knowledge of 

experiential learning facilitators to augment facilitation. 

 

Implications for the integration of Learning Analytics and Learning 

Theory  

 

Learning analytics literature indicates a potential for real-time learning analytics, driven by 

machine learning algorithms, to augment teaching (Hernandez-Lara, Perera-Lluna & Serradell-

Lopez, 2019; Alblawi & Alhamed, 2017). However, both the educational research and learning 

analytics research communities indicate a need for learning analytics research that is underpinned 

by learning theory (Gasevic et al., 2017; Gašević et al., 2016; Lodge & Lewis, 2012; Rogers, 

Gašević, & Dawson, 2016; Wise, 2014; Wise & Shaffer, 2015; Avella et al., 2016; Gasevic, 

Dawson & Siemens, 2014; Kirkwood & Price, 2013; Lodge & Corrin, 2017; Lockyer, Heathcote 

& Dawson, 2013; McArthur, Lewis & Bishay, 2005; Reimann, 2016). Bronniman et al. (2018) 

explicitly call for learning analytics to ask clearer pedagogical questions, and Gasevic et al. (2017) 

feel that learning analytics research should build on learning theory.  Despite the call for more 
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integration, there is still little learning analytics research that is focused on teaching and learning 

(McKee, 2017) and even less that integrates learning theory with analytics. 

 

Perhaps the most significant implication of this research for learning analytics and learning 

theory research is its ability to offer an example of what is possible if they are both combined.  My 

doctoral thesis is a solo research project. However I did seek feedback, insight and research from 

both the learning analytics and learning theory research communities in order to leverage the 

perspectives of both bodies of literature and communities of practice. Throughout the process of 

completing this doctoral thesis; the analysis and report, I engaged with multiple scholars including 

education researchers and learning analytics researchers. Although there is interest in my research 

project from both perspectives, I was also confronted with passionate arguments against it. 

Kirschner (personal communication, February 2018) found the learning theories I chose 

problematic, claiming that the learning theories I was using had no objective validity. The learning 

analytics researcher that was mentoring me through the research design process was supportive 

yet apprehensive, sending me research articles that suggested I should not expect much from the 

results. On the educational research side, I was under pressure to change the nature of the research 

to fit in better with existing education research practices.  

 

Walking down the line between learning analytics and learning theory research has been 

challenging and insightful. Despite the somewhat challenging journey, I hope this project offers 

insight into what innovation and impact might be possible if learning theory and learning analytics 

research were more integrated. Research into what produces better innovation outcomes 

acknowledges that bringing together more diverse perspectives produces more innovative 



181 

 

outcomes (Diaz-Garcia, 2014). However this lift in innovation is only realised if the diverse 

perspectives can be integrated into a common purpose (Katzenbach & Smith 2015). Integrating 

these perspectives in this doctoral thesis has led to interesting and useful insights that were likely 

not possible without combining the different perspectives and research approaches.   

 

Research into high performing teams identifies that a common purpose is not enough, a 

team also needs a common approach for how the purpose will be achieved (Katzenback & Smith 

2015). As an individual researcher bringing perspectives from learning analytics and learning 

theory research together, I did not have to deal with conflicting perspectives on purpose and 

approach. As an individual researcher I had a single purpose and chose an approach that I thought 

was appropriate for the research project. However bringing a team of learning theory researchers 

and learning analytics researchers together to collaborate on a larger project would have to address 

their differences in purpose, perspective and approach in order to collaborate effectively. Perhaps 

exploring and reporting on effective collaboration models for learning analytics researchers and 

learning theory researchers could result in more research projects that aggregate learning theory 

and learning analytics research. 

 
Limitations 
 
The results, discussion and implications chapter of this doctoral thesis have attempted to address 
three research questions: 
 

1. Which data captured by an experiential learning technology can be used to 

understand more about students’ perspectives, mindsets, and skills?  

2. How can data captured by experiential learning technology be used to understand 

more about students’ perspectives, mindsets, and skills?   
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3. How can understanding more about students’ perspectives, mindsets and skills 

be used by learning designers and facilitators to support their practice in 

experiential learning? 

