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ABSTRACT 

Overland Flow Time of Concentration on Flat Terrains. (August 2004) 

Paramjit Chibber, B.E., Thapar Institute of Engineering and Technology, 

Patiala, India 

Chair of Advisory Committee: Dr. Anthony Cahill 
 
 
 

Time of concentration parameter is defined very loosely in literature and it is 

calculated rather subjectively in practice (Akan 1986). The situation becomes adverse as 

the terrain slope approaches zero; because the slope generally appears in the 

denominator of any formula for time of concentration, this time goes to infinity as the 

slope goes to zero. The variables affecting this time parameter on flat terrains have been 

studied through plot scale field experiments. It has been found that the antecedent 

moisture and rainfall rate control this parameter. Some of the existing time of 

concentration methods have been compared, and it is found that all the empirical models 

compared under predict this time parameter. This under prediction can be attributed first 

to the differing concepts of time of concentration previous researchers have modeled, 

secondly to the absence of any accounting for the initial moisture content in their 

respective equations and thirdly to the watersheds where these models have been 

calibrated. At lower time of concentrations, Izzard-based model predictions show some 

results close to the observed values.  A methodology to determine the plot scale surface 

undulations has been developed to estimate the depression storage. Regression equations 

have been derived based upon the experiments to determine the overland flow times on a 
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flat plot of 30 feet length with uniform rainfall intensity. The application of these 

equations on other lengths cannot be ascertained. Equations for the hydrograph slope on 

flat terrains have been determined for bare clay and grass plots. 
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1 INTRODUCTION 

 
 
1.1 Statement of the Problem 

 

Flooding near the inlet of a storm water sewer or storm water gushing out from a 

manhole is a common observation in most urban areas. Many times these occurrences are 

the consequence of wrong estimation of the peak discharges. The design of storm 

drainage structures requires determination of the peak discharge for a given return 

period. Discharge is influenced by rainfall (intensity and duration), flow length, 

contributing area, slope, surface type/roughness, and microtopography/depressions. 

Accurate peak discharge estimates are important when sizing highway culverts to prevent 

possible flood damages and to ensure economic design (Hotchkiss and McCallum1995). 

Peak flow estimates are also required for storm water management plans, reservoir 

operation and management, flood plain mapping besides most civil structure designs. 

The rational method is one of the widely used overland flow design methods to 

estimate the peak discharge. “The rational equation is 

 

 pQ CiA=  (1) 

    
1 

 

 
                                                 
This thesis follows the style and format of Journal of Hydrologic Engineering. 
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where pQ is the peak flow rate (cfs), C is dimensionless coefficient,  i is intensity of 

rainfall with a time duration equal to the time of concentration(iph) and A is drainage 

area in acres” (Haan et al. 1994). “The coefficient C is called the runoff coefficient and is 

the most difficult factor to accurately determine. C  must reflect factors such as 

interception, infiltration, surface detention and antecedent conditions.”. (Haan et al. 

1994).  

The importance of the time of concentration is generally accepted throughout the 

hydrologic literature. Time of concentration is a primary basin parameter which 

represents response time of a rainfall runoff system (Akan 1986). The accuracy of 

estimation of peak discharge or flood hydrograph is sensitive to the accuracy of the 

estimated time of concentration (McCuen et al. 1984). Inlet concentration time is an 

important parameter, especially in the selection of design rainfalls, for urban storm 

drainage structures (Akan 1984).  However, the time of concentration parameter is 

defined very loosely in the literature and it is calculated rather subjectively in practice 

(Akan 1986). The different definitions (Section 2.3) have led to ambiguous numerical 

results; based on the modeling approach, values for time of concentration can vary, not 

just because of different model parameters, but also because the models are modeling 

different conceptual definitions of time of concentration. Moreover it should be noted 

that in the time of concentration equations, surface slope S appears in the denominator, 

so that as surface slope goes to zero, the time of concentration becomes goes to infinity, 

which contradicts common observations. In nature, we have surfaces where the average 
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slope is quite close to zero e.g. flat terrains of Texas, yet an infinite time of concentration 

is not observed.  This is the fundamental problem associated with past work in this area. 

 

1.2 Thesis Objectives 

 

This thesis addresses the above described problem, i.e. the time of concentration 

of overland flow in flat terrains. The plan involved conducting several field experiments 

at appropriate slopes on five commonly encountered surfaces, i.e., bare-clay, lawn, 

pasture, concrete, and asphalt.  The aims of these experiments were: 

• To identify the variables that strongly affect the time of concentration on low slope 

areas. 

• To measure runoff at different time intervals and different initial conditions, e.g., 

antecedent moisture content, temperature. 

• To develop a regression equation for the time of concentration based upon the 

experimental data. 

• To determine the effect of surface microtopography on runoff generation.  

• To evaluate/compare commonly used time of concentration models with the observed 

experimental results for their applicability on flat terrains. 
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1.3 Assumptions 

 

Papadakis and Kazan (1987) reviewed a number of time of concentration 

methods and found that these equations share the general format. 

 

 a b y z
ct kL n S i− −=  (2) 

 
 

where ct  is time of concentration in minutes, L  is the length of flow path in feet, n  is 

the roughness coefficient, i  is the intensity of excess rainfall in in./hr., S  is the slope, k is 

constant and a, b, y, z are exponents. During the experiments the behavior of these 

controlling variables (length, roughness, rain intensity, and slope) observed by Papadakis 

and Kazan (1997) was observed. Besides these variables the effect of antecedent 

moisture content, soil/surface characteristic properties and microtopography was also 

observed.  

 

1.4 Limitations 

 
The small-plot studies were designed to yield information on the important 

characteristics and processes affecting time of concentration.  However, we need to be 

aware of the limitations of these experiments.  Parsons and Abrahams (1993) stated 

following problems associated with the plot/field scale studies. “Small plots are 

incapable of capturing either across slope variation or down slope changes in overland 

flow. Firstly they fail to identify the full range of infiltration changes, secondly they do 
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not sample the range of overland flow depth, thirdly they fail to capture systematic down 

slope changes in flow concentration and its distribution between rill and inter-rill flow”. 

Additionally, our plot scale studies also encounter boundary problems e.g. infiltration 

across the boundary or outside the field plot area. Our rainfall simulator at the Riverside 

Campus, Texas A&M University could certainly generate rainfall for quite long time 

spans but the rainfall distribution was not uniform and average drop size was also less 

than natural rainfall. For all calculations in this thesis rainfall has been assumed to be 

unoform. Moreover there could be some loss of water due to wind. The results and 

observations are obtained from tests on a length of 30 feet flat surfaces therefore 

applicability on other flat surface with different lengths cannot be ascertained. 
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2 LITERATURE REVIEW 

 

2.1 Overland Flow 

 

Overland flow is generated by two mechanisms: infiltration excess and saturation 

excess. In infiltration excess, the rainfall rate exceeds infiltration capacity and this 

excess rainfall moves overland depending upon the topography. This type of overland 

flow usually occurs at places where water table is deep. Saturation excess overland 

excess flow occurs at a place where there is a shallow water table. In this type of 

overland flow, the cumulative infiltration depth exceeds the soil storage capacity, and 

the resulting excess saturation spills onto the surface as overland flow. Overland flow 

depends upon slope, flow length, soil characteristics, shape of the watershed, surface 

roughness, depth of water table and depression storage capacity of the watershed and 

rainfall intensity. Overland flow/runoff from here onwards refers to infiltration excess. 

During any rainfall runoff event, in the early stages because of high infiltrability 

of unsaturated soil, the whole rainfall will infiltrate (Akan 1986). With continuous 

rainfall soil infiltration capacity continues to decrease and then comes a stage when 

rainfall rate exceeds the soil infiltration capacity and this difference in rainfall and 

infiltration rates is available for surface runoff. Surface topography then guides this 

available water towards the watershed outlet. With continuous rainfall the whole 

watershed starts to contribute towards the runoff at the outlet; at time of concentration, 

the discharge is the peak discharge.  
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2.2 Overland Flow - Peak Discharge Estimation 

 

Methods to calculate surface runoff can broadly be classified in two ways: 

Infiltration models and Rainfall excess models. Infiltration excess models calculate 

infiltration and whatever cannot infiltrates is estimated as runoff. Some of these methods 

include Green Ampt, Horton, and Holton method. Rainfall excess models directly 

calculate runoff, e. g., SCS Curve Number Method. As peak discharge is generally 

required in most design analysis, there are some methods which directly calculate the 

peak discharge e.g. Rational Method and Graphical Peak Discharge Method. 

 

2.3 Time of Concentration of Overland Flow 

 

During any rainfall event, rainfall excess, i.e. rainfall minus infiltration and 

interception, first fills the depression storage then flows over land surface, then into 

shallow ill-defined rivulets, then shallow concentrated flow before entering a water 

course. Following the water course, the discharge the reaches the outlet. Time of 

concentration is thus sensitive to all the above mentioned flow types. Time of 

concentration (tc) has been defined in the literature as:  

 

• The travel time of a wave to move from the hydrological most distant point in the 

catchment to the outlet. (Bedient and Huber 1988).  
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• The time to equilibrium of the catchment under a steady rainfall excess (i.e. when 

the outflow from the catchment equals the rainfall excess onto the catchment) 

(Bedient and Huber 1988). 

• USDA-NRCS (1986) defines time of concentration as sum total of travel times 

for sheet flow, shallow concentrated flow and channel flow. 

• Time from the end of a burst of precipitation excess to the point of inflection on 

the falling limb of the direct runoff hydrograph (ASCE 1997). 

• The duration required for runoff at the point of concentration to become a 

maximum under uniform and constant rainfall intensity (Hromadka et al. 1987). 

Time of concentration estimation models/methods has been classified in two 

ways: hydraulic and empirical estimations.  Hydraulic estimation considers uniform flow 

theory and basic wave mechanics. Some of the models in this category can be tabulated 

as in Table 1. 
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Table 1 Hydraulic Estimation Models of the Time of Concentration 

S.no. Hydraulic 
Model/Method 

Time of concentration (minutes) Remarks

1 Velocity Method

Where V= Velocity in fps = KS1/2 

N = Number of segments, L =

Flow Length in feet, S = Slope

(McCuen, 1998)

3 Overton and 
Meadows

Where 'n' is Manning's
roughness,' L' is flow length in
feet, 'S' is the slope and P2 is 2
Year, 24 hour rainfall depth
(Gupta, 1989)

4 Izzard

Where 'q' is unit discharge in
cfs/ft of flow width, yis flow
depth in feet, 'k' and 'm' are
coefiecients. Experimently a =
(0.0007i + k)/S1/3, 'i' is rainfall
intensity in in./hr. and 'k' is the
retardance coefficient.

5 Izzard- Gupta

Where 'C' is Rational Method

coefficient, 'i' is rainfall intensity

in mm/hr, 'H' is drop in elevation

in meters (Gupta, 1989)

6 Izzard - Horton
where 'i' is rainfall intensity in

mts./hr., 'L' is in meters.

∑
=

N

i 1

Li/Vi1/60 = tc

( )1/
1-1/m

ct  =( 2/i ) /
m

nL S

mayq =

0.8

c
2

0.42t  = nL
SP

⎛ ⎞
⎜ ⎟
⎝ ⎠

1/ 3 2/ 3 2 / 3 2 /3 1/3
ct   (0.024 878 / ) /i k i L C H= +

 
 

 

“Empirical estimation which usually arrive from hydrograph observation and often (but 

not always) consider watershed as a whole, not as a sum of sequentially computed reach 

behaviors” (Heggen 2003). Some of the methods are tabulated as in Table 2. 
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Table 2 Empirical Estimation Models for the Time of Concentration 

 
S.no.

Empirical 
Model/Method 

Time of concentration 
(minutes)

Remarks

1 Kiprich (Tennessee)
Where'L' is the longest flow path in feet, 'S' 

is the avg. slope along L. (McCuen, 1998).

2 Federal Aviation 
Authority

Where 'L' is in feet, 'S' is in percentage 
and 'C' is rational method coefficient 
(McCuen, 1998)

3 Espey-Winslow 
model

Where 'L' is in feet, 'S' is slope,        is the 
“channelization” factor which includes the 
amount of channel vegetation and the 
amount of channel improvementsand 'Imp' 
is percentage impervious. This model was 
developed for Houston area watersheds, 
urban and rural with area less tha 35 
miles2 (McCuen 1998,p.153).

4 SCS Model

Where 'L' is in feet, CN is the curve 
number (dimentionless). This method can 
be applied to both rural and urban 
watershed with area less than 2000 acres 
(McCuen 1998, p.153)

5 Papadakis-Kazan

Where 'n' is maninig's coeffiecient, 'L' is in 
feet, 'i' is in in./hr. and Slope 'S' is in 
ft./ft.Papadakis-Kazan gathered datasets 
from 84 natural rural watersheds from 22 
states, 162 simulated rainfall tests at 
Santa Monica Muncipal airport, 93 
simulated rainfall tests at CSU, and 36 
simulated rainfall tests at UI and then 
came out with global regression equation.

7 Kerby-Hathaway

Where L is in feet, S is in ft./ft.'n' is Kirby

Retardance coefficient McCuen(1998). He

noted that Kirby model was calculated at

watersheds of less than 10 acres. 

( ) 77.0

c /0078.0  t SL=

3/12/1
c /)1.1(8.1  t SLC−=

( )0.29
0 .6

ct   31 / / ImL S p= Φ

0.8

c 0.5

1000  0.00526 9Lt
S CN

⎛ ⎞= −⎜ ⎟
⎝ ⎠

38.031.052.05.0
c 66.0  t −−= iSnL

Φ

0.47

0.470.83c
nLt

S
⎛ ⎞= ⎜ ⎟
⎝ ⎠
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2.4  Factors Affecting Overland Flow/Time of Concentration 

 

2.4.1 Infiltration 

 
The rational method is a one-parameter model, i.e., time of concentration, as 

abstractions are accounted for in the runoff coefficient (Singh and Cruise 1989). The 

runoff coefficient ‘C’ vary during the rainfall duration and therefore do not physically 

represent infiltration (Smith and Lee 1984).  

Hjelmfelt (1978) in his mathematical model indicated the influence of infiltration 

on time of concentration. For overland flow generation, rainfall rate has to exceed the 

infiltration capacity of the surface soil, so for the same rainfall rate the time of 

concentration can vary significantly based on the surface infiltration capacity curve. 

Paintal (1974) also found that the time of concentration is governed by infiltration. Akan 

(1986) developed a mathematical formula based on kinematic overland flow and Green-

Ampt infiltration, using Manning’s roughness coefficient for time of concentration on a 

rectangular plane surface  

 

2.4.2 Rainfall Intensity/Duration 

             

After comparing 11 time of concentration methods using data collected from 48 

urban watersheds, McCuen et al. (1984) found rainfall intensity is the most important 

input parameter. As can be seen in Tables 1 and 2, time of concentration is inversely 
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related to this parameter. Singh (1976) stressed that rainfall duration has a definite 

influence on the time of concentration.  

 

2.4.3 Surface Slope 

 
 

 Runoff moves from higher to lower elevations. Slope controls overland flow 

velocities and hence overland travel times. Surface slope controls flow velocity 

(Manning’s Equation). Darboux et al. (2002) investigated the overland flow triggering 

on numerically generated surfaces and found that the ratio of slope to random roughness 

is an important variable. In most time of concentration models (Tables 1 and 2), the 

slope term appears in the denominator if it appears at all, and any value of slope close to 

zero would give exceptionally high values for the time of concentration or exceptionally 

low values for the flow velocity, which contradicts common observations. If all the 

variables affecting the peak discharge are kept the same but slope, time of concentration 

can vary significantly. In nature there commonly exist surfaces where average slope is 

quite close to zero, especially in Texas. 

  

2.4.4 Roughness Coefficient/Flow Regime 

 

The flow regime (laminar or turbulent) has also been found to affect the 

estimation of time of concentration, through its effect on the momentum transfer to the 

surface, and hence the value of the roughness coefficient.  “For an overland flow with 
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rainfall as the lateral inflow, the flow regime is complicated by the varying flow depth 

and velocity along the plane. The flow regime thus becomes variable. For a plane that is 

sufficiently long, from the upstream to the downstream end of the plane, the flow regime 

may change from laminar through transitional to turbulent” (Wong and Chen 1997). 

Butler (1977) distinguished laminar overland flow to be flow with Reynolds’s number 

less than 1000 and turbulent otherwise. “Laminar overland flow with uniform width 

when analyzed as turbulent, the computed travel time is in error by 

 4/15
, ,( )laminar true turbulent falset Kq t=  (3) 

where, the rate of discharge per unit width is q , K  is a factor which varies with 

temperature, roughness and slope”(Butler 1982). Wong (2003) compared celerity and 

velocity based time of concentration of overland plane and time of travel in channel with 

upstream inflow. He found that average velocity time of concentration is oβ (ranges 

from 3.0 (laminar) to 1.5 (turbulent)) times longer than the average velocity base time of 

concentration for four flows (laminar to turbulent). Considering the above it can be 

concluded that time of concentration is sensitive to the flow regime, also there is nothing 

like a constant hydraulic resistance i.e. as hydraulic resistance changes with time and 

length of flow.  

Sellin et al. (2003) concluded that for vegetated flood plain a single Manning’s 

‘n’ is inappropriate, it depends upon flow depth, velocity, vegetation type, density, 

dimensions, and flexibility which in turn depend upon age and season. So in the end it 

becomes necessary to choose an optimum/appropriate value for the roughness 

coefficient (Manning’s ‘n’ or Darcy-Wiesbach ‘f’). 
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Manning’s 
2/3 1/ 2R Sn
ν

=  (4) 

        

Darcy-Wiesbach 2

8gdSf
v

=  (5) 

 

where, acceleration due to gravity is g , S is the slope, ν is the mean flow speed, d is 

mean depth, and R is hydraulic radius. 

Sellin et al. (2003) reported that Darcy-Wiesbach friction factor recognizes 

different flow types based upon the Reynolds’s number, so should be preferred for 

smooth turbulent or laminar flows and for fully turbulent, i.e., high Reynolds’s number 

flows Manning’s ‘n’ is preferable. Dunkerley (2002) stated that Darcy-Wiesbach ‘f’ can 

be used for both laminar and turbulent flows. Sheet flow is characterized by slow 

velocity and shallow depth; the flow may not be turbulent (Wong and Chen 1997).Gilley 

and Finkner (1991) empirically related Random Roughness (RR) and Reynold’s number 

eR  to Darcy-Wiesbach ‘ f ’ and Manning’s ‘n’. 

 
1.75

0.661
e

6.3
R

RRf =  (6) 

    

 
0.742

0.282
e

0.172
R

RRn =  (7) 

 

Mwendera and Feyen (1992) suggested the following regression equation: 

 35.6*10 exp(1.361 )n RR−=  (8) 
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Manning’s ‘n’ is generally assumed to be independent of flow parameters and 

published values based on type of tillage, degree of crusting, presence of vegetation are 

usually taken. Wong (1996) developed a time of concentration formula for overland flow 

over a series of plane in terms of their Manning’s ‘n’, that is applicable to near turbulent 

and turbulent flow. 
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where, ct  is time of concentration in minutes, N is number of planes, L is length in m, S  

is slope in m m-1, i  is uniform net rainfall excess for jth plane in mm h-1, n  is Manning’s 

roughness coefficient of  jth plane. Since net rainfall intensity is used, this formula 

accounts for different infiltration rates for different planes. He also developed an 

equation to estimate the peak discharge per unit width pq (m2.s-1) for a series of planes 

with design rainfall intensity di  (mm.h-1) under full area contribution. 

 1
63.6*10

N

d j

j
p

i L
q ==

∑
 (10) 

Akan (1984) equated instantaneous friction slope of a free surface flow to the bed 

slope and derived a physically based nomogram to determine inlet time of concentration. 

The inputs to the nomogram include physical properties of basin and rainfall intensity 

duration relationship.  
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Wong (2002) on the basis of rainfall simulation experiments on concrete and 

artificial grass surfaces, for a net uniform rainfall and a single plane coupled the Darcy-

Wiesbach friction formula with the kinematic wave time of concentration formula to get 

Kinematic-Darcy-Wiesbach time of concentration formula. Darcy-Wiesbach coefficient 

Lf  related to Reynolds’s number LR at the end of the plane at equilibrium are defined to 

be related as 

 L k
L

Cf
R

=  (11) 

    

 63.6*10
L

iLR
ν

=  (12) 

 

where, C and k are constant, experimentally for concrete C = 4, and k = 0.5 and for 

grass C = 5000, and k = 1.0, ν  is the kinematic viscosity (m2s-1) and i  is rainfall 

intensity (mm h-1). Based upon the above two equations and substituting them in (Chen 

and Wong 1993; Wong, 1994; Wong and Chen, 1997). 
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where, S  is slope in m/m. 
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From the above equations it can be seen that for time of concentration 

calculations, Darcy-Wiesbach resistance coefficient is not constant but depends 

(inversely) upon the net rainfall intensity. 

 

2.4.5 Depression Storage 

             

Paintal (1974) reported time of concentration to be affected by depression 

storage. During any rainfall event, whenever the rainfall intensity exceeds the infiltration 

capacity of the soil, depressions on the surface begins to fill. A part of the rainfall thus 

stays on surface which ultimately either evaporates back into the atmosphere and/or 

infiltrates. A lot of studies have been done to investigate the effect of this hydrological 

process on overland flow generation. Contrary to the belief that runoff begins after all 

depressions are filled; Hansen (2000) found that runoff starts before all the depression 

storage is filled. He also found that location of depressions also have a decisive influence 

on the precipitation excess required to all depressions. 

Hansen (2000) observed that there are several roughness indices which define the 

surface depression storage capacity. Of all of them Random Roughness (RR) is most 

often cited. Allmaras et al. (1966) defined Random Roughness as a random occurrence 

of surface peaks and depressions or standard deviation among heights. Hansen et al. 

(1999) described Allmaras et al. (1966) procedure as follows: 

1. All elevation data are transformed to natural logarithms. 
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2. Contributions from Oriented Roughness (Roughness due to ridges and occurring 

between rows of lister and ridge planting, undulations in surface relief such as plow 

furrow slices cultivator furrows (Allmaras et al., 1966)) and slope are then eliminated 

by correcting each elevation height of its row and column and the mean elevation 

height of all elevation points. 

3. The 10% upper and lower extreme values are subsequently excluded from the 

dataset. 

