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Abstract 

In 2006, human Trans-Active Regulator DNA Binding Protein (TDP-43) was identified 

as the major ubiquitinated component of inclusion bodies in Amyotrophic Lateral Sclerosis 

(ALS) and Frontotemporal Lobar Degeneration (FTLD), two important neurodegenerative 

diseases in the human population. In ALS/FTLD, TDP-43 that is normally present in the 

nucleus, is found aggregated in the cytoplasm where it is also abnormally phosphorylated, 

poly-ubiquitinated, and cleaved to release toxic C-terminal fragments. Recently, evidences 

of TDP-43 involvement were also reported by our laboratory in Niemann-Pick type C (NPC) 

disease, a Lysosomal Storage Disorder (LDS) with visceral and neurological symptoms. In 

particular, in this disease, the protein TDP-43 does not aggregate in the cytoplasm like in 

the motor neurons of ALS patients. However, it is found mislocalized and abnormally 

phosphorylated in the cytoplasm of three different models: mouse NPC1-/- brain; human 

NPC cellular model (multipotent stem cells derived from skin biopsies, reprogrammed to 

neuronal cells); and in patients’ brain Purkinje cells. 

 Keeping these two observations in mind, the general aim of my work for this thesis 

has been to specifically study one of the major TDP-43 post-translational modifications 

(PTMs), phosphorylation, in two different diseases models: disease-associated TDP-43 

mutations in ALS patients and aberrant phosphorylation of TDP-43 in NPC disease.  

Regarding ALS, together with a group in Indiana/Kansas University I described a 

novel mutation in TDP-43 affecting a Serine residue changing to a Glycine in position 375 

(S375G). The reason why this mutation was interesting is because it was discovered in an 

early-onset ALS case. The results of my study showed that the TDP-43 carrying this S375G 

variant localized more in the nucleus with respect to the wild-type (WT) form. This nuclear 

localization leads to a stronger cytotoxicity probably due to the lack of the phosphorylation 

site, that was suggested to strongly destabilize an amyloid-like structure in its C-terminal tail 

that promoted TDP-43 multimerization. In order to study in depth, the 

physiological/pathological behavior of this Serine residue, I created a cell line expressing 

constitutively the WT, S375G, and S375E (phosphomimic) TDP-43 forms. No significant 

changes were reported in splicing activity, autoregulation, or aggregation, but a cell-cycle 

analysis of the stable clones showed that the number of cells in the G2 phase decreased in 

the two phospho-mutants compared to WT. The exact reason for this alteration is still not 

known. However, preliminary experiments on the mitochondria apoptotic signal that I 
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performed showed that Apoptosis-Inducing Factor 1 (AIF1) seemed to be released from the 

mitochondria. 

Regarding Niemann Pick C, in order to better understand the molecular mechanisms 

that lead to TDP-43 phosphorylation in NPC, I performed an RNA sequencing analysis using 

a human NPC cellular model and compared the detected list of gene expression changes 

with a list of changes that we previously described for neuronal SHSy5Y cells depleted of 

TDP-43. As described in depth in the thesis, approximately 800 genes were found 

differentially regulated between NPC patients and healthy controls, involving neuronal, 

inflammatory, and lipid metabolism pathway. Among these 800 genes, 64 were found to be 

commonly misregulated in the RNA sequencing performed on SHSy5Y cells upon TDP-43 

silencing. Based on these preliminary results, I identified two particular targets of TDP-43 

that were previously unknown: Inositol 1,4,5-Trisphosphate Receptor Type 1 (ITPR1), and 

the Ependymin Related 1 (EPDR1). Interestingly, the depletion (down regulation) of ITPR1 

gene induced changes in TDP-43 protein cellular localization, thus suggesting a direct link 

between alterations in this gene and aberrant TDP-43 regulation. 

Taken together, the data contained in my thesis strongly support growing evidence 

that alterations of TDP-43 post-translational modifications, either due to disease-associated 

mutations or genes that control its cellular localization, can play a potentially important role 

in disease pathogenesis.    
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1.1 Trans-Active Regulator DNA Binding Protein (TDP-43) – general 

characteristics 

 

1.1.1 The TDP-43 gene 

Human TDP-43 was isolated and described for the first time in 1995 as a novel 

transcriptional inactivator involved in the TAR (Tat Activation Response) DNA motive of the 

Human Immunodeficiency Virus (HIV-1) binding (Ou et al., 1995). 

The human gene is located on chromosome 1 in MASP2 (Mammalian-binding lectin 

Serine-Protease 2) locus, a highly conserved gene-rich region [chr1:11,013,728-

11,022,651; 8,924bp] (Fig.1). 

 

Figure 1 - TAR-DNA binding protein locus and position on chr1 - PubMed and UCSC Genome Browser (hg38) 

In Figure 2 is shown the TAR-DNA binding protein (TDP-43) gene structure 

composed of 6 exons: the coding region starts from exon 2 to exon 6, whilst the first one is 

a non-coding exon (Banks et al., 2008; Wang et al., 2004). 

 

Figure 2 - TARDBP coding exons structure (Banks et al., 2008). 

During evolution, TDP-43 has been highly conserved among many species, like 

Drosophila melanogaster, Xenopus laevis and Caenorhabditis elegans (Fig.3) (Ayala et al., 

2005; Stover et al., 2004; Wang et al., 2004). The high sequence conservation in such 

distant organism indicates that this protein has played a fundamental role during evolution 

(Buratti and Baralle, 2008). 
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Figure 3 - Aminoacid sequence alignment of the eukaryotic TDP-43 proteins in different organisms: human (hTDP-43), 

mouse (mTDP-43), D. melanogaster (dTDP-43), and C. elegans (cTDP-43) (Wang et al., 2004). 
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1.1.2 TDP-43 protein structure 

From a structural and functional point of view, TDP-43 belongs to the heterogeneous 

nuclear ribonucleoprotein (hnRNP) family, known to associate with heterogeneous RNA in 

a sequence-specific manner, thanks to the presence of specific domains able to mediate 

protein-RNA interactions and protein-protein interactions. The hnRNP proteins play an 

important role in multiple steps of gene expression regulation including transcription, 

splicing, mRNA stability, DNA replication/repair, protein translation, and export or retention 

of nascent RNA. They are able to interfere with different processes depending on their 

subcellular localization, by binding to RNA, other proteins, or cellular components (Buratti 

and Baralle, 2012; Y. M. Ayala et al., 2008; Krecic and Swanson, 1999). 

The TDP-43 primary structure can be split in three basic domain composition, as 

shown in Figure 4 (Buratti and Baralle, 2012; Krecic and Swanson, 1999).  

 

Figure 4 - TDP-43 protein structure (Buratti and Baralle, 2012). 

- The N-terminal domain (NTD): very little is known about this region. It is very well 

conserved during evolution especially the residues encoding for the Nuclear 

Localization Signal regions, (NLS) composed by NLS1 (K82RK84) and NLS2 

(K95VKR98), mediating the protein nuclear localization. Mutations in those sites 

reduce the presence of TDP-43 in the nucleus (Buratti and Baralle, 2001, 2008; 

Winton et al., 2008; Y. M. Ayala et al., 2008). Recently, the NMR structure of this 

region has been solved and it has been shown to be important in mediating protein 

oligomerization (Mompeán et al., 2016). 

- The RNA-Recognition Motives (RRM): RRMs are two highly-conserved domains 

involved in the binding to specific RNA or DNA sequences and act by mediating the 

nucleic acid direct recognition (Y. M. Ayala et al., 2008; Buratti and Baralle, 2001). In 

particular, the RRM-1 region is necessary and sufficient to mediate binding to UG or 
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TG repeated motifs (Ayala et al., 2005; Buratti and Baralle, 2001). Using 

Electromobility Shift Assay (EMSA), it has been shown that a mutant lacking of this 

region was sufficient to abolish completely the ability of TDP-43 to bind RNA 

molecules (Buratti and Baralle, 2001). Also, RRM-2 region was studied together with 

RRM-1 domain. Using a mutant lacking of RRM-2, it has been discovered that the 

deletion of RRM-2 domain did not compromise completely RNA binding capability of 

the protein, concluding that the two domains have different binding characteristics 

and RRM-2 can help RRM-1 in RNA recognition (Buratti and Baralle, 2001). Recently, 

RRM-2 was described to play a role in chromatin organization by the co-crystallization 

with single-stranded DNA forming thermal-stable dimeric complex (Y. M. Ayala et al., 

2008). Moreover, RRM2 is predicted to contain a nuclear export signal (NES) (Fig. 

4) (Strong et al., 2007; Buratti and Baralle, 2001) that acts together with the NLS 

signal in the N-terminus to determine the nuclear-cytoplasmic balance of TDP-43. 

- The C-terminal Domain (CTD): this sequence mediates protein-protein interaction 

especially with other hnRNPs, promoting the recruitment of TDP-43 to the 

macromolecular complexes that are necessary to carry out its functions. For example, 

by immunoprecipitation and proteomic studies it has been discovered that TDP-43 

can interact with another abundant hnRNP protein, hnRNP A2/B1, through residues 

342 to 366 in the C-terminal tail (Fig.4) (Budini et al., 2012; D’Ambrogio et al., 2009). 

In addition to protein-protein interactions, the C-terminal domain is essential for 

affecting protein solubility and sub-cellular localization. The fact that it is poor in 

charged residues means that pH switches can lead to aggregative phase changes 

and microdroplet formation to bring RNA molecules in the right sub-cellular 

localization. As a consequence, deletions in the CTD lead to large nuclear and 

cytoplasmic aggregates formation (Buratti and Baralle, 2012; Y. M. Ayala et al., 

2008). In fact, even in normal conditions, this region tends to induce TDP-43 

aggregation due to the presence of  glycine-rich motif and a Gln/Asn-rich region 

identified as a potential prion-like domain (Udan and Baloh, 2011). Most importantly, 

the C-terminal tail is strongly linked to the pathogenesis of neurodegenerative 

disorders because this is the region where most of the disease-associated mutations 

associated with Amyotrophic Lateral Sclerosis (ALS), and Frontotemporal Dementia 

(FTLD) are localized, except for a few mutations that are located in the RRM domain 

regions (Budini et al., 2012). 
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1.1.3 The TDP-43 cellular function 

Due to its structure, TDP-43 is involved in many cellular functions, both in the 

nucleus and in the cytoplasm (Fig.5). 

 

Figure 5 - TDP-43 nuclear and cytoplasmic physiological roles (Buratti and Baralle, 2012). 

First of all, as a typical member of the hnRNP protein family, TDP-43 has been 

shown to be involved in multiple levels of RNA processing, like splicing, transcription, 

transport and translation (Lagier-Tourenne et al., 2010). In particular, TDP-43 is mostly 

known for its involvement in splicing regulation. In Figure 6, several TDP-43 target genes 

are shown characterized by the presence of  an UG-rich region bound specifically by the 

RRMs (Buratti and Baralle, 2001). 
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Figure 6 - Examples of TDP-43 target genes (Buratti and Baralle, 2012). 

An example of TDP-43 mechanism of action in regulating the splicing process is 

reported in Figure 7, where TDP-43 is shown binding to one of its best characterized targets, 

the Cystic Fibrosis Transmembrane Regulator (CFTR) gene. In this case, TDP-43 

recognizes specifically the splicing regulatory (UG)m elements located near the 3’splice-site 

of CFTR exon 9 through the RRMs (Buratti and Baralle, 2001, 2008). The RRMs alone are 

not enough to promote splicing regulation; indeed TDP-43 inhibits the recognition of basic 

splicing factors through the Glycine-rich C-terminal domain that recalls other hnRNP 

proteins and together create an inhibitory complex that abolish the assembling of the 

spliceosome in the early stage (Lagier-Tourenne et al., 2010). 
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Figure 7 - TDP-43 and hnRNPs complex on CFTR exon 9 (Buratti and Baralle, 2008). 

In physiological conditions, TDP-43 is able to modulate its own protein levels 

through a negative feedback loop by binding its own mRNA in the 3’UTR region, leading to 

mRNA instability and degradation (Buratti and Baralle, 2012; Budini and Buratti, 2011). 

Figure 8 schematically shows the TDP-43 autoregulation mechanism: low concentrations 

of nuclear TDP-43 allow the use of the most efficient poly-A1 site instead the others two, 

pA2 and pA4. On the other hand, abundant TDP-43 protein levels result in the binding with 

sub-optimal sites that lead to the rapid degradation of the mRNA. Using this negative 

feedback mechanism, the TDP-43 concentration within cells can remain constant and 

alterations in this process could be a major driver of aberrant TDP-43 production and 

aggregation in neurons (Budini and Buratti, 2011). 

 



31 

 

 

Figure 8 -TDP-43 autoregulation mechanism (Budini and Buratti, 2011). 

In addition to pre-mRNA splicing, TDP-43 plays also an important role in micro-RNA 

(miRNA) biogenesis (Lee et al., 2012). Although the mechanism through which this occurs 

is still not clearly known, TDP-43 is thought to be involved in the cytoplasmic cleavage step 

of miRNA by interacting with Argonaute-2 and DDX17, two proteins implied in this process 

(Lagier-Tourenne et al., 2010). 

TDP-43 is implicated in mRNA turnover by regulating mRNA levels of different 

genes (Lee et al., 2012). An example is TDP-43 inhibition of Cyclin Dependent Kinase 6 

(CdK6) expression through its recruitment to the GU-rich transcript. The depletion of TDP-

43 in human cells leads to a significantly increase of CdK6 protein and transcript level 

resulting with a major phosphorylation of CdK6 targets (Youhna M Ayala et al., 2008). In 

addition, TDP-43 influences also the expression of the histone deacetylase 6 (HDAC6), a 

protein involved in other proteins aggregation and degradation (Fiesel et al., 2010). TDP-43 
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knockdown/loss leads to HDAC6 downregulation and accumulation of its substrates (Fiesel 

et al., 2010). Another example is the human low molecular weight neurofilament (hNFL), 

where TDP-43 has been shown to stabilize hNFL with a direct interaction of the 3’UTR of 

this mRNA (Strong et al., 2007). TDP-43 binding to hNFL is important for this mRNA 

cytoplasmic translocation and its translation in the correct subcellular compartment (Strong 

et al., 2007). TDP-43 loss or altered function could affect also the regulation of downstream 

genes, that taken together can potentially lead to a disease status (Lee et al., 2011).  

According to its functions, TDP-43 in physiological conditions is present also in the 

cytoplasm working on mRNA destination in the cell’s compartment, subcellular localization, 

translation, and degradation acting as a nucleus-cytoplasmic shuttle (Lagier-Tourenne et 

al., 2010). In particular, TDP-43 was found in RNA transporting granules and, by altering 

mRNA transport and localization, it is involved in neuroplasticity modulation (King et al., 

2012; Lagier-Tourenne et al., 2010). 

Finally, in a rather limited set of examples, TDP-43 is known to interact with DNA, 

in particular with single stranded DNA, acting as transcriptional regulator. Indeed, this 

protein was first discovered as a regulator of studied as a potential regulator of the HIV-1 

TAR DNA sequence motif (Lee et al., 2012; Ou et al., 1995). More recently, it has been 

shown to be involved in the regulation of the spermatid-specific SP-10 gene (ACRV1), 

preventing the enhancer-promoter interaction (Lee et al., 2012). In this particular event, 

TDP-43 interacts with SP-10 insulator, abolishing SP-10 translation. TDP-43 knockdown or 

mutations suppressed this capability. This role is tissue specific, as far as TDP-43 is present 

also in testis, but this function is not detectable in male germline (Abhyankar et al., 2007). 
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1.2 TDP-43 proteinopathies 

As previously described, TDP-43 plays an important role in cell metabolism, and in 

particular in the regulation of RNA homeostasis. TDP-43 disfunctions can disrupt RNA 

metabolism with devastating consequences for the cells, especially for neurons in which 

RNA processing events are particularly important to increase their potential ability to 

modulate transcriptome and gene expression (Conlon and Manley, 2017; Sephton and Yu, 

2015). In recent times, considering the increasing number of diseases that are characterized 

by misregulation of TDP-43, a new term has been coined and they are now classified under 

the term of TDP-43 proteinopathies (Barmada and Finkbeiner, 2010). 

 

1.2.1 Neurodegenerative disorders 

As already mentioned, in 2006 TDP-43 was identified for the first time as the major 

ubiquitinated component of inclusion bodies in Amyotrophic Lateral Sclerosis (ALS) and 

Frontotemporal Lobar Degeneration (FTLD) patients’ brain. Under pathological conditions, 

the protein is depleted from the nucleus and sequestered as 

hyperphosphorylated/ubiquitinated insoluble aggregates, disturbing the physiological 

nuclear functions of TDP-43 and its trafficking to the cytosol (Arai et al., 2006; Neumann et 

al., 2006). A brief overview will therefore follow with regards to some of these pathologies. 

 

1.2.1.1 Amyotrophic Lateral Sclerosis – ALS 

Amyotrophic Lateral Sclerosis (ALS) is a fatal motoneuron disease characterized by 

progressive loss of function of the upper and lower motoneurons at the spinal or bulbar level, 

resulting in muscle weakness, atrophy and spasticity (Zarei et al., 2015; Gendron et al., 

2013). 

It was first described in 1869 by the French neurologist, Jean-Martin Charcot, but 

the disease became well known when it was diagnosed in 1939 to Lou Gehrig, a baseball 

player (Zarei et al., 2015). 

ALS is the third most common adult neurodegenerative disease after Alzheimer 

Disease (AD) and Parkinson Disease (PD) (Banks et al., 2008). The incidence of ALS is 
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similar throughout the world, affecting 1.5-2.5 patients per 100000 individuals (Barmada and 

Finkbeiner, 2010). 

The pathology is categorized in two forms: 

- Sporadic (sALS), the most common form which affects 90-95% of the patients with 

no genetic inheritance. 

- Familiar (fALS) type, that includes the remaining 5-10%, associated to genetic 

inheritance factors (Zarei et al., 2015). 

Approximately 20% of all fALS is caused by mutations in the ubiquitously expressed 

enzyme Super-Oxide Dismutase1 (SOD1) and about 1% of sALS are caused by mutations 

in the same gene (Banks et al., 2008). Some recent studies have described another 

prominent genome region where mutations are present in fALS cases, C9orf72 (Cooper-

Knock et al., 2015). 

ALS is a clinically and genetically heterogeneous disorder arising between the fourth 

and the seventh decade, and the median time from symptom onset to death is 30-36 months, 

often due to respiratory muscle involvement. Patients may present a predominantly upper 

motoneuron (UMN) loss, a lower motoneuron (LMN) degeneration, or a combination of the 

two. Some patients can also present an early bulbar involvement but in other cases the 

muscles of the head and neck may be not involved during the disease progress (Barmada 

and Finkbeiner, 2010). 

Most importantly, as disease progresses ALS seems to affect different brain areas, 

from the frontal and temporal cortices, brainstem and cerebellum, adding different symptoms 

to the traditionally recognized motor system degeneration (Barmada and Finkbeiner, 2010). 

 

1.2.1.2 Frontotemporal Lobar Degeneration – FTLD 

Frontotemporal Lobar Degeneration (FTLD) is the most common cause of presenile 

dementia after Alzheimer disease below 65 years (Banks et al., 2008). It is a clinically and 

pathologically heterogeneous syndrome, characterized by a progressive decline in behavior 

or language, associated with degeneration of the frontal and anterior temporal lobes 

(Rabinovici and Miller, 2010). Patients may also display movement abnormalities with 

clinical features overlapping with Motoneuron Disease (MND) that recall ALS characteristics 

(Gendron et al., 2013). 
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First evidence of the disease was described in 1892 by Arnold Pick who studied a 

patient with progressive aphasia and lobar atrophy. In 1911, the presence of neuronal 

inclusions at neuropathological examination, later called Pick bodies, was reported by Alois 

Alzheimer (Seelaar et al., 2011). 

FTLD patients are clinically classified into three different groups depending on the 

early and predominant symptoms, such as a behavioral variant (bvFTD), and two language 

variants, called semantic dementia (SD), and progressive non-fluent aphasia (PNFA). Each 

variant is associated with a different brain atrophy pattern and has peculiar histopathologic 

characteristics. Sometimes the symptoms can overlap, in particular during the later course 

of the disease when it spreads and involves the entire frontal and temporal lobes (Rabinovici 

and Miller, 2010). 

From a histopathological point of view, FTLD patients are characterized by atrophy 

of the frontal and temporal lobes and by the presence of glial and neuronal inclusion bodies 

composed by: TAU, TDP-43, or fused-in-sarcoma (FUS) (Rabinovici and Miller, 2010). FTLD 

patients can be classified in sub-molecular groups depending on the inclusion type: 

- FTLD with TAU inclusion (FTLD-TAU). FTLD tauopathy is characterized by the 

presence of Pick bodies, which are solitary, round or oval, argyrophilic inclusions 

found in the cytoplasm of neurons (Rabinovici and Miller, 2010). 

- FTLD with ubiquitin TDP-43 positive inclusions (FTLD-TDP) is characterized by the 

presence of TDP-43 as the major ubiquitinated component. Like in ALS, under 

pathologic conditions TDP-43 is displaced from the cell nucleus to the cytoplasm, 

hyperphosphorylated, ubiquitinated and cleaved to produce C-terminal fragments 

(CTF) which aggregate and form the inclusion bodies. Neuronal and glial TDP-43 

inclusions are found in the majority of cases previously classified as FTLD-TAU 

negative (FTLD-U) with and without motor neuron disease symptoms (Rabinovici and 

Miller, 2010). 

- FTLD-FUS positive cases cover about the 5–20% of all FTLD-U cases that remain 

negative for TDP-43. FUS is a ubiquitously expressed DNA/RNA binding protein that 

regulates gene expression and, like TDP-43, is also involved in ALS. The clinical 

phenotype is characterized by early onset and important behavior clinical signs 

(Rabinovici and Miller, 2010). 

FTLD patients can also be recognized by the presence or the absence of 

motoneuron disease features: 
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- FTLD with Motor-Neuron Disease (MND) can be also divided in two subtypes: 

presenile dementia with MND or ALS with dementia (Arai et al., 2006); 

- FTLD with MND-type inclusions, but without MND phenotype (Arai et al., 2006); 

- FTLD phenotype lacking of distinct histology, without TAU or ubiquitin-positive 

inclusions (Arai et al., 2006). 

 

1.2.1.3 Motoneuron Disease – MND 

Based on the predominant symptoms, FTLD and ALS could seem two different 

disorders: FTLD is characterized by progressive changes in social behavior or/and language 

dysfunctions whilst ALS shows weakness and wasting of the muscles. However, in some 

cases the two phenotypes can eventually match. For example, some FTLD patients develop 

a MND phenotype and around 1/3 of ALS patients eventually show some form of dementia 

(Neumann et al., 2006). Moreover, families in which the two diseases segregated together 

were identified, speculating a clinical and pathological overlap between the two disorders. 

This hypothesis was confirmed by biochemical and immunohistochemical analyses  

suggesting that they could represent two manifestations of the same basic 

neurodegenerative disorder (Achi and Rudnicki, 2012; Neumann et al., 2006). 

 

1.2.2 TDP-43, RNA-binding proteins, and metabolic disorders 

Interestingly, neurological impairment is also associated with many metabolic 

disorders, such as monogenic diseases characterized by single gene mutations leading to 

metabolic disfunctions, in particular those involving lysosomal pathways (Fiorenza et al., 

2018). Alterations in the lysosomal system can contribute to protein accumulation, a 

classical feature of neurodegenerative disorders. Therefore, Lysosomal Storage Disorder 

(LSD) patients often show early neurodegenerative symptoms recalling ALS and FTLD 

disease (Bahr and Bendiske, 2002). 

In this context, RNA-binding proteins (RBP), like TDP-43, can play an important role 

in the appearance of the neurological disfunction. In particular, they can disrupt axonal 

transport, and cell metabolism through Golgi apparatus fragmentation of by impairing the 

exosome/lysosome pathway (Janas et al., 2016; Jellinger, 2009; Potashkin and Meredith, 

2006). In neuronal cells, the axonal transport through multi-vesicular bodies (MVBs – like 

lysosome and exosome) is directly implicated in synaptic function playing an important role 
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in the intra/inter cellular communication that is fundamental for neuronal homeostasis (Janas 

et al., 2016). In this regard, it is important to note that spatial and temporal mRNA translation 

is a fundamental requirement in neurons because RNA is often associated with RBPs and 

the resulting RNA-RBP complex can be loaded into exosomes to facilitate the axonal 

transport and the correct subcellular translation or localization. Alternatively, the complex 

can be load in the lysosome promoting its degradation (Fig.9) (Paron et al., 2020; Janas et 

al., 2016). 

 

Figure 9 – MVBs cellular pathway. The RNA-RBP complex loaded in the MVBs can follow exosomal secreting pathway 

(sMVB); or the lysosomal degradation pathway (dMVB) (Paron et al., 2020). 

In this context, therefore, lysosomal pathway disfunctions can impair RNA 

metabolism, explaining the neurological features in many LSDs (Conlon and Manley, 2017). 

 

1.2.2.1 Niemann-Pick type C Disease (NPC) 

In this work, I focused my attention on a specific LSD that is known as Niemann-

Pick type C disease (NPC). NPC was described for the first time in the late 1920’s by Albert 

Niemann and Ludwig Pick as a heterogeneous group of LSD, characterized by cholesterol 

storage disfunction with milder visceral symptoms, and a progressive fatal 

neurodegeneration (Vanier, 2010; Ong et al., 2001). 
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Genetically, NPC is an autosomal recessive disorder due to the presence of 

mutations in two genes NPC1 and NPC2 (Vanier et al., 1996). Around 95% of the patients 

display mutations on NPC1, gene whilst the other 5% stroke on NPC2 (Vanier, 2010; Vanier 

and Millat, 2004). 

