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Summary 1 

Variation in pre- and post-release gamete environments can influence evolutionary processes by 2 

altering fertilisation outcomes and offspring traits. It is now widely accepted that offspring inherit 3 

epigenetic information from both their mothers and fathers. Genetic and epigenetic alterations to 4 

eggs and sperm acquired post-release may also persist post-fertilisation with consequences for 5 

offspring developmental success and later-life fitness. In externally fertilising species, gametes are 6 

directly exposed to anthropogenically-induced environmental impacts including pollution, ocean 7 

acidification, and climate change. When fertilisation occurs within the female reproductive tract, 8 

although gametes are at least partially protected from external environmental variation, the 9 

selective environment is likely to vary among females. In both scenarios, gamete traits and selection 10 

on gametes can be influenced by environmental conditions such as temperature and pollution as 11 

well as intrinsic factors such as male and female reproductive fluids, which may be altered by 12 

changes in male and female health and physiology.   Here, we highlight some of the pathways 13 

through which changes in gamete environments can affect fertilisation dynamics, gamete 14 

interactions, and ultimately offspring fitness. We hope that by drawing attention to this important 15 

yet often overlooked source of variation we will inspire future research into the evolutionary 16 

implications of anthropogenic interference of gamete environments including the use of Assisted 17 

Reproductive Technologies.  18 

 19 

 20 

 21 

  22 



Environmental effects on gamete phenotypes 23 

In a rapidly changing world, understanding the impact of environmental variation on organisms at all 24 

stages is key to predicting population responses to environmental change [1]. Climate change and 25 

anthropogenic influence have led to drastic changes and fluctuations in factors including 26 

temperature, oxygen levels, pollutants and spatial restrictions [2-5]. Much of our focus on 27 

understanding the impact of environmental variation has been centred on the ecosystem, species 28 

and population-wide impacts. This approach includes all life stages, but it has become clear that 29 

some life stages are more sensitive to environmental change than others [1, 6, 7]. Gametes are 30 

susceptible to environmental stress, which is of concern because impacts on reproduction have 31 

critical implications for individual fitness which in turn might have ramifications for population 32 

health and viability [8, 9].  33 

 34 

Environmental variation may affect gametes at two stages: pre-release during oogenesis and 35 

spermatogenesis and post-release after ovulation or ejaculation [10]. Environmentally-induced 36 

modifications to eggs and sperm acquired pre-release have been the focus of the majority of 37 

research into intergenerational and transgenerational epigenetic inheritance in animals (recently 38 

reviewed in [11, 12]). Hence, here we largely focus on evolutionary consequences of variation in 39 

post-release gamete environments. In this context, external fertilising and sperm-casting (sperm are 40 

released into the environment to be subsequently collected by females) species may be particularly 41 

vulnerable to environmental change as gametes and early life-history stages are directly exposed to 42 

areal (e.g. fungi, plants) or aquatic (e.g. fish) environments [13, 14]. Nevertheless, even if gametes of 43 

internal fertilisers are not directly exposed to environmental change, they may be indirectly affected 44 

by environmentally-induced changes in both male and female reproductive fluids [15, 16]. 45 

Irrespective of fertilisation mode, environmental conditions encountered by gametes after release 46 

prior to fertilisation may affect them in two ways: varying environmental conditions may select 47 

among gametes and favour some over others (which will be particularly important for male 48 

gametes), and/or they may alter the molecular and structural content of the gametes (affecting their 49 

function and potentially the fitness of the sired offspring). Both of these impacts have potential 50 

evolutionary consequences.  51 

 52 

Sperm are the main functional unit of male reproduction, and have therefore been the focus of 53 

attention in studies of paternal effects (e.g. [17, 18]). However, males do not just transfer sperm 54 

during mating, they transfer an ejaculate. In humans, sperm only constitute about 2 - 5% of the total 55 

semen volume. The remainder of the ejaculate – known as seminal plasma or seminal fluid – 56 



contains a complex blend of chemicals (such as proteins, hormones and RNAs) with diverse functions 57 

that extend far beyond the simple nourishment of sperm [19-21]. The composition of seminal 58 

plasma varies not only among species [22], but also among males and ejaculates within a male [23-59 

25], demonstrating that semen composition is susceptible to environmental change. We know that 60 

variation in seminal plasma can regulate sperm phenotype because seminal plasma supplementation 61 

can be used to shift sperm traits such that they resemble the sperm traits of the donor ejaculate [26, 62 

