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Abstract

It is commonly thought that in the early development of life on this planet

RNA would have acted both as a store of genetic information and as a catalyst.

While a number of RNA enzymes are known in contemporary cells, they are

largely confined to phosphoryl transfer reactions, whereas an RNA based

metabolism would have required a much greater chemical diversity of cataly-

sis. Here we discuss how RNA might catalyze a wider variety of chemistries,

and particularly how information gleaned from riboswitches could suggest

how ribozymes might recruit coenzymes to expand their chemical range. We

ask how we might seek such activities in modern biology.

This article is categorized under:

RNA-Based Catalysis > Miscellaneous RNA-Catalyzed Reactions

Regulatory RNAs/RNAi/Riboswitches > Riboswitches

RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry
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1 | INTRODUCTION

For billions of years, protein enzymes have catalyzed the vast majority of chemical reactions that constitute the
metabolism of cells. Yet a few reactions are catalyzed not by proteins but by RNA. Indeed, what is arguably the most
important reaction in the cell, the condensation of amino acids to form polypeptides by the peptidyl transferase activ-
ity of the ribosome is catalyzed by RNA in the large subunit (Katunin et al., 2002; Nissen et al., 2000; Weinger
et al., 2004). Another example is the splicing of mRNA, where the U2/U6 snRNA complex is a ribozyme. RNase P is a
ribozyme that processes the 50 end of tRNA in all domains of life (Guerrier-Takada et al., 1983). Some of the small
nucleolytic ribozymes are widespread, such as the hammerhead (de la Pena & Garcia-Robles, 2010b) and twister
ribozymes (Roth et al., 2014). Furthermore, hammerhead (de la Pena & Garcia-Robles, 2010a; Martick et al., 2008)
and HDV-like ribozymes (Salehi-Ashtiani et al., 2006) are encoded in the human genome. With the exception of pep-
tidyl transferase, all known natural ribozymes catalyze phosphoryl transfer reactions, transesterification reactions on
a pentavalent phosphorus center. In this short review, we consider whether or not RNA might catalyze a wider vari-
ety of chemistries, and how we might seek such activities in modern biology. Breaker has recently discussed how a
broader range of ribozymes might be conceived (Breaker, 2020). We also recommend an earlier review of Ellington
and colleagues (Chen et al., 2007).
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2 | CONTEMPORARY RIBOZYMES IN NATURE

Proteins are well suited to chemical catalysis in an aqueous environment, with 20 different amino acid side chains cov-
ering a wide chemical space. By contrast, the range of chemical functionalities in RNA is much more limited. It com-
prises four rather similar heterocyclic nucleobases, a 20-hydroxyl group and an anionic phosphodiester with associated
hydrated metal ions. Despite these limitations, RNA can accelerate phosphoryl transfer reactions by a million fold or
more (Breaker et al., 2003). This is achieved by one or other of two main broad strategies. The group I self-splicing
introns use divalent metal ions to organize the active center, activate the nucleophile and stabilize the transition state
(Adams et al., 2004; Shan et al., 2001) and the group II introns and RNase P also appear to function as metalloenzymes
(Gordon et al., 2007; Gordon & Piccirilli, 2001; Sigel et al., 2000). By contrast, the nucleolytic ribozymes use general
acid–base catalysis most frequently utilizing nucleobases (Bevilacqua, 2003; Das & Piccirilli, 2005; Kath-Schorr
et al., 2012; Liu et al., 2014; T. J. Wilson et al., 2019, 2006). Even though the natural pKa values of the nucleobases are
either low (adenine and cytosine) or high (guanine and uracil), generally resulting in a low fraction of active catalyst at
physiological pH, a ribozyme like twister has evolved its active center to impose an in-line geometry for attack by the
O20 nucleophile, stabilize the phosphorane transition state and perform nucleobase-mediated general acid–base cataly-
sis (T. J. Wilson et al., 2016) to achieve a substantial rate acceleration. Peptidyl transferase activity in the large ribo-
somal subunit does not use nucleobase-mediated catalysis, but the reaction appears to involve proton transfer mediated
by a 20-hydroxyl of tRNA (Schmeing et al., 2005).

According to the simplest version of the RNA world hypothesis (W. Gilbert, 1986) ribozymes would have cata-
lyzed all cellular chemical reactions in a primitive metabolism. This would have required RNA to catalyze a far
wider range of chemistry than we currently are aware of in nature, and it would have required relatively difficult
reactions such as carbon–carbon bond formation. Many of the reactions available to the organic chemist for this
purpose would be highly improbable for RNA catalysts, such as Grignard reagents and Pd cross-coupling
reactions.

3 | SELECTING RIBOZYMES IN THE LABORATORY

To explore what might be possible by way of RNA mediated catalysis of novel chemical reactions there have been many
investigations in which in vitro evolution methods have been used to select RNA species that will accelerate a given
reaction from a random pool of sequences. These experiments have generally been carried out in a similar manner in
which one reactant is tethered to an RNA oligonucleotide whose sequence has been partially or totally randomized,
while the other is linked to biotin. If an RNA within the pool can catalyze formation of a bond between the reactants
this connects the RNA to the biotin, allowing it to be isolated by binding to streptavidin. This can then be amplified
and a second round of selection performed. Something like 15–20 such cycles will be performed after which the reac-
tant will be disconnected from the RNA to see if it will catalyze a reaction in trans. Clearly this strategy is limited to
bond-forming reactions, and we can divide this into reactions leading to the formation of C C, C N, and C S bonds
(Figure 1).

Carbon–carbon bond formation. Ribozymes have been selected that can catalyze C C bonds by the nonnatural Diels–
Alder cycloaddition reaction (Seelig & Jäschke, 1999; Tarasow et al., 1997), the aldol reaction (Fusz et al., 2005) and
related Claisen condensation (Ryu et al., 2006).

