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Abstract 

A promising strategy to achieve malaria elimination is by interrupting transmission 

using transmission-blocking vaccines (TBVs). TBVs target the sexual or mosquito 

stages of the malaria parasite to inhibit parasite development within the mosquito. To 

date, however, there are only three lead TBV candidate antigens Pfs230, Pfs48/45 and 

Pfs25 in various stages of clinical development. This project sought to identify novel 

antigens expressed on gametocytes, gametes and ookinetes with potential as TBV 

candidates. Furthermore, naturally acquired immune responses (NAI) to gametocytes 

have been described and have the potential to guide the development and the 

implementation of TBVs Therefore, this work also sought to improve our 

understanding of NAI to gametocytes. This was achieved by (1) carrying out a 

systematic review and meta-analysis of studies investigating NAI to the lead 

gametocyte-stage TBV candidates, and (2) assessing the changing patterns of 

gametocyte carriage at the Kenyan coast over time.  

Key indicators of gametocytaemia and anti-gametocyte immunity were identified and 

evaluated against a novel panel of gametocyte antigens.  These antigens, together with 

a separate set of gamete and ookinete stage antigens, were identified as potential TBV 

candidates using a combination of bioinformatic tools and laboratory investigations. 

Immunoprofiling of the identified gametocyte candidates provided evidence that 

stable responses can be generated to sexual stage antigens. Moreover, antigens that 

could serve as serological markers of recent gametocyte exposure, in particular PEB-P 

(PF3D7_0303900), were also identified. The ability of the sexual stage antigens to 

induce transmission-blocking immunity was also assessed. Promising candidates 

identified included PBCPP2 (PBANKA_0719100), a novel conserved and 

uncharacterised P. berghei protein), and SOAP (PBANKA_1037800). Further 

characterisation of these antigens may yield new candidates to add to the TBV 

development pipeline. 
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Chapter 1  

Introduction 

1.1.  Malaria  

1.1.1.  Disease burden 

Despite concerted elimination efforts, malaria remains a significant public health 

concern in endemic countries where morbidity and mortality are greatest. The 2019 

World Malaria Report estimated the number of malaria cases worldwide at 228 

million cases (95% CI 206 – 258 million) in 20181. Africa bears a disproportionate 

burden of the disease, accounting for 93% of the malaria cases, 99.7% of which are 

attributable to Plasmodium falciparum. Furthermore, while malaria-associated 

mortality declined from 533,000 to 380,000 between 2010 and 2018, the rate of 

decline slowed down from 2016 – 20181. Stalling progress calls into question our 

ability to meet the Global Technical Strategy for Malaria 2016 – 2030 (GTS) goals 

for 2020. The malaria incidence rate for 2018 was estimated at 57 cases per 1000 

population at risk; much higher than that required to meet the 2020 goal (45 per 

1000)2.  

These data are not perfect, relying on reports from national malaria control 

programmes, household surveys of health service use or parasite prevalence to derive 

model-based estimates of malaria incidence1,3,4. Nonetheless, they provide a broad 

picture of the progress of malaria control efforts. Critical challenges faced by malaria 

control efforts include lack of adequate and consistent international and domestic 

funding, emerging parasite and vector resistance, and fragile health and surveillance 

systems2. For these reasons, malaria needs to remain a priority in national and global 

health agendas to avoid reversal of the gains made so far. 

Malaria is caused by the protozoan parasite Plasmodium with the majority of deaths 

attributable to P. falciparum though P. vivax is also known to contribute significantly 

to malaria-associated morbidity and mortality in Southeast Asia and Latin America5. 

Other species known to infect humans include P. malariae, P. ovale (P. ovale curtisi 

and P. ovale wallikeri) though infection by either species is thought to be relatively 

mild6,7. The zoonotic P. knowlesi has also been shown to infect humans in South East 

Asia8,9. The bite of an infected female Anopheles mosquito transmits the parasite from 
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one host to another10, making both parasite and vector targets for malaria control 

interventions. Control measures such as insecticide-treated nets and the highly 

effective artemisinin combination therapies (ACTs)11–13 have proved invaluable in the 

fight against malaria and are discussed at length in section 1.3 below.  Vaccines have 

been an important tool for the control and eradication of diseases such as smallpox14,15, 

making them an ideal tool for the elimination of malaria. Currently, a licenced vaccine 

for malaria does not exist; however, pilot implementation studies on the RTS, S 

vaccine (discussed in section 1.3.  below) are currently ongoing in Kenya, Malawi and 

Ghana16. Despite the low and waning efficacy, the RTS, S vaccine paves the way for 

the development of more efficacious vaccines targeting infection, disease, and 

transmission to hasten us towards malaria elimination and eventual eradication. 

1.1.2.  Infection, disease and transmission 

P. falciparum has a complex lifecycle requiring two hosts for replication and 

reproduction. The parasite cycles through 3 distinct stages (Figure 1.1): (1) parasite 

invasion and establishment of an infection within the vertebrate host mediated by a 

bite from an infected mosquito, (2) propagation of the parasite in erythrocytes leading 

to the clinical manifestations of disease, and finally (3) differentiation into 

transmissible forms that are taken up by a mosquito where they develop culminating 

in an infectious mosquito. 

1.1.2.1.  Infective stages 

P. falciparum malaria infection in the human host begins when an infected mosquito 

bites a host injecting sporozoites into the dermis where they either remain in the 

dermis or migrate from the injection site via the bloodstream (⁓70%) or lymphatic 

vessels (⁓30%)17. Those that persist in the dermis or drain into the lymphatics are 

mostly degraded; however, a few partially develop within the lymph nodes into 

exoerythrocytic forms (EEFs). Those that enter the bloodstream traverse the 

sinusoidal barrier of the liver to reach the hepatocytes. The sporozoites then interact 

with hepatocytes via the thrombospondin repeat domain located at the C-terminal of 

the highly abundant circumsporozoite protein (CSP)18. Receptors on the hepatocyte 

such as scavenger receptor B1 (SR-B1) enable the sporozoite to penetrate the 

hepatocyte and form the parasitophorous vacuole (PV)19. Within the PV, the 

sporozoite develops into EEFs in the course of the next 2 – 10 days following the 
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mosquito bite, culminating in the formation of thousands of merozoites. The 

merozoites are then released into the bloodstream via budding of merosomes (vesicles 

filled with merozoites)20. 

1.1.2.2.  Disease-causing stages 

Once in the blood, the merozoites invade red blood cells (RBCs) in a rapid process to 

begin replication. First, the merozoite contacts the RBC and deforms the host cell. 

Two protein families mediate this process, the erythrocyte binding antigens (EBAs) 

and reticulocyte-binding homologues (RHs) that interact with RBC receptors such as 

the glycophorins A, B and C and complement receptor 1 (CR1) 21,22. Interactions 

between members of these protein families and their receptors then trigger 

downstream invasion events, for instance, binding of EBA-175 to glycophorin A 

triggering the release of rhoptry contents23. Once initial contact is achieved, the 

merozoite reorients such that its apical end connects with the RBC membrane. The 

merozoite then attaches irreversibly to the RBC through the formation of a tight 

junction. Tight junction formation is aided by parasite-derived rhoptry neck protein 1 

(RON1) complex and apical membrane antigen 1 (AMA1) interaction, triggering the 

expulsion of merozoite contents into the host RBC24. Upon RBC infection, the 

parasite develops over cycles of 48 hours, maturing into the ring stage, the trophozoite 

stage and finally a schizont filled with approximately 20 merozoites which are 

released upon schizont rupture to infect new erythrocytes25. These repetitive cycles of 

replication occur involving invasion, replication, egress and re-invasion contributing 

to the pathological features of malaria infection. The asexual forms cannot infect a 

mosquito, requiring the production of transmissible gametocytes in a process referred 

to as gametocytogenesis26,27. 

1.1.2.3.  Transmission stages 

A small proportion of the asexual parasites undergo commitment to sexual 

development. The AP2-G family of DNA-binding proteins that activate early 

gametocyte genes likely regulate this process28,29. Commitment can either occur 

within the same cycle of development or in the subsequent cycle upon schizont 

egress30 with all resulting daughter merozoites going on to become either male (micro) 

or female (macro) gametocytes31. The decision to follow the sexual development 

pathway can occur spontaneously with a fraction of the asexual parasites committing 
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to gametocytogenesis28. Alternatively, gametocytogenesis may be triggered or 

amplified by host factors such immune pressure (reviewed in Talman et al. (2004)32) 

or parasite factors such as contents of extracellular vesicles released from infected 

erythrocytes33,34. Gametocytes develop through five distinct stages with stage I being 

morphologically similar to trophozoites; however, as they progress through stages II 

to V, they gradually adopt a distinct crescent shape27. Mature stage V gametocytes are 

the only stage found in peripheral circulation and are the transmissible stage with the 

immature gametocytes sequestered in the spleen or bone marrow35. While in the 

human host, stage V gametocytes are arrested at the G0 phase of the cell cycle awaiting 

activation within the mosquito31.  

Once within the mosquito midgut, the changes in pH, drop in temperature, and 

presence of xanthurenic acid activate the female and male gametocytes causing them 

to differentiate into male and female gametes26. Within 20 minutes, male gametocytes 

undergo eight rounds of DNA replication, becoming motile flagellated microgametes 

in a process termed exflagellation. The female gametocytes round up and develop into 

macrogametes. During exflagellation, young microgametes adhere to erythrocytes 

forming exflagellation centres. Motile microgametes then leave the centres to locate 

and fertilise the macrogametes36. The gametes fuse to form a zygote which then 

develops into a motile ookinete that traverses the midgut and forms an oocyst37. 

Sporozoites develop within the oocyst which subsequently bursts to release them into 

the haemocoel. From the haemocoel, the sporozoites travel to the salivary glands 

awaiting transmission through the next blood meal.  
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Figure 1.1: Lifecycle of Plasmodium falciparum. Diagram showing parasite development within the 

human and mosquito hosts. Image made using ©BioRender (https://app.biorender.com/) 

https://app.biorender.com/
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1.2.  Epidemiology of Plasmodium falciparum malaria 

Plasmodium falciparum is widely distributed in the tropics and is responsible for 97% 

of the global malaria cases1,38. Furthermore, P. falciparum-malaria accounts for the 

majority of malaria-associated morbidity and mortality in Africa. While malaria is 

widely endemic in Africa, substantial heterogeneity in endemicity exists across the 

continent, with some regions experiencing stable transmission while others 

experience unstable or no transmission39. This is exemplified by the fact that ~80% of 

all cases occur in 18 countries, with the highest burden of disease being in Nigeria and 

the Democratic Republic of Congo1. Factors such as pre-existing P. falciparum 

burden, the suitability of vector habitats, as well as the varied implementation of 

control measures have led to convoluted spatiotemporal patterns of disease incidence 

and parasite prevalence. Malaria endemicity is directly related to transmission 

intensity, and therefore understanding the drivers of transmission is crucial to 

identifying at-risk populations and optimising intervention strategies40. Various 

metrics are used to define malaria transmission intensity across different populations. 

These include the entomological inoculation rate (EIR), parasite rate (PR) and 

seroconversion rate (SCR)41.  

The EIR is a measure of the number of infectious bites per person per unit time and is 

considered the ‘gold standard’. However, the EIR technical and ethical considerations 

limit its utility. The PR measures the number of parasite-positive individuals in a 

region while the SCR relies on parasite biomarkers to determine the frequency with 

which malaria-exposed individuals seroconvert. Estimates of the PRs for different 

areas are easier to obtain and are more readily available across Africa39 and can be 

used to categorise malaria endemicity into either (1) holoendemic regions where 

transmission occurs all year round, (2) hyperendemic regions where transmission is 

intense and seasonal, (3) mesoendemic regions where transmission is moderate, 

coinciding with seasonal epidemics, and (4) hypoendemic regions where transmission 

is lowest with a larger proportion of the population susceptible to disease40. Such 

classifications are essential for elimination efforts as they provide a means by which 

to prioritise, implement, and monitor malaria control interventions. 
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1.2.1.  Clinical manifestations of disease 

In malaria-naïve individuals, infection is symptomatic and presents non-specifically 

as fever, chills, headaches, muscle aches, and nausea42. If left untreated or if initial 

treatment is ineffective, disease can progress to severe malaria. The pathophysiology 

of severe malaria is complex, with several hallmarks of severity such as; anaemia 

(induced by various mechanisms such as the destruction of infected RBCs (iRBCs), 

increased splenic clearance of uninfected RBCs or impaired RBC production), 

respiratory distress following metabolic acidosis, cerebral malaria potentially linked 

to the sequestration of parasites in the microvasculature, and increased 

inflammation25. Disease progression and manifestation are affected by several factors 

which may be geographical and social, parasite-related or host-related.  

1.2.1.1.  Geographical and social factors 

As mentioned above, malaria transmission intensity varies geographically. The 

intensity of transmission can influence the mean age of severity, whereby in areas of 

high transmission, young children present with severe disease38,42 However, over time 

and after repeated exposure, they develop naturally acquired immunity (NAI) (further 

discussed in section 1.4.3.  below) that protects them from disease, and therefore older 

children and adults rarely suffer severe disease. However, as transmission intensity 

decreases, disease also commonly occurs in older children and adults owing to the 

slow acquisition of NAI38. Malaria transmission intensity also affects patterns of 

disease manifestation. Owing to intense parasite exposure in high transmission 

settings, children are most susceptible to severe anaemia due to 

hyperparasitaemia38,43. Conversely, in low to moderate transmission settings, cerebral 

malaria poses considerable risk to children as opposed to severe anaemia as its 

severity tends to increase with age38,42,44. Furthermore, as older children and adults 

are also susceptible, they also present with multi-organ failure, renal dysfunction and 

pulmonary oedema, which are rare in younger children42.  

Aside from transmission intensity, obstacles in access to quality health care can 

exacerbate disease burden and severity. Social factors like the area of residence (rural 

vs urban), household wealth as well as the level of education of the primary caregiver 

can impact treatment-seeking behaviour45. Additionally, political and social unrest, 
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human disasters as well as disease outbreaks affect the implementation of malaria 

interventions2 leading to sustained transmission and malaria incidence. 

1.2.1.2.  Host Factors 

Host immunity plays a vital role in determining disease severity. As indicated in 

1.2.1.1 above, individuals living in malaria-endemic areas develop NAI with age and 

repeated parasite exposure that allows them to control disease and hence they either 

exhibit only mild symptoms or remain asymptomatic. The exception to this is 

pregnant women who once again become vulnerable to disease possibly related to 

parasite sequestration in the placenta46 as well as gestation induced 

immunosuppression47. Malaria in pregnancy is associated with severe anaemia in 

mothers, preterm births, low birth weight, and neonatal death48. In areas of low 

transmission, the risk to pregnant women remains regardless of parity. In contrast, in 

areas of high transmission, the risk is more pronounced in primigravid women 

indicating a role for protection by NAI49,50.  

The high parasite transmission that occurred prior to the advent of control measures 

also had a hand in shaping host-parasite interactions that we observe today. The 

establishment of P. falciparum as a human parasite likely occurred within the last 

10,000 years following divergence from a gorilla parasite51–53 (and reviewed in Carter 

and Mendis (2002)54). The long association with the parasite has therefore allowed 

the selection and maintenance of genetic variants that confer protection against 

malaria in populations living in endemic regions. Genetic variants such as the 

haemoglobinopathies, RBC receptor polymorphisms, and RBC enzyme deficiencies 

can modulate disease severity by compromising the parasites ability to establish an 

infection (discussed further in 1.4.1).  

1.2.1.3.  Parasite factors 

During the establishment of infection, P. falciparum expresses various ligands that 

interact with host receptors to facilitate invasion as well as the expansion of the 

parasite population. One of the properties of P. falciparum that enhance its virulence 

is its ability to invade RBCs using multiple redundant pathways22. This is key to 

supporting the establishment of high parasitaemia and overcoming RBC receptor 

polymorphisms25. However, the parasite may invade RBCs deficient of specific 

receptors at reduced efficiency, which may attenuate virulence leading to less severe 
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disease. Moreover, the parasite can modify the iRBC surface to express parasite-

specific receptors that mediate adhesion to host organs such as the brain, lung, liver, 

and placenta. Adhesion is primarily mediated by P. falciparum erythrocyte membrane 

protein 1 (PfEMP1) encoded by the variant, var, multi-gene family.  

PfEMP1 molecules contain multiple adhesive domains classed as either Duffy 

Binding-like (DBL) or cysteine-rich interdomain regions (CIDR)25. Multiple 

combinations of subtypes of the DBL and CIDR domains allow different PfEMP1 

ligands to bind a host of receptors. Adhesive phenotypes are not homogenous, and 

parasites with different domain combinations will bind to different receptors affecting 

tissue localisation and pathogenesis. For instance, parasites that cause pregnancy-

associated malaria (PAM) bind to placental chondroitin sulphate A (CSA) via 

VAR2CSA46. VAR2CSA does not contain the CIDR domains that would be required 

to bind to receptors such as endothelial protein C receptor (EPCR) implicated in 

severe childhood malaria55. Furthermore, the interaction between host immunity and 

PfEMP1 expression can modulate disease severity. Variants causing severe disease 

express a subset of PfEMP1 varaints56, development of immunity to these variants can 

select for less virulent parasites in subsequent infections hence less severe disease25.  

1.2.2.  Factors influencing parasite transmission 

The spatial heterogeneity in malaria transmission intensity across Africa39 indicates a 

need for locally relevant malaria control programmes. Therefore, understanding the 

determinants of transmission is relevant to malaria control efforts as it allows control 

programmes to adapt to changes in transmission patterns and aids the identification of 

populations that could benefit from the targeted application of interventions. As 

malaria transmission declines and intervention coverage increases, the residual 

transmission will tend to aggregate in hotspots57,58 necessitating the focused 

implementation of control measures. Elimination programmes may then need to shift 

emphasis from tools to reduce morbidity and mortality, to tools that are suited to 

interrupting human to vector and vector to human transmission.   

1.2.2.1.  Ecological, geographical and social-economic factors 

Environmental factors influence both mosquito and parasite development and 

survival, thus impacting malaria transmission. Furthermore, the suitability of habitats 

varies spatially and contributes to the observed heterogeneity in transmission across 
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regions and countries. Variables such as temperature, rainfall, vegetation density, and 

topography can impact malaria incidence. Temperature affects parasite and mosquito 

traits such as the length of sporogony, larval development, mosquito mortality59,60 and 

consequently, malaria transmission. Work by Shah et al. (2019) across four different 

sites in Kenya, where P. falciparum is the main cause of malaria, proposed that an 

optimal temperature of around 25°C coincided with peak malaria transmission61. The 

authors also propose that with the threat of a warmer world owing to climate change, 

regions with cooler climates will move from seasonal epidemics to endemic 

transmission with the converse being true for regions with warmer climates. While 

the optimal temperatures for transmission may vary with mosquito and parasite 

species, there is a risk that climate change may threaten gains made in malaria control 

by placing new populations at risk of sustained malaria transmission.  

Seasonal variations in rainfall also influence transmission, with peaks in malaria 

incidence typically following the onset of the rainy season. Several factors can 

contribute to this, including increased vegetation cover that provides shelter to 

mosquitoes62, increased larval breeding sites63 as well as increased host infectiousness 

to mosquitoes58. Proximity to suitable habitats has been linked to an increased risk of 

malaria64,65 and provides a means to identify hotspots of active transmission for 

targeted interventions. Furthermore, factors such as homestead construction, a 

preference for cooking or sleeping outdoors as well as variations in patterns of bed 

net use may affect exposure to mosquitoes58,64. Anopheles species vary in feeding and 

resting behaviour, with An. arabiensis being more exophilic and exophagic in contrast 

to An. coluzzi that are endophilic and endophagic58,66. Therefore, social factors, as well 

as local vector composition, may make some communities or households more 

attractive to vectors, contributing to transmission hotspots. 

1.2.2.2.  Host-related factors 

Human-mosquito transmission occurs when a mosquito takes up gametocytes during 

a blood meal. The capacity to infect mosquitoes is varied across individuals, being 

influenced by malaria transmission intensity and factors such as age, disease severity, 

and genetic background. In high transmission settings, children typically contribute 

significantly to the infectious reservoir owing to a higher parasite (and consequently 

gametocyte) burden as they are more likely to suffer acute disease. Indeed, in analyses 
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of gametocyte carriage, children under the age of five tend to have high gametocyte 

prevalence67–70. However, adjustments for demography and the likelihood of being 

bitten by mosquitoes increase the relative contribution of older children and adults to 

the infectious reservoir71,72. 

Furthermore, specific anti-gametocyte immunity may play a role in suppressing 

parasite transmission. Immune responses have been detected to the immature 

gametocyte infected red blood cell73 as well as to the surface of the mature 

transmissible stages74 (discussed further in section 1.5.3). Responses to the immature 

stages may impact gametocyte density within the host73; however, this requires further 

investigation. On the other hand, responses to the mature stages impact parasite 

development within the mosquito affecting an individual’s infectiousness74.  

Additionally, the physiological state within the host may also affect the production of 

gametocytes. Parasite conversion rate, the investment in gametocyte production 

compared to asexual parasites, varies during an infection32,75possibly in a bid to cope 

with infection-induced changes in the host environment75,76. The parasite must decide 

whether to invest in replication to maximise within-host survival or whether to invest 

in reproduction when survival in the host seems unlikely. Factors such as immune 

pressure, loss of red blood cells and drug pressure may modulate gametocyte 

production32,77,78 by signalling worsening conditions within the host. As with disease 

severity, genetic traits that confer protection against malaria have been associated with 

an increase in gametocyte production. For instance, studies have found a link between 

sickle cell trait and an increased risk of gametocyte carriage 79–81. Similarly, Grange 

et al. (2015) found that children of blood group O were associated with increased odds 

of being gametocyte carriers68. Again, this may stem from the fact that once the 

parasite detects a decreased likelihood of maintaining a successful infection, it may 

invest more in transmission to maximise survival. 

1.2.2.3.  Vector-related factors 

Different vector species vary in their permissiveness to P. falciparum infection. 

Genetic differences can alter the mosquitoes innate immune response to infection. 

Mosquitoes can respond to parasite infection by encapsulating the developing 

ookinete in melanised structures, thus killing the parasite82,83. Melanisation 

contributes to the activation of components of the mosquito’s innate complement-like 
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system such as thioester-containing protein 1 (TEP1), which also promotes parasite 

lysis84. Refractoriness to infection will decrease infectiousness to humans, thus 

limiting transmission, and hence this can be explored as a novel vector control tool. 

In addition to innate genetic resistance, co-infection of mosquitoes with microbial 

symbionts may affect the ability of the parasite to develop within the mosquito midgut. 

Herren et al. (2020) have shown that Anopheles arabiensis co-infection with 

microsporidia significantly impairs parasite transmission85. In addition to biological 

resistance, the vector species dominant in a region can influence local transmission 

intensity. An investigation into the factors sustaining transmission despite high 

intervention coverage in the Gambia by Mwesigwa et al. (2017) found a role for 

heterogeneous vector populations58. The authors found that the dominance of An. 

arabiensis and An. coluzzii in the eastern region contributed to higher transmission as 

these vectors are better adapted to the local ecological conditions.  

1.2.2.4.  Parasite-related factors 

Parasite virulence factors (e.g., PfEMP1) that allow the parasite to evade the host’s 

immune system and establish either acute or chronic infections (discussed in 1.2.1.3. 

above) also indirectly facilitate transmission by increasing the parasite’s chances of 

survival. Additionally, parasite ligands that bind to mosquito midgut receptors can 

also facilitate transmission. One example is the parasite protein Pfs47 that may aid the 

parasite's evasion of the mosquito’s innate immune system by inhibiting TEP-1-

mediated lysis86. Moreover, Pfs47 exhibits extensive polymorphism with Pfs47 

haplotypes clustering geographically, possibly reflecting an adaptation to local 

mosquito species87. Only parasites expressing a compatible Pfs47 allele can 

successfully evade the mosquito’s immune system allowing parasite development and 

transmission. Pfs47-mediated immune evasion can thus be exploited to design 

interventions that block parasite transmission.  

1.3.  Efforts to eliminate malaria 

Considerable reductions in disease burden have been observed over the years, 

attributable in part to the increased deployment of insecticide-treated nets (ITNs) and 

widespread use of artemisinin combination therapies (ACTs) as the first-line 

treatment for malaria11–13. No licensed vaccine exists for malaria, yet, however, it is 

recognised that an efficacious vaccine will be required if we are to achieve malaria 
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eradication. The current tools for malaria control, challenges faced in their 

implementation as well as efforts to develop novel interventions are discussed below. 

1.3.1.  Vector control 

Vector control played a role in the elimination of malaria from the United States and 

Europe, being instrumental in controlling malaria in countries such as India and Sri 

Lanka in the 1950s – 1960s when dichloro-diphenyl-trichloroethane (DDT) was 

widely implemented in a global eradication programme88,89. However, the 

development of resistance, environmental concerns, and a lack of political and 

financial support led to the abandonment of the campaigns. Consequently, malaria 

persisted in endemic areas of Africa and was resurgent in countries such as Sri Lanka, 

Swaziland and Madagascar leading to deadly epidemics89. Current strategies to 

control malaria vectors have thus far relied on insecticide-treated nets (ITNs)11,12,90, 

indoor residual spraying (IRS)90,91 and larval source management92. While these 

interventions have had an impact on controlling vector populations, their success is 

limited by the development of insecticide resistance93,94. Insecticide resistance is 

particularly worrying in high-burden countries in West and Central Africa where 

parasites resistant to the various classes of insecticides have emerged. In addition to 

reduced susceptibility to insecticides, mosquitoes can also exhibit behavioural 

resistance by altering feeding and resting behaviour94. Therefore, while Long-lasting 

ITNs and IRS protect against mosquitoes that rest indoors and feed at night, they are 

ineffective against mosquitoes that feed in the early evening or those that 

predominantly rest and feed outdoors2. To combat resistance, researchers are 

developing biological methods for vector control. These include genetic manipulation 

of mosquitoes to impair vector capacity95 and infecting mosquito populations with 

endosymbionts that interrupt parasite development within the mosquito (e.g. 

Microsporidia85). Vector control has had a substantial impact on reducing the burden 

of malaria; however, by combining vector control with other strategies to reduce 

human infectiousness, greater success can be achieved. 

1.3.2.  Drug Treatment 

1.3.2.1.  Malaria treatment 

Antimalarials have been a vital tool in the control of malaria, however, their use is 

continually threatened by the emergence of drug-resistant parasites. The emergence 
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of drug resistance to quinine, chloroquine (CQ), sulphadoxine-pyrimethamine (SP) 

and atovaquone limits their use, leaving the more recently identified artemisinin as 

the current first line of treatment for malaria96. Combinations of the short-acting 

artemisinin with long-acting partner drugs form the basis of the artemisinin-based 

combination therapies (ACTs) currently in use. ACTs are highly effective at clearing 

asexual parasites13,97 and reducing gametocyte carriage13. However, while ACTs act 

against early-stage gametocytes, they are not effective against mature stage V 

gametocytes (reviewed in Bousema and Drakeley (2011)98).  

The only WHO-recommended and licenced drug with efficacy against mature 

gametocytes is primaquine (PQ)99. However, there is potential for haemolysis, 

particularly in glucose-6-phosphate dehydrogenase (G6PD) deficient individuals100. 

Despite this, a single low dose of PQ is considered safe for use in individuals with the 

prevalent African variant, G6PD A101–103. Nevertheless, even with effective treatment 

of malaria infections, post-treatment gametocyte carriage is commonly observed and 

can result in onward malaria transmission104–106. 

Drug resistance to artemisinin and the emergence of resistance to ACT partner drugs 

is well described in the Greater Mekong Subregion (GMS), with documented reports 

of reduced parasite clearance times in Bangladesh, Nigeria, and the Democratic 

Republic of Congo (reviewed in Ashley et al. (2014)97). This demonstrates a need for 

the discovery of new drugs and for the development of other control interventions to 

reduce both disease burden and parasite transmission. Work is ongoing to identify 

novel compounds targeting both the asexual and sexual parasite stages. For instance, 

the release of an antimalarial compound library by GlaxoSmithKline (GSK) has 

allowed the development of high throughput screens to identify novel drug 

candidates107,108. 

1.3.2.2.  Mass drug administration (MDA) and mass screening and 

treatment (MSAT) 

Over the past ten years, malaria elimination efforts have explored the use of mass 

administration of antimalarials to interrupt transmission or reduce morbidity and 

mortality109. These efforts include (1) mass drug administration (MDA) where the 

entire population in a given area is treated with antimalarials regardless of symptoms 

or concurrent parasitaemia, and (2) mass or focal screening and treatment (MSAT or 
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FSAT) where the population is first tested for parasitaemia or symptoms of malaria 

and treatment offered to only those who test positive. MDA is only effective in the 

short-term reduction of malaria incidence and prevalence109,110, WHO advises 

implementation of MDA in regions where elimination is feasible, and where there is 

concomitant use of vector control and proper surveillance109. Additionally, MDA can 

be considered for use in epidemics where there is urgent need to reduce disease 

burden, and in emergencies, for instance, the combat of multidrug resistance in the 

GMS109.  

To support this, MDA trials conducted in Southeast Asia using dihydroartemisin-

piperaquine (DP) and a single low dose of primaquine have demonstrated substantial 

decreases in malaria incidence and prevalence after implementation111,112. However, 

the success of MDA programmes does suffer from difficulties with adherence and 

intervention coverage, providing vital considerations for such programmes. Unlike 

MDA, MSAT efforts have been met with mixed success, with some studies showing 

little evidence of a lasting impact on malaria morbidity and mortality113–115. 

Challenges cited by these studies include lack of sensitive molecular diagnostics to 

detect subpatent parasitaemia, high re-infection rates, and as with MDA, inadequate 

coverage and adherence. Successful implementation of MSAT programmes may thus 

require the deployment of field-based molecular diagnostics, increased community 

engagement, and frequent follow-up campaigns to detect re-infections. 

1.3.2.3.  Mass drug administration (chemoprevention) 

Pregnant women and young children bear the brunt of malaria in sub-Saharan Africa. 

For this reason, the WHO recommends intermittent preventive treatment in infants 

(IPTi) with SP for infants residing in areas of moderate to high transmission, 

intermittent preventive treatment in pregnant women (IPTp) with SP and seasonal 

malaria chemoprevention (SMC) with SP plus amodiaquine in children under five 

years in the Sahel subregion1. IPTp implementation has been associated with a 40% 

reduction in risk of moderate to severe anaemia and a 61% reduction in risk of 

parasitaemia for women in their first and second pregnancies, as well as a 

corresponding 27% reduction of the risk of low birthweight in infants116. Likewise, 

IPTi has shown evidence of reducing clinical malaria, anaemia, and hospital 

admissions in infants117, while SMC had a significant impact on the incidence of 
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clinical malaria118. The success of these programmes, however, is threatened by the 

emergence of parasite resistance. Several polymorphisms in the dihydrofolate 

reductase (DHFR) and dihydropteroate synthase (DHPS) genes confer resistance to 

antifolate drugs such as SP119. The use of SP in these chemopreventative programmes 

may select for Pfdhfr-dhps mutants120 and predispose individuals to treatment 

failure121. Another challenge for IPTp, IPTi, and SMC programmes is a limitation in 

coverage stemming from limited access to and delivery of health services1. Therefore, 

trials into new drug combinations to overcome drug resistance, as well as an increased 

commitment to the sustained implementation of these programmes, are necessary.  

1.3.3.  Vaccines 

Historically, vaccines have been a critical tool for the control and eradication of 

diseases such as smallpox14,15, making them an ideal tool for the elimination of 

malaria. The updated Malaria Vaccine Technology Roadmap, MVTR, (2013) by the 

WHO has set an ambitious goal to have a licenced vaccine against both P. falciparum 

and P. vivax malaria with an efficacy of at least 75% against clinical malaria suitable 

for use in endemic countries by 2030122.  Additionally, it seeks to develop 

transmission-blocking vaccines amenable to mass administration to reduce malaria 

transmission. Currently, the only malaria vaccine that has progressed from clinical 

trials to pilot implementation is the RTS,S vaccine that targets the pre-erythrocytic 

CSP16. However, after over four years of follow-up, the vaccine showed an estimated 

36% (95% CI: 31.8 – 40.5%) efficacy against clinical disease in young children aged 

5-17 months who received four doses of vaccine, and 25.9% (95% CI: 19.9 – 31.5%) 

efficacy in infants aged 6 – 12 weeks123. The suboptimal efficacy demonstrated 

indicates the need for better vaccines with enhanced immunogenicity that can control 

disease and reduce transmission as well as the spread of drug-resistant parasites124. 