Although the research has resulted in some interesting and novel insights about the nature of data 

captured by experiential learning technology and how it can be used to improve and scale the 

practice of experiential learning in high education institutions, it is important to acknowledge the 

limitations. This research project used retrospective de-identified data from one experiential 

learning program and one technology to conduct the analysis and generate insights. Using 

retrospective and de-identified data meant that learning tasks, structure and learning theory-based 

instruments used in the learning program were pre-designed into the learning program.  

 

In addition to the limitations of the research method itself it is also important to reiterate 

that the purpose of this research project was not to examine or validate existing learning theory 

but to examine one way learning theory and learning analytics could be aggregated to see if this 

integration hold potential for the improvement and scalability of experiential learning programs 

in higher education institutions. The learning theories used in the categorisation and regression 

models were already existing in Practera"s experiential business project program and technology. 

All the insights and discussion about the value of integrating learning theory and learning 

analytics would be increased through using the best possible learning theory and more complex 

learning analytics processes.  

 
 

!  
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Implications of this research on my personal practice 

 

I am a first-generation university student. I am the second in my extended family to gain a 

master"s degree and to date the only one to be at the final stages of a doctorate. This opportunity 

was afforded to me because I was born in Australia. Australia is a nation that places value on 

higher education, invests into it and has implemented legislation and financial structures that make 

it accessible and affordable.  

 

Earlier in my career I was a social innovator in Australia, the USA, China and Tanzania. I 

became increasingly aware of how lucky I was to be born and raised in a context that valued higher 

education. In parallel, I was acutely aware that problems I was solving as a social innovator were 

caused by a lack of quality and accessibility in education systems. As a result, I examined what 

systemic changes were required in order to enact scalable change to education systems. My 

conclusion was to focus on 21st Century Skill development and how technology could play a role 

in facilitating 21st Century Skill development.  

 

This transition began in 2013 with the purpose of understanding how emerging 

technologies could be used to improve the quality and accessibility of 21st Century Skill 

development in higher education, leading to my current practice designing experiential learning 

programs and technology that support 21st Century Skill development. In the future I will use 

insight from my current practice and knowledge from this research to improve the scalability of 

quality experiential learning and 21st Century Skill development in low resource economies. 
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Current Practice 
 

In order to build education technology and specifically experiential learning technology 

that can augment facilitators' skills in a meaningful way, an understanding of how students learn 

is required. The process of completing this doctoral thesis and the results of the research have 

increased my understanding of how students learn and, in particular, how students learn 21st 

Century Skills. 

 

The World Economic Forum 21st Century Skill framework (2015) breaks down sixteen 

skills into foundational literacies, competencies and character qualities. The foundational literacies 

are focused on how technical expertise is applied to everyday tasks, for example, how an 

understanding of marketing theory applies to the practice of marketing in the real-world. The 

competencies include critical thinking and are skills used to approach complex problems, for 

example, skills required to respond to technology disruption in an industry. The character qualities 

include adaptability and are skills used to approach one"s environment more holistically. Finally, 

lifelong learning is the wrap-around skill of the framework, the ability to continuously acquire new 

skills, knowledge and capabilities required to respond to the ever-changing environment. 

 

The process of this doctoral research project and the results of the research have helped me 

understand the nature of these three subsets of skills and how they are developed. The exploration 

of whether mindset (Dweck, 2017) and approach to learning (Marton & Saljio, 1976) can be 

identified using the behavioural data of learners going through an experiential learning program 

gave me further insight into the nature of these mindsets and approaches to learning. My 
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heightened understanding based on the results of this research will have a significant impact on 

my teaching, designing, technology development and research. 

 

Future Practice 
 

As mentioned, I intend to transition my attention towards the accessibility of quality 

experiential learning and 21st Century skill development in low resource economies. Three 

significant challenges to making technology and, subsequently, technology-enabled learning 

accessible in low-resource economies are the technology infrastructure, cost and confidence in 

teaching ability (Zamani et al., 2016). The biggest barrier to technology-enabled scale in low-

resource economies is access to WiFi and cost of data. This is outside the scope of my current 

research. However, the other two challenges, cost and confidence in teaching ability, can be 

addressed by designing for scale and using real-time learning analytics to augment the facilitator. 