Carbon–nitrogen bond formation. Selected ribozymes catalyzing C N bond formation include one that alkylates itself at
a specific guanine N7 (C. Wilson & Szostak, 1995), amide (Wiegand et al., 1997) and peptide bond formation (Zhang &
Cech, 1997) and glycosidic bond formation (Unrau & Bartel, 1998). Very recently Höbartner and colleagues (Scheitl
et al., 2020) have selected an RNA that catalyzes methyl transfer from O6-methylguanine to adenine N1.

Carbon–sulfur bond formation. C S bond formation has been demonstrated by selected RNA species catalyzing Michael
addition (Sengle et al., 2001) and CoA acylation (Jadhav & Yarus, 2002).

The activities of these ribozymes are typically characterized by kcat in the range 0.01–0.1 min−1. The estimated rate
enhancements vary, being strongly dependent on the estimation of the uncatalyzed rate, but are frequently around
1000-fold. They are probably relatively unsophisticated catalysts. It is likely to be much easier to find an RNA that can
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FIGURE 1 A summary of some selected ribozymes that catalyze synthetic chemistry. (a) A typical scheme for the selection of an RNA

sequence that will catalyze a bond-forming reaction between two small-molecule species. (b) Some RNA-catalyzed bond-forming reactions.

This shows C C bond forming ribozymes, using Diels–Alder (Seelig & Jäschke, 1999; Tarasow et al., 1997), aldol (Fusz et al., 2005) and

decarboxylative Claisen condensation reactions (Ryu et al., 2006), C N bond forming ribozymes, showing peptide (Zhang & Cech, 1997) and

glycosyl bond-forming reactions (Unrau & Bartel, 1998) and a C S bond forming Michael reaction ribozyme (Sengle et al., 2001)
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exploit metal ions in catalysis than one that uses nucleobases as chemical participants for example. Only a few have
been subject to significant mechanistic investigation. One example is the aldolase ribozyme of Famulok and colleagues
(Fusz et al., 2005) (Figure 1). In nature there are two classes of aldolase protein enzymes. One class uses a lysine to
make a Schiff base to activate the carbonyl carbon, while the other uses a zinc ion as a Lewis acid in electrophilic
catalysis. In RNA there is no equivalent of an aliphatic primary amine, while RNA can readily bind metal ions, so
unsurprisingly the RNA aldolase uses the latter strategy. The two selected Diels–Alder ribozymes differ in that one
uses copper ions (Tarasow et al., 1997) while the other has no identified cofactors (Seelig & Jäschke, 1999). These
cycloaddition reactions likely proceed spontaneously when the diene and dienophile are juxtaposed correctly, and it is
probable that propinquity and orientation are all that is required. The Diels–Alder ribozyme (Figure 1) isolated by
Seelig and Jäschke (1999) is one of the few such catalytic RNAs that have had their structure determined by X-ray
crystallography (Serganov et al., 2005), and this shows a binding cavity that accommodates the reactants with the
required juxtaposition. This is consistent with a degree of stereoselectivity in the catalyzed reaction (Schlatterer
et al., 2003).

While it is impressive that RNA can accelerate such reactions at all, these ribozymes are clearly not as efficient as
the natural ribozymes. Nature would have had millions of years to evolve and refine ribozymes, and likely would have
worked with rather longer segments of RNA or a related polymer. In the laboratory we are limited to rather short RNAs
(<25 nt) for complete randomization (or a longer, partially randomized RNA) and a small number of cycles of selection.
It is possible that previously-selected ribozymes could be further refined, following the example of the improvement of
the polymerase activity selected by Bartel and colleagues (Johnston et al., 2001) by Holliger and co-workers (Wochner
et al., 2011). Overall, selection of artificial ribozymes demonstrates that ribozymes can catalyze a broad range of chemi-
cal reactions, many of which are believed to have been essential in an RNA World.

4 | COENZYMES EXPAND THE RANGE OF CATALYTIC CHEMISTRY

While selection experiments provide some indications of a wider chemistry that might be RNA catalyzed, it seems likely
that limitations in the breadth of chemical space would restrict the emergence of sophisticated catalysts. To expand the
range of chemistry one possibility is to use chemically-activated substrates, like the imidazole-conjugated ligase sub-
strates studied by Szostak and colleagues (Walton et al., 2020).

A much more widely adopted strategy in nature is the use of coenzymes, acting as “bolt-on chemical tools.”
Despite a far wider range of chemical functionality compared to RNA, around half of protein enzymes expand their
catalytic repertoire in this way. Coenzymes might similarly greatly increase the catalytic range of RNA. For example,
thiamine pyrophosphate (TPP) is an especially powerful coenzyme that can participate in C C bond breaking and
formation. The carbon of the thiazole ring between the two heteroatoms ionizes to form a carbanion that is a potent
nucleophile, and can stabilize negative charge in a variety of adducts formed at that position. This can attack a car-
bonyl group, facilitating the cleavage of adjacent C C bonds, such as in the decarboxylation of pyruvate. TPP readily
binds RNA, and TPP-responsive riboswitches are extremely widespread. Pyridoxal phosphate is another highly versa-
tile coenzyme. It forms a Schiff base with the amine of amino acids whereby its pyridine ring stabilizes negative
charge, facilitating a variety of transformations around the α-carbon including deamination, decarboxylation, and
racemization.

It is widely thought that many of the coenzymes evolved in the RNA world (Chen et al., 2007; White 3rd., 1976).
Their ubiquity and the homology between classes of proteins that utilize them places many coenzymes in the last uni-
versal common ancestor (Weiss et al., 2016) and an earlier origin is suggested by their synthesis from components of
RNA and the fact that a viable RNA world would have required an expanded chemical toolkit (Benner et al., 1989;
White 3rd., 1976). Once a coenzyme had been adopted in the RNA World it is likely it would be retained due to the
many-user syndrome, that is, being used by many macromolecules to catalyze different reactions would make it partic-
ularly difficult to replace (White 3rd., 1982).