NPC1 is located on chromosome 18, and its protein was described as a 1278 amino 

acid transmembrane glycoprotein able to associate with the membranes of different 

cytoplasmic vesicles (Storch and Xu, 2009; Higgins et al., 1999). On the other hand, NPC2 

maps on chromosome 14 and it was first studied as Human-Epididymis (HE1) Specific 

protein1, a secretory protein of the human epididymis. Later studies demonstrated that its 

absence or its mutation was correlated with NPC disease (Storch and Xu, 2009; Vanier and 

Millat, 2004). The mature human NPC2 protein is a small soluble 132 amino acid 

glycoprotein able to bind cholesterol with high affinity (Storch and Xu, 2009). 

In physiological conditions, the cholesterol acquired with the diet is transported in 

the blood vessels through the low-density lipoproteins (LDL) that are then internalized by 

the cells exposing the LDL receptor (Brown and Goldstein, 1986). In cells, the endosome 

maturates in the lysosome and in this compartment the mature NPC1 and NPC2 proteins 

cooperate together to carry out correct cholesterol transport. The proposed model suggests 

that NPC2 is binding the cholesterol molecules inside the lysosomes, and through this 

complex, the cholesterol molecule can physically interact with the N-terminal domain of 

NPC1 protein. At this point, NPC1 transports the cholesterol to the trans-Golgi network 

(TGN) thanks to the cooperation of the sterol sensing domain and the C-terminal tail (Fig.10) 

(Estiu et al., 2013; Storch and Xu, 2009; Vanier and Millat, 2004). In this manner, mutations 

in these two proteins lead to cholesterol accumulation and the onset of visceral symptoms 

(Vanier, 2010). 
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Figure 10 – NPC1 and NPC2 lysosomal interaction and cholesterol binding (Paron et al., 2020). 

This model holds true for the visceral organs but not for the brain where the 

cholesterol is synthetized by the astrocyte and oligodendrocytes without any LDL-uptake 

(Björkhem et al., 2004). This clarification is very important because probably the molecular 

mechanism that undergoes to neurodegeneration in NPC disease is more subtle and not 

simply linked to the cholesterol pathway, but more similar to the one occurring in classical 

neurodegenerative disorders (Paron et al., 2020). 

For this reason, NPC disease is not simply limited to visceral symptoms but it can 

be classified as a neurologic and neurodegenerative disorder. It is important to underline 

that the systemic diseases occurs prior to the neurological impairment. In fact, except for 

the perinatal period, NPC systemic disease is not very severe and quite well tolerated in 

most of the patients (Vanier, 2010). 

At present, NPC neuro-pathogenetic mechanisms are still not clear but if we 

consider that RNA metabolism is very well known to be stricter controlled and regulated in 

the nervous system it is likely that the disruption of these pathways can represent a 

promising candidate to explain the pathogenesis of neurodegenerative diseases (Conlon 

and Manley, 2017). 
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1.2.2.2 NPC neurodegeneration and TDP-43 

As previously described, TDP-43 has a fundamental role inside the cells, especially 

regarding RNA metabolism. Relying on this, in 2016 a correlation between NPC and TDP-

43 was established by our lab (Dardis et al., 2016). In this work, Andrea Dardis and 

colleagues found TDP-43 mislocalized in the cytoplasm of Purkinje cells of NPC1-/- mouse 

model and in neuronal cells derived from multipotent stem cells isolated from skin biopsies 

of NPC patients, comparing to healthy controls (Fig.11) (Dardis et al., 2016). 

 

Figure 11 – TDP-43 cytoplasmic mislocalization in NPC human cellular mode. A) TDP-43 staining in wild type neuronal-

like cells. B) NPC neuronal-like cells stained for TDP-43. C) and D) panels are reporting neuronal-like cells stained for a 

neuronal marker (NeuN) respectively wild type and NPC samples  (Dardis et al., 2016). 
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They also discovered that TDP-43 was not just mislocalized but also 

hyperphosphorylated, like in ALS patients (Fig.12) (Newell et al., 2018; Dardis et al., 2016; 

Neumann et al., 2009).  

 

Figure 12 – TDP-43 mislocalization and hyper-phosphorylation in NPC human cellular model. Neuronal-like cells were 

stained with phospho-TDP-43 antibody (against the 409 and 410 Serine) in wild type (A) and NPC (B) samples  (Dardis 

et al., 2016). 

In addition, the expression of genes involved in neuronal survival and neuronal 

differentiation, like TFAP2A, CNTFR, MADD, MEF2D, CTNND1, KIF2, KIF1B, TLE1, TNIK, 

already described in literature as TDP-43 targets, was tested. The observation that 6 out of 

9 genes tested were misregulated, supported the idea that TDP-43 mislocalization could 

play a role in neurodegeneration feature of NPC disease (Fig.13) (Dardis et al., 2016). 

 

Figure 13 - TDP-43 misregulated genes by qPCR in human NPC model (Dardis et al., 2016). 
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1.3 TDP-43 pathogenic mechanisms in neurodegenerative disorders 

After TDP-43 discovery as the major component of the inclusion bodies, many 

efforts have been performed aiming to describe its pathogenic mechanisms. 

In TDP-43 disorders, the protein is found ubiquitinated and hyperphosphorylated, it 

is present in insoluble inclusions or in a C-terminal truncated form (20-25kDa fragments), it 

is mislocalized in the cytoplasm, and a loss of nuclear TDP-43 is detectable. However, the 

border between physiological and pathological aggregation is very subtle: the association 

with RNA, post-translational modification, and the formation of RNA granules is necessary 

to regulate mRNA transport and its final translation, but upon cellular stress this mechanism 

can become pathological with the irreversible aggregation of RNA-protein granules (Conlon 

and Manley, 2017; Vanderweyde et al., 2013). The balance between two cellular 

compartment is very delicate: a small perturbation can lead to the formation of TDP-43 

aggregates that recapitulate TDP-43 pathologies features (Winton et al., 2008). Owing to 

this complexity, it is still unknown which of these processes should be considered primary 

characteristics of the disease and directly linked to neurodegeneration, as opposed to 

represent secondary features or epiphenomena (Lee et al., 2012). 

In general, two models have been proposed to explain TDP-43 pathogenesis: Loss-

Of-Function (LOF) and Gain-Of-Function (GOF) mechanisms. 
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1.3.1 Loss-Of-Function mechanism (LOF) 

 

Figure 14 - TDP-43 LOF model leading cell death (Lee et al., 2012). 

The LOF mechanism is thought to occur when cellular stress causes a redistribution 

of TDP-43 in pre-inclusion of the phosphorylated and/or ubiquitinated protein (stress 

granules). The presence of prolonged stress conditions and abnormal post-translational 

modifications eventually makes the aggregates difficult to be degraded. In this model, the 

increase in aggregates numbers/size induce nuclear clearance of the functional protein, the 

formation of truncated C-terminal fragments, and loss of autoregulation. The LOF toxicity is 

therefore induced by the sequestration of functional TDP-43 into the aggregates and 

consequent loss of all its normal cellular functions (Fig.14) (Lee et al., 2012; Barmada and 

Finkbeiner, 2010). 
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1.3.2 Gain-Of-Function mechanism (GOF) 

 

Figure 15 - TDP-43 GOF model leading cell death (Lee et al., 2012). 

In addition to aggregation, a prolonged stress condition can also lead to abnormal 

cytoplasmic distribution, aggregation, changes in the autoregulation process, that occurs in 

the nucleus, leading to increas total protein levels (which are known to be toxic), and escape 

from degradation of partially folded protein oligomers by the ubiquitin-proteasome system 

(UPS) (Fig.15) (Lee et al., 2012). All these changes can be considered pathological when 

they have deleterious downstream effects and when the cell is not able anymore to limit their 

toxicity (Barmada and Finkbeiner, 2010). 

 

Finally, it is important to note that these two models are not mutually exclusive and 

together they can cooperate in TDP-43 mediated neurodegeneration (Lee et al., 2012).  
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1.4 TDP-43 mutations 

Since 2008, many papers have been published describing disease-associated 

mutations in the TDP-43 gene, supporting the idea of TDP-43 direct involvement in 

neurodegenerative disorders, like ALS and FTLD. Even if mutations are sporadic events 

(3% in fALS and 1.5% in sALS), their characterization is important to better understand their 

functional significance and therefore TDP-43 pathogenic mechanisms (Buratti, 2015; Banks 

et al., 2008). Interestingly, mutations can display both LOF and GOF characteristics. 

The presence of pathological TDP-43 mutations may result in a loss of function 

mechanism affecting the protein functions through two hypothetic scenarios:  

- Haploinsufficiency or dominant-negative effect of the mutant protein, in which the 

mutant TDP-43 is not able to carry out the normal functions of the wild type. TDP-43 

pathogenic mutations disrupt the physiological function of the protein and the mutant 

form cannot rescue the normal phenotype.  

- The mutations affect the subcellular localization of the protein. In this situation, the 

mutant TDP-43 is able to reduce the nuclear protein levels by dimerizing with the wild 

type and sequestering it in the cytoplasm (Barmada and Finkbeiner, 2010).  

Also, gain of function mechanisms can be promoted by disease-associated 

mutations resulting in new deleterious functions with TDP-43 aggregation in the neurons. 

These inclusions can acquire toxic functions with lethal downstream effects compromising 

neuronal survival. The molecular pathways involved in this process are unknown, but two 

mechanisms have been proposed: 

- TDP-43 may induce toxicity by abnormal interaction with other cellular components: 

for example, aggregating TDP-43 can sequester cellular factors (other proteins; 

mRNA; etc.) disrupting other important pathways for the maintenance of nuclear 

survival.  

- alternatively, pathogenic TDP-43 mutations may affect the binding of the protein with 

other factors, such as ubiquitin-1, thus interfering with the Ubiquitin-Proteasome 

System (UPS), escaping from the degradation (Barmada and Finkbeiner, 2010).   

In keeping with this view, most TDP-43 pathogenetic mutations lie in the C-terminal 

domain (Fig.16) suggesting that they may affect the protein-protein interaction network, 

leading to the development of TDP-43 proteinopathies (Banks et al., 2008). 
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Figure 16 -TDP-43 mutations (Buratti, 2015). 

In Figure 16, are reported all TDP-43 mutations already described to this date. Each 

mutation can lead to different alterations from the wild-type protein: for example, some 

mutations have been described to be able to increase aggregation, to change TDP-43 

protein-protein interactions profile, to increase the half-life of the protein or its localization 

(Fig.17). It is important to underline that these functional alterations are not common to all 

mutations and different mutations may acquire specific properties (Buratti, 2015). 
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Figure 17 - Possible alterations promoted by TDP-43 mutation (Buratti, 2015). 

Nonetheless, the study of single TDP-43 mutations is important because it can 

reveal novel potential pathological pathways that should be examined beyond the mutation 

itself. For this reason, a systematic approach to their study will be important in the future in 

order to analyze and characterize each mutation as soon as they are discovered  (Buratti, 

2015). 
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1.5 Post-Translational Modifications (PTMs): TDP-43 phosphorylation 

Like other proteins involved in neurodegenerative disorders, TDP-43 undergoes to 

post-translational modification (PTMs) that can affect its function and cellular status both in 

physiological and pathological conditions (Buratti, 2018; Lee et al., 2012). 

In general, PTMs allow proteins to quickly change their structural and functional 

properties in response to internal and external stimuli. For this reason, analyzing PTMs is 

important for better characterize protein profiles during health and disease conditions, 

potentially improving diagnostic and prognostic capabilities. Moreover, PTM analysis may 

provide potentially new specific therapeutic targets in neurodegenerative diseases (Buratti, 

2018). 

The presence of PTM-modified TDP-43 in ALS and FTLD is an issue that has been 

studied for a long time in TDP-43 proteinopathies. However, for many of these PTMs it is 

still unclear whether these modifications lead to aggregate formation/functional alterations 

or whether they are simply a physiological reaction to a cell stress condition. Whatever the 

case, the most prevalent modifications affecting TDP-43 in the ALS/FTD spectrum are as 

follows: phosphorylation; generation of C-terminal domain (CTD) fragments; ubiquitination; 

acetylation; cysteine oxidation; SUMOylating (Buratti, 2018; Lee et al., 2012). In Figure 18 

are summarized all the PTMs involved in TDP-43 pathology: the disease spectrum is wider 

than ALS/FTLD and include other diseases, like NPC and myopathies. At the moment, 

altered phosphorylation seems to be the most common PTM between the different disorders 

(Buratti, 2018). 
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Figure 18 - TDP-43 most prevalent PTMs (Buratti, 2018). 

Following many studies, the molecular events that activate aberrant TDP-43 

phosphorylation were discovered to be related to endogenous or exogenous cell stress 

conditions (Buratti, 2015; Colombrita et al., 2009). 

In Figure 19, are reported the known events in which TDP-43 phosphorylation is 

involved: in pathological cases, the main residues triggered by phosphorylation are two 

Serine residues in the C-terminal region, Ser409/Ser410. Also, phosphorylation at Ser379, 

Ser403, and Ser404 were described to correlate with disease pathology. Recently, a mass-

spectrometry analysis and in vitro studies has been performed to detect the other possible 

phosphorylation on patient’s brain samples and, as more samples are analyzed, it is 

probable that this picture will be considerably widened in the near future (Newell et al., 2018; 

Kametani et al., 2016; Neumann et al., 2009). The potentially important role of 

phosphorylation in disease is also highlighted in Figure 19 where a clear correlation may be 

observed between phosphorylation and disease-associated mutations in the TDP-43 C-

terminal region. Many mutated residues, in fact, seem to be involved either the 
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creation/disruption of Serine/Threonine residues or in the formation of a potential 

‘phosphomimic’ by the introduction of an Aspartic or Glutamic acid (Buratti, 2018). 

 

 

Figure 19 - TDP-43 aberrant phosphorylation(Buratti, 2018). 

In the future, considering the importance of phosphorylation in TDP-43 pathology, 

many targeting kinases compounds should be tested in various experimental TDP-43 

systems to check for their ability to modify TDP-43-mediated pathology. Moreover, the use 

of TDP-43 phosphorylation-specific antibodies as biomarkers of disease should improve the 

clinic diagnosis and prognosis of patients (Buratti, 2018). 
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The aim of this work has been to study in detail a specific TDP-43 PTMs, namely 

phosphorylation, in two different diseases models. In particular, in the first part of the project 

I have focused on the characterization of a novel disease-associated TDP-43 mutation, 

S375G that was described in very early-onset ALS cases, that might affect the 

phosphorylation sites in the C-terminal region of this protein. In the second part of my study, 

I have focused on the involvement of TDP-43 phosphorylation in neurological defects linked 

to Niemann-Pick type C, which could become a new therapeutic target for the disease. 

Taken together, the hope is that my two aims will allow to better understand the impaired 

cellular processes that are induced by aberrant phosphorylation of TDP-43. 
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3  MATERIAL AND METHODS 
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3.1 DNA plasmid preparation, purification, and mutagenesis 

3.1.1 Escherichia coli DH5α competent cells preparation 

E. coli DH5α strain competent cells were generated starting from frozen glycerol 

stock (1:1), stored at -80°C. DH5α glycerol was defrosted on ice, and plated on LB1-agar 

Petri dish, without antibiotics, overnight at 37°C. The day after, one colony of DH5α, was 

picked up and it was grown overnight in 10ml LB media, without antibiotics, at 37°C (pre-

inoculum). The third day, 3ml of this growth was inoculated in 100ml of LB2 media and it was 

grown at 37°C by shaking. The bacterial growing was followed by measuring the optical 

density (OD) at 590nm by using the D30 Eppendorf BioSpectometre (Eppendorf, Hamburg, 

Germany), until it reached 0.35-0.37. The suspension was centrifuged at 1000xg for 10 

minutes at 4°C. The supernatant was removed and the pellet was resuspended in 1/10 of 

the initial volume of 1% TSS3 solution. The resuspended cells were aliquoted in 1.5ml tubes, 

immediately frozen with liquid nitrogen, and then the competent cells were stored at -80°C. 

The competence of the generated DH5α cells was evaluated by transforming 100µL 

of DH5α with 0.1 ng/µl of pUC18 plasmid. The cells were plated in LB-agar Petri dish without 

antibiotics, overnight at 37°C. The day after were counted the grown colonies. The 

competence was calculated using the following formula: 

���������� (10
) =
������ ������� �����

���18 �������������
 

 

3.1.2 DH5α plasmid transformation 

Competent E. coli DH5α were transformed in order to amplify the amount of the 

DNA plasmid of interest, that carries the resistance for a specific antibiotic. From this 

transformation, only the colonies that have inserted the plasmid grow in the media containing 

the specific antibiotic. 

60µl of competent cells DH5α were defrosted in ice and transformed with 1µg of 

plasmid using a heat shock protocol. The cells were incubated with the plasmid in ice for 30 

minutes. At the end of this incubation, the mix was shocked at 42°C for 2 minutes. In order 

 
1 Reference to 2.8 paragraph – standard solutions 
2 Reference to 2.8 paragraph – standard solutions 
3 Reference to 2.8 paragraph – standard solutions 
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to stop the reaction, the cells incubated with the plasmid were placed on ice for 1 minute, 

and then 60 µl of LB media was added; cells were left in a shaking incubator for 1 hour at 

37°C. At the end, the reactions were plated in LB-agar petri dish with the specific antibiotic, 

and they were incubated at 37°C overnight. 

The day after, one colony was inoculated overnight at 37°C, in 6ml (for Miniprep) or 

50ml (for Midiprep) of TB4 with the specific antibiotic. The suspension was centrifuged for 

30 minutes at 1937xg and the resulting pellets were stored at -20 °C. 

 

3.1.3 Miniprep: small scale purification of DNA plasmid 

The Miniprep technique allows to extract a small amount of plasmid from bacterial 

cultures. In this work the Wizard Plus SV Minipreps DNA purification system (Promega, 

Fitchburg, WI, USA) was used following the manufacturer’s instructions. The pellet was 

resuspended by vortexing in 250µL of resuspending solution and placed into a 1.5ml tube. 

250µL of lysis solution and 10µL of alkaline protease were added and mixed by pipetting. 

The solution was left 5 minutes at room temperature. 350µL of neutralizing solution were 

added and gently turned. The samples were centrifuged 10 minutes at 16000xg (full speed). 

The supernatant was picked up and added on the top of the Promega kit column; it was then 

centrifuged for 1 minute at 16000xg. The column was then placed in another collecting tube, 

and on the top of it 750µL of washing solution were added. The column was centrifuged for 

1 minutes at 16000xg. This step was repeated by adding 250µL of washing solution and it 

was centrifuged for 2 minutes at 16000xg. For the elution step the column was transferred 

in a 1.5 mL sterile tube and on the top of it 100µL of Nuclease-free water were added. It was 

centrifuged for 1 minute at 16000xg. Before storing it at -20°C, the amount of extracted and 

purified DNA plasmid was measured with the D30 Eppendorf BioSpectometre (Eppendorf, 

Hamburg, Germany). 

 

3.1.4 Midiprep: middle scale purification of DNA plasmid 

Middle scale preparation of DNA plasmid allows to extract medium amount of 

plasmid from total bacterial DNA. In this work, it was performed by using QIAGEN Plasmid 

Mini, Midi and Maxi kits (Qiagen, Hilden, Germany) following manufacturer’s instructions. 

 
4 Reference to 2.8 paragraph – standard solutions 
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The bacterial pellet was resuspended in 4ml of P1 buffer, and 4ml of P2 buffer were added. 

It was then mixed by inverting and the resuspended pellet was left for 5 minutes at room 

temperature. After this resting time, 4ml of prechilled P3 solution were added and the tubes 

were vigorously inverted. The solution was left for 15 minutes on ice, and then it was 

centrifuged ≥20000xg for 30 minutes at 4°C. In the meantime, the QIAGEN-tip column was 

equilibrated with 4ml of QBT buffer. It was left at room temperature until the column becomes 

empty by gravity flow. After the centrifugation, the supernatant was applied to the QIAGEN-

tip. The column was washed two times with 2ml of QC buffer. The DNA was then eluted in 

a clean vessel by adding 15ml of QF buffer, and DNA was precipitated by adding 3.5ml of 

isopropanol (Honeywell, Charlotte, North Carolina, USA). The precipitated DNA was 

centrifuged at ≥15000xg for 30 minutes at 4°C. The supernatant was gently removed, and 

the pellet was washed with 2ml 70% Ethanol (Honeywell, Charlotte, North Carolina, USA). 

It was centrifuged at ≥15000xg for 30 minutes at 4°C, and the supernatant was discarded. 

The pellet was left at room temperature to air-dry it, and it was resuspended in 200µl of 

sterile water. Before storing it at -20°C, the amount of extracted and purified DNA plasmid 

was measured with the D30 Eppendorf BioSpectometre (Eppendorf, Hamburg, Germany). 

 

3.1.5 Site-directed mutagenesis technique (QuickChange) and DNA sequencing 

The site directed mutagenesis technique (QuickChange, Promega) was employed; 

this is usually used to perform insertions, deletions or mutations smaller than 10bp. 

 Two different 0.2ml tube were prepared: one for the negative control and one for 

the sample. In table 1 are reported the reagents for the negative control: 

Control Reaction 

Reagent 

Final 
Concentratio
n (for 50µl of 

reaction) 

10X Pfu buffer 1X 
Template 0,1-1ng/µl 
Deoxynucleotide (dNTP) Solution Mix 2,5mM (Rovalab, Teltow, 
Germany) 0,05mM 
Pfu enzyme  2,5U/µl 

Table 1 – QuickChange negative control reagents. 

In table 2 are shown the sample composition: 



57 

 

Sample Reaction 

Reagent 

Final 
Concentratio
n (for 50µl of 

reaction) 

10X Pfu buffer  1X 
Template 0,1-1ng/µl 
Oligonucleotides Sense (100ng/µl) 2,5ng/µl 
Oligonucleotides Antisense (100ng/µl) 2,5ng/µl 
Deoxynucleotide (dNTP) Solution Mix 2,5mM (Rovalab, Teltow, 
Germany) 0,05mM 
Pfu enzyme  2,5U/µl 

Table 2 – QuickChange sample reagents. 

Sterile water was used to reach the final volume and a drop of mineral oil (Sigma-

Aldrich, St. Louis, Missouri, USA) was put on the top of each sample to avoid the 

evaporation. 

As shown in table 1, in the negative control are not present the oligonucleotides in 

order to avoid the PCR reaction. 

In table 3 are reported the oligonucleotides used to insert the nucleotides mismatches. 

Name Sequence 5' → 3'  

S375G forward ATAACTCTTATGGTGGCTCTAATTC 
S375G reverse GAATTAGAGCCACCATAAGAGTTAT 
    
G376D forward ACTCTTATAGTGACTCTAATTCTGG 
G376D reverse CCAGAATTAGAGTCACTATAAGAGT 
    
N378D forward TATAGTGGCTCTGATTCTGGTGCAG 
N378D reverse CTGCACCAGAATCAGAGCCACTATA 
    
Y374X forward CTGGAAATAACTCTTAGAGTGGCTCTAATTCTGG 
Y374X reverse CCAGAATTAGAGCCCACTCTAAGAGTTATTTCCAG 
    
S375E forward ATAACTCTTATGAGGGCTCAATTC 
S375E reverse GAATTAGAGCCCTCATAAGAGTTAT 
    
S242E forward GATGATCAGATTGCGCAGGAGCTTTGTGGAGAGGACTTG  
S242E reverse CAAGTCCTCTCCACAAAGCTCCTGCGCAATCTGATCCTC 
    
S305E forward AACAATCAAGGTGAGAATATGGGTGGTGGG  
S305E reverse CCCACCACCCATATTCTCACCTTGATTGTT  
    
S387-395E 
forward 

GCAGGTTGGGGAGAGGCAGAGAATGCAGGGGAGGGCGAGGGTT
TTAATGGA 
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S387-395E 
reverse 

TCCATTAAAACCCTCGCCCTCCCCTGCATTCTCTGCCTCTCCCCA
ACCTGC  

    
S404E forward GGAGGCTTTGGCTCAGAGATGGATTCTAAG  
S404E reverse CTTAGAATCCATCTCTGAGCCAAAGCCTCC  

Table 3 – Oligonucleotide sequences used for site directed mutagenesis. 

The PCR protocol was carried out using 2720 Thermal Cycler (Applied Biosystem, 

Foster City, California, USA), following the manufacture’s instruction: 

1. 95°C for 30 seconds (first denaturation); 

2. 95°C for 30 seconds; 

3. 55°C for 60 seconds; 

4. 68°C for 1minute/kb of plasmid length; 

5. 4°C. 

From step 2 to step 4 the number of cycles were set from 12 to 18, depending on 

the number of mutations that need to be inserted. When the PCR finished, 20U/µl of the 

DpnI enzyme (New England Biolabs, Ipswich, Massachusetts, USA) was added. The 

reaction was incubated for 3 hours at 37°C. The DpnI restriction enzyme cuts the wild type 

plasmid which has the methylated sites, in order to leave only the mutated (the amplified) 

one. 

From 1 to 20µl of the PCR product digested with DpnI enzyme, were then 

transformed in E. coli DH5α competent cells following the heat shock protocol5. The 

remaining reaction was stored at -20°C. 