4. The Random Roughness is then obtained as the product of the standard deviation of 

the remaining logarithmic transformed data and overall arithmetic mean. 

Darboux et al (2002) investigated the overland flow triggering on numerically 

generated surfaces and found that a ratio of slope to random roughness is an important 

parameter. The amount of precipitation excess needed to fill the depressions decreases 

with increasing slope steepness and decreasing random roughness (Onstad 1984).  

Depression storage Capacity (DSC) estimation from Random Roughness (cm) with 

slope ‘ S  ‘(percentage) are as follows: 

Mwendera and Feyen (1992) 20.294 0.036 0.012DSC RR RR RRS= + −  (15) 
        

             Onstad (1984)   20.112 0.031 0.012DSC RR RR RRS= + −  (16) 

Planchon and Darboux (2001) made a computer model to calculate depression 

storage. The model inundates the surface with a thick layer of water and then removes 

the excess water. 
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2.4.6 Antecedent Moisture Content 

 

“Surface soil moisture content is a state variable, that is either simulated or 

required as input for many hydrologic models” (Hawley et al. 1983). The effect of this 

state variable was studied by Jacobs et al. (2003) on Little Washita watershed. They 

found the runoff measurement error (by SCS method) was reduced when they used 

remotely sensed soil moisture data on an 800 m grid as compared to 28 km grid. Merz 

and Plate (1997) investigated the effects of initial soil moisture and its spatial variability 

on rainfall runoff process and found that organization in spatial patterns of soil moisture 

and soil properties may influence the catchment runoff. Flat terrains are more amenable 

to variable source area and retain ground surface inundation for longer periods of time 

(Hernandez et al. 2003). In the light of above findings, the effect of this state variable on 

overland flow time of concentration, on surfaces with negligible slopes, should be given 

appropriate importance. 

Asch et al. (2001) also mentioned the importance of temporal and spatial 

distribution of soil moisture in top soil (0-5 cm.), that it affects runoff. Meyles et al. 

(2003) though experiments on Southeast Dartmoor, UK found that catchment response 

was relatively small (10% of the area) for initially dry state (low soil moisture and hence 

minimal lateral hydraulic conductivity) and large (65% of the area) for initially wet state 

(volumetric soil moisture content greater than 0.6 and rainfall events larger than 

20mm).He also found that antecedent moisture content influences the shape of a 
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resulting hydrographs from a storm event. During wet conditions runoff mainly depends 

upon topography (Beldring et al. 2000).  

Akan (1986) combined the kinematic overland flow and Green-Ampt equations 

for a rectangular plot to develop a time of concentration chart for an infiltrating surface. 

It determines two time parameters, first the time when the surface runoff commences 

and the time to equilibrium (concentration). As Green-Ampt equation is used, effects of 

soil properties and antecedent soil moisture can be observed. He stated “the other factors 

remaining the same, the time of concentration increases with decreasing antecedent 

moisture content”. 

In light of the knowledge gained in the literature review, we developed our 

experimental approach to consider those variables most likely to affect the time of 

concentration.  We outline our experimental methods next. 

 

2.5 Stepwise Regression 

 
Stepwise regression uses an F-Test or partial F-test as its criteria to so as to whether an 

explanatory variable should be added to the regression equation. The steps of the 

algorithm as outlined in section 15.2, Draper and Smith (1998) are as follows: 

1. First calculate the F-values of all the independent variables X regressed individually 

against the dependent variable Y. Choose the one with the highest F-value. 

a. Check if this F-value is statistically significant. 

i. If no, quit. No regression is going to be statistically significant. 

ii. If yes, proceed to 2. 
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2. Examine the partial F-values for all explanatory variables not included in the 

regression. 

3. Choose the variable with the highest partial F-value, and include it in the regression. 

4. Check if any variable need to be removed. Calculate the partial F-values of all the 

variables included in the regression. 

a. Check if the lowest partial F-value is les than the critical F-value for 

statistical significance. 

i. If yes, remove this variable from the set of regressors. 

ii. If not, continue with this set. 

5. Continue from 2. until 

a. All variables are included. 

b. No more variables can be included because the partial F-values af all are 

statistically insignificant 

c. A lop is entered in which the same variable is entered and then removed in a 

single loop of 2.-4. 
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3 METHODOLOGY 

 

The experimental setups were designed to conduct varying rainfall, 

microtopography measurements, infiltration measurements and drop size distribution. 

Plots were exposed to simulated rainfall under different environmental conditions. The 

setups were designed for small scale runoff measurements, rather than full scale 

simulation.  The setups provide a comparative evaluation of runoff generation, 

hydrograph time parameters under controlled and documented conditions. 

 
 
3.1 Experimental Rainfall Setup and Runoff Collection Procedure 

 

3.1.1 Rainfall Simulator 

  

From literature review, one of the key parameter/variable for the time of 

concentration was the rainfall intensity and uniformity. Initially it was planned that 

rainfall simulators available with the Hydraulics, Sediment and Erosion Control 

Laboratory (HSCEL), Riverside Campus, Texas A&M University, College Station shall 

be used. After running two test experiments with those simulators, two shortcomings 

were noted. Firstly there was no way to compact the soil (clay) at some standard 

compaction; secondly, the depth of the test beds (9 inches) was not deep enough to allow 

the system to reach the long term infiltration rate. It was decided, therefore, to carry out 

the tests on field plots.  
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To carry out rainfall simulations in the field, work began on the design and 

fabrication of a rainfall simulator. Key design criteria’s involved were as follows: 

1. Portability: The simulator should be portable so that it could be transported to 

different test plots around the riverside campus. 

2. Rainfall variation: Designed simulator should be able to achieved storm intensities in 

the range from 1 to 3.5 inches/hour. 

Continuous supply of water was needed as an input for the designed simulator. A 

hydro-mulcher available with the HSCEL was selected for this purpose. Key benefits of 

using a hydro-mulcher include variable rate of outflow (water) and large storage 

capacity (500 Gallons).Rainfall Simulator consisted of the following: 

1. Frame. 

2. Plastic Pipes and Nozzles. 

3. Hydro-Mulcher. 

4. Control Device. 

5. Wind Shield. 

 

3.1.1.1 Frame 

 

Two frames 6’x 20’x 2’ made of steel pipes (square cross-section 1”) were joined 

together with C-clamp to hold plastic pipes. Two extra legs (columns of plastic pipes) 

were added to each frame to prevent sagging. These frames could be easily dissembled 

and joined to transport it to other test plots. 
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3.1.1.2 Plastic Pipes and Nozzles 

 

Two plastic pipes 40 feet in length were placed/ fixed on the frame edges. The 

inlet of these pipes was the outlet of the control device. Two pressure gages were 

installed at both ends of the pipe. TORO 5H nozzles were attached to the pipes @2.5 ft. 

center to center spacing. A TORO 5H nozzle cover/sprays a half circle of 5 feet. The 

first two nozzles from both ends of the pipes was TORO 5Q. A TORO 5Q covers/sprays 

quarter circle of 5 feet diameter. These end nozzles were necessary as TORO 5H spread 

would have crossed the plot area otherwise. 

 

3.1.1.3 Hydro-Mulcher 

 

A hydro-mulcher was used as a continuous water supply source. The main 

advantages of using a hydro-mulcher include portability, large storage capacity and 

varying discharge capability.  

 

3.1.1.4 Control Device 

 

This is the most important component of the rainfall simulator. It consisted of a 

T- junction, Gallon-Meter, Reducer, Control Valve, and Outlet. 
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The T-Junction takes discharge from the mulcher. It then distributes it among 

pipes and mulcher. As the mulcher has a large discharge even at low RPM’s, so T-

Junction returns the excess discharge (Mulcher outflow – Pipes input) back into the 

mulcher. A gallon-meter to measure the volume (in gallons) that goes to the pipes was 

installed between the control valve and outlet of the control device. The least count of 

the gallon-meter was 1 gallon. Outlet is a 1” plastic pipe that joined the reducer and inlet 

of the pipes. Control device was an assembly that converts 2” inflow from the T-

Junction to a 1” supply source for the pipes. Control valve controled the flow to the pipe 

was placed between the reducer and the inlet to the pipes. 

 

3.1.1.5 Wind Shield 

 

Two wind shields 20ft. by 6ft. were constructed to block wind effects on rain 

drops. Wind shields were placed in a direction perpendicular to the wind direction. 

Figure 1 shows the rainfall simulator. 
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Figure 1 Rainfall Simulator 

 
 

3.1.2 Experiment Plot Selection 

 

As already stated, five different types of surfaces were needed to conduct 

experiments. Field reconnaissance was done in areas around the Hydraulics, Sediment 

and Erosion Control Laboratory (HSCEL) to locate specified plots. 

 

3.1.2.1 Bare Clay Plots 

 

After reconnaissance, detailed survey was done with a level. The process began 

by taking reduced levels longitudinally every 5ft. spacing on already marked lines on our 

selected area and selecting a 30 feet length which closely relates to our requirement, i.e., 
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slope less than 0.5%. Three such plots were selected with their four corners marked with 

wooden pegs. These four corners were adjusted so that the plots resemble more of a 

rectangle than a parallelogram. Metal strips 4” in height were inserted along the three 

edges (two long edges (30ft.) and one short edge (the one with higher elevation)) with 

metal pegs. All joints between metal strips were sealed with clayey soil. To the fourth 

edge a runoff collection system was installed. This runoff collection system was 

fabricated from a 4ft. by 10 ft. galvanized iron sheet. The system collects runoff from the 

edges of the plot, 6 ft. in width and tapers to 6 inches at the other end. By doing so it 

became easier to observe, collect and measure runoff. A big ditch near the outlet of the 

collection system was made. The purpose of this ditch was to smooth line the process of 

runoff measurement.  

 

3.1.2.2 Grass/Pasture Plots 

 

Out of the three bare clay plots, on two plots seeds of Bermuda grass were 

planted. To enhance grass growth fertilization and mulch was sprayed. After one month, 

when no substantial vegetation showed up, Bermuda grass soding was done. 

 

3.1.2.3 Concrete/Asphalt Plot 

 

After reconnaissance, detailed survey was done with a level. The process began 

by taking level measurements on concrete runway around the HSCEL As plot selection 
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required a construction of a ditch at the end of the plot, our selection process was limited 

to only concrete pavements along the edges of the runway. After extensive survey 

session, one plot which met our slope requirements was selected. The four corners were 

marked with a spray paint. Aluminum angle 2”x2” was used in place of metal sheets. 

Caulk was used as a sealant between the concrete and aluminum angle, and a runoff 

collection system was installed. 

 

3.1.3 Rainfall Test Procedure 

 

As the experiments were carried on field plots, it was observed that significant 

amounts of the artificial rainfall was blow away from the plots by the wind, and lost 

from our experimental system, so we closely monitored weather forecasts for wind and 

planned accordingly. Early mornings were the best; with the full sun, the top wind 

speed/gusts increased significantly. Low wind speed effects on rain drops could be 

reduced significantly with wind shields and long trees (along the south end of the plot). 

With the above precautions for bare clay, grass and pasture plots we could substantially 

do our experiments under controlled conditions. On concrete and asphalt plots, which 

were on the runway, absence of long trees, control was not that good. 
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3.1.3.1 Steps Involved on Bare Clay, Grass, and Pasture Plots 

 

As the hydro-mulcher was also used by HSCEL for testing different mulches for 

their effect in preventing soil erosion, it was thoroughly cleaned with jet stream of water 

to remove all mulch.  The experimental procedure for these plots was as follows: 

1. Hydro-mulcher was filled with water and transported to the test plot site. 

2. All nozzles were cleaned. 

3. Initial gallon-meter reading (Igmr), temperature and humidity values were recorded. 

Wind shields were placed in appropriate direction. 

4. To measure initial moisture content, a core soil sample was taken from the plot and 

its initial weight is recorded immediately. Mulcher engine was started and its RPM 

and valve on control assembly adjusted keeping a watch on the pressure meter. Stop 

watch was started. Time when runoff appears on the runoff collection system was 

recorded as the Time of Beginning. 

5. Runoff measurements were taken every minute. These measurements during the 

early tests were carried out by measuring the weight of water. The weight scale had a 

least count of 0.5lb. After that to improve the measurements, two graduated mugs 

with 1 liter capacity (least count of 100ml) and a graduated cylinder with a least 

count of 10 ml were used. 

6. Once more than 6 readings were the same (steady-state runoff-plateau) (+-50ml), the 

hydro-mulcher was shut down. 

7. Runoff measurements in the mean time continued till there is almost no runoff. 
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8. Final gallon-meter reading was taken (Fgmr). Figure 2 shows the rainfall simulation 

test on a pasture plot. 

 
 

 
Figure 2 Simulated Rainfall Test 
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3.1.3.2 Steps Involved on Concrete/Asphalt Plots 

 
As the quantity of runoff from concrete/asphalt plots was considerably higher 

than from the clay/grass/bare plots, the time was kept as a variable instead of discharge. 

Steps 1 to 8 were the same as mentioned in 3.1.3.1 with the replacement of steps 5 and 6 

as: 

5. An initial 2-liter container was filled, the time was noted, and immediately a second 

container was used to collect the water.  

6. Subsequent time measurements were recorded. After running the experiments for 

more than 20 minutes, the mulcher was shut down.  

 

3.2 Microtopography Measurement Description and Methodology 

 

Microtopography measurements were taken to assess its affect on overland flow 

time of concentration on flat terrains. For this Dick Zimmer, Senior Research specialist, 

Proving Ground Support, TTI designed and fabricated a portable device that 

automatically records elevation measurements, for a grid spacing of 6”x7” in C drive of 

a computer.  The instrument ran on DC power, and hence was fully portable.  In honor 

of its inventor, we christened the device the “Zimmometer”. 
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3.2.1 Description of Zimmometer 

 

This instrument records X, Y and Z ordinates of a grid node. X and Y values 

would be multiples of 6 and 7 respectively. For Z value it records a number that lies 

from +3.78” to -3.78” with a least count of 0.01”. It consisted of three parts a base fame, 

a movable trolley and a computer. 

 

3.2.1.1 Base Frame 

 

The Base Frame consisted of two parts, Side support Beams and Overhanging 

Beams.   Two Side Support Beams (channel cross-section 3”x1.25”) 8 feet in length 

provided support to Overhanging beams with their columns fixed to the surface soil with 

staples. Each column had a jack attached to adjust its height. Two Overhanging Beams 

(channel cross-section 3”x1.25”), each 20 ft. in length, resting on Side Support Beams 

would provide a track for the Moving Trolley.  Both overhanging beams had a 

supporting column in the centre with jacks attached onto it to adjust the elevation. One 

of the Overhanging beams had sensors attached to it. The center to center spacing of the 

sensors was six inches. 
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3.2.1.2 Movable Trolley 

 

The movable trolley consisted of a Z-Bar, three sensors, four small rubber tires, a 

recording knob, a fixed and a movable plate. The adjustable Z-bar, attached to the 

movable plate was calibrated to record the Z-value of a grid node. The movable plate 

could be fixed in three defined positions on the fixed plate with a centre to centre 

spacing of 7 inches.  The fixed plate carries three sensors at these defined positions to 

record Y-value of grid node. The movable plate had a small knob on it, pressing which 

records a set of X, Y and Z values. The recording knob, when pushed with all correct 

readings stored in the computer, generated a characteristic small beep. A long beep 

characterized something wrong in the connections and/or faulty sensor alignments. To 

the fixed plate was attached a port, through which recorded data was transmitted to the 

computer.       

In summary sensors attached to an Overhanging Beam recorded X- value, 

sensors attached to the fixed plate recorded Y-value and sensor attached on adjustable 

bar recorded Z-value. Figure 3 shows the basic Zimmometer set up. 
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Figure 3 Microtopography Measurement System: Zimmometer 

 

3.2.1.3 Computer Program 

 

Dick Zimmer developed a computer program “soilplt3” to store the measured values on 

a desktop PC’s C-drive. This microtopography measurement system can take 

measurements on 15 feet by14 inches strip of soil surface. 
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3.2.2 Microtopography Data Collection Basic Set Up 

 

The following steps completed the execution of the microtopography 

measurements on 30 feet by 6 feet plot.   

 

3.2.2.1 Base Frame Leveling 

 

The idea behind his step is to take all Z-values from a fixed reference reduced level.  

Two side support beams (KL and MN) were fixed to the soil surface using steel staples 

(6”x1”) inserted into the base plates of their columns. The positions of these beams 

were: 

A. KL:-1 foot away from a shorter edge (AB), outside the plot area. 

B. MN:-16 feet from the same edge (AB), towards the opposite edge of the plot. 

C. Two overhanging beams (PQ and RS) were placed on the side support beams 

(21inches center to center) parallel to the longer edges of the plot (AC and BD).  

D. With a leveling machine all four corners (J1, J2, J3, and J4) of the side support 

beams were adjusted to a constant level (say = RL). This was done using jacks 

attached to the columns of the side support beams. The idea here is if the corners are 

at the same level, the supporting beams would be at the same level. 
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3.2.2.2 Overhanging Beams Alignment and Leveling 

 

The purpose of this step was to align the overhanging beams parallel to the 

longer edges (AC and BD) of the plot. Steps involved were as follows: 

A. Two overhanging beams were moved together with trolley on it in such a way that 

the Z-bar is right on a corner (A) of the plot.  

B. The trolley was than moved, with Z-bar almost touching the soil surface, all along 

the length (AE) to check for the alignment of the overhanging beams with the plot 

edge. The Z-bar should always be close to the edge (AC) and inside the plot. This 

completes the alignment part.  

C. Overhanging beams were fixed to the side support beams using C-clamps at X1, X2, 

X3, and X4. Levels at X1, X2, X3 and X4 were taken. These values should be same 

(RL+ height of the channel i.e. 1.25”=RL1). In case these levels are not the same, 

levels at J1, J2, J3, and J4 are checked and corrected. Jacks on columns of 

overhanging beams at Y1 and Y2 are adjusted to get a level equal to RL1. By the end 

of this step two overhanging beams are at same level. 

 

3.2.2.3 Microtopography Data Collection Procedure 

 

To record measurements, a ‘file name’ and ‘run number’ was given to the 

‘SOILPLT3’ program. 
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A. Z-bar was released to just touch the soil surface. The knob on top of the moving 

trolley was then pressed to record the first value at A (X=0, Y=2). As already 

stated a short beep should sound. Figure 4 shows the recorded values for a node. 

 

 

Figure 4 Microtopography: Data Storage 

 

 

B. The moving trolley was then moved to the next location i.e. X=6, Y=2 and step 

‘3.2.2.3.A’ repeated. This process continues till X=180. 

C. The movable plate was then moved to its next position on the fixed plate and the 

trolley was moved back to X=0. The new location of the Z-bar is X=0, Y=9.  
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D. Steps ‘3.2.2.3.A, 3.2.2.3.B’ were then repeated. 

E. Steps ‘3.2.2.3.C, 3.2.2.3.A, 3.2.2.3.B’ were then repeated. 

F. Overhanging beams OP and QR were then moved each by 21” toward the plot 

edge BD. Levels at new Y1 and Y2 were corrected to equal RL1.  and steps 

‘3.2.2.3.A to E’ repeated. 

G. Step ‘3.2.2.3.F’ was repeated once more. 

H. Overhanging beams OP and QR were then moved each by 21” toward the plot 

edge BD and steps ‘3.2.2.3.A and 3.2.2.3.B’ were repeated. 

I. Overhanging beams OP and QR were then moved each by 9” toward the plot 

edge BD and steps ‘3.2.2.3.A and 3.2.2.3.B’ were repeated. 

By the end of step ‘3.2.2.3.I’, microtopography measurements of half of the plot 

were completed. The second half was completed by shifting the base frame (15ft) 

towards the other shorter edge of the plot and repeating steps 3.2.2.1, 3.2.2.2 and 3.2.2.3 

considering A as E and B as F. The level set was never disturbed all throughout the 

process. The idea behind this was to keep level at new J1, J2, J3, and J4 same as RL. By 

doing so, the combined measurements of the whole plot are from the same level (RL1). 

Figure 5 shows the points on the plot as mentioned above. 
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Figure 5 Microtopography Basic Set Up 
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3.3 Tension Infiltration Test 

 

Tension infiltrometers are designed to measure hydraulic conductivities at 

different heads. Steps involved in measuring saturated hydraulic conductivity follows as: 

1. A small portion of soil surface inside the plot area was cleaned and leveled (using 

fine sand). 

2. A soil sample to measure initial soil moisture was taken close to the clean/leveled 

area. 

3. A metal ring was inserted into this selected site. 

4. Water was added into the tension disc (24 cm. diameter), by inserting it in a bucket 

of water and carefully removing the entrapped air. 

5. Water was filled in the water tower (5 cm diameter) with the valve at the bottom of 

the tower closed. With disc in the bucket, blocking the loss of water from the water 

tower the valve was opened and joined to the disc. The valve was then closed 

immediately. 

6. The system will generally still have some air it. This air can be removed using a 

suction pump. 

7. The disc was placed on the cleaned/leveled surface, inside the metal disc.  

8. By adjusting (raising/lowering) the tube in the bubble tower, a position of zero head 

was set. 
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9. Initial reading was then recorded from the scale on the water tower. The valve at the 

bottom of the water tower was opened and ‘START’ knob on the stop watch was 

pressed. 

10. Water level readings on the water tower were taken every minute initially, followed 

by 5, 10 and 15 min interval. 

11. In the end a soil sample was taken for final moisture content. Figure 6 shows basic 

Disc Infiltrometer test. 

 

 

Figure 6 Set up Details: Disc Infiltrometer Test 
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3.4 Drop Size 

 

To get rain drop size a method as described in Erosion Control Technology 

Council Test Method 2 section A1.2 , “Determination of rolled erosion control product 

(RECP) performance in protecting soil from rain splash” was used. The section A1.2 has 

been described as: 

1. Fill four pie pans with sifted flour and strike off with a ruler to produce a smooth 

uncompacted surface. 

2. Place the pie pans in a holding container and cover with a water proof lid or canopy. 

3. Turn on the rainfall simulator and allow it to reach a steady rate of rainfall. Remove 

the water proof cover briefly to let drops impinge on the flour to form pallets. 

4. Replace the cover after only a few seconds before pallets start to touch each other. 

5. Air dry the flour filled pans for a minimum of 12 hours. 

6. Screen the semi-dry pallets by emptying the entire contents of the pans onto a 70 

mesh sieve in order to carefully remove as much loose flour as possible. 