There are also precedents for ribozymes utilizing coenzymes. RNA is unsuited to participate in redox reactions unaided,
and the alcohol dehydrogenase ribozyme isolated by Suga and co-workers used nicotinamide adenine dinucleotide (NAD+)
as a coenzyme (Tsukiji et al., 2003, 2004). A precedent exists in nature too—the glmS riboswitch acts as a nucleolytic ribo-
zyme to initiate the degradation of its mRNA, and uses the amine of its glucosamine-6-phosphate ligand as a general acid
to stabilize the leaving group (Cochrane et al., 2007; Klein & Ferré-D'Amaré, 2006; W. C. Winkler et al., 2004).
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5 | RNA IN THE BINDING OF LIGANDS

RNA is an excellent binding receptor for many classes of small molecules, and a number of the riboswitches bind con-
temporary coenzymes (Roth & Breaker, 2009; Serganov & Nudler, 2013; Sherwood & Henkin, 2016), including S-
adenosylmethionine (SAM), thiamin pyrophosphate, tetrahydrofolate, flavin mononucleotide (FMN), cobalamin, and
most recently a NAD+-responsive riboswitch has been discovered (Malkowski et al., 2019). The TPP riboswitch
(W. Winkler et al., 2002) is the most widely-occurring class of riboswitch, and multiple subclasses of SAM-responsive
riboswitches have been found (Corbino et al., 2005; Fuchs et al., 2006; Grundy & Henkin, 1998; Poiata et al., 2009;
Weinberg et al., 2008; W. C. Winkler et al., 2003) with varying structures and modes of binding (S. D. Gilbert
et al., 2008; Huang & Lilley, 2018; Lu et al., 2008; Montange & Batey, 2006). A number of the coenzymes are based in
part on adenosine (consistent with their origin in the RNA world), and the recent structure of the ADP-binding domain
of the NAD+-responsive riboswitch suggests a modularity in binding mode (Huang et al., 2020).

6 | HAVE RIBOSWITCHES EVOLVED FROM ANCIENT RIBOZYMES?

The discovery of coenzyme binding riboswitches has prompted speculation about whether they evolved from ancestral
ribozymes extant in the RNA World (Breaker, 2012). We suggest three criteria for considering the plausibility of this
hypothesis.

1. The more ancient the riboswitch the more likely it has evolved from a ribozyme. Many coenzymes utilizing enzymes
can be reliably assigned to the last universal common ancestor (Weiss et al., 2016) so it is likely most if not all
ribozymes had been replaced by enzymes by this stage of evolution. An ancient riboswitch is likely to be found in a
broad range of bacterial phyla.

2. The riboswitch should bind the coenzyme in a potentially active conformation. An ancestral ribozyme must have
bound its coenzyme in a reactive conformation whereas it might be advantageous for a riboswitch to bind a highly
reactive coenzyme in a non-reactive conformation. An active conformation should be accessible without
destabilizing coenzyme binding.

3. The riboswitch should have the potential to bind a substrate.

The SAM riboswitches illustrate these considerations. We consider the SAM-I/SAM-IV riboswitch family (which
share a common SAM binding motif) to be a plausible candidate to have evolved from an RNA World ribozyme as they
satisfy all three criteria. They are dispersed across the entire bacterial phylogenetic tree (Figure 2) so the family is
clearly ancient. In order for SAM to donate a methyl group in an SN2 reaction the nucleophile has to align with the
sulfur–carbon bond. In the crystal structure of SAM-I the coenzyme sits between helices P1 and P3 in a pocket at the
center of an elaborated four-way junction. The methyl group is not accessible for an in-line attack by a nucleophile
because it is partially occluded by C8; however, it would require only a minor rotation to become fully exposed. Notably
the two exchanging strands of the junction cap the SAM binding pocket and include nucleotides that are not well con-
served (Figure 3a,b). We can envisage that these exchanging strands may have formed a substrate binding site in an
ancient ribozyme. Very recently Breaker also proposed that SAM-I may have evolved from a ribozyme (Breaker, 2020).

The SAM-II/SAM-V family of riboswitches clearly fails the criteria. They are not as widely distributed as SAM-I (they
are not found in the Firmicutes or Fusobacteria) (Figure 2) and more significantly SAM is bound deep in the major groove
of the riboswitch so that the methyl group is not accessible (Figure 3c,d). The SAM-III riboswitch also fails our criteria,
but for different reasons. The methyl group is orientated away from the RNA and is free to react (Figure 3e,f). However, it
is found almost exclusively in the Bacilli, and solely in the Firmicutes (Figure 2), suggesting a more recent origin, and the
compact structure of this riboswitch provides no obvious structure that could have bound a substrate.

The FMN riboswitch is another plausible candidate for having evolved from an ancestral ribozyme. It appears to be
of ancient origin having a similar phylogenetic distribution to SAM-I (Figure 2). The active part of FMN is the isoalloxa-
zine ring system where the protonation of nitrogen atoms N1 and N5 varies with the extent of oxidation (Figure 4a). N5
and the adjacent C4a are subject to nucleophilic attack when FMN is oxidized and participate in electron transfer in all
three oxidation states. Thus, in a ribozyme N1, C4a, and N5 would need to be available to react. FMN is bound in a
pocket in the core of the riboswitch with N1 exposed to solvent and able to exchange protons but with C4a and N5
packed in an unreactive conformation against the ribose of A49, which forms the first base pair of P4 (Figure 4b–d).
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Hence the riboswitch does not appear to satisfy the other criteria. However, helix P4 is highly variable and makes no
contact with the rest of the riboswitch, and if it is deleted the reactive edge of the isoalloxazine ring is seen to be fully
exposed (Figure 4e). It is feasible that helix P4 is not required for coenzyme binding and that an ancestral ribozyme
could have had a substrate binding domain that positioned substrate and coenzyme for reaction in place of that helix.

7 | MIGHT RIBOZYMES THAT CATALYZE A BROADER RANGE OF
CHEMISTRY EXIST IN CONTEMPORARY CELLS, AND WHERE MIGHT
THEY BE DISCOVERED?