If one learning facilitator can effectively support 1000 students through an experiential learning 

program designed to develop 21st Century Skills, without decreasing the learning outcomes gained 

by each student, then it makes the program more cost-effective for the institution and accessible 

to more students. Moreover, real-time learning analytics augmentation of inexperienced 

facilitators or facilitators who lack confidence could support with facilitator development and 

boost confidence knowing they are supported by theoretically sound insights and analysis.  

 

The results of this research offer insights that will contribute to the re-development of 

learning programs and technology to enable facilitators to increase the volume of students they are 

supporting without decreasing the learning experience or outcomes for each student. For example, 

the Practera EBP is currently delivered at a ratio of one facilitator to 500 students. One of the 
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barriers to scale is the ability of facilitators to understand how each student and team is progressing 

through the learning program in order to provide bespoke and tailored support. Re-development 

of the technology to include real-time analysis that identifies a student's mindset, approach to 

learning and learning history that can be displayed to the learning facilitator could increase the 

volume of students they can effectively support. Moreover, using an understanding of learning 

theory to offer facilitators real-time learning theory insights could save facilitators time and 

improve their practice and support to another magnitude of scale. This ability to augment the 

facilitator with real-time theory-based insights using machine learning and learning analytics could 

enable higher education institutions in low-resource economies to access solutions for 21st Century 

Skill development that are cost-effective and high-quality. 

 

In addition to the results of this research and insight gained from completing this doctorate 

enabling a transition in focus to scalability and accessibility in low-resource economies, it has also 

transitioned me from a practitioner to a practitioner-researcher (Jupp, 2006). The results of this 

research project have provided a baseline for multiple follow-up research projects that could 

improve the teaching and learning of experiential learning programs that are designed to develop 

21st Century Skills. Perhaps, more importantly, it has developed my ability to take a research-based 

approach to my practice. The ability to engage with the current academic literature in order to 

inform my practice, design research questions, conduct a research study and methodically consider 

the outcomes and how they can be implemented are invaluable skills for an innovator focused on 

driving real-world outcomes. 

!  
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Appendix 1 Instruments 
 

Revised Implicit Theories of Intelligence (Self-Theory) Scale 
 

 
 
 
!  
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The Revised Two Factor Study Process Questionnaire: R-SPQ-2F 
 
 
This questionnaire has a number of questions about your attitudes towards your studies and 

your usual way of studying. 

 

There is no right way of studying. It depends on what suits your own style and the course 

you are studying. It is accordingly important that you answer each question as honestly as 

you can. If you think your answer to a question would depend on the subject being studied, 

give the answer that would apply to the subject(s) most important to you. 

 

Please fill in the appropriate circle alongside the question number on the #General Purpose 

Survey/Answer Sheet”. The letters alongside each number stand for the following response. 

 

A — this item is never or only rarely true of me 

B — this item is sometimes true of me 

C — this item is true of me about half the time 

D — this item is frequently true of me 

E — this item is always or almost always true of me 

 

Please choose the one most appropriate response to each question. Fill the oval on the 

Answer Sheet that best fits your immediate reaction. Do not spend a long time on each item: 

your first reaction is probably the best one. Please answer each item. 

Do not worry about projecting a good image. Your answers are CONFIDENTIAL. 

Thank you for your cooperation. 

 

1. I find that at times studying gives me a feeling of deep personal satisfaction. 

2. I find that I have to do enough work on a topic so that I can form my own conclusions 

before I am satisfied. 

3. My aim is to pass the course while doing as little work as possible. 

4. I only study seriously what’s given out in class or in the course outlines. 

5. I feel that virtually any topic can be highly interesting once I get into it. 
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6. I find most new topics interesting and often spend extra time trying to obtain more 

information about them. 

7. I do not find my course very interesting so I keep my work to the minimum. 

8. I learn some things by rote, going over and over them until I know them by heart even if I 

do not understand them. 

9. I find that studying academic topics can at times be as exciting as a good novel or movie. 

10. I test myself on important topics until I understand them completely. 

11. I find I can get by in most assessments by memorising key sections rather than trying to 

understand them. 

12. I generally restrict my study to what is specifically set as I think it is unnecessary to do 

anything extra. 

