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Abstract: An ultrasonic needle-actuating device for tissue biopsy and regional anaesthesia offers
enhanced needle visibility with color Doppler imaging. However, its specific performance is not yet
fully determined. This work investigated the influence on needle visibility of the insertion angle
and drive voltage, as well as determined the accuracy and agreement of needle tip localization
by comparing color Doppler measurements with paired photographic and B-mode ultrasound
measurements. Needle tip accuracy measurements in a gelatin phantom gave a regression trend,
where the slope of trend is 0.8808; coefficient of determination (R2) is 0.8877; bias is −0.50 mm; and the
95% limits of agreement are from −1.31 to 0.31 mm when comparing color Doppler with photographic
measurements. When comparing the color Doppler with B-mode ultrasound measurements, the slope
of the regression trend is 1.0179; R2 is 0.9651; bias is −0.16 mm; and the 95% limits of agreement are
from −1.935 to 1.605 mm. The results demonstrate the accuracy of this technique and its potential for
application to biopsy and ultrasound guided regional anaesthesia.

Keywords: color Doppler; needle; localization accuracy; regional anaesthesia; biopsy;
ultrasound guidance

1. Introduction

The ultrasound guidance of needle-based regional anaesthesia and tissue biopsy is widely
used clinically [1,2]. Ultrasound imaging visualizes anatomical targets and needles and allows
anaesthesiologists, radiologists, and surgeons to place needle tips with precision rather than depend
on the palpation of tissues [3]. The ultrasound guidance has improved the efficacy and reduced some
side effects during regional nerve block [4]. However, the presentation and interpretation of real-time
ultrasound guided needle interventions remain inaccurate and unreliable [5–8]. Recognition of the
tip of the needle is particularly difficult at steep in-plane insertion angles and when targeting deep
tissue [4]. An inaccurate needle placement increases the risk of adverse results, such as inadequate
anaesthesia, bleeding and nerve damage during regional anaesthesia, as well as mis-sampling and
misdiagnosis during biopsy [9,10].

The risks caused by the inaccurate needle placement have motivated a lot of research.
Advanced imaging technologies such as beam steering [11,12], image compounding [13], and 3D
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imaging [14] have been proposed to improve imaging quality. Mechanical guidance [15] and optical
guidance [16] have been utilized to optimize the needle-beam-alignment. Echogenic needles were
designed and fabricated to increase the intensity of backscattering ultrasound echoes [10]. All of these
technologies have shown specific advantages to improve needle visibility, but they all also suffer
from limitations and require further development. Another promising method to improve needle
visibility is the active needle enhanced imaging technology. Color Doppler imaging can visualize a
vibrating needle within a stationary media [14,17]. The benefits of utilizing color Doppler imaging
with the ColorMark device (ColorMark, EchoCath Inc., Princeton, NJ, USA) in percutaneous needle
procedures were reported in the studies of Feld and Jones [18–20]. They reported that color Doppler
generated a color image of a vibrating biopsy needle and its tip, as well as improved confidence in
detecting a needle, compared with real-time B-mode imaging. However, due to the flexural vibration
of ColorMark device, the Doppler image of needle expands into the neighboring tissue, resulting in the
difficulty of determining the needle tip position accurately. Moreover, a high-pitched sound was heard
due to the vibration at audio frequencies [18].

To further improve the performance of this kind of technique, Sadiq (patent GB 1304798.0, 2013)
developed a piezoelectric transducer based on a mass-spring design to actuate a standard needle
at low ultrasonic frequency [21]. No high-pitched sound is heard due to the ultrasonic vibration.
Simulation and characterization of the ultrasound-actuated needle have confirmed the longitudinal
vibration mode and confirmed the improved needle visibility under Doppler imaging [22]. Not only was
the needle visibility enhanced, but also the penetration force and needle deflection were reduced [23,24].