The purified plasmid DNA was sent to GATC Biotech, a European Custom 

Sequencing Center (Eurofins Scientific, Luxembourg), to be sequenced with specific 

oligonucleotides, upstream and downstream our insert (table 4), to check if the mutation of 

interest was present and also to avoid the incidence of other sporadic mutations. 

Name Sequence 5' → 3'  

CMV 30 forward AATGTCGTAATAACCCCGCCCCGTTGACGC 
CMV 24 reverse TATTAGGACAAGGCTGGTGGGCAC 

Table 4 – Oligonucleotide sequence upstream (CMV 30 forward) and downstream (CMV 24 reverse) the insert of 

interest, used for sequencing. 

  

 
5 Reference to 2.2.1 paragraph – 2.1.2 DH5α plasmid transformation 



59 

 

3.2 Cell culture techniques 

3.2.1 Gene knockdown 

In this work, gene knockdown technique was applied to different cell lines by 

exploiting various reagents in order to obtain an optimal silencing efficiency. In table 5 the 

siRNA sequences of the analyzed gene are reported. Details of knockdown protocols for 

various genes are included below. 

Name Sequence 5' → 3'  

Fire-fly luciferase (siLUC) forward UAAGGCUAUGAAGAGAUAC[dT][dT] 
Fire-fly luciferase (siLUC) reverse GUAUCUCUUCAUAGCCUUA[dT][dT] 
    
TDP-43 (siTDP-43) forward GCAAAGCCAAGAUGAGCCU[dT][dT] 
TDP-43 (siTDP-43) reverse AGGCUCAUCUUGGCUUUGC[dT][dT] 
    
LCP1 (siLCP1) forward GGACAUUUAGGAACUGGAU[dT][dT] 
LCP1 (siLCP1) reverse AUCCAGUUCCUAAAUGUCC[dT][dT] 
    
EPDR1 (siEPDR1) forward GCCAGAUGGCCCAACUGGA[dT][dT] 
EPDR1 (siEPDR1) reverse UCCAGUUGGGCCAUCUGGC[dT][dT] 
    
SHANK1 (siSHANK1) forward CUCUGUAGAGGUGAUUCGA[dT][dT] 
SHANK1 (siSHANK1) reverse UCGAAUCACCUCUACAGAG[dT][dT] 
    
ITPR1 (siITPR1) forward GGAAGAACCAGGAGUAUAU[dT][dT] 
ITPR1 (siITPR1) reverse AUAUACUCCUGGUUCUUCC[dT][dT] 

Table 5 – siRNA sequences. 

 

3.2.1.1 Knockdonw in HeLa cell line 

HeLa cell are immortalized cell line derived from cervical cancer. In this work, this 

cell line was used for transient transfection experiments because they are quite amenable 

to different cellular treatments, like silencing and transfection, resulting in a high efficiency 

of the assay with a low level of non-specific death. 

HeLa cell line silencing was performed to knockdown TDP-43 gene using a siRNA 

against Fire-fly luciferase (siLUC) gene as a control. It was carried out in three days: at day 

one, 170000 HeLa cells were plated in p35 Petri dish with 1.5ml of D-MEM 6media. At day 

two and three, two rounds of silencing were performed using 3µl of Oligofectamine™ 
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Transfection Reagent (Invitrogen, Carlsbad, California, USA), following the manufacture’s 

instruction, with 80nM final concentration of siRNA (40µM) against TDP-43 and Luciferase, 

in a final volume of 1.5ml of Opti-MEM 7media. 

Other treatment followed the silencing, and after 24 hours the cells were collected 

to test splicing capability of the mutants. 

 

3.2.1.2 Knockdown in SH-Sy5Y ECACC (European Collection of Authenticated Cell 

Cultures, England) cell line 

SH-Sy5Y (ECACC, England) neuroblastoma cell line gene silencing, was performed 

to test the effect of the downregulation of some genes in relation to TDP-43 expression and 

phosphorylation. This cellular model is less prone to treatments, but it is derived from 

neuroblastoma and it can recap neuronal pathways. Considering this, Oligofectamine™ 

Transfection Reagent (Invitrogen, Carlsbad, California, USA) is too weak for this cell line, 

accordingly the knockdown was carried out using Lipofectamine RNAiMAX reagent 

(Invitrogen, Carlsbad, California, USA) following the datasheet instructions. Basically, 

800000 cells were plated and silenced at day one in p35 plates, using 9µl of Lipofectamine 

RNAiMAX reagent, 3µl of 40µM siRNA (against LCP1, EPDR1, SHANK1, ITPR1, and 

Luciferase as a control), and 150µl of Opti-MEM media, in a final volume of 1.5ml in D-

MEM:F12. One knockdown round is enough to achieve a good silencing efficacy. After 48 

hours, the cells were collected and prepared for the following tests, or to 

immunofluorescence analysis. 

 

3.2.2 Cellular transfection 

In order to obtain protein overexpression, cellular transfection with DNA plasmids 

was performed. In this work, five plasmids were used for the overexpression system: 

• pTB-CFTR_Ex9 C155T co-transfected with the pFLAG-CMV4 TDP-43 siRNA resistant 

for the add back experiments, containing the minigene with the exon 9 of the CFTR 

(Pagani et al., 2003). 
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• p-CMV4 plasmid used as a negative control in the RNA immunoprecipitation assay 

(Fig.20). 

 

Figure 20 – p-CMV4 map. 

• pFLAG-CMV4 TDP-43 siRNA resistant was used to overexpress TDP-43 wild type and 

mutated in the transient transfection experiments and for the RNA immunoprecipitation 

protocol. Figure 21 represents the plasmid map. 
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Figure 21 – pFLAG-CMV4 TDP-43 siRNA resistant map. 

• p5cDNA FRT/TO flag TDP-43 was used in the stable clone creation, in order to 

overexpress stably TDP-43 wild type and the mutant form in the Hek293 Flp-In T-

REx (Life Technology, Carlsbad, California, USA) cell line (Fig.22). 
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Figure 22 – p5cDNA FRT/TO flag TDP-43 map. 

• pOG44 was necessary for the p5cDNA FRT/TO flag TDP-43 integration during the 

stable clone creation (Fig.23). 
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Figure 23 – pOG44 plasmid map. 

 

3.2.2.1 Transfection in HeLa cell line and Hek293 Flp-In T-Rex (Life Technology, Carlsbad, 

California, USA) cell line 

For the transient transfection experiments in HeLa cells and for the stable expression 

in Hek293 Flp-In T-Rex (Life Technology, Carlsbad, California, USA), the aforementioned 

plasmids were transfected with Effectene Transfection Reagent (Qiagen, Hilden, Germany), 

following the manufacture’s instruction. Basically, the Effectene reagent is reacting in its own 

buffer (EC Buffer) with the Enhancer reagent forming micelles able to transport the DNA 

plasmid inside the cells. In table 6, the amount of reagents and plasmid are reported for the 

used plate. 

  EC 
Buffer 

Enhance
r 

Effecten
e 

DNA plasmid 



65 

 

p35 (HeLa) 
final 

volume=1,5
ml D-MEM 

150µl 4µl 5µl 
0,5µg pTB-CFRT_Ex9 C155T 

1µg pFLAG-CMV4 TDP-43 siRNA 
resistant 

p60 (Hek293) 
final 

volume=1,5
ml D-MEM 

300µl 8µl 10µl 
0,5µg pOG44 

1µg p5cDNA FRT/TO flag TDP-43 

Table 6 – Effectene transfection reagents reported according to the plate volume. 

First of all, the DNA plasmid was mixed together with the EC buffer and the 

enhancer, and this mix was left at room temperature 5 minutes. After that, the Effectene 

reagent was added and left 10 minutes at room temperature, and then the entire mix was 

administered to the cells. 

 

3.2.2.2 Transfection in SHSy5Y ECACC cell line 

The transient transfection in SHSy5Y ECACC cell line was performed for the RNA 

immunoprecipitation experiment, and it was carried out in p100 plates with the Lipofectamine 

3000 reagent (Invitrogen, Carlsbad, California, USA). Like the Effectene reagent, also the 

Lipofectamine 3000 needs an enhancer for the reaction. Basically, two mix were prepared: 

one containing 500µl of Opti-MEM and 30µl of Lipofectamine 3000; the other one composed 

by 500µl of Opti-MEM, 16µg of DNA plasmid (p-CMV4 or pFLAG-CMV4 TDP-43 siRNA 

resistant), and 32µl of p3000, the enhancer of the reaction. Then the two solutions were 

mixed together and left 10 minutes at room temperature before place it in the cell media (D-

MEM F-12, 9ml as final volume). 

 

3.2.3 Generation of Constitutive Expression Cell Lines 

The creation of a cell line that stably and constitutively expresses a gene/protein of 

interest can be a powerful tool for studying cellular processes regarding the overexpression 

of that protein or the consequences of a mutated form. 

Hek293 Flp-In T-REx (Life Technology, Carlsbad, California, USA) cell line is 

designed for rapid generation of stable clones ensuring the homogenous expression of the 

gene/protein of interest due to the presence of a Flp Recombination Target (FRT) site. 

Exploiting this technology, a tetracycline inducible cell line was created by co-transfecting 
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the plasmid p5cDNA FRT/TO flag TDP-43, together with the pOG44. As reported in Figure 

21, the p5cDNA FRT/TO plasmid is carrying the gene of interest, such as TDP-43, in frame 

with the flag tag, and it contains also the FRT homologous site to the one present in the cell 

line (Sauer, 1994). The presence of a homologous site is not enough to promote the stable 

integration of the gene of interest, and for this reason it is co-transfected with the pOG44 

vector, that contains the Flp recombinase enzyme (O’Gorman et al., 1991). Moreover, the 

expression of the protein of interest is strictly controlled and it can only be detected upon 

tetracycline induction. Indeed, the T-REx system is based on the binding of tetracycline to 

the Tet repressor, releasing the promoter and, at least, leading to the constitutive expression 

of the gene of interest (Nelson et al., 1987; Boshart et al., 1985). 

Basically, the creation of a constitutive expressing cell line takes few passages: first 

of all, 500000 Hek293 Flp-In T-REx cells were seeded in p60 plates, in D-MEM media 

containing Blasticidine S HCL (15µg/ml) (Gibco, Life Technology, Carlsbad, California, 

USA). The second day the cells were co-transfected with pOG44 and p5cDNA FRT/TO flag 

TDP-43 vectors. After 24 hours, the cells were detached with 2% trypsin-PBS8, and plated 

in p100 plates. This step will allow to select mono-clones, ensuring a proper distance 

between the single selected cells. The day after, the D-MEM media containing the selection 

for the integration, such as Hygromycin (100µg/ml) (ThermoFisher Scientific, Waltham, 

Massachusetts, USA), was added. At this point, most of the cells died, and the single formed 

clones were collected and singularly plated first in 24-well plates, and then they were moved 

in p35. At this point, the stable clones are ready to be maintained in the double selection 

(blasticidine and hygromycin) or to be tested upon Anhydrotetracycline (1µg/ml) (Sigma-

Aldrich, St. Louis, Missouri, USA) induction. In this work, the experiments on the stable 

clones were performed after 48 hours from the induction. 

 

3.2.4 Sodium arsenate treatment 

In order to induce cellular stress, the cells were treated with sodium arsenate 

following Colombrita and colleagues protocol (Colombrita et al., 2009). Briefly, the sodium 

arsenate was administrated in the cell media with the final concentration of 0.5mM, and it 

was left for 40 minutes in the incubator (37°C). After that, the media was removed, and cell 

were collected or processes for the immunofluorescence analysis. 

 
8 Reference to 2.8 paragraph – standard solutions 
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3.2.5 Toxicity study: Lactate Dehydrogenase (LDH) release toxicity assay 

The LDH release assay, is a non-radioactive toxicity analysis that quantitatively 

measures the release of lactate dehydrogenase (LDH) derived from the cell lysis. In this 

work it was used the CytoTox 96® Non-Radioactive Cytotoxicity Assay (Promega, Madison, 

Wisconsin, USA). 

Basically, 60000 cells were plated in 24-well plates in 500µl of media. After 24 hours, 

the cells were transfected using the Effectene method. 24, 48 and 72 hours later, the activity 

of LDH enzyme release by the cells was measured in relation to the toxicity of the treatment 

(silencing or transfection). From each well, were transferred 200µl in a tube and spun for 4 

minutes at 250xg. From the supernatant, 40µL were taken and placed in triplicate in a 96-

well plate. 40µL of substrate were added and the plate was left in dark for 30 minutes at 

room temperature. 40µL of stop solution were added in order to block the reaction. At this 

point the absorbance at 485nm was read due to the EnVision Multilabel Reader 

(PerkinElmer, Waltham, Massachusetts, USA). 

The protocol is the same for each time-laps and it needs some controls: 

• D-MEM, such as the medium culture without cells to test its background; 

• D-MEM with cells, to test the basal toxicity without transfection; 

• Maximum LDH Release Control, to test the maximum release of LDH when there is the 

apex of cell lysis. After 24 hours (and the same is for 48 and 72 hours) form the 

transfection, only in the Maximum LDH Release Control, were added 12.5µL of Lysis 

Buffer 10X (the final concentration must be 0.25X in 500µL) and incubated 40 minutes 

at 37°C. 

 

3.2.6 Mitochondria marker: MitoTracker Red CMXRos kit (ThermoFisher Scientific, 

Waltham, Massachusetts, USA) 

In order to track the mitochondria, the MitoTracker Red CMXRos kit (ThermoFisher 

Scientific, Waltham, Massachusetts, USA) was employed. This kit allows to specifically mark 

the mitochondria through a probe linked to red fluorescent dye. 250nM of MitoTracker Red 

CMXRos kit was added to the cell media, and it was left for 2 minutes. After this time, the 
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media was removed and the cells were prepared for the immunofluorescence assay. All the 

following steps were carried out in dark. 

 

3.2.7 Multipotent stem cells derived from skin biopsies differentiated in neuronal cells 

Multipotent stem cells derived from skin biopsies were cultured and differentiated by 

our collaborators at University Hospital Santa Maria della Misericordia in Udine (Italy), 

following their already published protocol (Dardis et al., 2016; Bergamin et al., 2013). 

Basically, the stem cells were enriched from patients’ skin biopsies and also from already 

established skin fibroblast cultures at early passages, through 3 steps in selective medium 

composed of 60% DMEM/40% MCDB-201 (Sigma-Aldrich, St. Louis, Missouri, USA) 

together with 1 mg/ml Linoleic Acid-BSA (Sigma-Aldrich, St. Louis, Missouri, USA); 10-9 M 

dexamethasone (Sigma-Aldrich, St. Louis, Missouri, USA); 10-4 M Ascorbic acid-2 

phosphate (Sigma-Aldrich, St. Louis, Missouri, USA); 1X Insulin transferrin-sodium selenite 

(Sigma-Aldrich, St. Louis, Missouri, USA); 2% fetal bovine serum (FBS), (STEMCELL 

Technologies, Vancouver, Canada), 10 ng/ml human PDGF-BB (Peprotech EC, London, 

UK); 10 ng/ml human EGF (Peprotech EC, London, UK) (Bergamin et al., 2013). The 

neuronal differentiation was performed by passing the cells in three different media: the first 

one, called N1, was composed by DMEM/HG with 10% FBS. After 24 hours it was replaced 

with the N2 fresh medium supplemented with 1% of B27 (Invitrogen, Carlsbad, California, 

USA), 10 ng/ml EGF (Peprotech EC, London, UK) and 20 ng/ml bFGF (Peprotech EC, 

London, UK). The cells were left for 5 days, and then they were incubated for 24/48 hours 

in N3 medium, composed by DMEM supplemented with 5 μg/ml insulin, 200 μM of 

indomethacin and 0.5 mM IBMX (all from Sigma-Aldrich, St. Louis, Missouri, USA) without 

FBS. The differentiation was determined by analyzing the expression of the neuron specific 

markers, such as NeuN and tubulin b3 (Dardis et al., 2016; Bergamin et al., 2013). 
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3.3 Propidium iodide cell cycle assay and flowcytometry analysis 

500000 Hek293 Flp-In T-REx cells were plated in p35 with the D-MEM tetracycline 

selective medium. After 48 hours from the induction, the cells were collected and 

resuspended in 300µl of ice-cold PBS and 700µl of Ethanol (Honeywell, Charlotte, North 

Carolina, USA) were added. The cells were resuspended and kept at -20°C. After few hours, 

the cells were centrifuged 5 minutes at 500xg, and the supernatant was discarded. The 

pellet was carefully resuspended with 500µl of 0.1% of Nonidet P40 (ThermoFisher 

Scientific, Waltham, Massachusetts, USA) (NP40)-PBS supplemented with of RNase 

(Sigma-Aldrich, St. Louis, Missouri, USA) (10mg/ml), and propidium iodide (5µg/ml) (Sigma-

Aldrich, St. Louis, Missouri, USA), and it was left 15 minutes in dark at room temperature. 

At this point the flowcytometry analysis was performed using FACS Calibur (Becton 

Dickinson, Franklin Lakes, New Jersey, USA). The gates were set based on physical 

parameters (side and forward scatted), and excluding/distinguishing the aggregates from 

the dividing cells (relation between area and breadth). The histogram representing the 

percentage of the events in the different phase of the cell cycle (G1, G2, S/M) was then 

created applying a third gate comparing the height and the signal intensity. In this way it was 

possible to distinguish the diploids (G1) from tetraploids (G2). The raw data were analyzed 

using FlowJoVX 64-bit software (FlowJo LLC Becton Dickinson, Ashland, Oregon, USA). 
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3.4 Immunohistochemical and immunocytochemical analysis 

3.4.1 Immunohistochemical analysis on brain region derived from S375G patient 

The immunohistochemical analysis on the S375G patient brain and spinal cord was 

carried out by our colleagues at University of Kansas School of Medicine, in Kansas City 

(USA). Basically, they harvested the brain and the spinal cord 24 hours after death. The 

right hemi-brain was sectioned fresh, while the left hemi-brain was fixed in 10% buffered 

formalin solution. For the neurohistopathological studies, they processed different 5 µm-

thick formalin-fixed sections derived from multiple areas of the central nervous system, 

including middle frontal, primary motor, cingulate, temporal, insular, parietal and occipital 

cortex, hippocampus, caudate nucleus, putamen, globus pallidus, amygdala, thalamus, 

cerebellar cortex, dentate nucleus, midbrain, pons, medulla, cervical, thoracic, lumbar, and 

sacral levels of the spinal cord. They stained the sections with hematoxylin and eosin with 

Luxol Fast Blue, and they evaluated the presence of phosphorylated and non-

phosphorylated TDP-43 using, respectively, phosphorylated TDP-43 antibody (pS409/410, 

monoclonal, Cosmo Bio, Tokyo, Japan), and non-phosphorylated TDP-43 antibody 

(polyclonal, Proteintech Group, Chicago, IL) (Newell et al., 2018). 

 

3.4.2 Immunocytochemical analysis 

primary 
antibody 

host dilution media company 
secondary 
antibody 

host dilution media company 

α-flag M2  mouse 1:200 2%BSA
/PBS 

Sigma-
Aldrich (St. 

Louis, 
Missouri, 

USA) 

α-mouse 
Alexafluor 

594 
donkey 1:500 2%BSA

/PBS 

Invitrogen 
(Carlsbad, 
California, 

USA) 

α-TDP-43  rabbit 1:200 2%BSA
/PBS 

Proteintec
h EU 

(Manchest
er, UK) 

α-rabbit 
Alexafluor 

594 
donkey 1:500 2%BSA

/PBS 

Invitrogen 
(Carlsbad, 
California, 

USA) 

α-phospho 
TDP-43 

(pS409/41
0)  

rabbit 1:200 2%BSA
/PBS 

Cosmo Bio 
(Tokyo, 
Japan) 

α-rabbit 
Alexafluor 

594 
donkey 1:500 2%BSA

/PBS 

Invitrogen 
(Carlsbad, 
California, 

USA) 

α-AIF1 mouse 1:100 
0,1M 

glycine/
PBS 

Invitrogen 
(Carlsbad, 
California, 

USA) 

α-mouse 
Alexafluor 

488 
donkey 1:600 1X PBS 

Invitrogen 
(Carlsbad, 
California, 

USA) 
Table 7 – Immunocytochemical analysis: pramary and secondary antibodies. 
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3.4.2.1 Standard immunofluorescence assay 

According to the cellular type and the assay, on a cover glass (Corning, New York, 

USA) were plated: 

• 300000 cells for HeLa and Hek293 Flp-In T-REx; 

• 800000 cells for SH-Sy5Y ECACC. 

Because Hek293 Flp-In T-REx and SH-Sy5Y ECACC are not prone to attach to the 

cover glass surface, it has been coated with poly-L-lysine solution at a final concentration of 

0.01% (w/v) in H20 (Sigma-Aldrich, St. Louis, Missouri, USA) for 20 minutes. After this 

incubation time, the poly-L-lysine was carefully removed and the cover glass was washed 

for three times with sterile water, and it was air-dried for 1 hour under a hood. 

The immunofluorescence protocol was carried out after different assays were 

performed on the cell lines, like gene knockdown, protein overexpression, sodium arsenate 

treatment, tetracycline induction, etc. and it was carried out over two days. During day one, 

the cell media was removed and the cells were carefully washed one time with 2ml of 1X 

PBS. Then, the cells were fixed with 2ml of 3.2% para-formaldehyde (PFA) (Electron 

Microscopy Science, Hatfield, Pennsylvania, USA) in 1X PBS for 1 hours at room 

temperature. PFA was removed, and the slides were washed 3 times with 2 ml of 1X PBS. 

Cell permeabilization was performed with 2ml of 0.3%Triton (Sigma-Aldrich, St. Louis, 

Missouri, USA) in 1X PBS, left for 5 minutes in ice. Triton was removed and the slides were 

washed three times with 2ml of 1X PBS. In order to block non-specific sites, 1.5ml of 

2%BSA/1XPBS were added to the slides for 20 minutes at room temperature. The slides 

were lifted up and incubated face down with 60 µL of the primary antibody (table 7) diluted 

in 2%BSA/1XPBS, and they were left overnight at 4°C in a dark humidified chamber. The 

day after, the slides were lifted up with 1ml of 1XPBS and they were washed twice with 2ml 

of 1XPBS. The slides were incubated face down with 60µL of the secondary antibody (table 

7) diluted in 2%BSA/1XPBS for 1 hour in a dark humidified chamber. In the meantime, the 

SUPERFROST coverslip (ThermoFisher Scientific, Waltham, Massachusetts, USA) were 

cleaned with 100% isopropanol (Honeywell, Charlotte, North Carolina, USA). After the 

incubation time, the slides were picked up with 1ml of 1XPBS and they were washed twice 

with 2ml of 1X PBS. The slides were placed face down on the coverslip with 18µL of 

Vectashield with DAPI applied (Vector Laboratories Inc., Burlingame, California, USA). The 

slides were sealed with nail polish and stored in dark at 4°C.  
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The slides were analyzed with Nikon Elements AR 4.40.00 64-BIT confocal 

microscope (Nikon, Minato, Tokyo, Japan), and with LEICA epifluorescent microscope 

(Leica, Wetzlar, Germany). 

 

3.4.2.2 Immunocytochemical assay: mitochondria and Apoptosis Inducing Factor 1 (AIF1) 

protein tracking 

In order to detect the Apoptosis Inducing Factor 1 (AIF1) protein an optimized 

protocol was set-up. AIF1 is not ubiquitously expressed among various cells, but is normally 

localized in the mitochondria. The mitochondria structure was detected with the MitoTracker 

Red CMXRos kit (ThermoFisher Scientific, Waltham, Massachusetts, USA), while AIF1 

protein with mouse α- AIF1 monoclonal antibody (Invitrogen, Carlsbad, California, USA) 

(table 7). After the incubation with the MitoTracker Red CMXRos kit9, the media was 

removed and the cells, plated on the coverslip, were washed with 2ml of 1XPBS. The slides 

were fixed with 3.2% para-formaldehyde (PFA) (Electron Microscopy Science, Hatfield, 

Pennsylvania, USA) in 1XPBS for 20 minutes at room temperature, in dark. The PFA was 

removed, and the slides were washed three times with 2ml of 1XPBS. The cells were then 

permeabilized with 2ml of 0.3%Triton (Sigma-Aldrich, St. Louis, Missouri, USA) in 1XPBS, 

left for 5 minutes at room temperature in dark. Three washes with 1XPBS were followed. 

The block of non-specific sites was performed by incubating the slides with 0.1M 

glycine/PBS for few minutes. The slides were then incubated face down, in a dark humidified 

chamber, with 60µl mouse α- AIF1 monoclonal antibody (Invitrogen, Carlsbad, California, 

USA) (table 7), at 37°C overnight. The day after, the slides were recovered, washed three 

times with 1X PBS, and they were incubated with 60µl of secondary antibody (table 7). The 

incubation lasted for 30 minutes in a dark humidified chamber at 37°C. Three washes with 

1X PBS were followed. The nuclei staining was performed with bisbenzimide H33342 

trihydrochloride (Hoechst) (Sigma-Aldrich, St. Louis, Missouri, USA) (1µg/µl) diluted 1:1000 

in 2ml of 1X PBS, left for 10 seconds. The slides were washed three times with 2ml of 1X 

PBS, and then three times with 2ml of sterile water. The slides were blocked with a drop of 

Mowiol mounting medium (Sigma-Aldrich, St. Louis, Missouri, USA) and nail polish. 