Consequently, this will require the identification of new vaccine targets. In particular, 

combination vaccines incorporating several antigens from different life stages could 

accelerate efforts to achieve malaria elimination and eventual eradication125. 

1.4.  Immunity to malaria 

Malaria immunity is a process by which individuals limit parasitaemia and control 

severe disease. This immunity can stem from (1) an innate resistance to the parasite 

conferred by host genetics, (2) from an immediate response initiated to inhibit the 
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parasite without prior pathogen exposure, or (3) can be acquired following a previous 

encounter with the parasite resulting in an enhanced response upon subsequent 

exposure. The innate and adaptive processes involved in NAI are described below.  

1.4.1.  Innate resistance to malaria 

Malaria-induced selection pressure may explain the high frequencies of protective 

RBC variants in malaria-endemic areas126. The requirement of P. falciparum for 

haemoglobin during growth has driven the selection of polymorphisms in genes 

encoding the alpha, α, (HBA1 and HBA2) and beta, β, (HBB1 and HBB2) chains of 

the haemoglobin tetramer. Commonly described polymorphisms (Table 1.1) include 

the single nucleotide polymorphisms glutamate to valine at position 6 (Glu6Val - 

HbS), Gln6Lys (HbC) and Glu26Lys (HbE) in the beta chain as well as α-thalassaemia 

that results from deletions in HBA (reviewed in Taylor, Cerami and Fairhurst 

(2013)127). Heterozygosity for these variants has been associated with protection from 

severe malaria128–130. Proposed mechanisms of protection include reduced parasite 

invasion and growth131, enhanced parasite clearance by both the innate and adaptive 

immune systems132,133 and reduced cytoadherence of iRBCs134,135. Aside from the 

haemoglobinopathies, genetic variation associated with genes encoding RBC surface 

receptors that interact with parasite ligands can alter disease severity. For example, 

polymorphisms at the ABO glycosyltransferase locus that lead to the O blood group 

have been associated with protection from severe malaria136. Analysis suggests that 

parasites invading RBCs of the ‘O’ blood group are not able to efficiently form 

rosettes (clusters formed by the interaction of iRBCs with uninfected RBCs (uRBCs) 

to promote sequestration137) reducing their ability to sequester in organs138,139. 

Rosetting is also mediated by the complement receptor 1 (CR1) on the RBC surface. 

A study by Opi et al. (2018) in Kenya showed that alternate alleles of CR1 either 

protect against (Sl2 allele) or predispose to cerebral malaria (McC)140. However, the 

protective effect of the Sl2 allele is only evident in individuals of a normal α-

thalassaemia genotype. Protection from malaria by up to 40% has also been seen with 

individuals possessing two hybrid glycophorin B/A genes, termed the Dantu blood 

group141, further demonstrating the range of RBC structural variants that have arisen 

in malaria-exposed populations. 
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Table 1.1: Summary of the commonly observed haemoglobinopathies 

Haemoglobinopathy Epidemiology Genotype Molecular Pathology Clinical Phenotype 

α- thalassaemias*     

α+-thalassaemia Global αα/α-  
Asymptomatic; normal 

RBC morphology and 

quantity 

α0-thalassaemia Global αα/--  Mild anaemia 

Haemoglobin H 

(HbH) disease 
Global α-/-- 

Accumulation and 

precipitation of 

unpaired β-chains 

(HbH) in RBC 

Chronic haemolytic 

anaemia with 

accompanying hepatic, 

splenic, skeletal and 

metabolic sequelae; 

transfusion support 

required 

Hydrops fetalis/ Hb 

Barts 
Global --/-- 

Accumulation of 

unpaired γ chains in 

utero forming Hb 

Barts that does not 

release oxygen to 

tissues 

Fatal ex utero 

β-thalassaemias     

Minor 

(heterozygosity) 
Global 

Reduced 

expression 

of one β-

globin 

gene 

 

Typically asymptomatic; 

normal haematocrit but 

low mean corpuscular 

volume 
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Haemoglobinopathy Epidemiology Genotype Molecular Pathology Clinical Phenotype 

Major Global 

Reduced 

expression 

of both β 

globin 

gene 

Accumulation of 

unpaired α-chains 

leading to oxidative 

damage to RBCs and 

RBC precursors 

Severe anaemia and 

transfusion dependence 

Haemoglobin S 

Central, East, 

and West 

Africa; 

Arabian 

Peninsula; 

South Asia 

Glu -> Val 

at position 

6 of β-

globin 

gene 

Aggregation of 

deoxygenated HbS 

into polymers leading 

to RBC deformation to 

sickle shape, 

haemolysis and 

microvascular 

obstruction 

Sickle cell disease, 

transfusion dependence 

and acute chest syndrome 

when homozygous 

(HbSS); asymptomatic 

when heterozygous 

(HbAS) 

Haemoglobin C 

West Africa, 

predominantly 

western 

Burkina Faso 

and northern 

Ghana 

Glu -> Lys 

at position 

6 of β-

globin 

gene 

Formation of 

hexagon-shaped HbC 

crystals 

Mild haemolysis and 

anaemia when 

homozygous (HbCC); 

asymptomatic when 

homozygous (HbAC) 

Haemoglobin E 

Southeast 

Asia, 

predominantly 

on the 

Thailand, Laos 

and Cambodia 

border 

Glu -> Lys 

at position 

26 of β-

globin 

gene 

Mild reduction in β-

globin production 

Mild anaemia, 

microcytosis and 

hypochromia 

*Four copies of α-globin genes (chromosome 16: genotype aa/aa) and two copies of β-globin genes (on 

chromosome 11) are present in the human genome; normal adult haemoglobin (HbAA) is a tetramer of two a-globin and two b-globin proteins. 

Table adapted from Taylor et al. (2013)127. 
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Enzyme deficiencies also impact parasite development within the RBC. 

Polymorphisms in the G6PD and pyruvate kinase (PK) genes have also been described 

to modulate disease severity. G6PD plays an essential role in maintaining redox 

balance within the RBC in response to the oxidising environment created by 

haemoglobin degradation during parasite development83. In G6PD deficient 

individuals hampered parasite growth corresponds with protection from severe 

malaria. Similarly, PK-deficiency may also lead to reduced parasite growth, as well 

as increased phagocytosis, hence protection against clinical malaria142. In addition to 

enzyme deficiencies, polymorphisms in components of the host's immune system, 

such as cytokines and T-cell receptors, can potentially impact disease severity 

(reviewed in Kwiatowski (2005)143). 

1.4.2.  Innate immunity to malaria 

Innate immune responses are critical in limiting parasite densities and are activated 

once parasitaemia crosses a threshold144. These responses are strain and species-

independent and targeted to conserved Plasmodium molecules. Following parasite 

infection, components of the innate immune system such as dendritic cells (DC), 

macrophages, natural killer (NK) cells and γδ T cells are activated initiating a pro-

inflammatory response that restricts parasite growth and stimulates the adaptive 

immune response145. Plasmodium pathogen-associated molecular patterns (PAMPs) 

such as glycosylphosphatidylinositol (GPI) anchors, haemozoin and 

immunostimulatory nucleic acid motifs interact with pattern recognition receptors 

(PRRs) on cells such as DCs and macrophages to stimulate the inflammatory 

response146. Downregulation of the pro-inflammatory response by cytokines such as 

IL-10 and transforming growth factor (TGF)-β is required to modulate disease145, 

failure of which contributes to the pathologies of severe malaria such as 

dyserythropoesis147. In addition to inflammatory responses and activation of the 

adaptive response, the innate response also plays a role in the clearance of iRBCs via 

non-opsonic phagocytosis mediated by mononuclear phagocytes148. 

1.4.3.  Naturally acquired immunity to malaria  

Seroepidemiological studies in malaria exposed individuals and malaria challenge 

studies have helped shape our understanding of NAI to malaria. Over 100 years ago, 

Robert Koch observed that adults living in malaria-endemic areas were better able to 
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control disease in comparison to children and transmigrants145,149–151. Retrospective 

analyses of data from patients deliberately infected with Plasmodium to treat 

neurosyphilis indicated that patients were able to control disease upon re-infection, 

confirming Koch’s findings 152,153. These early experiments led to the characterisation 

of the critical features of NAI, being that NAI: (1) is effective after sustained exposure, 

(2) is, to a degree, species and stage-specific, and (3) is acquired dependent on the 

level of parasite exposure. NAI is imperfect as sterilising immunity is never achieved 

through natural parasite exposure. However, individuals can develop immunity to 

severe disease and resistance to parasitisation. 

In areas of high transmission, parasite prevalence and risk of adverse outcomes 

following malaria exposure is highest in children and decreases with age38. Anti-

disease immunity develops rapidly allowing children to modulate morbidity at 

seemingly high parasite densities. On the other hand, anti-parasite immunity, that 

confers protection against high-density parasitaemia, is slower to develop38. In areas 

of low transmission, the risk of disease is uniformly distributed among age groups, 

and disease severity correlates with parasite density154. Adults living in areas with 

intense transmission are thought to be protected owing to their cumulative exposure, 

while children remain susceptible due to their limited exposure. Cumulative exposure 

allows the host to generate responses to a broad range of clonally variant antigens 

restricting parasite virulence25 and also allows the acquisition and maintenance of 

long-lived memory B cells155–157. The requirement for cumulative exposure may also 

explain why immunity to malaria is slow to develop. Declining transmission could, 

therefore, lead to a higher proportion of the population becoming susceptible to 

disease should resurgence occur. Indeed, studies in Senegal and Kenya have indicated 

an increased susceptibility of older children158,159 and adults159 to malaria as 

transmission declines, possibly as a result of reduced population exposure.  

NAI may also be species-specific, whereby, for instance, infection by P. falciparum 

does not protect against P. vivax infection160. Conversely, NAI may not necessarily 

be strain specific. Allelic polymorphisms in genes encoding parasite antigens give rise 

to distinct variant antigens that differ between strains of a single species of 

Plasmodium38. Strain specificity is thought to contribute to the slow acquisition of 

NAI. Bull et al. (1998) suggested that anti-PfEMP1 antibodies are variant-specific, as 

children were less likely to recognise the PfEMP1 variant expressed during an active 
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infection than a heterologous variant161. However, from as early as the neurosyphilis 

studies, there was also evidence to suggest strain-transcending immunity. Individuals 

re-challenged with a heterologous strain experienced some level of protection, though 

this was typically lower than protection seen in those re-challenged with the 

homologous strain152,160. Therefore, both strain-specific and strain-transcending 

immunity have a role to play in NAI. The diversity of parasite strains in the field can 

prove a challenge for malaria vaccine design, necessitating the identification of 

antigens or epitopes that induce strain-transcending immunity.  

1.5.  Immune effector mechanisms of NAI as an aid to vaccine design 

Early work showed that the passive transfer of purified gamma globulin from malaria-

immune adults to children with severe malaria enabled the children to control 

parasitaemia162. Such classical studies lent credibility to the feasibility of developing 

a vaccine against malaria. Research is now ongoing to identify parasite targets capable 

of inducing a protective immune response. One of the challenges that remain is 

identifying immunological endpoints, so-called correlates of protection, that predict 

vaccine efficacy. Immunological correlates that are easy and quick to measure can 

facilitate vaccine trials reducing the complexity, sample size, and length of follow-up 

required163. Some of the challenges to identifying immune correlates of protection 

include: (1) the multi-stage lifecycle of the parasite, that results in different forms of 

immunity, and (2) the organ-specific localisation of immune responses that can result 

in an imperfect correlation with responses measured in peripheral blood163. 

Notwithstanding these challenges, a better understanding of what constitutes a 

protective response will facilitate vaccine design and assessment. 

1.5.1.  Pre-erythrocytic immunity 

Sporozoite injection into the skin triggers the immune system stimulating humoral 

and cellular effectors. Anti-sporozoite antibodies can mediate protection by (1) 

blocking traversal from the dermis to liver164, (2) inhibiting infection of 

hepatocytes165,166, or (3) opsonic phagocytosis of sporozoites in concert with 

monocytes and macrophages167. Additionally, infected hepatocytes may also present 

antigens via MHC class I and II molecules inducing CD4+ and CD8+ T cell responses 

(reviewed in Radtke, Tse and Zavala (2014)168 and Crispe (2015)169). Naturally 

acquired antibodies to the sporozoite do not seem to confer significant protection to 
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the host as sterilising immunity is never achieved even with high parasite exposure. 

However, there is some evidence to suggest that NAI to sporozoites may lead to 

delayed time to patency in malaria-exposed individuals170. 

Studies on the immunological response following RTS,S vaccination have not 

revealed a clear correlate of protection. However, anti-CSP antibodies likely play a 

significant role in protection which is potentiated by moderate induction of a CD4+ T 

cell response171–173. Unfortunately, the efficacy of the RTS, S vaccine wanes rapidly 

and precluding the acquisition of sterile immunity despite observed reductions in 

morbidity174,175. Conversely, following the development of whole sporozoite 

vaccines, high-level and long-lived immunity has been generated in malaria naïve 

individuals176. Based on preclinical studies in mice and non-human primates, vaccine-

induced, liver-resident CD8+ T cell responses may contribute significantly to the 

observed protection177,178. However, this has been difficult to validate in vivo as 

responses are typically measured in peripheral blood179. Nevertheless, the 

identification of a mechanism by which sterile protection can be induced provides a 

means to design more efficacious vaccines. 

1.5.2.  Erythrocytic immunity 

Early studies of NAI highlighted the role of antibodies in protecting against 

disease180,181. Seroepidemiological studies then highlighted important antibody targets 

that were associated with protection against malaria182–184, with rodent studies 

providing insights into the mechanism of action of these antibodies185. The humoral 

response plays a dominant role in response to asexual stage parasites owing to the lack 

of MHC class I and II molecules on the iRBC surface to trigger a cellular response. 

Antibodies can target the merozoite or parasite antigens displayed on the surface of 

the iRBC. Antibodies to the merozoite can prevent infection in several ways such as 

(1) inhibiting invasion of and development in RBCs185, (2) mediating complement-

dependent lysis of the merozoite186, (3) prevention of merozoite egress from 

schizonts185, (4) mediating opsonic phagocytosis by macrophages187, and (5) 

mediating the release of reactive oxygen species by neutrophils to kill the 

merozoite188. Antibodies to iRBC parasite antigens can act by inhibiting 

cytoadherence and rosetting, and also by mediating phagocytosis of iRBCs via 

macrophages (reviewed in Bull and Abdi (2016)189 and Chan, Fowkes and Beeson 
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(2014)190). Additionally, there is a role for cellular responses in enhancing antibody 

production and in the production of pro-inflammatory cytokines to restrict parasite 

proliferation (reviewed in Chan, Fowkes and Beeson (2014)190). Nevertheless, the 

functional ability of antibodies as measured in vitro assays tends to correlate well with 

protection188,191,192. Therefore, the quality of the antibody response may be a good 

correlate of protection against the asexual stages.  

1.5.3.  Sexual stage immunity  

Studies on natural and experimental infections in humans with sexual stages, as well 

as  experimental infections of rodents, have provided insights into transmission-

blocking immunity (TBI)73,193–197. Inhibition of gametocyte development within the 

human host has not been studied extensively. Some studies have suggested that responses 

to the gametocyte-infected erythrocyte (GIE) are directed to the mature stage V 

gametocyte198,199. Conversely, Dantzler et al. (2019) have suggested that immune 

responses to the developing immature gametocyte iRBC and not the mature GIE are 

responsible for reducing gametocyte carriage73. More research is required to ascertain the 

role of responses to the GIE in reducing host infectivity. Responses to gamete antigens 

exposed to the human immune system upon the destruction of mature circulating 

gametocytes and their role in TBI have been more widely studied74,200–203. As with 

erythrocytic immunity, TBI is mediated largely by antibodies that can function by (1) 

phagocytosis of immature gametocytes within the host73, (2) mediation of complement-

dependent lysis of gametes204–206, and (3) prevention of zygote to ookinete207 or ookinete 

to oocyst transition208. 

Antibodies, complement, and cytokines are taken up by the mosquito during a blood meal 

and remain active against the developing parasite (reviewed in Sinden (2015)209), though 

titre and activity of these immune components diminish with time. A limited number of 

studies have examined the role of cellular responses in inhibiting the development of the 

sexual stages. However, early work did show that passive transfer of CD4+ T cells from 

gamete-vaccinated mice to naïve mice reduced the infectivity of mice to mosquitoes210. 

Moreover, the cytokines TNF-α and IFN-γ have been described to mediate gametocyte 

destruction within the host211,212. Nonetheless, the predominant mechanism of TBI seems 

to be mediated by antibodies. Assays aimed at assessing TBV candidate efficacy indicate 

that the quantity and quality of antibody response induced are reliable correlates of 

inhibitory activity. Antibody titre, avidity, and IgG subclass ratio correlate with the level 
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of inhibition observed213. Specifically, antibody titre seems critical to successful 

transmission-blocking activity (TBA). While high titres are associated with inhibition, 

low titres can lead to enhanced transmission (TE)201,205,214,215. When titres are low, 

antibodies binding to targets on female and male gametes may (1) promote their 

interaction within the midgut facilitating fertilisation, (2) induce conformational changes 

to surface molecules on the gametes to enhance interaction or on the zygote to stimulate 

development, or (3) protect the parasite from the mosquito’s immune response216. The 

potential for TE is, therefore, an essential consideration for TBV development. 

Naturally acquired antibodies to gametocyte/gamete surface antigens Pfs230201,217–219, 

Pfs48/45201,217–219, Pfs47220 and HAP2221 (discussed in 1.6.3.1. ) have been detected 

in individuals living in malaria-endemic areas. These antibodies are associated with 

TBA, and for Pfs230 and Pfs48/45, antibody titres correlate with the level of TBA 

observed222. Antibodies to sexual stage antigens are thought to be short-lived, 

depending on recent gametocyte exposure217,218. The short-lived nature of sexual stage 

responses may be explained by the induction of a relatively T cell-independent 

immune response223,224. This may relate either to the generation of responses to non-

protein targets or to ineffective antigen processing that fails to stimulate CD4 helper 

T cells223,224.  However, experimental infections in animal models have indicated 

induction of cellular responses210–212 and also boosting of vaccine-induced responses 

with parasite challenge225,226. This evidence suggests that it is possible to generate 

some level of immune memory to sexual stage antigens. Seroepidemiological studies 

on the few identified transmission-blocking immunogens identified so far do not give 

a clear picture of TBI. For instance, some studies have shown no age-dependent 

increase in responses217,218, while others have shown an age-dependent 

increase203,227,228. Further investigations into the nature of naturally acquired TBI are 

therefore warranted as they may aid TBV design. 

1.6.  Malaria vaccines 

Malaria vaccines can be grouped into three classes, depending on their stage-specific 

targets5,15,229. Pre-erythrocytic vaccines target the sporozoite and seek to prevent 

clinical illness by inhibiting the development of infection, e.g. RTS,S123, or the growth 

of parasites within the liver, e.g. multi-epitope thrombospondin-related adhesive 

protein (ME-TRAP)230. Asexual blood-stage vaccines seek to reduce parasite 

densities and subsequently reduce disease pathology, e.g. merozoite surface protein 
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(MSP)-119
90. Finally, vaccines to interrupt malaria transmission, which includes 

transmission-blocking vaccines (TBVs) that target the transmissible stages of the 

parasite122,231, e.g. Pfs2590. Additionally, mosquito antigens involved in parasite 

development within mosquito midguts have potential as TBVs, e.g. Anopheles alanyl 

aminopeptidase N 1 (AnAPN1)232. A summary of the different malaria vaccines in 

clinical trials is provided in Figure 1.2, and a description of the various candidates 

with insights into considerations for further development follows below. 

1.6.1.  Pre-erythrocytic vaccines 

The most advanced malaria vaccine to date, RTS,S, is a pre-erythrocytic vaccine 

(PEV) targeted to the dominant sporozoite protein CSP. RTS,S is a subunit vaccine 

consisting of multiple copies of the central NANP repeat and C-terminal domain of 

the CSP protein (designated RT) fused to the hepatitis B surface antigen (HBsAg), 

with an extra HBsAg (designated S, S)233. The vaccine is designed to contain both B- 

and T cell epitopes234,235. However, protection seems to correlate predominantly with 

short-lived antibody responses, contributing to the low efficacy observed174,175. The 

challenge, therefore, for future CSP-based vaccines is to develop constructs or 

delivery platforms that induce long-lasting and high-titre antibodies. This could be 

achieved by altering the dosing regimen, targeting the full-length protein to include 

more epitopes, or by using more potent adjuvants for vaccine delivery236. Indeed, a 

next-generation vaccine in pre-clinical development, R21, contains a single copy of 

HBsAg rather than the four-times HBsAg excess present in RTS, S237. R21 appears to 

be more immunogenic in mice, possibly due to the greater amount of CSP displayed 

in comparison to RTS, S. 

As an alternative to subunit vaccines that have limited epitope presentation, whole 

sporozoite vaccines (WSV) prepared using live-attenuated sporozoites are in clinical 

development. Seminal work by Nussenzweig et al. (1967) showed that injection of 

mice with gamma-irradiated sporozoites generated sterile immunity, proving the 

utility of this approach238. Radiation attenuated sporozoites (RAS) form the basis of 

the Plasmodium falciparum sporozoite (PfSPZ) vaccine that has been evaluated in 

controlled human malaria infection (CHMI) studies176,179,239–242. Trials in malaria 

naïve individuals have shown PfSPZ to be highly efficacious. However, the efficacy 

appears lower in adults from malaria-endemic areas, possibly due to immune 
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tolerance owing to chronic malaria exposure197,241,242. Therefore, considerations will 

have to be made on dose and regimen to enhance efficacy in endemic populations. In 

addition to RAS, genetically attenuated parasites (GAP) are in development where 

genes upregulated in sporozoites are deleted243. This allows developmental arrest 

much later than with RAS, thus enabling increased sporozoite biomass and 

presentation of a diverse array of antigens for an enhanced immune response. Triple 

deletion GAPs have shown promise in inducing sterile protection in rodent244 and 

human studies245 supporting their further investigation in clinical trials. An alternate 

approach to attenuation is vaccination with live sporozoites under drug cover, in 

particular chloroquine, PfSPZ-CVac. While this approach has shown promise in naïve 

volunteers, in terms of protective efficacy and breadth of responses generated246, the 

use of live parasites will likely require additional safety considerations236. 

PEVs also target the liver stage. Currently, Thrombospondin Related Adhesion 

Protein (TRAP) fused to a multiple epitope (ME), or ME-TRAP is the most widely 

evaluated liver stage vaccine. ME-TRAP has undergone substantial optimisation, and 

the current formulation in recombinant replication-deficient viral vectors (ChAd63 

ME-TRAP and MVA ME-TRAP) has been shown to induce potent T cell responses 

(reviewed in McCall, Kremsner and Mordmuller (2018)163 and Ewer et al. (2015)247). 

Variable efficacy has been observed in adults and children248–251, highlighting the 

need for further optimisation of vaccine constructs and vaccination regimen. The 

proteins expressed in the liver stage are not yet well defined, complicating the 

identification of novel targets. Despite this, two new antigens, liver-stage antigen 1 

(LSA1) and liver-stage associated protein 2 (LSAP2), capable of inducing strong 

CD8+ T cell responses were identified252, and are currently in Phase I/IIa clinical trials 

(ChAdOx1-MVA-LS2)236. 

1.6.2.  Blood-stage vaccines 

Identification of blood stage vaccine (BSVs) targets has been guided mainly by 

identifying merozoite antigens that are dominant targets of natural responses, or by 

rodent studies using monoclonal antibodies in invasion inhibition assays253. Through 

these approaches, vaccine candidates such as AMA1, MSP1, MSP3 and GLURP were 

identified. Clinical trials of blood-stage vaccine candidates have had mixed success, 

with several targets showing low efficacy. A Phase I/IIb trial of the Combination B 
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vaccine, consisting of two merozoite surface proteins (MSP1 and MSP2) and ring-

infected erythrocyte surface antigen (RESA), showed some efficacy in reducing parasite 

burden but none against morbidity254. Similarly, vaccines based on AMA1255,256 or 

MSP1175,257 have shown low efficacy in preventing clinical malaria in endemic 

populations. Furthermore, the vaccine candidate GMZ2 consisting of the relatively 

conserved N-terminal of the GLURP protein fused to the C-terminal of MSP-3 

showed only 14% efficacy against clinical disease in a large multicentre phase IIb 

trial258.  

BSVs based on immunodominant merozoite antigens such as AMA1 or MSP-1 face 

the seemingly insurmountable hurdle of antigen polymorphism. Extensive 

polymorphism may reduce their efficacy in field settings where diverse parasite 

strains circulate254,256. Furthermore, as merozoite invasion is accomplished in under 

one minute, antibody titres need to be high and of good quality (high affinity, avidity, 

and multiple epitope recognition) to have an impact259. To overcome antigen diversity, 

improved formulations, including a cocktail of alleles, e.g. AMA1 diversity covering 

vaccine (AMA1-DiCo)260, are being investigated. Additionally, following on the 

improved efficacy seen with WSVs, whole blood stage vaccines (WBSVs) are being 

developed. These WBSVs use liposomal adjuvant antigen delivery platforms to avoid 

induction of alloantibodies to the RBC261 or by genetic attenuation of blood stage 

parasites262. WBSVs have the advantage of presenting a diverse array of antigens and 

inducing strong T cell responses (reviewed in Wlison et al. (2019)263 and Good and 

Stanisic (2020)264) and may overcome challenges faced by subunit vaccines. 

Interestingly, the conserved merozoite invasion antigen reticulocyte-binding 

homologue 5 (RH5) has been shown to induce potent, strain-transcending immune 

responses despite the lack of a significant natural immune response265. This suggests 

that NAI may not always provide a reliable means for antigen selection. RH5 is an 

attractive candidate antigen as it is conserved among different parasite strains and 

mediates an essential interaction for merozoite invasion via its receptor, Basigin266. 

Studies in rodent267 and simian268 models, as well as pre-clinical trials in humans269, 

are promising, and clinical trials using various antigen delivery platforms are 

underway (ChAd63-MVA-RH5 and RH5.1/AS01)236. 

Vaccines targeted to the iRBC have also been challenging to develop due to the 

extensive polymorphism of antigenic targets such as the PfEMP1 molecules. Aside 
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from being clonally variant, PfEMP1 molecules can undergo recombination further 

increasing the number of variants that could exist189,270. However, as functional 

constraint restricts parasite diversity and key var subsets are associated with severe 

disease, crucial molecules or epitopes can potentially be identified for vaccine 

design189. In support of this assertion, the conserved VAR2CSA implicated in PAM 

is currently under investigation as a vaccine candidate, with two candidate antigens in 

clinical trials (PRIMVAC271 and PAMVAC272). A vaccine against cerebral malaria 

(CM) may also be in the pipeline following the identification of a PfEMP1 motif 

associated with the development of CM273. Though such a vaccine may not provide 

sterile immunity, it would reduce disease severity. 

1.6.3.  Transmission-blocking vaccines (TBVs) 

The decline of malaria burden across the globe has made malaria elimination a 

feasible goal in countries where transmission has been declining steadily over the 

years274. Therefore, interventions explicitly aimed at interrupting transmission by 

targeting both parasite and vector will be instrumental in eliminating transmission 

foci2. Transmission-blocking vaccines (TBVs) are one such intervention that seeks to 

inhibit parasite infectivity in the mosquito. Though TBVs have been deemed 

‘altruistic’ as they do not offer direct protection to the recipient, their ability to offer 

community-level protection can have substantial public health benefits10,275. 

Successful implementation of a TBV has been seen with Leishmune®, a vaccine 

against canine visceral leishmaniasis (CVL). CVL is caused by Leishmania infantum, 

an obligate intracellular parasite transmitted via female phlebotomine sand flies276. 

Dogs are the predominant host; however, human infections do occur. Leishmune® is 

licenced for use, conferring herd immunity to dogs and potentially reducing disease 

incidence in humans277,278. TBVs are also actively being pursued as interventions for 

other vector-borne diseases such as schistosomiasis279 and mosquito-borne 

arboviruses280. 

 In 1976, Carter and Chen demonstrated the ability of transmission-blocking 

immunity to significantly reduce oocyst development in mosquitoes using a P. 

gallinaceum-chicken model of infection281. Using purified X-irradiated gametes to 

vaccinate chickens before parasite challenge, they induced immune responses that 

inhibited parasite infectivity to mosquitoes. This provided early evidence to support 
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the development of TBVs for malaria. The existence of naturally acquired 

transmission-blocking immunity (NA-TBI), further supports TBV development. 

Surface antigens on gametocytes are targets of naturally acquired antibodies. These 

naturally acquired, anti-gametocyte antibodies do not confer protection to the host, 

but when taken up with the blood meal prevent gamete development or fertilisation. 

Unfortunately, TBV development has lagged behind that of pre-erythrocytic and 

erythrocytic vaccines, as evidenced by only two candidate antigens tested in phase 

Ia/b clinical trials to date. In the past decade, however, there has been renewed interest 

in developing TBVs, and work is ongoing to identify new target antigens. A detailed 

description of parasite-based and mosquito-based targets follows below. 

1.6.3.1.  Parasite-based TBV antigen targets  

Parasite-based sexual stage antigens can either be pre- or post-fertilisation antigens. 

Pre-fertilisation antigens are expressed in the human host and hence induce antibody 

responses after natural infection; however, these antibodies only exhibit function once 

within the mosquito midgut (reviewed in Stone et al. (2016)27 and Sauerwein and 

Bousema (2015)282). On the other hand, post-fertilisation antigens are expressed in 

zygotes and ookinetes within the mosquito hence are not targets of naturally acquired 

antibodies (reviewed in Sauerwein and Bousema (2015)231). The lead TBV candidates 

are the widely studied pre-fertilisation antigens Pfs230 (epitope-containing protein 

fragment termed region C), Pfs48/45 and the post-fertilisation antigen Pfs25. 

Prioritisation of these candidates for development was based on historical observation 

rather than superior TBA. 

 Pfs230 is expressed on the surface of male gametocytes and microgametes283. Upon 

gametocyte emergence from the iRBC, the N-terminal portion is cleaved and the C-

terminal portion retained on the gamete surface where it is critical to the formation of 

exflagellation centres required for male gamete maturation36,284,285. Pfs48/45 is 

expressed on both micro- and macrogametes and is thought to be required for gamete 

fertility and aiding gamete membrane fusion to form zygotes286–288. Pfs48/45 is 

needed to retain Pfs230 on the gamete surface; this interaction is vital for 

fertilisation36. Pfs48/45 is still in pre-clinical development with promising results289–

291, while Pfs230 has entered Phase Ia testing with the release of results on candidate 
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Pfs230D1M-EPA/Alhydrogel pending (ClinicalTrials.gov Identifier: NCT02334462) 

and trial of candidate Pfs230D1M-EPA/AS01 (NCT02942277) underway. 

Pfs25 is expressed on zygotes and ookinetes and is thought to aid the ookinete in 

penetration of the midgut292–294. Clinical trials of Psf25 have so far not been very 

encouraging, with reduced immunogenicity and the induction of short-lived antibody 

being the main challenges. Pfs25 has been evaluated in formulation with different 

adjuvants in a bid to enhance immunogenicity in humans. A phase Ia trial of Pfs25 

with Montanide ISA 51 led to severe reactogenicity causing early termination of the 

trial295. An improved formulation of Pfs25 conjugated to Pseudomonas aeruginosa 

exoprotein A (EPA) adjuvanted in Alhydrogel was well tolerated and immunogenic; 

however, antibody titres declined rapidly over time296. A phase Ib trial in Malian 

adults induced much lower titres197. After four vaccine doses, only 27% of participants 

had antibody titres with significant blocking activity which again waned rapidly. 

Novel formulations, i.e. using liposomal adjuvant Glucopyranosyl Lipid Adjuvant 

(GLA-LSQ) that contains TLR ligands297 or adenoviral vectors (ChAd63 Pfs25-

IMX313 and MVA Pfs25-IMX313)298 have shown promise in rodent studies and are 

now undergoing clinical evaluation. 

Importantly, NA-TBI has been observed in the absence of antibody responses to 

Pfs230 and Pfs48/45, and immune recognition of either of the two antigens does not 

always correlate with TBI74,205,214,299,300. This is a clear indication that there are other 

antigens important for NA-TBI, and hence their identification and characterisation 

will allow more rational prioritisation of TBV candidates for development. With the 

elucidation of the molecular interactions essential to various stages of parasite 

development within the mosquito midgut and the parasite proteins involved, 

additional antigens have been identified and evaluated for TBA (Table 1.2). 