The ultrasound-actuated needle with color Doppler imaging is a promising solution for poor
needle visibility, but its specific performance is not yet fully determined, for instance the variation of
needle visibility caused by the insertion angle. The localization accuracy and agreement data of the
actuated needle have not been gathered. Therefore, the primary aim of this work was to investigate
the influence on needle visibility of the insertion angle and drive voltage, as well as to determine the
needle tip accuracy under color Doppler guidance.

2. Methods

2.1. Fabrication and Characterization of Needle Actuation Transducer

A needle actuation transducer based on the conventional Langevin design was fabricated, as shown
in Figure 1. The piezoelectric elements consist of two PZT4 rings (outer diameter 15 mm; inner diameter
8 mm; and thickness 5 mm) (Beijing Ultrasonic, Beijing, China), and are held between the front mass
and the back mass with a bolt. The piezoelectric elements are polarized in opposite directions and
electrically connected in parallel. Pre-stress is applied to prevent dynamic tensile forces inside the
piezoelectric rings. The flange is located at the position of the nodal plane and is used as support
for device packaging. An axial opening is created inside the bolt and the front mass to allow the
needle to pass through. The needle is clamped to the transducer by tightening the outer collar and
oscillates longitudinally when the piezoelectric transducer is excited. After fabrication, a complete
characterization was carried out using small and large signal characterization techniques to test the
basic and functional performance. Characterization details and results can be found in the previous
work [25].
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Figure 1. Schematic CAD (solidworks 2017, Dassault Systèmes SA) model of Langevin design needle
actuation transducer.

2.2. Overall Experimental Setup

The overall experimental setup was shown in Figure 2. A standard 21 g nerve block needle
(TuoRen, Henan, China) was attached to the needle actuation transducer and installed onto the
motorized translation stage (MF10, Motorman Robot Co. Ltd., Shenzhen, China). The needle actuation
transducer was fabricated in the lab and was actuated at 21.1 kHz with a maximum tip displacement up
to 8µm [25]. The drive signal, provided by a signal generator (DG1062Z, RIGOL TECHNOLOGIES, INC),
amplified by a wideband amplifier (ATA-122D, Aigtek, Xian, China), was sinusoidal and kept constant
during each insertion. The motorized stage, controlled by a servo controller (CL-01A, Motorman
Robot Co. Ltd., China), can be operated manually or through the software to an accuracy of 0.1 mm.
The needle was aimed at the target in the phantom or tissue before each insertion. Ultrasound images
were acquired using a commercial medical ultrasound imaging scanner (SonixTouch, Ultrasonix,
Richmond, Canada) with a wideband of 5–14 MHz linear probe (L14-5/38). The probe was aligned
with the plane of needle insertion (“in-plane” configuration). The ultrasound gel was applied for better
coupling to the phantom or tissue.
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Two studies, the needle visibility and needle accuracy tests, were performed with a similar
experimental setup, investigating the visibility and accuracy, respectively.

2.3. Needle Visibility Test

In this test, the effect of various factors, including the insertion angle and drive voltage on needle
visibility were investigated. The actuated standard needle was inserted into a gelatin phantom and
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fresh porcine tissue to compare the needle visibility under the B-mode and color mode. Afterwards,
the obtained group images were compared and analyzed. The needle actuation transducer was driven
at its resonant mode (21.1 kHz) with different drive voltages (0, 5, 15, 25, 35, 45 V) for each angle.
The needle was oriented at different angles (30, 45, 60, 70◦), before insertion, and gradually advanced to
the maximum depth in a 5 mm step by the motorized stage. Here, the static needle (0 V drive voltage)
was imaged using the B-mode, representing the standard needle visualized by the B-mode. Gelatin
phantom (20%) and fresh porcine tissue were used as specimens for image comparison. The parameter
settings for the SonixTouch, as detailed in Table 1, were optimized at the beginning of the test and
remained unchanged throughout the test.

Table 1. Parameter settings of the SonixTouch ultrasound system.