27].  63 

 64 

Similarly, female reproductive fluids (including ovarian fluid, follicular fluid, cervical mucus, and egg 65 

jelly) can influence both gamete phenotypes and interactions between sperm and eggs [28-31]. The 66 

role of female reproductive fluids in chemotaxis to lead specific sperm cohorts to the eggs has been 67 

described first in broadcast-spawning marine invertebrates [32], but different forms of chemotaxis 68 

are also found in other taxa including fish [33-35] and internal fertilisers such as mammals [36]. 69 

Female reproductive fluid composition varies among individuals [37, 38], and can affect sperm 70 

motility and velocity as well as fertilisation dynamics [39-41]. The composition of the female 71 

reproductive fluid may be influenced by female condition [42], and is therefore likely to be similarly 72 

influenced by other environmental factors, with consequences for fertilisation success and offspring 73 

fitness. 74 

 75 

Intergenerational effects of variation in the gamete environment 76 

Adaptive plasticity, in particular maternal and paternal effects, may provide some protection if 77 

parents can prepare gametes and offspring for altered conditions [43, 44]. However, parental effects 78 

are not necessarily adaptive, and epigenetic inheritance may also amplify negative consequences of 79 

environmental change if parents transmit stress to future generations [45, 46]. Furthermore, the 80 

fitness consequences of epigenetic changes may not act in the same direction in all life-history 81 

stages. For example, increases in sperm fertilisation success may come at a cost to offspring 82 

developmental success [47, 48]. Hence, epigenetic inheritance may dampen, amplify, decelerate, or 83 

accelerate population responses to environmental change [43, 45]. 84 

 85 

Environmental conditions may affect gamete performance and molecular structure [49], and these 86 

changes can be induced either pre- and/or post-release [10]. Changes in the environment may affect 87 

gamete traits such as motility, swimming velocity, morphology and longevity in male gametes [50-88 

53], and size, composition, and structure of female gametes [54-56]. The molecular content of 89 

gametes may be affected by the environment through direct DNA damage, RNA and protein decay 90 



[57, 58] as well as changes in the hormonal content in eggs [59]. All these changes may either be 91 

triggered by the physiological response to changing environments in the organisms and the soma-92 

germline signalling pathways or through interactions with the intrinsic (seminal and ovarian fluid, 93 

female tract etc.) and extrinsic factors (temperature, salinity, pH, toxins etc.) after gamete release. 94 

Any of these changes in the gametes have the potential to affect the offspring sired by these 95 

gametes [18, 60].  96 

 97 

Post-release gamete environments can also have direct effects on the epigenetic content of sperm 98 

and eggs [11, 18, 58], again with either adaptive or non-adaptive consequences for fertilisation 99 

success and offspring fitness. For example, seminal plasma components can bind directly to sperm, 100 

and/or interact with both eggs and the female reproductive tract [20, 21]. Consequently, 101 

environmentally-acquired variation in seminal plasma can influence the development and 102 

phenotypic traits of offspring, even when the offspring are sired by another male [61-63]. While 103 

these effects may be at least partially mediated by female responses in internal fertilisers [64], 104 

seminal plasma also affects offspring developmental success and swimming performance in 105 

externally fertilising fish [65]. This indicates that variation in seminal plasma can have a direct effect 106 

on offspring phenotype. 107 

 108 

Stressful environmental conditions during fertilisation can impact fitness in both the parental and 109 

offspring generations by reducing fecundity and offspring performance [8]. Experiments in 110 

externally-fertilising taxa demonstrate that changes in gamete environments can have carry-over 111 

effects on offspring traits that are independent of effects of the parental and developmental 112 

environment [66-68]. For example, sperm exposure to an elevated temperature pre-fertilisation 113 

resulted in reduced offspring size and swimming performance in a salmonid fish (Coregonus 114 

lavaretus), even though no effects on sperm performance and embryo mortality were detected [67]. 115 

The micro-environment that spawned gametes experience can rapidly fluctuate both temporally and 116 

spatially, and thus the gamete environment may differ from the parental and developmental 117 

environments. It is possible that within-ejaculate and within-clutch variation in gamete phenotypes 118 

may act as a bet-hedging strategy to buffer against unpredictable gamete environments [69]. 119 

 120 

Finally, while the ‘optimal’ phenotypes of sperm and eggs vary across environments, environmental 121 

conditions may also influence how gametes interact. In internal fertilisers, paternal effects may be 122 

modulated by female responses [70, 71]. Similarly, mate choice can occur at the gamete level [30, 123 