Moreover, research is underway to identify new candidate antigens. Approaches taken 

include (1) investigating antigens with a crucial role in sexual stage development, as 

determined from rodent malaria gene knockout studies301–303, or (2) proteomic and 

bioinformatic analyses of parasite genes to identify potential sexual stage 

antigens74,304. Identifying new targets will increase the number of antigens for testing 

and provide an opportunity for the identification of synergistic antigen combinations 

that may improve TBV efficacy.  
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1.6.3.2.  Mosquito-based TBV (mTBV) antigen targets  

Mosquito receptors that interact with the parasite ligands during sporogonic 

development also provide attractive targets for TBV development. A significant 

advantage of mosquito-based TBVs (mTBVs) is the ability to inhibit diverse species 

of Plasmodium by targeting conserved molecules305,306. mTBVs can reduce the 

reproductive capacity of mosquitoes and/or their survival, thus increasing the impact 

of a TBV by reducing vector populations305,307. Early studies demonstrated reduced 

parasite development after mosquitoes were fed on blood meals containing antibodies 

raised against midgut homogenate305,308. Further work identified mosquito glycans as 

key mediators of parasite midgut invasion306. 

Additionally, a conserved midgut-specific alanyl aminopeptidase (AnAPN1) was 

identified, with anti-AnAPN1 antibodies blocking the invasion of both P. falciparum 

and P. berghei309.  Further investigations of ANAPN1 have yielded variable 

results232,289; more studies are warranted to confirm its efficacy. Aside from AnAPN1, 

the midgut antigen Carboxypeptidase B1 has also been demonstrated to induce 

transmission-blocking antibodies307,310. Additionally, the identification of Saglin, an 

Anopheles salivary gland ligand involved in sporozoite invasion of the mosquito 

salivary gland provides yet another TBV target for investigation311,312. Furthermore, 

Manning et al. (2020) have developed the Anopheles gambiae saliva vaccine (AGS-

v) that is composed of four An. gambiae salivary peptides. A phase I trial of this 

vaccine has proven safe and well-tolerated, paving the way for further studies aimed 

at investigating the transmission-blocking potential of mTBVs.  

1.6.4.  Combination vaccines 

A multistage malaria vaccine containing antigens spanning the entire parasite 

lifecycle may offer the key to achieving long-lasting sterile protection263. For instance, 

the combination of TBV antigens with pre-erythrocytic or blood-stage antigens (or 

both) in a vaccine would impact transmission and protect against disease while 

reducing the spread of escape mutants275. To support this, Sherrard-Smith et al. (2018) 

showed synergistic action of a PEV and a TBV that resulted in malaria elimination in 

a murine population assay313. Also, the chimeric vaccine GMZ2 plus Pfs48/45, 

formulated with a TLR-based adjuvant, induced both humoral and cellular responses 

in mice, and is being progressed for testing in humans314,315.  
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Another approach is to use a mixture of recombinant proteins from different parasite 

stages in a vaccine cocktail. For example, VAMAX-Mix combination vaccines 

containing AMA1-DiCo with Pfs25 and either CSP, MSP1 or CelTOS produced 

antibodies specific to each antigen which inhibited the various targeted stages of 

development316. However, though VAMAX-mix combinations showed potent 

inhibition of transmission and asexual parasite growth, lower efficacy was seen for 

sporozoite invasion. Whilst this indicated a need to optimise the pre-erythrocytic 

components of the vaccine, it also highlights the benefits of incorporating multi-stage 

targets. Failure to achieve complete blockade at one stage can be compensated for as 

the parasite progresses through the lifecycle by antibodies to subsequent asexual or 

sexual stages.  

However, considerations must be made on the compatibility of antigens and vaccine 

platforms to avoid reduced efficacy due to immunological interference. Evaluation of 

the co-administration of RTS,S/AS01B and ME-TRAP demonstrated lower vaccine-

induced responses to RTS,S following co-administration317. In this study, the ME-

TRAP was delivered in viral vectors using a heterologous prime-boost strategy. 

Therefore, though multi-stage combination vaccines are a promising approach, 

several hurdles relating to vaccination platform, choice of adjuvant, antigen selection, 

and identification of clear correlates of protection need to be overcome263.  
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Figure 1.2: Summary of malaria vaccine candidates under clinical evaluation. Summary of some of the vaccine candidates 

under evaluation, with an indication of the lifecycle stage to which they are targeted. Data summarised from Draper et al. 

(2018)236 and obtained from the WHO Malaria Vaccine Rainbow Table, and Clinicaltrials.gov.Image created using ©BioRender 

(https://app.biorender.com/) 

https://app.biorender.com/
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Table 1.2: Summary of some well-studied TBV candidates 

Antigen Expression Stage Role Advantages Disadvantages References 

Pfs230 Pre-fertilisation -Formation of 

exflagellation centres, 

interaction with Pfs48/45  

-Recognised by immune 

seraa 

-Antibodies show TBAb 

mainly mediated by 

antibodies against Region 

C 

-Immune recognition does not 

always predict transmission 

blockage 

-Challenge for full-length protein 

expression due to large size. 

  

27,36,74,217,283 

 

 

  

Pfs48/45 Pre-fertilisation -Fertilisation of 

macrogamete, interaction 

with Pfs230 

-Recognised by immune 

sera 

-Antibodies show TBA  

-Immune recognition does not 

always predict transmission 

blockage 

- Challenge with expression of 

correctly folded full-length 

protein  

27,74,217,287 

Pfs47 Pre-fertilisation -Non-essential role in 

female gamete fertility 

-Mediates evasion of the 

mosquito immune system 

-Recognised by immune 

sera 

-Antibodies show TBA  

- Currently unknown whether 

immune recognition correlates 

with TBA 

86,220,318 

HAP2 

 

  

Pre-fertilisation 

  

-Important for male 

gamete fertility 

  

-Recognised by immune 

sera 

-Antibodies show TBA  

- Challenge with expression of 

correctly folded full-length 

protein 

- Currently unknown whether 

recognition correlates with TBA 

  

207,221,319 

 

  

CCp proteins 

  

Pre-fertilisation 

  

-Important for oocyst 

sporozoite transmission to 

salivary gland  

-Antibodies show TBA 

 

  

- TBA not tested in human 

malaria 

- Currently unknown whether 

recognition correlates with TBA  

320,321 

 

  

Pfs25 Post-fertilisation -Ookinete invasion of 

midgut by binding to host 

epithelial receptors. 

-Antibodies show TBA 

-Not subject to immune 

pressure in human host 

-Not expressed in human host 

therefore no natural boosting of 

antibodies 

-Poor immunogen 

292,322,323 
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Antigen Expression Stage Role Advantages Disadvantages References 

Pfs28 Post-fertilisation -Ookinete invasion of 

midgut by binding to host 

epithelial receptors. 

-Antibodies show TBA 

-Not subject to immune 

pressure in human host 

-Not expressed in human host 

therefore no natural boosting of 

antibodies 

-Poor immunogen 

293,324 

Chitinase (CHT1) 

  

Post-fertilisation 

  

-Ookinete invasion of 

midgut peritrophic matrixc  

-Antibodies show TBA 

 

 

  

-Limited studies in P. falciparum 

infection model 

  

325,326 

 

  

CTRP 

 

 

 

Post-fertilisation 

 

 

-Ookinete invasion of 

midgut by binding to host 

epithelial receptors. 

 

-Antibodies show TBA 

 

 

 

-Limited studies in P. falciparum 

infection model 

 

 

326,327 

 

 

 
WARP 

 

 

 

Post-fertilisation 

 

 

-Ookinete invasion of 

midgut by binding to host 

epithelial receptors. 

 

-Antibodies show TBA 

 

 

 

-Limited studies in P. falciparum 

infection model 

 

 

326,328 

 

 

 
CelTOS 

 

 

Post-fertilisation 

and pre-

erythrocytic 

 

 

 

-Ookinete and sporozoite 

traversal of the epithelial 

lining of the mid-gut and 

hepatocyte respectively 

 

-Antibodies show TBA 

-Potential as both a pre-

erythrocytic and 

transmission-blocking 

vaccine candidate. 

 

 

-Low to moderate TBA (though 

fewer ookinetes are able to 

penetrate midgut some still form 

oocysts with infective 

sporozoites) 

 

329,330 

 

 

 

 

AnAPN1 

  

Mosquito 

midgut 

 

  

-Mosquito midgut ligand 

mediating parasite 

invasion.  

-Antibodies show TBA 

against multiple 

Plasmodium species 

-Highly conserved among 

Anopheles species 

-Has been shown to exhibit 

variable TBA with antibodies 

raised against N-terminal  

232,289,309 

  

Carboxypeptidase 

B1 

Mosquito midgut -Mosquito cofactor 

(digestive protease) 

required for parasite 

development 

-Antibodies show TBA 

against multiple 

Plasmodium species 

-Highly conserved among 

Anopheles species. 

-Targeting a mosquito digestive 

enzyme may reduce reproductive 

fitness of the vector therefore 

selecting for resistance 

307,310 

Saglin Mosquito midgut - Involved in sporozoite 

invasion of the mosquito 

salivary gland 

-Antibodies shown to 

block salivary gland 

invasion 

-Potentially one of several 

receptors mediating salivary 

gland invasion 

311,312,331 
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Antigen Expression Stage Role Advantages Disadvantages References 

 -Not highly conserved among 

Anopheline species 

TBA- transmission-blocking activity, CCp – Limulus coagulation factor C (LCCL) domain-containing protein, CTRP – circumsporozoite and thrombospondin-related 

adhesive protein (TRAP)-related protein, WARP – von Willebrand adhesive domain-related protein, AnAPN1 – Anopheles alanyl aminopeptidase N1 
a Immune sera describes sera from individuals living in malaria-endemic areas 
b Antibodies against Pfs230 work in a complement-dependent manner204,206. 
c The peritrophic matrix is a chitinous layer surrounding the midgut formed after the mosquito bloodmeal332 
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1.7.  Antigen discovery for vaccine development 

The majority of the malaria vaccine candidate antigens under investigation in clinical 

trials were identified prior to the publishing of the P. falciparum genome. Candidates 

were thus identified by screening genomic or cDNA expression libraries for 

immunoreactive proteins, or by the characterisation of proteins identified by 

immunoprecipitation analysis. As a result, antigen discovery was slow, and few 

candidates were identified. The publishing of P. falciparum’s genome in 2002333 and 

the characterisation of stage-specific proteomes334 heralded the beginning of the 

genomic era of vaccine candidate discovery. Using ‘reverse vaccinology’, the 

identification of potential antigens begins in silico using computer software to predict 

antigenic targets based on genomic data, these targets are then evaluated for a role in 

protective immunity335. Successful use of this approach was first demonstrated with 

Group B Meningococcal (MenB) vaccine candidate discovery. After over forty years 

of stalled progress, sequencing of the MenB genome provided a means to identify 

over 600 potentially surface localised proteins335–337. Following cloning, protein 

expression, antibody production and functional assays, 25 new candidates were 

identified in 18 months culminating in the development of a licenced multi-

component protein-based vaccine, 4CMenB335,338. Significant technological 

breakthroughs have since followed, including: (1) the ability to clone human B cells 

to produce monoclonal antibodies (mAbs) or antibody-binding fragments to 

interrogate the protective immune response, (2) structural biology to map 

conformational epitopes, and (3) the ability to design immunogens based on structural 

and immunological data that target specific epitopes to elicit a defined immune 

response (reviewed in Rappuoli et al. (2016)339). With the aid of these advances, 

several reverse vaccinology approaches have now been developed and used to 

discover novel antigens for evaluation, and they are discussed here below. 

1.7.1.  Pre-genomic era 

1.7.1.1.  Screening of genomic or cDNA libraries 

In order to develop genetic libraries, genomic DNA or cDNA (prepared from the 

nucleotide protein precursor messenger RNA) are prepared by enzymatic digestion 

and subsequently cloned into expression vectors340. Recombinant protein 

corresponding to individual clones can then be synthesised in bacteria or phages and 
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after probed with hyperimmune sera to identify immunoreactive proteins and their 

corresponding genes. Recombinant CSP, the protein on which the RTS,S vaccine is 

based, was first produced in this way using mRNA from P. knowlesi infected 

Anopheles dirus thoraxes341. Since then other candidate antigens have been identified 

in this way, e.g. schizont egress antigen185 and liver stage antigens 1342 and 3343. One 

of the advantages of this approach is that it allows an unbiased screen of the proteome 

potentially increasing the number of immunoreactive proteins identified. On the other 

hand, this approach is subject to the sera used and the expression platform chosen340.  

1.7.1.2.  Immunoprecipitation 

Prior to the use of recombinant DNA technology to produce antigens for 

characterisation, stage-specific parasite proteins were obtained from lysates prepared 

from cultured parasites. Monoclonal antibodies (mAbs) were then produced using 

spleen cells derived from mice vaccinated with purified stage-specific parasites using 

hybridoma technology. The mAbs would then be used in functional assays to assess 

inhibitory activity, and to immunoprecipitate radioisotope-labelled parasite lysate run 

on SDS-PAGE. In this way, the first TBV candidates Pfs25, Pfs230, and Pfs48/45 

were identified, with their names denoting their molecular weight upon separation by 

SDS-PAGE208,344,345, as was the merozoite vaccine candidate MSP3346. The 

availability of proteomic data in the post-genomic era allows this approach to be taken 

further by allowing the unambiguous identification of antigens of interest for further 

evaluation. 

1.7.2.  Post-genomic era 

1.7.2.1.  Functional comparative genomics 

Functional comparative genomics involves comparing gene families between species 

to identify homologues that may perform similar functions. Prior to the availability of 

the complete genomes of various Plasmodium species, functional comparison of gene 

families had already proved its usefulness. Members of the P. falciparum RH family 

that encompasses reticulocyte binding proteins (RBPs) involved in merozoite invasion 

of RBCs, were identified by identifying homologues of P. yoelii and P. vivax RBP 

families347–349. These were identified by amplifying and sequencing single genes for 

comparison. A member of the P. falciparum RH family, RH5, is now a promising 

vaccine candidate antigen. Furthermore, by exploiting publicly available genome 
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data, Frech and Chen (2011) performed a comparative analysis of P. vivax and P. 

falciparum genomes using bioinformatic tools350. The authors identified a subset of 

genes present only in P. falciparum linked to virulence, with 15 of these 

uncharacterised, hence potentially offering new vaccine candidate leads. 

1.7.2.2.  Population genetic analysis (PGA) 

With population genetic analysis, polymorphic parasite genes that are under balancing 

selection, due to factors such as immune pressure, are identified by comparing 

genomes within or between populations340,351. This is supported by the assertion that 

highly polymorphic genes such as AMA1 and MSP1 are targets of NAI and have been 

associated with protection against clinical malaria in seroepidemiological studies182–

184. Ochola et al. (2010) used transcript data from 13 isolates available on the 

Plasmodium database, PlasmoDB, to identify polymorphic genes from the blood stage 

of the parasite352. Using a minimum of five single nucleotide polymorphisms (SNPs) 

per kilobase as the cut-off, they prioritised six highly polymorphic loci from the 

schizont/merozoite stage. The authors further analysed polymorphisms at each of the 

six loci in 90 Kenyan field isolates leading to the identification of three antigens 

(SURFIN4.2, MSPDBL2, and MSPDBL1) with evidence of strong balancing 

selection. Antibodies against the MSPDBLs have been shown to inhibit merozoite 

invasion353 while SURFIN4.2 is thought to have a role in mediating rosetting354, 

making these antigens potential vaccine candidates. 

Similarly, Amambua-Ngwa et al. (2010) used high-throughput next-generation 

sequencing to analyse parasites isolated from 65 clinical isolates from an endemic 

region in Ghana355. In this way, they identified over 300 genes with evidence of 

balancing selection. Identified targets included known immunogenic proteins, such as 

AMA1 and MSP3, the previously identified SURFIN4.2, MSPDBL2, and MSPDBL1, 

as well as a host of novel antigens. PGA, therefore, can lead to the simultaneous 

identification of several antigens for evaluation; however, downstream analysis will 

be required to prioritise candidates for functional studies. Additionally, polymorphic 

targets have not always fared well as vaccine candidates, i.e., AMA1 and MSP1, 

which may limit the utility of this approach. 
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1.7.2.3.  Transcriptomics 

The transcriptomic approach is based on the premise that the specific parasite life 

cycle stages or phenotypes will upregulate a specific set of genes corresponding to 

potential vaccine targets356. Traditional methods relied on DNA microarrays where 

chips containing DNA are probed with fluorescently labelled cDNA prepared from 

mRNA derived from the sample of interest. However, the advent of RNA sequencing 

now allows for more accurate and sensitive quantification of transcripts and the 

identification of polymorphic targets as well as splice variants (reviewed in Tuju et 

al. (2017)340). Differential transcriptomics enabled the identification of the PAM 

vaccine candidate var2csa. A comparison of parasites binding to CSA, the ligand 

implicated in the binding of iRBCs to the placenta, with non-CSA binding parasites 

revealed that var2csa was upregulated in CSA-binding parasites46. 

Further work went on to confirm its role in PAM. This approach has also been used 

to investigate the var transcriptome of parasites isolated from children with severe 

malaria in comparison to those with mild malaria or asymptomatic children in a bid 

to identify genes associated with pathogenesis. While distinct subsets appear to be 

upregulated in severe malaria56,357,358, translating this to a candidate antigen is 

hampered by the highly polymorphic nature of this protein family. Furthermore, 

unlike with PAM, where an apparent phenotype exists, the pathogenesis of severe 

malaria is complex making it challenging to link certain parasite traits with disease 

manifestation definitively.  

1.7.2.4.  Proteomics 

Proteomics is the identification and quantification of the entire complement of 

proteins produced in an organelle, organ, or organism340. The proteome is not constant 

but varies temporally, by cell type, and in response to environmental stimuli. Recent 

proteomic studies have identified several proteins expressed during the sexual stages 

within the human host359–361 and the anopheline vector362. Silvestrini et al. (2010) 

through the comparative analysis of the proteomes of trophozoites, early gametocytes, 

and late gametocytes identified proteins highly enriched in each of these stages, with 

637 exclusively expressed in stage V gametocytes363. Moreover, computational 

analyses of the proteomes of gametocytes360, microgametes, and ookinetes362,364 have 

provided datasets that can be mined to identify possible surface-localized proteins.  
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An alternative to whole-organelle or whole-organism proteomics is membrane 

proteomics where proteins on the surface of parasite stages are extracted, separated, 

and identified by mass spectrometric techniques. This was the method used to analyse 

the surface of the ookinete, revealing 50 surface-localised proteins for further 

analysis362. Proteomics is a powerful tool allowing the identification of several 

antigens, thereby necessitating the use of rational criteria for candidate antigen 

selection. 

1.7.2.5.  Immunomics  

Immunomics combines genomic, transcriptomic, proteomic, and immunologic 

methods, using biological samples from malaria-exposed humans or animals to 

identify protective antigens or epitopes365,366. Furthermore, immunomics considers the 

entire immune response; antibody titre, cytokine production, T cell population 

induced among others366. Different approaches can be taken to identify vaccine 

candidates. For instance, proteome-wide screening assays can be used to interrogate 

humoral74,156,227,367,368 or cellular369 responses in experimentally infected or naturally 

exposed individuals. Antigen selection for immunoscreening can be unbiased, where 

no filtering criteria are used to select candidates, or biased towards selecting 

immunogenic proteins.  

Surface-exposed proteins can be identified based on features predictive of secretion 

or surface localisation. Such features include the presence of signal peptides, 

transmembrane (TM) domains, and glycosylphosphatidylinositol (GPI) anchors74,304. 

Stone et al. (2018) identified novel potential gametocyte TBV candidate antigens 

using a protein microarray platform74. Sera from 648 malaria-exposed individuals 

were tested against a panel of 315 proteins enriched for gametocyte-specific proteins, 

and commonly recognised antigens among individuals with high TBA identified. The 

authors were thus able to highlight 13 novel antigens with a potential role in TBI. 

Such studies into novel sexual stage antigens, therefore, have the potential to reveal 

new targets for TBV development. However, challenges with protein expression as 

well as the biased approach to antigen selection may leave out promising candidates. 

Results of such studies should thus serve to rule in rather than rule out candidate 

antigens. 
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 In an unbiased approach, two-dimensional gel electrophoresis is used to separate 

protein fractions derived from parasite lysate which are then subsequently transferred 

onto membranes where they can be probed using sera from malaria-exposed vs 

malaria naïve individuals. This approach was used by Fontaine et al. (2010) to 

evaluate iRBC antigenic targets370. By extracting from a non-serum-probed gel the 

proteins corresponding to differentially recognised antigens and subjecting those 

proteins to mass spectrometry, they could identify promising proteins for further 

evaluation. Technical challenges relating to the use of denaturing conditions that 

destroy conformational epitopes, as well as incomplete protein transfer, may decrease 

detection power. Nevertheless, immunomics is undoubtedly a promising technique for 

antigen discovery through its integration of ‘omic’ and immunologic data and the 

application of high throughput technologies for screening. 

1.7.2.6.  Antibody-guided candidate discovery 

Antigen identification using the strategies above does not guarantee that the identified 

immunogenic protein is functional in an in vitro or in vivo setting340. In order to 

circumvent this, protective epitopes can be identified using a variety of epitope 

prediction software, and the corresponding antigens elucidated for analysis. Doolan 

et al. (2003) used this approach to identify potential T cell epitopes from the 

sporozoite genome and then synthesised peptides corresponding to the antigens 

containing these epitopes for protein microarrays369. The authors then probed the 

microarray with sera from individuals challenged with radiation attenuated 

sporozoites and sera from naïve individuals. Sixteen previously uncharacterised 

antigens preferentially recognised by the challenged individuals were thus identified 

as potential vaccine candidates.  

Aside from using epitopes, broadly reactive monoclonal antibodies prepared from the 

sera of malaria-immune individuals can be used to design mimotopes for evaluation 

as immunogens340. This borrows from the field of HIV research where broadly 

neutralizing antibodies have been well characterised and successfully produced, with 

the challenge now being how to formulate immunogens to stimulate the production of 

such antibodies (reviewed in Rappuoli et al. (2016)339). Broadly reactive mAbs 

capable of agglutinating diverse parasite isolates were identified by Tan et al. (2016) 

from the B cells of malaria-exposed donors371 lending credibility to the use of this 
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approach for malaria. Limitations are that such broadly-reactive antibodies form a 

small percentage of the immune repertoire, and individuals harbouring them tend to 

be rare340. This necessitates the screening of large panels of sera which is technically 

demanding. Nevertheless, designing immunogens that recapitulate the epitopes 

targeted by such antibodies or that stimulate B cell precursors of these broadly 

neutralising antibodies presents a new approach to vaccine candidate discovery.  

1.8.  Assessment of TBV efficacy 

Evaluation of malaria vaccine candidate antigens can be achieved using laboratory 

assays that test for surrogate markers of protection, CHMI studies in malaria-naïve 

and malaria-exposed individuals as well as field trials in endemic populations. 

Laboratory assays to test the ability of candidate antigens to induce immune responses 

functional against cultured parasites typically form the first level of evaluation. An 

example is the growth inhibition assay (GIA) used to assess blood-stage antigens. 

While the GIA measures an important component of the functional immune response, 

it often fails as a correlate of protection in seroepidemiological studies owing to a lack 

of reproducibility and dependence on lab-adapted parasite strains372. Vaccine-induced 

immunological correlates of protection that are robust, reproducible, easy to measure, 

and well correlated with vaccine efficacy would greatly facilitate vaccine 

development.  

From laboratory assays, evaluation moves to animal models and CHMI studies where 

additional parameters such as achievement of sterilising protection, delays to patency, 

reduction in parasite burden or parasite multiplication rate176,179,239,373 (PEVs and 

BSVs) or reduced infectiousness to mosquitoes (TBVs)374,375 can be assessed. After 

this, efficacious candidates can be progressed to field trials in endemic settings where 

the impact in reducing disease burden and transmission can be evaluated248,257,376. For 

TBVs, efficacy is assessed as the ability to reduce or inhibit parasite development 

within the mosquito, mainly using mosquito feeding assays. This is typically achieved 

by feeding gametocyte-infected blood or RBCs (for cultured parasites) to mosquitoes 

in the presence or absence of sera containing inhibitory antibodies and enumerating 

the number of oocysts that eventually develop within the midgut. Another measure of 

success is in the reduction in the numbers of mosquitoes infected in comparison to a 

negative control. Mosquito feeding assays have the advantage of interrogating 



61 

 

antibodies that act on various stages of sexual development in the midgut, from mature 

gametocyte to oocyst, making them valuable tools377. Commonly used TB assays to 

evaluate TBVs are described below. 

1.8.1.  Field-based methods 

Field-based methods for TBV assessment use mosquito feeding assays where 

gametocyte-infected blood from donors is the parasite source. The advantages of field 

evaluation are the assessment of blockade at naturally circulating parasite densities 

and the use of locally circulating parasite strains98,378,379. Moreover, autologous 

plasma can be used as the antibody source to assess natural or vaccine-induced TBI, 

providing more realistic estimates of efficacy. Alternatively, heterologous plasma 

from different donors or purified immunoglobulins derived from vaccinated animals 

can replace the autologous plasma in what is referred to as serum replacement. Serum 

replacement is desirable if the presence of drugs or serum components may influence 

TBA readout379. Feeding can be done directly from the skin of test subjects (direct 

feeding assay, DFA) or venous blood can be fed to mosquitoes through a membrane 

(direct membrane feeding assay, DMFA). Transmission efficiency is reportedly 

higher in the DFA as compared to the DMFA375,380,381. The reason for this is still 

unclear. One hypothesis put forward to explain this difference is that the sequestration 

of parasites in the microcapillaries may facilitate uptake by skin feeding; however, 

there is no direct evidence to support this. Early studies in the Congo compared 

gametocyte densities between skin snips and peripheral blood, reporting higher 

densities in the skin snips382,383. However, recent investigations using molecular 

parasite detection techniques and paired skin and venous blood samples from the same 

donor have not shown evidence of gametocyte sequestration in the skin384,385. Another 

hypothesis cites technical challenges with maintaining blood at 37°C during DMFA 

that may lead to premature activation of gametocytes, thus lowering their 

infectivity378,381 or damage induced by venepuncture381. Further investigation into the 

enhanced infectivity of skin feeding is warranted. 

Though DFAs result in better infectivity, ethical considerations preclude skin feeding 

on young children hence DMFAs are preferred where all age groups are under 

investigation. Other advantages of DMFAs over skin feeding are that (1) more 

mosquitoes can be included thereby increasing statistical power, (2) gametocyte 
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densities can be quantified in the bloodmeal, (3) bias in an individual’s attractiveness 

to mosquitoes is eliminated, and (4) experimental modifications, e.g. serum 

replacement, are easier to achieve378,379. Though DFAs and DMFAs are challenging 

to standardise within and between labs owing to host, vector and procedural effects, 

measures can be taken to mitigate against this378. Such measures include developing 

gold standard methodological practices that could serve as a reference. Additionally, 

standardising donor selection criteria and collecting relevant information on host-

related confounders may mitigate against host effects. Using locally reared mosquito 

colonies would also guard against any parasite-vector incompatibilities that may 

reduce infectiousness. The utility of DFAs and DMFAs for evaluating TBV 

candidates in field settings is undeniable. Therefore, the development of standardised 

protocols will allow for better reproducibility and the broader application of these 

tools. 

1.8.2.  Laboratory methods 

1.8.2.1.  Gamete formation inhibition assays 

Transmission-blocking vaccines and drugs can inhibit parasite development by 

blocking the formation of mature male or female gametes. Differentiation into male 

and female gametes in the mosquito midgut requires egress from the host RBC 

signalled in response to environmental stimuli26 (described in detail in 1.1.2.3.  

above). Antibodies to vaccine candidate antigens that act by inhibiting male 

gametogenesis or fertilisation can be assessed by their ability to inhibit 

exflagellation321,377,386,387. The exflagellation assay has been used widely to assay 

transmission-blocking drugs377,388,389. Inhibition of female gamete formation has not 

been actively studied; however, an assay that assesses rounding of macrogametes in 

the presence of these drugs has been developed. The assay termed the Plasmodium 

falciparum dual gamete formation assay (PfDGFA) measures inhibition of both 

exflagellation and macrogamete formation in the same well, allowing delineation of 

sex-specific inhibition377. The limited biological range of the PfDGFA makes it 

unsuitable for assessing antibodies that act on later developmental stages. However, 

the assay can provide vital information on the possible function of the antibody target 

that can be refined by further investigation.  
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1.8.2.2.  Standard membrane feeding assays (SMFAs) 

Unlike the DFA and DMFA, the SMFA measures infectivity using cultured parasites 

as a source of gametocytes. The SMFA is currently the ‘gold standard’ TBV assay, 

and it has undergone standardisation to allow for better reproducibility390–392. While 

offering good reproducibility to a certain extent, the SMFA currently does not support 

the assessment of activity against parasite strains found in the field378. Moreover, the 

gametocyte densities used in bloodmeals may not reflect densities found in the blood 

of gametocyte carriers. Therefore, activity in the SMFA may not accurately depict 

expected efficacy in the field, unless considerations are taken to examine multiple 

parameters such as varied parasite densities and strains. This would be a technically 

demanding exercise, exacerbating the already labour-intensive MFAs that rely on the 

dissection of several mosquitoes to achieve precise estimates of efficacy. To 

circumvent this, a scalable SMFA that uses luminescent parasite expressing luciferase 

throughout its lifecycle has been developed and allows the assessment of TBA in 

pools of homogenised mosquitoes393,394. Estimates of the intensity of infection are 

averaged over the pool; hence the calculation of individual-level estimates, as well as 

estimates of reductions in the prevalence of infected mosquitoes, is not possible. 

Nonetheless, a high-throughput, semi-automated SMFA increases the testing capacity 

and efficiency, which would be required for large-scale population-level trials394. 

1.8.2.3.  In vitro ookinete conversion assay (IVOA) 

Production of P. berghei ookinetes can be assessed in the presence of transmission-

blocking antibodies, and the impact of these antibodies on ookinete development used 

as a measure of TBA395,396. Using a fluorophore-conjugated monoclonal antibody 

against Pbs21397, that accumulates on the surface of macrogametocytes and 

ookinetes377,395, the rate of ookinete conversion can be estimated from the original 

number of macrogametocytes. Furthermore, automation of the in vitro ookinete 

conversion assay (IVOA) to increase throughput is possible using the P. berghei 

fluorescent parasite strain PbCTRPp.GFP398. PbCTRPp.GFP expresses green 

fluorescent protein (GFP) under the circumsporozoite- and TRAP-related protein 

(CTRP) promoter, with maximal expression observed in the mature ookinete stage. 

Delves et al. (2012) have developed a 384-well plate-based assay to screen drugs with 

TBA, where inhibition of ookinete conversion is one of the parameters measured396. 

Transmission-blocking vaccines can also be screened using this platform. Application 
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of the IVOA to TBV screening is currently limited to the evaluation of P. berghei 

candidate antigens due to the inability to produce P. falciparum ookinetes in culture 

effectively. In vitro, ookinete conversion rates for P. falciparum can range between 

0.45 to 16% as opposed to 50% estimated for in vivo conversion (reviewed in399). 

Improvements in culture protocols, however, will allow the use of the IVOA in  P. 

falciparum as well399,400.  

1.8.2.4.  Murine population assays 

The murine population assay (MPA) is a multigenerational transmission-based study 

involving serial passages of P. berghei in An. stephensi that is used to assess the 

efficacy of transmission-blocking vaccines or drugs over multiple transmission 

cycles313,401. The MPA provides a model system to study the ‘real-world’ impact of 

TB interventions on malaria elimination using a laboratory parasite strain. 

Blagborough et al. (2013) used the MPA to demonstrate that a threshold of 80% 

reduction in oocyst intensity for TBV development5 may be too stringent401. They 

showed that an intervention with an estimated 57% efficacy was able to eliminate 

Plasmodium in both host and vector populations at a simulated low transmission 

intensity setting over successive transmission cycles. 

Additionally, using the MPA Sherrard-Smith et al. (2018) demonstrated synergy 

between a partially effective PEV and a TBV that eliminated malaria from mouse and 

mosquito populations. Transmission was eliminated when the PEV and TBV were 

combined, using an anti-CSP mAb at 47.2% efficacy and anti-Pfs25 mAb-4B7 at 

50%, 65% and 85% efficacy, at all TBV efficacies tested. As the efficacy of both 

vaccines is parasite dependent, the authors attributed the synergistic effect to a 

reduced parasite density in infected mosquitoes accorded by the TBV, which 

increased the efficacy of the PEV. It remains unclear how well the MPA approximates 

field settings where additional factors such as NAI, drug treatment, different vector 

susceptibility, and antigen polymorphisms exist313. However, the MPA can be adapted 

to investigate these heterogeneities, and thus provide valuable information that can 

feed into the design of future field trials for TBVs. 