7. Transfer the remaining pallets to evaporating dishes and heat in an oven at 110oF for 

2 hours. 

8. Weigh the total mass of the hard flour pellets. 

9. Pour the pellets through standard soil sieves and shake for 2 minutes. Foreign matter 

and any double pallets are culled from each sieve and total weight of size is 

recorded. 
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3.5 Particle Size Distribution 

 

This test determines percentages of different particle sizes in a soil sample. 

Particle size distribution was composed of two sets Sieve Analysis and Hydrometer Test. 

 

3.5.1 Sieve Analysis 

 

This test determines distribution of particle sizes larger than 0.0075mm. As dry 

sieve analysis of clayey soil was impossible, so to remove the effects of clogging, wet 

sieving was preferred. The steps involved are as follows: 

1. Sieve Numbers 4, 10, 40, 100, and 200 were cleaned and dried thoroughly. 

2. Testing soil was dried in a microwave and a sample weighing 200.00 grams was 

taken. 

3. Sieves were assembled with smallest sieve number at the top to the largest sieve 

number at the bottom to obtain a sieve set. This sieve set was placed on top of a 5 

gallon bucket. 

4. Testing dried soil was mixed with water in 2000ml jug. The soil solution thus 

obtained was thoroughly stirred.  

5. The soil solution was then poured on the sieve set with intermittent vibrations 

applied to the sieve set with a wooden/ metallic stick. These small vibrations helped 

in preventing clogging of the sieves. More water was poured to jar to mix the 
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remaining soil in the jar and poured again on the sieve set. This process continued till 

there was no soil left in the jar. 

6. The top sieve i.e. number 4 was removed from the set. With this sieve above the 

remaining sieve set, clean water was added while breaking all lumps. This process 

and small vibrations continued till there is a clean discharge from this removed sieve 

to the remainder sieve set. This allows all particles smaller than sieve 4 mesh 

opening onto the sieve 10.  

7. Step ‘6’ continued for the remaining sieves i.e. sieve numbers 10, 40, 100 and 200. 

8. Soil retained all sieves was then weighed after drying them under shade for at least 

24 hours.  

9. The solution in 5 gallon bucket was kept aside for natural sedimentation. 
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3.5.2 Hydrometer Test 

 

This test determines distribution of particle sizes smaller than 0.075mm. This 

uses sedimentation rate of different particles sizes to determine the particle size 

distribution. Steps involved are as follows: 

1. Clean water at the top of 5 gallon bucket, obtained from 3.5.1.9, was poured out and 

remaining soil solution was taken out in a dish container and dried in microwave. 

2. 50 grams of this dried soil was mixed with a solution of 125 ml solution of 

dispersing agent (120ml of distilled water and 5 grams of Sodium 

Hexametaphosphate) and kept as it for at least 16 hours. 

3. After 16 hours, this solution was added to a sedimentation cylinder and more 

distilled water was added to reach 1000ml mark on the sedimentation cylinder. 

4. Covering the top of the sedimentation cylinder with a stopper, the resulting solution 

was mixed thoroughly. 

5. Room temperature was recorded. The sedimentation cylinder was placed down and 

‘START’ knob of the stop watch pushed. 

6. Hydrometer readings were taken at the following times 1, 2, 5, 15, 60, 250, and 1440 

minutes. To take a hydrometer reading the hydrometer was very slowly and carefully 

placed in the sedimentation cylinder. Once there was no vertical movement of the 

hydrometer and then note down the reading from the graduations on the hydrometer. 
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3.6 Soil Moisture 

 

This test determines the gravimetric moisture content of a soil sample. The steps 

involved are as follows: 

1. Take initial weight of the pan. 

2. Add soil sample into the pan and weigh it. 

3. Place the pan in a microwave and dry it for 10 minutes. Let the sample cool down 

and weigh it again. 

4. Repeat step ‘3’ for time equal to one minute until there is no change in the measured 

dried weight. 
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4 PRELIMINARY DATA ANALYSIS 

 

4.1 Rainfall Test 

 

From soil sample gravimetric moisture content ‘θ  ‘was measured as described in 

3.6. 

 

4.1.1 Rainfall Intensity 

 

Rainfall intensity ( i ) was obtained by dividing the difference between final 

( gmrF ) and initial gallon-meter reading ( gmrI ) by the product of mulcher stop time ( sT ) 

and the area of the plot. Although the rain distribution was non-uniform, for all 

calculations it has been assumed uniform, and was derived using: 

 

  3.78*1000*60( )
30*6*12*12*2.54

gmr gmr

s

F Ii iph
T

⎛ ⎞
⎜ ⎟

− ⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 (17) 

 
4.1.2 Discharge 

 

Discharge ‘Q ’ measurements were computed as follows: 

1. If the runoff ‘ R ’ was measured in pounds per minute         



  48

 ( )3 / min *453.6Q cm R=  (18) 
   

 ( ) *0.119828Q gpm R=  (19) 
 

2. If the runoff ‘ R ’ was measured in milliliter per minute                        

 ( )
3780

RQ gpm =  (20) 

                                      

 ( )3 / minQ cm R=  (21) 
 

3. If the runoff ‘ R ’ was measured as the time (in minutes) to fill a 2 liter mug ( difft ).       

         ( )3 2000/ min
60* diff

Q cm
t

=                                          (22) 

 

4.1.3 Time to Peak/ Time of Concentration 

 

Time to peak was obtained from the resulting hydrographs as follows: 

1. For bare clay, lawn and pasture plots, the time to peak is the first observed time after 

which the discharge remains more or less constant. An amount equals to +-100ml. 

was taken as standard. 

2. For concrete and asphalt surfaces, time steps to fill a 2 liter container ( difft ) were 

noted. The time measurements were difficult to take, and a relatively small error of 1 

second cause large deviations in the measured discharge. After a certain time 

difft showed undulations, resulting in an undulated hydrograph. Time to peak was 
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then inferred as the time when the observed hydrograph first reaches a value close to 

the average discharge ( This value was obtained as the average of discharge 

measurements from the time when the hydrographs showed undulation and the time 

when the mulcher was stopped.) 

 
4.2 Microtopography 

 

The microtopography measurements were recorded for the test plots were edited 

in Microsoft-Excel. The following stepwise procedure generated wire frame surface 

plots as: 

1. The Zimmometer gave X values from 0 to180 inches at an interval of 6 inches for 

both halves of the plot. So for the second half all X values were increased by 180. 

2. The Zimmometer gave Y values as 2, 9, and 16 inches which is the default program 

setting for those predefined positions on the fixed plate. As we needed it from origin, 

so these values were changed to 0, 7, 14, 21, 28, 35, 42, 49, 56, 63 and 72 inches as 

per the grid node location as described in section 3.2.2.3. 

3. The Zimmometer gave Z values from -3.78 to +3.78 inches. An offset of  100 was 

added to all the Z values, so that they would all be positive for analysis and plotting 

purposes. 

4. These X, Y and Z values were added in the SURFER 8.0 to generate wire frames of 

the surface plots. 
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4.3 Infiltration Test 

 

From initial and final soil samples, initial and final gravimetric moisture content 

was determined as described in section 3.6. Infiltration rate ‘ I ’(cm/hr) was calculated as 

follows:  

 ( ) I *5*5*60/
24*24*

measured

step
I cm hr

T
=  (23) 

 

Where I measured =Measured infiltration (cm of water tower drop); 5 = diameter of water 

tower cylinder; 24 = Diameter of the tension disc and stepT is the time step in minutes. 

 

4.4 Particle Size 

 

4.4.1 Sieve Analysis 

 

1. Weight of soil retained on each sieve was measured ( iW ). 

2. Percentage of soil retained ( iR ) on each sieve was determined as:        

 ( )% 100i
i

WR
W

=  (24) 

 
3. Percentage of soil that passes each sieve ( iP ) was calculated as: 
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1

(%) 100
i

i i
k

P R
=

= −∑  (25) 

 

4. The amount of soil that passes Sieve number 200 ( 200W )was calculated as: 

 200 iW W W= −∑  (26) 
 

 
 
 

4.4.2 Hydrometer Analysis 

 

1. Hydrometer readings ( hR ) were corrected for meniscus and dispersion. Specific 

gravity was assumed to be 2.65. Diameter of soil particles ( D ) was determined by 

 LD K
T

=  (27) 

 
 

Where K  is constant which depends upon temperature and specific gravity; L is the 

effective depth taken for hydrometer 152H from ASTM D422. 

2. Percentage of soil remaining in suspension ( P ) was calculated as 

 * *100RhP
W
α

=  (28) 

 
Where α  is the correction factor and W is the weight of dry soil (50grams). 
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5 RESULTS 

 

5.1 Variation in the Runoff Coefficient 

 

There has been a good deal of variation noted in the values of the runoff 

coefficients for different surfaces (Table 3). The average runoff coefficients arranged in 

descending order follows as Asphalt, Concrete, Bare clay, Pasture and Grass. Even for 

the flat terrains the runoff coefficients lie in the ranges as reported in the literature. The 

difference in the observed and reported runoff coefficients for asphalt and concrete can 

be attributed to some losses from the rainfall due to wind. Also the time scale required to 

measure small rate of change of discharge for these non infiltrating surfaces could not be 

feasible with our experimental procedure. 

 

Table 3 Observed and Reported Runoff Coefficients 

Average Range Average Range Average Range
Bareclay02 0.29 0.23-0.32
Bareclay03 0.53 0.52-0.62 , 0.24
Grass-Left 0.27 0.22-0.36
Grass-Right 0.22 0.17-0.29
Pasture-Left 0.42 0.32-0.47
Pasture-Right 0.41 0.29-0.49

Asphalt 0.69 0.63-0.79 0.865 0.73-1.0

0.58 0.52-0.70 0.875 0.75-1.0

Concrete without 

expantion/contrac

tion joints

0.67 0.61-0.80 0.875 0.75-1.0
Concrete with 
expantion/contrac
tion joints

0.21-0.49

Pasture 0.42 0.29-0.6 0.39 0.25-0.53

Grass 0.25 0.17-0.36 0.35

Runoff Coefficient (Chow 
et. al. 1988) for 2-500 year 
Return Period.

Bare Clay 0.47 0.23-0.62

Surface Type Descripition
Runoff Coefficient Runoff Coefficient
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Bare clay, lawn and pasture plots were all on the same type of soil. It was 

observed that the grass roots tend to increase infiltration and/or detention. This can be 

ascertained from the observed runoff coefficients. Contrary to the logic that lesser the 

grass height the greater the runoff coefficient should be, pasture plots (height 8”-12”) 

generated more runoff coefficients than grass (height 2”-6”). The other difference 

between the two grassy surfaces was in their growth stage. The Grass/Lawn plots were 

tested when grass was in dormant stage, i.e., no evapotranspiration whereas the pasture 

surfaces were tested in their growing season, i.e., evapotranspiring.  

 

Effects of surface undulations on runoff coefficient can be seen from the bare 

clay plots, for bareclay02 (more undulating, Random Roughness =0.536 cm.) runoff 

coefficient varied from 0.23 to 0.32 whereas for bareclay03 (Random Roughness = 

0.434 cm.) the runoff coefficient varied from 0.52 to 0.62 with one exception when it 

came out to be 0.24 with an antecedent moisture content of 8.62%. The bareclay02 plot 

also had some reverse slope on to it towards the end. In general all infiltrating surfaces 

showed variations with respect to antecedent moisture content (Figure 7) and rainfall 

intensity (Figure 8). 
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Variation in Runoff Coefficient with Antecedent Moisture Content
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Figure 7 Variation of the Runoff Coefficient with Antecedent Moisture 

 

 

Variation in Runoff Coefficient with Rainfall Intensity
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Figure 8 Variation of the Runoff Coefficient with Rainfall Intensity 
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5.2 Factors Affecting Time of Concentration 

 

5.2.1 Bare Clay Plots 

 

A direct relation between the time of concentration (TOC) and rainfall intensity 

as well as time of concentration and antecedent moisture content was observed for both 

the plots (Figure 9, Figure 10). The time of beginning (TOB) of runoff was found to 

influence the time of concentration more than the time from the beginning of the runoff 

to time when the discharge reaches equilibrium (TOB to TOC). TOB was observed to be 

more affected by the antecedent moisture than the rainfall rates. Once the runoff shows 

up combined affect of both these parameters affect the time to reach the peak, e.g., For 

almost the same rainfall intensity (1.61 iph) on the same plot, i.e., Bareclay03 with 

different antecedent moisture contents 8.64%, 9.74%, 16.74% and 23.4%, the time of 

concentration was observed to be 71, 61, 36 and 34 minutes and TOB was observed as 

38, 26.66, 15 and 9.67 minutes. The TOB to TOC for these tests were 33, 34, 19 and 26 

minutes. 
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Antecedent Moisture Content vs. Time Parameters 
(Bareclay)
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Figure 9 Variation in the Time Parameters with Antecedent Moisture Content for the Bare Clay Plots 

 

Rainfall vs. Time Parameters
(Bareclay)

y = 108.72x-1.97

R2 = 0.71

y = 50.02x-1.55

R2 = 0.68

y = 70.44x-2.85

R2 = 0.69

0

15

30

45

60

75

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Rainfall (inches/hr)

Ti
m

e 
(m

in
ut

es
)

Clay-TOB

Clay-TOB-TOC

Clay-TOC

Power (Clay-TOC)

Power (Clay-TOB-TOC)

Power (Clay-TOB)

 
Figure 10 Variation in the Time Parameters with Rainfall Intensity for the Bare Clay Plots 
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5.2.2 Grass/Lawn Plots 

 

Because grass plots were tested with higher antecedent moisture contents and 

high rainfall rates, little variation had been noted for the TOB (Figure 11). Time of 

concentration had been found to be directly proportional to the combined effect of 

antecedent moisture and rainfall intensity (Figure 11, Figure 12). Surface retention, 

infiltration and friction have been found to influence the time (TOB to TOC). This is 

evident from the tests (Grass left test-7, AMC = 56% and Rain intensity= 3.27iph vs. 

Bareclay02 Test-5, AMC= 53% and Rain intensity = 1.87iph). After the runoff showed 

up the grass plot took 17 minutes and the bareclay02 plot took just 9.6 minutes to reach 

the equilibrium.  

 
 

Antecedent Moisture Content vs. Time Parameters (Grass/ Lawn)
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Figure 11 Variation in the Time Parameters with Antecedent Moisture Content for the Grass/Lawn Plots 
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Rainfall Intensity vs. Time Parameters (Grass/ Lawn)
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Figure 12 Variation in the Time Parameters with Rainfall Intensity for the Grass/Lawn Plots 

 

5.2.3 Pasture Plots 

 

Because pastures plots were also tested with middle to higher antecedent 

moisture contents, large TOB values were observed, which confirms the large surface 

retention and/or high infiltration rates of pasture plots. Even on mid-range antecedent 

soil moisture contents, large TOB values suggest the importance of interception, surface 

roughness and infiltration on runoff generation. TOB to TOC has been observed to be 

sensitive to both antecedent moisture content and rainfall intensity (Figure 13, Figure 

14).  
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Antecedent Moisture Content vs. Time Parameters (Pasture)
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Figure 13 Variation in the Time Parameters with Antecedent Moisture for Pasture Plots 
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Figure 14 Variation in the Time Parameters with Rainfall Intensity for Pasture Plots 
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5.3 Comparison of Time Parameters for Different Surfaces 

 

5.3.1 Time of Beginning (TOB)  

 

The effect of AMC and rainfall intensity on TOB for all the infiltrating surfaces 

tested was found to be significant (Figure 15). From figure 17 it can be seen that for 

almost the same initial conditions and almost the same rainfall rates this parameter for 

bare clay, pasture and concrete was 9.67, 44 and 2.92 minutes. In general for the same 

initial conditions, TOB can be arranged in ascending order as bare clay, grass, and 

pasture. For bare clay surfaces equation 29 describes TOB’s sensitivity to the 

Antecedent Moisture Content (AMC) ‘θ ’ in percentage value. Clear relationship 

between TOB and AMC is missing for the grassy surfaces. The relation might be 

missing because of the moisture ranges in which the tests were conducted. With respect 

to rainfall intensity, inverse trends can be observed for the bare clay and pasture plots for 

the time of beginning (Figure 16). 

 

For bare clay plots: 1.41 2722.58 , ( 0.91)TOB Rθ −= =                   (29) 
 
For pasture plots: 2.1255 230409 , ( 0.66)TOB Rθ −= =  (30) 
 

 
  This time parameter has been found to show large variability with respect to the 

initial conditions for the bare clay and pasture surfaces to induce larger variability in the 

time of concentration. Also as bare clay surfaces shrink and swell depending upon the 
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soil moisture, cracks are common observations. Such cracks were tested by adding water 

onto them; it has been seen that these cracks act as a sink and take up a lot of water 

without showing any substantial water at the top.  

 

Effect of antecedent moisture on Time of begining(TOB) 
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Figure 15 Variation of the Time of Beginning with Antecedent Moisture Content 

 
 

Effect of Rainfall intensity on time of beginning (TOB).
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Figure 16 Variation of the Time of Beginning with Rainfall Intensity 
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TOB values for the different infiltrating surfaces can be tabulated as shown in Table 4. 
 

Table 4 Comparative Tabulation of the Time of Beginning 

 
 
 
 
5.3.2 Time of Beginning to Time of Concentration (TOB to TOC) 

 

In spite of the fact that the two grassy surfaces were tested on medium to high 

antecedent moisture contents, TOB to TOC for these surfaces (Pasture-29-47 minutes, 

Grass 17-40 minutes) were still quite high. The rate of increase of discharge per unit 

time could be arranged in ascending order as concrete/asphalt, bare clay and pasture. 

This can be seen from the Figure 17. 
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Figure 17 Typical Hydrographs for Concrete, Bare Clay and Pasture 

Surface Type Rainfall Intensity 
(iph) AMC (%) TOB (minutes) 

Bare Clay 1.49-3.35 8.6-53.0 2.4-----38 
Grass 1.49-3.42 28-56 7-----17 

Pasture 1.3-2.94 21.5-42.7 8-----46 
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5.3.2.1 Hydrograph Slope 

 

All surfaces generated different shapes for their hydrographs. If the time of 

beginning is known, assuming a linear hydrograph and slope of the hydrograph in degree 

as: 

 

 1 ( )tan *180 /
( )(min)

Q gpmSlope
TOBtoTOC

π− ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (31) 

 
 
A linear relationship between the slope of the hydrograph and the rainfall rate (iph) has 

been observed. The Slope  can be determined given the rainfall rate ‘ i ’as: 

 

For Barclay 24.298 3.3829, ( 0.834)Slope i R= − =  (32) 
 
 
For Grass/Lawn 22.807 3.5882, ( 0.90)Slope i R= − =  (33) 
 
             
For Pasture 21.6949 0.3356, ( .604)Slope i R= − =  (34) 
  
   
   
 Figures 18, 19 and 20 shows the variation in the hydrograph slope with rainfall 

intensity for bare clay, grass and pasture plots respectively. 
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Rainfall Rate  vs . Hydrograph s lope for Bare  Clay Plots
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Figure 18 Variation in the Hydrograph Slope with Rainfall Intensity for Bare Clay Plots 

 
 

Rainfall vs. Hydrograph slope for Grass/Lawn
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Figure 19 Variation in the Hydrograph Slope with Rainfall Intensity for Grass Plots 

 
 

Rainfall Rate  vs . Hydrograph s lope  for Pasture  plots
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Figure 20 Variation in the Hydrograph Slope with Rainfall Intensity for Pasture 
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5.3.3 TOC to Zero 

 

The falling limb of the hydrographs for showed substantial variation. This 

parameter was found to be highest for pasture (21-47 minutes), followed by grass (21-45 

minutes) and bare clay (7-18 minutes). 

 

5.4 Effect of Microtopography 

 

Microtopography controls the time of concentration to an extent for the 

infiltrating plots. This can be seen from the time of concentration regression model for 

infiltrating surfaces. Exact estimation of the depression storage in order to understand its 

effect on the time parameters requires smaller grid cell size. As with our measurement 

system the grid size varied from 6 to 9 inches, which is very large to measure the exact 

random roughness and thus the depressions. Never the less this system is good enough to 

compare the undulation patterns of two or more plots. Figure 21 shows the wire frame 

structures of the plots generated with Surfer 8.0. 
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Figure 21 Microtopography Generated with SURFER 8.0 
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5.4.1 Depression Storage of the Plots 

 

Depression storage of the plots was calculated following Onstad (1984). Random 

Roughness was calculated as per Allamaras et al (1966), including the extreme 10% of 

the data points. The slope of the plots has been taken as the difference of the average 

level at X= 354inches and X=6 inches divided by 29. No measurements have been taken 

for the pasture plots. As grass on the lawn plots had been let grow to reach a height 

greater than 6” to treat those plots as Pasture. Thus values calculated for the grass plots 

have also been used for the pasture plots. The calculated depression storage can be 

tabulated as in Table 5. 

 
 

Table 5 Random Roughness and Depression Storage Values for the Plots 

Depression Storage
(cms)

Bareclay02 0.070
Bareclay03 0.052
Grass-left / Pasture-Left 0.069
Grass-Right / Pasture-Right 0.092
Concrete 0.0210.181

0.566
0.434
0.561
0.706

Calculation Of Depression Storage from Microtopography data.

Surface Type Random Roughness
(cms)

 
 

 

5.5 Green Ampt Parameter Calibration 

 

Using the ‘Solver’ tool of the Microsoft Excel Green Ampt parameters were 

calibrated for the bare clay and pasture surfaces. The L.P. formulation was defined as: 
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Minimize                                   2( )o pf f−∑                     (35) 
 
 
Subject to:  

 0.001 0.1satK≤ ≤  (36) 
 
  

 0.001pf >  (37) 
 
  

 10ψ >=  (38) 
 
  

For Bare Clay                                           0.3θ∂ ≤  (39) 
 

For Pasture 0.05 0.15θ≤ ∂ ≤  (40) 
  

 
1 t

t

p obs
sat

FF
t t

K

ψ θ
ψ θ

⎛ ⎞⎛ ⎞
− ∂ +⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠= =  (41) 

 

Where tF = Cumulative infiltration at time‘t’; ψ =Wetting front suction head (cm); θ∂ = 

Residual moisture content; pt =Predicted time (hrs); obst = Observed time (hrs); pf = 

Predicted infiltration rate (cm/hr); of = Observed infiltration rate (cm/hr). The objective 

function came out to be 0.068 for bare clay and 56.93 for the pasture surface. This 

explains the non suitability of the Green Ampt for the grass surfaces. From the 

infiltration curve for the pasture plot it can be seen that there are large infiltration rates 

for the first 20 minutes even with an initial moisture content of 32.5% (gravimetric). 
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These large infiltration rates could be because of the grass roots effects. Only a few 

infiltration tests were conducted, and the best test was used for calibration, limiting the 

confidence level of our results. These results will vary depending upon the number of 

good test datasets we have. Figure 22 and 23 shows the observed and predicted 

infiltration rates for bare clay and pasture plots. 
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Figure 22 Green Ampt Calibration for Bare Clay 

 
 

Green Ampt Parameters Calibration (Pasture).
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Figure 23 Green Ampt Calibration for Pasture 

 
 
The resulting parameters for the two soil surfaces were as: 
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Bare Clay: - 0.0218 / .; 34.99 .; 0.49 /Ksat cm hr cm s gm gmψ θ= = = . 