13. I work hard at my studies because I find the material interesting. 

14. I spend a lot of my free time finding out more about interesting topics which have been 

discussed in different classes. 

15. I find it is not helpful to study topics in depth. It confuses and wastes time, when all you 

need is a passing acquaintance with topics. 

16. I believe that lecturers shouldn’t expect students to spend significant amounts of time 

studying material everyone knows won’t be examined. 

17. I come to most classes with questions in mind that I want answering. 

18. I make a point of looking at most of the suggested readings that go with the lectures. 

19. I see no point in learning material which is not likely to be in the examination. 

20. I find the best way to pass examinations is to try to remember answers to likely questions. 

 

Scoring is in the following cyclical order: 

1. Deep Motive, 2. Deep Strategy, 3. Surface Motive, 4. Surface Strategy 5. “ etc. 

Deep Approach Score: Σ All Deep Motive scores + all Deep Strategy scores 

Surface Approach Score: Σ All Surface Motive scores + all Surface Strategy scores 

 

Note: The A – E response options in the survey where converted into numerical values for 

scoring. A was given the value of one, B was given the value of 2 and so forth through to E 

being given the value of 5.!  
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Appendix 2 Data Privacy Impact Assessment 
 

Data Privacy Impact Assessment for Thesis Research Data 
 

Documents Read 
• Practera Privacy Policy -  
• GDPR.eu 
• OAIC Privacy  and OAIC Guide to data analytics and the Australian Privacy Principles -  
• Australian Privacy Principles 
• GDPR changes the rules for research 
• Australian Department of Education Privacy Policy  

 
Insight 

• GDPR explicitly caveats for research that is for scientific, medical or public research 
• Australian Higher Education institutions are not bound by Australian Privacy Legislation 

but choose to comply in their Privacy Policy 
• Australian legislation does not explicitly address data for the purpose of research. 
• Australian Department of Education has a Data Privacy Impact Assessment process they 

use and have a register listed on their website. 
• The main issue with storing, transferring to third party or processing is ‘personal 

information’ and there is a specific list including name and other demographic details.  
• There is specific language around anonymized and pseudo anonymize. Anonymized sits 

outside data privacy legislation and pseudo anonymized sits inside. 
• There is specific information about only using/transferring data that is necessary to be 

transferred and processed.  
• Anonymized data is considered anonymized if more than reasonable effort is required to 

re-identify the subject. 
• Australian legislation and GDPR both say that data can be used for improvement of 

services (which we have included in our privacy statement) and GDPR says that data can 
be used for research even if it is not explicitly outlined in the privacy statement if it does 
not impact the owner of the data and is for scientific, medical or public research. 

 
Transferring to a third party 

- There is no information around documentation or agreements 
- Both GDPR and APP talk about transfer (including across boarders) being okay if the 

people or organization that it is going to is bound by the APP/GDPR or another national 
legislation that is similar to the APP/GDPR 

- The Australian Department of Education and UniSA’s policy on data transfer to a third 
party (including across boarders) aligns to this 
 

Based on all of this information my conclusion on how to share data with researchers to provide 
feedback on the analysis is: 
 

1. The data being transferred is anonymized (and cannot be reversed with reasonable effort) 
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a. All data listed as personal data in Privacy Legislation has been removed 
b. Additional layer of de-identification can be added by the researcher giving each 

‘user’ a new code for the transfer to the third party. 
2. The data being transferred is only what is needed to execute the analysis 

a. 3 data tables out of 9 available 
b. No data table includes userID, free text or direct assessment items (assessment 

items were coded manually and only the table with the results of the coding would 
be transferred. 

3.  Third Party 
a. UniSA’s Privacy Policy is APP and GDPR compliant 

4. Data Security 
a. Zip Files are password protectable and passwords can be transferred using a 

different channel to avoid them being able to be connected together or vice versa. 
 