1.8.3.  Controlled Human Malaria Infection (CHMI) 

The Controlled Human Malaria Infection (CHMI) model has found application in the 

testing of drugs and vaccines and as a tool for studying the interplay between immune 
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responses and parasite dynamics during infection. Research is now ongoing to 

develop CHMI transmission models to provide a link between laboratory assays and 

field evaluation. Field evaluation of TBVs will likely involve randomised trials in 

endemic populations to evaluate reductions in infectiousness and transmission, and 

cluster randomised trials to assess reductions in malaria incidence375. CHMI 

transmission models may, therefore, offer a rapid and cost-effective means to 

prioritising TBV candidates for field trials. Parasite challenge can be achieved using 

infectious mosquito bites (MB), sporozoite inoculation, or via the direct inoculation 

of blood stage parasites (IBSM). IBSM has the advantage of allowing all participants 

to develop gametocytaemia at roughly the same time simplifying study design375,402.  

In contrast to CHMI used to test PEVs or BSVs, blood stage infection needs to 

progress for gametocytes to develop. Therefore, sub curative doses of slow-acting 

asexual-specific drugs are given to maintain low levels of asexual parasitaemia. 

Dosing regimens using piperaquine and SP have shown promise in allowing the 

development of mature gametocytes in a CHMI setting403. Mosquito feeding assays 

are then used to assess vaccine or drug efficacy. A challenge faced by CHMI-

transmission models is that induced gametocyte densities may be too low to infect 

mosquitoes for downstream analysis375,404. Optimisation of infection route and dose 

of inoculum402 as well as gametocyte enrichment of participant derived blood are 

being explored404 to circumvent this. Though optimisation is required before CHMI 

transmission models can be employed for routine evaluation of TBV candidates, they 

offer a promising model to facilitate TBV development. 

1.8.4.  Assessment of efficacy 

The transmission-blocking activity observed with different TBV candidates can be 

expressed as either reduction in the number of infected mosquitoes (oocyst 

prevalence) or reduction in oocyst burden in the midgut (oocyst intensity). Some 

researchers describe reductions in oocyst prevalence as transmission-blocking activity 

and reductions in oocyst intensity as transmission reducing activity (TRA)405,406. 

Others refer to blockade of either oocyst prevalence or intensity as TBA207,407, others 

as TRA74,408. There is no consensus on what term better represents TBV efficacy, as 

well as no consensus on whether reductions in intensity or prevalence provide a better 

indication of impact in the field. The recommendation is, therefore, that efficacy 
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should be reported as reductions in prevalence and intensity to aid interpretation391. 

For this study, I chose to use TBA as an umbrella term; however, I report both 

reductions in intensity and prevalence in keeping with reporting recommendations.  

Estimates of TBV efficacy are also confounded by the overdispersed nature of oocyst 

burden391,409, the level of infection achieved in the control group used as a 

comparator391,406,410, as well as a host of experimental variables. Therefore, to increase 

precision and accuracy, the following measures have been proposed: (1) increasing 

the number of mosquitoes dissected to increase power to detect differences between 

controls and vaccine/drug groups409, (2) carrying out multiple feeds using variable 

experimental conditions such as different sources of infected blood and varied parasite 

exposures391,410, and (3) the use of mixed models for analysis to account for the effect 

of such experimental variables on the observed infection levels, and provide more 

robust estimates391. To further enhance comparability, where possible, candidate 

antigens should be tested in the same feed to minimise batch inter- and intra-assay 

variability411. An understanding of the shortcomings of TBV estimates has enabled 

the development of experimental and reporting criteria that, coupled with a better 

understanding of transmission biology, will allow better estimation of efficacy. 

1.9.  Aims and overview 

Through this work, I thus aimed to characterise sexual stage antigen targets of 

transmission-blocking immunity. First, I sought to better understand NA-TBI by 

assessing what has been determined from previous studies of NAI to the lead TBV 

candidates. Additionally, I also investigated the determinants of gametocyte carriage 

at a population level, as this impacts NA-TBI. I then identified a set of mostly 

uncharacterised sexual stage antigens and evaluated both naturally acquired immune 

responses and vaccine-induced responses against them. I did this to improve our 

understanding of NAI that can feed into the design and evaluation of TBV candidates, 

and also identify novel TBV candidates potentially.  

1.9.1.  Aims 

1. To investigate the dynamics of NA-TBI in African populations exposed to 

falciparum-malaria. 

2. To describe the prevalence and distribution of gametocytaemia among 

children participating in a longitudinal cohort in Coastal Kenya. 
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3. To identify sexual stage antigens with potential as TBV candidates and: 

a. Determine the seroprevalence and dynamics of gametocyte-specific 

antibodies in naturally exposed individuals. 

b. Evaluate the functional ability of antibodies generated against the 

candidate antigens using in-vitro and ex-vivo assays. 

1.9.2.  Chapter overview 

In Chapter Two, I present the results of a systematic review and meta-analysis of 

naturally acquired immune responses to Pfs230 and Pfs48/45, limited to malaria-

endemic African populations. In this chapter, I evaluate the seroprevalence to Pfs230 

and Pfs48/45 antigens, as well as population-level factors that influence the 

acquisition of NAI to both antigens. 

In Chapter Three, I carry out an epidemiological analysis of the factors influencing 

gametocyte carriage using a longitudinally monitored cohort based at the Kenyan 

coast. Here I use data collected over 19 years and across different transmission 

settings. 

Chapter Four describes the identification of gametocyte, gamete, and ookinete 

antigens using in silico analyses of proteomic datasets. The chapter also describes the 

evaluation of different expression platforms for the production of recombinant 

proteins corresponding to these antigens. 

In Chapter Five, I use information gleaned from Chapter Two and Chapter Three 

to conduct immunological profiling of the gametocyte-specific antigens identified in 

Chapter Four. I use sera from three different cohorts to (1) analyse seroprevalence 

to the gametocyte antigens, (2) describe the dynamics of NAI to the antigens in 

relation to markers of parasite exposure and risk factors for gametocyte carriage, and 

(3) assess the relationship between responses to the antigens and onward 

infectiousness to mosquitoes. 

Chapter Six describes the functional evaluation of vaccine-induced antibodies to the 

sexual stage antigens identified in Chapter Four. Antibody titre and TBA were 

evaluated using in vitro and ex vivo assays in a P. falciparum model of infection for 

the gametocyte antigens and a P. berghei model of infection for the gamete and 

ookinete antigens. 
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Lastly, in Chapter Seven, I summarise the findings from chapters two through seven, 

assess potential implications of the findings, and provide recommendations for further 

studies. 
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Chapter 2  

Immune Responses to Gametocyte Antigens in a Malaria-Endemic 

Population - the African falciparum Context: A Systematic Review 

and Meta-analysis 

2.1 Introduction 

Several antigens expressed at different developmental stages of the parasites sexual 

lifecycle have been previously identified and characterised as transmission-blocking 

vaccine candidates (refer to Chapter 1, section 1.6.3.1.). In addition to functional 

characterisation, there has also been interest in understanding naturally acquired 

immunity (NAI) to pre-fertilisation sexual stage antigens. Various studies across 

multiple malaria-endemic regions have revealed that antibodies to Pfs230 and 

Pfs48/45 are detectable in the sera of malaria exposed individuals74,200–203 and that 

these antibodies can mediate transmission-blocking activity (TBA)74,200. Recent work 

has also shown immune recognition of the pre-fertilisation gametocyte proteins 

Pfs47220 and HAP2221 indicating that antigens other than Pfs230 and Pfs48/45 are 

targets of NAI to sexual stage antigens. 

A better understanding of NAI to the sexual stages can play a role in identifying and 

prioritising key antigens for TBV design. Also, such studies can provide insight into 

host factors to consider when assessing the efficacy of TBVs in various field settings. 

Moreover, sexual stage immune responses can potentially impact the structure and 

dynamics of the human infectious reservoir200 allowing us to identify populations 

requiring targeted interventions. Most studies have relied on indicators of parasite 

exposure such as host age, parasite prevalence, malaria transmission setting, and 

seasonality to define the dynamics of sexual stage immunity. Currently, there is 

limited consensus on how these factors affect the acquisition of antibodies to sexual 

stage antigens, and their subsequent impact on vaccine efficacy.   

Discrepancies exist, for instance, in the observed association between age and 

seroprevalence to the sexual stage antigens. The relationship between age and 

seroprevalence to asexual stage antigens is well described, and it has been shown that 

immune responses increase with age412–414. For sexual stage antigens, some studies 

have shown no age-dependent increase in responses217,218 while others have shown an 
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increase in seroprevalence with age203,227,228. Additionally, there are conflicting 

reports on the association between transmission intensity and anti-gametocyte 

immunity. From their study in Tanzania, Bousema et al. (2007) found lower antibody 

responses in a high transmission setting compared to a low transmission setting218. On 

the other hand, Amoah et al. (2018) found higher seroprevalence in the high 

transmission setting studied415. These differential associations indicate that interaction 

between the various factors associated with parasite exposure impacts the reported 

seroprevalence and that these relationships require further exploration. 

Furthermore, studies aimed at describing the seroprevalence to sexual stage antigens 

employ varied study designs (cross-sectional, longitudinal, or rolling recruitment at 

healthcare facilities) and sampling protocols (for instance studies limited to children 

or adults only). For these reasons, methodological factors may also affect the reported 

seroprevalence. A combined analysis of the studies that have analysed naturally 

acquired immune responses to gametocytes, considering both biological, 

environmental, and methodological factors is therefore required. This would bring us 

closer to understanding how prevalent sexual stage immune responses are in the 

population and what factors are essential in its acquisition. 

2.2 Rationale 

Owing to their early identification and extensive characterisation over the years, the 

majority of studies into NAI to sexual stages have examined responses to the six-

cysteine-rich protein family members: Pfs230 and Pfs48/45. For this reason, I chose 

to focus on studies that reported the seroprevalence to either of these antigens. At the 

time of publication, this was the first attempt to pool data from studies of NAI to 

Pfs230 and Pfs48/45 to better understand seroprevalence and the factors that influence 

antibody responses to these antigens. Though Pfs230 and Pfs48/45 are the leading 

pre-fertilisation TBV candidates, work is ongoing to identify new candidate antigens. 

There is also evidence of other antigens important for the acquisition of NA-TBI74,218. 

Increased interest in identifying novel targets of NA-TBI will require the 

identification and validation of essential criteria to prioritise candidate antigens for 

clinical testing. In addition to generating a better understanding of the factors that 

influence the development and dynamics of sexual stage immunity, I also aimed to 

gain insights that would guide the characterisation of novel TBV targets. 
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2.3  Objectives 

The main objective of this systematic review and meta-analysis was to investigate the 

dynamics of NA-TBI in African populations exposed to falciparum-malaria. 

2.3.1 Specific objectives 

a). Describe seroprevalence to the widely studied gametocyte antigens Pfs230 and 

Pfs48/45. 

b). Identify factors, at a population level, that are associated with the acquisition of 

naturally acquired anti-gametocyte immunity. 

2.4  Methods 

I carried out a systematic review of studies in African populations exposed to 

Plasmodium falciparum malaria that assessed and reported the seroprevalence to 

Pfs230 and Pfs48/45. I used criteria provided by the Meta-analysis Of Observational 

Studies in Epidemiology (MOOSE) guidelines and the PRISMA (Preferred Reported 

Items for Systematic Reviews and Meta-Analyses) guidelines to conduct and report 

the analyses416,417. The study protocol is registered on PROSPERO (number 

CRD42019126701). 

2.4.1 Study design 

Due to the lack of studies assessing naturally acquired immune responses to 

gametocyte antigens, I aimed to be as inclusive as possible to capture the majority of 

studies. For this reason, cross-sectional and longitudinal studies spanning the malaria 

transmission season were included—this introduced heterogeneity which I mitigated 

against using meta-regression analyses. As health facility-based studies recruited 

participants with acute malaria infection, they were not included in the analyses. 

Concurrent malaria may influence seroprevalence estimates, thereby confounding the 

results and limiting their generalisability. 

2.4.2 Study participants 

The study population consisted of individuals living in malaria-endemic areas in 

Africa exposed to P. falciparum infection. Studies that recruited both children and 

adults are included in the analysis; however, studies in pregnant women were 

excluded from the analysis. Pregnant women, while typically older than children, are 
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more susceptible to malaria owing to the possibility of pregnancy-induced immune 

suppression; thus, their inclusion could potentially confound the analysis. The 

outcome investigated was the presence of antibodies to Pfs230 and/or Pfs48/45. 

2.4.3 Search strategy 

The keywords: (pfs230 OR pfs48 OR pfs45) AND (antibodies OR immunity OR 

response) AND (Plasmodium OR falciparum OR malaria) were used to search various 

databases. Additionally, reference lists of identified articles were also searched to 

identify relevant articles. The databases searched were MEDLINE/PubMed, 

SCOPUS, Web of Science, African Index Medicus, Embase and African Journals 

Online. The search was carried out between the 1st of February and the 31st of March 

2019. For cases where it was not possible to extract data on seroprevalence directly 

from the article, I contacted the authors of the articles to request the data. 

Alternatively, where raw data were readily available in public repositories, I used 

these data in the analysis. 

2.4.4 Study selection 

Articles were included in the study if they were: (1) studies conducted in African 

populations, and (2) studies reporting antibody responses to either Pfs230 or Pfs48/45 

or both antigens. I considered studies from all years and written in all languages for 

review. Articles were excluded if: (1) they only reported antibody responses to non-

falciparum antigens, (2) they were a vaccine, drug or any other interventional trial, 

(3) they did not use a quantitative assay to measure immune responses, and (4) they 

sampled fewer than 30 participants (this included studies where both children and 

adults were recruited, but there were fewer than 30 participants in each category). In 

cases where there were two studies carried out in the same cohort, I considered the 

study where seroprevalence estimates were analysed in relation to a larger number of 

the variables investigated in the analyses.  

2.4.5 Data extraction 

Data on seroprevalence to Pfs230 and Pfs48/45 were extracted from relevant articles 

using a standardised data extraction form. The form was designed to capture 

information on the following variables: study design employed, country and location 

(village, district or other administrative unit) of where the study was carried out, 

malaria transmission intensity of the study site, the season during which the 
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participants were recruited and immune responses measured, asexual and sexual 

parasite prevalence in the study population, study population investigated (children or 

adults), age categories investigated, type of immunoassay used to detect immune 

responses, antigen coating concentration, serum dilution, source of antigen for the 

immunoassay, type of negative controls used, and method used to assess 

seropositivity. 

2.4.6 Data analysis 

Between-study heterogeneity was assessed using Cochran’s Q, I2 and H statistics. I2 

cut-offs of <30%, 30-75%, and >75% were used to defined low, moderate, and high 

estimates of heterogeneity, respectively. Moderator analysis using sub-groups and 

meta-regression were used to explore potential sources of heterogeneity. The strength 

of the associations observed in the meta-regression was assessed using conservative 

p values calculated using the ‘Knapp-Hartung’ method. Additionally, to correct for 

multiple comparisons, adjusted p values were calculated using the Benjamini and 

Hochberg correction418. I calculated the change in heterogeneity score after carrying 

out each univariable analysis using the formula:  

[(overall heterogeneity – residual heterogeneity/overall heterogeneity) * 100] 

This was done to identify variables associated with higher levels of heterogeneity. 

In the meta-regression, the following variables were explored: (1) age group – 

classified broadly as children (from 0 – 17 years of age) and adults (≥18 years of age), 

(2) parasite prevalence, (3) antigen source for immunoassay – recombinant protein 

versus gametocyte extract, (4) antigen coating concentration, and (5) seropositivity 

cut-off – two versus three standard deviations (SD) above the antibody reactivity of a 

malaria naïve population. Malaria naïve populations were either a non-exposed 

Caucasian population or a statistically-defined population of low responders. For the 

variable age, where a study used age categories that marginally overlapped the pre-

defined age groups, for instance, children 0 – 19 years of age or adults >16 years of 

age, and data were not available to reanalyse the age groups, then the original study’s 

age categories were used to define children and adults. Microscopy was the most 

common parasite detection method. Therefore, microscopy-based parasite prevalence 

estimates were used in the analyses. 
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To define transmission intensity at the time of sampling in a uniform way across all 

studies, I used data from Snow et al. (2017) on the changing parasite prevalence in 

Africa over time419. The authors collected data between the early 1900s and 2015 

across different sites in Africa, spanning 520 sub-national administrative units. Using 

these data, the authors defined the predicted parasite rate standardised for 2 – 10-year 

olds (PfPR2-10) for each administrative unit. I used information provided in the 

manuscripts on the location (village, district or other administrative units) from which 

study participants were recruited to identify the corresponding administrative region 

for each study site. I then used previously defined endemicity cut-offs to categorise 

hypoendemic study sites; PfPR2-10 ≤10%, mesoendemic study sites; PfPR2-10 > 10% - 

50%, or hyperendemic study sites PfPR2-10 > 50%.  

Additionally, for longitudinal studies, seroprevalence estimates from separate cross-

sectional surveys were combined to calculate a pooled seroprevalence estimate that 

was then used in the analyses. Where cross-sectional surveys were seasonally spaced, 

cross-sectional surveys carried out in the dry season or rainy season were considered 

separately in the univariable analysis during meta-regression. In cases where a study 

measured seroprevalence at the peak and at the end of the rainy season, the data were 

pooled and considered as seroprevalence measured during the rainy season. To 

compare seroprevalence to Pfs230 and Pfs48/45 reported in the different studies, a 

two-proportions Z-test was used. Where fewer than 5 participants were positive to 

either antigen, a Fisher’s exact test was used. 

2.5  Results 

2.5.1 Flow diagram of studies retrieved for the review 

A total of 525 articles were identified from the various databases during the literature 

search. After filtering out duplicate studies, 205 studies remained, and these were then 

screened by title and abstract. The screen identified 34 studies that contained relevant 

information. The full texts from these studies were evaluated and assessed against the 

inclusion criteria. After evaluation, 12 studies remained. These were then included in 

the systematic review and meta-analysis. A summary of the selection process is 

outlined in Figure 2.1. 
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Figure 2.1: Consort diagram showing study selection for the systematic review and meta-analysis. 

*Reasons for exclusion included: 6 studies measured immune responses semi-quantitatively (4 of these 

in the same population); 11 studies had a small sample size (less than 30), and 5 studies were healthcare 

facility-based studies (primary care facilities and hospitals). 

 

525 studies identified by database searches 

(PubMed, Embase, Scopus, African Index Medicus 

and African Journals Online) and reference lists   

320 duplicate studies 

removed 

205 unique studies for screening by 

title and abstract  

171 studies did not contain 

relevant information 

34 full-text studies screened for 

eligibility 

12 studies met inclusion criteria 

22 studies did not meet inclusion 

criteria* 

Wrote to authors of the 5 studies to request data 

1 study did not provide 

seroprevalence estimates 

4 studies did not report 

seroprevalence by age or season 
7 studies reported 

required data 

5 authors responded, hence 12 studies included in the analysis 
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2.5.2 Study selection and characteristics 

The 12 studies were from 21 locations in Africa that represented 17 study sites (as 

defined by the administrative region of the study site). The majority of the studies 

were carried out in West Africa (Burkina Faso, Senegal, Gabon, Cameroon, Ghana, 

and Mali), with only one study site in East Africa (Tanzania) and two study sites in 

Southern Africa (Zimbabwe) (Table 2.1). Most studies measured immune responses 

to both antigens; only two studies did not measure responses to Pfs230, and three 

studies did not measure responses to Pfs48/45. Additionally, six studies were 

longitudinal, with immune responses measured either in the dry season or in the rainy 

season. Children were the most common study population, and ELISA was the 

predominant immunoassay used. 
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Table 2.1: Characteristics of studies included in the systematic review and meta-analysis 

Study 

(Reference) 

Year Country Region of 

Study Sitec 

Sample 

Size 

Age 

Group 

(years) 

Antigen 

Detected 

Seasonality 

Tested 

(Y/N) 

Assay Seropositivity 

Cut-off 

Negative 

Controld 

Amoah et al. 415 
a 

2018 Ghana 

(Abura) 

Central 65 6 - 12  Pfs230 No ELISAR 2 SD Naïve 

Amoah et al. 415 
a 

2018 Ghana 

(Obom) 

Greater 

Accra 

75 6 - 12  Pfs230 No ELISAR 2 SD Naïve 

Lamptey et al. 
228 

2018 Ghana  Greater 

Accra  

338 2 - 65  Pfs230 Yes ELISAR 3 SD Test 

sample 

Stone et al. 74 b* 2018a Burkina 

Faso 

Hauts-

Bassins 

33 5 - 14  Pfs230 

and 

Pfs48/45 

No ELISAR 3 SD Test 

sample 

Stone et al. 74 b* 2018b Burkina 

Faso 

Centre-Nord 38 2 - 10  Pfs230 

and 

Pfs48/45 

No ELISAR 3 SD Test 

sample 

Stone et al. 74 b* 2018 Cameroon Centre 140 5 - 16  Pfs230 

and 

Pfs48/45 

No ELISAR 3 SD Test 

sample 

Bansal et al. 420 2017 Zimbabwe Mashonaland 

Central 

181 6 - 14  Pfs48/45 No ELISAR 2 SD Naïve 

Paul et al. 220 2016 Zimbabwe Manicaland 150 6 - 16  Pfs48/45 No ELISAR 2 SD Naïve 

Ateba-Ngoa et 

al. 421 b 

2016 Gabon Moyen - 

Ogooue 

286 3 - 50  Pfs230 

and 

Pfs48/45 

No ELISAR 3 SD Test 

sample 

Jones et al. 203 b 2015 Burkina 

Faso 

Nord 200 5 - 16  Pfs230 

and 

Pfs48/45 

Yes ELISAR 3 SD Test 

sample 

Jones et al. 203 b 2015 Ghana Greater 

Accra  

108 5 - 17  Pfs230 

and 

Pfs48/45 

Yes ELISAR 3 SD Test 

sample 
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Study 

(Reference) 

Year Country Region of 

Study Sitec 

Sample 

Size 

Age 

Group 

(years) 

Antigen 

Detected 

Seasonality 

Tested 

(Y/N) 

Assay Seropositivity 

Cut-off 

Negative 

Controld 

Jones et al. 203 b 2015 Tanzania Tanga 

Region 

202 3 - 15  Pfs230 

and 

Pfs48/45 

Yes ELISAR 3 SD Test 

sample 

Skinner et al. 227 
b 

2015 Mali Koulikoro 3 

and Bamako 

225 2 - 25  Pfs230 

and 

Pfs48/45 

Yes MicroarrayR 2 SD No 

template 

Miura et al., 221  2013 Mali Kayes 2 45 18 - 60 Pfs230 No ELISAR 3 SD Naïve 

Ouedraogo et 

al. 200 b* 

2018 Burkina 

Faso 

Centre-Nord 128 1 - 55  Pfs230 

and 

Pfs48/45 

Yes Two-site 

ELISAGe 

3 SD Naïve 

Ouedraogo et 

al. 217 a 

2011 Burkina 

Faso  

Centre-Nord 296 1 - >20  Pfs230 

and 

Pfs48/45 

Yes Two-site 

ELISAGe 

2 SD Naïve 

Van der Kolk et 

al. 214 

2006 Cameroon Centre 236 5 - 14  Pfs230 

and 

Pfs48/45 

No Two-site 

ELISAGe 

2 SD Naïve 

a 
Seroprevalence data requested from authors. 

b Seroprevalence data calculated from data provided by original authors, or from data deposited on public repositories. 
b*Citation includes repository from which data was retrieved. 
c Administrative region of study site from which participants were drawn. 
d Negative control refers to the comparator used to assign seropositivity. Naïve – malaria naïve volunteers; sample – a proportion of statistically-defined seronegative 

individuals; no template - a ‘no DNA control’ used to detect reactivity to the expression vector used to produce protein for the array. 
R Recombinant protein; Ge gametocyte extract. 

SD – standard deviation.
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2.5.3 Pfs230 

2.5.3.1 Seroprevalence 

Of the 12 studies selected for analysis, ten studies from across the 15 study sites in 

Africa analysed antibody (IgG) responses to Pfs230. There was a broad range of 

reported seroprevalence estimates to Pfs230, varying from 6% reported by Stone et 

al. (2018) in Soumousso and Dande villages, Burkina Faso74 to 72% reported by 

Amoah et al. (2018) in Obom, Ghana415 (Figure 2.2). Analysis of heterogeneity 

revealed significant between-study heterogeneity (I2 = 97%; 95% CI: 96 – 98%; p < 

0.01) preventing the calculation of a pooled seroprevalence estimate. 

 

Figure 2.2: Forest plot of seroprevalence to Pfs230. Seropositivity was calculated based on a cut-off 

derived from either seronegative individuals or an assay negative control. Figure from Muthui et al. 

(2019)422. 

 

2.5.3.2 Factors associated with reported seroprevalence to Pfs230 

To identify factors associated with seroprevalence to Pfs230, and in so doing also 

identify contributors to the heterogeneity observed, I performed a meta-regression 

analysis. I explored how differences relating to both the study population, as well as 

the immunoassay protocol employed, impacted the reported seroprevalence to Pfs230. 

In comparison to studies in children, studies in adults were associated with higher 

seroprevalence estimates (β coefficient 0.21, 95% CI: 0.05 – 0.38, p = 0.042) (Table 

2.2). Unlike with participant age, higher asexual parasite and gametocyte prevalence 
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were not associated with seroprevalence estimates.  Similarly, no significant 

association was seen between transmission intensity of the study site or sampling 

season (dry versus rainy) and seroprevalence to Pfs230. 

When methodological factors were considered, the antigen source was significantly 

associated with estimates of seroprevalence to Pfs230. For studies that used 

recombinant protein, a higher antigen coating concentration of 1 µg/ml was associated 

with higher seroprevalence estimates in comparison to a coating concentration of 0.1 

µg/ml (β coefficient 0.26, 95% CI: 0.09 – 0.43, p = 0.042). Moreover, the 

seropositivity cut-off was also significantly associated with seroprevalence estimates. 

A three-SD cut-off above the immune responses of seronegative individuals 

associated with lower seroprevalence estimates when compared to a 2 SD cut-off (β 

coefficient -0.22, 95% CI: -0.37 – -0.06, p = 0.042).  

There was no association, however, between the source of antigen (gametocyte extract 

or recombinant protein) and seroprevalence estimates. Multivariable meta-regression 

to test the combined significance of the factors identified in the univariable analysis 

was not feasible owing to the small number of studies included, and the fact that not 

all variables were reported for each study.  

While multivariable meta-regression analysis was not possible, I explored a two-

variable analysis using age and seropositivity cut-off that were associated with 

seroprevalence estimates. Most studies reporting seroprevalence in adults used a 3 SD 

cut-off. However, the associations between older age and higher seroprevalence 

estimates do not indicate a bias in the observed associations. This was confirmed in 

the two-variable meta-regression analysis, where statistically significant associations 

between increased age and higher seroprevalence as well as the 3 SD cut-off and lower 

seroprevalence estimates were observed (9.2 Appendix 2). Though all included 

studies reported the seropositivity cut-off, only 6 studies used recombinant protein 

and reported the antigen coating concentration. A robust two-variable meta-regression 

could not therefore be carried out. 

Additionally, I also analysed the amount of heterogeneity explained by each of the 

variables tested. However, none of the variables resulted in a reduction in 

heterogeneity to below 75%. The high heterogeneity was also exemplified by sub-
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group analyses using age group, antigen coating concentration and seropositivity cut-

off (9.2 Appendix 2)  
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Table 2.2: Univariable meta-regression analysis of factors influencing reported seroprevalence to Pfs230 

 

 

*p– values adjusted using the Benjamini and Hochberg correction for multiple testing; values in bold p < 0.05. 

⁺Antigen concentration used as a variable for studies using recombinant protein as an antigen source.   

CI – confidence interval, SD – standard deviation

Covariate 
No. of Studies 

(No. of Sites) 

Coefficient 

(β) 
95% CI 

p-

value* 

Residual 

I2 

I2 Change 

(%) 

Age       

Children (ref) 10 (14) . . . .  

Adults 6 (6) 0.21 0.05, 0.38 0.04 95.36 2.09 

Asexual parasite prevalence 6 (10) -0.001 -0.005, 0.002 0.51 95.37 2.08 

Gametocyte prevalence 4 (8) -0.002 -0.004, 0.001 0.38 92.54 4.50 

Transmission intensity       

Mesoendemic (ref) 7 (8) . . . .  

Hyperendemic 6 (7) -0.06 -0.23, 0.11 0.51 96.18 1.25 

Season       

Dry (ref) 6 (9) . . . .  

Rainy 5 (7) 0.07 -0.12, 0.27 0.51 96.24 1.19 

Antigen source       

Gametocyte extract (ref) 3 (3) . . . .  

Recombinant protein 7 (12) -0.06 -0.25, 0.13 0.51 96.31 1.12 

Antigen concentrationᶧ       

0.1 µg/ml (ref) 3 (7) . . . .  

1 µg/ml 3 (4) 0.26 0.09, 0.43 0.04 93.52 3.98 

Seropositivity cut-off       

2 SD (ref) 4 (5) . . . .  

3 SD 6 (10) -0.22 -0.37, -0.06 0.04 95.16 2.30 
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2.5.4 Pfs48/45 

2.5.4.1 Seroprevalence 

There were nine studies carried out over 13 study sites that measured antibody (IgG) 

responses to Pfs48/45. Like Pfs230, there was a broad range in the reported 

seroprevalence to Pfs48/45 from as low as 0% from Stone et al. (2018) from study 

sites in Burkina Faso74 to 64% reported by Paul et al. (2016) from their study in the 

Makoni district in Zimbabwe220 (Figure 2.3). The between-study heterogeneity was 

I2 96% (95% CI: 95% – 97%; p < 0.01) which again was above the 75% threshold, 

therefore, a pooled prevalence estimate was not calculated. 
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Figure 2.3: Forest plot of the seroprevalence to Pfs48/45. Seropositivity was calculated based on a set cut-off derived from either seronegative individuals or an assay 

negative control. Figure from Muthui et al. (2019)422. 
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2.5.4.2 Factors associated with reported seroprevalence to Pfs48/45 

I performed a meta-regression analysis to identify factors that were associated with 

seroprevalence to Pfs48/45. From the univariable analysis, age was not associated 

with seroprevalence estimates, unlike what was observed for Pfs230 (Table 2.3).  

There was a significant association between gametocyte prevalence and 

seroprevalence estimates, with higher gametocyte prevalence associated with lower 

seroprevalence to Pfs48/45 (β coefficient -0.003, 95% CI: -0.005 – -0.002, p = 0.003). 

No trend was seen for asexual parasite prevalence (p = 0.11). As with Pfs230, 

transmission intensity and sampling season were not significantly associated with 

seroprevalence to Pfs48/45. 

For the methodological variables, as with Pfs230, higher antigen coating 

concentration (1 µg/ml) and a 3 SD cut-off were associated with lower seroprevalence 

estimates to Pfs48/45 (β coefficient 0.30, 95% CI: 0.06 – 0.54, p = 0.043 and β 

coefficient -0.26, 95% CI: -0.39 – -0.12, p = 0.003). Again, due to the limited number 

of studies, I did not attempt further multivariable analysis. 
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Table 2.3: Univariable meta-regression analysis of factors influencing reported seroprevalence to Pfs48/45 

Covariate 
No. of Studies 

(No. of Sites) 

Coefficient 

(β) 
95% CI 

p-

value* 

Residual 

I2 

I2 Change 

(%) 

Age       
Children (ref) 9 (13) . . . .  
Adults 4 (4) 0.07 -0.12, 0.27 0.49 94.90 -0.18 

Asexual parasite prevalence 4 (8) -0.003 -0.006, 0.0003 0.11 91.41 3.96 

Gametocyte prevalence 4 (8) -0.003 -0.005, -0.002 0.003 70.82 25.24 

Transmission intensity       
Hypoendemic (ref) 1(1) . . . .  
Mesoendemic 5 (6) -0.47 -0.89, -0.06 

0.11 93.91 0.87 
Hyperendemic 5 (6) -0.38 -0.8, 0.04 

Season        
Dry (ref) 4 (6) . . . .  
Rainy 6 (8) 0.07 -0.09, 0.24 0.47 93.12 1.70 

Antigen       
Gametocyte extract (ref) 3 (3) . . . .  
Recombinant protein 6 (10) -0.01 -0.19, 0.17 0.91 94.91 -0.19 

Antigen concentrationᶧ       
0.1 µg/ml (ref) 3 (7) . . . .  
1 µg/ml 2 (2) 0.30 0.06, 0.54 0.043 92.65 2.20 

Seropositivity cut-off        
2 SD (ref) 5 (5) . . . .  
3 SD 4 (8) -0.26 -0.39, -0.12 0.003 91.38 3.54 

*p – values adjusted using the Benjamini and Hochberg correction for multiple testing; values in bold p < 0.05. 