Pasture: - 0.1 / .; 13.19 .; 0.475 /Ksat cm hr cm s gm gmψ θ= = = . 

 

5.6 Comparison of Different Time of Concentration Models 

 

Some of the commonly used time of concentration models have been compared 

with the observed datasets (Figure 24 to Figure 31). Following are the observations: 

1. There has been substantial variation in the predicted time of concentration by 

different methods. This variation can be firstly due to the fact that different models 

have been calibrated on different watersheds, as an example Kiprich (1940) 

calibration came out with different exponents/constants for Pennsylvania and 

Tennessee watersheds and secondly these existing models are based on different 

definitions. 

2. Most of the empirical models under predict the time of concentration, which limits 

their application on flat terrains.  

3. The sensitivity of the initial moisture content towards the time of concentration is 

missing in the models compared. 

4. Models based on Izzard model showed good results for lower time of concentration 

values. 
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5.6.1 Bare Clay 
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Figure 24 Comparison of the Empirical Time of Concentration Models for Bare Clay 
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Figure 25 Comparison of the Hydraulic Time of Concentration Models for Bare Clay 
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5.6.2 Grass/Lawn 
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Figure 26 Comparison of the Empirical Time of Concentration Models for Grass 
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Figure 27 Comparison of the Hydraulic Time of Concentration Models for Grass 
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5.6.3 Pasture 

   

Comparion of Empirical Time of Concentration Models (Pasture)
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Figure 28 Comparison of the Empirical Time of Concentration Models for Pasture 
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Figure 29 Comparison of the Hydraulic Time of Concentration Models for Pasture 
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5.6.4 Concrete/Asphalt 
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Figure 30 Comparison of the Empirical Time of Concentration Models for Concrete and Asphalt 
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Figure 31 Comparison of the Hydraulic Time of Concentration Models for Concrete and Asphalt 
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5.7 Regression Model 

 

Stepwise forward regression as described in Section 15.2 Draper and Smith 

(1998) was chosen to derive the influence of measured independent variables on the 

dependent variables, i.e., Time Parameters (Table 6). A general regression equation can 

be written as: 

  

 a b c x y z
c Lt kL i S f dscθ=  (42) 

 
Where ct is the time of concentration in minutes; L  is overland flow length in meters; θ  

is the antecedent moisture content (gravimetric) in gm/gm; i  is the rainfall intensity in 

inches per hour; S  is the overland plane slope in feet per feet; Lf  is the Darcy-Wiesbach 

friction factor calculated as per Wong 2002 equation-14, assuming kinematic  viscosity 

of the water as 10-6 m2s-1 ; dsc  is the depression storage capacity calculated as per 

Onstad 1984 . An interception of 0.1 inches has been added to the dsc  value for the 

grass surfaces.’ a ’ has been assumed to be 0.5 as per Papadakis-Kazan (1987). For non 

infiltrating surfaces, for the time of concentration regression model Izzard retardance 

coefficients have been chosen in place of the Darcy-Wiesbach coefficient. 
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Table 6 Regression Analysis Coefficients for Different Surfaces and Time Parameters 

k b c x y z
TOC 0.2294 -0.3997 -0.1751 -0.3878 0.2033 0.077
TOB 0.3698 -0.9997 0.3563

TOC 0.7179 -0.3887 -0.5652 0.1741 0.2185
TOB -0.4245 -0.8599 0.2759

NIS TOC 1.6077 -0.8234 0.4192

TOC -1.3923 -0.67 -1.568
TOB -0.4415 -1.4098

TOC -80.375 -0.3566 -11.26 -0.3113 0.2644 -111.43
TOB -0.527 -1.1956 0.2622

ALL - All tested surfaces
IS -   All infiltrating surfaces.
NIS - All non infiltrating surfaces.

Note

Time 
Parameter

Dependent Variable Coefficients

All

IS

Bare Clay

Grass

Surface

 

 

5.7.1 Regression Results 

 

Table 7 Regression Analysis Summary Table for TOC and TOB 

R Square Standard Error F Significance F
TOC 0.97 0.0525 328.13 4.47643E-33
TOB 0.83 0.1984 115.61 1.14396E-18

TOC 0.69 0.1208 15.83 6.94621E-07
TOB 0.71 0.1534 36.35 9.62182E-09

NIS TOC 0.74 0.0480 18.74 0.000148011

TOC 0.97 0.0526 66.35 5.41919E-05
TOB 0.92 0.1179 40.53 0.000141654

TOC 0.93 0.0414 48.04 1.9564E-09
TOB 0.60 0.1513 15.16 9.81854E-05

IS

Bare Clay

Grass

ALL - All tested surfaces
IS -   All infiltrating surfaces.
NIS - All non infiltrating surfaces.

Note

Surface Time Parameter Regression Anaysis Summary

All
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From the regression analysis, i.e., Table 6 and Table 7 it can be seen that: 

1. Surface slope has low exponent value. 

2. Initial moisture content controls the time of beginning. 

3. Rainfall intensity (within the range tested) affects (inversely) the time of 

concentration but no good significance of this variable had been found on the time of 

beginning. 

Figures 32 to 40 shows the observed and predicted times through regression 

equations for different surfaces as listed in Table 7. 
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Figure 32 Observed vs. Predicted Time of Concentration for All Surfaces 
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Observed Vs. Predicted Time of Beginning 
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Figure 33 Observed vs. Predicted Time of Beginning for All Surfaces 
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Figure 34 Observed vs. Predicted Time of Concentration for Infiltrating Surfaces 
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Observed Vs. Predicted Time of Beginning 
for Infiltrating Surfaces 
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Figure 35 Observed vs. Predicted Time of Beginning for Infiltrating Surfaces 
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Figure 36 Observed vs. Predicted Time of Concentration for Non-Infiltrating Surfaces 
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Observed Vs. Predicted Time of Concentration
for Bare Clay 
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Figure 37 Observed vs. Predicted Time of Concentration for Bare-Clay 
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Figure 38 Observed vs. Predicted Time of Beginning for Bare-Clay 
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Observed Vs. Predicted Time of Concentration 
for Grassy Surfaces 
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Figure 39 Observed vs. Predicted Time of Concentration for Grassy Surfaces 
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Figure 40 Observed vs. Predicted Time of Beginning for Grassy Surfaces 
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5.8 Particle Size Distribution 

 

From the Sieve Analysis and Hydrometer Tests the soil was found to consist of 

the following as in Table 8. 

Table 8 Soil Textural Results 

Sand - 21.13%
Silt - 31.95%
Clay/colloids - 47.92%  

 

 
5.9 Drop Size Analysis 

 

The rain drop size distribution can be tabulated as in Table 9. 
 

Table 9 Result of the Rain Drop-Size Test 

Sieve size Avg. weight
(mm) (grams)

8 2.38 0 0
10 2 2 0.0137
16 1.18 109 0.1713
20 0.84 235 0.1214
30 0.59 703 0.1231
50 0.3 15335 0.6257

Sieve number Number of drops
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6 CONCLUSIONS 

 

On the basis of the field tests, the results strongly indicate the importance of the 

hydrological processes (rainfall intensity, depression storage), surface characteristics 

(slope, roughness) and the antecedent conditions on the time of concentration parameter. 

It can be concluded that: 

• There exist a variety of definitions for the time of concentration.  In the absence of a 

clear definition of which “time” is desired or used in a specific application, 

experimental results may be difficult to compare to theory. 

• Most of the empirical models found in the literature which were compared in this 

study under predict the time of concentration parameter. 

• The influence of the time of beginning on the time of concentration parameter has 

provided us with a fact that we cannot overlook the initial conditions. 

• Large values for the time to zero on the grassy surfaces confirm the large surface 

detention for these surfaces. 

• Results show some correlation between the depression storage and the runoff 

coefficient. 

• A cost effective system “Zimmometer” to measure the random roughness worked 

well for this study. This system can certainly be modified for a smaller grid cell size. 
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6.1 Future Work 

 

In light of the results found in this study, we can recommend some directions for 

future work and improvements on the methods used in this study.  Obviously our 

regression results are handicapped by the fact that we were unable to vary the size of the 

plot over which we rained.  This meant that the area variable could not be used in the 

time of concentration regressions.  More tests on the plots with varying area/length 

would help achieve greater insight into the effects of area and plot shape. 

Additional improvements that would make the results from a study of this sort more 

valid include: 

• Uniform Rainfall Application.  Although we endeavored to apply the rainfall in a 

uniform manner, there was some spatial variation, which led to the instigation of 

flow in some spots on the plot before others.   

• Windshields. Better windshield so that the tests can be carried out in a controlled 

way.  As mentioned, there was some loss of rain water volume due to wind blowing 

it away from the plot.  A better windshield setup would preserve the mass of water 

applied, removing some of the noise in the intensity variable in the regression. 

• Overland Flow Velocity/Depth. Some means of measuring overland flow 

velocity/depth.  By measuring overland flow velocity/depth, we would be able to 

validate runoff/time of concentration models better, giving our results greater utility.  
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APPENDIX A  

RUNOFF MEASUREMENTS FOR BARECLAY02 (BC02) AND BARECLAY03 

(BC03) 

BC02 BC02 BC02 BC02 BC03 BC03 BC03 BC03 BC03 BC03
10/17/02 10/18/02 10/30/02 11/01/02 05/01/03 05/20/03 05/22/03 05/23/03 05/29/03 06/03/03

31.6 18.3 32.3 15.3 25.5 24 20.7 24 27.8 30.85
31 86 86 76 88 91 88 76 49 69

19.62 18.8 53 40.74 12.3 16.8 16.74 23.4 8.64 9.74

357295 357407 357525 357619 365397 365560 365674 365809 365939 366183

357406 357506 357619 357704 365560 365686 365808 365936 366179 366390

3.7/1.97 3.96/2.11 6.267/3.34 4.25/2.26 3.19/1.70 2.8/1.49 3.04/1.62 3.02/1.61 2.926/1.56 3.04/1.62

4 5 6 7 1 2 3 4 5 6

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 1.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 1.57 0.01 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 1.69 0.05 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.15 1.75 0.30 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.34 1.75 0.72 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.53 1.75 0.97 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.60 1.75 1.03 0.00 0.00 0.00 0.02 0.00 0.00
0.00 0.90 1.81 1.15 0.00 0.00 0.00 0.12 0.00 0.00
0.00 1.02 1.87 1.21 0.00 0.00 0.00 0.87 0.00 0.00
0.00 1.08 1.87 1.21 0.00 0.00 0.00 1.12 0.00 0.00
0.00 1.14 1.87 1.21 0.00 0.00 0.00 1.32 0.00 0.00
0.03 1.14 1.87 1.27 0.00 0.02 0.00 1.39 0.00 0.00
0.27 1.14 1.39 1.27 0.00 0.03 0.03 1.48 0.00 0.00
0.33 1.14 0.78 1.27 0.00 0.03 0.04 1.52 0.00 0.00
0.36 1.26 0.66 1.27 0.00 0.03 0.05 1.59 0.00 0.00
0.42 1.26 0.36 1.33 0.00 0.07 0.06 1.61 0.00 0.00
0.42 1.20 0.24 1.33 0.00 0.66 0.56 1.61 0.00 0.00
0.54 1.20 0.18 1.21 0.00 0.82 0.83 1.76 0.00 0.00
0.60 1.20 0.18 0.85 0.10 0.85 0.93 1.77 0.00 0.00
0.66 1.20 0.18 0.54 0.53 0.99 0.99 1.80 0.00 0.00
0.78 1.20 0.12 0.42 0.69 1.08 1.06 1.81 0.00 0.00
0.78 1.20 0.06 0.29 0.79 1.11 1.11 1.85 0.00 0.00
0.78 1.14 XXX 0.17 0.87 1.11 1.19 1.77 0.00 0.00

25
26

21
22
23
24

17
18
19
20

13
14
15
16

9
10
11
12

5
6
7
8

1
2
3
4

Test No.
Time (minutes) Incremental Runoff in Gallons

0

Initial                 
Moisture  (%)
Initial Reading,   
Igmr

Final Reading,    
Fgmr

Input (GPM/iph)

Surface 
Date
Temp ('C)
Humidity (%)
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BC02 BC02 BC02 BC02 BC03 BC03 BC03 BC03 BC03 BC03
4 5 6 7 1 2 3 4 5 6

0.84 0.60 XXX 0.12 0.95 1.12 1.28 1.85 0.00 0.03
0.84 0.60 XXX 0.60 1.03 1.24 1.36 1.96 0.00 0.06
0.84 0.42 XXX 0.10 1.11 1.31 1.38 1.93 0.00 0.07
0.84 0.31 XXX 0.03 1.14 1.30 1.40 1.94 0.00 0.40
0.66 0.28 XXX 0.02 1.38 1.35 1.48 2.00 0.00 0.78
0.60 0.20 XXX XXX 1.38 1.35 1.48 2.05 0.00 0.93
0.30 0.17 XXX XXX 1.36 1.36 1.51 2.02 0.00 1.01
0.18 0.16 XXX XXX 1.46 1.43 1.59 2.02 0.00 1.07
0.16 0.12 XXX XXX 1.46 1.44 1.59 2.06 0.00 1.18
0.09 0.09 XXX XXX 1.43 1.43 1.61 2.08 0.00 1.24
0.04 0.07 XXX XXX 1.48 1.46 1.63 2.06 0.00 1.26
XXX 0.06 XXX XXX 1.64 1.47 1.61 2.06 0.00 1.24
XXX 0.05 XXX XXX 1.59 1.47 1.60 2.08 0.00 1.34
XXX 0.03 XXX XXX 1.61 1.47 1.61 2.09 0.01 1.36
XXX 0.03 XXX XXX 1.61 1.47 1.61 2.09 0.01 1.36
XXX 0.03 XXX XXX 1.61 1.46 1.63 2.08 0.11 1.38
XXX 0.02 XXX XXX 1.61 1.46 1.63 2.08 0.25 1.39
XXX 0.02 XXX XXX 1.64 1.47 1.61 1.69 0.30 1.48
XXX XXX XXX XXX 1.72 1.47 1.61 1.06 0.33 1.48
XXX XXX XXX XXX 1.85 1.46 1.46 0.61 0.38 1.49
XXX XXX XXX XXX 1.85 1.32 0.93 0.36 0.40 1.48
XXX XXX XXX XXX 1.83 0.82 0.53 0.22 0.43 1.53
XXX XXX XXX XXX 1.85 0.49 0.29 0.16 0.43 1.57
XXX XXX XXX XXX 1.88 0.25 0.17 0.11 0.44 1.53
XXX XXX XXX XXX 1.88 0.15 0.11 0.08 0.47 1.61
XXX XXX XXX XXX 1.90 0.10 0.07 0.05 0.50 1.77
XXX XXX XXX XXX 1.64 0.06 0.04 0.04 0.50 1.79
XXX XXX XXX XXX 0.87 0.04 XXX XXX 0.53 1.75
XXX XXX XXX XXX 0.44 XXX XXX XXX 0.55 1.75
XXX XXX XXX XXX 0.22 XXX XXX XXX 0.56 1.77
XXX XXX XXX XXX 0.13 XXX XXX XXX 0.56 1.77
XXX XXX XXX XXX 0.07 XXX XXX XXX 0.56 1.79
XXX XXX XXX XXX 0.03 XXX XXX XXX 0.56 1.83
XXX XXX XXX XXX XXX XXX XXX XXX 0.59 1.84
XXX XXX XXX XXX XXX XXX XXX XXX 0.61 1.83
XXX XXX XXX XXX XXX XXX XXX XXX 0.63 1.8861

57
58
59
60

53
54
55
56

49
50
51
52

45
46
47
48

41
42
43
44

38
39
40
40

34
35
36
37

30
31
32
33

27
28
29

Test No.
Surface 

Continued
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BC02 BC02 BC02 BC02 BC03 BC03 BC03 BC03 BC03 BC03
4 5 6 7 1 2 3 4 5 6

XXX XXX XXX XXX XXX XXX XXX XXX 0.63 1.88
XXX XXX XXX XXX XXX XXX XXX XXX 0.63 1.85
XXX XXX XXX XXX XXX XXX XXX XXX 0.64 1.85
XXX XXX XXX XXX XXX XXX XXX XXX 0.65 1.87
XXX XXX XXX XXX XXX XXX XXX XXX 0.65 1.88
XXX XXX XXX XXX XXX XXX XXX XXX 0.65 1.88
XXX XXX XXX XXX XXX XXX XXX XXX 0.66 1.87
XXX XXX XXX XXX XXX XXX XXX XXX 0.66 1.59
XXX XXX XXX XXX XXX XXX XXX XXX 0.66 0.86
XXX XXX XXX XXX XXX XXX XXX XXX 0.67 0.44
XXX XXX XXX XXX XXX XXX XXX XXX 0.66 0.24
XXX XXX XXX XXX XXX XXX XXX XXX 0.67 0.13
XXX XXX XXX XXX XXX XXX XXX XXX 0.67 0.07
XXX XXX XXX XXX XXX XXX XXX XXX 0.67 0.04
XXX XXX XXX XXX XXX XXX XXX XXX 0.71 0.02
XXX XXX XXX XXX XXX XXX XXX XXX 0.69 XXX
XXX XXX XXX XXX XXX XXX XXX XXX 0.69 XXX
XXX XXX XXX XXX XXX XXX XXX XXX 0.69 XXX
XXX XXX XXX XXX XXX XXX XXX XXX 0.69 XXX
XXX XXX XXX XXX XXX XXX XXX XXX 0.69 XXX
XXX XXX XXX XXX XXX XXX XXX XXX 0.69 XXX
XXX XXX XXX XXX XXX XXX XXX XXX 0.58 XXX
XXX XXX XXX XXX XXX XXX XXX XXX 0.36 XXX
XXX XXX XXX XXX XXX XXX XXX XXX 0.21 XXX
XXX XXX XXX XXX XXX XXX XXX XXX 0.11 XXX
XXX XXX XXX XXX XXX XXX XXX XXX 0.07 XXX
XXX XXX XXX XXX XXX XXX XXX XXX 0.04 XXX
XXX XXX XXX XXX XXX XXX XXX XXX 0.02 XXX

14.73 6.05 2.40 4.50 21.57 14.17 15.00 9.67 38.00 26.66

0.84 1.26 1.87 1.32 1.85 1.46 1.61 2.08 0.69 1.88

0.23 0.32 0.30 0.31 0.58 0.52 0.53 0.69 0.24 0.62

27.00 20.00 12.00 15.00 45.00 37.00 34.00 36.00 71.00 61.00

7.00 18.00 10.00 11.00 7.00 8.00 8.00 10.00 7.00 8.00

84
85
86
87

Time to Peak 
(mins)

Time to zero 
(mins)

88
89

Runoff Begins 
(mins)

Peak Runoff 
(gpm)
Runoff 

Coefficient

82
83

76
77
78
79
80
81

72
73
74
75

68
69
70
71

67

62
63
64

Continued
Surface 

66

Test No.

65
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APPENDIX B 

RUNOFF MEASUREMENTS FOR GRASS-LEFT (G-LEFT) AND GRASS-

RIGHT (G-RIGHT) PLOTS 

G-left G-left G-left G-left G-left G-left G-left G-Right G-Right G-Right G-Right
11/23/02 11/30/02 12/06/02 12/18/02 12/20/02 01/06/03 01/08/03 02/01/03 02/03/03 02/10/03 02/12/03

16.2 14.5 5.9 19.1 10.5 16.9 24.9 17.8 12 8.3 14
47 62 69 93 43 52 29 53 40 40 92

40.6 42 44 55 31 44 56 28 34 42.2 37

357972 358095 358278 358600 358767 359047 259336 360089 360290 360523 360684

358092 358276 358455 358761 359048 359335 359593 360290 360520 360683 360903

2.79/1.49 2.83/1.51 3.93/2.1 3.42/1.82 5.73/3.06 6.4/3.42 6.12/3.27 4.1/2.19 3.48/1.86 3.47/1.85 3.84/2.05

2 3 4 6 7 8 9 3 4 5 6

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.03 0.00
0.03 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.04 0.00
0.04 0.00 0.05 0.03 0.03 0.00 0.10 0.03 0.00 0.05 0.02
0.06 0.00 0.04 0.04 0.03 0.00 0.10 0.06 0.00 0.07 0.04
0.07 0.00 0.07 0.05 0.04 0.00 0.12 0.07 0.00 0.08 0.05
0.07 0.00 0.06 0.06 0.13 0.00 0.24 0.07 0.00 0.10 0.07
0.07 0.01 0.08 0.06 0.31 0.03 0.41 0.07 0.00 0.12 0.10
0.07 0.03 0.03 0.06 0.63 0.12 0.46 0.10 0.00 0.15 0.14
0.07 0.03 0.14 0.06 0.71 0.29 1.04 0.12 0.00 0.19 0.19
0.08 0.03 0.17 0.06 0.76 0.53 1.27 0.16 0.00 0.22 0.25
0.10 0.03 0.20 0.08 1.01 0.81 1.49 0.19 0.02 0.28 0.30
0.11 0.04 0.26 0.12 1.28 1.06 1.61 0.19 0.03 0.32 0.37

Surface 
Date
Temp ('C)
Humidity (%)
Initial 
Moisture  (%)
Initial 

Reading, Igmr

Final 

Reading, Fgmr

Input 
(GPM/iph)
Test No.