There is no legal requirement to have a contract or legal terms, but I recommend a Research 
Ethics Statement that includes: 
 

- A statement justifying all of the above (Privacy Impact Assessment) 
- Acknowledgement of being bound by APP legislation 
- Acknowledgement that data will only be stored for the duration of the review and 

feedback 
- Acknowledgement that the data will be stored, used and destroyed using the universities 

policy for academic research data 
!  
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Appendix 3 Experiential Learning Program Content Map 
 

Category milestone_name order duratio
n 

model Or
de
r 

story_title/Assessment_name 

Assessment_Draft Week 2 - Project 
Report 

3 7 Assess.Assessment 0 Project Report (Draft) - Mentor 
3 7 Assess.Assessment 1 Project Report (Draft) - Client 

Assessment_Plan Week 1 - Project 
Plan 

2 7 Assess.Assessment 0 Project Plan - Submit to Mentor 
2 7 Assess.Assessment 1 Project Plan - Submit to Client 

Assessment_Repo
rt 

Week 3 - Project 
Presentation 

4 7 Assess.Assessment 0 Project Report (Final) - Mentor 
4 7 Assess.Assessment 1 Project Report (Final) - Client 

Orientation Welcome 1 41 Story.Topic 0 Welcome to the Program 
1 41 Story.Topic 1 What You Will Learn 
1 41 Story.Topic 2 How does this Program Work? 
1 41 Story.Topic 3 Program Overview 
1 41 Story.Topic 4 How do I get Help? 
1 41 Story.Topic 5 Practera Tips 
1 41 Story.Topic 0 Welcome to Global Scope! 
1 41 Assess.Assessment 1 Photography Consent 
1 41 Story.Topic 2 Next Steps and Orientation Details 
1 41 Story.Topic 3 How does this program work? 
1 41 Story.Topic 5 How do I get Help? 
1 41 Story.Topic 6 Practera Tips 
1 41 Story.Topic 7 Mentoring Tips 
1 41 Story.Topic 8 Cross-Cultural Teams 
1 41 Story.Topic 0 Welcome to Global Scope! 
1 41 Assess.Assessment 1 Photography Consent 
1 41 Story.Topic 2 Next Steps and Orientation Details 
1 41 Story.Topic 3 How does this Program Work? 
1 41 Story.Topic 4 How do I get Help? 
1 41 Story.Topic 5 Practera Tips 
1 41 Story.Topic 0 Practera’s Fair Work Policy - Summary 
1 41 Story.Topic 1 Useful Resources 
1 41 Assess.Assessment 0 First Team Submission on Practera 
1 41 Assess.Assessment 1 First Individual Submission on Practera 
1 41 Assess.Assessment 2 End of Orientation Checklist 
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Other Welcome 1 41 Story.Topic 0 How to Confirm your Participation 
1 41 Assess.Assessment 0 Enrolment Form 

Conclusion 5 7 Story.Topic 0 Engaging in continuing work  
5 7 Assess.Assessment 0 Feedback Survey 
5 7 Assess.Assessment 4 Participant Feedback and Certificate Survey 

Project_Draft Week 2 - Project 
Report 

3 7 Story.Topic 1 Week 2: Project Report Overview 
3 7 Story.Topic 2 Project Report Outcomes 
3 7 Story.Topic 3 Key Questions - Project Report 
3 7 Story.Topic 0 Week 2: Project Report Overview 
3 7 Story.Topic 1 Draft Project Report 

Project_Plan Week 1 - Project 
Plan 

2 7 Story.Topic 1 Week 1: Project Plan Overview 
2 7 Story.Topic 2 Project Plan Outcomes 
2 7 Story.Topic 3 Key Questions - Project Plan 
2 7 Story.Topic 0 Week 1: Project Plan Overview 
2 7 Story.Topic 2 Project Plan 
2 7 Story.Topic 0 Project Plan Explained 
2 7 Story.Topic 1 Project Plan Task List 
2 7 Story.Topic 2  Seven Step Loop 
2 7 Story.Topic 3 Minto Pyramid 
2 7 Story.Topic 4 SCQ Analysis 

Project_Report Week 3 - Project 
Presentation 

4 7 Story.Topic 1 Week 3: Final Report and Project Presentation 
4 7 Story.Topic 2 Project Presentation Outcomes 
4 7 Story.Topic 3 Key Questions - Project Presentation 
4 7 Story.Topic 0 Week 3: Final Report and Project Presentation 
4 7 Story.Topic 1 Project Presentation 

Self_Assessment Welcome 1 41 Assess.Assessment 7 Self-Assessment & Skill Development 
Week 1 - Project 
Plan 

2 7 Story.Topic 0 Attitudes of Learning Explained 
2 7 Assess.Assessment 1 Attitude Towards Learning 
2 7 Story.Topic 2 Attitudes Towards Learning and Your Project 

Team 
Week 2 - Project 
Report 

3 7 Story.Topic 0 Mindset for Learning 
3 7 Assess.Assessment 1 Mindset for Learning 
3 7 Story.Topic 2 Mindset for Learning and your Project Team? 