 ⁺Antigen concentration used as a variable for studies using recombinant protein as an antigen source.   

CI – confidence interval, SD – standard deviation. 
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Of the variables tested, gametocyte prevalence appeared to explain a high degree of 

heterogeneity, resulting in a 25% reduction in the observed heterogeneity. 

Consequently, I decided to carry out subgroup analysis using data from the studies 

that reported gametocyte prevalence. I coded gametocytaemia as a categorical 

variable, grouping the prevalence into categories of less than 10%, 10% - 50%, and 

greater than 50%. The subgroup analysis revealed that the observed lower 

seroprevalence to Pfs48/45 at higher gametocyte prevalence was highly influenced by 

the study by Stone et al. (2018) where despite a majority of the children being 

gametocyte positive, they reported very low seroprevalence to Pfs48/45 (Figure 2.4). 

This was further confirmed by carrying out sensitivity analysis where the meta-

regression was repeated in the absence of the Stone et al. (2018) study (Table 2.4). 

Gametocyte prevalence was now no longer associated with seroprevalence to 

Pfs48/45 (β coefficient 0.004, 95% CI: 0.000, 0.007, p = 0.11). Therefore, it was not 

possible to accurately define the nature of the relationship between gametocyte 

prevalence and seroprevalence to Pfs48/45 from the studies included in this analysis. 

Furthermore, while heterogeneity was reduced to below 75% in the below 10% and 

10 – 50% categories, only three studies were included (of the original nine studies). 

As a pooled seroprevalence estimate from the three studies disregards estimates from 

the 6 other studies, providing a pooled estimate of the seroprevalence to Pfs48/45 

remained challenging. Additionally, though the antigen coating concentration, and 

seropositivity cut-off were statistically significant predictors in the meta-regression 

(Table 2.4), these variables did not result in a substantial reduction in the observed 

heterogeneity (9.2 Appendix 2).
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Figure 2.4: Forest plot of the seroprevalence to Pfs48/45 categorised by gametocyte prevalence. 

Seropositivity was calculated based on a set cut-off defined from either seronegative individuals or an 

assay negative control. 1participants sampled during the dry season; 2participants sampled during the 

rainy season. Figure from Muthui et al. (2019)422. 
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Table 2.4: Univariable meta-regression analysis of factors influencing reported seroprevalence to Pfs48/45 

Covariate 
No. of Studies 

(No. of Sites) 

Coefficient 

(β) 
95% CI 

p-

value* 

Residual 

I2 (%) 

I2 Change 

(%) 

Age       

Children (ref.) 8 (10) . . . .  

Adults 4 (4) 0.01 -0.15, 0.18 0.97 92.88 -0.45 

Asexual parasite prevalence 3 (6) 0.000 -0.004, 0.004 0.99 90.06 2.56 

Gametocyte prevalence 3 (5) 0.004 0, 0.007 0.11 32.97 64.34 

Transmission intensity        

Hypoendemic (ref.) 1 (1) . . . .  

Mesoendemic 4 (5) -0.35 -0.71, 0.02 
0.11 91.73 0.79 

Hyperendemic 4 (4) -0.43 -0.79, -0.06 

Season       

Dry (ref.) 4 (6) . . . .  

Rainy 6 (8) 0.07 -0.09, 0.24 0.47 93.12 -0.71 

Antigen        

Gametocyte extract (ref.) 3 (3) . . . .  

Recombinant protein 4 (7) 0.08 -0.09, 0.25 0.47 93.12 -0.71 

Antigen concentration⁺       

0.1 µg/ml (ref.) 1 (4) . . . .  

1 µg/ml 2 (2) 0.22 0.03, 0.41 0.09 87.41 5.46 

Seropositivity cut-off       

2 SD (ref.) 5 (5) . . . .  

3 SD 3 (5) -0.22 -0.35, -0.08 0.027 89.43 3.28 
*p – values adjusted using the Benjamini and Hochberg correction for multiple testing; values in bold p < 0.05. 

 ⁺Antigen concentration used as a variable for studies using recombinant protein as an antigen source.  

CI – confidence interval, SD – standard deviation. 
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2.5.5 Pfs230 and Pfs48/45 Combined Seroprevalence 

I then went on to perform a pairwise comparison of seroprevalence estimates for 

Pfs230 and Pfs48/45 using data from studies that analysed antibody responses to both 

antigens. I did this to determine if one antigen is more commonly recognised than the 

other. For this analysis, the seroprevalence was assayed in the same study population 

and using the same assay protocol per study. From the results, it did not appear that 

immune responses were consistently higher for either antigen. Some studies reported 

higher seroprevalence to Pfs230, while others reported higher seroprevalence to 

Pfs48/45 (Figure 2.5). 
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Figure 2.5: Comparison of seroprevalence to Pfs230 and Pfs48/45 in select studies. Seropositivity 

was calculated based on a set cut-off defined from either seronegative individuals or an assay negative 

control. Comparisons between proportions were carried out using a 2-proportions Z-test exception for 

the data from Burkina Faso for Stone et al. 2018a and 2018b where a Fisher’s exact test was used owing 

to frequencies of below 5. Results from the tests (X2 -where appropriate and p value) are presented in 

the graph. Error bars represent 95% confidence intervals. B. Faso – Burkina Faso.   
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2.6 Discussion 

Calls to intensify malaria elimination efforts have renewed interest in developing 

interventions that interrupt transmission. These interventions include vaccines that 

interrupt malaria transmission (VIMTs) such as the classical transmission-blocking 

vaccines5. For the successful design, evaluation, and implementation of transmission-

blocking vaccines, an improved understanding of naturally acquired immune 

responses to the transmissible parasite stages will be required. I therefore carried out 

a systematic review and meta-analysis of studies that looked at NAI to the lead vaccine 

candidate antigens Pfs230 and Pfs48/45 in African populations. In so doing, I aimed 

to estimate the seroprevalence to these two antigens by pooling studies and to 

understand the factors associated with seroprevalence to these two antigens at the 

population level. I focused on classical, well characterised, indicators of parasite 

exposure such as age, transmission intensity, season, and parasite prevalence as 

potential explanations of heterogeneity. 

The reported seroprevalence to Pfs230 ranged from 6%203 to 72% 415 and from 0% 74 

to 64%220 for Pfs48/45. This broad range reflected substantial between-study 

heterogeneity that precluded carrying out a pooled analysis to arrive at a single, 

reliable estimate of seroprevalence to either antigen. As a result, I sought to look at 

possible factors contributing to this heterogeneity using both the indicators mentioned 

above relating to malaria exposure and also methodological variables.  

There has been much debate as to whether NAI to sexual stage antigens increases with 

age with some studies showing no association with age217,218,423 while other studies 

demonstrate increasing antibody prevalence with age74,200. An increase in 

seroprevalence with age has been described for asexual stage antigens such as the 

merozoite surface proteins155,184 or the infected erythrocyte protein family 

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1)412. This gradual 

acquisition of immunity to clinical disease may reflect the time taken to acquire long-

lived plasma cells and memory B cells following repeated parasite exposure22,24. 

Additionally, it may also indicate the time required to obtain a repertoire of antibodies 

to clonally variant antigens such as PfEMP125.  

In this meta-analysis, a modest association was found between age and seroprevalence 

to Pfs230 but not to Pfs48/45. While antigens may differ in their ability to induce 
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long-lived immune responses, the lack of association seen with Pfs48/45 may also be 

attributable to the limited number of studies that analysed both children and adults as 

well as between-study heterogeneity. From this analysis, a firm conclusion cannot be 

made on the ability of Pfs48/45 to induce long-lived immune responses. Studies that 

have shown no association between immune responses to sexual stage antigens and 

age have argued that such immune responses reflect recent exposure rather than 

cumulative exposure217,218. While not conclusive, the results of this meta-analysis are 

evidence for the existence of long-lived immune responses to Pfs230.  In support of 

this, Ouedraogo et al. (2018) found that seroprevalence and density of antibodies to 

Pfs230 and Pfs48/45 increased with age and this increase positively correlated with 

higher TBA200. Such an age-dependent response would suggest that not only immune 

recognition but also functional antibodies against the two antigens increase with age. 

While individual studies showed an increase in seroprevalence to Pfs230 and Pfs48/45 

during the rainy season200,203,217, the combined analysis did not find a definitive 

association between sampling season and seroprevalence to the two antigens. The 

inability to observe an association between sampling season and seroprevalence 

estimates in the combined analysis, as in the individual studies, may indicate potential 

confounding factors that would need to be accounted for in multivariable analysis. 

Unfortunately, only six studies reported the sampling season, and this precluded 

further multivariable analysis. The potential for natural boosting of responses 

following natural parasite exposure during the rainy season favours the prioritisation 

of pre-fertilisation antigens such as Pfs230 and Pfs48/45 for TBV design227,424,425. In 

their study, Ouedraogo et al. (2018) found decreased infectiousness to mosquitoes 

during the malaria transmission season that coincided with boosted natural responses 

to Pfs230 and Pfs48/45200.  

Additional factors that I investigated concerning seroprevalence to Pfs230 and 

Pfs48/45 were transmission setting and parasite prevalence. While some studies 

demonstrated an increase in seroprevalence estimates in higher transmission settings, 

this was not replicated in the meta-analysis. Likewise, a definitive association between 

either asexual parasite prevalence or gametocyte prevalence and seroprevalence to 

either of the two antigens under investigation was not observed.  
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None of the variables related to malaria exposure described in the above paragraphs 

appreciably reduced the between-study heterogeneity; therefore, I decided to consider 

the contribution of methodological variability. Aspects in which the studies differed 

included the source of antigen for the immunoassay, choice of immunoassay, assay 

protocol, and seropositivity cut-off. Owing to the challenges in producing correctly-

folded Pfs230 and Pfs48/45, early studies relied on whole antigen from gametocyte 

extract for their immunoassays217,218,300,426. These studies employed a two-site ELISA 

where epitope-targeted monoclonal antibodies were used for antigen capture before 

the addition of diluted human serum for antibody detection217,218 or competition with 

a second monoclonal antibody300. Two-site ELISAs are reportedly less sensitive, 

resulting from either high background reactivity203 or the fact that the epitope bound 

by the monoclonal antibody is inaccessible to the test antibodies425. The limited 

sensitivity may bias towards lower seroprevalence estimates reported in comparison 

to studies using ELISA or microarrays. 

In this analysis, I did not find evidence of antigen source influencing seroprevalence 

estimates. Additionally, as the same studies that used gametocyte extract also used a 

two-site ELISA and only one study used the microarray platform, I could not evaluate 

the contribution of immunoassay to methodological variability. For antigen 

concentration, studies using a lower antigen concentration for the immunoassays 

reported lower seroprevalence estimates. For this reason, it is paramount that studies 

optimise their antigen coating concentration and antibody dilutions to allow better 

distinction of seropositive and seronegative individuals. Moreover, the seropositivity 

cut-off used to distinguish seropositives from seronegatives was associated with 

seroprevalence estimates. Typically, seropositivity is estimated by defining a cut-off 

based on two or three standard deviations (SD) from the mean response in 

seronegative individuals. This analysis found that a higher cut-off of 3 SD was 

associated with lower seroprevalence estimates, reflecting the higher stringency. 

The significant influence of methodological variables on seroprevalence estimates 

makes a case for establishing a ‘gold standard’ set of criteria that should be adopted 

when analysing seropositivity to sexual stage antigens. These criteria could include 

(1) use of appropriately folded and validated recombinant proteins where possible 

(with indications of the protein expression system used and protein region targeted), 

(2) use of a 3 SD cut-off for seropositivity estimation, and (3) reporting of antigen 
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coating concentration and serum dilution used in an immunoassay. Additionally, for 

reporting of the results of seroepidemiological studies on sexual stage antigens, the 

Malaria Immunoepidemiology Observational Studies (MIOS) guidelines proposed by 

Fowkes et al. (2010)427 should be adopted. Clear guidelines would allow 

reproducibility, standardisation, and possibly generalisability of findings from 

seroepidemiological studies.  

2.6.1  Limitations 

The majority of the studies used microscopy as the parasite detection method; hence 

I was limited to using microscopy-based estimates of parasite prevalence. The limited 

sensitivity of microscopy for parasite detection has been well described428,429 and 

tends to underestimate parasite prevalence. Molecular-based methods of parasite 

detection may offer a better understanding of the relationship between parasite 

prevalence and seroprevalence to sexual stage antigens thus providing an improved 

understanding of the dynamics of NAI in the context of sexual stage immunity.  

Additionally, few studies looking at naturally acquired immunity to gametocyte 

antigens were identified for inclusion in the analyses, potentially limiting the 

generalisability of these findings. The limited number of studies, and the fact that not 

all studies reported information on the variables investigated, meant that further 

examination of the sources of heterogeneity identified in the univariable analysis 

could not be robustly evaluated in multivariable analysis. The high heterogeneity 

between studies arising from methodological differences complicated efforts to 

calculate pooled estimates. Standardised protocols for conducting and reporting 

seroepidemiological studies are therefore required. Reporting pooled estimates across 

studies may still present a challenge as not all variables can be standardised between 

studies, for example, transmission intensity. However, standardised protocols would 

allow a better estimation of the actual heterogeneity in reported estimates. 

2.6.2 Summary of overall findings 

This systematic review and meta-analysis revealed that antibody responses to the 

sexual stage antigens Pfs230 and Pfs48/45 are prevalent in the populations studied, 

with a broad range of seroprevalence estimates reported. Of the variables investigated 

for a potential relationship with seroprevalence, I found evidence for a role for age as 

a determinant of seroprevalence to Pfs230. This would suggest that long-lived, stable 
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responses to sexual stage antigens may develop in malaria-endemic populations and 

may provide additional criteria for screening newly identified TBV candidates. 

Additionally, the potential for boosting of vaccine-induced responses following the 

malaria transmission season may enhance vaccine efficacy in the field. 

The high heterogeneity between studies arising from methodological differences 

complicated efforts to calculate pooled estimates. More standardised methods for 

conducting and reporting seroepidemiological studies would facilitate comparison 

between different studies.  
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Chapter 3  

Describing the prevalence and distribution of gametocytaemia 

among children in the Kilifi Malaria Longitudinal Rolling Cohort 

3.1 Introduction  

Heterogeneity of malaria transmission is a well-described phenomenon where certain 

individuals are more likely to get infected and consequently more likely to transmit 

malaria430–433. Targeted application of malaria control tools would, therefore, be 

highly beneficial in curbing transmission in such hotspots. This would require an 

improved understanding of individuals who contribute disproportionately to 

transmission, and the identification of prognostic indicators that could identify such 

individuals.  Not only would this aid the effective implementation of existing malaria 

control tools, but it would also assist the design of improved transmission-blocking 

interventions434.  

For transmission of malaria, a mosquito needs to take up male and female gametocytes 

during a blood meal. Gametocyte production is a ‘dead-end’ for replication, thus 

complicating within-host survival28. Therefore, the parasite relies on specific cues to 

determine whether to continue replicating asexually, thus maximising within-host 

survival, or commit to the sexual development pathway and ensure between-host 

transmission75. Consequently, commitment to gametocytogenesis and subsequent 

gametocyte carriage is likely to vary between individuals in response to host factors 

that alter parasite fitness. The precise mechanisms governing gametocyte commitment 

are not yet well described. However, environmental cues appear essential in 

determining the level of investment to gametocytogenesis during an infection75,435. 

Factors such as drug pressure, an unfavourable host environment and host immune 

factors32,77,78 are thought to play a role in modulating gametocyte production.  

Concerning the link between drug pressure and gametocyte carriage, the nature of the 

association observed depends on the type of antimalarial drug used. With older 

antimalarials, such as chloroquine (CQ) and sulphadoxine-pyrimethamine (SP), an 

increase in post-treatment gametocyte carriage has been described67,436–438. Further, 

this effect was enhanced when resistance emerged437,439. The current first-line drugs 

for the treatment of malaria are the artemisinin combination therapies (ACTs). While 
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ACTs are not active against mature circulating gametocytes, but they are active 

against immature gametocytes thereby reducing gametocyte carriage433,434. Some data 

show, however, that the impact of ACTs on gametocyte carriage depends on the type 

of ACT used. Combinations of artemether-lumefantrine and artesunate-mefloquine 

reportedly show more significant reductions in gametocyte burden than either 

dihydroartemisinin-piperaquine or artesunate-amodiaquine104. This is likely due to the 

dosing regimen or activity of the partner drug104. The gametocidal properties of 

different antimalarials are, therefore, an essential factor to consider when looking into 

factors that affect post-treatment gametocyte carriage. 

In addition to the environmental stressors described above (drug pressure and an 

unfavourable host environment), host genetics may also influence gametocyte 

production. The effect of haemoglobinopathies, particularly sickle cell trait 

(haemoglobin (Hb) S), haemoglobin C disease (HbC) and α-thalassaemia, has been 

evaluated in the context of malaria where these variants have been shown to confer 

protection against severe disease128–130. On the other hand, these RBC disorders have 

been linked to increased gametocyte carriage68,79. This may occur due to the 

anaemia-induced increase in immature RBCs or reticulocytes441,442. Reasons why 

gametocytes prefer reticulocytes could include molecular or biochemical properties 

of the reticulocytes443. An alternate explanation is that the development time of 

reticulocytes in the bone marrow coincides with the time taken for gametocytes to 

mature443.  

As with the haemoglobinopathies, ABO blood groups may also protect against severe 

malaria. Relative to AB and A blood groups, blood group B and more so blood group 

O reduce parasite rosetting, thus limiting the severity of disease138,139. In their study, 

Grange et al. (2015) found a case for increased gametocyte carriage linked to B and 

O blood groups68. A mechanism for this association, however, has not yet been 

described. The range of factors that influence gametocyte carriage raises the 

possibility of identifying key prognostic features that could indicate individuals at a 

higher risk of gametocyte carriage. These features could then serve to guide the 

implementation of transmission-blocking interventions maximising their impact.  
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3.2 Rationale  

While there have been studies looking into the epidemiology of gametocyte carriage, 

these have primarily been single surveys or longitudinal studies with relatively short 

follow-up 69,436,444–447. Few studies have employed more extended periods of follow-

up68,448,449. I had access to a unique dataset from a longitudinal cohort of children 

followed up cumulatively for over 19 (from 1998 to 2016) years to track parasite 

prevalence along the Kenyan coast. The Kilifi Malaria Longitudinal Rolling Cohort 

(KMLRC) presented an opportunity to adequately describe, characterise and explore 

potential factors influencing gametocyte carriage. Over time, malaria transmission 

patterns have changed dramatically in this region, as has malaria drug use, providing 

an opportunity to investigate how this has affected gametocyte carriage. I thus used 

this dataset to better understand and describe the prevalence and distribution of 

gametocytaemia, and also potentially identify risk factors for gametocyte carriage.   

To have a comprehensive view, I used data from cross-sectional surveys done to 

assess asymptomatic parasite carriage as well as weekly-surveillance data collected to 

track clinical cases of malaria. This analysis was done to both gain better insights into 

the patterns of gametocyte carriage in the KMLRC and inform the 

seroepidemiological studies of responses to gametocyte antigens (Chapter 5). 

Insights gleaned from this chapter, combined with findings on the factors influencing 

naturally acquired sexual stage immune responses (Chapter 2) and the 

seroepidemiological studies, aimed to provide a better understanding of the dynamics 

of transmission-blocking immunity. I assessed likely prognostic indicators of 

gametocytaemia as these would be important in determining the factors that influence 

the prevalence of antibodies to gametocyte antigens. Furthermore, the analysis 

provided an opportunity to identify individuals positive for gametocytes, and 

appropriate controls, that would serve the basis for immunoprofiling responses to the 

candidate gametocyte antigens. 

3.3 Objectives 

The main objective was to describe the prevalence and distribution of gametocytaemia 

among children in a longitudinal rolling cohort in Coastal Kenya using data collected 

over 19 years of follow-up.  
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3.3.1 Specific Objectives 

• Describe key factors that are associated with gametocyte carriage. 

• Identify gametocyte carriers and appropriate controls for seroepidemiological 

analysis of naturally acquired immune responses to gametocyte antigens.  

3.4 Methods 

3.4.1 Study design and data collection 

The KMLRC, from where study participants were recruited, is located in Kilifi 

County, within the Kilifi Health and Demographic Surveillance System (KHDSS), 

along the Kenyan coast (Figure 3.1)450–452. Three cohorts with varied transmission 

intensity were included, being: Ngerenya (initially of moderate transmission but 

declining to low transmission), Junju (moderate transmission), and Chonyi (high 

transmission). Peak malaria transmission occurs during the rainy seasons with the 

long rainy season occurring between May – July and the short rainy season between 

October – December450,453.  
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Figure 3.1: Map of the Kilifi Malaria Longitudinal Cohort located within the Kilifi Health and 

Demographic Surveillance System (KHDSS). Participants homesteads within the cohort are 

indicated by coloured points. Chonyi (orange); Junju (green); and Ngerenya (red). KCH, Kilifi County 

Hospital. Figure from Muthui et al. (2019)454. 

I analysed cross-sectional survey data from the three cohorts, with cross-sectional 

surveys conducted from 1998 to 2016 for Ngerenya (no survey was conducted in 

2006); from 1999 to 2001 for Chonyi; and from 2007 to 2016 for Junju. In addition to 

the cross-sectional surveys that aimed to detect asymptomatic parasite carriage, 

children were actively monitored by field workers each week to identify any episodes 

of febrile malaria. Over the analysis period, there was a marked decrease in malaria 

transmission intensity in Ngerenya455 that necessitated dividing the cohort into two 

time-periods for analytical purposes. Ngerenya was thus divided into Ngerenya early 
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(1998 – 2001) a period of moderate transmission, and Ngerenya late (2002 – 2016) a 

period of moderate to low transmission based on the drop in parasite prevalence 

observed after 2001 (Figure 3.2). From this point onwards, the KMLRC will be 

considered to have four cohorts. 

 

 

Figure 3.2: Parasite prevalence over time. Line plot depicting the temporal variation in 

microscopically-determined P. falciparum parasite prevalence over time. The calculated spearman’s 

rank correlation co-efficient of the variation in asexual and gametocyte prevalence over time is also 

provided in the graph. 

 

Study recruitment began in 1998, with households selected at random from Ngerenya 

and Chonyi locations450,451. Seventy-two households were chosen in Ngerenya (819 

participants) and 52 households in Chonyi (783 participants). There was no official 

calculation of sample size, though the number of participants was considered adequate 

to study the clinical definitions of malaria. Children aged 15 years and below were 

recruited at the start of the study (age distribution over time is provided in 

9.3Appendix 3). Recruitment for Junju cohort was from 405 children belonging to 

149 homesteads, aged between one to six years, who had previously participated in a 

malaria vaccine trial452. These children and their siblings were subsequently recruited 

for longitudinal monitoring. The sample size of 400 children allowed the detection of 

35% vaccine efficacy with 80% power based on an anticipated 50% malaria incidence 

rate. Subsequently, children born into these households were recruited to join the 
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longitudinal cohort and were followed up until the age of 15 when they exited the 

study129.  Each respective year, the same study protocol was applied across the three 

cohorts, and all participants had equal access to healthcare facilities.  

3.4.2 Ethics approval and consent to participate 

Ethical approval for participation in the KMLRC study was given by the Kenya 

Medical Research Institute Ethics Review Committee (reference numbers 

KEMRI/SERU/CGMRC//3149 and SSC1131). All research was conducted according 

to the principles of the Declaration of Helsinki, which included consenting 

participants in their local language before any study procedure was conducted. Parents 

of the children involved in the KMLRC study provided written informed consent for 

participation in this study. 

3.4.3 Malaria case detection 

Active case detection for malaria was carried out during weekly follow-up visits by 

field workers as previously described450,456. Briefly, each week households in the three 

cohorts were visited by a field worker, and axillary temperature recorded for each 

study participant. Blood smears were performed for parasite detection if a participant 

presented with fever or reported having fever in the days leading up to the visit. Rapid 

diagnostic tests (RDTs – Diamed OptiMAL parasite lactate dehydrogenase (pLDH 

test), which was eventually replaced with CareStart™ Malaria Pf (HRP2)) were 

available for active case detection in the field from 2007 onwards and were used to 

guide treatment decisions. However, even before RDT introduction, all febrile malaria 

episodes were treated. Free treatment was readily available to the study participants 

as the field workers were resident in the villages from where study participants were 

recruited and were on hand to assess febrile episodes arising before a scheduled visit. 

National guidelines for the treatment of malaria provided by the Government of Kenya 

were followed and dictated the anti-malarial drug administered in a particular year. 

3.4.4 Cross-sectional parasitological surveys 

Cross-sectional parasitological surveys were undertaken to assess parasite prevalence 

before the onset of the long rainy season to determine asymptomatic P. falciparum 

infections. Approximately 363 (range 139 – 556) participants participated in each 

survey. A summary of the cross-sectional surveys included in the analysis is provided 

in Table 3.1 with a breakdown of participants attending each survey. 
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Table 3.1: Summary of cross-sectional parasitological surveys carried out in the Kilifi Malaria Longitudinal Cohort between 1998 - 2016 

Cohort 
Cross-sectional 

survey number  

Dates 
Number of 

participants 
Time of bleed 

Start date End date 

Ngerenya early 1 31-08-98 11-09-98 419 In the dry season 

Ngerenya early 2 12-07-99 18-07-99 532 During rains 

Ngerenya early 3 13-03-00 18-03-00 537 Before long rains 

Ngerenya early 4 12-07-00 15-07-00 515 During rains 

Ngerenya early 5 03-10-00 26-10-00 556 Before short rains 

Ngerenya early 6 19-03-01 30-03-01 555 Before long rains 

Ngerenya early 7 13-06-01 16-06-01 522 During rains 

Ngerenya late 1 13-05-02 28-06-02 309 Before long rains 

Ngerenya late 2 11-10-02 27-11-02 295 Before short rains 

Ngerenya late 3 12-05-03 23-05-03 295 Before long rains 

Ngerenya late 4 21-10-03 09-02-04 298 Before short rains 

Ngerenya late 5 26-04-04 16-06-04 297 Before long rains 

Ngerenya late 6 18-10-04 09-12-04 283 Before short rains 

Ngerenya late 7 16-05-05 04-06-05 270 Before long rains 

Ngerenya late 8 02-05-07 10-05-07 268 Before long rains 

Ngerenya late 9 22-08-07 29-08-07 285 In the dry season 

Ngerenya late 10 26-11-07 30-11-07 291 Before short rains 

Ngerenya late 11 04-02-08 07-02-08 277 Before long rains 

Ngerenya late 12 14-05-08 21-05-08 279 Before long rains 

Ngerenya late 13 20-04-09 12-05-09 274 Before long rains 

Ngerenya late 14 03-05-10 07-05-10 267 Before long rains 

Ngerenya late 15 25-05-11 31-05-11 264 Before long rains 
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Cohort 
Cross-sectional 

survey number  

Dates 
Number of 

participants 
Time of bleed 

Start date End date 

Ngerenya late 16 02-04-12 10-04-12 262 Before long rains 

Ngerenya late 17 23-04-13 29-04-13 243 Before long rains 

Ngerenya late 18 31-03-14 17-04-14 215 Before long rains 

Ngerenya late 19 28-04-15 05-05-15 150 Before long rains 

Ngerenya late 20 30-03-16 04-04-16 139 Before long rains 

Chonyi 1 12-07-99 17-07-99 510 During rains 

Chonyi 2 13-03-00 18-03-00 532 Before long rains 

Chonyi 3 10-07-00 15-07-00 501 During rains 

Chonyi 4 11-10-00 27-10-00 516 Before short rains 

Chonyi 5 19-03-01 28-03-01 528 Before long rains 

Chonyi 6 11-06-01 16-06-01 515 During rains 

Junju 1 11-05-07 23-05-07 339 Before long rains 

Junju 2 11-08-07 22-08-07 364 In the dry season 

Junju 3 12-11-07 19-11-07 360 Before short rains 

Junju 4 04-02-08 07-02-08 340 Before long rains 

Junju 5 05-05-08 13-05-08 346 Before long rains 

Junju 6 27-04-09 14-05-09 361 Before long rains 

Junju 7 11-05-10 21-05-10 377 Before long rains 

Junju 8 16-05-11 24-05-11 377 Before long rains 

Junju 9 11-04-12 20-04-12 400 Before long rains 

Junju 10 02-04-13 17-04-13 411 Before long rains 

Junju 11 28-04-14 15-05-14 392 Before long rains 

Junju 12 13-04-15 27-04-15 378 Before long rains 

Junju 13 14-03-16 24-03-16 316 Before long rains 
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3.4.5 Laboratory investigations 

Blood films, both thick and thin, were taken from all study participants at the cross-

sectional surveys and for participants presenting with fever during the weekly 

surveillance. For parasitological examination, the thin blood films were fixed with 

100% methanol and stained with 3% Giemsa stain for 45 minutes, while thick films 

were air-dried before staining. Thick films were used for parasite counts unless more 

than 25 parasites were observed per high powered field then the thin film was used. If 

the full blood count was available, this was used to estimate the final parasitaemia. If 

not, a WBC count of 8 × 109 per litre or an RBC count of 5 × 1012 per litre was used. 

In a comparison between the use of full or estimated blood counts, no significant 

difference in parasitaemia estimated using either method was found450. One hundred 

high-powered fields of a thick film were read before confirming that no parasites were 

present. The microscopy protocol was designed to assess asexual parasitaemia 

primarily, and hence gametocytes were counted when observed during assessment for 

asexual parasitaemia. Therefore, the number of fields observed where gametocytes 

might be detected varied according to the asexual parasitaemia.  

Two independent readers determined the parasite counts with discrepant readings 

resolved by a third reader. Over the study period, quality assurance involved 

comprehensive microscopy training as well as the use of internal and external quality 

control measures. Internal quality control involved using a subset of slides randomly 

selected each quarter for reassessment. Concordance between the two readings was 

then evaluated. The external quality control varied over the study period. Initially, 

reference blood films obtained from a partner lab in the United Kingdom were used 

to assess the proficiency of the microscopists. Currently, external quality control 

involves participating in quarterly evaluations by the National Institute of 

Communicable Diseases (NICD) based in South Africa where 20 slides per survey 

are sent from the NICD to our lab for proficiency testing. 

In addition to parasitaemia, information on sickle cell genotype and α-thalassaemia 

status for a subset of study participants were assessed using previously described 

methods457,458.  
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3.4.6 Case definitions 

Data collected from the weekly follow-up visits was used to determine malaria 

episodes as previously described450. Axillary temperature was recorded at each visit 

and where fever was detected, a blood-film was taken for parasite assessment as 

described in 3.4.5. For children under one year of age, a malaria episode was defined 

as a fever with any parasitaemia450. For older children (1 – 15 years of age), a more 

conservative cut-off of fever with a parasite density of ≥2,500 parasites/µl of blood 

was used450. Malaria episodes were considered distinct if they occurred ≥ 28 days after 

the previous episode. A summary of the episodes that were pooled by each cohort is 

provided in 9.3 Appendix 3. The sum of the malaria episodes that occurred in the 

interval between the respective survey (survey x) and the prior survey (survey x-1) 

then formed the number of malaria episodes occurring in the period leading up to each 

survey. The total number of malaria episodes for a survey period was corrected for 

the interval (days) between surveys. 