Time (mins)  Incremental Runoff in Gallons
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19  
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G-left G-left G-left G-left G-left G-left G-left G-Right G-Right G-Right G-Right
2 3 4 6 7 8 9 3 4 5 6

0.11 0.05 0.35 0.12 1.27 1.16 1.72 0.19 0.06 0.38 0.45
0.13 0.06 0.40 0.16 1.59 1.30 1.79 0.19 0.11 0.47 0.53
0.17 0.07 0.48 0.20 1.61 1.39 1.85 0.20 0.15 0.50 0.59
0.20 0.07 0.59 0.25 1.72 1.47 1.92 0.21 0.17 0.54 0.73
0.27 0.08 0.65 0.34 1.63 1.57 1.97 0.25 0.19 0.59 0.74
0.31 0.10 0.71 0.41 1.82 1.61 1.96 0.30 0.22 0.62 0.78
0.37 0.11 0.74 0.49 2.06 1.66 1.94 0.30 0.25 0.65 0.85
0.43 0.15 0.81 0.59 2.04 1.67 1.94 0.29 0.27 0.69 0.87
0.47 0.19 0.89 0.63 2.04 1.67 1.95 0.29 0.29 0.72 0.90
0.51 0.26 0.87 0.70 2.06 1.68 1.95 0.30 0.31 0.74 0.93
0.53 0.27 0.89 0.73 2.07 1.72 1.95 0.33 0.34 0.76 0.96
0.56 0.32 0.90 0.76 2.08 1.75 1.95 0.33 0.37 0.78 0.97
0.61 0.37 0.95 0.79 2.16 1.80 1.96 0.33 0.39 0.79 1.01
0.63 0.38 0.98 0.81 1.81 1.96 0.33 0.42 0.81 1.04
0.66 0.40 1.01 0.84 2.06 1.81 1.96 0.35 0.45 0.83 1.05
0.66 0.44 1.01 0.86 2.06 1.81 1.96 0.36 0.47 0.84 1.06
0.66 0.47 1.01 0.87 2.07 1.81 1.96 0.42 0.49 0.83 1.06
0.66 0.50 1.01 0.87 2.07 1.81 1.96 0.54 0.52 0.83 1.07
0.66 0.52 1.01 0.87 2.07 1.82 1.96 0.60 0.55 0.83 1.10
0.67 0.53 1.01 0.87 2.07 1.82 1.96 0.65 0.56 0.83 1.11
0.67 0.53 1.01 0.87 2.08 1.83 1.97 0.71 0.58 0.84 1.10
0.67 0.53 1.01 0.87 2.10 1.83 1.96 0.70 0.59 0.83 1.11
0.63 0.53 1.00 0.87 2.10 1.83 1.96 0.67 0.59 0.84 1.11
0.56 0.56 1.00 0.87 2.10 1.82 1.57 0.69 0.59 0.83 1.12
0.52 0.56 1.01 0.87 2.10 1.83 1.19 0.69 0.61 0.84 1.12
0.48 0.56 1.00 0.87 2.10 1.83 0.94 0.69 0.61 0.83 1.12
0.42 0.56 0.89 0.87 2.10 1.77 0.78 0.69 0.61 0.84 1.12
0.37 0.56 0.83 0.87 2.10 1.61 0.66 0.69 0.62 0.73 1.12
0.31 0.56 0.71 0.84 2.10 1.36 0.54 0.69 0.61 0.68 1.12
0.30 0.56 0.63 0.79 2.10 1.10 0.47 0.69 0.61 0.57 1.12
0.27 0.56 0.56 0.68 1.97 1.03 0.40 0.63 0.62 0.50 1.12
0.24 0.59 0.50 0.60 1.41 0.57 0.33 0.57 0.62 0.38 1.13
0.22 0.59 0.43 0.51 1.34 0.51 0.29 0.52 0.63 0.33 1.12
0.19 0.59 0.40 0.46 1.13 0.45 0.25 0.45 0.64 0.29 1.13
0.18 0.61 0.37 0.41 0.94 0.36 0.22 0.37 0.64 0.25 1.13
0.17 0.61 0.32 0.38 0.82 0.33 0.20 0.28 0.64 0.21 1.13
0.16 0.61 0.30 0.33 0.70 0.29 0.18 0.23 0.65 0.18 1.14
0.13 0.61 0.27 0.29 0.61 0.24 0.16 0.21 0.66 0.15 1.13
0.11 0.61 0.25 0.27 0.52 0.22 0.15 0.19 0.67 0.12 1.10

57
58

53
54
55
56

49
50
51
52

45
46
47
48

41
42
43
44

37
38
39
40

33
34
35
36

29
30
31
32

25
26
27
28

21
22
23
24

Test No.
20

Surface 
Continued
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G-left G-left G-left G-left G-left G-left G-left G-Right G-Right G-Right G-Right
2 3 4 6 7 8 9 3 4 5 6

0.11 0.61 0.23 0.25 0.46 0.20 0.13 0.17 0.69 0.11 1.01
0.10 0.61 0.21 0.22 0.41 0.17 0.12 0.16 0.68 0.09 0.85
0.10 0.61 0.20 0.20 0.38 0.16 0.11 0.13 0.67 0.09 0.70
0.09 0.61 0.19 0.19 0.32 0.14 0.11 0.13 0.68 0.07 0.60
0.09 0.61 0.16 0.16 0.26 0.12 0.09 0.11 0.68 0.06 0.44
0.08 0.59 0.16 0.15 0.24 0.11 0.08 0.10 0.68 0.05 0.38
0.08 0.58 0.14 0.12 0.21 0.10 0.08 0.09 0.68 0.05 0.32
0.08 0.54 0.13 0.12 0.19 0.09 0.07 0.08 0.63 0.04 0.27
0.07 0.48 0.13 0.12 0.17 0.08 0.07 0.08 0.56 XXX 0.24
0.06 0.43 0.12 0.11 0.16 0.08 0.06 0.07 0.47 XXX 0.21
0.05 0.37 0.11 0.10 0.15 0.07 0.06 0.07 0.39 XXX 0.18
0.04 0.34 0.10 0.10 0.11 0.07 0.06 0.06 0.33 XXX 0.16
0.04 0.29 0.10 0.09 0.11 0.07 0.05 0.06 0.27 XXX 0.14
0.03 0.27 0.10 0.09 0.11 0.06 0.05 0.06 0.24 XXX 0.13
0.03 0.24 0.10 0.08 0.11 0.05 0.04 XXX 0.20 XXX 0.11
0.03 0.21 0.09 0.08 0.10 0.05 0.04 XXX 0.16 XXX 0.10
XXX 0.20 0.08 0.07 0.09 0.04 XXX XXX 0.14 XXX 0.09
XXX 0.19 0.08 0.07 0.08 XXX XXX XXX 0.13 XXX 0.08
XXX 0.16 0.07 0.07 0.08 XXX XXX XXX 0.12 XXX 0.07
XXX 0.15 0.07 0.06 0.07 XXX XXX XXX 0.10 XXX 0.07
XXX 0.14 0.07 0.06 0.07 XXX XXX XXX 0.09 XXX 0.06
XXX 0.13 0.07 0.06 0.06 XXX XXX XXX 0.08 XXX 0.06
XXX 0.12 0.07 0.05 0.05 XXX XXX XXX 0.08 XXX 0.06
XXX 0.11 0.07 0.05 0.05 XXX XXX XXX 0.07 XXX 0.05
XXX 0.10 0.06 0.05 XXX XXX XXX XXX 0.06 XXX 0.05
XXX 0.10 0.06 0.05 XXX XXX XXX XXX 0.06 XXX XXX
XXX 0.10 0.05 XXX XXX XXX XXX XXX 0.05 XXX XXX
XXX 0.08 0.05 XXX XXX XXX XXX XXX 0.05 XXX XXX
XXX 0.07 0.04 XXX XXX XXX XXX XXX 0.04 XXX XXX
XXX 0.07 0.05 XXX XXX XXX XXX XXX XXX XXX XXX
XXX 0.05 0.04 XXX XXX XXX XXX XXX XXX XXX XXX
XXX 0.05 XXX XXX XXX XXX XXX XXX XXX XXX XXX
XXX 0.04 XXX XXX XXX XXX XXX XXX XXX XXX XXX
XXX 0.03 XXX XXX XXX XXX XXX XXX XXX XXX XXX

9.00 14.00 9.00 9.00 9.00 13.00 7.00 9.00 17.00 7.00 9.00

0.60 0.61 1.00 0.87 2.09 1.82 1.96 0.69 0.67 0.83 1.12

0.22 0.22 0.25 0.25 0.36 0.28 0.32 0.17 0.19 0.24 0.29

34.00 54.00 34.00 38.00 32.00 32.00 24.00 40.00 57.00 34.00 39.00

32.00 29.00 45.00 38.00 34.00 31.00 33.00 23.00 22.00 21.00 27.00

59
60

Continued
Surface 
Test No.

61
62
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

Time to zero 
(minutes)

Runoff Begins 
(minutes)
Peak Runoff 
(GPM)
Runoff 
Coefficient
Time-to-Peak 
(minutes)
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APPENDIX C 

RUNOFF MEASUREMENTS FOR PASTURE-LEFT (P-LEFT) AND PASTURE-

RIGHT (P-RIGHT) PLOTS 

P-Left P-Left P-Left P-Left P-Left P-Left P-Right P-Right P-Right P-Right P-Right P-Right
06/17/03 06/18/03 06/19/03 06/20/03 06/26/03 06/26/03 06/28/03 07/01/03 07/02/03 07/03/03 07/08/03 07/09/03

23.2 23 24.3 26.3 24.9 26.8 XXX 26 23.5 25.5 25.5 25.9
94 98 92 87 83 88 XXX 89 94 85 94 95

42.67 35.4 38 33.25 21.5 32.16 23.4 37.84 33.62 29.85 29.75 33.97

366803 367016 367189 367471 367686 367989 368525 369174 369438 369643 369825 370058

367014 367189 367470 367684 367978 368201 368927 369434 369644 369823 370055 370217

3.58/1.91 2.44/1.3 5.51/2.94 3.73/1.99 2.98/1.59 3.12/1.66 3.98/2.12 4.81/2.57 3.88/2.07 3.05/1.63 3.239/1.73 2.84/1.52

2 3 4 5 6 7 1 4 5 6 8 9

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00
0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00
0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.00
0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.00 0.00
0.00 0.00 0.19 0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.00 0.00
0.00 0.00 0.28 0.00 0.00 0.00 0.00 0.13 0.06 0.00 0.00 0.00
0.00 0.00 0.56 0.08 0.00 0.00 0.00 0.13 0.08 0.05 0.00 0.00
0.00 0.00 0.93 0.09 0.00 0.00 0.00 0.22 0.08 0.06 0.00 0.06
0.07 0.00 1.19 0.11 0.00 0.07 0.00 0.37 0.08 0.07 0.00 0.07
0.08 0.00 1.34 0.16 0.00 0.07 0.00 0.54 0.08 0.07 0.00 0.08
0.10 0.00 1.51 0.23 0.00 0.08 0.00 0.70 0.18 0.08 0.00 0.13
0.16 0.00 1.61 0.43 0.00 0.09 0.00 0.87 0.29 0.08 0.00 0.16
0.27 0.00 1.67 0.65 0.00 0.10 0.00 1.04 0.42 0.06 0.00 0.21

21
22
23

17
18
19
20

13
14
15
16

9
10
11
12

5
6
7
8

1
2
3
4

Test No.
Time (mins) Incremental Runoff in gallons

0

AMC (%)
Initial 
Reading, 
Igmr

Final            
Reading, 
Fgmr
Input      
(GPM/iph)

Surface 
Date
Temp ('C)
Humidity 

 

 



  96

P-Left P-Left P-Left P-Left P-Left P-Left P-Right P-Right P-Right P-Right P-Right P-Right
2 3 4 5 6 7 1 4 5 6 8 9

0.49 0.06 1.73 0.82 0.00 0.12 0.00 1.21 0.52 0.08 0.00 0.26
0.66 0.11 1.80 0.95 0.00 0.15 0.00 1.33 0.70 0.10 0.00 0.32
0.79 0.16 1.85 1.06 0.00 0.26 0.00 1.40 0.75 0.16 0.00 0.38
0.87 0.26 1.89 1.12 0.00 0.45 0.00 1.61 0.85 0.21 0.05 0.43
0.94 0.43 1.88 1.15 0.00 0.54 0.00 1.71 0.95 0.26 0.05 0.52
1.01 0.53 2.00 1.22 0.00 0.65 0.00 1.79 1.11 0.35 0.09 0.63
1.06 0.59 2.06 1.26 0.00 0.73 0.00 1.83 1.18 0.44 0.16 0.71
1.10 0.67 2.12 1.32 0.00 0.79 0.00 1.84 1.22 0.50 0.24 0.80
1.11 0.70 2.14 1.36 0.00 0.84 0.00 1.88 1.30 0.60 0.30 0.83
1.15 0.77 2.14 1.38 0.00 0.85 0.00 1.93 1.38 0.70 0.35 0.92
1.17 0.79 2.20 1.40 0.00 0.92 0.00 1.93 1.41 0.79 0.44 1.01
1.18 0.81 2.21 1.39 0.00 0.95 0.00 1.97 1.46 0.83 0.48 1.06
1.22 0.83 2.26 1.40 0.00 0.95 0.00 1.99 1.51 0.93 0.56 1.09
1.23 0.82 2.30 1.42 0.00 1.01 0.00 1.98 1.52 1.02 0.62 1.15
1.24 0.85 2.30 1.44 0.00 1.06 0.00 1.99 1.53 1.07 0.69 1.19
1.24 0.89 2.34 1.47 0.00 1.08 0.00 2.01 1.59 1.11 0.74 1.22
1.25 0.92 2.33 1.48 0.00 1.07 0.00 2.03 1.60 1.16 0.81 1.23
1.27 0.90 2.33 1.51 0.00 1.12 0.00 2.02 1.61 1.17 0.85 1.24
1.29 0.93 2.31 1.53 0.00 1.14 0.00 2.05 1.61 1.19 0.91 1.28
1.29 0.93 2.32 1.59 0.00 1.15 0.00 2.05 1.64 1.23 0.95 1.30
1.30 0.93 2.35 1.60 0.00 1.18 0.00 2.05 1.66 1.25 0.96 1.31
1.34 0.95 2.34 1.60 0.06 1.20 0.00 2.06 1.65 1.28 1.01 1.33
1.38 0.97 2.33 1.61 0.07 1.21 0.00 2.08 1.65 1.26 1.05 1.35
1.38 0.98 2.35 1.65 0.08 1.20 0.00 2.07 1.67 1.27 1.08 1.38
1.40 0.98 2.37 1.64 0.08 1.21 0.00 2.09 1.66 1.30 1.11 1.38
1.41 1.02 2.38 1.67 0.10 1.21 0.00 2.08 1.67 1.31 1.12 1.37
1.44 1.01 2.37 1.66 0.12 1.21 0.07 2.07 1.68 1.33 1.11 1.38
1.43 1.02 2.38 1.65 0.17 1.21 0.08 2.08 1.67 1.34 1.16 1.38
1.46 1.03 2.30 1.67 0.24 1.22 0.08 2.09 1.68 1.33 1.17 1.39
1.46 1.08 1.90 1.68 0.29 1.28 0.09 2.08 1.68 1.35 1.18 1.37
1.44 1.07 1.72 1.65 0.32 1.25 0.13 2.10 1.59 1.34 1.17 1.38
1.45 1.07 1.39 1.68 0.34 1.26 0.15 2.09 1.43 1.33 1.22 1.39
1.42 1.07 1.06 1.68 0.40 1.29 0.16 1.91 1.26 1.35 1.22 1.39
1.43 1.08 0.97 1.69 0.44 1.28 0.18 1.78 1.07 1.35 1.21 1.35
1.46 1.10 0.74 1.60 0.48 1.30 0.21 1.51 0.90 1.35 1.23 1.25
1.46 1.10 0.61 1.46 0.52 1.31 0.23 1.25 0.78 1.36 1.24 1.14
1.35 1.12 0.53 1.23 0.54 1.32 0.26 1.08 0.66 1.30 1.24 1.00
1.19 1.12 0.46 1.06 0.58 1.31 0.30 0.93 0.60 1.19 1.25 0.79

26
27
28

Surface 
Test No.

Continued

24
25

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61  
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P-Left P-Left P-Left P-Left P-Left P-Left P-Right P-Right P-Right P-Right P-Right P-Right
2 3 4 5 6 7 1 4 5 6 8 9

0.99 1.13 0.38 0.89 0.58 1.32 0.32 0.79 0.53 1.03 1.25 0.71
0.85 1.14 0.33 0.66 0.64 1.34 0.34 0.69 0.43 0.90 1.25 0.62
0.68 1.14 0.26 0.61 0.63 1.32 0.37 0.60 0.40 0.77 1.25 0.54
0.56 1.14 0.24 0.50 0.66 1.33 0.41 0.53 0.29 0.67 1.26 0.48
0.45 1.15 0.19 0.40 0.65 1.32 0.42 0.43 0.28 0.58 1.26 0.41
0.39 1.15 0.17 0.34 0.69 1.31 0.46 0.40 0.25 0.53 1.27 0.35
0.29 1.13 0.14 0.28 0.70 1.33 0.50 0.35 0.23 0.45 1.26 0.32
0.26 1.12 0.12 0.26 0.72 1.23 0.53 0.31 0.21 0.39 1.26 0.26
0.20 1.14 0.11 0.21 0.73 1.10 0.56 0.27 0.19 0.35 1.27 0.24
0.18 1.13 0.09 0.19 0.73 0.85 0.57 0.23 0.17 0.30 1.27 0.21
0.15 1.07 0.07 0.16 0.77 0.79 0.58 0.21 0.15 0.26 1.22 0.19
0.12 1.04 0.06 0.14 0.77 0.57 0.61 0.19 0.13 0.24 1.17 0.17
0.11 0.92 0.05 0.12 0.76 0.46 0.67 0.16 0.11 0.21 1.04 0.16
0.08 0.79 0.05 0.10 0.77 0.37 0.70 0.15 0.10 0.19 0.87 0.13
0.07 0.60 0.04 0.09 0.79 0.32 0.74 0.13 0.09 0.17 0.76 0.12
0.06 0.47 XXX 0.08 0.79 0.24 0.78 0.12 0.08 0.15 0.65 0.11
0.05 0.40 XXX 0.07 0.79 0.20 0.79 0.11 0.08 0.13 0.56 0.10
0.04 0.33 XXX 0.06 0.81 0.16 0.81 0.10 0.07 0.12 0.53 0.09
XXX 0.28 XXX 0.05 0.81 0.14 0.82 0.08 0.06 0.11 0.44 0.08
XXX 0.26 XXX 0.04 0.81 0.11 0.85 0.07 0.06 0.10 0.37 0.07
XXX 0.19 XXX XXX 0.81 0.09 0.88 0.07 0.05 0.08 0.30 0.06
XXX 0.15 XXX XXX 0.82 0.08 0.89 0.06 0.04 0.08 0.26 0.06
XXX 0.13 XXX XXX 0.81 0.07 0.93 0.05 0.04 0.07 0.23 0.05
XXX 0.12 XXX XXX 0.87 0.06 0.99 0.05 XXX 0.06 0.19 0.05
XXX 0.09 XXX XXX 0.86 0.05 1.01 0.04 XXX 0.06 0.17 0.04
XXX 0.07 XXX XXX 0.87 0.04 1.00 0.04 XXX 0.05 0.15 XXX
XXX 0.06 XXX XXX 0.87 XXX 1.02 XXX XXX 0.04 0.13 XXX
XXX 0.05 XXX XXX 0.88 XXX 1.03 XXX XXX XXX 0.11 XXX
XXX 0.04 XXX XXX 0.89 XXX 1.06 XXX XXX XXX 0.09 XXX
XXX XXX XXX XXX 0.93 XXX 1.06 XXX XXX XXX 0.08 XXX
XXX XXX XXX XXX 0.93 XXX 1.07 XXX XXX XXX 0.07 XXX
XXX XXX XXX XXX 0.92 XXX 1.08 XXX XXX XXX 0.06 XXX
XXX XXX XXX XXX 0.93 XXX 1.11 XXX XXX XXX 0.05 XXX
XXX XXX XXX XXX 0.93 XXX 1.12 XXX XXX XXX 0.04 XXX
XXX XXX XXX XXX 0.94 XXX 1.12 XXX XXX XXX 0.04 XXX

93
94
95
96

89
90
91
92

85
86
87
88

81
82
83
84

77
78
79
80

73
74
75
76

69
70
71
72

65
66
67
68

62
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64

Continued
Surface 
Test No.
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P-Left P-Left P-Left P-Left P-Left P-Left P-Right P-Right P-Right P-Right P-Right P-Right
2 3 4 5 6 7 1 4 5 6 8 9

XXX XXX XXX XXX 0.94 XXX 1.12 XXX XXX XXX XXX XXX
XXX XXX XXX XXX 0.94 XXX 1.14 XXX XXX XXX XXX XXX
XXX XXX XXX XXX 0.88 XXX 1.15 XXX XXX XXX XXX XXX
XXX XXX XXX XXX 0.77 XXX 1.15 XXX XXX XXX XXX XXX
XXX XXX XXX XXX 0.65 XXX 1.13 XXX XXX XXX XXX XXX
XXX XXX XXX XXX 0.53 XXX 1.01 XXX XXX XXX XXX XXX
XXX XXX XXX XXX 0.40 XXX 0.93 XXX XXX XXX XXX XXX
XXX XXX XXX XXX 0.33 XXX 0.75 XXX XXX XXX XXX XXX
XXX XXX XXX XXX 0.26 XXX 0.68 XXX XXX XXX XXX XXX
XXX XXX XXX XXX 0.20 XXX 0.60 XXX XXX XXX XXX XXX
XXX XXX XXX XXX 0.16 XXX 0.50 XXX XXX XXX XXX XXX
XXX XXX XXX XXX 0.13 XXX 0.42 XXX XXX XXX XXX XXX
XXX XXX XXX XXX 0.11 XXX 0.39 XXX XXX XXX XXX XXX
XXX XXX XXX XXX 0.09 XXX 0.33 XXX XXX XXX XXX XXX
XXX XXX XXX XXX 0.07 XXX 0.27 XXX XXX XXX XXX XXX
XXX XXX XXX XXX 0.06 XXX 0.25 XXX XXX XXX XXX XXX
XXX XXX XXX XXX 0.05 XXX 0.21 XXX XXX XXX XXX XXX
XXX XXX XXX XXX 0.04 XXX 0.18 XXX XXX XXX XXX XXX
XXX XXX XXX XXX XXX XXX 0.14 XXX XXX XXX XXX XXX
XXX XXX XXX XXX XXX XXX 0.12 XXX XXX XXX XXX XXX
XXX XXX XXX XXX XXX XXX 0.11 XXX XXX XXX XXX XXX
XXX XXX XXX XXX XXX XXX 0.10 XXX XXX XXX XXX XXX
XXX XXX XXX XXX XXX XXX 0.07 XXX XXX XXX XXX XXX
XXX XXX XXX XXX XXX XXX 0.07 XXX XXX XXX XXX XXX
XXX XXX XXX XXX XXX XXX 0.05 XXX XXX XXX XXX XXX
XXX XXX XXX XXX XXX XXX 0.04 XXX XXX XXX XXX XXX

18.00 23.00 11.00 16.00 44.00 18.00 49.00 8.00 15.00 16.00 26.00 17.00

1.46 1.14 2.38 1.68 0.94 1.32 1.15 2.08 1.67 1.35 1.27 1.38

0.41 0.47 0.43 0.45 0.32 0.42 0.29 0.43 0.43 0.44 0.39 0.49

50.00 63.00 39.00 49.00 91.00 60.00 95.00 46.00 44.00 51.00 61.00 47.00

20.00 19.00 25.00 24.00 47.00 19.00 21.00 33.00 31.00 29.00 25.00 30.00

97
98
99

Continued
Surface 
Test No.