Self_Peer_Assess
ment 

Week 2 - Project 
Report 

3 7 Assess.Assessment 8 Self & Peer Assessment #1 

Week 3 - Project 
Presentation 

4 7 Assess.Assessment 2 Self & Peer Assessment #2 
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Skills_Aggregate Week 2 - Project 
Report 

3 7 Story.Topic 0 Aggregate Findings Task List 
3 7 Story.Topic 1 Project Report & Presentation Explained 
3 7 Story.Topic 2 How to Synthesize Research 
3 7 Story.Topic 3 Synthesis Tool: Mind Mapping 
3 7 Story.Topic 4 Synthesis Tools: Finding Themes 

Skills_Collaborati
on 

Welcome 1 41 Story.Topic 0 Introduction to Collaborative Project Learning 
1 41 Story.Topic 1 Introduction to Self 
1 41 Story.Topic 2 Emotional Intelligence 
1 41 Story.Topic 3 Leading Self 
1 41 Story.Topic 5 Skill Development Planning 
1 41 Story.Topic 6 Key Collaboration Skills 

Skills_Networking Conclusion 5 7 Story.Topic 0 Create your LinkedIn Profile 
5 7 Story.Topic 1 Add Global Scope on Linkedin 
5 7 Story.Topic 2 Add your program badge on LinkedIn 
5 7 Story.Topic 3 Introduction to Networking 
5 7 Story.Topic 4 Engaging in continuing work  

Skills_Presentatio
n 

Week 3 - Project 
Presentation 

4 7 Story.Topic 1 Project Presentation Task List 
4 7 Story.Topic 2 Project Report & Presentation Explained 
4 7 Story.Topic 3 Presenting Tips: Know your Audience 
4 7 Story.Topic 4 Presenting Tip: Powerpoint 

Skills_Reflection Week 2 - Project 
Report 

3 7 Story.Topic 0 Introduction to Learn 
3 7 Story.Topic 2 Feedback 
3 7 Story.Topic 3 Reflection 
3 7 Story.Topic 4 Reflective Writing 
3 7 Story.Topic 7 How to give Effective Feedback 

Skills_Research Week 2 - Project 
Report 

3 7 Story.Topic 1 Research & Analysis Task List 
3 7 Story.Topic 2 Research Tools 
3 7 Story.Topic 3 Research Tools: SWOT Analysis  
3 7 Story.Topic 4 Research Tools: User Personas 

Skills_Teamwork Welcome 1 41 Story.Topic 0 Actively Participates  
1 41 Story.Topic 1 Communicates Effectively 
1 41 Story.Topic 2 Demonstrates Reliability 
1 41 Story.Topic 3 Exhibits Openness and Flexibility 
1 41 Story.Topic 4 Solutions Orientated 
2 7 Story.Topic 1 Introduction to Team 
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Week 1 - Project 
Plan 

2 7 Story.Topic 2 Team Formation 
2 7 Story.Topic 3 High Performance Teams 
2 7 Story.Topic 4 Diversity in Teams 
2 7 Story.Topic 5 Conflict in Teams 
2 7 Story.Topic 6 Introduction to Project 
2 7 Story.Topic 7 Project Fundamentals 
2 7 Story.Topic 8 Goals & Objectives 
2 7 Story.Topic 9 Approaches & Methods 

Week 3 - Project 
Presentation 

4 7 Story.Topic 0 Tips for Receiving  Constructive Feedback 
4 7 Story.Topic 1 Actively Participates  
4 7 Story.Topic 2 Communicates Effectively 
4 7 Story.Topic 3 Demonstrates Reliability 
4 7 Story.Topic 4 Exhibits Openness and Flexibility 
4 7 Story.Topic 5 Solutions Orientated 

 