 
9 Reference to 2.2.6 paragraph – 2.2.6 Mitochondria marker: MitoTracker Red CMXRos kit (ThermoFisher 
Scientific, Waltham, Massachusetts, USA). 
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The slides were analyzed with LEICA epifluorescent microscope (Leica, Wetzlar, 

Germany). 

 

3.4.2.3 Region of Interest (ROI) calculation 

For the quantitative analysis, the Regions of Interest (ROIs) were selected from the 

gray scale, monochromatic images, using Fiji win-64 (ImageJ) software, and their 

fluorescence signals were measured in arbitrary units. For each condition, the average ratio 

between the cytoplasmic and nuclear signal, was plotted in a grouped graph with standard 

deviation and number of analyzed samples using GraphPad software (GraphPad Software, 

La Jolla California, USA). 
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3.5 Protein and Peptide analysis 

3.5.1 Nuclear-cytoplasmic fractionation 

For the nuclear-cytoplasmic separation, the NE-PER (Nuclear and Cytoplasmic 

Extraction Reagents) (ThermoFisher Scientific, Waltham, Massachusetts, USA) kit was 

employed. This kit allows a stepwise separation of cytoplasmic and nuclear extracts from 

mammalian cultured cells or tissue. 

1-10 × 106 cells were seeded in p100 plates, two for each condition. After the 

treatment, the cells were collected in 5ml tubes and they were centrifuged 5 minutes at 

500xg. The pellet was resuspended in 500µl of 1X PBS and the two replicates were 

combined in the same tube. The resuspended cells were transferred in 1.5ml tube and they 

were centrifuged 5 minutes at 500xg. The supernatant phase was discarded. The pellet was 

resuspended with the amount of CER I buffer necessary for the packed cell volume (table 

8). The resuspended cells were vortexed 15 seconds at maximum speed, and they were left 

10 minutes in ice. The CER II buffer was added and the sample was vortexed 5 seconds at 

maximum speed. It was left 1 minutes in ice and then it was centrifuged 5 minutes at 

16000xg. The supernatant, such as the cytoplasmic fraction, was collected and stored at -

80°C. In order to remove the remaining cytoplasmic fraction, the pellet was washed with 1X 

PBS and well resuspended. It was centrifuged 5 minutes at 16000xg. An additional step with 

CER I buffer was performed, then the sample was centrifuged at 16000xg 5 minutes, and 

the supernatant discarded. At this point the nuclear fraction can be extracted: the remaining 

pellet was resuspended with NER buffer, and it was vortex 15 seconds at maximum speed 

four times, leaving the sample at room temperature for 10 minutes between each vortex 

session. The sample was centrifuged 10 minutes at 16000xg, and the supernatant, such as 

the nuclear faction, was recovered. The nuclear fraction and the remaining pellet were 

stored at -80°C. 

Packed cell volume (µl) CER I (µl) CER II (µl) NER (µl) 

10 100 5,5 50 
20 200 11 100 
50 500 27,5 250 

100 1000 55 500 
Table 8 - NE-PER Nuclear and Cytoplasmic Extraction reagents volumes according to packed cell volume. 
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The sample concentrations were measured with Bradford (Biorad, Hercules, 

California, USA) method10, and 20µg of sample were loaded in a Sodium Dodecyl Sulphate 

(SDS) gel electrophoresis together with 4X NuPAGE LDS Sample Buffer (ThermoFisher 

Scientific, Waltham, Massachusetts, USA). 

 

3.5.2 Solubility assay: soluble-insoluble fractionation 

The solubility assay allows to detect the aggregative status of a protein by dividing 

the cell lysate in two fractions: supernatant, with soluble proteins, and pellet, containing the 

insoluble fraction. 

The cells were seeded at 70% confluency in p100 plates, and they were collected 

and resuspended in 1mL of 10X RIPA buffer (Cell Signaling Technology, Danvers, 

Massachusetts, USA). After 2 minutes at room temperature, the sample was rotated for 30 

minutes at 4°C. Following, it was centrifuged at 7000xg for 30 minutes at room temperature. 

The whole supernatant was transferred in a 1.5 ml tube, and it was sonicated in an ice-

cooled sonicating bath (BioRuptor UCD-200, Diagenode, Belgium) for 5 minutes at high 

impulse (30 seconds on, 30 seconds off), obtaining the protein subcellular fraction. The 

protein concentration was calculated with Bradford (Biorad, Hercules, California, USA) 

method. At this point, 60µg of sonicated samples were mixed with 10µL of 4X NuPAGE LDS 

Sample Buffer (ThermoFisher Scientific, Waltham, Massachusetts, USA), representing the 

input; and then it was stored at -20°C. On the other hand, 600µg of lysate were mixed with 

10X RIPA buffer (Cell Signaling Technology, Danvers, Massachusetts, USA) until they reach 

500µL of final volume, and they were transferred in Beckman polycarbonate thick wall 

Centrifuge tube (Beckman Coulter, Brea, California, USA). The sample was ultra-centrifuged 

with the OptimaTM L-90K Ultracentrifuge (Beckman Coulter, Brea, California, USA) at the 

following conditions: 

• 121968xg; 

• 1 hour; 

• 25°C; 

• acceleration: SLOW; 

• deceleration: SLOW. 

 
10 Reference to 2.5.3.3 paragraph – Bradford method 



76 

 

50µL, such as 1/10 of ultra-centrifuged sample, were added to 10µL of 4X NuPAGE 

LDS Sample Buffer (ThermoFisher Scientific, Waltham, Massachusetts, USA), representing 

the supernatant phase; and it was stored at -20°C. The left supernatant was collected in 

other tube and stored at -20°C. The remaining pellet was washed two times with 100µL of 

10X RIPA buffer (Cell Signaling Technology, Danvers, Massachusetts, USA), and then it 

was resuspended with 100µL of urea buffer11. 10µL of the resuspended pellet fraction were 

mixed with 10µL of 4X NuPAGE LDS Sample Buffer (ThermoFisher Scientific, Waltham, 

Massachusetts, USA) and it was stored at -20°C. All the collected fractions were stored at -

20°C. 

The samples, mixed with 4X NuPAGE LDS Sample Buffer (ThermoFisher Scientific, 

Waltham, Massachusetts, USA), were ready to be loaded in a SDS PAGE gel, following a 

denaturation step. 

 

 

3.5.3 Sodium Dodecyl Sulphate (SDS) - Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

and Western Blot assay 

3.5.3.1 Sample preparation: brain tissue 

25mg of frozen formalin-fixed sections derived from multiple areas of the central 

nervous system, were cut and put in 230µl of 10X RIPA buffer (Cell Signaling Technology, 

Danvers, Massachusetts, USA), with 20µl of Protease Inhibitor Cocktail (25X) (Roche, 

Basel, Switzerland). The samples were sonicated two times in an ice-cooled sonicating bath 

(BioRuptor UCD-200, Diagenode, Belgium), 10 minutes each at high impulse (30 seconds 

on / 30 seconds off). Bradford (Biorad, Hercules, California, USA) colorimetric assay was 

performed to calculate the protein concentration, loading in the gel 10µg for each sample, 

together with 4X NuPAGE LDS Sample Buffer (ThermoFisher Scientific, Waltham, 

Massachusetts, USA). The samples were stored at -20°C. 

 

 
11 Reference to 2.8 paragraph – standard solutions 
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3.5.3.2 Sample preparation: cell lysate 

For protein detection, the samples derived from cell culture were resuspended in 

100µl of 1X PBS with 1X of Protease Inhibitor Cocktail (25X) (Roche, Basel, Switzerland). 

The cell lysate was obtained by sonicating the samples two times in an ice-cooled sonicating 

bath (BioRuptor UCD-200, Diagenode, Belgium), 5 minutes each, at high impulse (30 

seconds on, 30 seconds off). At this point, the sample concentration was detected using 

Bradford (Biorad, Hercules, California, USA) colorimetric method, and from 10 to 20µg of 

samples were loaded in the SDS-PAGE gel, together with 4X NuPAGE LDS Sample Buffer 

(ThermoFisher Scientific, Waltham, Massachusetts, USA). The samples were stored at -

20°C. 

 

3.5.3.3 Sample preparation: concentration detection using Bradford colorimetric assay  

Bradford colorimetric assay was used to detect protein concentration in order to load 

the same amount of sample for each condition. Protein assay Day Reagent Concentrated 

solution (Biorad, Hercules, California, USA) was diluted 1:5 in the cell resuspended media 

and 5µl of samples were added to a final volume of 1ml. The absorbance at 595nm was 

read with the D30 Eppendorf BioSpectometre (Eppendorf, Hamburg, Germany), and the 

final sample concentration was calculated basing on a standard curve created with scalar 

dilution of Bovine Serum Albumin (BSA) protein with a well-known starting concentration. 

 

3.5.3.4 Sample preparation: denaturation 

According to the experiment and to the protein that needs to be detected, 10 to 20µg 

of samples were loaded in the SDS-PAGE. Before loading them on the gel, the samples 

were denaturated together with 4X NuPAGE LDS Sample Buffer (ThermoFisher Scientific, 

Waltham, Massachusetts, USA) for 5 minutes at 85°C. A brief centrifuged was performed 

before loading the gel. 

 

3.5.3.5 Sodium Dodecyl Sulphate - Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

Sodium Dodecyl Sulphate - Polyacrylamide Gel Electrophoresis (SDS-PAGE) is the 

most common electrophoretic technique employed to study proteins separation based on 
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their molecular weight. Combined with the Western Blot technique, the protein of interest 

can be detected with specific antibodies. 

In this work, SDS PAGE was carried out using NuPAGE Bis-Tris 1.5mm precast 

gels (ThermoFisher Scientific, Waltham, Massachusetts, USA) 10% concentrated, and they 

were run with 1X NuPAGE MOPS SDS Running Buffer (20X) (ThermoFisher Scientific, 

Waltham, Massachusetts, USA). Gradient 4-12% NuPAGE Bis-Tris 1.5mm precast gels 

(ThermoFisher Scientific, Waltham, Massachusetts, USA) were used to better separate 

ITPR1, a high molecular weight protein. Together with the samples, Blue Protein Standard 

Broad Range (P7706S) (New England Biolabs, Ipswich, Massachusetts, USA), and 

SHARPMASS VII (EPS026500) (Euroclone S.P.A., Pero, Italy) were respectively loaded as 

molecular weight markers. 

 

3.5.3.6 Western Blot assay 

The western Blot technique provides the transfer of the separated proteins from the 

gel to a membrane in order to detect specific proteins using a couple of antibodies: the 

primary antibody, which will recognize the specific target; and the secondary antibody, that 

recognize the primary, and it is conjugated with a chemiluminescent molecule. 

In this work the transfer from the gel to the membrane was performed with Power 

Blotter–Semi-dry Transfer System (ThermoFisher Scientific, Waltham, Massachusetts, 

USA), using Power Blotter Pre-cut Membranes and Filters, Nitrocellulose (ThermoFisher 

Scientific, Waltham, Massachusetts, USA). The blot lasted for 15 minutes, using a pre-

programmed method (25V, 1.3A) for 1.5mm gels. 

To control the correct transfer, the nitrocellulose membrane was stained with Pierce 

Reversible Protein Stain Kit for Nitrocellulose Membranes (ThermoFisher Scientific, 

Waltham, Massachusetts, USA), and the image was acquired with Alliance 9.7 Western Blot 

Imaging System (UVITEC, Cambridge, UK). 

After the Pierce Reversible Protein Stain was removed, the membrane was blocked 

with 4% skimmed milk (Non-fat dry milk) or 3% Bovine Serum Albumin (BSA) (Sigma-

Aldrich, St. Louis, Missouri, USA) in 1X PBS and 0.1%/0.01% Tween-20 (Sigma-Aldrich, St. 

Louis, Missouri, USA) (PBST), depending on the antibody (table 9). The blocking lasted for 
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around 1 hour. The primary antibody was incubated overnight at 4°C, and the day after three 

washes, of 5 minutes each, with PBST were performed.  

primary 
antibody 

host dilution media 
blocking 

media 
PBST company 

α-flag M2  mouse 1:1000 2%milk/PBST 4%milk/PBST 0,10% 
Sigma-Aldrich (St. 
Louis, Missouri, 

USA) 

α-TDP-43  rabbit 1:1000 2%milk/PBST 4%milk/PBST 0,10% Proteintech EU 
(Manchester, UK) 

α-phospho 
TDP-43 

(pS409/410)  
rabbit 1:1000 1,5%BSA/PBST 3%BSA/PBST 0,01% Cosmo Bio 

(Tokyo, Japan) 

α-AIF1 mouse 1:500 milk2%/PBST 4%milk/PBST 0,10% 
Invitrogen 
(Carlsbad, 

California, USA) 

α-ITPR1 (P3 
Recptor 1) rabbit 1:500 2%milk/PBST 4%milk/PBST 0,10% 

Invitrogen 
(Carlsbad, 

California, USA) 

α-tubulin mouse 1:10000 2%milk/PBST 4%milk/PBST 0,10% home made 

α-P84 mouse 1:1000 2%milk/PBST 4%milk/PBST 0,10% Abcam 
(Cambridge, UK)  

α-CDK6 mouse 1:500 1,5%BSA/PBST 3%BSA/PBST 0,01% 

Santa Cruz 
Biotechnology 
(Dallas, Texas, 

USA) 
Table 9 – Primary antibodies, dilution and blocking media, and their final concentrations are reported. 

The secondary antibody (table 10) was incubated for 2 hours at room temperature. 

5 minutes washes with PBST were performed for three times. To detect the 

chemiluminescence, the membrane was incubated 2 minutes with ECL Luminata Classico 

Western HRP substrate (Merck Millipore, Burlington, MA, USA), and the images were 

acquired using Alliance 9.7 Western Blot Imaging System (UVITEC Limited, Cambridge, 

UK). 

secondary 
antibody 

host dilution media 
blocking 

media 
PBST company 

α-rabbit HRP goat 1:2000 

2%milk/PBST 4%milk/PBST  0,10% 

Dako (Santa 
Clara, California, 

USA) 
1,5%BSA/PBST 3%BSA/PBST 0,01% 

α-mouse HRP goat 1:2000 2%milk/PBST 4%milk/PBST  0,10% 
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1,5%BSA/PBST 3%BSA/PBST 0,01% 

Table 10 - Secondary antibodies, dilution and blocking media, and their final concentrations are reported. 

Western Blot image quantification was carried out with Alliance 9.7 Western Blot 

Imaging Software (UVITEC Limited, Cambridge, UK). 

 

3.5.4 Molecular Dynamic Simulation on peptides 

The Molecular Dynamics simulations were performed by our colleagues at 

University of Castile-La Mancha, Instituto Regional de Investigación Científica Aplicada, in 

Ciudad Real (Spain). Briefly, the molecular dynamic simulation was based on the structure 

of NNSYSG peptide, that was modeled using ZipperDB database. They generated the 

S375G and S375E variants from the NNSYSG peptide taking advantage of PyMOL 

software. In all simulations, all the described structures were solved using TIP3P water 

molecules, pre-equilibrated at 1 atm and 300 K, and then individually submitted to 50-ns 

Molecular Dynamics simulations (Newell et al., 2018). 
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3.6 Nucleic acids analysis 

3.6.1 DNA extraction and genetic analysis of the S375G patient’s brain tissue 

This was performed by our colleagues at University of Kansas School of Medicine, 

in Kansas City (USA). Genomic DNA was extracted from frozen brain tissue and the 

products were treated with ExoSAP-IT (USB, Cleveland, OH, USA). They were then 

amplified using the DTCS Quick Start Kit (Beckman Coulter, Fullerton, CA, USA), and the 

products were analyzed on a CEQ 8000 GeXP Genetic Analysis System (Beckman Coulter). 

A comparison between the resulting DNA with the known sequences 

(www.ncib.nlm.nih.gov) was carried out (Newell et al., 2018; Murrell et al., 1991). 

 

3.6.2 RNA extraction 

3.6.2.1 Sample preparation: brain tissue 

In order to preserve the RNA tissue from freeze/thaw cycles, the frozen formalin-

fixed sections derived from multiple areas of the central nervous system, were kept on dry 

ice; less than 50mg was cut. 700µl of QIAzol Lysis Reagent (Qiagen, Hilden, Germany) were 

added and the sample were homogenized with Utra-Turax T25 basic (IKA-WERKE GMBH 

& CO, Staufen im Breisgau, Germany) for 7 seconds. At this point, the RNA was extracted 

from the tissue. 

 

3.6.2.2 Sample preparation: cell lysate 

For RNA extraction, the cells were collected and the medium was removed. In order 

to better remove the culture medium, the cell pellet was washed with 1X PBS and 

centrifuged 5 minutes at 500xg, discarding the supernatant. At this point the cells were 

resuspended in 700µl of QIAzol Lysis Reagent (Qiagen, Hilden, Germany) and the RNA 

extraction was performed. 

 

3.6.2.3 miRNeasy Mini Kit (Qiagen, Hilden, Germany) 

In this work the RNA was extracted with the miRNeasy Mini Kit (Qiagen, Hilden, 

Germany), with some adjustment from the manufacturer’s instructions. Briefly, the samples 
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(homogenized tissue or cell lysate) were transferred in 5PRIME Phase Lock gel tubes 

(Quantabio, Beverly, Massachusetts, USA), pre-centrifuged at 1500xg for 30 seconds, and 

the sample was left 5 minutes at room temperature. 140µl of chloroform (Sigma-Aldrich, St. 

Louis, Missouri, USA) were added; to mix the two reagents, the 5PRIME Phase Lock gel 

tubes were vigorously shaken and the samples were left 5 minutes at room temperature. To 

separate the phases and obtaining the aqueous/RNA supernatant, the samples were 

centrifuged at 4°C 10 minutes at 16000xg. The 5PRIME Phase Lock gel interposes the gel 

phase between the aqueous phase and the Qiazol one, containing what needs to be 

discarded. In this way, the supernatant is cleaner and it was easily collected and moved it 

into another collection tube where 1.5 volume of 100%ethanol (Honeywell, Charlotte, North 

Carolina, USA) was added. After this first separation, the RNA was extracted with the 

miRNeasy kit (Qiagen, Hilden, Germany): 700µl of the sample were pipetted on the RNeasy 

Mini spin column and it was centrifuge at 8000xg for 15 seconds at room temperature. The 

flow through was discarded. This step was repeated for the remaining sample. 700µl of 

buffer RWT were added upon the column and it was centrifuged at 8000xg for 15 seconds 

at room temperature. Again, the flow through was discarded. Two steps of washing with 

500µl of Buffer RPE were performed, centrifuging the samples at 8000xg for 15 seconds at 

room temperature. The second centrifuge step was performed for 2 minutes at 8000xg, in 

order to remove any ethanol residues. The column was placed on 2ml another collection 

tube and it was centrifuged at full speed for 1 minute to eliminate RPE buffer residuals. At 

this point the RNA was eluted: the column was put on 1.5ml collection tube and 30µl of 

RNase-free water were added. The column was centrifuged at 8000xg for 1 minute and the 

RNA was eluted. 

RNA concentration and the purification level were measured with D30 Eppendorf 

BioSpectometre (Eppendorf, Hamburg, Germany), using the Eppendorf µCuvette G1.0 

(Eppendorf, Hamburg, Germany). The absorbance at 260nm was measured together with 

the ratio between the absorbance at 260/280nm (protein contamination) and at 260/230nm 

(reagents contamination). 

 

3.6.3 Reverse transcription reaction: complementary DNA (cDNA) preparation 

Starting from the extracted RNA, the complementary DNA (cDNA) was 

retrotranscribed with Moloney Murine Leukemia Virus Reverse Transcriptase (M-MLV RT) 
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(Invitrogen, Carlsbad, California, USA), in the presence of random primers (Sigma-Aldrich, 

St. Louis, Missouri, USA). Two mixes were prepared: the first one containing the RNA and 

the random primers with the concentrations reported in table 11. To reach the final volume 

of 20µl, sterile water was added. With this composition, the first mix was chilled at 85°C for 

5 minutes, it was briefly centrifuged, and the sample was cooled in ice for 1 minute.  

reagent final concentration (final volume=20µl) 

RNA 50ng/µl 

random primers (100ng/ml) (Sigma-
Aldrich, St. Louis, Missouri, USA) 1ng/µl 

Table 11 – cDNA preparation: mix 1 containing random primers and RNA. 

At this point, 20µl of the second mix were added. The second mix composition is 

reported in table 12. 

reagent final concentration (final volume=20µl) 

5X M-MLV buffer 2X 

Dithiothreitol (DTT) (100mM) Invitrogen (Carlsbad, 
California, USA) 20mM 

Deoxynucleotide (dNTP) Solution Mix (2,5mM) 
(Rovalab, Teltow, Germany) 0,5mM 

M-MLV (200 U/µl) 5 U/µl 
Table 12 - cDNA preparation: mix 2 containing reverse transcription reaction reagents. 

M-MLV reaction was carried out at 37°C for 1-2 hours. The samples were then 

stored at -20°C before using for gene expression or splicing analysis. 

 

3.6.4 Pre-mRNA splicing analysis 

Pre-mRNA splicing analysis was carried out by using the Polymerase Chain 

Reaction (PCR) technique, and it was performed in 50µl of final reaction volume, composed 

by 3µl of cDNA (or sterile water for the negative control sample) and 37µl of PCR mix (table 

13). To reach the final volume, sterile water was added. 

reagent 
final concentration (final 

volume=50µl) 
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10X ThermoPol reaction Buffer (New England Biolabs, Ipswich, 
Massachusetts, USA) 1X 

Deoxynucleotide (dNTP) Solution Mix (2,5mM) (Rovalab, Teltow, 
Germany) 0,2mM 

Primer forward (100ng/µl) 3ng/µl 
Primer reverse (100ng/µl) 3ng/µl 

Taq Biolabs 5 U/µl (New England Biolabs, Ipswich, 
Massachusetts, USA) 0,02U/µl 

Table 13 – PCR reaction mix. 

The pre-mRNA splicing was tested for the cDNA extracted from the HeLa cells, 

knockdown for TDP-43 and transient transfected with mutant TDP-43 plasmids (addback 

experiment); and from the stable cell lines expressing constitutively TDP-43 mutated forms. 

For the HeLa cells, the pre-mRNA splicing assay was performed on the minigene containing 

the exon 9 of the CFTR gene. The minigene technique allows to recreate a splicing event 

when transfected into cells. In this work, the minigene system is carrying CFTR exon 9 and 

a small portion of intron 8 and 9, including a mutation in a splicing enhancer element in order 

to obtain a 50/50 ratio of exon inclusion/skipping. On the other hand, the pre-mRNA splicing 

analysis was carried out using one of the best characterize endogenous TDP-43 target, such 

as DNA Polymerase Delta Interacting Protein 3 (POLDIP3) gene. In table 14 are reported 

the primer sequences. 

Name Sequence 5' → 3'    
α2-3 CAACTTCAAGCTCCTAAGCCACTGC 

pTB-CFTR_Ex9 C155T  
BRA2 CACCAGGAAGTTCCTTAAATCA 
      
POLDP3ex2 GCTTAATGCCAGACCGGGAGTTGGA 

POLDIP3 
POLDP3ex4 TCATCTTCATCCAGGTCATATAAATT 

Table 14 – Pre-mRNA splicing primer sequences. 

The two experiments required different PCR protocols in order to optimize the 

fragments amplification (table 15) and they were carried out with MiniAmp Plus Thermal 

Cycler (Applied Biosystem, Foster City, California, USA). 

target temperature time cycles 

pTB-CFTR_Ex9 C155T  

95°C 2 minutes   
94°C 45 seconds 

35 54°C 45 seconds 
72°C 45 seconds 
72°C 10 minutes   
4°C ∞   

        
POLDIP3 94°C 2 minutes   
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94°C 30 seconds 
35 56°C 1 minute 

72°C 45 seconds 
72°C 10 minutes   
4°C ∞   

Tabella 15 – Pre-mRNA splicing protocols. 

PCR products were then run with the QIAxcel DNA Screening Kit (Qiagen, Hilden, 

Germany), providing the separation of the nucleic acid basing on size, using a capillary filled 

with a precast agarose gel. Before starting, the cartridge was immerged in the QX Wash 

Buffer (Qiagen, Hilden, Germany) for 20 minutes. For the running, the instrument requires 

two different markers to separate correctly the samples and to identify the size of the DNA 

fragments: the QX Alignment Marker 15 bp/3 kb (Qiagen, Hilden, Germany), that establishes 

the range in which identify the bands; and the QX DNA Size Marker 50 bp – 1.5 kb (Qiagen, 

Hilden, Germany), that gives information about the fragment size. The size marker must be 

included in the range of the alignment marker and together create the reference marker. At 

this point, 15µl of sample were loaded in the QX 0.2 ml 12-Tube Strips (Qiagen, Hilden, 

Germany) and the run was performed using the AM420 method. The QIAxcel DNA 

Screening Kit (Qiagen, Hilden, Germany) output generate a gel image, for the qualitative 

analysis, and the electropherogram, by which it is possible to quantify the signal intensity 

calculating the Area Percentage of the electropherogram peaks. The obtained data were 

then analyzed with GraphPad software (GraphPad Software, La Jolla California, USA). 