3.4.7 Statistical analysis 

Spearman’s rank correlation was used to assess the relationship between continuous 

variables. Pairwise proportions tests between age groups were carried out using Chi-

square or Fisher’s exact tests (where sample sizes were below 5) with Bonferroni 

correction for multiple testing. Furthermore, models were fitted to determine the 

factors associated with gametocyte positivity. Initially, Poisson and logistic regression 

models were evaluated before determining the model that best fit the data comparing 

the Akaike information criterion (AIC). Based on the results a logistic regression 

model was chosen for the analysis. Variables used as covariates in the models 

included: asexual parasite positivity, age, year, number of malaria episodes and 

whether the participant had a malaria episode (as defined in 3.4.6), asexual parasite 

positive blood film or gametocyte positive blood film in the prior cross-sectional 

survey. These variables were chosen as they have previously been shown to be 

associated with gametocyte carriage77,459.  Age was converted to a categorical variable 

before inclusion in the model with categories: 0 – 0.5 years, 0.5 – 1 year, 1 – 5 years, 

5 – 9 years 9 – 12 years and 12 – 15 years. The reference age-group chosen was ‘5–9 

years’ as the number of participants in this group was large enough to allow better 

distinction of the associations in other groups.  
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The variables were tested in univariable analysis and were all included in the 

multivariable analysis. No backward or forward selection or minimisation of models 

was carried out. A likelihood-ratio chi-square was used to test whether interaction 

terms incorporated into the models were statistically significant. In order to account 

for repeated sampling of individuals, I calculated robust standard errors with 

clustering allowance. Where observations were missing data on the variables studied, 

they were excluded from the analyses. Multicollinearity of variables included in the 

model was assessed by calculating variance inflation factors (VIF), with a square root 

of VIF > 2 used as a threshold to indicate multicollinearity (9.3 Appendix 3). In order 

to assign statistical significance to measures of association derived from the models, 

a probability value (p) cut-off of 0.05 was used. R statistical analyses software was 

used in all the analyses via RStudio version 1.1.463460. 

3.5 Results 

3.5.1 Demography  

From data collected between 1998 and 2016 at cross-sectional surveys carried out in 

Ngerenya, Chonyi and Junju, a total of 19,580 observations from 2,703 children were 

obtained (Figure 3.3). For 3 participants, complete and accurate registration data was 

missing from the cohort registry, and they were dropped out of the analysis. 

Additionally, 2,817 observations were from participants aged >15 years and were also 

excluded from the analysis. A total of 16,760 observations from 2,223 study 

participants collected over 9,134 person-years of observation were then included in 

the analysis.  

From the weekly surveillance, 624,699 observations were obtained for the follow-up 

period included in this analysis. However, 67,462 observations were from individuals 

aged 15 years and older; hence 557,237 observations were included in the analysis. A 

break-down of the sample selection process is provided in Figure 3.4. Provided in 

Table 3.2 are the demographic characteristics of study participants participating in 

the cross-sectional surveys, while Table 3.3 describes the characteristics of the study 

participants participating in the weekly follow-up visits. There were relatively similar 

numbers of observations from males and females in each cohort, and while the 

percentage of observations from study participants falling in each age-group differed, 
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the majority of the observations came from children aged between 1 – 9 years in each 

cohort. 

 

Figure 3.3: Summary of cross-sectional surveys carried out and malaria drug use per year for 

each cohort. Chloroquine (CQ) – blue lines; Sulphadoxine-Pyrimethamine (SP) – red lines; 

Artemisinin combination therapies (ACT) – green lines. Figure from Muthui et al. (2019)454. 
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Figure 3.4: Flow diagram of the selection of observations from the Kilifi Malaria Longitudinal Cohort (KMLRC). Cross-sectional surveys and weekly follow-up visits 

were carried out on children recruited into the KMLRC. Reasons for exclusion are indicated at each step. Figure from Muthui et al. (2019)454. 

 

Number of observations on study participants = 19,580 
Ngerenya early = 4,975 
Ngerenya late = 5,410 

Chonyi = 4,400 
Junju = 4,795 

Lacked data in the cohort 

register 

Number of observations remaining = 19,577 
Ngerenya early = 4,973 
Ngerenya late = 5,409 

Chonyi = 4,400 
Junju = 4,795 

Number of observations included in analysis = 16,760 
Ngerenya early = 3,636 
Ngerenya late = 5,261  

Chonyi = 3,102 
Junju= 4,761 

Observations were of 

participants at age > 

15yrs 

Number of observations included in analysis = 557,237 
Ngerenya early =85,910 
Ngerenya late = 179,713  

Chonyi = 65,431 
Junju= 226,183 

Number of observations on study participants =624,699 
Ngerenya early = 118,472 
Ngerenya late = 183,183 

Chonyi = 93,514 
Junju = 229,530 

Number of observations on study participants =624,699 
Ngerenya early = 118,472 
Ngerenya late = 183,183 

Chonyi = 93,514 
Junju = 229,530 

Cross-sectional Parasitological Surveys Weekly Follow-up Visits 

n = 3 

n = 2,817 

n = 0  

n = 67,462 
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Table 3.2: Demographic characteristics of the children participating in the cross-sectional surveys 

 
Cohort 

 
Ngerenya Chonyi Junju 

 
Early Late 

  

Total number of observations from study participants 3636 5261 3102 4761 

Number of observations from females (%) 1714 (47.1) 2417 (45.9) 1513 (48.8) 2391 (50.2) 

Person-years of follow-up 882 4164 984 3104 

Number per age group (%) 
    

                                       <0.5 years 151 (4.2) 133 (2.5) 117 (3.8) 77 (1.6) 

 0.5 - 1 year 157 (4.3) 186 (3.5) 152 (4.9) 182 (3.8) 

1 - 5 years 1199 (33.0) 1745 (33.2) 970 (31.2) 1577 (33.1) 

                                       5 -9 years 1078 (29.6) 1900 (36.1) 957 (30.9) 1792 (37.6) 

9-12 years 725 (19.9) 889 (16.9) 598 (19.3) 729 (15.3) 

12-15 years 326 (9.0) 408 (7.8) 308 (9.9) 404 (8.5) 

Number of asexual parasite positive observations (%) 984 (27.1) 199 (3.8) 1183 (38.1) 850 (17.9) 

Number of gametocyte positive observations (%) 164 (4.5) 20 (0.4) 142 (4.6) 38 (0.8) 

Number of malaria episodes* 899 419 530 2941 

Missing data (%) 
    

            Gametocyte density 0 47(0.9) 0 71 (1.5) 

                   Asexual parasite density 0 34(0.6) 0 69 (1.4) 

Temperature 432 (11.9) 22 (0.4) 21 (0.7) 0 

*Malaria episodes calculated from the weekly follow-up data for study participants with complete data on gametocyte density (summaries of the other data, except for 

gametocyte prevalence, include individuals with missing gametocyte data). 
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Table 3.3: Demographic characteristics of the children participating in the weekly follow-up visits 

 
Cohort 

 
Ngerenya Chonyi Junju 

  early late 
  

Total number of observations from study participants 85910 179713 65431 226183 

Number of observations from females (%) 41011 (47.7) 82995 (46.2) 31780 (48.6) 113122 (50.0) 

Number per age group (%) 
    

                   <0.5 years 3612 (4.2) 5032 (2.8) 2714 (4.1) 4968 (2.2) 

                   0.5 - 1 year 3818 (4.4) 6326 (3.5) 2937 (4.5) 7497 (3.3) 

                   1 - 5 years 29211 (34.0) 57704 (32.1) 20434 (31.2) 76800 (34.0) 

                   5 -9 years 25393 (29.6) 63612 (35.4) 20074 (30.7) 76496 (33.8) 

                   9-12 years 16577 (19.3) 32156 (17.9) 12693 (19.4) 37452 (16.6) 

                   12-15 years 7299 (8.5) 14883 (8.3) 6579 (10.1) 22970 (10.2) 

Number of asexual parasite positive observations (%) 4114 (4.8) 1072 (0.6) 3015 (4.6) 5900 (2.6) 

Number of gametocyte positive observations (%) 179 (0.2) 73 (0.04) 180 (0.3) 69 (0.03) 

Number of malaria episodes  1055 349 605 3493 
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3.5.2 Parasite prevalence over time 

I analysed the variation in the proportion of study participants with a parasite-positive 

blood film (asexual parasites or gametocytes) over the follow-up period included in 

this study (Figure 3.2). For all the three cohorts, gametocyte prevalence was much 

lower than asexual parasite prevalence. There was a general trend toward decreased 

parasite prevalence over time in all cohorts (Spearman’s rank correlation ρ = 0.78, p 

< 0.0001). An analysis by cohort, also indicated a decrease in parasite prevalence in 

Ngerenya Late (ρ = 0.8, p = 0.0003) however, the temporal variation was random in 

Junju (ρ = -0.04, p = 0.9). An analysis in Ngerenya early and Chonyi cohorts is 

hampered as there are few data points to allow for a robust analysis. 

3.5.3 Parasite density over time 

In Ngerenya early, asexual parasite densities did not significantly differ over time (ρ 

= -0.05, p = 0.09,  Figure 3.5). The relatively constant asexual parasite density was 

also mirrored in Ngerenya late (ρ = -0.02, p = 0.79), though from 2005 far fewer cases 

where detected owing to the decline in malaria transmission in the area. In Junju, 

asexual parasite densities declined marginally over time (ρ = -0.09, p = 0.006). 

Similarly, there was a slight decline in asexual parasite densities in Chonyi (ρ = -0.10, 

p = 0.001), but overall, the parasite density remained high throughout follow-up.  No 

variation in gametocyte densities over time was observed in all the cohorts (Figure 

3.6). However, the number of individuals contributing to this was small, thus making 

it difficult to draw a definite conclusion.  
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Figure 3.5: Variation in asexual parasite densities in Ngerenya, Chonyi and Junju cohorts over 

time. Scatter plots showing the temporal fluctuation of asexual parasite densities for each of the 

cohorts. (A) Ngerenya early, (B) Chonyi, (C) Junju and (D) Ngerenya late. Regression analysis 

(Locally weighted Scatterplot Smoothing (LOESS) smoothing) was used to generate the data (means 

– blue line; and confidence intervals – shaded grey area) used to plot the smooth line through the 

scatterplot to analyse the trend in density over time. Spearman’s rank correlation coefficients and 

associated p – values are also shown on the graph.  
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Figure 3.6: Variation in gametocyte densities in Ngerenya, Chonyi and Junju cohorts over time. 

Scatter plots showing the temporal fluctuation of gametocyte densities over time. (A) Ngerenya early, 

(B) Chonyi, (C) Junju and (D) Ngerenya late. For Ngerenya late, the x-axis is truncated after 2007 as 

there were no more microscopically detected gametocytes recorded. Regression analysis (Locally 

weighted Scatterplot Smoothing (LOESS) smoothing) was used to generate the data (means – blue line; 

and confidence intervals – shaded grey area) used to plot the smooth line through the scatterplot to 

analyse the trend in density over time. Spearman’s rank correlation coefficients and associated p – 

values are also shown on the graph. 

 

3.5.4 Age and parasite prevalence 

I further examined the effect of age on the proportion of parasite-positive observations 

(Figure 3.7). In all four cohorts, asexual parasitaemia increased with age until about 

nine years of age (p<0.05, pairwise comparison of proportions with Bonferroni 

correction for multiple testing). No significant differences in parasite prevalence were 

observed among the 5 – 9-year, 9 – 12-year and 12 – 15-year age groups for all cohorts 

but Ngerenya late. For Ngerenya late there was a significant decline in asexual parasite 

prevalence in the older age groups compared to the 5 – 9-year age group (5 -9-year 

vs. 9 – 12-year, p<0.0001 and 9 – 12-year vs 12 – 15year, p<0.0001). The proportion 

with gametocytaemia was much lower than that of asexual parasitaemia (particularly 
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in Junju cohort). There were no statistically significant differences in the gametocyte 

prevalence between the age groups for Chonyi, Junju and Ngerenya late.  For 

Ngerenya early, gametocyte prevalence was higher in the 1 – 5-year age groups in 

comparison to the 9 – 12-year (p = 0.0002) and 12 – 15-year (p = 0.005) age groups.   
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Figure 3.7: Parasite prevalence by age. Line graphs showing the variation prevalence of asexual parasitaemia and gametocytaemia in the different age groups (0 – 0.5 years, 

0.5 – 1 year, 1 – 5 years, 5 – 9 years, 9 – 12 years and 12 – 15 years) in (A) Ngerenya early, (B) Chonyi, (C) Junju and (D) Ngerenya late. The error bars indicate 95% confidence 

intervals. Figure from Muthui et al. (2019)454.
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3.5.5 Distribution of parasite prevalence 

I analysed the distribution of the number of parasite positive events per study 

participant in each of the cohorts. First, the number of blood films taken per participant 

was determined, then the most frequent ‘number of blood films per participant’ was 

determined for each cohort. The analysis was then limited to individuals who had had 

the same number of blood films taken (determined separately for each cohort) to avoid 

potential bias. I then fitted predicted frequencies for a binomial distribution over the 

distribution of asexual parasite and gametocyte positive events. What was evident was 

that the distribution of asexual parasite positive events did not appear to follow a 

binomial distribution (Figure 3.8), while that of gametocyte positive events was 

approximately binomial (Figure 3.9). The distribution of asexual parasite positive 

was likely due to a higher than predicted number of individuals presenting with 

multiple asexual parasite positive events. 

 

Figure 3.8: Distribution of individuals with multiple instances of asexual parasitaemia. Bar plots 

showing the proportion of individuals positive for asexual parasites. This was restricted to individuals 

who had the same number of blood films taken, and the blood film number with the highest frequency. 

(A) Ngerenya early, (B) Chonyi, (C) Junju and (D) Ngerenya late. The solid line indicates expected 

values for a binomial distribution. Figure from Muthui et al. (2019)454. 
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Figure 3.9: Distribution of individuals with multiple instances of gametocytaemia. Bar plots 

showing the proportion of individuals positive for gametocytes. This was restricted to individuals who 

had the same number of blood films taken, and the blood film number with the highest frequency. (A) 

Ngerenya early, (B) Chonyi, (C) Junju and (D) Ngerenya late. The solid line indicates expected values 

for a binomial distribution. Figure from Muthui et al. (2019)454.   

 

3.5.6 Factors predicting gametocyte positivity 

3.5.6.1 Overall analysis 

To understand the association between the various variables and gametocyte 

positivity, I fitted models to predict gametocyte positivity. The covariates used were 

asexual parasite density, age, year, number of malaria episodes and whether an 

individual was gametocyte positive, asexual parasite positive, or had a malaria episode 

during the previous survey. Two count models, Poisson and logistic regression models 

were evaluated and, based on the lower AIC value, the logistic regression model was 

considered a better fit for the data. I also compared models that included asexual 

parasitaemia as a binary variable (positive (1) versus negative (0)) and as a continuous 

variable and found that using asexual parasitaemia as a binary variable better fit the 

data. 

From the univariable analysis, asexual parasite positivity, number of malaria episodes 

and being gametocyte or asexual parasite positive during the previous year were 

associated with increased odds of being gametocyte positive, and this was statistically 

significant (p < 0.05) (Table 3.4). Relative to Chonyi (a high transmission setting), 
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residing in Junju (moderate transmission setting) or Ngerenya late (low transmission 

setting) was associated with lower odds of being gametocyte positive. With age, being 

between 0 – 5 years of age was associated with increased odds of gametocyte 

positivity relative to the 5 – 9-year age group. However, being older (9 – 15 age 

groups) was associated with decreased odds of being gametocyte positive. These 

associations were statistically significant for all but the 0 – 0.5-year age group. 

In the multivariable analysis, asexual parasite positivity, age, transmission setting and 

being gametocyte positive in the prior survey remained strong independent predictors 

of gametocyte positivity. Being asexual parasite positive was associated with an 

approximately five-fold increase in odds of gametocyte positivity (95% CI: 3. 34 – 6. 

22, p <0.0001). For age, being between 0.5 – 1 year as well as 1 – 5 years was 

associated with increased odds of gametocyte positivity (2. 21-fold (95% CI: 1.21 – 

4. 04, p = 0. 01) and 1. 7-fold (95% CI: 1. 26 – 2. 29, p = 0.0005) respectively). 

Relative to Chonyi, residing in Junju was associated with 76% decreased odds of 

gametocyte positivity (95% CI: 84% – 63%, p <0.0001) while residing in Ngerenya 

during the period of low transmission was associated with 80% decreased odds of 

gametocyte positivity (95% CI: 89% – 66%, p <0.0001). Having a malaria episode 

was associated with a 1. 21-fold increased odds of gametocyte positivity (95% CI: 

1.13 – 1. 29-fold, p <0.0001) while being gametocyte positive in the prior survey 

associated with a 2-fold increase in odds of gametocyte positivity (95% CI: 1.22, 3. 

18-fold, p = 0.005). Being asexual parasite positive at the previous survey was no 

longer predictive in the multivariable analysis and hence may only impact 

gametocytaemia through its relationship with repeated parasite positivity. 
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Table 3.4: Logistic regression model predicting gametocyte positivity 

  Univariable Analysis Multivariable Analysis 

Covariate Odds ratio 95% CI p value Odds ratio 95% CI p value 

Asexual parasite positive 6.70 5.38, 8.34 <0.0001 4.56 3.34, 6.22 <0.0001 

Age group    
   

5 - 9 years 1.00 . . 1.00 . . 

0 - 0.5 years 0.53 0.22, 1.31 0.1683 1.62 0.37, 7.01 0.5197 

0.5 - 1 year 1.21 0.71, 2.08 0.4842 2.21 1.21, 4.04 0.0100 

1 - 5 years 1.44 1.12, 1.85 0.0041 1.70 1.26, 2.29 0.0005 

9 -12 years 0.62 0.43, 0.90 0.0293 0.63 0.42, 0.95 0.0295 

12 - 15 years 0.55 0.32, 0.94 0.0118 0.69 0.38, 1.26 0.2251 

Cohort    
   

Chonyi 1.00 . . 1.00 . . 

Junju 0.17 0.12, 0.25 <0.0001 0.24 0.16, 0.37 <0.0001 

Ngerenya early 0.98 0.77, 1.25 0.8991 1.16 0.87, 1.54 0.3210 

Ngerenya late 0.08 0.05, 0.13 <0.0001 0.20 0.11, 0.34 <0.0001 

No. of malaria episodesⁱ 1.31 1.23, 1.38 <0.0001 1.21 1.13, 1.29 <0.0001 

Malaria episodes in the prior survey 1.04 0.89, 1.21 0.6268 0.89 0.71, 1.11 0.2974 

Gametocyte positive in the prior survey 4.58 2.95, 7.13 <0.0001 1.97 1.22, 3.18 0.0053 

Asexual parasite positive in the prior survey 2.16 1.68, 2.80 <0.0001 0.86 0.64, 1.15 0.3171 

i Number of malaria episodes – the sum of the number of malaria episodes occurring in the period leading up to a cross-sectional survey (corrected for the interval between 

days).  

P values in bold are statistically significant (<0.05). 

CI – confidence interval.  
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I then also explored the possible predictors of gametocyte positivity in a subset of 

individuals who were positive for asexual parasites (Table 3.5). A summary of study 

participants positive for either asexual parasites or gametocytes or both is presented 

in 9.3 Appendix 3. Unlike in the overall analysis (Table 3.4), previous survey 

positivity for asexual parasites was associated with a decreased odds of gametocyte 

positivity in the univariable analysis. While this could relate to individuals with 

repeated parasite positivity having better developed natural immunity to malaria, the 

association is no longer evident in the multivariable analysis. Again, previous survey 

positivity may not independently predict gametocyte carriage.  

Like the overall analysis, participants under the age of five, having a malaria episode 

as well as being gametocyte positive in the prior survey, were associated with 

increased odds of gametocyte positivity. For cohort, residing in Junju was associated 

with reduced odds of being gametocyte positive; however, Ngerenya late cohort was 

no longer associated with reduced odds of gametocytaemia. This could indicate that 

factors unrelated to asexual parasite prevalence influenced gametocyte positivity in 

Junju. 
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Table 3.5: Logistic regression model predicting gametocyte positivity in individuals positive for asexual parasites 

Covariate Univariable analysis Multivariable analysis 

Odds ratio 95% CI p value Odds ratio 95% CI p value 

Age group 
      

5 - 9 years 1.00 . . 1.00 . . 

0 - 0.5 years 2.26 0.66, 7.76 0.1961 N/A N/A N/A 

0.5 - 1 year 5.60 2.80, 11.20 <0.0001 6.54 2.76, 15.51 <0.0001 

1 - 5 years 2.34 1.68, 3.26 <0.0001 2.43 1.65, 3.57 <0.0001 

9 -12 years 0.77 0.50, 1.18 0.2312 0.84 0.5, 1.42 0.5103 

12 - 15 years 0.34 0.15, 0.80 0.0131 0.45 0.17, 1.16 0.0969 

Cohort  
      

Chonyi 1.00 . . 1.00 . . 

Junju 0.46 0.30, 0.71 0.0004 0.50 0.31, 0.81 0.0044 

Ngerenya early 1.16 0.84, 1.60 0.3559 1.17 0.79, 1.74 0.4413 

Ngerenya late 0.78 0.40, 1.53 0.4726 0.77 0.4, 1.51 0.4552 

Number of malaria episodesⁱ 1.17 1.08, 1.27 0.0001 1.10 1.01, 1.21 0.0246 

Number of malaria episodes in the prior survey 0.99 0.77, 1.26 0.9086 0.82 0.6, 1.1 0.1843 

Gametocyte positive in the prior survey 2.98 1.73, 5.15 <0.0001 2.28 1.27, 4.1 0.0058 

Asexual parasite positive in the prior survey 0.69 0.49, 0.96 0.0284 0.72 0.51, 1.02 0.0671 

i Number of malaria episodes – the sum of the number of malaria episodes occurring in the period leading up to a cross-sectional survey (corrected for the interval between 

days).  

P values in bold are statistically significant (<0.05). 

CI – confidence interval.  

N/A – sample size insufficient for analysis. 
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3.5.6.2 Impact of malaria episodes on gametocyte carriage 

The interaction between malaria episodes and cohort was assessed to understand the 

relationship between the two variables (Table 3.6). Associations similar to the main 

analysis (Table 3.4) were observed. Asexual parasite positivity, participants under the 

age of five, having a malaria episode as well as being gametocyte positive in the prior 

survey, were associated with increased odds of gametocyte positivity.  

A likelihood-ratio chi-square test indicated a significant interaction between cohort 

and malaria episodes (p = 0.007). For the univariable analysis, in both Junju and 

Ngerenya late there appeared to be a significant variation in the association between 

the number of malaria episodes and the odds of gametocytaemia (Junju: 43% 

decreased odds (95% CI: 63% – 11%, p = 0.01) and Ngerenya late: 1.8-fold increased 

odds (95% CI: 1.35 – 2.33, p<0.0001). However, after adjusting for the other variables 

in the multivariable analysis, no strong associations were seen between the cohorts 

and the number of malaria episodes. Additionally, as there seemed to be a stronger 

association between asexual parasite positivity and increased odds of gametocyte 

carriage in Junju and Ngerenya late, I tested the interaction between asexual 

parasitaemia and cohort. A significant interaction between cohort and asexual parasite 

positivity was also observed (p <0.0001). Relative to Chonyi, there was an observed 

increased odds of gametocyte positivity with asexual parasite positivity only in Junju 

(p = 0.0005) and Ngerenya late (p = 0.001).  
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Table 3.6: Logistic regression model predicting gametocyte positivity with interaction analysis 

Covariate Univariable analysis Multivariable analysis 

Odds ratio 95% CI p value  Odds ratio 95% CI p value  

Asexual parasite positive 6.70 5.38, 8.34 <0.0001  3.16 2.03, 4.91 <0.0001  

Age group    
   

5–9 years 1.00 . . 1.00 . . 

0–0.5 years 0.53 0.22, 1.31 0.1683 1.51 0.36, 6.31 0.568 

0.5–1 year 1.21 0.71, 2.08 0.4842 2.12 1.16, 3.86 0.0142 

1–5 years 1.44 1.12, 1.85 0.0041  1.69 1.25, 2.28 0.0006 

9–12 years 0.62 0.43, 0.90 0.0293  0.67 0.44, 1.01 0.0584 

12–15 years 0.55 0.32, 0.94 0.0118  0.71 0.39, 1.3 0.2701 

Cohort    
   

Chonyi 1.00 . . 1.00 . . 

Junju 0.17 0.12, 0.25 <0.0001  0.11 0.05, 0.26 <0.0001  

Ngerenya early 0.98 0.77, 1.25 0.8991 1 0.66, 1.53 0.9871 

Ngerenya late 0.08 0.05, 0.13 <0.0001  0.07 0.03, 0.13 <0.0001  

Number of malaria episodesi  1.31 1.23, 1.38 <0.0001 1.2 1.07, 1.36 0.0027 

Number of malaria episodes in the prior 

survey 

1.04 0.89, 1.21 0.6268 0.91 0.72, 1.14 0.3964 

Gametocyte positive in the prior survey 4.58 2.95, 7.13 <0.0001 1.94 1.21, 3.1 0.0056 

Asexual parasite positive in the prior survey 2.16 1.68, 2.80 <0.0001  0.82 0.62, 1.09 0.1673 

Asexual parasite positive: Chonyi 1.00 . . 1.00 . . 

Asexual parasite positive: Junju 7.02 2.84, 17.37 <0.0001  5.25 2.05, 13.45 0.0006 

Asexual parasite positive: Ngerenya early 1.07 0.66, 1.73 0.3557 0.99 0.56, 1.75 0.9728 

Asexual parasite positive: Ngerenya late 13.66 5.00, 37.31 <0.0001  8.74 2.34, 32.68 0.0013 

Chonyi: Number of malaria episodes 1.00 . . 1.00 . . 

Junju: Number of malaria episodes 0.57 0.37, 0.89 0.0123 0.67 0.45, 1.02 0.059 
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Covariate Univariable analysis Multivariable analysis 

Odds ratio 95% CI p value  Odds ratio 95% CI p value  

Ngerenya early: Number of malaria episodes 1.01 0.89, 1.15 0.8206 1.09 0.94, 1.27 0.2515 

Ngerenya late: Number of malaria episodes 1.77 1.35, 2.33 <0.0001  1.35 0.8, 2.29 0.2591 

i The sum of the number of malaria episodes occurring in the period leading up to a cross-sectional survey (corrected for the interval between days). 

P values in bold are statistically significant (<0.05). 

CI – confidence interval. 
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Noting the possibility of an interaction between cohort and malaria episodes, and the 

difference in follow-up period among the cohorts, the impact of drug regimen on 

gametocyte positivity was also investigated. For this, the dataset was divided into two 

time-periods based on ACT introduction: before 2006 and after 2006. Post-ACT 

introduction, there was a sharp drop in gametocyte prevalence, dropping from 

approximately 4% to 0.5% (Figure 3.10). The impact of the drug regimen was further 

tested in logistic models, considering only malaria episodes that only occurred within 

28 days prior to a cross-sectional survey.   

In the univariable analysis, associations between the different age groups and 

gametocyte carriage differed from the overall analysis in Table 3.4. However, after 

adjusting for the other variables in the multivariable analysis, the associations 

remained similar to the overall analysis with increased gametocyte carriage in children 

under five years of age. Additionally, similar associations as in the overall analysis 

(Table 3.4) were seen between asexual parasite positivity, malaria episodes and 

gametocyte positivity in the previous survey. The analysis also showed that before 

ACT introduction, before 2006 (Table 3. 7), the number of malaria episodes were 

associated with an increased risk of gametocyte positivity (OR 1. 15, 95% CI: 1. 05 – 

1. 25, p = 0. 003) while recent malaria episodes (episodes occurring within 28 days of 

a cross-sectional survey) were associated with an approximately threefold increased 

risk of gametocyte positivity (95% CI: 1. 5 – 4.52, p = 0.0007).  

In the post-2006 analysis (Table 3.8), only asexual parasite positivity remained 

associated with gametocyte positivity. Furthermore, the number of malaria episodes 

a participant had, and recent malaria episodes, were no longer predictors of 

gametocyte positivity (OR 0.71, 95% CI: 0.44 – 1.15, p = 0.17 and OR 2.1, 95% CI: 

0.19 – 22.64, p = 0.54, respectively). The post-ACT period includes only Junju and 

Ngerenya late cohorts where gametocyte prevalence is markedly low, and this is 

reflected in the lack of associations with the other key predictors identified in previous 

analysis, i.e. age and gametocyte positivity in the previous survey.  
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Figure 3.10: Parasite prevalence in the periods before and after ACT introduction. Bar plots 

showing the proportion of study participants positive for gametocytes or asexual parasites before and 

after the introduction of ACTs. Before ACTs and after ACTs, the prevalence of gametocytaemia was 

4% and 0.5%, while the prevalence of asexual parasitaemia was 27% and 11% respectively. Figure 

from Muthui et al. (2019)454. 
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Table 3.7: Logistic regression model predicting gametocyte positivity before ACT introduction  

Covariate 
Univariable analysis Multivariable analysis 

Odds ratio 95% CI p value Odds ratio 95% CI p value 

Asexual parasite positive 3.93 3.12, 4.95 <0.0001  3.5 2.56, 4.78 <0.0001  

Age group    
   

5–9 years 1.00 . . 1.00 . . 

0–0.5 years 0.37 0.15, 0.91 0.0310  1.55 0.37, 6.44 0.5456 

0.5–1 year 1.06 0.60, 1.87 08350 1.92 1.04, 3.55 0.0363 

1–5 years 1.31 1.00, 1.70 0.0488  1.64 1.19, 2.25 0.0022 

9–12 years 0.72 0.50, 1.06 0.0937 0.74 0.48, 1.14 0.1715 

12–15 years 0.50 0.26, 0.96 0.0359  0.57 0.28, 1.19 0.1345 

Cohort    
   

Chonyi 1.00 . . 1.00 . . 

Ngerenya early 0.98 0.77, 1.25 0.8991 1.1 0.82, 1.46 0.5276 

Ngerenya late 0.20 0.12, 0.32 <0.0001  0.34 0.2, 0.57 0.0001 

Number of malaria episodesi  1.32 1.25, 1.40 <0.0001  1.15 1.05, 1.25 0.0032 

Number of malaria episodes in the prior survey  1.18 0.95, 1.47 0.1353 0.86 0.67, 1.11 0.2462 

Gametocyte positive in the prior survey 2.76 1.75, 4.34 <0.0001  2.03 1.24, 3.32 0.0046 

Asexual parasite positive in the prior survey 1.40 1.07, 1.83 0.0146  0.87 0.64, 1.18 0.3690 

Recent epiode (within 28 days)    

   

No 1.00 . . 1.00 . . 

Yes 5.60 4.03, 7.79 <0.0001  2.6 1.5, 4.52 0.0007 

i The sum of the number of malaria episodes occurring in the period leading up to a cross-sectional survey (corrected for the interval between days).  

P values in bold are statistically significant (<0.05). 

CI – confidence interval.
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Table 3.8: Logistic regression model predicting gametocyte positivity after ACT introduction  

Covariate Univariable analysis Multivariable analysis 

Odds ratio 95% CI p value  Odds ratio 95% CI p value  

Asexual parasite positive 38.60 16.77, 88.81 <0.0001  23.96 7.5, 76.59 <0.0001  

Age group    
   

5–9 years 1.00 . . 1.00 . . 

0–0.5 years N/A N/A N/A N/A N/A N/A 

0.5–1 year 0.74 0.10, 5.56 0.7689 6.41 0.91, 45.04 0.0617 

1–5 years 1.37 0.66, 2.89 0.3944 2.19 0.91, 5.26 0.0795 

9–12 years 0.12 0.02, 0.94 0.0435  0.18 0.02, 1.4 0.1008 

12-15 years 1.18 0.42, 3.26 0.7545 1.61 0.53, 4.87 0.3959 

Cohort    
   

Junju 1.00 . . 1.00 . . 

Ngerenya late 0.04 0.01, 0.28 0.0013  0.16 0.02, 1.66 0.1251 

Number of malaria episodesi  0.93 0.66, 1.30 0.6536 0.71 0.44, 1.15 0.1653 

Number of malaria episodes in the 

prior survey 

1.16 0.83, 1.62 0.3815 1.07 0.69, 1.68 0.7513 

Gametocyte positive in the prior 

survey 

7.58 1.01, 56.90 0.0489  1.84 0.26, 12.87 0.5366 

Asexual parasite positive in the prior 

survey 

3.44 1.58, 7.49 0.0019  0.64 0.27, 1.54 0.3235 

Recent episode (within 28 days)    
   

No 1.00 . . 1.00 . . 

Yes 1.01 0.14, 7.43 0.994 2.1 0.19, 22.64 0.5418 

i The sum of the number of malaria episodes occurring in the period leading up to a cross-sectional survey (corrected for the interval between days).  

P values in bold are statistically significant (<0.05). 

CI – confidence interval. 