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

Runoff 
Coefficient
Time to Peak 
(minutes)
Time to zero 
(minutes)

121
122

Runoff Begins  
(minutes)
Peak Runoff 
(GPM)
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APPENDIX D 

RUNOFF MEASUREMENTS FOR CONCRETE WITH 

EXPANSION/CONTRACTION JOINTS (CWJ) AND WITHOUT 

EXPANSION/CONTRACTION JOINTS (CW/OJ) 

 
CWJ CWJ CWJ CWJ CWJ CWJ Cw/oJ Cw/oJ Cw/oJ

2/29/03 02/28/03 3/4/2003 3/6/2003 3/6/2003 3/7/2003 04/07/03 04/07/03 04/07/03
24 13 17.3 19.2 14.9 21.8 21.2 23.1
64 52 32 35 57 44 94 94

361034 361118 361222 361299 361352 361420 362268 362320 362320

361117 361202 361281 361350 361420 361488 362320 362368 362368

2.83/1.51 2.87/1.53 2.35/1.254 2.64/1.41 3.84/1.88 4.12/2.2 3.03/1.62 3.28/1.74 2.39/1.27

1 2 3 4 5 6 1 2 3

2.84 5.33 4.55 5.23 2.40 2.90 1.97 3.53 4.68
0.57 0.55 0.82 0.68 0.50 0.52 0.70 0.57 0.93
0.53 0.45 0.65 0.52 0.38 0.32 0.55 0.45 0.67
0.42 0.42 0.57 0.45 0.32 0.38 0.42 0.47 0.50
0.42 0.37 0.37 0.42 0.32 0.33 0.32 0.40 0.53
0.37 0.35 0.50 0.40 0.28 0.33 0.30 0.35 0.53
0.35 0.32 0.55 0.37 0.30 0.28 0.28 0.35 0.48
0.33 0.33 0.43 0.35 0.27 0.30 0.32 0.38 0.48
0.33 0.32 0.43 0.32 0.27 0.25 0.28 0.30 0.45
0.33 0.32 0.43 0.28 0.25 0.27 0.30 0.32 0.43
0.33 0.32 0.43 0.32 0.23 0.23 0.30 0.32 0.40
0.33 0.30 0.30 0.33 0.23 0.25 0.27 0.30 0.43
0.32 0.35 0.43 0.30 0.23 0.23 0.25 0.33 0.45
0.28 0.32 0.37 0.33 0.23 0.23 0.28 0.35 0.45
0.28 0.32 0.40 0.28 0.23 0.25 0.27 0.32 0.38
0.32 0.28 0.35 0.30 0.22 0.27 0.25 0.32 0.40
0.32 0.28 0.30 0.27 0.22 0.23 0.27 0.30 0.45
0.28 0.30 0.27 0.30 0.22 0.23 0.27 0.32 0.47
0.30 0.28 0.33 0.30 0.22 0.22 0.30 0.30 0.45
0.30 0.33 0.33 0.32 0.22 0.22 0.28 0.32 0.47
0.32 0.32 0.28 0.30 0.23 0.20 0.27 0.28 0.43
0.32 0.30 0.27 0.35 0.22 0.20 0.28 0.32 0.38
0.28 0.30 0.25 0.28 0.20 0.22 0.27 0.32 0.40
0.32 0.30 0.27 0.30 0.23 0.20 0.25 0.32 0.43
0.32 0.30 0.33 0.33 0.22 0.20 0.25 0.32 0.43
0.27 0.30 0.32 0.27 0.20 0.20 0.27 0.30 0.42
0.30 0.28 0.32 0.25 0.22 0.22 0.30 0.30 0.43
0.28 0.33 0.30 0.22 0.20 0.20 0.27 0.43 0.45

Surface 
Date
Temp ('C)
Humidity (%)
Initial 
Reading,Igmr

Final Reading, 
Fgmr

Input   
(GPM/iph)
Test No.

Bucket No. Incremental Time steps' tdiff ' to collect 2 liters of Runoff after TOB (Minutes)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28  
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CWJ CWJ CWJ CWJ CWJ CWJ Cw/oJ Cw/oJ Cw/oJ

1 2 3 4 5 6 1 2 3
0.30 0.32 0.35 0.22 0.22 0.20 0.25 0.45 0.38
0.30 0.28 0.30 0.22 0.20 0.22 0.25 0.58 0.43
0.27 0.30 0.28 0.23 0.23 0.18 0.23 0.80 0.45
0.30 0.28 0.27 0.23 0.20 0.20 0.25 1.17 0.60
0.28 0.27 0.32 0.27 0.23 0.20 0.22 2.77 0.73
0.28 0.25 0.33 0.28 0.20 0.22 0.23 XXX 0.93

0.30 0.23 0.32 0.28 0.22 0.23 0.23 XXX 1.40
0.30 0.23 0.30 0.23 0.20 0.23 0.25 XXX 2.25

0.28 0.23 0.28 0.32 0.22 0.23 0.25 XXX XXX
0.30 0.27 0.27 0.27 0.20 0.22 0.22 XXX XXX

0.27 0.25 0.27 0.27 0.20 0.22 0.23 XXX XXX
0.30 0.28 0.25 0.25 0.20 0.22 0.22 XXX XXX

0.33 0.30 0.32 0.27 0.22 0.22 0.22 XXX XXX
0.28 0.27 0.32 0.37 0.20 0.20 0.22 XXX XXX

0.28 0.23 0.35 0.40 0.22 0.20 0.22 XXX XXX
0.30 0.25 0.33 0.50 0.23 0.22 0.20 XXX XXX

0.33 0.27 0.32 0.57 0.23 0.22 0.22 XXX XXX
0.27 0.25 0.27 0.55 0.25 0.20 0.27 XXX XXX

0.28 0.27 0.30 0.80 0.23 0.20 0.32 XXX XXX
0.28 0.27 0.28 0.98 0.23 0.20 0.32 XXX XXX
0.28 0.27 0.35 1.62 0.22 0.23 0.38 XXX XXX

0.32 0.27 0.33 2.35 0.22 0.23 0.45 XXX XXX
0.27 0.25 0.32 3.95 0.25 0.25 0.58 XXX XXX

0.32 0.27 0.38 XXX 0.22 0.27 0.72 XXX XXX
0.27 0.27 0.35 XXX 0.27 0.25 0.95 XXX XXX

0.28 0.27 0.33 XXX 0.32 0.33 1.33 XXX XXX
0.30 0.30 0.32 XXX 0.37 0.35 0.80 XXX XXX

0.30 0.28 0.33 XXX 0.38 0.43 XXX XXX XXX
0.28 0.27 0.32 XXX 0.47 0.55 XXX XXX XXX

0.30 0.27 0.40 XXX 0.57 0.67 XXX XXX XXX
0.30 0.27 0.43 XXX 0.72 0.92 XXX XXX XXX

0.30 0.25 0.53 XXX 0.98 1.35 XXX XXX XXX
0.28 0.28 0.60 XXX 1.45 2.25 XXX XXX XXX

0.32 0.28 0.73 XXX 2.23 5.25 XXX XXX XXX
0.28 0.27 0.85 XXX 4.58 XXX XXX XXX XXX

0.32 0.22 0.97 XXX XXX XXX XXX XXX XXX
0.30 0.23 0.92 XXX XXX XXX XXX XXX XXX

0.33 0.23 1.83 XXX XXX XXX XXX XXX XXX
0.30 0.23 2.38 XXX XXX XXX XXX XXX XXX

65
66

67

61
62

63
64

57

58
59

60

44
45

46
47

48
49

50

42
43

51

52
53

54
55

56

32
33
34

35
36

37

39
40
41

29
30
31

Surface 
Test No.

Continued

38
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CWJ CWJ CWJ CWJ CWJ CWJ Cw/oJ Cw/oJ Cw/oJ
1 2 3 4 5 6 1 2 3

0.30 0.23 XXX XXX XXX XXX XXX XXX XXX
0.32 0.27 XXX XXX XXX XXX XXX XXX XXX
0.30 0.27 XXX XXX XXX XXX XXX XXX XXX
0.30 0.25 XXX XXX XXX XXX XXX XXX XXX
0.28 0.27 XXX XXX XXX XXX XXX XXX XXX
0.33 0.30 XXX XXX XXX XXX XXX XXX XXX
0.25 0.30 XXX XXX XXX XXX XXX XXX XXX
0.32 0.27 XXX XXX XXX XXX XXX XXX XXX
0.43 0.30 XXX XXX XXX XXX XXX XXX XXX
0.45 0.30 XXX XXX XXX XXX XXX XXX XXX
0.53 0.32 XXX XXX XXX XXX XXX XXX XXX
0.62 0.27 XXX XXX XXX XXX XXX XXX XXX
0.75 0.27 XXX XXX XXX XXX XXX XXX XXX
1.07 0.30 XXX XXX XXX XXX XXX XXX XXX
1.38 0.28 XXX XXX XXX XXX XXX XXX XXX
2.20 0.27 XXX XXX XXX XXX XXX XXX XXX
3.43 0.28 XXX XXX XXX XXX XXX XXX XXX
8.50 0.28 XXX XXX XXX XXX XXX XXX XXX
XXX 0.28 XXX XXX XXX XXX XXX XXX XXX
XXX 0.28 XXX XXX XXX XXX XXX XXX XXX
XXX 0.30 XXX XXX XXX XXX XXX XXX XXX
XXX 0.32 XXX XXX XXX XXX XXX XXX XXX
XXX 0.28 XXX XXX XXX XXX XXX XXX XXX
XXX 0.33 XXX XXX XXX XXX XXX XXX XXX
XXX 0.38 XXX XXX XXX XXX XXX XXX XXX
XXX 0.47 XXX XXX XXX XXX XXX XXX XXX
XXX 0.52 XXX XXX XXX XXX XXX XXX XXX
XXX 0.63 XXX XXX XXX XXX XXX XXX XXX
XXX 0.73 XXX XXX XXX XXX XXX XXX XXX
XXX 1.03 XXX XXX XXX XXX XXX XXX XXX
XXX 1.00 XXX XXX XXX XXX XXX XXX XXX

77

87
88
89

78
79
80
81
82
83

73
74
75
76

69
70
71
72
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Continued
Surface 
Test No.

96
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93
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CWJ CWJ CWJ CWJ CWJ CWJ Cw/oJ Cw/oJ Cw/oJ
1 2 3 4 5 6 1 2 3

XXX 1.00 XXX XXX XXX XXX XXX XXX XXX
XXX 1.58 XXX XXX XXX XXX XXX XXX XXX
XXX 2.00 XXX XXX XXX XXX XXX XXX XXX
XXX 2.92 XXX XXX XXX XXX XXX XXX XXX
XXX 7.02 XXX XXX XXX XXX XXX XXX XXX

4.33 1.87 1.57 1.60 3.23 1.93 2.91 2.21 1.02

1.87 1.78 1.73 2.11 2.45 2.52 2.14 1.70 1.24

0.63 0.70 0.74 0.80 0.64 0.61 0.71 0.52 0.52

12.08 12.50 14.93 15.75 9.90 9.96 9.96 9.01 11.11

Peak Runoff (gpm)

Runoff Coefficient
Time to Peak 

(mins)

Continued
Surface 
Test No.

Runoff Begins 
(minutes)

101
102

98
99

100
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APPENDIX E 

RUNOFF MEASUREMENTS FOR ASPHALT PLOTS 

Asphalt Asphalt Asphalt Asphalt Asphalt Asphalt
04/12/03 04/12/03 04/14/03 04/21/03 04/28/03 04/28/03

24.7 26.9 20.8 20.3 19.2 19.2
47 43 82 48 86 90

362419 362462 362502 362563 362675 362718

362461 362500 362560 362614 362718 362766

2.82/1.5 2.55/1.36 2.55/1.47 3.35/1.788 3.14/1.676 3.45/1.87

1 2 3 4 6 7

4.5667 4.23 2.25 2.87 2.8333 2.40
0.8333 0.83 0.68 0.70 1.1167 0.63
0.5333 0.58 0.58 0.57 0.6333 0.50
0.4833 0.45 0.50 0.42 0.4667 0.42
0.4667 0.37 0.45 0.37 0.4333 0.37
0.3833 0.32 0.43 0.37 0.3833 0.30
0.3833 0.33 0.33 0.35 0.4000 0.30
0.3333 0.33 0.32 0.28 0.3333 0.25
0.3167 0.30 0.35 0.28 0.3167 0.28
0.3000 0.27 0.30 0.28 0.2833 0.25
0.3000 0.23 0.38 0.28 0.2667 0.30
0.2833 0.23 0.40 0.27 0.2667 0.27
0.3333 0.23 0.32 0.25 0.2667 0.30
0.3167 0.27 0.33 0.28 0.2667 0.27
0.3000 0.30 0.28 0.27 0.2667 0.23
0.2833 0.30 0.33 0.25 0.2667 0.27
0.3000 0.23 0.35 0.23 0.2333 0.23
0.3000 0.28 0.30 0.23 0.2167 0.22
0.2833 0.28 0.32 0.25 0.2167 0.22
0.2667 0.28 0.33 0.27 0.2167 0.27
0.2833 0.27 0.25 0.22 0.2333 0.27
0.3000 0.25 0.25 0.23 0.2167 0.23
0.2833 0.27 0.30 0.22 0.2333 0.23

Surface 
Date
Temp ('C)
Humidity (%)
Initial Reading 
Igmr

Final Reading 
Fgmr

Input (GPM/iph)

Test No.
Time (minutes) Incremental Time steps ' tdiff ' to collect 2 liters of Runoff after TOB (Minutes)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
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Asphalt Asphalt Asphalt Asphalt Asphalt Asphalt
1 2 3 4 6 7

0.2667 0.27 0.28 0.22 0.2333 0.25
0.3000 0.27 0.28 0.20 0.2333 0.27
0.3000 0.25 0.28 0.23 0.2167 0.20
0.3000 0.28 0.28 0.23 0.2167 0.27
0.3167 0.27 0.28 0.27 0.2167 0.25
0.3000 0.25 0.28 0.27 0.2500 0.25
0.3667 0.25 0.28 0.22 0.2333 0.25
0.3667 0.25 0.35 0.27 0.2333 0.22
0.4667 0.25 0.32 0.27 0.2667 0.30
0.5000 0.27 0.28 0.27 0.2500 0.28
0.6667 0.28 0.30 0.30 0.2333 0.28
0.8000 0.30 0.27 0.25 0.3333 0.33
1.1167 0.32 0.28 0.22 0.3500 0.37
1.4000 0.37 0.28 0.23 0.3667 0.43
1.7833 0.42 0.25 0.25 0.4500 0.50

XXX 0.48 0.30 0.23 0.5667 0.65
XXX 0.60 0.28 0.23 0.6500 0.78
XXX 0.72 0.27 0.23 0.8167 0.88
XXX 0.92 0.28 0.42 0.9833 1.03
XXX 1.13 0.25 0.37 1.2667 1.22
XXX 1.57 0.27 0.47 1.6833 1.57
XXX 1.97 0.30 0.43 2.4167 XXX
XXX 2.87 0.27 0.58 3.6833 XXX
XXX XXX 0.35 0.72 XXX XXX
XXX XXX 0.27 0.97 XXX XXX
XXX XXX 0.30 1.18 XXX XXX
XXX XXX 0.33 1.50 XXX XXX
XXX XXX 0.38 3.10 XXX XXX
XXX XXX 0.42 2.40 XXX XXX
XXX XXX 0.52 3.93 XXX XXX
XXX XXX 0.67 4.32 XXX XXX
XXX XXX 0.77 4.62 XXX XXX
XXX XXX 1.08 XXX XXX XXX
XXX XXX 1.42 XXX XXX XXX
XXX XXX 1.90 XXX XXX XXX

1.28 0.63 4.20 1.08 1.47 2.67

1.80 2.01 1.89 2.21 2.34 2.20
0.64 0.79 0.69 0.66 0.75 0.63

10.46 8.83 14.00 9.16 11.60 9.73
Runoff Coefficient

Time to Peak (mins)

55
56

Runoff 
Begins(minutes)

Peak Runoff (gpm)

51
52
53
54

47
48
49
50

43
44
45
46

40
40
41
42

36
37
38
39

32
33
34
35

28
29
30
31

24
25
26
27

Test No.
Surface 

23
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APPENDIX F 

COMPARISON OF DIFFERENT TIME OF CONCENTRATION METHODS 

WITH THE OBSERVED RESULTS FOR BARE CLAY PLOTS 

BC02 BC02 BC02 BC02 BC03 BC03 BC03 BC03 BC03 BC03
4 5 6 7 1 2 3 4 5 6
30 30 30 30 30 30 30 30 30 30

0.0048 0.0048 0.0048 0.0048 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024
0.144 0.144 0.144 0.144 0.072 0.072 0.072 0.072 0.072 0.072
1.98 2.11 3.35 2.27 1.7 1.49 1.63 1.61 1.56 1.62

0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012

4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5
89 89 89 89 89 89 89 89 89 89

0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
0.48 0.48 0.48 0.48 0.24 0.24 0.24 0.24 0.24 0.24

0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017

50 50 50 50 50 50 50 50 50 50

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24

0.74 0.74 0.74 0.74 0.98 0.98 0.98 0.98 0.98 0.98
8.81 8.49 6.53 8.13 12.15 13.16 12.47 12.56 12.80 12.51
23.30 22.44 17.26 21.50 32.15 34.82 32.98 33.22 33.87 33.10

17.11 16.40 12.05 15.62 21.27 23.22 21.87 22.05 22.52 21.96

0.84 0.84 0.84 0.84 1.09 1.09 1.09 1.09 1.09 1.09
7.55 7.55 7.55 7.55 9.52 9.52 9.52 9.52 9.52 9.52

0.03 0.03 0.02 0.03 0.04 0.04 0.04 0.04 0.04 0.04

2.38 2.38 2.38 2.38 3.37 3.37 3.37 3.37 3.37 3.37
4.81 4.81 4.81 4.81 5.66 5.66 5.66 5.66 5.66 5.66
1.46 1.43 1.20 1.39 1.92 2.02 1.95 1.96 1.99 1.96

27 20 12 15 45 37 34 36 71 61

CN (SCS)

Tatal fall (ft)
Rainfall intensity (iph)
Manning's 'n', (McCuen 
1998)
(inches)

Surface 
Run
Length (ft)
Slope (ft./ft.)