 

3.6.5 Gene expression analysis: real time quantitative PCR (qPCR) 

Gene expression analysis was performed on cDNA prepared from: 

• S375G patient brain samples in order to study TDP-43 expression, using the 

hippocampal TDP-43 as the internal control. To normalize the results, Glyceraldehyde-

3-phosphate Dehydrogenase (GAPDH) was used as the housekeeping gene;  

• Multipotent stem cells, differentiated in neurons derived from NPC patients and healthy 

controls, in order to validate RNA sequencing data, especially regarding the following 

genes: Cadherin 18 (CDH18), Doublecortin Like Kinase 1 (DCLK1), DEP Domain 

Containing MTOR Interacting Protein (DEPTOR), Cell Adhesion Associated, Oncogene 

Regulated (CDON), Leucine Rich Repeat Containing G Protein-Coupled Receptor 4 

(LGR4), Inositol 1,4,5-Trisphosphate Receptor Type 1 (ITPR1), Lymphocyte Cytosolic 

Protein 1 (LCP1), SH3 And Multiple Ankyrin Repeat Domains 1 (SHANK1), Ependymin 
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Related 1 (EPDR1), and TDP-43. Glyceraldehyde-3-phosphate Dehydrogenase 

(GAPDH) and Hypoxanthine Posphoribosyltransferase 1 (HPRT1) expression was not 

changing between the NPC and healthy samples, so they were employed as 

housekeeping genes to normalize the results. 

• On SH-Sy5Y to test the expression of ITPR1, LCP1, SHANK1, and EPDR1 genes, upon 

their knockout, using the siLUC as the relative control. Glyceraldehyde-3-phosphate 

Dehydrogenase (GAPDH) and Hypoxanthine Posphoribosyltransferase 1 (HPRT1) 

were used as housekeeping genes. 

• And on SH-Sy5Y cell line after the RNA immunoprecipitation experiment, in order to test 

the following gene enrichment: Cadherin 18 (CDH18), Doublecortin Like Kinase 1 

(DCLK1), DEP Domain Containing MTOR Interacting Protein (DEPTOR), Cell Adhesion 

Associated, Oncogene Regulated (CDON), Leucine Rich Repeat Containing G Protein-

Coupled Receptor 4 (LGR4), Inositol 1,4,5-Trisphosphate Receptor Type 1 (ITPR1), 

Lymphocyte Cytosolic Protein 1 (LCP1), SH3 And Multiple Ankyrin Repeat Domains 1 

(SHANK1), and Ependymin Related 1 (EPDR1). Glyceraldehyde-3-phosphate 

Dehydrogenase (GAPDH) was used as housekeeping gene. 

In table 16 are reported the forward and reverse primer sequences employed for the 

gene expression analysis. The primer sequence was generated using PrimerBank online 

tool (https://pga.mgh.harvard.edu/primerbank/). All the forward and reverse primer 

sequences are placed on different exons; therefore, no DNase treatment was performed in 

order to eliminate possible presence of genomic DNA. 

Name Sequence 5' → 3'    
GAPDH forward CGCTCTCTGCTCCTCCTGTT 

Housekeeping genes 

GAPDH reverse CCATGGTGTCTGAGCGATG 
    
HPRT1 forward TGACACTGGCAAAACAATGCA 
HPRT1 reverse GGTCCTTTTCACCAGCAAGCT 
      
      
TDP-43 forward ATCTGGTGGTATGTTGTCAACTATCC 

Target genes 

TDP-43 reverse GAACTTCTCCAAAGGTACTAAAATACTC 
    
LCP1 forward GATCAGTGTCCGATGAGGAAATG 
LCP1 reverse CCAGATCACCTGTAGCCATCA 
    
EPDR1 forward GTCCAGGAGTGGTCGGACA 
EPDR1 reverse ACACCGAGGGGTCTTTAATACC 
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SHANK1 forward TGGACCCCAATTACCATGACT 
SHANK1 reverse CATGCGGCCTTATGCAGTG 
    
ITPR forward GCGGAGGGATCGACAAATGG 
ITPR1_rev TGGGACATAGCTTAAAGAGGCA 
    
CDON forward AAAGCTGAGGTGCGCTATAAAA 
CDON reverse AAGAAGGACGACTCACAAGGA 
    
LGR4 forward TCGAGGGCTGAGTGCTTTG 
LGR4 reverse ATGCCGTAACTGAACAAGTCC  
    
DCLK1 forward GCTGATTTGACCCGAACTCTG 
DCLK1 reverse AGCCACATACATAACTCTCTCCT 
    
DEPTOR forward TTAGCAGACCGGGGCATTATT  
DEPTOR reverse GAAGGTGCCGTCATCCTTTCT 
    
CDH18 forward CAAAAGGGGATGGGTATGGATC 
CHD18 reverse CCCGTGGTATCGTCAATGATAAA 

 

Table 16 – Quantitative Real Time PCR primer sequences. 

For the first two, the gene expression was validated using CFX96 Touch Real-Time 

PCR Detection System (Biorad, Hercules, California, USA); for the SH-Sy5Y knockdown 

and RNA immunoprecipitation experiments, the QuantStudio 5 Real-Time PCR System, 96-

well, 0.1 mL block (ThermoFisher Scientific, Waltham, Massachusetts, USA) machine was 

used. The two instruments required different protocols and different master mix reagent, the 

best for the quantitative Real Time PCR run optimization (table 17). 

Machine Temperature Time Steps Cycles 
Master mix 

reagent 

CFX96 Touch 
Real-Time 

PCR Detection 
System 
(Biorad, 

Hercules, 
California, 

USA)  

95°C 3 minutes Polymerase 
Activation   

SYBR Green 
Master Mix 

(Biorad, Hercules, 
California, USA)  

95°C 10 
seconds Denaturation 

45 
60°C 30 

seconds Annealing/Elongation 

95°C 10 
seconds Melting Curve Profile 

  

65°C 1 minute   
95°C-5°C --- Dissociation   

            
QuantStudio 5 

Real-Time 
PCR System, 

50°C 2 minutes UDG attivation   PowerUp™ 
SYBR™ Green 

Master Mix 95°C 2 minutes Polymerase 
Activation   
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96-well, 0.1 mL 
block 

(ThermoFisher 
Scientific, 
Waltham, 

Massachusetts
, USA) 

95°C 1 second Denaturation 
35 

(Applyed 
Biosystems, 
Foster City, 

California, USA) 

60°C 30 
seconds Annealing/Elongation 

95°C 15 
seconds Melting Curve Profile 

  

65°C 1 minute   

95°C 15 
seconds 

Dissociation 
  

5°C 0,15°C/se
c   

Table 17 – Quantitative Real Time PCR protocols and related master mix reagents. 

To perform the gene expression analysis, 4µl of diluted cDNA (1:5 for the S375G 

patient brain regions; 1:10 for the other two experiments, in sterile water) was added to 6µl 

of reagents mix, composed by: the master mix reagent containing the DNA polymerase, the 

dNTPs mix, and the DNA intercalant agent that binds the nucleic acid in a non-specific 

manner, emitting a proportional fluorescence to the quantity of the amplified DNA; the 

forward and reverse primer, specific for the target gene or the housekeeping gene; and 

sterile water to reach the final volume (table 18). 

Reagent Final Concentration  

Master mix reagent  
SYBR Green Master Mix (Biorad, Hercules, California, USA)  

or  
PowerUp™ SYBR™ Green Master Mix (Applyed Biosystems, Foster 

City, California, USA) 

diluted 1:2 

Primer forward (20µM) 0,5µM 
Primer reverse (20µM) 0,5µM 

Table 18 – Quantitative Real Time PCR reagents mix. 

The expression levels were calculated exploiting different methods: 

• For the S375G patients TDP-43 expression, the comparative CT methods was applied 

(Schmittgen and Livak, 2008), in which the 2-ΔΔCT was calculated. This method was 

applied in order to correct the higher heterogeneity between the different cut sections. 

Also, for the RNA immunoprecipitated samples was used this method, in order to better 

calculate the mRNA enrichment. 

• For the RNA sequencing validation on multipotent stem cells, differentiated in neurons, 

derived from NPC patients and healthy controls, the homogeneity between the different 

samples was higher (supported also by the RNA sequencing results), therefore, CFX 

Maestro Software for CFX Real-Time PCR Instruments (Biorad, Hercules, California, 

USA) was exploited where the normalized expression (ΔΔCq) was calculated by the 
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software. The obtained data were then plotted in grouped table with GraphPad software 

(GraphPad Software, La Jolla California, USA). 

• For the SH-Sy5Y knockdown samples, the Thermo Fisher Connect Cloud, Relative 

Quantification qPCR app (ThermoFisher Scientific, Waltham, Massachusetts, USA) was 

employed for the relative quantification (Rq) analysis. As per company suggestion, the 

software is merging together the independent experiments and it analyzes the Rq, upon 

indication of the normalization parameters, such as the housekeeping genes and the 

internal reference control (siLUC for example). The data were then plotted in a grouped 

table with GraphPad software (GraphPad Software, La Jolla California, USA). 

 

3.6.6 RNA sequencing analysis of differentially expressed genes 

Before sending the samples for the RNA sequencing analysis, the RNA extracted 

from multipotent stem cells, differentiated in neurons, derived from NPC patients and healthy 

controls were tested for their quality in terms of purification and integrity, using the QIAxcel 

RNA QC Kit v2.0 (Qiagen, Hilden, Germany). The instrument provides the RNA Integrity 

Score (RIS) that indicate the quality of the extracted RNA basing on the quality of 28s and 

18s ribosomal RNA. This number should be higher than 7 for the RNA sequencing protocol 

optimization. According to this, 1µl of RNA sample were diluted 1:1 with the QX Denaturation 

buffer (Qiagen, Hilden, Germany) and the sample was denaturated at 70°C for 2 minutes. 

The same treatment was performed also for the QX RNA size marker 200-6000bp (Qiagen, 

Hilden, Germany). 8µl of QX Dilution buffer (Qiagen, Hilden, Germany) were added, and the 

sample was run in the QX RNA cartridge (Qiagen, Hilden, Germany) together with the QX 

RNA size marker 200-6000bp (Qiagen, Hilden, Germany) and the QX RNA size marker 

15bp (Qiagen, Hilden, Germany). 5µg of the samples with RIS number higher than 7 and 

with optimal values of 260/280 and 260/230 absorbance, were send to Novogene 

(Novogene Co., Ltd, Beijing, China) for the sequencing.  

Novogene (Novogene Co., Ltd, Beijing, China) performed both the sequences as 

well as the bioinformatic analysis concerning the clusterization, gene ontology (GO) analysis 

and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. 

Basically, they �purified the mRNA from total RNA using poly T oligos attached to 

magnetic beads, and then it was randomly fragmented using a fragmentation buffer. 

Secondly, a NEB library was prepared (Fig.24): the first strand cDNA was synthesized using 



90 

 

random hexamer primers and M-MuLV Reverse Transcriptase (RNase H-). The second 

strand cDNA synthesis was performed using DNA Polymerase I and RNase H. After 

adenylation of 3' ends of DNA fragments, NEBNext Adaptor (New England Biolabs, Ipswich, 

Massachusetts, USA) with hairpin loop structure was ligated to prepare for hybridization. 

The cDNA fragments were then purified with AMPure XP system (Beckman Coulter, 

Beverly, USA) of 150~200 bp in length and they were obtained by PCR amplification. 

 

Figure 24 – NEB library proposed by Novogene. 

A library quality assessment was performed and the samples were sequenced using 

the Illumina technology (Fig.25). We chose a paired end analysis improving the capability 

to identify the relative positions of various reads in the genome. In contrast with the single 

end analysis that reads the fragment from one end to the other, the paired end performs to 

reading steps in the opposite directions. As a depth of coverage, we decided for 60mln of 

reads per samples, in order to cover also low-abundant transcripts. We choose these stricter 

parameters for two reasons: first of all, the samples that we sequenced were directly derived 
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from humans (skin biopsies) and this depth of coverage with the paired end analysis allowed 

us to flatten the difference between the same samples’ category (controls or patients), and 

to detect small perturbations between the patients and the controls. Moreover, as I will later 

explain, we were interested in the differentially expressed genes, but this type of analysis 

could allow us to go in deeper and also to check for the different alternative splicing events. 

 

Figure 25 – Illumina sequencing scheme (Novogene report). 

The bioinformatic analysis was carried out: a quality check of the sequencing was 

performed by calculating the error rate distribution, such as the sequencing error rate related 

to the base quality values of the Illumina machine; and the GC content to detect potential 

AT/GC separation, such as when G and C, A and T are not in an equal rate. 

Also, the obtained data were filtered by removing the reads containing adaptors; 

eliminating the reads containing a number of bases that cannot be determinate higher than 

10%; and they cut out the reads with a quality score of over 50% bases of the read is less 

than 5.  Finally, the clean reads were mapped on the reference genome: Novogene aligned 

the paired-end clean reads to the reference genome using STAR (v2.5) software, that 

exploits the method of Maximal Mappable Prefix (MMP) generating a precise mapping result 

for junction reads. 
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In order to quantify the gene expression level, HTSeq v0.6.1 software was used to 

count the read numbers mapped for each gene, and the Reads Per Kilobase of exon model 

per Million mapped reads (FPKM) was calculated basing on the length of the gene and the 

reads count mapped to this gene. 

Differential expression analysis was performed with edgeR package, and the 

threshold of differential expression genes was applied: 0.7<Fold Change (FC)>1.3 and p-

value adjusted (pAdj)<0.05. 

The Venn diagrams were prepared using the function Venn Diagram in R based on 

the gene list for different group. 

Cluster Analysis of differential expression genes was used to estimate expression 

pattern of differential expression genes under different experimental conditions. Hierarchical 

clustering analysis was carried out with the log10(FPKM+1) of union differential expression 

genes of all comparison groups under different experimental conditions. 

Gene Ontology (GO) enrichment analysis of differentially expressed genes was 

implemented by the cluster Profiler R package, in which gene length bias was corrected. 

GO terms with corrected pAdj less than 0.05 were considered significantly enriched by 

differential expressed genes. 

KEGG database is a resource for understanding high-level functions and utilities of 

the biological system (http://www.genome.jp/kegg/). Novogene used cluster Profiler R 

package to test the statistical enrichment of differential expression genes in KEGG 

pathways. KEGG terms with padj < 0.05 are significant enrichment. 

 

3.6.7 RNA immunoprecipitation (RNA-IP) assay 

2800000 SH-Sy5Y ECACC cells were seed in p100 plate (three plates for the target 

plasmid and one for the negative control) with D-MEM:F12 cultured medium, in order to 

achieve 70-80% of confluence the day after. The second day, the cells were transfected with 

pFLAG-CMV4 TDP-43 vector using Lipofectamine 3000 reagent 12 (Invitrogen, Carlsbad, 

California, USA), and with p-CMV4 plasmid without the insert. After 24 hours, the cells were 

collected: the three plates transfected with the target protein were merged and the samples 

 
12 Reference to 2.2.2.2 paragraph – SHSy5Y ECACC cell line 



93 

 

were centrifuged at 500xg for 5 minutes. The supernatant was discarded and the cells were 

resuspended in: 3ml of ice-cold 1X PBS for the negative control, and 6ml of ice-cold 1X 

PBS, for the target protein that were then divided it in 3 tubes (2ml per tube). The samples 

were centrifuged at 500xg for 5 minutes and the supernatant was discarded. One pellet from 

the target transfection and the pellet transfected with the negative control, were tested with 

SDS-PAGE and Western Blot techniques in order to check the transfection efficacy. 

The last two pellets, transfected with the target protein underwent to the RNA 

immunoprecipitation assay, performed with the Imprint® RNA Immunoprecipitation Kit 

(Sigma-Aldrich, St. Louis, Missouri, USA). 

The first step is the cell lysis: in this work, the Mild Lysis Buffer (Sigma-Aldrich, St. 

Louis, Missouri, USA) was employed because it is a nonionic detergent and it leaves the 

nuclei intact. According to the cell number, different volumes of reagents were used for the 

pellet resuspension, following table 19: 

Reagent 
Volume for 0.5-

2x10^6 cell range 

Volume for 
≥2x10^6 cell 

range 

Mild Lysis Buffer (Sigma-Aldrich, St. Louis, Missouri, 
USA)  

or  
Harsh Lysis Buffer (Sigma-Aldrich, St. Louis, Missouri, 

USA) 

100µl 200µl 

Protease Inhibitor Cocktail (Sigma-Aldrich, St. Louis, 
Missouri, USA) 1µl 2µl 

Dithiothreitol (DTT) (100mM) Invitrogen (Carlsbad, 
California, USA) 0,05µl 0,1µl 

Ribonuclease Inhibitor 40U/µl (Sigma-Aldrich, St. Louis, 
Missouri, USA) 0,4µl 0,8µl 

Table 19 – RNA-IP lysis reagents volume, according to cell range. 

After the resuspension, the samples were incubated in ice for 15 minutes, and then 

they were centrifuged 10 minutes at 16000xg at 4°C. The supernatant was collected and its 

volume was measured. 10% of the lysate supernatant was removed, corresponding to the 

“10% Input”, such as the initial control. The “10% Input” was stored at -80°C. 

In the meantime, the preparation of the Protein A Magnetic Beads (Sigma-Aldrich, 

St. Louis, Missouri, USA) was performed: the magnetic beads were resuspended and 

0.02ml were quickly transferred to each 1.5ml microcentrifuge tube. 0.1ml of RIP Wash 

Buffer (Sigma-Aldrich, St. Louis, Missouri, USA) were added, and the beads were briefly 

vortexed. The tubes were placed on a magnetic separator support in order to ease the 
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supernatant separation and the beads collection. This wash step was repeated. At this point 

the beads are ready for the bridging antibody pre-binding. The tubes were briefly centrifuged 

and the beads were resuspended in 0.1 ml of RIP Wash Buffer (Sigma-Aldrich, St. Louis, 

Missouri, USA) and they were transferred in 0,5ml microcentrifuge tubes. 1µl of bridging 

antibody (in this work IgG from mouse serum, Sigma-Aldrich, St. Louis, Missouri, USA), and 

they were incubated for 30 minutes at room temperature in rotation. After this time, the tubes 

were briefly centrifuged and the magnetic beads-bridging antibody complex were 

resuspended in 0.1 ml of RIP Wash Buffer (Sigma-Aldrich, St. Louis, Missouri, USA) and 

they were transferred in 1.5ml tubes. The tubes were placed on a magnetic separator and 

the supernatant was discarded. 0.5ml of RIP Wash Buffer (Sigma-Aldrich, St. Louis, 

Missouri, USA) were added, and the samples were briefly vortexed. Again, the supernatant 

was discarded employing the magnetic support. This wash step was repeated one again. At 

this point the specific antibody prebinding was performed: one was hybridizing with the 

target-specific antibody, such as α-flag M2, Invitrogen, Carlsbad, California, USA; and the 

other with a negative control antibody, such as the Anti-mouse IgG antibody produced in 

rabbit (Sigma-Aldrich, St. Louis, Missouri, USA). The beads were resuspended in 0.1 mL of 

RIP Wash Buffer (Sigma-Aldrich, St. Louis, Missouri, USA) and they transferred in 0,5ml 

microcentrifuge tubes. 5µl of specific antibody were added, and the beads were incubated 

in rotation for 30’ at room temperature. Then, the tubes were briefly centrifuged. The 

magnetic beads-specific antibody complex was resuspended with 0.1 ml of RIP Wash Buffer 

(Sigma-Aldrich, St. Louis, Missouri, USA) and they were transfer in 1.5ml tubes. The 

supernatant was discarded. 0.5ml of RIP Wash Buffer (Sigma-Aldrich, St. Louis, Missouri, 

USA) were added and the samples were briefly vortexed and centrifuged. The supernatant 

was discarded and the wash step was repeated with 0.2ml of RIP Wash Buffer (Sigma-

Aldrich, St. Louis, Missouri, USA). Now the beads are ready for the immunoprecipitation 

step. In table 20, are reported the employed volumes for the IP-buffer preparation, with the 

final volume of 0.5ml for each sample. 

Reagent Volume 

RIP Wash Buffer (Sigma-Aldrich, St. Louis, Missouri, USA) 1000µl 

Protease Inhibitor Cocktail (Sigma-Aldrich, St. Louis, Missouri, USA) 10µl 

Ribonuclease Inhibitor 40U/µl (Sigma-Aldrich, St. Louis, Missouri, 
USA) 4µl 

Table 20 – IP-buffer preparation mix. 
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The supernatant was discarded from the beads and the immunoprecipitation 

reaction was set and it was composed by prebound beads, the IP Buffer, and the cell lysate. 

The mix was incubated overnight in rotation at 4°C. The day after, the samples were briefly 

centrifuged and 10% of the supernatant was removed, representing the Negative Control 

Reaction supernatant, called “Negative Control RNA-IP Input”. This sample was stored at -

80°C. The remaining supernatant was discarded and washing step followed. 1ml of RIP 

Wash Buffer (Sigma-Aldrich, St. Louis, Missouri, USA) was added and the samples were 

gently vortexed. The RNA-IP reaction was transferred into a fresh 1.5ml tube that was 

quickly spun down and the supernatant was removed. This wash step was repeated five 

times, moving the sample always in a fresh 1.5ml tube. After this, the samples were 

resuspended in 200µl of RIP Wash Buffer (Sigma-Aldrich, St. Louis, Missouri, USA). The 

10% Input sample was recovered and lift up to a final volume of 200µl using RIP Wash 

Buffer (Sigma-Aldrich, St. Louis, Missouri, USA). 

At this point, enriched RNA was purificated: 500µl of EuroGold Trifast (Euroclone, 

Milan, Italy) were added and the samples were incubated for 5 minutes at room temperature. 

100µl of chloroform (Sigma-Aldrich, St. Louis, Missouri, USA) were summed and the 

samples were incubated for 3 minutes at room temperature. They were then centrifuged at 

16000xg for 15 minutes at 4°C. The supernatant aqueous phase was collected and it was 

placed in a new collection tube. 6µl of RNA-glycogen 5mg/ml (final concentration 0.05µg/µl) 

(ThermoFisher Scientific, Waltham, Massachusetts, USA), 60µl of 5M ammonium acetate 

(Honeywell, Charlotte, North Carolina, USA), and 600µl of isopropanol (Honeywell, 

Charlotte, North Carolina, USA) were added. The samples were vortexed and then they 

were stored at -80°C for 2-3h, to precipitate the RNA. After the -80°C incubation, the 

samples were thawed in ice, and then they were centrifuged at 16000xg for 10 minutes at 

4°C. The supernatant was removed and the pellet was washed once with 500µl of 80% 

ethanol (Honeywell, Charlotte, North Carolina, USA) solution. They were centrifuged at 

16000xg for 10 minutes at 4°C, the supernatant was discarded and the pellet was air-dried 

at 37°C for few minutes. Then it was resuspended in 20µl sterile water and the 

concentration, the purification, and the quality of the extracted RNA was tested with D30 

Eppendorf BioSpectometre (Eppendorf, Hamburg, Germany), using the Eppendorf µCuvette 

G1.0 (Eppendorf, Hamburg, Germany). The absorbance at 260nm was measured together 

with the ratio between the absorbance at 260/280nm (protein contamination) and at 

260/230nm (reagents contamination). The samples were stored at -80°C. 
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The RNA extracted was retrotranscribed in cDNA and the abundance of possible 

TDP-43 target genes was evaluated by quantitative Real-Time PCR. 
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3.7 Statistical analysis 

The statistical analysis was performed on three independent experiments, using 

GraphPad software (GraphPad Software, La Jolla California, USA). An unpaired t-test or a 

multiple comparison Anova test with Bonferroni correction were carried out, and the 

statistical test performed for each experiment is reported in the captions.  
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3.8 Standard solutions 

- 1X PBS (Phosphate Buffer Saline): 137mM NaCl; 2.7mM KCl; 10mM Na2HPO4; 

2mM KH2PO4 pH 7.4 

- LB medium (Luria-Bertani medium): 10g Bacto Tryptone; 5g Yest Extract; 10g 

NaCl pH 7.5  per liter. 

- TB: (Terrific Broth) medium: 1.2% peptone, 2.4% yeast extract, 72 mM K2HPO4, 

17 mM KH2PO4 and 0.4% glycerol 

- 1X TSS (Transformation & Storage Solution): 10%PEG 4000 (5g); 35mM MgCl2 

(1.75 mL MgCl2 1M); 35mL LB (without antibiotics); lead to pH 6.5 with HCl 0.5M; 

filter with 0.22µm membrane; DMSO 2.5ml  50ml. 

- D-MEM: Dulbecco’s Modified Eagle’s Medium, composed by High Glucose 1X; L-

glutamine; Phenol Red; Sodium Pyruvate (Gibco, Life Technology, Carlsbad, 

California, USA). With fetal bovine serum 10% (Life Technology, Carlsbad, 

California, USA) and antibiotic antimycotic solution 1% (Sigma-Aldrich, St. Louis, 

Missouri, USA). 

- Opti-MEM: Opti-MEM® Reduced-Serum Medium with L-glutamine and Phenol 

Red (Gibco, Life Technology, Carlsbad, California, USA). Lack of Bovine Serum. 

- D-MEM:F12: Dulbecco’s Modified Eagle’s Medium/Nutrient Mixture F-12 Ham, 

composed by L-glutamine, 15mM HEPES, and sodium bicarbonate, liquid, sterile-

filtered (Sigma-Aldrich, St. Louis, Missouri, USA). With fetal bovine serum 15% 

(Life Technology, Carlsbad, California, USA) and antibiotic antimycotic solution 1% 

(Sigma-Aldrich, St. Louis, Missouri, USA). 
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4 RESULTS 
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4.1 Characterization of a TDP-43 mutation in an ALS case that might 

affect phosphorylation sites in the C-terminal region of this protein. 