31, 72]. These interactions between sperm and eggs may be modified by the environment in which 124 



they occur such that poor performers in one environment are the best performers in another 125 

environment [67, 73]. Hence, altered gamete environments may indirectly alter population traits via 126 

changes in the outcome of sperm competition [29] and gamete compatibility [30, 31]. Consequently, 127 

gamete environments may play an important, yet under-appreciated role in shaping population 128 

responses to environmental change [9]. 129 

 130 

Within-ejaculate variation in sperm phenotype 131 

Experiments in external fertilising species using a split-ejaculate design demonstrate that selecting 132 

for different subpopulations of sperm within an ejaculate can translate into differences in offspring 133 

phenotypes. For example, ascidian (Styela plicata) [74] and Atlantic salmon (Salmo salar) [75] eggs 134 

fertilised by a subpopulation of longer-lived sperm are more likely to develop and survive. The 135 

fitness consequences of within-ejaculate variability in sperm longevity can even carry over to grand-136 

offspring [76]. Within-ejaculate variation in thermal tolerance is also linked to variation in offspring 137 

performance; fish larvae (Coregonus lavaretus) sired by sperm exposed to increased temperatures 138 

were smaller and had reduced swimming performance compared to siblings sired by sperm of the 139 

same ejaculate maintained at normal temperatures [67]. Within-ejaculate variation may be 140 

adaptive, and could potentially serve as a bet-hedging strategy. For example, larvae of an estuarine 141 

tubeworm (Galeolaria gemineoa) that were sired by sperm exposed to low salinities had poorer 142 

developmental success overall, but performed better in low salinity conditions than siblings sired by 143 

sperm exposed to normal salinities [68]. Hence, altered sperm environments may select for different 144 

sperm phenotypes, with consequences for offspring fitness.  145 

 146 

Within-ejaculate variation in sperm phenotypes may be driven by genetic or epigenetic differences, 147 

or likely, a combination of both. Decades of intense research on sperm competition, animal 148 

breeding, and reproductive medicine were founded on the premise that sperm phenotypes are 149 

predominantly determined by testicular gene expression, and hence the diploid genome of the male 150 

[77]. However, at least in some cases, male genotype only explains a minor proportion of variation in 151 

sperm function [78, 79]. Sperm phenotype is also influenced by mitochondria and the environment 152 

[50]. But exciting new evidence suggests that sperm phenotype is at least partially linked to its 153 

haploid genetic content. Evidence for haploid selection in animals [80-82], and post-ejaculation 154 

protein transcription by sperm [83], has been steadily increasing. Of note, Alavioon et al [76] 155 

experimentally demonstrated that sperm from a single ejaculate with different swimming 156 

behaviours differed genetically at numerous sites throughout the genome. In addition, a recent 157 

study in house mice and primates showed that the sharing of transcripts in haploid spermatids after 158 



meiosis is for many genes incomplete supporting the idea that a large number of genes expressed at 159 

this stage are directly linked to the haploid spermatid genome [84].  These findings suggest that the 160 

enduring belief that the genetic content of sperm is not expressed needs to be revised. If sperm do 161 

express their haploid genome, then sperm carrying different haploid genotypes may respond to 162 

changes in their environment in different ways, resulting in haploid gene by environment 163 

interactions. 164 

 165 

The sperm environment may also influence within-ejaculate variability in non-genetic factors that 166 

are transferred to offspring alongside DNA [18, 85-87]. Several non-genetic components are known 167 

to be transferred to the egg including additions and modifications of the chromatic structure 168 

through methylation and acetylation, several types of small RNAs as well as proteins such as prions. 169 

How these components contribute to the development and fitness of the resulting offspring is still 170 

largely unknown. The most direct evidence comes from studies in mice where the injection of sperm 171 

RNAs independently of sperm induces changes in offspring phenotypes that fully or partially 172 

replicate observed paternal effects [88, 89]. One issue with such experimental designs is that the 173 

amount of RNA injected into a zygote is likely to be several orders of magnitude larger than the 174 

amount present in the sperm and hence the true mechanisms of how sperm RNAs affect offspring 175 

are still unclear. The same is true for other aspects, including methylation, as the inheritance of 176 

methylation patterns varies markedly across species and may range from largely maternally 177 

inherited in mice [57] to largely paternally inherited in zebrafish [90], thereby influencing the relative 178 

importance it may play in paternal non-genetic inheritance. In addition, its true function is thought 179 

to be anywhere between gene regulation and the silencing of selfish genetic elements and hence, 180 

while being non-genetic themselves it may be strongly associated with genomic variation. The 181 

molecular mechanisms of paternal non-genetic inheritance are therefore in great need of more 182 

detailed investigation. 183 

 184 

Anthropogenic interference of gamete environments 185 

Sperm counts are declining at an alarming rate worldwide. In humans, for example, a trend towards 186 

lower sperm counts was first observed in 1974 [91], and although still controversial, was 187 