Parameter 20% Gelatin Phantom Porcine Tissue

Greyscale frequency 10.0 MHz 10.0 MHz
Doppler frequency 6.6 MHz 4.0 MHz

Depth 5.0 cm 5.0 cm
Sector 100% 100%

Greyscale gain 55% 60%
Doppler gain 50% 60%

Frame rate 8 Hz 7 Hz
PRF /WF 4 kHz/1440 Hz 4 kHz/840 Hz

Assumed speed of ultrasound 1540 ms−1 1540 ms−1

2.4. Needle Accuracy Test: Color Doppler vs. Photographic

To measure the accuracy of needle tip location under color Doppler guidance, a comparative
study was performed in a transparent phantom. The needle was inserted into a transparent gelatin
phantom contained in a box with a Perspex side window. Rectangular rubber targets (30 × 15 × 8 mm3)
were embedded in the phantom at various locations. The rectangular rubber targets were chosen to
make it easier to measure the distance from the needle to the target. The possible disadvantages of
their material and size are discussed later. A high resolution digital camera was placed in front of the
phantom and focused on the plane of the needle tip and target. A tripod equipped with a level calibrator
was used to hold the camera and align with the phantom. Repeat experiments were conducted under
different insertion angles (30◦, 45◦, 60◦), exploring the relationship between localization errors and the
insertion angle.

During this experiment, the needle was advanced incrementally (initially in 2 mm, then in 0.5 mm
steps) towards the target. Paired images were collected at each position of the needle by the ultrasound
and photography. Paired measurements of the distance from the needle tip to the rubber target were
obtained. The paired images were transferred to a computer for analysis using ImageJ. As shown in
Figure 3, we set the intersection point between the straight line where the puncture needle is located
and the outer edge of the target as point A. Point C is set as the intersection point between this straight
line and the outer edge of the needle tip. To form a right triangle ABC, a point B was set on the
target surface. Then, the side AC of the right triangle ABC is the axial distance, BC is the vertical
distance, and AB is the horizontal distance. Here, side AC of the right triangle ABC in the photograph
is considered to be the real axial distance. According to the above conditions, the accuracy of the
needle tip localization is calculated as the axis error, which equals the difference between length A’C’
and length AC. Afterwards, a linear regression analysis was performed. Paired measurements were
also compared using the Bland-Altman method to determine the limits of agreement.

The difference between paired measurements (y-axis) was plotted against the mean of each data
pair (x-axis) [26,27]. The bias was plotted as the mean difference with the 95% limits of agreement
(2SD). The limits of agreement were calculated for dependent, repeated data [28].
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2.5. Needle Accuracy Test: Color Doppler vs. Greyscale

In this experiment, a gelatin phantom was made incorporating grapes. Grapes are soft with a
relatively stiff outer surface and are acoustically and mechanically similar to tumors. Grape phantoms
are commonly used in biopsy training [29,30]. Due to the curvature of the grape surface, it was not
possible to determine the distance accurately using the photographic method. This is due to the fact
that when the plane of the puncture needle is not aligned with the plane of the largest cross-section
of the grape, the photographic method will no longer be suitable for a distance measurement.
Therefore, the “real” value of the distance in this experiment is unknown. Instead, conventional
B-mode imaging was used to visualize the needle tip and from that to measure the distance between
the needle tip and grape. The phantom we used had a low density of scatterers. Although it does
not give a very realistic image, this is an advantage in this case, as we can see the needle shaft and
needle tip in the B-mode rather easier and clearer than in the tissue and allowed us to compare the
accuracy between the Doppler and greyscale. The experimental setup was similar to previous one,
with the needle advanced incrementally at different angles using a mechanical stage. Paired images
were captured from the Doppler mode and B-mode images. A similar linear regression analysis was
performed after this experiment and the accuracy was regarded as the mean difference between the tip
position on Doppler and B-mode images.