The wealth of evidence supporting the RNA World hypothesis strongly suggests that a broader range of ribozymes
existed at an early stage of evolution of life on the planet. But could ribozymes that catalyze reactions other than phos-
phoryl transfer exist in contemporary biology? Clearly the peptidyl transferase offers a precedent for this, although the
ribosome is the exception. With many substrates and performing two distinct reactions it likely got trapped early in evo-
lution in a similar manner to the coenzymes. Other ribozymes were presumably more readily replaced and the appar-
ently nearly-total replacement indicates that the use of proteins as catalysts confers significant evolutionary advantage.
The simplest explanation for other ribozymes being not discovered is that there is none to find.

Making proteins is energetically expensive, requiring hydrolysis of four ATP molecules per amino acid—a large frac-
tion of the energy resources of bacteria go into protein synthesis because of regeneration of GTP cofactors, charging
tRNAs and so on. In contrast, transcription of a ribozyme would require significantly fewer resources. Therefore, there

FIGURE 2 Phylogeny and distribution of selected SAM and FMN binding riboswitches. The occurrence of riboswitches in 36 bacterial

divisions (phyla or orders) as given by McCown et al. (2017), arranged according to a recent phylogenetic tree for the bacteria (Zhu et al., 2019).

Note that the time represented by the tree is not to scale. The size of the circle gives the abundance of riboswitches measured as the number of

riboswitches per nucleotide of sequenced DNA, descending in decades from ≥10−7 (largest) to ≥10−10 (smallest). Organisms: 1 Bacilli,

2 Clostridia, 3 Erisipelotrichi, 4 Negativicutes, 5 Alphaproteobacteria, 6 Betaproteobacteria, 7 Gammaproteobacteria, 8 Deltaproteobacteria,

9 Epsilonproteobacteria, 10 Zetaproteobacteria, 11 Deinococcus-Thermus, 12 Acidobacteria, 13 Actinobacteria, 14 Aquificae, 15 Bacteroidetes,

16 Caldiserica, 17 Chlamydae, 18 Chlorobi, 19 Chloroflexi, 20 Chrysiogenetes, 21 Cyanobacteria, 22 Deferribacteres, 23 Dictyoglomi,

24 Elusimicrobia, 25 Fibrobacteres, 26 Fusobacteria, 27 Gemmatimonadetes, 28 Lentisphaerae, 29 Lentisphaerae, 30 Planctomycetes,

31 Spirochaetes, 32 Synergistetes, 33 Tenericutes, 34 Thermodesulfobacteria, 35 Thermotogae, 36 Verrucomicrobia
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might be some advantage to using ribozymes in circumstances where resources are very limited (oligotrophic environ-
ments) so long as the ribozyme does not constrain the flux through its metabolic pathway. Such ribozymes might be
ancient relics from an RNA world, or perhaps they might have arisen de novo more recently. It could be worthwhile

FIGURE 3 The differing environment of SAM in classes of SAM riboswitch. Each riboswitch is shown in cartoon form (left) and a closeup

view of the SAM binding site (right) with a surface shown on the RNA. (a and b) The structure of the SAM-I riboswitch (PDB ID 3IQR) with

SAM bound between helices P1 and P3 (Stoddard et al., 2010). The exchanging strands of the four-way junction are colored blue and SAM is

shown in stick format with the labile methyl group represented as a cyan sphere. (c and d) The structure of the SAM-V riboswitch (PDB ID

6FZ0) with SAM bound in the deep groove of the triple helix so that the methyl group is inaccessible (Huang & Lilley, 2018). (e and f) The

structure of the SAM-III riboswitch with SAM bound at the three-way junction with the methyl group exposed to solvent (Lu et al., 2008)
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investigating organisms from desert environments, or from a subglacial lake like Lake Vostok that has been isolated
under kilometers of Antarctic ice for millions of years. Another possibility might be bacteria found in the oceans like
Pelagibacter ubique (Rappe et al., 2002), particularly those that live below the photic zone. At the greatest depths per-
haps organisms living in the reducing environment surrounding deep ocean hydrothermal vents might be interesting to
explore from this point of view. Organisms living in oligotrophic environments sometimes undergo genomic
streamlining, reducing the size of their genome significantly (P. ubique has one of the smallest genomes known;
Giovannoni et al., 2005). Selection for small genome size might also favor ribozymes. The biology of oligotrophic envi-
ronments is often poorly understood and their microorganisms are often difficult to culture so it would not be surpris-
ing if a ribozyme had so far escaped detection.

8 | HOW MIGHT WE SEEK RIBOZYMES WITH NOVEL CHEMISTRIES?

Although we have suggested ecological niches that might harbor ribozymes, an approach that focusses on individual
organisms (such as a pull-down of RNA using a coenzyme) seems too restrictive. Here we suggest two bioinformatic

FIGURE 4 The FMN riboswitch. (a) The structure of FMN showing the oxidized, semiquinone and hydroquinone states of the

isoalloxazine ring system. The protonation state of nitrogen atoms N1 and N5 vary between the three states. The unpaired electron of the

semiquinone is delocalized; however, there is high spin density at C4a. (b) The structure of the FMN riboswitch (PDB ID 2YIE) with FMN

shown in stick format and P4 shown in blue (Vicens et al., 2011). (c and d) Two views of FMN bound in the core of the riboswitch showing

N1 exposed to solvent in the binding pocket and N5 packed against A49. (e) A view of the FMN binding pocket with helix P4 removed from

the structure. In this hypothetical structure C4a and N5 are available to participate in reactions
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strategies for seeking new ribozymes, one based on sequence and structure and the other on a functional approach. A
structure-based search would commence with a well characterized natural aptamer and here the obvious candidates
are the coenzyme-binding riboswitches, especially those discussed above that might have evolved from ancient
ribozymes. Weinberg et al. (2017) have developed a bioinformatics pipeline using conservation of primary sequence
and secondary structure, identified by searching for covariation of base pairs, to identify riboswitches. We envisage
extending this approach by first identifying a minimal core of the riboswitch necessary for binding and using this as a
seed to search for aptamers with additional conserved structures unnecessary for function as a riboswitch. It should be
relatively straightforward to demonstrate coenzyme binding by the aptamer but could the candidate be a ribozyme?
This requires identification of a substrate and demonstration of activity. The function of the coenzyme will help to con-
strain the search for a substrate, as might the genomic context if known. The second approach described below might
be applicable, as might traditional laboratory genetics. But none is certain to succeed and identification of a substrate
could be very challenging.