I (imp fraction)
slope %

Izzard's k (for tar and 
gravel)
D (min)
Kirby's n (Debo and 
Reese 2003)
Runoff Coeff.(Chow 
1964)
S=1000/CN-10
Model Time of Concentraion (minutes)
Hydraulic Estimates
Overton and Meadows
Izzard 
Izzard - Gupta

Izzard - Horton (laminar)

Empirical Estimates
Kiprich
FAA

Field

SCS
Kerby
Papadakis-Kazan
Observed

McCuen, Wong and 
Rawls

 



  106

APPENDIX G 

COMPARISON OF DIFFERENT TIME OF CONCENTRATION METHODS 

WITH THE OBSERVED RESULTS FOR GRASS/LAWN PLOTS 

G-left G-left G-left G-left G-left G-left G-left G-Right G-Right G-Right G-Right
1 2 3 4 5 6 7 5 6 7 8

30 30 30 30 30 30 30 30 30 30 30
0.0048 0.005 0.005 0.0048 0.0048 0.0048 0.0048 0.0024 0.0024 0.0024 0.0024
0.144 0.144 0.144 0.144 0.144 0.144 0.144 0.072 0.072 0.072 0.072
1.49 1.51 2.1 1.83 3.06 3.42 3.27 2.19 1.86 1.85 2.05

0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15

4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5
89 89 89 89 89 89 89 89 89 89 89

0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.24 0.24 0.24 0.24

0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046

50 50 50 50 50 50 50 50 50 50 50

0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35

1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24

5.58 5.58 5.58 5.58 5.58 5.58 5.58 7.36 7.36 7.36 7.36

27.24 27.01 21.87 23.87 17.26 16.11 16.56 26.83 29.77 29.87 27.98
91.44 90.66 73.39 80.13 57.91 54.05 55.57 90.04 99.91 100.26 93.90

48.01 47.58 38.19 41.86 29.71 27.59 28.43 41.69 46.48 46.65 43.56

0.84 0.84 0.84 0.84 0.84 0.84 0.84 1.09 1.09 1.09 1.09
9.44 9.44 9.44 9.44 9.44 9.44 9.44 11.90 11.90 11.90 11.90

0.04 0.04 0.03 0.03 0.02 0.02 0.02 0.03 0.04 0.04 0.03

2.38 2.38 2.38 2.38 2.38 2.38 2.38 3.37 3.37 3.37 3.37
9.20 9.20 9.20 9.20 9.20 9.20 9.20 10.82 10.82 10.82 10.82
6.06 6.03 5.32 5.61 4.61 4.42 4.50 6.49 6.91 6.92 6.66

56.74 61.22 42.96 46.26 29.77 35.78 28.68 63.80 72.88 55.45 48.67
34.00 54.00 34.00 38.00 32.00 32.00 24.00 40.00 57.00 34.00 39.00

Surface 
Run
Length (ft)
Slope (ft./ft.)
Tatal fall (ft)
Rainfall intensity (iph)
Manning's 'n' 
(McCuen 1998)
2Yr. 24 hr. rainfall 
CN (SCS)
I (imp fraction)
slope %
Izzard's k 'sod' (Chow 
1964)

Time of Concentration (minutes)
Hydraulic Estimates

D (min)
Kirby's n (Debo and 
Reese 2003)
Runoff coeff.(Chow  
et al. 1988)
S=1000/CN-10

Overton and 
Meadows
Izzard 
Izzard - Gupta

Model

Izzard - Horton 
(laminar)
Empirical Estimates
Kiprich
FAA

Other
Wong
Field

McCuen, Wong and 
Rawls
SCS
Kerby
Papadakis-Kazan
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APPENDIX H 

COMPARISON OF DIFFERENT TIME OF CONCENTRATION METHODS 

WITH THE OBSERVED RESULTS FOR PASTURE PLOTS 

P-Left P-Left P-Left P-Left P-Left P-Left P-Right P-Right P-Right P-Right P-Right P-Right
2 3 4 5 6 7 1 4 5 56 7 8

30 30 30 30 30 30 30 30 30 30 30 30
0.0048 0.0048 0.0048 0.0048 0.0048 0.0048 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024

0.14 0.14 0.14 0.14 0.14 0.14 0.07 0.07 0.07 0.07 0.07 0.07
1.91 1.30 2.94 1.99 1.59 1.66 2.12 2.57 2.07 1.63 1.73 1.52

0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41

4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50
89 89 89 89 89 89 89 89 89 89 89 89

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.48 0.48 0.48 0.48 0.48 0.48 0.24 0.24 0.24 0.24 0.24 0.24

0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06

50 50 50 50 50 50 50 50 50 50 50 50

0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40

0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39

1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24

12.48 12.48 12.48 12.48 12.48 12.48 16.46 16.46 16.46 16.46 16.46 16.46

30.10 38.63 22.84 29.32 33.89 32.96 35.46 31.35 36.01 42.02 40.43 43.96
94.00 120.65 71.33 91.55 105.84 102.92 110.74 97.90 112.45 131.22 126.25 137.30

56.88 73.51 42.67 55.35 64.28 62.46 59.56 52.39 60.51 70.97 68.20 74.35

0.84 0.84 0.84 0.84 0.84 0.84 1.09 1.09 1.09 1.09 1.09 1.09
8.94 8.94 8.94 8.94 8.94 8.94 11.26 11.26 11.26 11.26 11.26 11.26

0.03 0.04 0.02 0.03 0.04 0.03 0.03 0.03 0.03 0.04 0.04 0.04

2.38 2.38 2.38 2.38 2.38 2.38 3.37 3.37 3.37 3.37 3.37 3.37
22.58 22.58 22.58 22.58 22.58 22.58 31.93 31.93 31.93 31.93 31.93 31.93
9.20 9.20 9.20 9.20 9.20 9.20 10.82 10.82 10.82 10.82 10.82 10.82
9.31 10.77 7.90 9.16 9.98 9.82 11.09 10.31 11.19 12.25 11.98 12.58

50.00 63.00 39.00 49.00 91.00 60.00 95.00 46.00 44.00 51.00 61.00 47.00

Surface 
Run
Length (ft)
Slope (ft./ft.)
Tatal fall (ft)
Rainfall intensity 
Manning's 'n' 
(McCuen 1998)
2Yr. 24 hr. rainfall 
CN (SCS)
I (imp fraction)
slope %
Izzard's k (Chow, VT 
1964)
D (min)
Kirby's n (Debo and 
Reese 2003)
Runoff coeff.(Chow 
et al. 1988)
S=1000/CN-10
Model Time of Concentration (minutes)
Hydraulic 
Overton and 
Meadows
Izzard 
Izzard - Gupta
Izzard - Horton 
(laminar)
Empirical Estimates
Kiprich
FAA

Papadakis-Kazan
Observed
Field Lab.

McCuen, Wong and 
Rawls
SCS
Putnam (lag time)
Kerby
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APPENDIX I 

COMPARISON OF DIFFERENT TIME OF CONCENTRATION METHODS 

WITH THE OBSERVED RESULTS FOR CONCRETE AND ASPHALT PLOTS  
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APPENDIX J 

CALIBRATION OF THE OBSERVED INFILTRATION FOR BARE CLAY 

SURFACE 

7/30/2003
Bareclay Variables -
21.1% Ksat (cm/hr)
26.97% Si (cm)
5 cm. delta Theta (%)
24 cm.

Time Reading Time
Observed 
Infiltration 

rate

Pred. 
Infiltration 

rate

Predicted 
comulative 

infiltration F(t)

Predicted 

Time

Square 

Difference
Minutes cm Hrs. cm\hr. cm\hr. cm Hrs.

0 17.5 0.000
2 18.9 0.033 1.823 1.822 0.119 0.033 0.000
6 20.7 0.100 1.172 1.048 0.210 0.101 0.015
12 22.4 0.200 0.738 0.748 0.296 0.200 0.000
16 23.3 0.267 0.677 0.650 0.342 0.266 0.001
20 24.1 0.333 0.553 0.582 0.384 0.334 0.001
26 25.1 0.433 0.469 0.512 0.438 0.434 0.002
36 26.5 0.600 0.365 0.438 0.516 0.599 0.005
46 27.7 0.767 0.313 0.389 0.586 0.767 0.006
56 28.6 0.933 0.234 0.354 0.648 0.934 0.014
76 30.4 1.267 0.234 0.306 0.757 1.267 0.005
96 32.1 1.600 0.221 0.274 0.853 1.600 0.003
116 33.5 1.933 0.182 0.251 0.940 1.934 0.005
136 34.8 2.267 0.169 0.233 1.021 2.267 0.004
156 36.1 2.600 0.171 0.218 1.096 2.600 0.002
176 37.4 2.933 0.161 0.206 1.167 2.933 0.002
206 39.2 3.433 0.161 0.192 1.266 3.433 0.001
236 41.0 3.933 0.152 0.180 1.359 3.933 0.001
266 42.7 4.433 0.152 0.171 1.446 4.433 0.000
296 44.4 4.933 0.152 0.162 1.530 4.933 0.000
326 46.2 5.433 0.152 0.156 1.609 5.433 0.000

0.068

Diameter of the Tension Disc

Date Green Ampt Parameters
Surface
Initial Moisture-

Sum of the Square difference of observed and predicted infiltration rates. =

Values
0.0219
35.00
0.2810

Final Moisture-
Diameter of the Water Tower
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APPENDIX K 

CALIBRATION OF THE OBSERVED INFILTRATION FOR PASTURE PLOT 

7/30/2003
Pasture Variables -
32.5% Ksat (cm/hr)
34.15% Si (cm)
5 cm. delta Theta (%)

24 cm.

Time Reading Time

Observed 

Infiltration 

rate

Pred. 

Infiltration 

rate

Predicted 

comulative 

infiltration F(t)

Predicted 

Time

Square 

Difference
Minutes cm Hrs. cm\hr. cm\hr. cm Hrs.

1 5.9 0.017
2 8.8 0.033 7.552 1.790 0.117 0.033 33.199
5 15.1 0.083 5.469 1.157 0.187 0.083 18.589

10 20.3 0.167 2.708 0.838 0.268 0.167 3.497
15 21.9 0.250 1.771 0.697 0.331 0.250 1.153
20 22.8 0.333 0.651 0.613 0.386 0.333 0.001
25 23.5 0.417 0.417 0.556 0.434 0.417 0.019
30 24.1 0.500 0.313 0.513 0.479 0.500 0.040
35 24.6 0.583 0.260 0.481 0.520 0.583 0.048
40 25 0.667 0.208 0.454 0.559 0.667 0.060
50 25.7 0.833 0.182 0.414 0.631 0.833 0.053
60 26.2 1.000 0.130 0.384 0.698 1.000 0.064
70 26.8 1.167 0.156 0.361 0.760 1.167 0.042
80 27.4 1.333 0.156 0.342 0.818 1.333 0.034
90 27.8 1.500 0.104 0.327 0.874 1.500 0.049

100 28.2 1.667 0.104 0.314 0.927 1.667 0.044
120 29 2.000 0.104 0.293 1.028 2.000 0.035
140 29.8 2.333 0.104 0.276 1.123 2.333 0.030

56.930Sum of the Square difference of observed and predicted infiltration rates. =

Diameter of the Water Tower 0.150
Diameter of the Tension Disc

Initial Moisture- 0.100
Final Moisture- 13.196

Date Green Ampt Parameters
Surface Optimized Value
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APPENDIX L 

MICROTOPOGRAPHY DATASET FOR THE BARECLAY (BC02) PLOT 
 

360 99.38 99.65 99.74 99.64 99.54 99.75 99.64 99.39 99.35 99.36 99.24
354 99.42 99.52 99.52 99.56 99.47 99.53 99.43 99.55 99.1 99.23 99.18
348 99.38 99.58 99.62 99.67 99.56 99.59 99.48 99.11 99.15 99.16 99.25
342 99.41 99.78 99.71 99.77 99.54 99.48 99.22 99.1 99.14 99.28 99.27
336 99.54 99.77 99.79 99.7 99.45 99.39 99.07 99.05 99.13 99.36 99.26
330 99.71 99.78 99.77 99.81 99.49 99.35 99.23 99.03 99.22 99.42 99.47
324 99.76 99.77 99.78 99.9 99.6 99.46 99.21 99.1 99.14 99.34 99.41
318 99.61 99.61 99.67 99.75 99.68 99.87 99.1 98.83 99.23 99.34 99.51
312 99.5 99.38 99.49 99.61 99.56 99.65 99.43 98.94 98.91 99.35 99.64
306 99.76 99.8 99.79 99.75 100.1 99.86 99.69 99.06 99.46 99.37 100.03
300 100.11 100.06 99.46 100.03 99.97 99.85 99.36 99.22 98.91 99.79 99.98
294 100.3 99.84 99.78 99.66 99.82 99.59 99.67 99.01 98.96 99.42 99.9
288 100.24 99.67 99.51 99.65 99.69 99.11 99.45 98.57 99.05 99.73 99.48
282 100.01 99.6 99.79 99.85 99.85 99.61 99.35 98.93 99.41 99.55 99.5
276 99.94 99.66 99.78 99.85 99.6 99.34 99.16 98.92 99.57 99.54 99.5
270 99.8 99.6 99.71 99.77 99.84 99.43 99.28 99.03 99.01 99.51 99.69
264 99.38 99.36 99.51 99.52 99.57 99.38 99.14 99.13 99.16 99.27 99.34
258 99.34 99.29 99.4 99.26 99.18 99.12 98.94 99.15 99.07 99.25 99.06
252 99.16 99.13 98.96 99.08 99.08 98.94 98.79 98.92 98.89 99.13 99.2
246 98.96 98.85 99.12 99.05 98.93 98.91 98.82 98.96 99 99.19 99.21
240 99.02 98.85 98.2 99.16 99.05 99 98.94 99.03 99.11 99.2 99.34
234 99.43 99.26 98.54 99.56 99.19 99.07 99.13 99.15 99.08 99.15 99.28
228 99.51 98.47 98.07 98.45 99.01 99.13 99.16 99.23 99.04 99.17 99.26
222 99.72 98.97 98.5 99.01 98.54 99.07 99.14 99.13 98.98 99.23 99.1
216 99.61 98.64 98.63 98.85 98.79 99.16 99.11 99.26 99.03 99.18 99.1
210 99.57 99.42 98.81 98.95 98.18 99.01 99.04 99.26 99.18 99.19 99.27
204 99.54 99.14 98.72 98.74 99.07 98.91 98.81 99.05 98.88 99.2 99.21
198 99.22 98.67 98.9 97.9 98.58 98.65 98.68 98.78 98.86 99.07 99.01
192 99.19 98.95 98.84 98.72 98.46 98.66 98.7 98.61 98.68 98.94 98.97
186 99.07 99 98.76 98.66 98.43 98.62 98.58 98.62 98.7 98.76 98.87
180 99.02 98.94 98.9 98.85 98.48 98.36 98.37 98.43 98.65 98.91 98.69

Y(
in

)=

X(in) =
63 72

Microtopography Measurements for Bareclay02 Plot. (RL = 100.00 inches)

0 7 14 21 28 35 42 49 56
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180 99.02 98.94 98.9 98.85 98.48 98.36 98.37 98.43 98.65 98.91 98.69

174 98.98 99.05 98.88 98.78 98.64 98.3 98.34 98.41 98.5 98.47 98.51

168 98.68 98.66 98.7 98.56 98.53 98.14 98.1 98.24 98.34 98.36 98.43

162 98.44 98.52 98.44 98.2 97.91 97.9 97.84 98.07 98.52 98.18 98.33

156 98.21 98.22 98.17 97.92 97.66 97.88 97.84 98.01 98.22 98.29 98.41

150 98.06 98.06 98.1 97.93 97.66 97.82 97.95 98.03 98.25 98.43 98.42

144 98.11 98.04 97.94 97.77 97.78 97.92 97.98 98 98.14 98.26 98.31

138 98.04 98.11 98.02 97.88 97.95 97.74 97.92 97.96 98.14 98.1 98.01

132 98 98.2 98.13 97.9 97.9 97.74 97.99 98 98.2 98.07 98.1

126 98.18 98.21 98.17 98.26 98.1 97.94 98 98.18 98.73 98.25 98.08

120 98.14 98.54 98.32 98.37 98.35 98.17 98.12 98.3 98.35 98.14 98.11

114 98.56 98.57 98.53 98.39 98.61 98.22 98.24 98.49 98.6 98.24 98.08

108 98.71 98.6 98.71 98.53 98.48 98.23 98.24 98.54 98.57 98.16 97.98

102 98.73 98.61 98.64 98.52 98.3 98.24 98.18 98.38 98.37 98.13 98.16

96 98.74 98.64 98.66 98.63 98.4 98.29 98.35 98.45 98.32 98.19 98.14

90 98.61 98.61 98.53 98.56 98.4 98.28 98.32 98.34 98.38 98.08 98.25

84 98.62 98.47 98.45 98.56 98.21 98.09 97.95 98.13 98.18 98.03 97.99

78 98.2 98.42 98.17 98.18 98.13 98 98.14 97.96 97.92 97.85 97.44

72 98.14 98.03 97.76 98.19 98.09 97.91 98.1 97.93 97.9 97.54 97.41

66 98.07 98.01 98.02 98.21 98.08 97.84 98.05 98.04 97.97 97.64 97.45

60 98.04 98.05 98.05 98.2 98.04 97.89 97.96 98.19 98.01 98.07 97.7

54 98.25 98.03 97.96 98.12 97.91 97.87 98.08 98.06 98.02 97.91 97.7

48 98.48 98.2 97.97 98.13 98.03 97.76 98.03 97.99 98.1 97.84 97.82

42 98.17 98.11 98.15 98.25 98.06 97.84 97.96 97.98 98.09 97.8 97.88

36 98.13 98.25 98.37 98.36 98.01 98.18 98.07 97.95 97.97 97.75 97.89

30 98.22 98.19 98.3 98.15 98.05 98.17 98.15 98.04 98.15 98.12 98.2

24 98.06 97.96 97.92 98.1 98.17 98.1 98.17 97.81 98.11 98.25 98.23

18 98.05 97.69 97.99 98.28 98.21 97.98 98.09 98.66 98.25 98.37 98.41

12 98.22 97.5 98.1 97.95 98.19 98.01 97.68 98.11 97.69 97.75 98.3

6 98.08 97.85 97.51 97.49 97.82 98.18 97.56 97.3 98.39 98.16 98.58

0 98.14 97.53 97.79 97.56 97.17 97.65 97.45 98.11 97.99 98.36 98.53

Y(
in

)=

X(in) =
63 72

Continued

 Microtopography Measurements for Bareclay02 Plot. (RL = 100.00 inches)
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APPENDIX M 

MICROTOPOGRAPHY DATASET FOR THE BARECLAY03 PLOT 
 

360 100.93 100.59 100.6 100.76 100.6 100.7 100.5 100.5 100.7 100.7 100.53
354 100.56 100.52 100.5 100.46 100.4 100.4 100.3 100.2 100.2 100.3 100.29
348 100.65 100.61 100.6 100.53 100.7 100.5 100.4 100.2 100.2 100.2 100.44
342 100.8 100.82 100.6 100.6 100.6 100.4 100.3 100.3 100.3 100.2 100.22
336 100.88 100.71 100.7 100.56 100.6 100.5 100.4 100.3 100.2 100.3 100.19
330 101.03 100.86 100.7 100.6 100.6 100.5 100.4 100.3 100.3 100.3 100.32
324 100.93 100.81 100.8 100.64 100.6 100.6 100.5 100.3 100.4 100.4 100.28
318 100.91 100.8 100.8 100.63 100.7 100.7 100.5 100.3 100.3 100.3 100.43
312 100.78 100.73 100.8 100.59 100.6 100.7 100.4 100.4 100.3 100.4 100.9
306 101.14 100.77 100.8 100.58 100.6 100.6 100.5 100.4 100.3 100.5 100.86
300 101.16 101 100.8 100.66 100.6 100.6 100.5 100.5 100.4 100.4 100.8
294 101.09 100.78 100.7 100.55 100.5 100.5 100.5 100.3 100.3 100.4 100.58
288 100.96 100.74 100.7 100.52 100.5 100.4 100.4 100.2 100.4 100.4 100.75
282 101.05 100.71 100.7 100.41 100.5 100.4 100.3 100.1 100.2 100.3 100.61
276 101.1 100.74 100.7 100.44 100.5 100.4 100.2 100.1 100.1 100.3 100.6
270 100.92 100.55 100.4 100.3 100.3 100.2 100 100.2 100.2 100.2 100.64
264 100.75 100.49 100.3 100.18 100.2 100.2 99.99 100 100.1 100.2 100.42
258 100.53 100.45 100.2 100.06 100 99.98 99.91 99.85 99.81 100.1 100.14
252 100.46 100.11 100.2 100.02 100 100 99.87 99.9 99.96 99.98 100.25
246 100.28 100.07 100 99.99 99.93 99.91 99.89 99.93 99.87 100.1 100.38
240 100.33 100.04 100.1 100.03 99.87 99.86 99.9 99.91 99.96 100.1 100.34
234 100.6 100.11 100 99.9 99.83 99.77 99.9 99.94 99.98 99.97 100.21
228 100.49 100.17 100.1 99.76 99.7 99.75 99.97 99.91 99.98 100.3 100.27
222 100.22 100.19 100.2 99.69 99.66 99.78 100.1 99.99 99.95 99.96 100.15
216 100.36 100.21 100.4 99.65 99.73 99.79 100.1 99.96 99.93 100 100.32
210 100.39 100.22 100.4 99.62 99.61 99.72 99.88 99.99 99.94 99.87 100.12
204 100.19 100.25 100.4 99.58 99.65 99.72 99.87 99.87 99.81 99.72 100.1
198 100.21 100.23 100.4 99.56 99.6 99.71 99.76 99.75 99.64 99.65 100.05
192 100.31 100.21 100.4 99.54 99.57 99.65 99.67 99.61 99.55 99.53 100.22
186 100.25 100.13 100.4 99.54 99.51 99.63 99.61 99.57 99.62 99.48 100.09
180 100 100.03 100.4 99.5 99.48 99.61 99.59 99.53 99.53 99.55 100.29

Y(
in

)=

X(in) =
63 72

Microtopography Measurements for Bareclay03 Plot. (RL = 100.00 inches)
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174 99.97 99.64 99.63 99.52 99.54 99.54 99.55 99.5 99.6 99.57 99.99
168 99.9 99.53 99.52 99.43 99.54 99.51 99.48 99.51 99.55 99.6 99.98
162 99.62 99.45 99.47 99.4 99.5 99.5 99.51 99.54 99.5 99.54 99.68
156 99.57 99.39 99.41 99.4 99.46 99.56 99.47 99.36 99.51 99.56 99.7
150 99.76 99.28 99.35 99.43 99.39 99.53 99.43 99.51 99.41 99.4 99.67
144 99.87 99.33 99.36 99.36 99.36 99.47 99.38 99.41 99.42 99.44 99.9
138 99.59 99.4 99.36 99.31 99.34 99.45 99.42 99.43 99.42 99.52 99.63
132 99.84 99.43 99.4 99.38 99.36 99.41 99.4 99.45 99.38 99.53 99.5
126 99.59 99.49 99.46 99.53 99.39 99.39 99.34 99.42 99.45 99.52 99.55
120 99.82 99.59 99.5 99.64 99.44 99.39 99.35 99.42 99.47 99.75 99.5
114 99.82 99.72 99.57 99.45 99.48 99.37 99.35 99.42 99.47 99.39 99.6
108 100 99.63 99.63 99.38 99.46 99.44 99.33 99.35 99.4 99.44 99.77
102 100.26 99.5 99.46 99.56 99.46 99.44 99.38 99.34 99.52 99.47 99.81
96 99.89 99.67 99.37 99.7 99.53 99.42 99.37 99.34 99.44 99.49 99.77
90 99.88 99.61 99.36 99.57 99.5 99.41 99.38 99.33 99.3 99.34 99.67
84 100.05 99.65 99.34 99.5 99.46 99.4 99.37 99.3 99.28 99.37 99.28
78 99.96 99.58 99.3 99.49 99.38 99.33 99.35 99.22 99.23 99.36 99.18
72 99.87 99.91 99.37 99.44 99.45 99.27 99.35 99.25 99.23 99.33 99.2
66 99.65 99.56 99.3 99.48 99.36 99.25 99.3 99.4 99.21 99.27 99.17
60 99.99 99.41 99.24 99.38 99.28 99.23 99.28 99.3 99.25 99.24 99.21
54 99.87 99.38 99.25 99.35 99.24 99.17 99.23 99.26 99.22 99.2 99.3
48 100 99.56 99.22 99.35 99.17 99.12 99.35 99.2 99.17 99.17 99.32
42 99.95 99.32 99.15 99.27 99.12 99.05 99.22 99.12 99.1 99.08 99.28
36 99.72 99.22 99.08 99.27 99.11 99.03 99.02 99.03 99.14 99.19 99.33
30 99.91 99.17 98.98 99.15 99.28 99.01 98.95 98.87 99.06 99.03 99.93
24 99.78 99.09 98.9 99.1 99.17 99.01 98.82 98.79 98.86 98.98 99.43
18 100.21 98.99 98.73 98.92 99.11 99.01 98.63 98.83 98.87 99.08 99.79
12 99.61 98.91 98.61 98.88 98.69 99.01 98.48 98.51 99.14 99.09 100.14
6 99.32 98.78 98.39 98.59 98.6 98.44 98.42 98.54 98.95 99.06 100.17
0 99.28 98.59 98.28 98.59 98.41 98.22 98.21 98.65 99 99.17 100