N/A - sample size insufficient for analysis
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3.5.6.3 Effect of human genetic factors on gametocyte carriage 

Finally, the impact of host genetic factors on gametocyte positivity was evaluated in 

a subset of asexual parasite positive individuals for whom genotype data was available 

(9.3 Appendix 3). Genetic factors tested were sickle cell status, α-thalassaemia status 

and blood group. Only nine children had sickle cell disease; hence odds ratios are not 

presented. In the analysis, associations between age, cohort, asexual parasite positivity 

in the previous survey and gametocyte positivity in the previous survey were similar 

to associations seen in the analysis limited to the asexual parasite positive individuals 

only (Table 3.5). However, while malaria episodes were similarly associated with 

increased odds of gametocyte positivity in the univariable analysis, no association was 

seen in the multivariable analysis (Table 3.9). Subsetting the dataset likely diminished 

association between malaria episodes and gametocyte carriage. Sickle cell trait did 

not appear associated with gametocyte positivity (OR 1.26, 95% CI: 0.73 – 2.2, p = 0. 

41). Moreover, neither homozygosity (OR 0.60 95% CI: 0.28 – 1.28, p = 0.18) nor 

heterozygosity (OR 1.03, 95% CI: 0.68 – 1.57, p = 0.88) for α-thalassaemia appeared 

associated with gametocyte positivity.  

Analysis was also carried out to evaluate the influence of blood group on gametocyte 

carriage (Table 3.10). This analysis was limited to fewer participants and excluded 

Chonyi cohort. Despite a further reduction in sample size, univariable and 

multivariable associations with age and asexual parasite positivity in the previous 

survey were similar to associations seen in the models limited to individuals typed for 

sickle and α-thalassaemia. However, gametocyte positivity in the previous survey was 

no longer associated with increased odds of gametocyte carriage in the multivariable 

analysis. Relative to Junju cohort, in both the univariable and multivariable analysis, 

Ngerenya early was associated with increased odds of gametocyte carriage while no 

association was seen for Ngerenya late cohort. There was no association between 

blood groups B and O, relative to the AB and A blood groups, with gametocyte 

positivity (OR 1.38, 95% CI 0.56 – 3.42, p = 0.49 and OR 0.93, 95% CI 0.45 – 1.92, 

p = 0.84, respectively). Similarly, no associations between the different genotypes and 

gametocytaemia were observed when sickle cell genotype, α-thalassaemia genotype 

and blood group were tested in the same model (9.3 Appendix 3).    
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Table 3.9: Logistic regression model predicting gametocyte positivity including sickle cell and α-thalassaemia genotype data 

Covariate Univariable analysis Multivariable analysis 

Odds ratio 95% CI p value  Odds ratio 95% CI p value  

       

Age group 
      

5 - 9 years 1.00 . . 1.00 . . 

0 - 0.5 years 1.6 0.20, 12.97 0.6565 N/A N/A N/A 

0.5 - 1 year 4.08 1.68, 9.88 0.0018 4.49 1.33, 15.08 0.0152 

1 - 5 years 2.42 1.62, 3.61 <0.0001 2.32 1.47, 3.66 0.0003 

9 -12 years 0.64 0.35, 1.15 0.1332 0.59 0.29, 1.19 0.1392 

12 - 15 years 0.34 0.12, 0.97 0.0433 0.35 0.1, 1.25 0.1059 

Cohort 
      

Chonyi 1.00 . . 1.00 . . 

Junju 0.45 0.27, 0.77 0.0032 0.44 0.24, 0.8 0.0074 

Ngerenya early 1.32 0.84, 2.07 0.2323 1.17 0.67, 2.05 0.5839 

Ngerenya late 0.79 0.38, 1.63 0.5175 0.63 0.29, 1.36 0.2406 

No. of malaria episodesⁱ 1.19 1.06, 1.33 0.0333 0.99 0.78, 1.25 0.9158 

Number of malaria episodes in the prior survey 0.89 0.64, 1.23 0.4634 0.76 0.51, 1.12 0.1610 

Gametocyte positive in the prior survey 2.95 1.52, 7.73 0.0014 2.24 1.08, 4.65 0.0309 

Asexual parasite positive in the prior survey 0.65 0.43, 0.98 0.0415 0.69 0.44, 1.07 0.0940 

Sickle cell genotype 
      

Normal 1.00 . . 1.00 . . 

Heterozygous 0.95 0.57, 1.59 0.8554 1.26 0.73, 2.2 0.4076 

Homozygous N/A N/A N/A N/A N/A N/A 

α-thalassaemia genotype 
      

Normal 1.00 . . 1.00 . . 

Heterozygous 1.06 0.73, 1.56 0.753 1.03 0.68, 1.57 0.8830 
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Covariate Univariable analysis Multivariable analysis 

Odds ratio 95% CI p value  Odds ratio 95% CI p value  

Homozygous 0.65 0.36, 1.19 0.1611 0.6 0.28, 1.28 0.1837 

i The sum of the number of malaria episodes occurring in the period leading up to a cross-sectional survey (corrected for the interval between days). 

P values in bold are statistically significant (<0.05). 

CI – confidence interval. 

N/A - sample size insufficient for analysis. 
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Table 3.10: Logistic regression model predicting gametocyte positivity including blood group data 

Covariate Univariable Analysis Multivariable Analysis 

Odds ratio 95% CI p value  Odds ratio 95% CI p value  

       

Age group    
  

 

5–9 years 1.00 . . 1.00 . . 

0–0.5 years N/A N/A N/A N/A N/A N/A 

0.5–1 year 10.58 2.53, 44.19 0.0012 5.43 0.64, 45.96 0.1198 

1–5 years 4.42 1.98, 9.84 0.0003 2.77 1.11, 6.91 0.0285 

9–12 years 0.26 0.03, 2.15 0.2111 0.24 0.03, 20 0.1871 

12–15 years 0.95 0.20, 4.48 0.9496 0.84 0.16, 4.33 0.8337 

Cohort 
      

Junju 1.00 . . 1.00 . . 

Ngerenya early 6.66 3.37, 13.16 <0.0001 2.74 1.19, 6.30 0.0175 

Ngerenya late 1.6 0.53, 4.76 0.4017 0.85 0.29, 2.45 0.7579 

Number of malaria episodesi  1.09 0.90, 1.33 0.3743 0.95 0.78, 1.16 0.5967 

Number of malaria episodes in the prior survey 0.88 0.53, 1.46 0.6268 0.81 0.43, 1.51 0.5020 

Gametocyte positive in the prior survey 2.56 0.58, 11.30 0.2135 1.59 0.34, 7.34 0.5548 

Asexual parasite positive in the prior survey 0.45 0.21, 0.96 0.0398 0.55 0.25, 1.22 0.1392 

ABO blood group 
      

A and AB 1.00 . . 1.00 . . 

B 1.95 0.82, 4.66 0.1319 1.38 0.56, 3.42 0.4867 

O 1.08 0.52, 2.24 0.8393 0.93 0.45, 1.92 0.8399 

i The sum of the number of malaria episodes occurring in the period leading up to a cross-sectional survey (corrected for the interval between days). 

P values in bold are statistically significant (<0.05).  

CI – confidence interval. 

N/A - sample size insufficient for analysis. 
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3.6 Discussion 

This analysis aimed to describe the prevalence and distribution of gametocyte carriage 

over time and varied transmission intensities using data collected from a 

longitudinally monitored cohort of children. Additionally, features predictive of 

gametocyte carriage were investigated for use (together with insights gleaned from 

Chapter 2) in further work aimed at analysing the dynamics of naturally acquired 

transmission-blocking immunity (Chapter 5). Three cohorts located in sublocations 

of Kilifi County were used, being: Ngerenya, Chonyi and Junju followed up for 19, 

3, and 12 years respectively. The cohorts represented a low to moderate transmission 

setting (Ngerenya), a moderate (Junju) and a high transmission setting (Chonyi). 

During the 19-year period of follow up, Ngerenya transitioned from a moderate 

transmission setting to a low transmission setting. I thus subdivided Ngerenya into 

two cohorts for the analysis: Ngerenya early (moderate to high transmission – 1998 

to 2001) and Ngerenya late (low transmission – 2002 to 2016), giving a total of four 

cohorts that were eventually used in the analysis. 

Parasite prevalence (both gametocytaemia and asexual parasitaemia) appeared to 

decrease over time in Ngerenya early, Chonyi, and Ngerenya late cohorts. The 

apparent decrease was in line with reports of declining malaria transmission along the 

Kenyan coast since 1998158,461. These studies analysed parasite prevalence and 

paediatric malaria admissions in the region over time. The decline in parasite 

prevalence in the KMLC could be attributed to 1) participation in ITN distribution 

campaigns from as early as 1993 and 1994, that continued in 2004 (maternal and child 

welfare clinics), 2006 (first door-to-door campaigns), and 2012 (large-scale 

community distribution of ITNs), 2) participation in the longitudinal cohort that 

allowed participants to benefit from better and prompt management of clinical 

disease, and 3) The change from CQ and SP, following the emergence of drug 

resistance, to ACTs as first-line therapy for the treatment of malaria. 

Despite this overall decline, there was evidence of a resurgence in malaria on the 

Kenyan coast following the dip in 2009-10158,461. In contrast to Ngerenya and Chonyi, 

parasite prevalence remained mostly constant in Junju, indicating sustained 

transmission. Malaria hotspots contribute to heterogeneity in transmission431, and this 
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is evident in the KMLRC where transmission intensity remains high in Junju despite 

declining to almost non-existent levels in Ngerenya.  

National treatment guidelines for malaria in Kenya recommended CQ use between 

1970 to 1999 before SP introduction. SP was then in use until late in 2006 before 

eventual replacement by ACTs. In Chonyi and Ngerenya early, treatment of malaria 

was with CQ and SP461, both of which have been associated with increased post-

treatment gametocyte carriage67,436,437. Conversely, in Junju the antimalarial in use for 

the period included in this study was ACTs, particularly artemether-lumefantrine. 

Artemether-lumefantrine has been described to reduce gametocyte carriage post-

treatment13,77,104. ACT use may thus explain both the markedly low gametocyte 

prevalence in Junju and also explain the lack of association between prior clinical 

episodes of malaria and gametocytaemia as observed in the pre-and post-ACT 

analysis.  

The use of antimalarials in mass drug administration programmes is suggested as a 

tool for malaria control and has proven efficacious in reducing transmission 

intensity110–112. From this analysis, it appeared that the use of ACTs to treat clinical 

episodes of malaria was associated with a substantial, cohort-wide reduction in 

gametocyte carriage. Similar findings have been reported in studies analysing post-

treatment gametocyte carriage462–464. The impact of ACTs on gametocytaemia in this 

study is further supported by the disrupted association between malaria and 

gametocyte carriage post-ACT introduction (Table 3.8).  

Unfortunately, monitoring data from the Chonyi cohort is available pre-ACT 

introduction and post-ACT introduction for the Junju limiting the pre-and post-ACT 

introduction analysis. Further investigation would be required to confirm this finding.  

Additionally, though monitoring data from Ngerenya cohort is available from 1998 to 

2016, parasite prevalence is uncommon after 2006. Nonetheless, Junju and Chonyi 

sublocations are in proximity to each other (Figure 3.1) with residents of a similar 

background451, and thus it is likely that similar malaria parasite populations circulate 

due to the constrained geographical space430. For this reason, it would seem more 

likely that ACT use explains the changing epidemiology of gametocyte prevalence 

rather than ecological differences between the settings. 
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Aside from the association observed between malaria episodes and gametocyte 

carriage, asexual parasitaemia and age also appeared predictive of gametocyte 

carriage. Consistent with other studies, gametocyte carriage appeared higher in 

children under five years of age than in the older children as seen in the higher 

transmission settings  (Ngerenya early and Chonyi) where gametocyte prevalence was 

highest67–70,459,465. Consistent with the literature, a higher likelihood of 

gametocytaemia was observed with concurrent asexual parasitaemia in this 

analysis77,459,465. Interestingly, gametocyte carriage was more strongly associated with 

asexual parasite positivity at lower transmission intensities (Junju and Ngerenya late) 

in comparison to higher transmission intensities (Ngerenya early and Chonyi). 

Presence of gametocytes in the absence of microscopically-detectable asexual 

parasites may indicate sub-patent asexual parasitaemia466. This could be explained by 

the fact that slower acquisition of immunity to malaria in low transmission settings467 

would predispose individuals to high-density asexual parasitaemia. High parasite 

densities have been linked to a higher likelihood of gametocytaemia77,459,465. 

Furthermore, the predictive models showed an indication for certain individuals being 

at a higher risk of gametocyte carriage. Being gametocyte-positive in the prior survey 

predisposed a subject to gametocyte carriage in the current survey. From their study 

in Senegal, Grange et al. (2015) described hotspots of gametocyte carriage that were 

associated with active malaria transmission68. ‘Gametocyte hotspots’ could exist in 

the cohorts under study for this analysis. Studies on the distribution of asymptomatic 

asexual parasitaemia as well as clinical malaria cases indicate that certain individuals 

are at a greater risk of [re-]infection129,433,468–471. As gametocytes develop from 

asexual progenitors, it would follow that such individuals may also be predisposed to 

gametocyte carriage.  However, as such individuals may harbour gametocytes at 

submicroscopic levels, spatiotemporal analysis combined with molecular parasite 

detection would be required to interrogate the existence of ‘gametocyte hotspots’. 

There has been evidence to suggest that genetic polymorphisms that protect against 

severe malaria, such as blood group B and O status and sickle cell trait, are associated 

with an increased likelihood of gametocytaemia68,79–81,472. On the other hand, a precise 

mechanism that triggers increased gametocyte production in non-B and O blood 

groups has not yet been defined. In this analysis, however, there was no evidence for 

an increased likelihood of gametocyte carriage in study participants with sickle cell 
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or α-thalassemia traits or B and O blood groups. Lamptey et al. (2019) similarly found 

no association between α-thalassemia trait and an increased likelihood of gametocyte 

carriage473. Further investigations into the role of human genetic polymorphisms in 

influencing gametocytaemia are therefore warranted.  

3.6.1 Limitations 

One limitation of this study is that parasite detection was by microscopy hence not 

accounting for sub-microscopic infections. Sub-microscopic gametocytaemia is an 

essential contributor to the infectious reservoir in malaria-endemic areas72,474. 

Goncalves et al. (2017) showed that a substantial proportion of mosquito infections, 

between 45-75%, are attributable to sub-patent gametocyte carriage72. Furthermore, 

this study72, as well as other studies employing molecular parasite detection 

methods444,445, demonstrated that parasite prevalence was highest in 5 – 15-year olds. 

Continued parasite exposure, as well as a more developed immune system, may have 

aided the development of anti-parasite immunity in these older children allowing them 

to control parasite densities to below the threshold detectable microscopically. 

Therefore, interventions aimed at reducing transmission may need to target a broad 

range of age groups to be successful. Additionally, to better capture the infectious 

reservoir, epidemiological studies need to employ research-grade microscopy or 

molecular parasite detection techniques such as quantitative PCR475. 

Another limitation of this analysis is the indirect assessment of gametocyte carriage 

as the microscopy protocol was mainly for evaluating asexual parasite carriage. 

Consequently, there were more fields examined in blood films where asexual parasites 

were absent, potentially increasing the chances of detecting gametocytes. The 

opposite was observed, however, with more gametocytes detected in blood films with 

asexual parasites. Additionally, the cohorts employed the same microscopy protocol 

over time and noted associations with gametocytaemia consistent with the literature 

were observed despite accounting for asexual parasitaemia in the multivariable 

models. Therefore, the microscopy protocol used did not appear to confound the 

associations seen between various covariates and gametocytaemia. 

3.6.2 Summary of overall findings 

These analyses confirm concurrent asexual parasitaemia, age, transmission intensity 

and prior episodes of clinical malaria as important predictors of microscopically 
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detectable gametocytaemia. By using three different longitudinal cohorts with a range 

of transmission intensities, the data confirm the independence and interaction of these 

factors, making them useful prognostic indicators of transmission that could be used 

to target transmission-blocking interventions. However, to refine our understanding 

of the infectious reservoir, epidemiological studies need to employ sensitive parasite 

detection methods and incorporate assays to measure infectiousness in all age groups 

across different transmission settings. 

A notable finding from these analyses is that the use of ACTs for the treatment of 

febrile malaria in this cohort of children may have impacted gametocyte carriage. This 

possibly led to a disruption of the link between malaria episodes and post-treatment 

gametocyte carriage. While this finding requires further investigation, it could provide 

preliminary data to support a role for ACTs in reducing malaria transmission.  
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Chapter 4  

Identification and production of Plasmodium gametocyte, 

gamete and ookinete antigens 

4.1 Introduction 

The development of high-throughput technologies has ushered in the “omics era” 

generating a vast amount of biological information. Information on the entire genetic 

sequence of organisms (genomics), transcriptional profiles (transcriptomics), as well 

as protein expression profiles (proteomics), provides a particularly useful resource for 

drug or vaccine candidates discovery476. In particular, studies analysing genetic 

variation355 as well as stage-specific transcription477,478 and proteome profiles334,361,479 

over the parasite's lifecycle can provide a wealth of data to inform rational vaccine 

design. Data from such analyses is now publicly available and provides useful criteria 

for the identification and down-selection of promising vaccine candidates.  

Proteomic analyses of the sexual stages have identified several proteins expressed 

during development within the human host359–361 and the anopheline vector362. Using 

proteomic data, Stone et al. (2018) identified novel TBV candidates, supporting the 

use of this approach to reveal new targets for TBV development74. To rapidly 

synthesize and evaluate their antigens, the authors used an E. Coli in-vitro transcription 

and translation (IVTT) system to produce protein fragments of their target antigens. The 

limitation of this approach is that the IVTT system is typically unable to produce complex 

proteins in their native conformation. This could result in false negatives during screening 

for transmission-blocking potential. Additionally, the authors expressed only fragments 

rather than the full-length proteins which potentially restricts the number of epitopes 

displayed.  

P. falciparum proteins are notoriously difficult to produce in heterologous systems480,481 

because of the A+T rich genome, comprising low complexity regions of homopolymeric 

or heteropolymeric repeats482–484, and the relatively large size of the proteins485. This is 

exemplified by extensive efforts to produce correctly folded recombinant Pfs230 protein. 

Pfs230 is a cysteine-domain rich protein whose intricate disulphide-bonding pattern 

yields a complex tertiary structure 486,487 refractory to full-length synthesis. For this 

reason, various expression platforms have been evaluated to produce P. falciparum 

proteins for vaccine candidate discovery. These have ranged from bacterial expression 
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systems (E. coli480 and Lactococcus lactis415) to eukaryotic systems such as the 

baculovirus480, mammalian266,488 and plant-based (Nicotiana benthamiana489) expression 

systems. Different expression platforms perform variably with different proteins, and 

hence the evaluation of more than one platform may be required when faced with 

particularly challenging proteins490.  

In this chapter, I sought to identify a set of antigens from the gametocyte, gamete and 

ookinete stages of the parasite for immunoprofiling (chapter 5) and evaluation as potential 

transmission-blocking vaccine candidates (chapter 6). For this, I mined P. falciparum (for 

gametocyte antigens) and P. berghei (for gamete and ookinete antigens) proteomic 

datasets for novel antigens. I down-selected proteins based on commonly used criteria for 

surface expression such as the presence of signal peptides, transmembrane (TM) domains, 

and glycosylphosphatidylinositol (GPI) anchors74,304. Additionally, I explored the 

presence of sequence variation between a reference P. falciparum isolate (3D7) and a 

fully sequenced field isolate (PfKE04) intending to express variants for further analysis. 

I aimed to produce full-length ectodomains of the identified proteins where possible and 

chose to use various heterologous expression platforms, mammalian, wheat germ, and E. 

coli, to maximise the likelihood of success in producing the antigens.  

4.2  Rationale 

In order to capitalise on the vast P. falciparum -omic data available, I sought to 

identify potential vaccine candidates using data from published proteomic 

datasets361,364. To refine the list of antigens, I used publicly available databases, such 

as PlasmoDB and the Rodent Malaria genetically modified Parasites Database 

(RMgmDB), hosting various in silico prediction algorithms to identify features 

predictive of surface localisation and probable antigenicity. For the gamete and 

ookinete antigen selection, antigen selection was based on the rodent parasite P. 

berghei, as it is more amenable to the production of gametes and ookinetes for 

laboratory assays. 

One major obstacle to the development of TBVs for clinical testing from the first 

identified candidate antigens (Pfs230, Pfs48/45 and Pfs25) was the challenge of 

producing appropriately immunogenic full-length recombinant proteins. Therefore, I 

employed three different protein expression systems to increase the chances of 

producing functional recombinant antigens. I used the wheat germ cell-free system 

(WGCFS), the mammalian (human embryonic kidney cell line 293E (HEK293E)) 
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system and a bacterial expression system (Rosetta-gami™). The WGCFS has 

successfully been used to express P. falciparum genes without codon-optimisation, 

producing high yields of correctly folded, soluble protein491. Protein expression 

success rates reported using this system are between 75%492,493 and 95%494. 

Additionally, the system offers a high-throughput, rapid and relatively simple 

procedure for protein production and hence is an ideal starting point to evaluate 

multiple proteins.  

Where proteins did not express in the wheat germ system, I used either the HEK293E 

or Rosetta-gami™ expression platforms. The HEK293E expression platform495 has 

been used to produce gametocyte antigens with a success rate of around 68%304. For 

expression in the HEK293E system, sequences corresponding to the gene of interest 

(GOI) were first codon optimised to overcome the A+T bias of P. falciparum genes, 

and potential N-glycosylation sites were modified to avoid masking of potential 

critical epitopes. Crosnier et al. (2011)485 showed that these approaches could improve 

protein production. Though bacterial expression systems have a reportedly low 

success rate when producing eukaryotic proteins481, optimised bacterial strains have 

been developed to overcome this challenge. I chose the Rosetta-gami™ bacterial 

strain for this work as mutations in the glutaredoxin reductase and thioredoxin 

reductase genes promote disulphide bond formation thereby promoting protein 

folding496,497. Additionally, the bacteria are supplemented with rare tRNAs to 

overcome codon bias during heterologous protein expression. By combining these 

three platforms, I anticipated expressing a minimum of eight antigens from each stage 

(gametocyte and gamete/ookinete stages) for further assays. 

4.3  Objectives 

The main objective was to identify sexual stage antigens with potential as TBV 

candidates and produce them as recombinant protein for further 

immunological (Chapter 5) and functional (Chapter 6) characterisation. 

4.3.1 Specific Objectives 

• Identify potential TBV candidate antigens highly expressed in mature 

gametocyte, gamete, and ookinete stages. 

• Analyse sequence variation in the antigens identified between the reference 

isolate 3D7 and a local field isolate.  
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• Produce protein corresponding to the antigens identified at high enough yield 

for use in vitro and ex vivo assays. 

4.4  Materials and Methods 

4.4.1 Materials 

A summary of commercially available reagents is provided in 9.4 Appendix 4, while 

the recipes for the buffers and solutions used in this study are provided in 9.5 

Appendix 5. 

4.4.2 Antigen identification and prioritisation 

4.4.2.1 Gametocyte antigens 

To identify sexual stage antigens enriched in mature gametocytes that may be targets 

of naturally acquired antibodies, I used a published P. falciparum gametocyte 

proteome dataset from Lasonder et al. (2016)361. The data contained 2,241 proteins 

identified from a mixed culture of P. falciparum male and female gametocytes. A 

shortlist of 430 antigens was selected by enriching the published dataset for proteins 

highly expressed in stage V gametocytes. This was done by selecting a cut-off 

expression value (greater than or equal to 50%) based on the expression values of the 

known TBV antigens, Pfs48/45 (53.3%) and Pfs230 (63.6%) which were considered 

the ‘gold standard’. The data were then sorted by their gene description, and 333 

predicted intracellular proteins were manually filtered out. These included ribosomal 

proteins, intracellular enzymes and transcription factors. The remaining list of 97 

proteins was combined with a list of 16 potential molecular biomarkers of 

gametocytaemia previously identified (Kapulu M, personal communication). These 

potential molecular biomarkers were downselected from a previously identified list 

using mRNA expression data from published datasets363,477,498–501.  

I then searched the 113 gene IDs corresponding to these proteins on PlasmoDB 

(Release 31, 9th March 2017), GeneDB (https://www.genedb.org/), Tropical Diseases 

Research (TDR) Targets Database (Release 5, https://tdrtargets.org/) and the rodent 

malaria genetically modified parasites database (RMgmDB, 

https://www.pberghei.eu/index.php). PlasmoDB is a comprehensive database of 

Plasmodium “genomic, transcriptomic, proteomic and metabolomic data”502 readily 

accessible for data mining. Similarly, GeneDB is a prokaryotic and eukaryotic 

https://www.genedb.org/
https://tdrtargets.org/
https://www.pberghei.eu/index.php
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pathogen database that is manually curated, and for this work provided 

complementary data to PlasmoDB. TDR targets, on the other hand, is an online 

resource that integrates genomic and functional data to provide a platform for the 

identification of pathogen targets for drug or vaccine development503. RMgmDB is a 

database of P. berghei gene knockout studies from across the parasites developmental 

stages504. A description of phenotypes arising from the gene disruption is also 

provided. Information on the presence of signal peptides (SP), transmembrane 

domains ™, GPI anchors, protein export motifs, predicted antigenicity and possible 

evidence for a role in gametocyte/gamete development or fertilisation (based on 

rodent malaria gene disruption studies) was then recorded for each antigen. All 

proteins with a signal peptide were then selected, and a shortlist of 24 candidate 

antigens prioritised for protein production. These proteins were mainly selected for 

not previously being studied, avoiding duplication of effort. One additional novel 

antigen was identified from a conference abstract282 to give a total of 25 proteins. A 

summary of the selection process with the number of proteins identified in each step 

is provided in (Figure 4.1). Pfs230 and Pfs48/45 were included in the list as “gold-

standard” antigens as they are leading gametocyte-expressed TBV candidates. 
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Figure 4.1: Flow diagram showing the selection of candidate gametocyte antigens for study. The 

number of proteins at each step is also indicated.  

⁺Had not been studied as TBV candidates, based on studies in P. falciparum, at the time of the search. 
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4.4.2.2 Gamete and ookinete antigens 

For this objective, the rodent parasite P. berghei was used as it provides a reliable, 

high-throughput, and efficient means to study gametes and ookinetes in vitro. Study 

of these antigenic targets in P. falciparum is comparatively challenging at the desired 

throughput (reviewed in399). I identified genes potentially expressed on the surface of 

gametes and ookinetes by bioinformatic analysis of previously published proteome 

data364. A total of 22 candidate genes were identified, 12 of these were identified from 

the Talman et al. (2014) published proteome of the microgamete364, five were 

identified by bioinformatic prediction of surface localisation (Blagborough A, 

personal communication), and a further five from experimental evidence of surface 

localisation on gametes/ookinetes (Angrisano F, and Blagborough A, personal 

communication). P28 (P. berghei protein in the same gene family as Pfs25) that 

induces potent transmission-blocking antibodies in mouse models323 was also 

included in the list. 

To arrive at the 12 potential antigens, I used data from the proteomic analysis of male 

gametes generated by Talman et al. (2014)364. In their study, Talman et al. carried out 

three biological replicates for their protein identification. Therefore, proteins that were 

only identified in one of the biological replicates run during the experiment were first 

excluded for higher stringency. After this, the proteins were sorted for the presence of 

a signal peptide, to increase the chance of selecting surface-expressed proteins, and 

those without were removed from the list. Proteins predicted to have a signal peptide 

with a score of 0.5 or greater were then included. Known intracellular proteins, known 

gametocyte proteins and well-studied gamete/ookinete proteins were also then taken 

out of the list. Additionally, proteins with a protein score less than that of P28 were 

taken out of the list. Finally, I excluded all proteins with a molecular weight above 

120 kDa from the list as these would potentially be challenging to express505. The 

remaining 40 proteins were then searched on parasite databases for features predictive 

of surface localisation, antigenicity and a role in gamete-to-oocyst formation. Twelve 

that had not been extensively studied were then prioritised for analysis. A summary 

of the process of selection is provided in Figure 4.2. 
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Figure 4.2: Flow diagram showing the selection of candidate gamete and ookinete antigens for 

study. The number of proteins at each step is also indicated. 

*GFP – green fluorescent protein  
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4.4.3 Parasitology 

4.4.3.1 Parasite strains 

P. falciparum parasite strains used for this study were 3D7 (provided by Lydia 

Nyamako, this parasite has been in continuous culture at KWTRP) and the field isolate 

PfKE04 (provided by Dr Abdirahman Abdi). Additionally, P. berghei ANKA strain, 

clone 2.34 was used (parasite in TRIzol® and genomic DNA were provided by Dr 

Andrew Blagborough). 

4.4.3.2 Parasite culture and preparation of RNA and cDNA 

P. falciparum asexual parasites were cultured in complete culture media (9.5 

Appendix 5) in an incubator at conditions of 92% N2, 3% O2, 5% CO2 and set at a 

temperature of 37ºC. The parasites were maintained in culture for three weeks to bulk 

up genetic material. When the cultures reached a minimum of 12% parasitaemia, the 

parasites were harvested by centrifugation at 500 x g for five minutes. Approximately 

200 μl of parasite pellet was resuspended in 1 ml of TRIzol® and stored at -80°C 

awaiting RNA extraction and cDNA synthesis. P. berghei parasite pellets stored in 

TRIzol® (separately prepared from gamete and from ookinete stage parasites) were 

provided by Dr Blagborough. Parasite RNA was extracted using the QIAGEN® 

RNeasy® kit and cDNA prepared using the SuperScript™ III First-Strand Synthesis 

System according to the manufacturer’s instructions. 

4.4.4 Molecular biology and cloning 

Three different expression systems were used for protein expression (the wheat germ 

cell-free, mammalian and bacterial expression systems) and hence different 

expression vectors were used for each of the systems. A summary of the process used 

to create recombinant plasmids for use in each system is provided in Figure 4.3, and 

a detailed description is provided in the text that follows. 
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Figure 4.3: Schema showing the cloning strategies employed to generate recombinant constructs for protein expression. (A) Cloning strategy for generating constructs 

for expression in the wheat germ expression plasmid (pEU-MCS-E01) via sub-cloning into the ZeroBlunt™ TOPO™ ™ PCR vector. (B) Cloning strategy employed to generate 

constructs for use in either the mammalian or the bacterial expression systems. For the mammalian expression system, respective genes were amplified from commercial 

constructs containing codon optimised sequences corresponding to the genes of interest (GOI). For the bacterial expression, the genes were amplified from parasite genetic 

material. Image created using ©BioRender (https://app.biorender.com/). 

https://app.biorender.com/
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4.4.4.1 Wheat germ cell-free expression system (WGCFS) 

4.4.4.1.(a) Construct design 

Protein sequences corresponding to the candidate antigens were obtained from 

PlasmoDB database (Release 31, 9th March 2017) using P. falciparum 3D7 lab strain 

as the reference genome (version 3.0). In addition to 3D7, I obtained corresponding 

gene sequences from a fully sequenced field isolate from Kilifi – PfKE04 – (kindly 

provided by Dr Abdirahman Abdi). I then analysed sequence variation between the 

two isolates and where there was either an insertion/deletion or non-synonymous 

single nucleotide polymorphism (SNP) between the 3D7 and PfKE04 sequences both 

gene versions were included for construct design. Predicted signal peptide sequences, 

transmembrane domains occurring at the termini of proteins and GPI anchor coding 

regions were removed from each of the sequences before cloning.  

4.4.4.1.(b) PCR amplification 

(i) Primer Design 

Optimal annealing temperatures for each primer pair was determined using the 

ThermoScientific online Tm and annealing temperature calculation tool 

(https://www.thermofisher.com/ke/en/home/brands/thermo-scientific/molecular-

biology/molecular-biology-learning-center/molecular-biology-resource-

library/thermo-scientific-web-tools/tm-calculator). Polymerase chain reaction (PCR) 

primers were designed to contain the Xho1 restriction site (or Kpn1 if an internal Xho1 

restriction site was detected in the sequence) and a start codon in the forward primer. 