A second approach could be to search for missing enzymes in complete genomes by using annotations to identify
the presence of a particular metabolic pathway and then searching for all the enzymes of the pathway. A missing
enzyme might have been replaced by a ribozyme, although it is more likely that the enzyme has not been identified by
homology and so there is a high likelihood of false positives. Other information would be needed to evaluate whether
or not to pursue the search. Such factors could include how readily the missing enzyme is identified in other genomes,
the genomic context of the other genes of the pathway, and whether the reaction in question is likely to be regulated or
constrain the flux through the pathway. If a plausible candidate could be identified then a pull-down technique using
either a substrate analogue or coenzyme might isolate the ribozyme. Alternatively, genomic SELEX coupled with an
appropriate assay might be successful.

9 | CONCLUSION

It seems highly probable to us that ribozymes would have catalyzed a broader range of reactions in the distant past, and
it is very likely that coenzymes would have been important in expanding the range of possible chemistry. It remains an
open question whether ribozymes with novel chemistries exist in modern biology and we have suggested ecological
niches where ribozymes might be found and search strategies to identify them. Nevertheless, performing such a search
would be a considerable undertaking and the question of whether the object of the search is a philosophers' stone or a
needle in a haystack will only be resolved by a successful outcome.

CONFLICT OF INTEREST
The authors have declared no conflicts of interest for this article.

AUTHOR CONTRIBUTIONS
Tmothy Wilson: Writing-original draft. David Lilley: Writing-original draft.

DATA AVAILABILITY STATEMENT
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

ORCID
David M. J. Lilley https://orcid.org/0000-0001-6882-2818

RELATED WIREs ARTICLES
Finding aptamers and small ribozymes in unexpected places
Ligand-dependent ribozymes

REFERENCES
Adams, P. L., Stahley, M. R., Wang, J., & Strobel, S. A. (2004). Crystal structure of a self-splicing group I intron with both exons. Nature, 430,

45–50.
Benner, S. A., Ellington, A. D., & Tauer, A. (1989). Modern metabolism as a palimpsest of the RNA world. Proceedings of the National Acad-

emy of Sciences of the United States of America, 86(18), 7054–7058.

WILSON AND LILLEY 9 of 12

https://orcid.org/0000-0001-6882-2818
https://orcid.org/0000-0001-6882-2818
https://doi.org/10.1002/wrna.105
https://doi.org/10.1002/wrna.1395


Bevilacqua, P. C. (2003). Mechanistic considerations for general acid–base catalysis by RNA: Revisiting the mechanism of the hairpin ribo-
zyme. Biochemistry, 42(8), 2259–2265.

Breaker, R. R. (2012). Riboswitches and the RNA world. Cold Spring Harbor Perspectives in Biology, 4(2). https://doi.org/10.1101/cshperspect.
a003566

Breaker, R. R. (2020). Imaginary ribozymes. ACS Chemical Biology, 15(8), 2020–2030. https://doi.org/10.1021/acschembio.0c00214
Breaker, R. R., Emilsson, G. M., Lazarev, D., Nakamura, S., Puskarz, I. J., Roth, A., & Sudarsan, N. (2003). A common speed limit for RNA-

cleaving ribozymes and deoxyribozymes. RNA, 9(8), 949–957.
Chen, X., Li, N., & Ellington, A. D. (2007). Ribozyme catalysis of metabolism in the RNA world. Chemistry & Biodiversity, 4(4), 633–655.

https://doi.org/10.1002/cbdv.200790055
Cochrane, J. C., Lipchock, S. V., & Strobel, S. A. (2007). Structural investigation of the GlmS ribozyme bound to its catalytic cofactor. Chemis-

try & Biology, 14, 97–105.
Corbino, K. A., Barrick, J. E., Lim, J., Welz, R., Tucker, B. J., Puskarz, I., Mandal, M., Rudnick, N. D., & Breaker, R. R. (2005). Evidence for a

second class of S-adenosylmethionine riboswitches and other regulatory RNA motifs in alpha-proteobacteria. Genome Biology, 6(8), R70.
https://doi.org/10.1186/gb-2005-6-8-r70

Das, S. R., & Piccirilli, J. A. (2005). General acid catalysis by the hepatitis delta virus ribozyme. Nature Chemical Biology, 1(1), 45–52.
de la Pena, M., & Garcia-Robles, I. (2010a). Intronic hammerhead ribozymes are ultraconserved in the human genome. EMBO Reports, 11(9),

711–716. https://doi.org/10.1038/embor.2010.100
de la Pena, M., & Garcia-Robles, I. (2010b). Ubiquitous presence of the hammerhead ribozyme motif along the tree of life. RNA advanced

publication. 16(10), 1943–1950.
Fuchs, R. T., Grundy, F. J., & Henkin, T. M. (2006). The S(MK) box is a new SAM-binding RNA for translational regulation of SAM synthe-

tase. Nature Structural & Molecular Biology, 13(3), 226–233. https://doi.org/10.1038/nsmb1059
Fusz, S., Eisenfuhr, A., Srivatsan, S. G., Heckel, A., & Famulok, M. (2005). A ribozyme for the aldol reaction. Chemistry & Biology, 12(8),

941–950. https://doi.org/10.1016/j.chembiol.2005.06.008
Gilbert, S. D., Rambo, R. P., Van Tyne, D., & Batey, R. T. (2008). Structure of the SAM-II riboswitch bound to S-adenosylmethionine. Nature

Structural & Molecular Biology, 15(2), 177–182.
Gilbert, W. (1986). Origin of life—The RNA world. Nature, 319(6055), 618–618. https://doi.org/10.1038/319618a0
Giovannoni, S. J., Tripp, H. J., Givan, S., Podar, M., Vergin, K. L., Baptista, D., Bibbs, L., Eads, J., Richardson, T. H., Noordewier, M.,

Rappe, M. S., Short, J. M., Carrington, J. C., & Mathur, J. (2005). Genome streamlining in a cosmopolitan oceanic bacterium. Science,
309(5738), 1242–1245. https://doi.org/10.1126/science.1114057

Gordon, P. M., Fong, R., & Piccirilli, J. A. (2007). A second divalent metal ion in the group II intron reaction center. Chemistry & Biology, 14
(6), 607–612.