convincingly illustrated in a recent comprehensive meta-analysis [92]. Levine et al [92] found that 188 

average sperm counts in Western countries have decreased by over 50% in the past 40 years, with 189 

no signs that the rate of decline is easing. The pace of change indicates an environmental cause, with 190 

several environmental factors potentially contributing to the trend [93]. Of particular concern are 191 

increased levels of endocrine disrupting chemicals in the environment, which may be impacting 192 



fertility of both human and wildlife populations [9, 94, 95]. Lifestyle factors, including altered diets 193 

and increased rates of obesity are also likely to be contributing to the decrease in sperm counts [96], 194 

although the relationship between obesity and male fertility is not clear cut [97]. Another important 195 

environmental factor is temperature. Although unlikely to explain much variation in human 196 

populations, increasing global temperatures are likely to impact fertility in wildlife populations [8]. 197 

These multiple environmental stressors on male fertility are likely to exert strong selective pressures 198 

potentially altering which males, and which sperm, pass their genes onto future generations [73]. 199 

 200 

Assisted Reproductive Technologies (ART) offer several treatment options to overcome infertility, 201 

including ovulation induction followed by intrauterine insemination (IUI), in vitro fertilisation (IVF), 202 

or intracytoplasmic sperm injection (ICSI). All of these medical interventions expose sperm, eggs, 203 

and/or embryos to novel and artificial environmental conditions. Compared to spontaneously 204 

conceived children, IVF children show modest yet significant increases in fasting glucose levels, fat 205 

deposition, and blood pressure, as well as systemic and pulmonary vascular dysfunction [98-100]. 206 

Long-term health consequences of these deceptively subtle health disturbances can be severe, 207 

particularly when offspring experience stressful conditions themselves. For example, when 208 

challenged with a high-fat diet, IVF-conceived mice suffered a 25% reduction in lifespan compared to 209 

naturally-conceived controls [101]. The intergenerational impacts of ART altered gamete 210 

environments may be particularly severe because ART allows no opportunity for parental effects to 211 

pre-adapt gametes to altered environmental conditions. However, ART protocols and media are 212 

optimised to minimise this stress. 213 

 214 

The impacts of environmental stress on eggs and embryos during ART are widely acknowledged and 215 

accepted, and therefore protocols have been optimised to reduce stress during these stages [102]. 216 

Less appreciated is the potential for altered sperm environments to also induce epigenetic changes 217 

with consequences for developmental success and offspring health. During the development of 218 

semen handling protocols, methods were optimised to maximise fertilisation success only. However, 219 

there is now compelling evidence that environmentally-acquired traits can be transmitted from 220 

sperm to offspring via non-genetic inheritance mechanisms [18, 58, 64] and hence, ART success rates 221 

may be improved by optimising semen preparation protocols to balance fertilisation and offspring 222 

developmental success. In particular, semen preparation methods can be used to select which 223 

sperm within an ejaculate are used to fertilise eggs. 224 

 225 



Despite declines in sperm numbers, the average adult human male still produces over 200 million 226 

sperm per ejaculate [92]. However, all sperm are not equal, and only a surprisingly small fraction of 227 

sperm needs to be functional for a male to be fertile. According to WHO guidelines, an ejaculate is 228 

considered as normal fertility with as little as 32% of sperm showing progressive motility and 4% of 229 

sperm having normal morphology (strict criteria) [103]. An underappreciated implication of these 230 

differing figures is that many sperm with non-normal morphology are able to swim normally, and 231 

could potentially successfully fertilise an egg. Even less is known about how phenotypic differences 232 

in these fertile sperm relate to variation in offspring. In fact, selecting a subpopulation of sperm by 233 

thermotaxis prior to ICSI results in a greater number of high quality mouse embryos compared to 234 

ICSI using unselected sperm [104]. Just as average sperm traits are influenced by a male’s 235 

environment, the amount of variation in sperm traits within an ejaculate can also be influenced by 236 

environmental factors [105, 106]. If these differences in sperm traits are associated with differences 237 

in offspring traits, then any factor influencing which sperm within an ejaculate fertilises an egg could 238 

also influence offspring. 239 

 240 

Evolutionary implications of ART 241 

While ART is used in medical science as a treatment for infertility, the predominant use of ART 242 

occurs in agriculture and fisheries, where it is used to enhance selective breeding and production 243 

efficiencies [107, 108]. In animal industries, ART is often used in fertile animals over multiple 244 

generations. Hence, ART induced epigenetic changes transmitted from gametes to offspring could 245 

have evolutionary implications for livestock populations. The most common form of ART applied in 246 