Y(
in

)=

X(in) =
49 56

Continued

63 72

Microtopography Measurements for Bareclay03 Plot. (RL = 100.00 inches)
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APPENDIX N 

MICROTOPOGRAPHY DATASET FOR GRASS-LEFT PLOT 
 

360 100.29 100.26 101.1 100.76 100.5 100.5 100.1 100.1 100.1 100.8 100.69
354 100.5 100.31 100.3 99.64 99.85 100 99.78 100.1 100.2 100 100.58
348 99.8 99.96 100 99.56 99.92 100.2 99.64 99.85 100.1 99.78 100.21
342 99.69 99.93 99.77 99.72 99.97 99.78 99.97 99.87 100.4 99.8 100.4
336 99.71 99.75 99.81 99.74 99.87 99.99 99.9 99.83 100.2 99.87 100.15
330 99.52 99.27 99.6 99.51 99.48 99.91 99.58 99.73 100 99.83 100.13
324 100.03 100.12 99.42 99.47 99.6 99.87 99.66 99.8 99.93 100 100.05
318 100.02 100.35 99.68 99.88 99.96 100 99.94 100.1 99.81 99.94 99.93
312 100.07 100.42 99.6 99.54 99.47 99.92 99.69 99.83 99.58 99.76 100.22
306 100.23 100.29 99.38 99.26 99.51 99.57 99.31 99.74 99.6 99.79 100.03
300 99.63 99.65 99.49 99.43 99.47 99.78 99.42 99.65 99.8 99.58 100.06
294 100 99.56 99.64 99.61 99.34 100.2 99.45 99.38 99.66 99.65 100.09
288 100.51 99.5 99.74 99.48 99.45 99.68 99.43 99.83 99.63 99.96 100.54
282 99.67 99.48 99.75 99.52 99.54 100.2 99.71 99.88 99.64 99.78 100.43
276 99.5 99.53 100 99.49 99.54 99.78 99.65 99.87 99.63 99.48 100.08
270 99.71 99.38 99.45 99.88 99.64 100.1 99.51 99.8 99.76 99.51 100.42
264 99.83 100.06 99.96 99.82 99.86 99.97 99.56 99.74 99.69 99.51 100.33
258 100.12 99.84 99.91 99.68 99.82 100.2 99.64 99.73 99.65 99.8 100.27
252 99.81 99.95 100 99.92 99.72 99.65 99.73 99.74 99.68 99.59 100.21
246 99.62 100.06 100.1 100.21 99.68 99.88 99.52 99.69 99.51 99.5 100.24
240 99.65 99.82 99.49 99.75 99.69 99.7 99.48 99.54 99.66 99.74 100.08
234 99.83 100.33 99.89 99.69 99.67 99.99 99.46 99.4 99.72 99.56 100.08
228 99.65 100.63 100 99.8 99.49 99.95 99.45 99.44 99.69 99.49 99.72
222 100.07 100.41 99.97 99.71 99.71 99.78 99.61 99.45 99.66 99.59 99.99
216 99.82 100.61 100.2 99.72 99.49 99.66 99.63 99.41 99.51 99.38 99.78
210 99.83 100.64 99.75 99.84 99.52 100 99.45 99.56 99.55 99.6 99.89
204 100.09 100.46 99.89 99.81 99.3 99.71 99.36 99.1 99.29 99.3 99.29
198 100.18 100.66 99.91 99.73 98.91 99.46 99.23 99.32 99.31 99.04 99.33
192 99.91 100.01 99.53 99.81 99.35 99.53 99.13 98.86 99.03 99.08 99.23
186 99.76 99.47 99.36 99.47 99.28 99.34 99.4 99.06 99.23 98.94 99.51
180 99.97 99.4 99.05 99.5 99.04 99.31 98.88 98.78 99.17 99.2 99.31

Y(
in

)=

X(in) =
49 56 63 72

Microtopography Measurements for Grass-Left Plot. (RL = 100.00 inches)
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180 99.97 99.4 99.05 99.5 99.04 99.31 98.88 98.78 99.17 99.2 99.31
174 99.39 99.18 99.15 98.9 99.03 99.23 98.93 98.89 98.92 99.07 98.67
168 99.42 99.06 99.24 98.94 98.76 99.04 98.97 99.18 99.33 99.27 99.46
162 99.27 99.23 99.14 98.82 98.75 98.85 98.83 99.23 99.11 99.2 99.55
156 99.29 99 98.77 98.92 98.83 99.19 98.9 99 98.97 98.9 99.36
150 99.24 98.81 99.1 98.9 98.93 98.92 98.78 98.93 99.11 98.7 99.29
144 99.01 98.81 98.89 98.57 98.86 98.86 98.94 98.67 98.94 98.81 99.58
138 99.1 98.97 98.56 98.45 98.6 98.64 98.78 98.85 99.06 98.68 99.58
132 98.72 98.86 98.99 98.35 98.66 99 98.56 98.68 99.07 98.58 99.15
126 98.79 98.67 98.7 98.61 98.64 98.63 98.69 98.67 98.79 98.87 99.1
120 98.51 99.06 98.72 98.53 98.5 98.88 98.46 98.56 98.73 98.81 98.91
114 99.15 99.01 99.5 98.54 98.53 98.88 98.73 98.93 99.04 99.13 98.98
108 98.98 99.25 99.24 98.71 98.73 98.8 98.88 98.79 99.2 98.72 99.13
102 99.16 99.27 99.4 98.92 98.91 98.71 98.96 98.91 99.16 98.96 99.04
96 98.77 98.95 99.23 98.96 98.74 98.97 98.79 99.11 98.79 98.62 98.97
90 98.67 99.08 99.05 98.79 98.53 99.13 98.75 99.04 99.16 98.44 98.72
84 98.91 98.73 98.9 98.65 98.26 98.71 98.53 98.64 98.78 98.28 98.88
78 99.01 98.7 98.46 98.38 98.71 98.46 98.42 98.26 98.58 98.15 98.92
72 99 99.13 99.04 98.57 98.77 98.23 98.2 98.29 98.5 98.02 98.86
66 98.62 98.78 98.99 98.02 98.62 98.01 98.43 98.17 98.19 97.82 98.36
60 98.68 98.79 98.46 98.31 98.28 98.26 98.15 98.61 98.25 98.09 98.63
54 98.73 98.67 98.48 98.35 98.21 98.36 98.25 98.36 98.77 98.17 99.03
48 98.51 98.85 98.85 98.06 98.58 98.36 98.08 98.55 98.48 98.3 98.42
42 98.62 98.32 98.69 98.36 98.45 98.82 98.42 98.53 98.6 98.15 98.15
36 98.12 99.1 98.32 98.12 98.14 98.8 98.37 98.34 98.73 98.23 98.86
30 98.69 98.79 98.56 98.23 98.37 98.4 98.29 98.39 98.86 98.49 99.25
24 98.99 98.63 98.61 98.02 98.22 98.5 98.62 98.63 98.73 98.42 99.06
18 98.87 98.68 98.67 98.18 98.04 98.55 98.65 98.85 99.19 98.3 98.9
12 99.27 98.99 98.62 98.21 98.46 98.47 98.6 98.59 98.58 98.41 98.76
6 99.12 98.73 98.4 98.43 98.41 98.51 98.13 98.3 98.44 98.16 98.41
0 98.85 98.52 98.41 98.07 98.34 98.39 98.28 98.35 98.24 98.1 98.99

Y(
in

)=

X(in) =
35 42 49 56

Continued
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Microtopography Measurements for Grass-Left Plot. (RL = 100.00 inches)
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APPENDIX O 

MICROTOPOGRAPHY DATASET FOR GRASS RIGHT PLOT 
 

360 101.25 100.35 100.8 100.02 100.3 100.1 100.3 100.2 100.3 100.6 100.89
354 101.31 100.32 99.51 99.49 99.08 99.48 99.49 99.75 100.3 100.4 100.88
348 101.74 100.23 100.3 100.05 100 99.87 99.8 100.5 100.7 100.8 100.68
342 102.24 100.44 100.3 100.42 99.84 99.54 100.1 100.7 100.7 100.9 101.49
336 101.49 100.6 100.6 100.4 100.2 100.4 100.2 100.4 100.3 100.6 101.05
330 100.87 100.43 100.8 100.5 100.6 100.7 100.5 100.7 100.6 100.7 100.68
324 100.79 100.28 100.5 100.83 100.6 100.8 100.6 100.8 101.3 100.6 100.95
318 99.87 99.93 100.1 100.65 100.6 100.4 100.8 100.6 101 100.8 101.1
312 100.62 99.91 100.1 100.25 100.4 100.8 100.5 100.6 100.8 101 101.62
306 101.12 99.91 99.82 100.12 100.4 100.5 100.1 100.4 101 101 101.57
300 101.4 100.3 100.2 100.1 100.4 100.4 100.6 100.1 100.8 100.7 101.27
294 101.58 100.83 100.2 100.35 100.4 100.3 100.3 100.4 100.9 100.5 101.13
288 102.79 100.45 100.5 100.39 100.1 100.1 100.5 100.8 100.6 100.7 101.26
282 101.33 100.54 100.4 100.13 100.4 100.2 100.5 100.5 100.6 100.8 100.74
276 101.09 100.24 100.2 100.04 100.5 100.4 100.5 100.4 100.5 100.6 101.07
270 100.89 100.33 100.2 100.22 100.5 100.3 100.4 100.5 100.6 100.7 100.85
264 101.11 100.51 100.5 100.13 99.79 100.3 100.7 100.7 100.3 100.5 100.86
258 100.77 100.18 99.99 99.83 99.74 100.1 100.3 100.6 100 100.5 100.59
252 100.64 99.97 99.6 99.48 99.62 99.76 100.2 100.2 100.5 100.5 100.66
246 100.49 100.33 99.72 100.15 99.97 99.86 100.3 100.4 100.3 100.2 100.83
240 100.67 99.69 99.93 100.24 99.75 99.65 100.2 100.4 100.1 100.1 100.23
234 100.47 99.85 99.98 99.83 100.1 99.78 100.2 100.2 100.4 100.3 100.53
228 100.68 99.87 99.97 99.94 99.85 100.4 100.1 100 100.3 100.4 100.7
222 100.76 99.87 100.2 100.21 100.3 99.99 100 99.96 100.3 100.5 100.86
216 100.67 99.82 99.84 99.87 99.74 99.69 99.8 99.73 99.78 100.1 100.79
210 100.13 99.46 99.43 99.61 99.77 99.45 99.5 99.34 99.48 100.2 100.85
204 99.87 99.32 99.28 99.34 99.68 99.8 99.75 99.6 99.76 100.1 100.54
198 99.93 99.29 99.08 99.17 99.39 99.24 99.44 99.68 99.5 100.1 100.15
192 99.35 99.07 99.43 99.02 99.27 99.26 99.63 99.67 99.47 100.2 100.45
186 99.62 99.47 99.52 99.37 99.43 99.27 99.09 99.6 99.6 100.1 100.36
180 99.85 99.46 99.09 99.53 99.56 99.31 99.65 99.74 100.2 100.1 100.24

Y(
in

)=

X(in) =
63 72

Microtopography Measurements for Grass-Right Plot. (RL = 100.00 inches)
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180 99.85 99.46 99.09 99.53 99.56 99.31 99.65 99.74 100.2 100.1 100.24
174 100.01 99.43 99.5 99.4 99.34 99.57 99.64 99.95 99.83 99.8 101.15
168 100.1 99.65 99.9 99.32 99.48 99.56 100.1 100.1 99.87 100.2 100.39
162 100.01 100.06 99.85 99.7 99.68 99.61 99.87 99.79 99.66 99.98 100.44
156 100.04 99.94 100 99.58 99.64 99.5 99.68 99.79 100.3 100.1 100.55
150 100.51 99.87 99.99 99.76 99.73 99.71 99.87 100.1 99.88 100.3 100.83
144 100.65 99.86 99.99 99.87 99.85 100.1 99.78 99.69 99.52 99.9 100.62
138 100.69 99.7 99.9 100.21 100.1 100 99.87 99.84 100 99.9 100.67
132 101.24 99.99 100.4 100.19 100.2 100.2 100.1 100.2 100.3 100.5 100.75
126 100.92 99.94 100.1 100.37 100.2 99.91 100.1 99.91 100.2 100.3 100.6
120 101 100.33 100.4 100.15 100 100.4 100 99.96 99.98 99.84 100.63
114 100.5 99.89 99.91 100.03 99.91 100.2 100.2 100.1 99.86 100.4 100.78
108 100.56 99.8 99.5 99.83 99.84 100.1 100.1 99.75 99.85 100.5 100.98
102 99.97 99.43 99.72 99.96 99.72 99.72 99.9 99.93 99.89 100.5 100.9
96 99.89 99.05 99.45 99.49 99.11 99.32 99.64 100.1 100 100.3 101.13
90 99.76 99.27 99.46 99.3 99.5 99.17 99.24 99.65 99.56 100.1 100.53
84 99.38 99.62 99.77 99.31 99.33 99.17 99.38 99.27 99.49 99.52 100.48
78 99.82 98.9 99.35 99.24 99.42 98.9 99.55 100.3 99.44 99.78 100.49
72 99.62 98.93 99.08 99.19 99.13 99.22 99.37 99.95 99.65 99.79 100.45
66 99.2 99.08 98.95 99.21 99.37 99.17 99.51 99.68 99.48 99.53 100.09
60 100.02 98.95 98.96 99.23 99.56 99.38 99.47 99.97 100.1 99.89 99.96
54 99.57 98.95 99.43 99.24 99.51 99.57 99.85 99.82 99.87 99.91 100.19
48 99.32 99.2 99.17 99.39 99.67 99.56 99.85 100 100.1 99.48 99.51
42 100.06 99.56 99.69 100.12 99.63 100.2 99.65 100.2 99.67 99.76 99.84
36 99.74 99.39 99.98 99.72 99.84 99.49 99.85 99.97 99.7 99.79 100.03
30 99.15 98.88 99.46 99.84 99.66 99.88 99.92 99.91 99.48 99.78 99.85
24 99.56 99.01 99.12 100.25 99.89 100.1 99.51 99.64 99.55 99.49 99.87
18 99.99 99.11 99.09 99.32 99.54 100.2 99.56 99.44 99.52 99.4 99.47
12 99.33 98.81 99.12 99.51 99.67 99.65 99.34 99.24 99.84 99.34 99.14
6 99.1 98.65 98.74 99.38 99.36 99.45 99.1 98.58 99.59 99.43 99.21
0 98.17 97.85 97.64 98.1 98.42 98.61 98.48 98.4 98.38 98.47 98.95

Y(
in

)=

X(in) =
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Microtopography Measurements for Grass-Right Plot. (RL = 100.00 inches)
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APPENDIX P 

MICROTOPOGRAPHY DATASET FOR CONCRETE/ASPHALT PLOT 

360 100.23 100.29 100.3 100.14 100.1 100.2 100.1 100.1 100.1 100.1 99.99
354 100.13 100.2 100.3 100.1 100.1 100.1 100.1 100.3 100.1 100.1 100.01
348 100.12 100.16 100.2 100.08 100.1 100.1 100.1 100.2 100.2 100.1 100.09
342 100.1 100.19 100.2 100.04 100.1 100.1 100.1 100.2 100.2 100.1 100.04
336 100.02 100.08 100.2 100 100 100.1 100.1 100.1 100.1 100 100.02
330 100.03 100.11 100.1 99.96 100.1 100.1 100 100.1 100.1 100 100
324 99.92 100.01 100.1 99.94 99.97 99.98 99.99 100 100.1 99.99 99.97
318 99.86 100.05 100 99.91 99.91 99.95 99.97 100.1 100.2 99.94 99.92
312 99.83 99.91 99.98 99.84 99.88 99.88 99.91 99.89 100.1 99.9 99.87
306 99.74 99.89 99.96 99.77 99.81 99.82 99.84 99.97 99.98 99.84 99.82
300 99.75 99.88 99.89 99.71 99.76 99.78 99.8 99.93 99.96 99.81 99.79
294 99.78 99.89 99.92 99.75 99.76 99.81 99.89 99.99 99.93 99.82 99.86
288 99.92 99.96 100 99.82 99.78 99.81 99.84 99.91 99.91 99.82 99.81
282 99.69 99.85 99.92 99.71 99.74 99.75 99.75 99.81 99.87 99.77 99.78
276 99.61 99.78 99.84 99.64 99.67 99.71 99.71 99.81 99.86 99.73 99.74
270 99.54 99.69 99.81 99.56 99.63 99.65 99.71 99.73 99.97 99.72 99.77
264 99.51 99.64 99.75 99.56 99.61 99.65 99.71 99.88 99.85 99.69 99.73
258 99.48 99.62 99.77 99.53 99.56 99.62 99.63 99.76 99.78 99.67 99.67
252 99.43 99.6 99.73 99.48 99.54 99.58 99.58 99.72 99.73 99.64 99.63
246 99.41 99.55 99.77 99.44 99.52 99.57 99.54 99.78 99.7 99.61 99.59
240 99.4 99.53 99.67 99.44 99.5 99.55 99.53 99.64 99.67 99.59 99.56
234 99.36 99.48 99.66 99.41 99.47 99.52 99.49 99.69 99.65 99.55 99.52
228 99.36 99.45 99.57 99.38 99.44 99.5 99.48 99.6 99.6 99.52 99.48
222 99.33 99.46 99.64 99.38 99.42 99.46 99.46 99.58 99.56 99.48 99.45
216 99.28 99.41 99.54 99.35 99.38 99.41 99.43 99.49 99.61 99.43 99.45
210 99.27 99.38 99.47 99.33 99.37 99.39 99.39 99.47 99.48 99.39 99.38
204 99.25 99.33 99.42 99.27 99.34 99.36 99.33 99.4 99.45 99.34 99.38
198 99.23 99.28 99.38 99.25 99.31 99.31 99.32 99.36 99.4 99.29 99.28
192 99.2 99.25 99.31 99.23 99.26 99.28 99.26 99.33 99.33 99.24 99.23
186 99.17 99.21 99.27 99.21 99.21 99.24 99.23 99.26 99.29 99.2 99.19
180 99.3 99.21 99.21 99.23 99.19 99.17 99.18 99.19 99.19 99.18 99.11

Y(
in

)=

X(in) =
63 72

Microtopography Measurements for Concrete/Asphalt Plots. (RL = 100.00 inches)

0 7 14 21 28 35 42 49 56

 
 
 
 



  120

174 99.31 99.17 99.18 99.18 99.17 99.18 99.14 99.14 99.17 99.14 99.08
168 99.29 99.14 99.15 99.15 99.15 99.14 99.08 99.11 99.15 99.1 99.08
162 99.23 99.1 99.1 99.12 99.1 99.11 99.08 99.07 99.12 99.07 99.01
156 99.23 99.07 99.07 99.07 99.06 99.03 99.03 99.04 99.08 99.02 98.97
150 99.15 99.04 99.02 99.03 99.03 99 98.99 99 99.01 98.99 98.91
144 99.18 99.03 98.99 99.01 99.01 98.96 98.91 98.96 98.98 98.94 98.88
138 99.21 98.97 98.96 98.98 98.96 98.94 98.82 98.92 98.92 98.92 98.87
132 99.13 98.85 98.79 98.79 98.75 98.77 98.72 98.75 98.75 98.74 98.7
126 99.1 98.83 98.76 98.77 98.77 98.71 98.69 98.73 98.74 98.72 98.64
120 99.03 98.82 98.77 98.77 98.76 98.73 98.67 98.71 98.72 98.69 98.64
114 99.07 98.82 98.79 98.78 98.75 98.72 98.68 98.7 98.71 98.68 98.64
108 99.06 98.83 98.79 98.78 98.74 98.72 98.68 98.69 98.7 98.69 98.63
102 99.01 98.81 98.78 98.74 98.72 98.69 98.68 98.68 98.69 98.68 98.63
96 99.04 98.8 98.8 98.74 98.72 98.69 98.69 98.68 98.71 98.67 98.63
90 99.03 98.81 98.81 98.73 98.72 98.73 98.67 98.69 98.7 98.71 98.65
84 98.99 98.85 98.86 98.76 98.72 98.76 98.69 98.7 98.72 98.72 98.69
78 99.01 98.89 98.88 98.77 98.76 98.77 98.69 98.72 98.75 98.73 98.67
72 99.06 98.9 98.91 98.79 98.78 98.78 98.71 98.74 98.76 98.75 98.71
66 98.97 98.92 98.93 98.82 98.8 98.83 98.73 98.76 98.8 98.77 98.72
60 98.98 98.95 98.95 98.83 98.84 98.84 98.76 98.78 98.81 98.78 98.71
54 98.97 98.95 98.98 98.87 98.88 98.89 98.77 98.79 98.8 98.78 98.72
48 98.98 98.97 99 98.89 98.9 98.93 98.71 98.8 98.84 98.81 98.74
42 99.03 98.99 99.03 98.92 98.91 98.94 98.8 98.83 98.85 98.81 98.75
36 99.04 99.08 99.03 98.95 98.92 98.96 98.84 98.85 98.88 98.82 98.77
30 99.06 99.01 99.04 98.95 98.96 98.98 98.88 98.92 98.9 98.81 98.78
24 99 99.03 99.03 98.97 98.98 99 98.91 98.88 98.88 98.86 98.77
18 99.03 99.01 99.04 98.98 98.98 99.01 98.9 98.88 98.89 98.84 98.78
12 99 99.05 99.04 98.99 98.97 99.01 98.91 98.86 98.86 98.82 98.75
6 98.98 99.07 99.04 99 98.97 99.01 98.89 98.86 98.85 98.82 98.74
0 99.03 99.01 99.04 99.04 98.98 99.03 98.92 98.87 98.85 98.81 98.73

Y(
in

)=

X(in) =

Continued
Microtopography Measurements for Concrete/Asphalt Plots. (RL = 100.00 inches)
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