4.1.1 Clinical case: TDP-43 S375G unpublished variant associated with ALS 

This work started with the study of a clinical case in collaboration with the 

Department of Pathology & Laboratory Medicine of the University of Kansas School of 

Medicine (Kansas City, USA). In this work, Kathy Newell and Dino Ghetti studied the brain 

and spinal cord of a 26-year-old woman clinically diagnosed with ALS at the very early age 

of 22, and with a history ALS in distant relatives. Neuropathologic evaluation showed the 

upper and lower motor neuron impairment with an immunoreaction for the phosphorylated 

TDP-43 (Fig.26) (Newell et al., 2018).  

 

Figure 26 – phosphoTDP-43 density and distribution of immunoreactive neurons and glia of the motor cortex. In panel A 

are shown the upper cortical layers; in panel B the lower cortical levels. 10X original magnification  (Newell et al., 2018). 

Figure in collaboration with Kathy Newell. 

An autopsy was carried out on samples derived from central nervous system frozen 

regions: the primary motor cortex, neurons, and glial cells were positively stained for 

intracytoplasmic inclusions, immunolabelled with TDP-43 antibodies (Fig.27). 



101 

 

 

Figure 27 – phosphoTDP-43 density and distribution of different brain areas. 40X original magnification (Newell et al., 

2018). Figure in collaboration with Kathy Newell. 

Due to the availability of a high number of brain regions from this ALS case, it was 

possible to compare the expression levels of phosphoTDP-43 (pTDP-43) in neuronal and 

glia cells, and compare it with the total TDP-43 mRNA expression in order to determine 

whether phosphoTDP-43 (pTDP-43) levels were correlated with total TDP-43 expression 

levels (Newell et al., 2018). Figure 28 shows that results revealed prominent differences in 

the analyzed brain regions. As expected, most of the pTDP-43 staining was concentrated in 

the areas affected by the disease, such as the primary motor cortex and the spinal cord, 

while pTDP-43 absence was detected in the hippocampus (Fig.28A). In contrast, however, 

TDP-43 total mRNA expression levels were constant in all the analyzed regions with few 

exceptions, especially in the dentate nucleus (cerebellum) where expression levels were 

considerably higher than in the other tissues (Fig.28B). These mRNA expression data were 

confirmed by Western blot analysis (Fig.28C) (Newell et al., 2018). Taken together, the 

analysis revealed that there is no simple correlation between the amount of pTDP-43 and 

total TDP-43 expression in different brain regions (Newell et al., 2018). In fact, this 

observation suggests that altered phosphorylation is not a simple reflection of relative TDP-
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43 expression levels in different brain regions but may be a consequence of pathological 

mechanisms that are active only in selected brain areas. 

 

Figure 28 – pTDP-43 amount in glial and neuronal cells versus total TDP-43 expressed. A) in this panel the pTDP-43 

amount, found in different brain regions of the patient, was plotted in a graph. B) total TDP-43 expressed levels were 

detected by quantitative Real Time PCR on different brain regions derived from the patient. Hippocampus was used as 

the internal standard sample. C) western blot analysis on brain regions stained with α-TDP43 antibody. Tubulin was used 

as standard loading control (Newell et al., 2018). 

At the time of discovery, it was still unclear the reason for this early onset of disease. 

In fact, little information was available about her siblings that could help identify disease 

segregation and familiarity. Both parents were healthy and without clinical history of 

neurological disorders. The same was for the patient’s older kin, even though some 

occurrence of ALS in distant relatives was documented. In particular, one of the parent’s 

cousin was diagnosed with ALS after the fifth decades of age. Also, the other parent had a 

great uncle who was clinically diagnosed with ALS. Moreover, a grandmother was reported 

to have died with late onset Alzheimer. Nonetheless, there was no direct link to disease, 

leaving uncertain the classification of this patient as a familial or sporadic case. 
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To start addressing this issue at the molecular level, we performed a molecular 

genetic analysis on extracted DNA from frozen brain tissue. No C9ORF72 expansion, or 

sequence alterations in SOD1, ANG, FIG4, and FUS genes were reported; however, a novel 

S375G (AGT>GGT) change was identified in a mutational hot-spot of TDP-43 gene, the C-

terminal region of the protein (Fig.29) (Newell et al., 2018). 

 

Figure 29 – TDP-43 S375G variant located in the CTD (Newell et al., 2018). Figure in collaboration with by Kathy Newell. 

Bioinformatics analyses performed on this mutation using well known prediction 

programs such as SIFT, PolyPhen-2, SNAP, etc. failed to predict an effect of this mutation 

on protein functionality. However, considering the severity of the disease in this patient, I 

tested the effects of this variant on TDP-43 localization, pre-mRNA splicing activity, and 

toxicity, in parallel with the effects on neighboring disease-associated mutations. Moreover, 

this variant was hypothesized to potentially affect a potential post-translational modification 

site, with the deletion of a phosphorylation site in the C-terminal domain of TDP-43 protein 

(Kametani et al., 2016; Hasegawa et al., 2008). 

 

4.1.2 Characterization of S375G variant and of the adjacent G376D, N378D, and Y374X 

TDP-43 disease-associated mutants. 

4.1.2.1 Splicing capability 

As described in the introduction section, TDP-43 is mostly known for its involvement 

in splicing. Based on this, I first tested the splicing capability of S375G comparing it to 

neighboring disease-associated mutations (G376D, N378D, and Y374X). The splicing assay 

was performed in transient transfected HeLa cells with a minigene containing the CFTR 

exon 9 (C155T) following the knockdown of the endogenous TDP-43. As reported in Figure 

30, the change in CFTR exon 9 inclusion was measured following the addition of flagged-
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siRNA-resistant wild type TDP-43 (WT), an RNA-binding impaired mutant (F4L) as a 

negative control, and the mutant variants. After a reverse transcriptase PCR amplification, 

using minigene-specific primers, the levels of CFTR exon 9 inclusion (Ex 9+) were measured 

by QIAxcel DNA Screening Kit (Fig.30A). The results from three biological triplicates are 

reported in Figure 30B: no difference in splicing pattern between the WT and S375G variant, 

as in the other neighboring mutations, was detected (Newell et al., 2018). In panel C of 

Figure 30 is reported the silencing and transfection efficiency, measured by Western Blot.  

 

Figure 30 – Addback splicing assay. A)  QIAxcel capillary electrophoresis gel image reporting CFTR exon 9 splicing for 

the WT, F4L; and the TDP-43 mutant forms. The samples were silenced with the siLUC, as a control (-), and with the 

siTDP-43 (+). In all the samples the minigene containing the CFTR exon 9 was transfected, while the different TDP-43 

forms were added-back in all the TDP-43 silenced samples, except for the negative control (Add-back “–“). B) Statistical 

quantification analysis of the gel image. Unpaired t-test was performed using GraphPad software (GraphPad Software, 

La Jolla California, USA); C) Western blot image stained with α-TDP-43 antibody detecting flag-tag TDP-43 (the 

transfected one) and endogenous silenced TDP-43. Tubulin was used as internal standard loading control. The “+” 

sample is showing the endogenous TDP-43 in the siLUC sample; the “-“ is still the endogenous silenced TDP-43. The 

WT, F4L, S375G, G378D, and N378D represent the added-back TDP-43 forms in the TDP-43 knockdown cells (Newell 

et al., 2018).  
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The same experiment was repeated for TDP-43 Y374X nonsense mutation, in order 

to understand if the lack of the last 33 residues was somehow impairing the splicing 

capability of the protein. As shown in Figure 31, the Y374X stop-codon mutation was still 

preserving the splicing capability of the protein compared to the WT (Fig.31A and 31B). As 

above, a Western blot analysis was performed to confirm the silencing and the transfection. 

As shown in Figure 31C, the flag-TDP-43 Y374X band was not present. The reason for this 

apparent discrepancy is that it is not possible to distinguish the endogenous TDP-43 from 

the flagged one because this truncated mutant protein migrates together with the unflagged 

endogenous protein (Newell et al., 2018). 

 

Figure 31 – TDP-43 Y374X nonsense mutation addback analysis. A) QIAxcel capillary electrophoresis gel image 

reporting CFTR exon 9 splicing. The samples were silenced with the siLUC, as a control (-), and with the siTDP-43 (+). In 

all the samples the minigene containing the CFTR exon 9 was transfected, while the different TDP-43 forms were added-

back in all the TDP-43 silenced samples, except for the negative control. B) Statistical quantification analysis of the gel 

image. Unpaired t-test was performed GraphPad software (GraphPad Software, La Jolla California, USA); C) Western 

blot image stained with α-TDP-43 antibody detecting the transfected flag-TDP-43 and silenced endogenous TDP-43. 

Tubulin was used as internal standard. The “-“ sample represent the negative control silenced with the siLUC and the 

total endogenous TDP-43 was stained. In the “+” sample the cells were just silenced for TDP-43 without any added-back 
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form, and the silenced TDP-43 was stained. The WT, F4L, and Y374X shows the TDP-43 staining of the added-back 

forms in the cells silenced for the endogenous TDP-43. (Newell et al., 2018).  

 

4.1.2.2 Immunolocalization analysis 

Secondly, I investigated whether the S375G substitution could affect the intracellular 

localization of TDP-43 in comparison with the wild-type protein or with respect to TDP-43 

localization occurring in disease-associated mutations G376D and N378D, that had been 

previously described by other authors but not well characterized (Newell et al., 2018; Buratti, 

2015). 

The subcellular distribution of all the TDP-43 mutants was investigated in transient 

transfected HeLa cell line with flag-tagged TDP-43 forms mentioned also in the previous 

paragraph. As reported in Figure 32, the wild-type TDP-43 was predominantly nuclear, with 

a lower abundance in the cytoplasm, due to the continuous shuttling of the protein between 

the two compartments. While the G376D and N378D substitutions did not significantly affect 

the distribution of TDP-43, which remained prominently nuclear, in the S375G variant the 

distribution of TDP-43 was significantly more nuclear than in any other mutants (Fig.32A 

and 32B). This result was also confirmed by the western blot separation of the nuclear-

cytoplasmic fraction (Fig.32C) (Newell et al., 2018). 
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Figure 32 – pFlagSiRTDP-43 subcellular localization. A) Immunofluorescence localization: flag-TDP-43 WT, S375G, 

G376D, N378D transfected plasmids were detected with α-flag antibody, nuclei were stained with DAPI. B) Quantification 

of nuclear-cytoplasmic staining intensity for WT flag-TDP-43, S375G, G376D and N378D was performed by measuring 

the Region of Interest (ROI). Unpaired t-test was performed using GraphPad software (GraphPad Software, La Jolla 

California, USA). C) Nucleus-cytoplasmic (N/C) distribution of transiently transfected HeLa cells with flag-tagged wild-

type TDP-43 and flag-tagged S375G mutant. The detection of p84 and tubulin was performed as control for 

nuclear/cytoplasmic contamination of the two fractions (Newell et al., 2018).  

The intracellular localization was also performed for the Y374X mutant. As reported 

in Figure 33, however, the absence of the last 33 residues did not impair the sub-cellular 

localization compared to WT (Newell et al., 2018). 

 

Figure 33 – Y374X TDP-43 mutant immunolocalization (Newell et al., 2018). 

 

4.1.2.3 TDP-43 mutants’ cellular toxicity: LDH release assay 

According to the previous results, I therefore examined whether the S375G, G376D, 

N378D, and Y374X substitutions could increase cellular toxicity in relation with WT protein. 

To perform this analysis, HeLa cells were transiently transfected with the flagged TDP-43 

vectors: after 24-, 48-, and 72-hours lactate dehydrogenase (LDH) levels were measured. 

The LDH levels in the cell medium levels after 24 hours did not show any difference between 

the mutants, compared to cells transfected with wild-type TDP-43 (Fig.34A). On the other 

hand, the expression of the S375G caused a strong significant cytotoxicity after 48 hours 

that was similar to that of the other mutants (Fig.34B) and even stronger than some if we 

consider that the N378D mutant showed a toxic effect only after 72 hours (Fig.34C). In all 

transfected cells, Western blot analysis against total TDP-43 showed that the flagged wild-

type and mutant proteins were expressed at similar levels after 48 hours post-transfection 

(Fig.34D) (Newell et al., 2018). Taken together, these results have suggested that, although 

TDP-43 functional properties in the regulation of pre-mRNA splicing were not affected, this 

mutation still had the ability to alter the nuclear cytoplasmic balance of this protein. As a 
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consequence, this novel S375G mutation displayed a toxicity that was comparable, and 

even somewhat greater, than neighboring disease-associated mutations. What these results 

did not explain, however, was the reason why this change could affect the cellular 

distribution of TDP-43.  

 

Figure 34 - LDH release. Levels were measured 24 hours (A), 48 hours (B) and 72 hours (C) after cells transfection with 

the specific constructs. Multiple comparison one-way Anova test with Bonferroni’s correction was performed using 

GraphPad software (GraphPad Software, La Jolla California, USA). D) Western blot analysis of flagged TDP-43 protein 

expression after 48 hours to show comparable expression of all mutants in our cell line. Tubulin was used as the internal 

standard loading control (Newell et al., 2018). 

 

4.1.2.4 Functional effects of mimicking post-translational phosphorylation at the S375 

position 

According to the literature (Kametani et al., 2016; Hasegawa et al., 2008), the most 

likely hypothesis for the change introduced by this replacement of Serine with a Glycine 

could be to prevent the eventual phosphorylation of position 375. Therefore, to test the 

potential effects of phosphorylation at this position I prepared a phosphomimic mutant of 

TDP-43 where the Serine in position 375 was mutated with a Glutamic Acid (S375E) (Newell 

et al., 2018).  
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I then tested both the immunolocalization and the splicing capability of this 

phosphomimic mutant protein like we did for the S375G mutation (Fig.35). 

Immunohistochemistry analysis showed that, contrarily to the S375G variant, the localization 

of the S375E mutant protein is not confined to the nucleus, but is present in the cytoplasm 

(Fig.35A), while the toxicity of the S375E substitution was comparable to that of the S375G 

variant. I also performed an add-back experiment to correlate the mislocalization with CFTR 

exon 9 splicing and I observed no alteration emerged comparing to the wild-type TDP-43 

(Fig.35C). These results suggested that the amount of TDP-43 persisting in the nucleus is 

sufficient to drive correct splicing of the transfected minigene (within the limits of this 

transient assay) (Newell et al., 2018). 

 

Figure 35 - S375E phosphomimic analysis. A) Immunofluorescence analysis of the pFlagSiRTDP-43 S375G and S375E. 

The mutant TDP-43 was detected with an α-flag antibody (red) and the nuclei were stained with DAPI. A ROI 

quantification is also reported showing a significant difference between the amount of protein present in the cytoplasm of 

the transfected cells. Unpaired t-test was performed using GraphPad software (GraphPad Software, La Jolla California, 

USA). B) LDH release assay. Multiple comparison one-way Anova test with Bonferroni’s correction was performed using 

GraphPad software (GraphPad Software, La Jolla California, USA). C) Add-back assay performed with QIAxcel, testing 

exon 9 splicing with the S375E phosphomimic. A western blot analysis was performed to detect the efficiency of 

Silencing and the presence of the transfected protein (Newell et al., 2018). 

Neurodegenerative disorders are characterized by cellular stress and looking at the 

effects of these two mutations on the cellular distribution of TDP-43 it was therefore 
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interesting to see what happens if the cells are stressed following transfection. For this 

reason, I induced cell stress by treating HeLa cells with sodium arsenate (Colombrita et al., 

2009). Upon this condition,  the S375E phosphomimic showed an even stronger cytoplasmic 

localization than WT, whereas the S375G seemed to remain mostly unaffected and still 

predominantly localized in the nucleus (Fig.36) (Newell et al., 2018). 

 

Figure 36 - S375G and S375E immunolocalization under sodium arsenate stress conditions. In red are detected the 

transfected WT, S375G and S375E using an α-flag antibody. The nuclei are stained with DAPI (blue). Unpaired t-test 

was performed using GraphPad software (GraphPad Software, La Jolla California, USA) (Newell et al., 2018) 

 

4.1.2.5 Analysis of the effects of other sites in TDP-43 CTD that have been shown to 

undergo phosphorylation 

Based on these results, I therefore decided to consider the neighboring residues to 

S375 in the C-terminal tail of the protein in order to understand if the capability to balance 

the nuclear-cytoplasmic amount of the protein was specific  for the region or whether this 

ability to affect TDP-43 localization was a specific property of the 375 residue (Newell et al., 

2018). 

In particular, to perform this analysis I decided to consider two paper from 

Hasegawa’s group that were published in 2008 and 2016 and analyzed the potential 

phosphorylation sites in vitro and in two patients in vivo by mass spectrometry (Kametani et 

al., 2016; Hasegawa et al., 2008).  

Following the literature (Buratti, 2015), I therefore combined the potential 

phosphorylation sites with the described disease associated variant, reported in table 21. 
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Residues 
In vitro 

phosphorylation 
In vivo ALS P1 In vivo ALS P2 Mutations References 

S 2 √ X X     

Y 4 √ X X     

T 25 √ X X     

T 88 √ X X     

S 91 √ X X     

S 92 √ X X     

T 116 √ X X     

S 183 √ X X     

S 242 √ √ √     

S 273 √ X X     

S 292 √ X √ S292N 
(Zou et al., 2012; 
Xiong et al., 2010) 

S 305 √ √ √     

S 317 X √ √     

S 332 X X √ S332N (Corrado et al., 2009) 

S 333 X X √     

S 342 √ X X     

S 347 √ X X     

S 350 √ X X     

S 369 √ X X     

S 373 X X √     

S 375 √ √ √ S375G   

S 377 √ X X     

S 379 √ X √ S379C / S379P 
(Chiang et al., 2012; 
Ticozzi et al., 2011; 
Corrado et al., 2009) 

S 387 √ √ √ S387delinsTNP (Solski et al., 2012) 

S 389 √ √ √     

S 393 √ √ √ S393L 
(Praline et al., 2012; 
Origone et al., 2010; 
Corrado et al., 2009) 

S 395 √ √ √     

S 403 √ √ X     

S 404 √ √ √     

S 407 √ X √     

S 408 √ X √     

S 410 √ X √     
Table 21 - TDP-43 potential phosphorylation sites and disease-associated mutations already described in literature. 

Using these criteria, I was therefore able to extend my functional analyses to other 

sites (highlighted in yellow in table 21) localized in TDP-43 C-terminal domain. As a 

consequence, I then prepared four different phosphomimic flag-tag, siRNA-resistant, TDP-
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43 plasmid, mutating the Serine (S) residue with a Glutamic acid (E) (Newell et al., 2018).  

As shown in Figure 37, all of these changes were single residue mutation except for the 

S387-95E which included four different mutation sites (S387, S389, S393, S395) because 

the Serine residues of interest were one next to the other (Newell et al., 2018).  

 

Figure 37 - TDP-43 phosphomimic analyzed residues. 

In Figure 38 are reported the immunohistochemical data obtained on transfected 

HeLa cells of all these mutants. After analyzing the immunofluorescence images (Fig.38A) 

and from the ROI graph (Fig.38B), it is clear that the only phosphomimic plasmid able to 

reproduce the phenotype of the S375E was the S387-95E, composed by four different 

mutated sites (Newell et al., 2018). Taken together, these results have suggested that the 

capability to balance TDP-43 amount in the nucleus or in the cytoplasm can be specifically 

connected to S375 potential phosphorylation and that phosphorylation events in the S375 

surrounding region could contribute in controlling TDP-43 intracellular redistribution (Newell 

et al., 2018). 
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Figure 38 - TDP-43 CTD phosphomimic analysis. A) immunolocalization of TDP-43 phosphomimic in CTD. B) Nuclear-

cytoplasmic localization derived from ROI analysis. Multiple comparison one-way Anova test with Bonferroni’s correction 

was performed using GraphPad software (GraphPad Software, La Jolla California, USA) (Newell et al., 2018). 

 

4.1.2.6 Molecular dynamic (MD) simulation: propensity of β-sheet formation in TDP-43 371-

376 CTD segment upon S375G and phosphomimic S375E substitutions 

The results obtained by the phosphomimic mutants could not explain, however, why 

a phosphorylation event at this site is capable of affecting TDP-43 localization. To further 

characterize this point, we decided to focus on the structural integrity of the WT sequence 

comparing to the S375G and the S375E mutants. In particular, I decided to focus on inter-

molecular interactions that might be occurring in this region between different TDP-43 

molecules.  Thanks to the help of our collaborators in Spain (University of Castile-La 

Mancha, Instituto Regional de Investigación Científica Aplicada (IRICA), Ciudad Real, 

Spain; and Instituto de Química Física “Rocasolano”, Consejo Superior de Investigaciones 

Científicas, Madrid, Spain) we performed structural investigations of the TDP-43 C-terminal 

region that includes the S375 residue. First of all, three segments of the CTD containing the 

residue of interest were selected for peptide synthesis: N371-NSYSG376 for the WT protein; 

N371-NSYGG376 for the variant S375G; and N371-NSYEG376 for the phosphomimic S375E. 

On these segments, our collaborators performed molecular dynamic simulations and, as 

shown in Figure 39, a measure was obtained at three different time points (Fig.39A) as well 

as the Cα–Cα intra-β-sheet distances were measured throughout the course of the 

simulations (Fig.39B). As shown in this figure, both WT and S375G exhibited a high 

structural stability, which we interpret as the ability to S375G to maintain inter-protein 

contacts similar to those of the WT sequence. On the other hand, S375E showed an 
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instability assembly due to the presence of strong electrostatic repulsions which are 

promoting structure dissociation (Newell et al., 2018). 

Taken together, these results suggest that phosphorylation of S375 might mediate a key 

aspect of TDP-43 assembly and nuclear localization, meaning that the lack of S375 

phosphorylation induced by the mutation can promote TDP-43 self-association and 

therefore its nuclear retention (Newell et al., 2018). 

 

 

Figure 39 – Molecular dynamic simulation analysis. A) The molecular dynamic trajectories were followed at 0 (green) and 

after 50ns (blue). From the overlap of the starting and the finishing sequence, the WT and the S375G remained 

assembled during the simulation time; instead, the phosphomimic S375E variant was disassembled. B) Cα- Cα inter-β-

strands and intra-β-sheet measurements. Each of these distances was calculated at each data point of the simulation, 

and they were all averaged and plotted (lower part of the panel). Whereas WT and S375G inter-strand distances 

remained constant over time (blue and violet curves),  S375E (red) increased as a result of disassembly (Newell et al., 

2018). Figure in collaboration with Miguel Mompean. 
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4.1.3 Creation of a stable cell line expressing S375G and S375E 

The problem with transient transfections is that the relatively low efficiency of cells 

producing the transfected protein and time limitations do not allow to fully appreciate what 

could be the functional differences introduced by these mutations. Therefore, based on the 

results obtained with the transient transfection experiments, I decided to create a stable 

cellular model in which the flag-tag, siRNA resistant S375G and the S375E variants could 

be expressed constantly following induction (together with a stable cell line stably expressing 

wild-type TDP-43). 

As discussed in detail in the Material and Methods section, I prepared these different stable 

clones in the Hek293 Flp-In T-REx (Life Technology, Carlsbad, California, USA) cell line 

where the exogenous protein can be inducible expressed upon addition of Tetracycline to 

the cell media. Following these results, I tested all the prepared stable clones for what 

concern the protein expression. As reported in Figure 40, in the flag-tag siRNA resistant 

TDP-43 WT two clones, on five prepared, did not work; all the clones prepared for the S375G 

have a good expression; all the S375E clones are fine, with the exception for the S375E1 

clone 2 in which the expression is also present in the Tet off (-) sample, maybe due to small 

amount of Tet in the serum (reported also in the datasheet troubleshooting).  
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Figure 40 - Western blot analysis of all the stable clones prepared. The stable protein was detected with α-flag antibody 

and the tubulin was used as internal standard: the band under the tubulin is the flag antibody because they are detected 

with the same secondary antibody. 

Subsequential selection of the positive clones, WT1-Clone1, S375G2-Clone1, and 

S375E2-Clone4 were employed for all the following assays due to their similar expression 

levels. Figure 41 show the levels of protein expression at 24, 48 and 72 hours after induction 

for all three cell lines expressing TDP-43, WT, S375G and S375E. As shown in this figure, 

expression remained stable for all three different time laps and for all further experiments I 

induced the clones for 48 hours. 
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Figure 41 - Western blot analysis testing stable clones’ expression at three different time points: 24, 48 and 72 hours. 

The expression of the stable allele upon tetracycline induction, was detected with α-flag antibody, specific for the 

recognition of the stable protein only. Tubulin was used as a standard loading control. 