Gordon, P. M., & Piccirilli, J. A. (2001). Metal ion coordination by the AGC triad in domain 5 contributes to group II intron catalysis. Nature
Structural Biology, 8(10), 893–898.

Grundy, F. J., & Henkin, T. M. (1998). The S box regulon: A new global transcription termination control system for methionine and cysteine
biosynthesis genes in gram-positive bacteria. Molecular Microbiology, 30(4), 737–749.

Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N., & Altman, S. (1983). The RNA moiety of ribonuclease P is the catalytic subunit of the
enzyme. Cell, 35, 849–857.

Huang, L., & Lilley, D. M. J. (2018). Structure and ligand binding of the SAM-V riboswitch. Nucleic Acids Research, 46, 6869–6879.
Huang, L., Wang, J., & Lilley, D. M. J. (2020). Structure and ligand binding of the ADP-binding domain of the NAD+ riboswitch. RNA, 26

(7), 878–887. https://doi.org/10.1261/rna.074898.120
Jadhav, V. R., & Yarus, M. (2002). Acyl-CoAs from coenzyme ribozymes. Biochemistry, 41(3), 723–729.
Johnston, W. K., Unrau, P. J., Lawrence, M. S., Glasner, M. E., & Bartel, D. P. (2001). RNA-catalyzed RNA polymerization: Accurate and gen-

eral RNA-templated primer extension. Science, 292(5520), 1319–1325.
Kath-Schorr, S., Wilson, T. J., Li, N. S., Lu, J., Piccirilli, J. A., & Lilley, D. M. (2012). General acid–base catalysis mediated by nucleobases in

the hairpin ribozyme. Journal of the American Chemical Society, 134(40), 16717–16724. https://doi.org/10.1021/ja3067429
Katunin, V. I., Muth, G. W., Strobel, S. A., Wintermeyer, W., & Rodnina, M. V. (2002). Important contribution to catalysis of peptide bond

formation by a single ionizing group within the ribosome. Molecular Cell, 10(2), 339–346.
Klein, D. J., & Ferré-D'Amaré, A. R. (2006). Structural basis of glmS ribozyme activation by glucosamine-6-phosphate. Science, 313(5794), 1752–1756.
Liu, Y., Wilson, T. J., McPhee, S. A., & Lilley, D. M. (2014). Crystal structure and mechanistic investigation of the twister ribozyme. Nature

Chemical Biology, 10(9), 739–744. https://doi.org/10.1038/nchembio.1587
Lu, C., Smith, A. M., Fuchs, R. T., Ding, F., Rajashankar, K., Henkin, T. M., & Ke, A. (2008). Crystal structures of the SAM-III/S

(MK) riboswitch reveal the SAM-dependent translation inhibition mechanism. Nature Structural & Molecular Biology, 15(10),
1076–1083.

Malkowski, S. N., Spencer, T. C. J., & Breaker, R. R. (2019). Evidence that the nadA motif is a bacterial riboswitch for the ubiquitous enzyme
cofactor NAD+. RNA, 25, 1616–1627. https://doi.org/10.1261/rna.072538.119

Martick, M., Horan, L. H., Noller, H. F., & Scott, W. G. (2008). A discontinuous hammerhead ribozyme embedded in a mammalian messen-
ger RNA. Nature, 454(7206), 899–902.

McCown, P. J., Corbino, K. A., Stav, S., Sherlock, M. E., & Breaker, R. R. (2017). Riboswitch diversity and distribution. RNA, 23(7), 995–1011.
https://doi.org/10.1261/rna.061234.117

10 of 12 WILSON AND LILLEY

https://doi.org/10.1101/cshperspect.a003566
https://doi.org/10.1101/cshperspect.a003566
https://doi.org/10.1021/acschembio.0c00214
https://doi.org/10.1002/cbdv.200790055
https://doi.org/10.1186/gb-2005-6-8-r70
https://doi.org/10.1038/embor.2010.100
https://doi.org/10.1038/nsmb1059
https://doi.org/10.1016/j.chembiol.2005.06.008
https://doi.org/10.1038/319618a0
https://doi.org/10.1126/science.1114057
https://doi.org/10.1261/rna.074898.120
https://doi.org/10.1021/ja3067429
https://doi.org/10.1038/nchembio.1587
https://doi.org/10.1261/rna.072538.119
https://doi.org/10.1261/rna.061234.117


Montange, R. K., & Batey, R. T. (2006). Structure of the S-adenosylmethionine riboswitch regulatory mRNA element. Nature, 441(7097),
1172–1175.

Nissen, P., Hansen, J., Ban, N., Moore, P. B., & Steitz, T. A. (2000). The structural basis of ribosome activity in peptide bond synthesis. Sci-
ence, 289(5481), 920–930.

Poiata, E., Meyer, M. M., Ames, T. D., & Breaker, R. R. (2009). A variant riboswitch aptamer class for S-adenosylmethionine common in
marine bacteria. RNA, 15(11), 2046–2056. https://doi.org/10.1261/rna.1824209

Rappe, M. S., Connon, S. A., Vergin, K. L., & Giovannoni, S. J. (2002). Cultivation of the ubiquitous SAR11 marine bacterioplankton clade.
Nature, 418(6898), 630–633. https://doi.org/10.1038/nature00917

Roth, A., & Breaker, R. R. (2009). The structural and functional diversity of metabolite-binding riboswitches. Annual Review of Biochemistry,
78, 305–334.