3. Results

3.1. Needle Visibility Test: Effect of Drive Voltage on Needle Visibility

Figures 4 and 5 show images of the needle in gelatin phantom and porcine tissue, respectively
at 60◦ and a depth of 2.5 cm. The needle in different images was driven with voltages of 0, 5, 15, 25,
35, and 45 V, respectively. Again, the static needle (0 V drive voltage) was imaged using the B-mode,
representing the standard needle visualized by the B-mode. The results indicate that with higher
drive voltages, the needle image is better covered with a color pixel from the Doppler mode. In the
gelatin phantom (Figure 4), the needle image under the B-mode is quite good, showing the complete
needle shaft and distinct needle tip. The needle image under the B-mode is totally blurred in porcine
tissue (Figure 5), showing that the needle tip is hard to distinguish and the needle shaft is buried in
the background. The actuated needle with higher voltages (25, 35, 45 V) is more visible in the color
Doppler mode, especially in the porcine tissue, and the needle tip can be easily localized. This is due
to the fact that the needle is highlighted with the needle shaft and the tip is illuminated by the color
pixel, making it much more distinguishable.
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3.2. Needle Visibility Test: Effect of Insertion Angle on Needle Visibility

To investigate how the insertion angle influences the needle visibility, the needle images at
insertion angles of 30◦, 45◦, 60◦, and 70◦ are compared in Figure 6. All the images were obtained when
the needle was inserted to a depth of 2 cm and actuated at 45 V. Comparing the images in gelatin
phantom, at 45◦ the image has a better needle visibility than other angles, with the complete needle
shaft, distinct needle tip, and great sharpness of the needle surface. Although inserting at 45◦ provides
a good needle image, the artifact at the tip is more obvious than at other angles. This phenomenon is
more serious in porcine tissue, as shown in Figure 6b. The tail-shape artifact expands to a large colored
area, much greater than the diameter of the needle shaft, making it difficult to localize the tip. It was
found that the size of this artifact can be reduced by decreasing the drive voltage. In porcine tissue,
it is observed that inserting at 60◦ gives a better needle image than at 45◦, with much less noise at the
tip and the complete needle shaft being visible.
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Figure 6. Visualized vibrating needle in (a) gelatin phantom and (b) porcine tissue with a voltage of
45 V and a depth of 2 cm at insertion angles of 30, 45, 60, 70◦.

3.3. Needle Accuracy Test: Color Doppler vs. Photographic

All the paired measurements of the distance from the needle tip to the rubber target were obtained
from the paired ultrasound images and photographs and were plotted as data points in a single
diagram. The linear regression analysis was performed in Microsoft Excel (2010) to determine the
relationship between the two measurement techniques. Figure 7 shows the relationship between
Doppler and photographic measurements. Each point in the graph is calculated from paired images.
In the plot, the x-axis is the axial distance measured from the photograph and the y-axis is the axial
distance (line AC) measured from the Doppler image. A linear trendline was plotted to fit the data
points and the slope was calculated. Here, the distance measured from the photograph was considered
to be the “real” distance between the needle tip and target. The slope of the fitted trendline was
calculated as 0.8808, indicating that the distance measured from the Doppler image is a little less than
the real distance. This is due to the movement of the tip and surrounding tissue, which are both imaged
by the Doppler. The size of the needle tip displayed in the Doppler image is normally larger than its
real size, consequently reducing the estimated distance between the tip and target.

However, the distance measured from the Doppler image is found to be much larger than the real
distance when the distance is less than 1.5 mm. These anomalous data points are marked by the red
ring and require further investigation.

In order to investigate these anomalous data points, images showing the needle tip close to the
target were studied. The images in Figure 8 show the position where the needle tip is about 1.5, 1,
0.5 mm away from the target. The needle tip is actually moving close to the target, as can be seen in
the photographs, but the distance measured from the corresponding Doppler image does not match.
It is observed that the color area at the tip gradually reduces as it approaches the target. Based on the
principle of color Doppler imaging, the Doppler signal is capturing the movement of the needle and
surrounding media. Here, a high rubber-gelatin bonding strength could dampen the vibration at the
rubber-gelatin interface, making the color area at the tip smaller. It also indicates that the rubber target
could cause measurement errors at final positions.
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Due to the above problems and observations close to the rubber target, the data points with a
distance ≤1.5 mm, were excluded from the final analysis. About 30 paired measurements for each
angle were used for the final calculation of average errors and standard deviation. Table 2 summarizes
the needle tip localization error determined for each insertion angle. Here, the average errors for all
different angles are negative, meaning that the measured distance in the Doppler image is in general
smaller than the real distance. The 60◦ needle insertion has a smaller error than the other insertion
angles, which can be attributed to fewer artifacts observed at this angle.