First of all, although in transient transfection I observed no effects of these mutations 

on TDP-43 splicing ability, I decided to look again at the splicing capability of the various 

TDP-43s in the stable clones (because of its presumably greatest sensitivity). In particular, 

because all cells are producing the exogenous protein upon induction, there was no reason 

to transfect the CFTR minigene as a reporter system. Instead, I decided to look at POLDIP3 

as an endogenous target gene in all three cell lines (Fig.42). The reason this gene was 

chosen is because it is one of the most well characterized endogenous targets from the 

point of view of TDP-43 splicing properties. In this gene, in fact, the inclusion of exon 3 is 

completely dependent on the binding of TDP-43 to a UG-rich region downstream from the 

5’ss (Fiesel et al., 2012). In normal conditions, TDP-43 splicing activity results in about 80% 

of exon 3 inclusion and approximately 20% of exon 3 exclusion. As shown in Figure 42, the 

S375G mutant and the S375E phosphomimic cell lines were behaving exactly as the WT in 

terms of keeping the same inclusion/exclusion ratio of exon 3, thus confirming the previous 

results obtained with the CFTR exon 9 mini gene in the transient transfection experiments 

(Newell et al., 2018). 
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Figure 42 - POLDIP3 gene splicing analysis. A) Qiaxcel capillary electrophoresis gel image. B) Statistical analysis of 

POLDIP3 exon 3 inclusion performed with multiple comparison one-way Anova test with Bonferroni’s correction using 

GraphPad software (GraphPad Software, La Jolla California, USA). 

The availability of these stable clones also represented a powerful tool that could 

clarify some involved processes bypassing the limits of a transient transfection. For 

example, they are suitable to examine eventual alterations in TDP-43 autoregulation levels 

or the presence of this protein in the soluble or insoluble fraction. 

Following this idea, I first studied the behavior of the S375G mutant and the S375E 

phosphomimic in the autoregulation process of endogenous TDP-43. As previously 

mentioned in the Introduction, TDP-43 is able to bind to a specific region in the 3’UTR of its 

pre-mRNA and trigger the skipping of intron 7 that contains one of the major polyadenylation 

sites of its mRNA (pA1). Loss of this polyadenylation site forces the use of another 

suboptimal polyA site (pA2) and this leads to nuclear retention and degradation of the 

transcript. In fact, one of the first observations we did when expressing TDP-43 in a stable 

manner was that the induced exogenous protein was capable of “switching-off” expression 

of the endogenous gene (Budini and Buratti, 2011). It was therefore interesting to see if the 

S375G and S375E clones were capable of downregulating the endogenous gene as well as 

the WT TDP-43 protein. As shown in Figure 43, however, all stable alleles were able to 

inhibit expression of the endogenous TDP-43 in a similar manner and no statistical 

differences were reported in autoregulation activity of the mutated TDP-43 form comparing 

to the WT.  
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Figure 43 - S375G and S375E stable alleles autoregulation on the endogenous TDP-43. A) Western Blot analysis 

performed against total TDP-43. Tubulin was used as a loading control. B) Statistical analysis of endogenous TDP-43 

expression levels performed with multiple comparison one-way Anova test with Bonferroni’s correction using GraphPad 

software (GraphPad Software, La Jolla California, USA). 

As autoregulation was not impaired, I then decided to study the presence of the 

mutated proteins in the soluble/insoluble fraction, something that would have been difficult 

to study in transient transfection because of the lower expression. However, all the stable 

proteins were present both in the soluble as in the insoluble fraction even though they are 

mainly soluble (Fig.44). Therefore, also for the solubility assay, no significant differences 

could be reported for S375G and S375E compared to WT. 

 

Figure 44 - Western Blot analysis of the solubility assay performed on the stable clones. The membranes were stained 

against the total TDP-43. I used the Pierce Reversible Protein Stain Kit for Nitrocellulose Membranes (ThermoFisher 
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Scientific, Waltham, Massachusetts, USA) as a loading control. Please note that the Pierce Reversible staining kit does 

not allow any quantification. 

The same assay was also repeated upon sodium arsenate treatment, in order to 

check if the protein solubility could have changed in cell stress conditions. However, upon 

induced stress conditions, both mutated forms of TDP-43 remained mainly soluble as the 

WT (Fig.45). 

 

Figure 45 - Western Blot solubility assay of the stable clones upon arsenate treatment. The membranes were stained 

against the total TDP-43. I performed the Pierce Reversible Protein Stain Kit for Nitrocellulose Membranes 

(ThermoFisher Scientific, Waltham, Massachusetts, USA) as a loading control. Please note that the Pierce Reversible 

staining kit does not allow any quantification. 

Considering that the autoregulation and the solubility assay yielded negative results, 

I then tested the stable clones for the immunolocalization of the mutants in order to see if 

there were more distinguishing features that were not observed in previous transient 

expression experiments  (Newell et al., 2018). Interestingly, as shown in Figure 46, I noticed 

that in the S375G and the S375E stable clones there seemed to be an abundance of nuclei 

with a non-canonical shape (highlighted with white circle in Figure 46), similar to 

dividing/apoptotic cells. This outcome had not been noticed in the transient transfection 

experiments probably because in transient transfections only a minority of cells were actually 

transfected by the plasmids. Importantly, this difference was particularly present for the 

phosphomimic S375E mutant that showed a higher number of non-canonical nuclear shape 

(around 20%) compared to the S375G (9%) and to the WT (6%). 
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Figure 46 – Stable clones immunolocalization analysis. A) Immunofluorescence images are reported for all the stable 

clones with and without tetracycline induction. Here I reported the merged images between the nuclei (DAPI channel in 

blue); and the Alexa-Fluor 594 (red) detecting the anti-flag TDP-43 (such as the stable alleles expression). B) Statistical 

analysis of the percentage of non-canonical nuclear shape was performed with unpaired t-test using GraphPad software 

(GraphPad Software, La Jolla California, USA). 

This immunolocalization experiment was also performed upon induced cell stress 

conditions, after treating the stable clones with sodium arsenate. In stress conditions, the 

number of non-canonical nuclear shape increased in both the mutant forms (S375G around 

20%, and S375E around 30%), but it was constantly higher for the phosphomimic variant 

(Fig.47). 

 

Figure 47 - Immunolocalization analysis upon sodium arsenate treatment. A) Immunofluorescence images are reported 

for all the stable clones with and without tetracycline induction. Here I reported the merged images between the DAPI 

channel (blue), staining the nuclei; and the Alexa-Fluor 594 (red) detecting the anti-flag TDP-43 (such as the stable 
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alleles expression). B) Statistical analysis of the percentage of non-canonical nuclear shape was performed with 

unpaired t-test using GraphPad software (GraphPad Software, La Jolla California, USA). 

Following this interesting result, I tested if the S375G mutation and especially if the 

phosphomimic mutant S375E could affect cell cycle. 

It is in fact known through the literature that TDP-43 is involved in mRNA stability of 

Cyclin Dependent Kinase (CdK6), an important regulator of cell cycle progression in the 

restriction point (Youhna M Ayala et al., 2008). To investigate the possible impairment of the 

cell cycle and Cdk6 involvement in this observed increase of cell division I performed a 

Western Blot analysis against Cdk6. As shown in Figure 48, however, no differences were 

reported between the WT and the S375G/S375E mutant forms in Cdk6 expression levels. 

 

Figure 48 - Western Blot against CdK6. Tubulin was performed as a standard loading control. 

In parallel, in order to check if this observation was due to an impairment of the cell 

cycle, a flow cytometry (FACS) analysis was performed using propidium iodide staining. As 

shown in Figure 49, the G2 phase in the S375G and S375E seemed to be significantly 

impaired, possibly due to involvement of apoptosis. 
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Figure 49 - Cell cycle analysis performed with flow cytometry and propidium iodide staining. In the upper part of the 

figure the cell cycle trend was reported for each clone stably expressing the TDP-43 form (WT, S375G, S375E mutants). 

The results were plotted in a grouped table and a multiple comparison one-way Anova test was performed using 

GraphPad software (GraphPad Software, La Jolla California, USA) 

In literature, TDP-43 ctd fragmentation was already described to be linked with 

caspase apoptosis, but is still unknown if the caspases are activated intrinsically as a result 

of aberrant TDP-43 aggregation or other mechanisms are occurring (Yamashita et al., 

2014).. Moreover, it is already known that TDP-43 neurotoxicity can trigger the mitochondria 

pathway (Braun et al., 2011). In particular the Apoptosis-inducing factor 1 (AIF1), a 

mitochondrial protein, was described to be consistently involved in neuronal death (Shibata 

et al., 2009; Krantic et al., 2007; Candé et al., 2002). Upon a lethal signal or a strong and 

persistent cellular stress, AIF1 protein translocate, via the cytosol, to the nucleus where it 

binds to DNA and provokes caspase-independent chromatin condensation (Candé et al., 

2002). For this reason, AIF1 protein expression and sub-cellular localization was studied. 

As shown in Figure 50 panel A, AIF1 expression was found to be increased in the S375G 

and in the S375E expressing clones. This data was also consistent with the 

immunolocalization experiment in which the AIF1 expression was more robust in the 

mutants. Moreover, also AIF1 sub-cellular localization was changing, following the 

hypothesis of mitochondria-related apoptosis. As reported in Figure 50B, in the WT 

expressing clone, AIF1 (in green) mainly localized with the mitochondria signal (red). This 

co-localization was also present for the S375G mutant, even if a part of the protein was 
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present also in the nucleus. This result was even more evident for the phosphomimic S375E 

mutant. 

 

Figure 50 – AIF expression and immunolocalization analysis on stable cell line expressing WT, S375G, and S375E TDP-

43. A) Western blot analysis of AIF1 expression in the stable clones (upper panel) and its quantification and statistical 

analysis (lower panel) performed with unpaired t-test using GraphPad software (GraphPad Software, La Jolla California, 

USA). Tubulin was employed as a standard loading control B) immunolocalization analysis of AIF1 protein. In blue are 

stained the nuclei with Hoechst; in red mitochondria signal was performed with MitoTracker Red CMXRos kit 

(ThermoFisher Scientific, Waltham, Massachusetts, USA); in green AIF1 signal was stained with α-mouse Alexafluor 

488. The merged channels are also reported. 

In the future, in order to better identify all the changes in gene expression mediated 

by these mutants we plan to perform RNA sequencing analysis. This will allow us, for the 

first time, to pinpoint exactly all the genes that are misregulated in the presence of a disease-

associated mutation that changes only one aminoacidic out of the 414 which compose TDP-

43. Of course, as this mutation has only been described in one individual, it is unlikely that 

the results will represent the basis for a therapeutic approach that might be specific just for 

this change. However, my hope that RNA sequences study will allow to identify pathways 

and genes that could mediate the toxicity of TDP-43 in neuronal cells irrespective of the 

presence or not of the mutation. In the future, in fact, my aim will be to test these 

genes/pathways for their ability to rescue the toxic effects of TDP-43 also in cells from 

sporadic patients where the protein is almost always in the wild-type condition. 
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4.2 Involvement of TDP-43 in neurological defects of Niemann-Pick type 

C: new therapeutic target for the disease 

As already discussed in the introduction, RNA binding proteins like TDP-43 can be 

involved in the appearance of the neuronal degeneration features in lysosomal storage 

disorders (Janas et al., 2016; Jellinger, 2009; Potashkin and Meredith, 2006). A clear 

example of this is represented by the case of Niemann-Pick type C (NPC) where it was 

reported by Andrea Dardis and colleagues that TDP-43 can be found mislocalized and 

hyperphosphorylated in the cytoplasm in different models (Dardis et al., 2016).  Following 

their conclusions, I further extended and characterized the differentially expressed genes 

occurring in NPC disease due to TDP-43 mislocalization. As for the S375G mutation, the 

aim of this work has been to characterize the cellular events that become misregulated upon 

aberrant phosphorylation and localization of TDP-43. In turn, this will hopefully be able to 

provide novel targets for therapeutic intervention and biomarker analysis. 

 

4.2.1 RNA sequencing analysis on human NPC disease model 

To reach our goal, we sent for RNA sequencing to Novogene (Novogene Co., Ltd, 

Beijing, China), eight RNA samples derived from neuronal cells differentiated from human 

multipotent adult stem cells isolated from the skin (hSKIN-MASCs) of NPC patients and 

healthy controls (Fig.51). These cells were differentiated to human neuronal cells using a 

protocol employed in a previous work by Dardis’s lab and described in detail in the Material 

and Methods section (Bergamin et al., 2013). As shown in Figure 51, the differentiated 

neuronal cells from healthy individuals (left) and NPC patients (right) already displayed a 

different phenotype, with NPC cells showing larger cytoplasmic regions and less neurite 

growth. 
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Figure 51 – Multipotent stem cells isolated from skin biopsies reprogrammed in neurons, in this figure are reported the 

healthy controls and the patients. Figure in collaboration with Stefania Zampieri and Andrea Dardis. 

The samples’ details, sent for the RNA sequencing analysis, are reported as follows 

in table 22. 

Sample Mutations Concentration 

CTR-1 WT WT 1171,18 

CTR-2 WT WT 728,06 

CTR-3 WT WT 894,15 

CTR-4 WT WT 875,74 

PT_1 -p.I1061T 

c.3182 T>C 

-p.I1061T 

c.3182 T>C 

1121,83 

PT_2 -p.I1061T 

c.3182 T>C 

-p.I1061T 

c.3182 T>C 

616,65 

PT_3 -p.I1061T 

c.3182 T>C 

-p.I1061T 

c.3182 T>C 

725,14 

PT_4 - p.M1142T 

c.3424T>C 

- p.L648H 

c.1943T>A 

-p.C100S 

c. 298T>A 

586,89 

Table 22 – Controls (CTR) and patients (PT) details in terms of allele mutations and sample concentration. 
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Before sending the RNA, I performed a quality control analysis using the QIAxcel® 

RNA QC Kit (QIAGEN) (Fig.52). 

 

Figure 52 – RNA quality check. Qiaxcel gel image of the RNA run. 

As reported in Figure 53, a cluster analysis was performed between the two groups 

in order to estimate the expression pattern of differential expressed genes and it confirmed 

that the gene profile of the differentiated neurons from the patients were very different from 

each other. As supported by the Venn diagram (Fig.53B), a total of 799 genes were 

differentially expressed between NPC patients and healthy controls out of the more 12.000 

that were tested in the RNA sequence analysis. 

 

Figure 53 – Gene expression analysis of differentially expressed genes. A) Cluster analysis of differential expressed 

genes: in blue are represented the genes with low expression, in red the highly expressed genes. B) Venn diagram 
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representing the number of different expressed genes between the two groups. The overlapping region is showing the 

number of genes that are commonly expressed (Novogene report). 

These genes were then sorted for the p-value adjusted (pAdj<0.05) and for the fold 

change (FC>1.3 for the up-regulated genes; FC<0.7 for the down regulated genes). They 

were then plotted in a Volcano plot (Fig.54) showing that approximately 300 genes were 

found up-regulated, and 500 genes were down-regulated. 

 

Figure 54 – Volcano plot representing the 799 differentially expressed genes. In green are reported the down-regulated 

genes, and in red the up-regulated targets. 

A more detailed analysis was carried out in order to better understand the cellular 

system involved, the genes potentially associated in diseases, and the involved pathways. 

As shown in Figures 55 and 56, a Gene Ontology (GO) and a Kyoto Encyclopedia 

of Genes and Genomes (KEGG) enrichment analysis were carried out. This analysis 

showed that many GO terms referred to genes involved in metabolic pathways (Fig.55), a 

result that is consistent with NPC pathogenesis. Moreover, the GO analysis also detected 

genes linked to locomotor behavior, confirming the hypothesis of a neurological impairment 

similar to ALS or motoneuron disease with NPC (Fig.55). 
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Figure 55 – GO enrichment analysis. The number of counts were plotted considering the p-value adjusted (Novogene 

report). 

These results were also confirmed by the KEGG analysis, in which the main term to 

be represented was axon guidance, again in agreement with the neuronal degeneration 

observed in the disease (Fig.56). 

 

Figure 56 – KEGG enrichment analysis. The number of counts were plotted considering the p-value adjusted (right part 

of the panel). A deeper analysis on axon guidance term was reported (Novogene report). 

Clearly, many of these deregulated gene expressions were due (directly or 

indirectly) to the absence of the NPC1 protein. Therefore, it would be incorrect to think that 

they become misregulated simply because TDP-43 in NPC is mislocalized to the cytoplasm 
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and aberrantly phosphorylated. Then, in order to find a relationship between the Niemann 

Pick type C disease and TDP-43 mis-localization and hyperphosphorylation, we decided to 

merge the data emerged from the NPC RNA sequencing with the data obtained from a 

previous RNA sequencing analysis carried out in our lab on SHSy5Y cells silenced for TDP-

43 (Fig.57) (Cappelli et al., 2018). As a comparison with the NPC analysis, the data shown 

in Figure 57 give the result of this previous analysis where 3533 genes were differentially 

expressed between the cells silenced for TDP-43 and the control (siLUC); around 33% of 

the genes were down regulated, and the 67% were up regulated. From this analysis, it 

emerged that many genes involved in different pathways, especially related to 

neurodegeneration, as well as to inflammation, became dysregulated (Cappelli et al., 2018; 

Appocher et al., 2017). 

 

Figure 57 – Volcano plot representing the RNA sequencing data on SHSy5Y silenced for TDP-43. These data were 

extrapolated form the RNA sequence performed in 2017 after the paper of Appocher and colleagues (Appocher et al., 

2017). Analysis performed by Sara Cappelli: data reported in her PhD thesis titled “Role of TDP-43 and hnRNP proteins 

in the regulation of different RNA targets”, published by the Open University in 2019 
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As a result, the NPC RNA sequencing and the RNA seq on SHSy5Y cells with 

silenced TDP-43 data were merged in a volcano plot and from this combination, a total of 

64 genes were discovered to be commonly misregulated. As apparent from this analysis, 

several of the most highly misregulated genes in NPC cells (LCP1, EPDR1, SHANK1, 

CDH18) are also regulated by TDP-43 levels. In particular, LPC1 is related to NF-kappa B 

signaling that has already been shown to play a role in the activation of apoptosis in NPC 

cells (Zampieri et al., 2009) whilst others are well known to play a role in synaptic activation, 

adhesion, axon growth, etc. (SHANK1, CDH18). Taken together these results strongly 

suggest that TDP-43 mislocalisation in patient cells could have a pathological effect on NPC 

neuronal cells function and survival. 

 

 

Figure 58 – Volcano plot of merged data between NPC RNA seq, and SH-SY-5Y cells silenced for TDP-43. The data 

were sorted for the p-value adjusted (pAdj<0.05) and for the fold change (FC>1.3 for the up-regulated genes; FC<0.7 for 

the down regulated genes). 

 

4.2.2 RNA sequencing gene expression validation 

Starting from the results obtained by merging the two RNA sequencing data-sets 

(Fig.58), I selected some genes based on their misregulation levels and their cellular 

function in order to validate the sequencing through Real Time Quantitative PCR. As 
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reported in Table 23, four down regulated genes and five up regulated genes were chosen 

for the validation analysis. 

Gene 
Name 

Gene Description Gene Function 

CDH18 Cadherin 18  

Type II classical cadherin from the cadherin superfamily 
of integral membrane proteins that mediate calcium-

dependent cell-cell adhesion. This particular cadherin is 
expressed specifically in the central nervous system and 

is putatively involved in synaptic adhesion, axon 
outgrowth and guidance.  

DCLK1 Doublecortin Like Kinase 1 

The protein encoded bind microtubules and regulate 
microtubule polymerization, and shows homology to 

Ca2+/calmodulin-dependent protein kinase mediating 
multiple protein-protein interactions. This protein is 

involved in several different cellular processes, including 
neuronal migration, retrograde transport, neuronal 

apoptosis and neurogenesis. This gene is up-regulated by 
brain-derived neurotrophic factor and associated with 

memory and general cognitive abilities.  

DEPTOR DEP Domain Containing 
MTOR Interacting Protein 

Diseases associated with DEPTOR include Glycine N-
Methyltransferase Deficiency and Metaphyseal 

Chondrodysplasia, Jansen Type. Among its related 
pathways are PI3K / Akt Signaling and Autophagy. 

CDON Cell Adhesion Associated, 
Oncogene Regulated 

This protein is a member of a cell-surface receptor 
complex that mediates cell-cell interactions between 

muscle precursor cells and positively regulates 
myogenesis.  

LGR4 
Leucine Rich Repeat 
Containing G Protein-
Coupled Receptor 4 

It is a G-protein coupled receptor that binds R-spondins 
and activates the Wnt signaling pathway. This Wnt 

signaling pathway activation is necessary for proper 
development of many organs of the body. 

ITPR1 
Inositol 1,4,5-

Trisphosphate Receptor 
Type 1 

Upon stimulation by inositol 1,4,5-trisphosphate, this 
receptor mediates calcium release from the endoplasmic 
reticulum. Mutations in this gene cause spinocerebellar 

ataxia type 15, a disease associated with a 
heterogeneous group of cerebellar disorders. 

LCP1 Lymphocyte Cytosolic 
Protein 1 

Plastins are a family of actin-binding proteins. Diseases 
associated with LCP1 include B-Cell Non-Hodgkin 

Lymphoma and Noonan Syndrome 1. Among its related 
pathways are NF-kappaB Signaling.  

SHANK1 SH3 And Multiple Ankyrin 
Repeat Domains 1 

 Members of this family act as scaffold proteins that are 
required for the development and function of neuronal 

synapses.  

EPDR1 Ependymin Related 1 

 Type II transmembrane protein that is similar to two 
families of cell adhesion molecules, the protocadherins 

and ependymins. This protein may play a role in calcium-
dependent cell adhesion. This protein is glycosylated, and 

the orthologous mouse protein is localized to the 
lysosome. 

Table 23 – Selected genes for the RNA-sequencing validations. In red are highlight the up regulated genes; in green the 

down regulated items. 
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The validation was performed on neuronal cells differentiated from human multipoint 

adult stem cells isolated from the skin from NPC patients and healthy controls. Following the 

previous analysis, I tested three control (WT) and three NPC samples (NPC) in quantitative 

real-time PCR. As shown in Figure 59, differences in gene expression for all these genes 

are all statistically significant in comparison to the healthy control. Moreover, I included TDP-

43 in the analysis that seemed to be slightly up-regulated in the NPC cells, presumably 

owing to the fact that a heavy mislocalization in the cytoplasm would induce the 

autoregulation mechanism to increase protein production in order to maintain normal levels 

in the nucleus. 

 

Figure 59 – Quantitative real-time PCR preliminary result on RNA sequencing validation. The statistical analysis was 

performed on three independent experiments each containing three technical replicates. The relative normalized 

expression levels were plotted in a grouped table and an unpaired t-test was performed using GraphPad software 

(GraphPad Software, La Jolla California, USA). In order to better visualize all the plotted data, the x axe was plotted in 

log10 scale. 

 

4.2.3 RNA sequencing functional validation 

Following the RNA sequencing gene expression validation, I performed a functional 

validation of the selected terms. 
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4.2.3.1 RNA immunoprecipitation assay 

In order to establish whether direct binding of TDP-43 exists with the selected 

targets, an RNA immunoprecipitation assay was performed. As reported in Figure 60, 

ITPR1 and EPDR1 mRNAs were significantly enriched following TDP-43 

immunoprecipitation compared to IgG control. The occurrence of correct transfection was 

controlled by Western blot, using tubulin as a loading control. 

 

Figure 60 – RNA immunoprecipitation assay on down regulated genes. A) RNA immunoprecipitation analysis derived 

from quantitative real-time PCR. The obtained data were plotted in a grouped table and a multiple t-test was performed 

using GraphPad software (GraphPad Software, La Jolla California, USA). B) Western blot analysis was performed to 

check the transfection efficiency. Α-flag M2 antibody was performed to check the presence of transfected TDP-43. 

Tubulin was used as standard loading control. 

The same experiment was performed for the up-regulated selected genes. As for 

the down-regulated targets, correct transfection was tested first by western blot and the 

results showed that just DCLK1 mRNA was significantly enriched upon TDP-43 

overexpression (Fig.61). 
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Figure 61 – RNA immunoprecipitation assay on up regulated genes. A) RNA immunoprecipitation analysis derived from 

quantitative real-time PCR. The obtained data were plotted in a grouped table and a multiple t-test was performed using 

GraphPad software (GraphPad Software, La Jolla California, USA). B) Western blot analysis was performed to check the 

transfection efficiency. Α-flag M2 antibody was performed to check the presence of transfected TDP-43. Tubulin was 

used as standard loading control. 

One question that may arise from these results is to determine the binding sites of 

TDP-43 for these mRNAs. From previous studies, it has been known that TDP-43 binds 

specifically the mRNA sequences that  are UG/TG rich (Y. M. Ayala et al., 2008; Buratti and 

Baralle, 2001). Using Ensemble Genome Browser (Ensembl genome browser 102), a brief 

research of TG stretch was performed for ITPR1, EPDR1, and DCLK1 genes. In all three 

cases, TG stretches could be found at exon/intron critical sites as well as in the flanking 

untranslated regions (5’ and 3’UTRs). In particular, for the EPDR1 gene I could see that the 

3’UTR is strongly enriched in TG stretches. At the moment, functional experiments have not 

yet been performed to validate these potential binding sites. In the future, this will probably 

be necessary to determine exactly how TDP-43 direct binding can affect mRNA processing 

in these genes (i.e., splicing, stability, transport) and therefore their expression. 

 

4.2.3.2 Down-regulated genes functional analysis 

In order to establish a functional significance for the selected genes, I tested in 

SHSy5Y cell line the effect of up- or down-regulating the expression of these genes by 

silencing or overexpression. 