Roth, A., Weinberg, Z., Chen, A. G., Kim, P. B., Ames, T. D., & Breaker, R. R. (2014). A widespread self-cleaving ribozyme class is revealed
by bioinformatics. Nature Chemical Biology, 10(1), 56–60. https://doi.org/10.1038/nchembio.1386

Ryu, Y., Kim, K. J., Roessner, C. A., & Scott, A. I. (2006). Decarboxylative Claisen condensation catalyzed by in vitro selected ribozymes.
Chemical Communications, 13, 1439–1441. https://doi.org/10.1039/b517160a

Salehi-Ashtiani, K., Luptak, A., Litovchick, A., & Szostak, J. W. (2006). A genomewide search for ribozymes reveals an HDV-like sequence in
the human CPEB3 gene. Science, 313(5794), 1788–1792.

Scheitl, C. P. M., Maghami, M. G., Lenz, A. K., & Hobartner, C. (2020). Site-specific RNA methylation by a methyltransferase ribozyme.
Nature, 587, 663–667. https://doi.org/10.1038/s41586-020-2854-z

Schlatterer, J. C., Stuhlmann, F., & Jäschke, A. (2003). Stereoselective synthesis using immobilized Diels–Alderase ribozymes. Chembiochem,
4(10), 1089–1092.

Schmeing, T. M., Huang, K. S., Kitchen, D. E., Strobel, S. A., & Steitz, T. A. (2005). Structural insights into the roles of water and the 20

hydroxyl of the P site tRNA in the peptidyl transferase reaction. Molecular Cell, 20(3), 437–448.
Seelig, B., & Jäschke, A. (1999). A small catalytic RNA motif with Diels–Alderase activity. Chemistry & Biology, 6(3), 167–176.
Sengle, G., Eisenfuh, r. A., Arora, P. S., Nowick, J. S., & Famulok, M. (2001). Novel RNA catalysts for the Michael reaction. Chemistry & Biol-

ogy, 8(5), 459–473.
Serganov, A., Keiper, S., Malinina, L., Tereshko, V., Skripkin, E., Hobartner, C., Polonskaia, A., Phan, A. T., Wombacher, R., Micura, R.,

Dauter, Z., Jaschke, A., & Patel, D. J. (2005). Structural basis for Diels–Alder ribozyme-catalyzed carbon–carbon bond formation. Nature
Structural & Molecular Biology, 12(3), 218–224.

Serganov, A., & Nudler, E. (2013). A decade of riboswitches. Cell, 152, 17–24.
Shan, S., Kravchuk, A. V., Piccirilli, J. A., & Herschlag, D. (2001). Defining the catalytic metal ion interactions in the Tetrahymena ribozyme

reaction. Biochemistry, 40(17), 5161–5171.
Sherwood, A. V., & Henkin, T. M. (2016). Riboswitch-mediated gene regulation: Novel RNA architectures dictate gene expression responses.

Annual Review of Microbiology, 70, 361–374. https://doi.org/10.1146/annurev-micro-091014-104306
Sigel, R. K., Vaidya, A., & Pyle, A. M. (2000). Metal ion binding sites in a group II intron core. Nature Structural Biology, 7(12), 1111–1116.

https://doi.org/10.1038/81958
Stoddard, C. D., Montange, R. K., Hennelly, S. P., Rambo, R. P., Sanbonmatsu, K. Y., & Batey, R. T. (2010). Free state conformational sam-

pling of the SAM-I riboswitch aptamer domain. Structure, 18(7), 787–797.
Tarasow, T. M., Tarasow, S. L., & Eaton, B. E. (1997). RNA-catalysed carbon–carbon bond formation. Nature, 389(6646), 54–57.
Tsukiji, S., Pattnaik, S. B., & Suga, H. (2003). An alcohol dehydrogenase ribozyme. Nature Structural Biology, 10(9), 713–717.
Tsukiji, S., Pattnaik, S. B., & Suga, H. (2004). Reduction of an aldehyde by a NADH/Zn2+−dependent redox active ribozyme. Journal of the

American Chemical Society, 126, 5044–5045.
Unrau, P. J., & Bartel, D. P. (1998). RNA-catalysed nucleotide synthesis. Nature, 395(6699), 260–263.
Vicens, Q., Mondragon, E., & Batey, R. T. (2011). Molecular sensing by the aptamer domain of the FMN riboswitch: A general model for

ligand binding by conformational selection. Nucleic Acids Research, 39(19), 8586–8598. https://doi.org/10.1093/nar/gkr565
Walton, T., DasGupta, S., Duzdevich, D., Oh, S. S., & Szostak, J. W. (2020). In vitro selection of ribozyme ligases that use prebiotically plausi-

ble 2-aminoimidazole-activated substrates. Proceedings of the National Academy of Sciences of the United States of America, 117(11),
5741–5748. https://doi.org/10.1073/pnas.1914367117

Weinberg, Z., Nelson, J. W., Lunse, C. E., Sherlock, M. E., & Breaker, R. R. (2017). Bioinformatic analysis of riboswitch structures uncovers
variant classes with altered ligand specificity. Proceedings of the National Academy of Sciences of the United States of America, 114(11),
E2077–E2085. https://doi.org/10.1073/pnas.1619581114

Weinberg, Z., Regulski, E. E., Hammond, M. C., Barrick, J. E., Yao, Z., Ruzzo, W. L., & Breaker, R. R. (2008). The aptamer core of SAM-IV
riboswitches mimics the ligand-binding site of SAM-I riboswitches. RNA, 14(5), 822–828. https://doi.org/10.1261/rna.988608

Weinger, J. S., Parnell, K. M., Dorner, S., Green, R., & Strobel, S. A. (2004). Substrate-assisted catalysis of peptide bond formation by the ribo-
some. Nature Structural & Molecular Biology, 11(11), 1101–1106.