Table 2. Needle tip localization error determined by the axial distance comparison between Doppler
and photographic measurements.

Insertion
Angle

Total Number of
Paired Measurements

Number of Excluded
Measurement

Average Axis
Error (mm)

Standard Deviation
(SD) (mm)

30◦ 27 7 −0.59 0.38
45◦ 37 9 −0.58 0.44
60◦ 30 9 −0.32 0.32

All angles 94 25 −0.50 0.41

Furthermore, by applying the Bland-Altman method, a Bland-Altman plot showed an agreement
between Doppler and photographic measurements, as shown in Figure 9. The bias was −0.50 mm
and the 95% limits of agreement were from −1.31 to 0.31 mm, containing 95% (67/69) of the difference
data points.
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3.4. Needle Accuracy Test: Color Doppler vs. Greyscale

Paired images were captured from the color Doppler mode and B-mode. The distances between
the needle tip and the grape target were measured for each modality. The relationship between the
B-mode and Doppler mode measurements is plotted in Figure 10a. The trendline through these scatter
points was plotted and the coefficient of determination was calculated as 0.9651, indicating a good
fit of data points. The slope of the trendline was 1.0179, very close to 1, indicating a close agreement
between the two modalities. As discussed above, the needle tip accuracy with the rubber target is only
valid for a distance ≥ 1.5 mm, from the target. In this test, no anomalous data points were observed
when the needle tip was close to the grape target. It is possibly due to the fact that the grapes eliminate
the vibration absorption phenomenon, and consequently overcome this limitation.

A Bland-Altman plot showed an agreement between the B-mode and Doppler mode measurements,
as shown in Figure 10b. The bias was −0.16 mm and the 95% limits of agreement were from −1.935 to
1.605 mm, containing 95% (70/74) of the difference data points, which means that the color Doppler
method agrees sufficiently well with the B-mode. In general, data points were evenly distributed on
both sides of the mean line, indicating a uniform difference along the insertion path.
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4. Discussion

In this paper, we investigated the influence on needle visibility of the insertion angle and drive
voltage and also determined the accuracy and agreement of needle tip localization by comparing
color Doppler measurements with paired photographic and B-mode ultrasound measurements.
Experiments using rubber inclusions demonstrated the accuracy and agreement of Doppler imaging to
the photographic measurement at a distance > 1.5 mm (the slope of trend line is 0.8808; coefficient
of determination (R2) is 0.8877; bias is −0.50 mm; and the 95% limits of agreement are from −1.31 to
0.31 mm). All errors are negative with a consistent underestimation of the order of 0.5 mm, creating
a safety margin. The accuracy was maintained at high angulations (Table 2). As the visibility of the
needle tip and shaft is often lost with high angulations in clinical practice, the actuated needle offers
a distinct advantage. When comparing the color Doppler with B-mode ultrasound measurements,
the slope of the regression trend is 1.0179, R2 is 0.9651, and bias is −0.16 mm, indicating a very good
agreement. The 95% limits of agreement are slightly disappointing at almost −2.0 to over 1.5 mm.

There are two possible causes of measurement error in the study, which are artifacts and
miscalculation due to the wrong assumption for the speed of sound. Artifacts are misrepresentations of
an object in the image. These artifacts are likely caused by the ultrasound reflection and reverberation
from the bevel tip of the needle. According to our observation, these artifacts occur at both the B-mode
and Doppler mode. In addition, it is found that the needle tip in the Doppler image is larger than the
real needle. This is due to the fact that much of the detected Doppler signal comes from the stronger
echoes from the tissue or tissue mimic adjacent to the needle as it is dragged back and forth by the
friction of the needle. Therefore, the apparent tip is extended slightly reducing the measured distance
to the target. This can at least partially explain the consistent underestimation of the tip target distance,
but it should be stressed that this builds in a small safety margin. An error in the other directions
would be unacceptable.