I started the analysis with the down regulated genes because the production of a 

siRNA is faster than the cloning of a target in a plasmid for overexpression. 
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4.2.3.2.1 Down-regulated genes functional analysis: LDH release assay 

Following the previous observations, I decided to test the following genes: LCP1, 

EPDR1, SHANK1, ITPR1). Then, after 24, 48, and 72 hours after siRNA treatment the 

cellular LDH levels were measured together with the gene expression levels in order to 

check the silencing efficiency. As shown in Figure 62, all the genes were significantly 

silenced compared to the negative control that was represented by the siRNA against the 

Luciferase (siLUC) (Fig.62A, B, and C right part). In the left part of all panels, cellular toxicity 

was reported compared to the control (siLUC). As shown in this figure, only ITPR1 silencing 

showed a significant cellular toxicity at 48h that reach a maximum effect at 72 hours.  
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Figure 62 – LDH release assay. The absorbance at 485 nm is reported, and three-time laps (24 (A), 48 (B), and 72 (C) 

hours) were studied. In all panels the gene expression upon silencing tested by quantitative real-time PCR is also 

reported. The statistical analysis was performed on three independent experiment with multiple comparison one-way 

Anova with Bonferroni’s correction using GraphPad software (GraphPad Software, La Jolla California, USA). 
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4.2.3.2.2 Down-regulated genes functional analysis: TDP-43 and pTDP-43 

immunolocalization analysis upon ITPR1 knockdown 

Based on these preliminary results, ITPR1 seemed to be the most promising target 

to further characterize in terms of its relationship with TDP-43. In order to establish a 

possible bi-functional correlation between ITPR1 and TDP-43 the localization of TDP-43 

phosphorylated S409/S410 form was tested upon ITPR1 knockdown. As reported in Figure 

64, following ITPR1 silencing the localization of TDP-43 was more cytoplasmic and its 

phosphorylated form was even more expressed compared to the control. 

 

 

Figure 63 – TDP-43 and pS409/S410 TDP-43 immunostaining upon ITPR1 silencing. A) TDP-43 and pS409/410 TDP-43 

staining for the control (siLUC) and for ITPR1 knockdown. The merged images are showed. B) Western blot control of 

ITPR1 silencing efficiency. C) Quantitative real time PCR test of ITPR1 silencing performed in three independent 

experiments. The results were plotted in column table and a T-test analysis was performed using GraphPad software 

(GraphPad Software, La Jolla California, USA).  
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5 DISCUSSION 
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The role of PTMs in controlling both physiological and pathological status of different 

proteins has been studied a long time in order to improve diagnostic, prognostic approaches 

and also for identifying new specific targets for a list of many heterogeneous disorders, 

including neurodegeneration (Buratti, 2018; Pagel et al., 2015).  

In the work for my thesis, I have focused on TDP-43 phosphorylation that seems to 

play an important role in different neurodegenerative disorders and appears as a common 

aberrant feature in the ALS/FTD type of diseases as well as in metabolic disorders such as 

Niemann Pick C (Buratti, 2018; Dardis et al., 2016; Neumann et al., 2009; Weihl et al., 2008). 

In all of these pathological contexts, the balance between physiological and pathological 

status is very delicate, and for this reason I studied two different models in which TDP-43 

phosphorylation is impaired: a disease-associated TDP-43 mutation in a particularly early-

onset ALS patient and aberrant phosphorylation of TDP-43 in NPC disease. 
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5.1 Characterization of TDP-43 mutation in an ALS case affecting a 

potential phosphorylation site 

Regarding ALS disease, together with a group in Indiana/Kansas University, I 

described for the first time a novel mutation in TDP-43 affecting a Serine residue changing 

in a Glycine in position 375 (S375G) that was present in a particularly early-onset ALS case, 

with upper and lower motoneuron involvement, and the presence of hyperphosphorylated 

TDP-43. 

As already described in the Introduction chapter, TDP-43 mutations are quite rare 

events and it is not always easy to prove a clear relationship between the discovered variant 

and the disease (Buratti, 2015). However, looking at the literature, a lot of mutations with a 

clinical significance have been described over the years and many of them are affecting a 

potential phosphorylation site: by removing a potential site of phosphorylation, by inserting 

a Serine or a Threonine, thus adding a novel hypothetical phosphorylated residue, or by 

missense substitutions that introduce negatively charged aminoacids such as Glutamic or 

Aspartic acid, thus mimicking a phosphorylation event (Buratti, 2018). All of these alterations 

can change the protein-protein interaction profile of TDP-43, increase its aggregation, and 

affect half-life or its cytoplasmic localization. Taken together, these observations lead to the 

hypothesis that phosphorylation could play a key role between the physiological and 

pathological balance (Buratti, 2015, 2018; Newell et al., 2018).  

In many respects, the S375G mutation that I described in this work could change 

any of these features and its molecular/functional analysis. It is therefore interesting to 

compare our results with the effects of other mutations already studied in literature that could 

involve changes in the phosphorylation status of TDP-43.  

Starting with the disruption of a potential phosphorylation site, Corrado and 

colleagues in 2009 described a novel mutation (S396L) with a deleterious effect on the 

protein structure that was leading to the formation of low molecular weight fragments 

(around 32 KDa), probably after affecting TDP-43 stability (Corrado et al., 2009). In keeping 

with these results, it was interesting to note that the S375G mutation can also affect the 

protein structure and stability, but instead of promoting fragmentation it was promoting the 

TDP-43 self-association and its nuclear retention (Newell et al., 2018).  

In another occurrence, Xiong and colleagues described a Serine changed to an 

Asparagine in position 292 and predicted the variation to be deleterious for protein function, 
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although no functional validation was provided (Buratti, 2015; Xiong et al., 2010). Similarly, 

the S375G mutation is disrupting the normal protein functions, in particular regarding the 

role played by TDP-43 in cell cycle regulation. Moreover, the structural analysis of S375 

surrounding residues suggested that the ability of these mutations to alter TDP-43 

localization in the nucleus (or in the cytoplasm for its phosphomimic mutant) could be 

specifically connected to S375 potential phosphorylation (Newell et al., 2018).  

Nearer to the 375 position, previous works identified the insertion of a Threonine 

instead of a Serine in position 387. In this work, Solski and colleagues showed that S387T 

was inducing loss of nuclear TDP-43, correlating well with the formation of cytoplasmic 

inclusions upon induced stress (Solski et al., 2012). The Threonine is also a potential 

phosphorylated residue, and upon stress condition this post-translational modification can 

become aberrant (Buratti, 2018). This result is consistent with the one obtained with our 

S375E phosphomimic mutant, in which its cytoplasmic presence, compared to WT protein, 

was even more persistent upon sodium arsenate induced stress conditions (Newell et al., 

2018). This is somewhat similar to the results of  another mutations, A315E that was shown 

to increase TDP-43 cytoplasmic amount of TDP-43 following structural modifications (Zhu 

et al., 2014). 

Importantly, many mutations that create a novel potential phosphorylated site were 

also described in literature to be related with aggregation. For example, N390S mutation 

was described to enhance TDP-43 aggregation and insolubility and the G295S mutation 

was found to induce twisted amyloid-like fibers that increased the aggregative status of TDP-

43 (Jo et al., 2020; Gendron et al., 2013). These results are in contrast with our mutants, in 

which the protein seems to remain mainly soluble with the exception of the S375E 

phosphomimic upon arsenate treatment. Moreover, the presence of the negative charge 

promotes the disruption of the amyloid-like structure in the S375E mutant. This difference is 

interesting because it shows that mutations in TDP-43 phosphorylation may have a great 

variety of effects and will not necessarily overlap with each other. This is also confirmed by 

the description of other mutations such as R361S and N390S that were increasing the CTD 

truncated forms (Gendron et al., 2013). Also, in this case, this result differs from the one 

obtained in the S375E phosphomimic mutant where no truncated forms were revealed both 

in the transient transfection experiments as well as in the stable cell line. 

Finally, another example is the A382T mutation that was described to induce a 

reduction in the ability of cells to respond to cellular stress leading to a TDP-43 loss of 
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function. There are also in this case some similarities with our S375 changes in terms of 

responding to cellular stress. However, there are also important differences as S375 can 

become toxic and aberrant in the pathological status through a gain of function mechanism 

(Newell et al., 2018; Orrù et al., 2016). 

As shown from all these examples, the disruption or the insertion of a novel 

phosphorylated site can lead to different conditions. Due to the great variability of the effects 

observed, however, it is important to study how the potential phosphorylation status of each 

mutations is influencing the protein functions both in physiological, as well as in pathological 

conditions. In order to perform this, the employment of a phosphomimic variant is not new 

in the field, and in literature are reported many examples using this technique (Wang et al., 

2018; Li et al., 2017; Kim et al., 2015; Brady et al., 2011; Guo et al., 2011). The single 

negative charge carried by the Glutamic Acid (or the Aspartic Acid) is sufficient to mimic the 

phospho-modification. I also took advantage of this technique in order to clarify the strong 

toxicity of the S375G mutation and its nuclear retention, assuming that the phosphorylation 

of this residue could balance the nuclear-cytoplasmic shuttle of TDP-43 (Newell et al., 2018). 

Therefore, I compared the two opposite conditions, such as the lack of the Serine (S375G) 

with its impossibility to be phosphorylated, and its constitutive aberrant phosphorylation 

imposing the negative charge of the Glutamic Acid (Newell et al., 2018). As already 

mentioned, the transiently transfected S375E phosphomimic mutant was more localized in 

the cytoplasm, but without compromising the splicing capability of the protein, an effect that 

could be explained due to the amount of S375E TDP-43 persisting in the nucleus, which 

was presumably sufficient to drive correct pre-mRNA processing. Due to a molecular 

dynamic simulation, the different subcellular localization within the two mutants was 

characterized: while the WT and the S375G TDP-43 form presented a strong amyloid-like 

structure, the phosphomimic appeared unstable due to the presence of the negative charge 

(Newell et al., 2018). The disruption of TDP-43 assembly was also described by Wang and 

colleague in 2018, using a phosphomimic of an N-terminal Serine in position 48 (Wang et 

al., 2018). This is supporting the idea that the phosphorylation of the protein could induce a 

destabilization of TDP-43 polymerization and its cytoplasmic shuttle.  

In addition, it is still unclear which kinases are responsable for this phosphorylation 

event. In general, TDP-43 phosphorylation is probably linked to cellular stress if we consider 

that TDP-43 was described to strongly regulated by the MAPK/ERK kinase. Also in this case, 

phosphomimic variant were employed to study the response upon TDP-43 phosphorylation. 
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In particular the T153 and Y155 residues, identified as MEK phosphorylated sites, were 

substituted with a phosphomimic residue, increasing the heat shock response, that normally 

occures as a survival reaction to toxic conditions (Li et al., 2017). In contrast with the S375E 

phosphomimic, the T153 and Y155 phosphorylation could be affecting the GU- stretch 

recognition, imparing TDP-43 splicing capability (Newell et al., 2018; Li et al., 2017). 

In addition, TDP-43 aberrant phosphorylation can become toxic and irreversible in 

disease condition. Supporting this idea, the negative charge of the S375E mutant is inducing 

cellular toxicity (Newell et al., 2018). This result is also supported by the literature, in which 

phosphomimic substitution have a toxic effect on the cells. For example, Ki Yoon Kin and 

colleagues studied three different TDP-43 phosphomimic mutants (S379E, S403/404E, and 

S409/410E) that were able to reduce Drosha stability, preventing protein-protein interaction 

and compromising TDP-43 function, and inducing neurotoxicity in Neuro 2A cell line (Kim et 

al., 2015). In comparison with this work, the S375E phosphomimic mutant did not show any 

compromise in the protein function that concerns TDP-43 splicing capability. However, 

toxicity was observed that may be linked to changes in the cell cycle, as reported in the 

stable clones’ experiments. 

Taken together, the obtained results showed that the phosphorylation of S375 might 

be a key aspect of TDP-43 assembly and it could play an important role in the nuclear-

cytoplasmic balance. The potential phosphorylation of the Serine in position 375 could be 

involved in the physiological phosphorylation of TDP-43, promoting its dissociation and the 

cytoplasmic transport, which is necessary for TDP-43 to carry on its functions. Conversely, 

in the S375G mutant the lack of this Serine residue was shown to promote cellular toxicity 

because this TDP-43 form was more confined in the nucleus, presumably affecting 

cytoplasmic physiological activities. Moreover, the relevance of the S375 residue could also 

play a role in pathological TDP-43 phosphorylation, as shown in the sodium arsenate 

treatment of the transfected cells with the S375E phosphomimic. 

In order to better clarify this physiological/pathological subtle balance, I created 

stable clones expressing the WT, S375G, and S375E (phosphomimic) TDP-43 forms. Again, 

the stable clones creation for TDP-43 functional study was already employed in the past 

permitting the study of protein aggregation (Budini et al., 2012). As with transient 

transfections, no significant changes were reported in splicing, autoregulation, or 

aggregation in these stable cell lines. However, a cell cycle analysis of the stable clones 
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showed that the number of cells in the G2 phase decreased in the two mutants compared 

to the WT that could be linked with activation of apoptosis. 

It is known that the apoptosis is one of the key processes promoting 

neurodegeneration (Ekshyyan and Aw, 2005). In particular, the mitochondria apoptotic 

signal is one of the key players that mediates the proapoptotic signaling in 

neurodegeneration (De Conti et al., 2015; Shangguan et al., 2014; Shibata et al., 2009; 

Krantic et al., 2007; Ekshyyan and Aw, 2005; Kermer et al., 2004; Candé et al., 2002). As 

already reported, the CTD fragmentation is leading to a G2 phase drop compromising 

cellular survival and leading to apoptosis (Yamashita et al., 2014). In this contex, considering 

that TDP-43 aberrant phosphorylation is one of the early responses to cellular stress and 

that TDP-43 neurotoxicity can trigger the mitochondria pathway, we are considering this G2 

phase decrease potentially linked to the mitochondria stress signaling, leading to cell death 

response. In particular the Apoptosis-inducing factor 1 (AIF1), a mitochondrial protein, was 

described to be consistently involved in neuronal death  (Shibata et al., 2009; Krantic et al., 

2007; Candé et al., 2002). Based on these assumptions, I performed an immunolocalization 

analysis of AIF1 mitochondrial protein, and I observed that AIF1 protein in the S375G and 

the S375E mutants was not confined anymore in the mitochondria, but it was found diffused 

inside the cell, especially in the nucleus. This is consistent with the literature and could 

represent a sign of an early apoptotic phase where the expression of these TDP-43 mutated 

forms could lead to mitochondria stress signaling, resulting in AIF1 release and its shuttle 

from the cytoplasm to the nucleus where it could induce an apoptotic signal (Candé et al., 

2002). Further analysis will be required in the future to better characterize the involved 

pathways, and maybe mitochondrial stress could be used as a therapeutic strategy or as an 

early marker for the disease.  
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5.2 Involvement of TDP-43 in neurological defects of Niemann-Pick type 

C 

Disfunction of the RNA metabolism or the involvement of RNA binding proteins in 

lysosomal storage disorders, is one of the putative cause of the neurodegenerative features 

related to this disorders (Paron et al., 2020). Considering TDP-43 role in other 

neurodegenerative disorders, in 2016 this was studied by Andrea Dardis and colleague 

relating to NPC disease. They found  TDP-43 mislocalized and hyperphosphorylated in 

different NPC models (Dardis et al., 2016). This work prepared the foundation for my study, 

trying to better understand the molecular mechanisms that lead to TDP-43 pathological 

involvement and its phosphorylation in this disorder. For this reason, I performed an RNA 

sequencing analysis on human NPC cellular model, and I compared it to the list of changes 

detected in neuronal SHSy5Y cells depleted for TDP-43. From this analysis, 64 genes were 

commonly misregulated within NPC RNA sequencing and the one performed on SHSy5Y 

cells upon TDP-43 silencing. Between these 64 genes, I selected and validated some of 

them basing on their misregulation rate, and their cellular function. In particular, LCP1 and 

ITPR1 were already described to be involved in NPC disease. In particular LCP1 pathway 

is related to NF-kappaβ signaling, already known to induce apoptosis in NPC disease 

(Zampieri et al., 2009). ITPR1 variant was described to worsen the ataxia phenotype in a 

NPC patient, consistently with ITPR1 involvement in cerebellar ataxia 15 (Zeiger et al., 

2018). Moreover, ITPR1 is also involve in calcium homeostasis, as well as DCLK1 and 

CDON. These two genes are able to modulate neuroplasticity, axon outgrowth and 

guidance, neuronal apoptosis and neurogenesis, and neuronal migration through calcium 

homeostasis. Instead, EPDR1 is involved calcium homeostasis to promote cellular 

adhesion. SHANK1 is also involved in neuronal pathways, like the development of 

synapses, and CDON regulates myogenesis. Like ITPR1 and DCLK1, also DEPTOR and 

LGR4 are involved in important cellular pathways, such as the PI3K/Akt and the Wnt 

signaling, respectively (GeneCards - Human Genes | Gene Database | Gene Search). 

After the validation, I performed a functional analysis testing the RNA 

immunoprecipitation of the selected genes within TDP-43 overexpression, in order to 

establish a link between TDP-43 and the selected genes. This analysis showed ITPR1, 

EPDR1, and DCLK1 enrichment, leading to the hypothesis that the mRNAs of these three 

targets were directly bound by TDP-43. Indeed, for all these three genes, TG stretches were 

found both in exons/introns critical sites as well as in the untranslated regions. This supports 
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the idea that TDP-43 could be involved in ITPR1, EPDR1, and DCLK1 regulation, inducing 

alternative splicing, by binding to exons/introns critical sites; or in mRNA degradation or 

instability, by recognizing TG stretches in the untranslated regions. Further analyses will be 

necessary in order to clarify the mechanism of action. 

Together with the RNA immunoprecipitation assay, I performed a functional analysis 

on the down-regulated genes by testing their cellular toxicity and measuring the LDH release 

in the medium after silencing the down regulated genes of interest. From the LDH release 

cytotoxicity assay, just ITPR1 gene showed a cytotoxic effect at 48 and 72 hours, adding 

another evidence to the RNA immunoprecipitation assay, and leading to the hypothesis that 

ITPR1 could be somehow involved and linked to TDP-43 neuropathogenesis. Indeed, 

calcium pathways and Cyclic adenosine monophosphate (cAMP) homeostasis related to 

oxidative stress, were already described to be associated biomarkers in another 

neurodegenerative disorder, such as FTLD (Palluzzi et al., 2017). In addition, different 

papers were published coupling TDP-43 neuronal toxicity and its sub-cellular localization 

with ITPR1 as a modifier of this condition (Zhan et al., 2013; Kim et al., 2012). Moreover, 

supporting our results, ITPR1 was already described in literature as a down-regulated item 

upon TDP-43 knockdown (Štalekar et al., 2015; Polymenidou et al., 2011). Also, ITPR1 

potentially involvement in NPC was described by William Zeiger and colleagues, reporting 

a NPC patient with a novel ITPR1 variant that leads to an autosomal dominant 

spinocerebellar ataxia that worsen the phenotype (Zeiger et al., 2018). Therefore, ITPR1 

down regulation could be a phenotype modifier in NPC disease, related to TDP-43 

misregulation and hyperphosphorylation. Based on these preliminary results, I performed 

an immunolocalization analysis showing that ITPR1 knockdown was promoting TDP-43 

cytoplasmic localization and its phosphorylation. This could be an important starting point 

for investigating strategies that will allow the rescue of proper TDP-43 localization in the 

nucleus and thus recovery of proper gene expression, in particular kinase inhibitors 

compounds already approved for clinical applications. 

Further experiments should be performed in order to test also the up-regulated 

genes and the effects of their overexpression. In addition, there is also work that remains to 

be done with regards to better characterizing the aberrant phosphorylation process of TDP-

43 in NPC. In my experiments, I have focused on the well-known S409/S410 

phosphorylation sites that are also found in the ALS/FTD pathway. However, it is also 

possible that in the NPC model the aberrantly localized TDP-43 may carry some novel 
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phosphorylation events that have yet to be described. To address this issue, I therefore plan 

to immunoprecipitated TDP-43 from our NPC model cell lines and perform mass-spec 

analysis to identify the phosphorylation sites of TDP-43 in NPC cells. To do this, we will use 

the mass-spec facility at ICGEB that has a long-standing expertise in this kind of analysis. 

Another question that remains open is the identification of kinases that are involved 

in the phosphorylation of TDP-43 in NPC. Are they the same or are they different from 

ALS/FTD disease? To address this issue, I plan to overexpress various kinases in our model 

cell lines to address the mislocalization properties of phosphorylated TDP-43. For example, 

this could be done using lentiviral vectors with genes cloned under the control of ubiquitous 

or neuron-specific promoters (for example, HB9, a lower MN-specific transcription factor). 

In parallel, from the SIGMA MISSION shRNA library I might obtain lentiviruses carrying three 

different shRNAs that specifically target selected human kinases. After target gene 

overexpression or silencing, any modifications to the phosphorylation status and behavior 

of TDP-43 will be evaluated together with their consequences on the cellular phenotype. 
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6 CONCLUSIONS 
 

  



150 

 

Following the discussion and the reported results, the two disease models have 

revealed distinct aspects that could be employed for novel strategies and to add new 

information regarding TDP-43 pathogenic mechanism. 

First of all, the work I have performed has pointed out that the study of a single point 

mutation can lead to discover new features of proteins, that might represent a novel link to 

disease. The analysis of this Serine in position 375, revealed its relevance in both 

physiological and pathological conditions, opening a new window in cell cycle/apoptosis 

related phosphorylation. In conclusion the S375 phosphorylation seemed to promote the 

cytoplasmic shuttle of TDP-43 protein in physiological conditions; instead, the pathological 

status was induced by the lack of phosphorylation as well as its abnormal modification. This 

could be linked to mitochondria apoptotic pathway, and in future it could be exploited as a 

novel therapeutic target for ALS and, more in general, for neurodegenerative disorders. 

Following this, the importance of phosphorylation in regulating TDP-43 functions 

has been highlighted by my study on its pathological role in Niemann Pick type C. In 

particular, this work has allowed the identification of a novel potential modifier, namely 

ITPR1. The downregulation of this gene seems to worsen the TDP-43 related phenotype, 

especially regarding the phosphorylation pattern of the protein. Further studies will therefore 

be performed to check if ITPR1 could possibly represent a potential target or biomarker of 

the disease not just NPC, but also other TDP-43 related neurodegenerative disorders. 

Moreover, ITPR1 involvement in kinase pathways could represent a novel target for already 

approved kinase inhibitors, as new strategies for the treatment of neurological disorders. 

 

In conclusion, this work is looking at phosphorylation as a common target between 

heterogenous neurodegenerative diseases, underlying the relevance of the 

physiological/pathological subtle balance, as well as the importance of potential modifiers. 
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7 FUTURE PERSPECTIVES 
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For both models, further analysis will be necessary. 

To better understand the potential second modifiers of the 

physiological/pathological balance, an RNA sequencing analysis on the S375G and S375E 

stable clones will be performed. The results from this analysis could be interesting in order 

to add new information about what is regulating the toxicity of this specific PTM and to better 

characterize the cell cycle/mitochondrial apoptosis involvement. Moreover, the obtained 

data from this sequencing can then be merged with the one obtained with NPC with the 

hope of finding the common features that regulate the phosphorylation status. It will also be 

interesting to start analyzing the differences between ALS and NPC1, thus identifying 

specific characteristics relating to the different diseases. Moreover, the RNA sequencing 

data will add some functional information about the normal cell division/apoptosis signal, 

that could be rescued by treating the cells with small compounds known to be able to rescue 

the pathway, both in normal and in stress conditions. 

 

Regarding the NPC model, a lot is still needed to be added. First of all, the exact 

positions where TDP-43 binding with ITPR1, EPDR1, and DCLK1 is occurring should be 

clarified. This is important in order to establish how these genes are regulated by TDP-43, 

if they are alternative spliced or if TDP-43 induces mRNA destabilization by binding the 

untranslated regions. To study the potential alternative splicing, a deeper analysis of the 

RNA sequences should be performed. Moreover, specific primers should be designed on 

exons that could potentially undergo to TDP-43 splicing regulation.  On the other hand, the 

mRNA stability will be studied through transcription block, using for example actinomycin D. 

The half-life of the mRNA will be then tested with quantitative real time PCR, in order to 

check if TDP-43 binding is performing the mRNA degradation. 

Regarding ITPR1 analysis as a potential modifier of the disease, already clinical 

approved kinase inhibitors can be tested. Upon ITPR1 knockdown, kinase inhibitors will be 

administered to the cells and TDP-43 localization and phosphorylation will be monitored, in 

order to check if some of the compounds are able to rescue the wild-type phenotype. 

Moreover, the functional analysis on up-regulated genes will be performed. The 

selected targets will be cloned in the pCMV4 vector in frame with the flag tag. The 

overexpression in SHSy5Y ECACC cell line will be performed and their toxicity effects will 

be tested through the LDH release assay. Based on the results obtained with the cytotoxicity 
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experiment, together with the results following the RNA immunoprecipitation, we hope to 

find other potential targets that could represent another therapeutic option or it could add 

new information about the pathogenic mechanism. 

Finally, the two disease models could reveal different phosphorylation patterns and 

kinase involvement. In this context, it will be important to determine the putative TDP-43 

phosphorylated sites also in an NPC cellular model, in order to compare them with the ones 

found in ALS/FTLD spectrum (Kametani et al., 2016). Also, the identification of the kinases 

involved could help to address the mislocalization properties of phosphorylated TDP-43. 

This could be answered by overexpressing different kinases, under the control of ubiquitous 

or neuron-specific promoters, or to silence them by using shRNAs that specifically target 

selected human kinases. Both could be address by using lentiviral vectors. This will be 

useful to evaluate TDP-43 phospho-status and behavior and to potentially exploit it as a 

novel potential target. 
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