Weiss, M. C., Sousa, F. L., Mrnjavac, N., Neukirchen, S., Roettger, M., Nelson-Sathi, S., & Martin, W. F. (2016). The physiology and habitat of
the last universal common ancestor. Nature Microbiology, 1(9), 16116. https://doi.org/10.1038/nmicrobiol.2016.116

White, H. B., 3rd. (1976). Coenzymes as fossils of an earlier metabolic state. Journal of Molecular Evolution, 7(2), 101–104. https://doi.org/10.
1007/BF01732468

WILSON AND LILLEY 11 of 12

https://doi.org/10.1261/rna.1824209
https://doi.org/10.1038/nature00917
https://doi.org/10.1038/nchembio.1386
https://doi.org/10.1039/b517160a
https://doi.org/10.1038/s41586-020-2854-z
https://doi.org/10.1146/annurev-micro-091014-104306
https://doi.org/10.1038/81958
https://doi.org/10.1093/nar/gkr565
https://doi.org/10.1073/pnas.1914367117
https://doi.org/10.1073/pnas.1619581114
https://doi.org/10.1261/rna.988608
https://doi.org/10.1038/nmicrobiol.2016.116
https://doi.org/10.1007/BF01732468
https://doi.org/10.1007/BF01732468


White, H. B., 3rd. (1982). In J. Everse, K. Anderson, & K.-S. Yu (Eds.), The pyridine nucleotide coenzymes (pp. 1–17). New York, NY: Aca-
demic Press.

Wiegand, T. W., Janssen, R. C., & Eaton, B. E. (1997). Selection of RNA amide synthases. Chemistry & Biology, 4(9), 675–683. https://doi.org/
10.1016/s1074-5521(97)90223-4

Wilson, C., & Szostak, J. W. (1995). In vitro evolution of a self-alkylating ribozyme. Nature, 374(6525), 777–782.
Wilson, T. J., Liu, Y., Domnick, C., Kath-Schorr, S., & Lilley, D. M. (2016). The novel chemical mechanism of the twister ribozyme. Journal

of the American Chemical Society, 138(19), 6151–6162. https://doi.org/10.1021/jacs.5b11791
Wilson, T. J., Liu, Y., Li, N. S., Dai, Q., Piccirilli, J. A., & Lilley, D. M. J. (2019). Comparison of the structures and mechanisms of the pistol

and hammerhead ribozymes. Journal of the American Chemical Society, 141(19), 7865–7875. https://doi.org/10.1021/jacs.9b02141
Wilson, T. J., Ouellet, J., Zhao, Z. Y., Harusawa, S., Araki, L., Kurihara, T., & Lilley, D. M. J. (2006). Nucleobase catalysis in the hairpin ribo-

zyme. RNA, 12(6), 980–987.
Winkler, W., Nahvi, A., & Breaker, R. R. (2002). Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression.

Nature, 419(6910), 952–956.
Winkler, W. C., Nahvi, A., Roth, A., Collins, J. A., & Breaker, R. R. (2004). Control of gene expression by a natural metabolite-responsive

ribozyme. Nature, 428(6980), 281–286.
Winkler, W. C., Nahvi, A., Sudarsan, N., Barrick, J. E., & Breaker, R. R. (2003). An mRNA structure that controls gene expression by binding

S-adenosylmethionine. Nature Structural Biology, 10(9), 701–707.
Wochner, A., Attwater, J., Coulson, A., & Holliger, P. (2011). Ribozyme-catalyzed transcription of an active ribozyme. Science, 332(6026),

209–212. https://doi.org/10.1126/science.1200752
Zhang, B., & Cech, T. R. (1997). Peptide bond formation by in vitro selected ribozymes. Nature, 390(6655), 96–100. https://doi.org/10.1038/

36375
Zhu, Q. Y., Mai, U., Pfeiffer, W., Janssen, S., Asnicar, F., Sanders, J. G., Belda-Ferre, P., Al-Ghalith, G. A., Kopylova, E., McDonald, D.,

Kosciolek, T., Yin, J. B., Huang, S., Salam, N., Jiao, J. Y., Wu, Z. J., Xu, Z. J. Z., Cantrell, K., Yang, Y. M., Sayyari, E., & Knight, R. (2019).
Phylogenomics of 10,575 genomes reveals evolutionary proximity between domains bacteria and archaea. Nature Communications, 10,
5477. https://doi.org/10.1038/s41467-019-13443-4

How to cite this article: Wilson TJ, Lilley DMJ. The potential versatility of RNA catalysis. WIREs RNA. 2021;
e1651. https://doi.org/10.1002/wrna.1651

12 of 12 WILSON AND LILLEY

https://doi.org/10.1016/s1074-5521(97)90223-4
https://doi.org/10.1016/s1074-5521(97)90223-4
https://doi.org/10.1021/jacs.5b11791
https://doi.org/10.1021/jacs.9b02141
https://doi.org/10.1126/science.1200752
https://doi.org/10.1038/36375
https://doi.org/10.1038/36375
https://doi.org/10.1038/s41467-019-13443-4
https://doi.org/10.1002/wrna.1651

	The potential versatility of RNA catalysis
	1  INTRODUCTION
	2  CONTEMPORARY RIBOZYMES IN NATURE
	3  SELECTING RIBOZYMES IN THE LABORATORY
	Outline placeholder
	Outline placeholder
	Outline placeholder
	3  Carbon-carbon bond formation
	3  Carbon-nitrogen bond formation
	3  Carbon-sulfur bond formation




	4  COENZYMES EXPAND THE RANGE OF CATALYTIC CHEMISTRY
	5  RNA IN THE BINDING OF LIGANDS
	6  HAVE RIBOSWITCHES EVOLVED FROM ANCIENT RIBOZYMES?
	7  MIGHT RIBOZYMES THAT CATALYZE A BROADER RANGE OF CHEMISTRY EXIST IN CONTEMPORARY CELLS, AND WHERE MIGHT THEY BE DISCOVERED?
	8  HOW MIGHT WE SEEK RIBOZYMES WITH NOVEL CHEMISTRIES?
	9  CONCLUSION
	  CONFLICT OF INTEREST
	  AUTHOR CONTRIBUTIONS
	  DATA AVAILABILITY STATEMENT

	REFERENCES