In the needle accuracy test, the rubber targets were chosen since they had flat surfaces and were
clearly visible under the ultrasound. They were easily embedded in a gelatin phantom without damage
and clear enough to help judge the moment of contact. However, our experiments gave inaccurate
results at distances < 1.5 mm from the target. It is thought that the high rubber-gelatin bonding strength
would weaken the vibration at the rubber-gelatin interface, resulting in a smaller color zone at the tip.
Using the grape target, no similar aberration was observed.
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In this study, the speed of the ultrasound is set by the SonixTouch system to be 1540 ms−1.
Othman reported that the speed of the ultrasound in gelatin varies with time from 1390 to 1500 ms−1 [31].
However, the phantom we used was fairly freshly made and the sound speed was measured to be
about 1410 ms−1 using the time of flight method. This could lead to an error in depth calculation of 8%.
However, due to the relative angle between the needle and the imaging transducer, the errors will
be less. Here, a linear probe was used and the target and needle tip were visualized in the field of
view. Therefore, the lateral distance may be assumed to be correctly measured and the error is mainly
in the depth orientation. The resultant error in estimation of axial distance due to the error of the
ultrasound speed at worst will be 2% at 30◦, 4% at 45◦, and 6% at 60◦. This effect may contribute to
the regression coefficient being less than one but cannot explain the full extent. This problem only
affects the comparison between the Doppler and photographic measurements. The error due to the
speed of sound affects the Doppler and greyscale to the same extent and therefore, has no influence on
that comparison.

Motion artifacts can occur, but in general, these appear with the possible geometric envelope of
the needle and can generally be disregarded, although they may contribute to some of the imprecise
measurements in the second part of the work, where the artifacts appear around the needle tip. If the
needle is not absolutely in the imaging plane, it is possible that part of the needle shaft image is missing.
This is most serious if the tip is included and care must be taken during insertion in order for the tip to
be consistently visualized during its progression. Several paired data points in the second part showed
large differences ≥ 3 mm. It is possible that the needle was not perfectly aligned with the ultrasound
imaging plane, leading to the invisibility of the needle tip, in these cases, the end of the visible shaft
was considered as the needle tip.

In clinical practice, the required accuracy of the needle intervention varies depending on the
application. For example, the desired performance in some common needle procedures such as biopsies
for prostate, kidney, breast, and liver is the millimeter level, while in brain, foetus, eye, and ear the
placement accuracy of micrometers is desirable [32]. In a recent study, a very promising technique,
known as the passive magnetic tracking needle guidance technology (NGT), was reported to have a
placement accuracy of 2 mm better than the conventional ultrasound [33]. In comparison, the results
indicate an accuracy of 1.310 mm in color Doppler vs. the photographic experiment and an accuracy
of 1.935 mm in color Doppler vs. the grayscale experiment. Our results support the potential of
the ultrasound-actuated needle in a biopsy in the prostate, kidney, breast, and liver. In addition,
the advantages of the actuated Doppler needle, including enhanced visibility of the needle and reduced
penetration force, can both be utilized during needle insertion [22,23].

Further studies are warranted investigating the accuracy and reliability of this device in animal
and cadaver tissue. It would be interesting to repeat the photographic comparison using smaller,
more compliant targets and in a tissue mimic doped for the correct speed of sound. The accuracy should
also be tested in an appropriately hydrated tissue. For regional anaesthesia, the actuated needle may
have enough accuracy for an ultrasound guided nerve block of superficial structures, which have well
delineated epineurium and marked acoustic contrast to the surrounding tissue. Realistically, we feel
that the 95% limits of agreement should be contained between −1 and +1 mm for regional anaesthesia
and it is our intention to work towards that goal with a focus on the artifact reduction algorithm.
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