agriculture is artificial insemination (AI), producing up to 80% of dairy cattle and 90% of breeding 247 

sows in developed countries [107]. Semen from an elite stud male can be diluted and frozen, 248 

shipped worldwide, and subsequently used to inseminate herds of females quickly and easily. For 249 

example, more than 1000 semen doses can be produced from a single bull ejaculate. Even in this 250 

minimally invasive procedure, sperm are exposed to oxygen and light, subjected to altered 251 

temperatures, altered nutritional environments (via dilution and supplementation with supportive 252 

media), handling and shear stress, and potentially pollutants and contaminants [109]. Because these 253 

altered environmental conditions may alter genetic and epigenetic sperm content transmitted to 254 

offspring, the extensive use of even just a few steps of ART in animal breeding and fisheries has the 255 

potential to induce unanticipated and under-appreciated changes to population traits. 256 

 257 

The effects of semen preparation methods on sperm DNA fragmentation [110, 111], and the role of 258 

sperm DNA fragmentation in ART outcomes [112, 113] have begun to receive research attention. For 259 



example, it is well known that cryopreservation causes both lethal and sub-lethal damage to sperm 260 

(including DNA fragmentation, oxidative stress, and reduced mitochondrial function) with functional 261 

consequences for sperm and offspring [114]. A recent study in the brown trout Salmo trutta showed 262 

that the processes involved in cryopreservation have negative effects on offspring growth even after 263 

just one generation [115]. Cryopreservation may also induce epigenetic changes in sperm, with early 264 

indications suggesting that patterns of DNA methylation and histone modification are impacted and 265 

may be transmitted over several generations [116]. An exciting development that may alleviate 266 

some of the infertility problems we are currently facing is the recent finding that embryo 267 

development is enhanced by ‘starving and subsequently rescuing’ sperm motility prior to use in in 268 

vitro fertilisation [117]. Sperm were ‘starved’ by incubation in media without nutrients until sperm 269 

were no longer motile, then motility was ‘rescued’ by adding energy substrates to the media. This 270 

process increased the number of sperm that became hyperactivated, improving both fertilisation 271 

success and post-fertilisation developmental success [117]. Embryo development is also enhanced 272 

by transient sperm exposure to a calcium ionophore [118], confirming that embryo development can 273 

be improved through modifications to sperm incubation media used in ART. It is too early at this 274 

stage, however, to fully understand the possible long-term effects of such seemingly positive 275 

interventions. 276 

 277 

Conclusion and future directions 278 

Our review highlights an important but underappreciated source of genetic and epigenetic variation 279 

– environmental variation in post-release gamete environments. Offspring traits can be influenced 280 

by changes in environmental conditions experienced by both eggs and sperm via differential 281 

fertilisation success, within-ejaculate and within-clutch selection on gamete phenotypes and 282 

potentially haploid genotype by environment interactions, and through the inheritance of epigenetic 283 

modifications to the molecular content of both eggs and sperm. This review is not intended to be 284 

comprehensive, but rather to inspire both applied and fundamental research into the evolutionary 285 

consequences of environmental effects on gamete performance. Many of the ideas presented are 286 

largely speculative and require further investigation. An obvious knowledge gap is a lack of 287 

understanding of the specific molecular changes driving most of the effects described and the 288 

functions of altered molecules on both gametes and embryos. In other words, now that we have 289 

shown that post-release gamete environments can influence offspring traits, we need to move to 290 

the next step of understanding how these changes are mediated. Of course, different mechanisms 291 

are likely to drive different effects, and multiple mechanisms are likely to have additive and 292 

interactive effects in most cases [11].  293 



 294 

Other fruitful areas for future investigation include the possibility that sperm are not 295 

transcriptionally silent, at least in the early spermatid stages [84] and may express their haploid 296 

genome. Such selection may not only be subject to directional (purifying or positive) selection, but 297 

also balancing selection induced by variation in environmental conditions during fertilisation.  New 298 

techniques have also been developed to observe sperm interactions within the female reproductive 299 

tract [119-121], which may help to unlock some of the processes by which females differentially 300 

select sperm from competing males (i.e. cryptic female choice), which until now have remained 301 

elusive. Lastly, we encourage further investigation into the effects of different semen preparation 302 

techniques in ART on embryo development. Assisted insemination is used extensively in animal 303 

production, veterinary medicine, and conservation biology for practical reasons as it is considered to 304 

be minimally invasive. However, because sperm are exposed to altered environments, reproduction 305 

via assisted insemination has the potential to affect offspring traits. Modification of semen 306 

preparation protocols has the potential to improve outcomes in terms of both the number of 307 

offspring produced and the health of these offspring. 308 

 309 
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