The Not1 restriction site and a stop codon were included in the reverse primer to 

correspond to the restriction sites on the WGCFS expression vector, pEU-MCS-E01, 

multiple cloning site (MCS) (9.6 Appendix 6). The reverse primer also contained a 

hexahistidine coding sequence to allow for affinity purification of the expressed 

protein using nickel resin. Additionally, flank-to-flank primers were designed based 

on the sequences upstream and downstream of the MCS. The flank-to-flank primers 

were used to screen recombinant plasmids harvested from bacterial colonies after 

cloning to verify that the sequence of interest was present. 

https://www.thermofisher.com/ke/en/home/brands/thermo-scientific/molecular-biology/molecular-biology-learning-center/molecular-biology-resource-library/thermo-scientific-web-tools/tm-calculator.html?gclid=CjwKCAjwtajrBRBVEiwA8w2Q8JzO4KTtC9KaPaBp9zHzPzTm1EqwvfUpjOP7ezOf37qCesPfcPP8-BoCZbgQAvD_BwE&ef_id=CjwKCAjwtajrBRBVEiwA8w2Q8JzO4KTtC9KaPaBp9zHzPzTm1EqwvfUpjOP7ezOf37qCesPfcPP8-BoCZbgQAvD_BwE:G:s&s_kwcid=AL!3652!3!329981498317!b!!g!!
https://www.thermofisher.com/ke/en/home/brands/thermo-scientific/molecular-biology/molecular-biology-learning-center/molecular-biology-resource-library/thermo-scientific-web-tools/tm-calculator.html?gclid=CjwKCAjwtajrBRBVEiwA8w2Q8JzO4KTtC9KaPaBp9zHzPzTm1EqwvfUpjOP7ezOf37qCesPfcPP8-BoCZbgQAvD_BwE&ef_id=CjwKCAjwtajrBRBVEiwA8w2Q8JzO4KTtC9KaPaBp9zHzPzTm1EqwvfUpjOP7ezOf37qCesPfcPP8-BoCZbgQAvD_BwE:G:s&s_kwcid=AL!3652!3!329981498317!b!!g!!
https://www.thermofisher.com/ke/en/home/brands/thermo-scientific/molecular-biology/molecular-biology-learning-center/molecular-biology-resource-library/thermo-scientific-web-tools/tm-calculator.html?gclid=CjwKCAjwtajrBRBVEiwA8w2Q8JzO4KTtC9KaPaBp9zHzPzTm1EqwvfUpjOP7ezOf37qCesPfcPP8-BoCZbgQAvD_BwE&ef_id=CjwKCAjwtajrBRBVEiwA8w2Q8JzO4KTtC9KaPaBp9zHzPzTm1EqwvfUpjOP7ezOf37qCesPfcPP8-BoCZbgQAvD_BwE:G:s&s_kwcid=AL!3652!3!329981498317!b!!g!!
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(ii) PCR reaction and cycling conditions  

PCR was carried out using Phusion® High-Fidelity PCR Master Mix in 20 μl 

reactions as follows: 

Reagent Volume (μl) 

2 x Phusion® master mix PCR reagent 10 

10 μM forward primer 1 

10 μM reverse primer 1 

Template DNA 2 

Nuclease-free water 6 

Total 20 

Cycling conditions were as follows: Initial denaturation at 98°C for 30 seconds, 

followed by 35 cycles of denaturation at 98 °C for 15 seconds, annealing at optimum 

temperature for 30 seconds, extension at 72°C for 30 seconds. A final extension at 

72°C for 5 min was included at the end of cycling, followed by a final hold at 10°C 

for 10 minutes.  

4.4.4.1.(c) Agarose gel electrophoresis 

PCR reaction products were run on 0.8% (for DNA fragments greater than 1000 base 

pairs (bp)) or 1 % (for fragments smaller than 1000 bp) agarose gels prepared in 0.5 x 

Tris-borate-EDTA (TBE) buffer. The agarose was first melted by boiling in TBE 

buffer before 1 x RedSafe® gel stain was added to the agarose. The mixture was 

swirled to mix and poured into a casting tray to solidify. DNA loading dye was then 

added to the PCR products to a final concentration of 1 x and loaded onto the gel 

alongside Hyperladder I DNA marker and the gel run for one hour at 100 volts. 

4.4.4.1.(d) Gel extraction and purification of DNA 

Bands corresponding to the predicted PCR product size were excised from the agarose 

gels after electrophoresis and DNA purified from the excised gels using QIAquick kit 

according to manufacturer’s instructions. DNA was eluted at the final step in 30 μl of 

pre-warmed elution buffer provided in the kit and quantified using a NanoDrop 1000 

spectrophotometer. 
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4.4.4.1.(e) Sub-cloning into Zero Blunt™ TOPO™ ™ PCR vector  

Prior to cloning into the pEU-MCS-E01 vector, purified PCR products for wheat germ 

cell-free protein expression were first sub-cloned into the Zero Blunt™ TOPO™ PCR 

vector (9.6 Appendix 6) according to manufacturer’s instructions. The Zero Blunt™ 

vector was used as it offers a rapid and efficient system for the cloning of blunt-ended 

PCR products via a Vaccinia virus DNA Topoisomerase 1-mediated cloning 

reaction506. Recombinant plasmids from the ligation reactions were then propagated 

in E. coli cells. 

4.4.4.1.(f) Transformation and growth of bacterial cells 

ONE SHOT™ TOP 10 E. coli cells were transformed with recombinant plasmids 

from the cloning reactions by heat shocking 25 µl of the competent cells in the 

presence of 1 µl of plasmid at 42°C for 30 seconds. The transformation mix was then 

placed on ice for two minutes before 250 µl of super optimal broth with catabolite 

repression (SOC) media was added, and the cells incubated at 37 °C in an incubator 

to set to shake at 225 revolutions per minute (rpm). The transformed bacterial cells 

were then plated onto lysogeny broth (LB)/Agar plates containing kanamycin at 50 

µg/ml and incubated at 37 °C overnight. The next day, a minimum of 5 single colonies 

were picked and screened for the insert by colony PCR.  

4.4.4.1.(g) Colony PCR reaction and cycling conditions  

Colony PCR was carried out to screen bacterial colonies using the KAPA2G Fast 

HotStart ReadyMix kit. A single colony was picked from an LB/Agar plate and diluted 

in 10 μl of nuclease-free water prior to setting up the PCR reaction as follows: 

Reagent Volume (μl) 

2 x KAPA2G Fast HotStart ReadyMix 12.5 

10 μM forward primer 1.25 

10 μM reverse primer 1.25 

Template DNA 1 

Nuclease-free water 9 

Total 25 

Cycling conditions were as follows: Initial denaturation at 95°C for 3 minutes, 

followed by 35 cycles of denaturation at 95°C for 40 seconds, annealing at optimum 
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temperature for 60 seconds, extension at 68°C for 3 minutes. A final extension at 72°C 

for 5 min was included at the end of cycling. M13 forward and reverse primers were 

used as they flanked the inserted gene of interest. PCR products were run on agarose 

gels as described to determine whether the GOI integrated into the vector, and identify 

the colonies containing bacteria with the recombinant vector. The gene fragments for 

cloning were then excised from the successful recombinant vectors by restriction 

digestion, separated out from the vector backbone by gel electrophoresis before being 

recovered and purified by gel extraction. 

4.4.4.1.(h) Plasmid recovery for protein expression 

Colonies from bacteria containing plasmids with the antigens of interest were then 

grown in 3 ml of LB broth containing kanamycin. The next day bacteria from the 

culture were pelleted, and plasmids extracted from the bacteria using QIAprep® Spin 

Miniprep Kit according to the manufacturer’s instructions. Where higher 

concentrations of plasmid were required, 1 ml of the 3 ml overnight culture was used 

to inoculate 100 ml of fresh LB broth. This culture was then left to grow overnight, 

and on the next day, plasmids were extracted from the bacteria using QIAGEN® 

Plasmid Plus Maxi Kit according to the manufacturer’s instructions. 

4.4.4.1.(i) Restriction digestion 

Restriction digestion reactions were set up to digest out fragments from the Zero 

Blunt™ TOPO™ PCR vector for cloning into the pEU-MCS-E01 plasmid and 

linearization of the pEU-MCS-E01 plasmid for cloning as follows: 

Reagent Volume (μl) 

DNA  
A volume of DNA corresponding to a 

maximum of 1 μg DNA  

10 x Cutsmart Buffer 1 

10 μM reverse primer 5 

Restriction enzyme 1 1 

Restriction enzyme 2 1 

Nuclease-free water Top up to final volume 50 μl 

The reaction was then incubated at 37 °C for 1 hour.  
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4.4.4.1.(j) Cloning into the pEU-MCS-E01 expression vector 

For cloning into the pEU-MCS-E01 vector, optimal vector: insert ratios were 

calculated based on the molar mass of the respective DNA fragments (linearised 

vector and purified gene fragment) using the New England Biolabs (NEB) online 

ligation calculation tool (https://nebiocalculator.neb.com/#!/ligation). Ligation was 

carried out using the Ligation High Ver.2® reagent at 16°C for one hour in a 

thermocycler. Negative control reactions using a linearised vector with no insert were 

also set up to test for background colonies resulting from bacteria that had taken up 

the undigested vector. One Shot™ TOP 10 E. coli cells were transformed with 

recombinant plasmids from the cloning reactions as described 4.4.4.1.(f). Colony PCR 

was carried out as described (4.4.4.1.(g)) using flank-to-flank primers that were 

designed to span the regions upstream and downstream of the inserted GOI within the 

pEU-MCS-E01 vector (9.6 Appendix 6). The PCR products were run on agarose gels 

(4.4.4.1.(c)) to identify bacterial colonies containing recombinant vectors prior to 

plasmid extraction (4.4.4.1.(h)). Plasmid purity and concentration were then measured 

spectrophotometrically (NanoDrop 1000). Plasmids used for protein expression had a 

purity in the range of A260/280 1.80 – 1.89. 

4.4.4.2 Mammalian expression system (Human embryonic kidney 

cell-line E (HEK293E)) 

4.4.4.2.(a) Construct design 

For gametocyte antigens targeted for expression using the HEK293E mammalian 

expression system, I replaced the endogenous signal peptide sequence with the human 

tissue plasminogen activator (tPA) signal sequence. The tPA sequence has been 

shown to enhance heterologous protein expression in eukaryotic expression 

systems507–509. GPI anchor sequences were also removed as differences between 

mammalian and plasmodial GPI-anchoring requirements can affect the production of 

soluble protein510,511. To express only the extracellular portion of the protein, I also 

took out transmembrane domains where possible. Moreover, as N-linked glycans are 

thought to be mostly absent in P. falciparum512,513, potential N-glycosylation sites 

were identified using the NetNGlyc prediction algorithm514 

(http://www.cbs.dtu.dk/services/NetNGlyc/). Predicted glycosylation sequons (Asn-

X-Thr/Ser) with a threshold above 0.5 were modified by substituting asparagine 

https://nebiocalculator.neb.com/#!/ligation
http://www.cbs.dtu.dk/services/NetNGlyc/


155 

 

residues to glutamine residues (Gln-X-Thr/Ser). Furthermore, at the 5’ end of the tPA 

signal sequence, a Kozak consensus sequence (5’-CCACC-3’) was added upstream 

of the ATG initiation codon site for enhanced translation515, and a stop codon added 

at the end. The sequences were then sent to GeneArt® (Life Technologies, Germany) 

for codon optimisation to overcome the adenine and thymine bias in P. falciparum 

genes482. 

4.4.4.2.(b) PCR amplification  

(i) Primer design 

For protein expression in the HEK293E system, In-Fusion® cloning primers were 

designed to amplify codon-optimised gene constructs from the GeneArt®-provided 

vectors containing the genes of interest. Primers compatible with In-Fusion cloning 

into the pOPINGS vector (a gift from Ray Owens, Addgene plasmid # 41121) were 

designed using the online tool provided by the Oxford Protein Production Facility 

(OPPF, https://www.oppf.rc-harwell.ac.uk/OPPF/). The primers were designed to 

contain 15 base pair overhangs compatible with cloning into the pOPINGS vector (9.6 

Appendix 6). 

(ii) PCR reaction and cycling conditions  

PCR was carried out using Phusion® High-Fidelity PCR Master Mix as described in 

4.4.4.1.(b)(ii) using as template the GeneArt®-provided vectors.  

4.4.4.2.(c) Generation of recombinant plasmids by In-Fusion 

cloning 

Purified PCR products (4.4.4.1.(d)) derived from amplifying the respective gene 

fragments from GeneArt® provided constructs were ligated into the linearised 

pOPINGS vector using the In-Fusion cloning kit at a 2:1 insert to vector ratio. 

Volumes of insert and vector to use for a 2:1 ratio were again determined using the 

NEB online ligation calculation tool. Ligation reactions were set up as follows: 

 

 

 

https://www.oppf.rc-harwell.ac.uk/OPPF/
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Reagent Volume (μl) 

5 x In-Fusion® HD enzyme 

premix 
2 

Linearised vector 1 

Purified PCR product variable 

Nuclease-free water Top up to final volume 10 μl 

The reaction was then incubated at 50°C for 15 minutes before being placed on ice 

awaiting transformation. Negative control reactions using linearised pUC19 vector 

with no insert and positive control reactions using linearised pUC19 vector plus 

control insert were also set up. Ligations were then transformed into ONE SHOT™  

TOP 10 E. coli cells as described (4.4.4.1.(f)) and the next day colonies screened for 

recombinant plasmid using the T7 promoter forward primer, and an antigen-specific 

reverse primer as described (4.4.4.1.(g)). Recombinant plasmids were then harvested 

for use in protein expression using the QIAGEN® Plasmid Plus Maxi Kit as described 

(4.4.4.1.(h)). 

4.4.4.3 Bacterial expression system (Rosetta-gami™) 

4.4.4.3.(a) Construct design 

Constructs were designed similar to constructs for the WGCFS as described in 

4.4.4.1.(a). 

4.4.4.3.(b) PCR amplification 

(i) Primer design 

For protein expression in the Rosetta-gami™ bacterial expression system, In-Fusion® 

cloning primers corresponding to the pOPINS3C vector (also a gift from Dr Ray 

Owens (9.6 Appendix 6)) –Addgene plasmid # 41115 - were designed using the 

OPPF online tool. Flank-to-flank primers were also designed for colony PCR.  

(ii) Gene amplification PCR reaction and cycling conditions  

PCR was carried out using Phusion® High-Fidelity PCR Master Mix as described 

(4.4.4.1.(b)(ii)) using parasite genetic material as a template.  
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4.4.4.3.(c) Generation of recombinant plasmids by In-Fusion® 

cloning 

Purified PCR products were ligated into the linearised pOPINS3C vector using In-

Fusion® cloning as described (4.4.4.2.(c)). Recombinant pOPINS3C plasmids 

containing the antigens of interest were transformed into Rosetta-gami™ B(DE3) 

pLysS competent cells as described (4.4.4.1.(f)). Colony PCR using pOPINS3C flank-

to-flank primers was then used to identify positive colonies (4.4.4.1.(g)). A single 

colony was used to inoculate 3 ml of fresh terrific broth containing 100 µg/ml 

carbenicillin in order to generate a starter culture for use in protein expression. Terrific 

broth was used as it is a richer broth than LB, supporting higher bacterial cell density 

for optimal protein expression496. 

4.4.4.4 Plasmid sequencing for verification (MiSeq and Sanger 

Sequencing) 

Plasmids were sequenced to verify protein identity and to confirm that no mutations 

had been introduced during the cloning process as they could potentially affect protein 

structure. Two sequencing platforms, the Illumina MiSeq and Sanger sequencing, 

were used based on the facilities available at the time of recombinant plasmid 

production. 

4.4.4.4.(a) Illumina MiSeq platform 

Plasmids were first linearised using a single restriction enzyme (see 4.4.4.1.(i)) before 

they were sent to the in-house sequencing facility at KWTRP. The standard 

sequencing protocol developed at the facility was followed. Briefly, the Nextera® XT 

kit was used for library preparation as per manufacturer’s instruction. First, the 

sequences were fragmented, and adaptors ligated to them after which limited PCR 

was carried out to add indexes to the sequence for identification. Products from the 

PCR reaction were then cleaned up using AMPure® beads (0.6 x); during this step, 

small fragments below 300 bp were eliminated. The fragment size was then 

determined using a bioanalyser and samples quantified using a Qubit® 2.0 

fluorometer. All samples were then normalised to 2 nM concentration before being 

pooled together and denatured using 0.2 M sodium hydroxide. The concentration of 

the pooled samples was then adjusted to 8 picomoles, before being spiked with PhiX 

(in-house sequencing positive control) and denatured at 96°C for two minutes. The 
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pooled samples were then loaded onto the MiSeq machine for sequencing. The quality 

of the generated reads was analysed using the MultiQC tool (version 1.4)516 before 

the reads were assembled and mapped to each respective reference sequence using 

Geneious sequence analysis software (version 11.1.2). 

4.4.4.4.(b) Sanger Sequencing 

Sanger sequencing was outsourced to GENEWIZ®, a genomics company located in 

Essex (United Kingdom) and was carried out using the flank-to-flank primers used 

for colony PCR. Each plasmid was sequenced in the forward and the reverse direction 

and the resultant reads aligned onto the reference sequence using the MUSCLE 

alignment algorithm present in Geneious sequence analysis software. Where possible, 

if sequence variation was observed in both the forward and reverse reads, a second 

plasmid batch from a different colony was sequenced.   

4.4.5 Recombinant protein production 

4.4.5.1 Wheat germ cell-free expression system (WGCFS) 

4.4.5.1.(a) Protein Expression 

Protein expression was carried out using the WGCFS WEPRO® 7240H kit. Protein 

expression was carried out as a 2-step process with transcription and translation 

carried out in separate reactions. Proteins were first expressed in small-scale reactions, 

and where protein expression was confirmed, the production scale was increased to 

mid-scale or large-scale depending on the yield obtained. The transcription reaction 

was set up as follows: 

Reagent Final Concentration 

Plasmid DNA (1 μg/ul) 100ng  

25 mM dNTP mix 2.5 mM 

5 x translation buffer 1 x 

RNase inhibitor (800 U/μl) 1 U/μl 

SP6 RNA polymerase (800 U/μl) 1 U/μl 

Nuclease-free water 
Top up to final volume 20, 50 or 250 μl (for 

small-, mid- or large-scale respectively) 
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The reaction mixture was then incubated at 37°C for 6 hours after which an aliquot of 

the generated mRNA was run on a 1% agarose gel to check for mRNA degradation 

before translation was carried out. The translation reaction was set up as below for 

small-scale protein expression: 

Reagent Final concentration 

mRNA 0.5 x 

Creatine kinase (20 mg/ml) 40 ng/μl 

WEPRO® 7240H (240 OD/ml) 120 OD/ml  

Total 500 μl 

Translation was carried out in a bilayer reaction format with the mRNA/wheat germ 

extract (WGE) mix in the lower layer and the translation substrate in the upper layer. 

The translation reaction was carried out at 15°C for 20 hours, and the translation mix 

transferred to 4°C immediately after preparation to await protein purification.  

4.4.5.1.(b) Protein purification  

Imidazole to a final concentration of 50 mM was added to the translation mix or 

culture supernatant (WGCFS and mammalian expression system, respectively). An 

appropriate volume of nickel resin (Ni Sepharose® High Performance (HP) affinity 

resin) equilibrated in binding buffer was then added to the translation mix or culture 

supernatant. Binding of the protein to the nickel resin was achieved by incubating the 

tube containing the protein/resin mix on a rotating platform for 2 hours at 4 °C. The 

protein/resin mix was then transferred to a disposable polypropylene column fitted 

with a porous polyethylene frit designed to trap the resin while allowing the solution 

to flow through. The trapped resin was then washed five times using a volume of 

binding buffer corresponding to 10 times the volume of resin used. The protein was 

eluted from the resin using either 20, 100 or 200 μl of elution buffer (depending on 

the expression scale and expected yield of protein). The required volume of elution 

buffer was applied five separate times, and each time the eluate was collected into the 

same tube at final volumes of either 100, 500 or 1000 μl.  
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4.4.5.2 Mammalian expression system  

4.4.5.2.(a) Protein Expression 

The Human Embryonic Kidney 293 cell line modified with the Epstein Barr virus 

nuclear antigen 1 (HEK293E - a kind gift from Dr James Tuju) was used for 

mammalian expression. The HEK293E cells were grown to a cell density of 1.1 x 106 

cells/ml with minimum viability of 97% before transfection. Transfection was carried 

out using Lipofectamine® 3000 reagent. For a 20 ml transfection volume, a volume 

corresponding to 30 μg of plasmid DNA was added to 2 ml of Opti-MEM™ reduced 

serum media together with P3000® reagent at a volume corresponding to 2 x the 

volume of DNA added. This mixture was then vortexed mildly and set aside. To a 

second tube containing 2 ml of Opti-MEM™, 30 μl of lipofectamine was added and 

the mixture vortexed mildly before being incubated at room temperature for 5 

minutes. After this, the Opti-MEM™/lipofectamine mix was added to the Opti-

MEM™/DNA mix and the mixture incubated at room temperature for 20 minutes. 

This transfection mix was then added to the HEK293E cells, and the flask swirled 

several times to distribute the DNA complex evenly. The flask containing the 

transfected cells was then transferred to a humidified incubator set at 37°C with 5% 

CO2 supply and shaking set at 130 rpm. Twenty-four hours post-transfection, a casein 

peptone mix, TN1, enriched with vitamins and growth factor was added to a final 

concentration of 0.5%. The cells were left to grow for three days before the 

supernatant was harvested for protein purification.   

4.4.5.2.(b) Protein purification  

Protein purification and quantification were carried out as described in 4.4.5.1.(b). 

4.4.5.3 Bacterial expression system  

4.4.5.3.(a) Protein expression 

Protein expression was carried out in Rosetta-gami™ cells using a 1 in 50 dilution of 

a starter culture prepared the night before (see section 4.4.3.7) into 500 ml of terrific 

broth. The new culture was then incubated at 37°C until an optical density (OD) of 

between 0.5 to 0.8 was reached. The culture was then placed at room temperature to 

cool before induction of expression using 0.1 mM of Isopropyl β-d-1-

thiogalactopyranoside (IPTG). The culture was then incubated at 20 °C overnight in 
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an incubator set to shake at 225 rpm. The next day, the bacterial cells were pelleted 

by centrifugation at 5000 x g for 10 minutes, and the pellet set aside for protein 

purification.  

4.4.5.3.(b) Protein purification  

Bacterial pellets (refer to 4.4.5.3.(a)) were first homogeneously resuspended in 5ml 

of bacterial lysis buffer (9.5 Appendix 5) per gram of bacterial pellet. An equal 

volume of binding buffer was added to the resuspended bacterial pellet as well as 

imidazole to a final concentration of 50 mM. The bacteria were then lysed by 

sonication, five rounds of 30 seconds sonication followed by 30 seconds on ice were 

carried out, after which an appropriate volume of nickel resin (HisPur™ Ni-NTA 

resin) was added. The protein/resin mix was then placed on a rotating platform at 4 

°C for 2 hours to allow binding. The expressed protein was then purified by gravity 

flow using the same protocol applied for proteins expressed in the WGCFS and 

mammalian expression systems (4.4.5.1.(b)). 

4.4.5.4 Protein identification and quantification 

Confirmation of protein expression was done by running an aliquot of the purified 

protein prepared in laemmli buffer, alongside the flow-through and wash fractions, on 

a denaturing sodium dodecyl sulphate polyacrylamide gel (SDS PAGE) in the tris 

glycine buffer system. The samples were run at 150 volts until the dye front migrated 

to the bottom of the gel. Where available, pre-cast Bolt™ 4-12% Bis-Tris Plus gels 

were also used to separate the purified protein using 2-(N-morpholino) ethanesulfonic 

acid (MES) buffer at 180 volts for 35 minutes. Protein bands were visualised by 

Coomassie staining using InstantBlue® rapid stain. The purified protein was 

quantified using the Bradford Assay with bovine serum albumin (BSA) as the protein 

standard according to the manufacturer’s instruction.  

4.4.5.5 Protein identity confirmation  

4.4.5.5.(a) Western blot analysis 

To confirm that the purified proteins were the expressed antigens, western blot 

analysis using an anti-histidine antibody (Monoclonal Antibody 3D5 – HRP) was 

performed. After running the proteins on an SDS-PAGE gel, they were transferred 

onto a polyvinylidene difluoride (PVDF) membrane by wet transfer at 80 volts for an 
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hour. The membrane was then blocked for one hour with 4% non-fat skim milk 

prepared in tris buffered saline (TBS) containing 0.05% Tween 20® detergent 

(TBS/T) at room temperature. The membrane was then washed three times using 

TBS/T with a five-minute incubation between each wash. After this, the membrane 

was probed using an anti-histidine antibody fused to horseradish peroxidase (HRP) 

and incubated at room temperature for one hour. The membrane was then washed 

once more with TBS/T before being incubated with Novex® ECL chemiluminescent 

substrate for 1 min and visualised in a Bio-Rad imager. 

4.4.5.5.(b) Mass spectrometry (liquid chromatography (LC) 

tandem mass spectrometry (MS) - LC/MS/MS  

Proteins were prepared for mass spectrometry by first adding 90 μl of 50 mM 

triethylammonium bicarbonate buffer to 10 μl of protein sample (minimum 

concentration used was 20 ng). After this, 40 mM of dithiothreitol (DTT) was added 

and the proteins incubated at 65°C with shaking at 400 rpm for one hour. 80 mM of 

iodoacetamide was then added, and the samples then incubated in the dark for one 

hour at room temperature. After this, 80 mM of DTT was added and the samples 

incubated further for 30 minutes. The samples were then digested using 400 ng of 

trypsin overnight at 37°C with gentle agitation in a shaking incubator. The next day, 

the proteins were concentrated using a speed vacuum concentrator to reduce the 

volume to about 50 μl.  Equilibration buffer was then added to a final concentration 

of 0.1% before the samples were bound to chromatography resin in a Zip Tip® by 

pipetting 15 μl of the sample through the resin ten times. This Zip Tip® was first pre-

wetted in 100% acetonitrile and equilibrated in 0.1% trifluoroacetic acid (TFA) before 

sample binding. The resin in the Zip Tip was then washed in 0.1% TFA by pipetting 

up and down seven times to precipitate the protein. The protein was eluted into 20 μl 

of elution buffer before being concentrated down to between 1 to 2 μl. Finally, 15 μl 

of loading solution was added to the samples and the samples stored at -80°C awaiting 

injection into the mass spectrometer. The generated data were searched against the 

P. falciparum protein database using the Mascot algorithm 

(http://www.matrixscience.com/server.html). 

Mass spectrometry analysis was carried out both in-house at KWTRP and, for a subset 

of proteins, outsourced to the Cambridge Centre for Proteomics (Cambridge, United 

http://www.matrixscience.com/server.html
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Kingdom) for protein identification analysis and de novo peptide sequencing where 

required. 

4.5 Results 

4.5.1 Gametocyte antigen production and purification 

4.5.1.1 Potential antigens identified for analysis 

A list of 24 gametocyte antigens was identified by analysing published proteome data 

for proteins with high expression in the mature gametocytes and using parasite 

databases to identify possible surface-localised proteins. An additional potential 

antigen (NOT1) was identified from a literature search where it was suggested that 

seropositivity to the antigen was associated with increased odds of >90% 

transmission-blocking activity (TBA)282. Aside from Pfs230, Pfs48/45, Pf47 and 

NOT1, the other antigens had not been previously studied in the context of TBA, 

based on P. falciparum-derived antigens, at the time of antigen selection. However, 

TBA following rodent immunisation with P. berghei orthologs of PSOP12 and 

PSOP25 had been described 302,303,517. Additionally, gene knockout experiments in a 

rodent malaria model have demonstrated a possible impact on sexual stage 

development for PSOP1518,519, TLP518,519, LAP5520, G377521 and MDV1522,523. Of the 

24 identified proteins, seven of the proteins were conserved Plasmodium proteins 

(denoted as CPPs) of unknown function (Table 4.1). 

Protein sequences corresponding to each of the 25 antigens were obtained from 

PlasmoDB and based on the 3D7 sequence. As the full genome of a field isolate from 

Kilifi was available (PfKE04), I used the annotated genome to obtain sequences 

corresponding to my GOIs. A comparison of 3D7-based and PfKE04-based isolates 

by pairwise alignment using Geneious bioinformatics software (version 11.1.2), 

revealed sequence differences in the genes APP, CPP3, CVMPPP, G377, GEXP01, 

P47, Pfs230, PHISTa, PIESP15, PSOP25 and TLP, ranging from insertions/deletions 

to non-synonymous single nucleotide polymorphisms (SNPs) (9.7 Appendix 7). For 

these candidate antigens, I aimed to produce both the 3D7 and PfKE04 version as 

recombinant protein. I did this to test for differences in immune responses (Chapter 

5) or functional activity (Chapter 6) potentially attributable to the sequence variation. 

Additionally, owing to the large size of the proteins G377 (PF3D7_1250100) and 

NOT1 (PF3D7_1103800), two domains were identified and prioritised for analysis. 
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For G377, the domains chosen for analysis were derived from a study by Alano et al. 

(1995) who were able to express proteins from these domains for further analysis524 

successfully. For NOT1, two short regions were selected to correspond to regions 

containing predicted B-cell epitopes (predicted using the Immune Epitope Database 

and Analysis Resource online tool, version 2.6 https://www.iedb.org/). The total 

number of proteins (including variants) for recombinant production stood at 38 

(corresponding to 25 antigens). 

 

 

 

 

https://www.iedb.org/
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Table 4.1: List of gametocyte candidate antigens for protein expression and production 

Antigen 

Name 
Gene ID 

Molecular 

weight 

(kDa) 

Protein 

length 

(amino 

acids) 

SP 
GPI 

anchor 

TM 

domain 
PPED 

Rodent malaria 

knock-out 

phenotypea  

AP 

Amino acids 

included in 

construct b 

Sequence variation 

present?b 

Pfs230c PF3D7_0209000 360 3135 Yes No No No Male gametes fail to 

attach to and 

penetrate female 

gamete 

(PBANKA_0306100) 

78% 443 – 1132 Yes. 3-amino acid 

deletion (522-524); 

SNPs (S163G, V213E, 

N219K) 

Pfs48/45 PF3D7_1346700 46 448 Yes Yes Yes No Male gametes fail to 

attach to and 

penetrate female 

gamete 

(PBANKA_1359600) 

97.40% 28 – 427 No 

VATPase PF3D7_1354400 19 181 Yes No Yes No N/A 97.80% 37 – 181 No 

PSOP12 PF3D7_0513700 87 735 Yes No No No No clear phenotype 

described 

(PBANKA_1113400) 

95.40% 24 – 735 No 

CPP1d PF3D7_1118900 29 248 Yes No No No N/A 94.40% 24 – 248 No 

PSOP1 PF3D7_0721700 53 467 Yes No No No No clear phenotype 

described 

(PBANKA_0619200) 

90.60% 17 – 467 No 

CPP2d PF3D7_0513000 31 269 Yes No No No N/A 86.20% 20 – 269 No 

CVMPPP PF3D7_1314500 24 206 Yes Yes Yes No N/A 73.90% 25 – 173 Yes. SNP (P41A) 

GEXP01 PF3D7_1253000 56 469 Yes No Possibly Yes N/A 64.40% 19 – 469 Yes. SNPs (R324C, 

S391A, E392T, V446I) 

P47 PF3D7_1346800 51 439 Yes Yes Yes No Female gamete 

fertility affected, 

reduced number of 

ookinetes 

(PBANKA_1359700) 

62% 27 – 415 Yes. SNP (P194H) 

PHISTa PF3D7_0115100 35 293 Yes No Yes Yes N/A 44.90% 25 – 293 Yes. SNP (F113L) 

G377c PF3D7_1250100 377 3119 Yes Yes No No 44.70% 184 – 385 No 



166 

 

Antigen 

Name 
Gene ID 

Molecular 

weight 

(kDa) 

Protein 

length 

(amino 

acids) 

SP 
GPI 

anchor 

TM 

domain 
PPED 

Rodent malaria 

knock-out 

phenotypea  

AP 

Amino acids 

included in 

construct b 

Sequence variation 

present?b 

Female gametes 

egress less efficiently 

from RBCs 

(PBANKA_1463000) 

666 – 1146 Yes. 9-amino acid 

insertion (103-111); SNP 

(F421L) 

PIESP15 PF3D7_0103900 68 575 Yes No Yes No N/A 36.60% 30 – 575 Yes. 2-amino acid 

deletion (221-222) 

CPP3d PF3D7_1105800 31 266 Yes No Yes No N/A 36.10% 19 – 266 Yes. 33-amino acid 

deletion (11-43) 

PSOP25 PF3D7_0620000 60 505 Yes Yes Yes No Reduction in oocyst 

numbers 

(PBANKA_1119200) 

26.40% 25 – 475 Yes. 50-amino acid 

insertion (191-240); SNP 

(S267L) 

CPP4d PF3D7_0208800 28 235 Yes No Yes No N/A 21.60% 27 – 235 No 

CPP5d PF3D7_0309100 21 178 Yes No No No N/A 12.30% 26 – 178 No 

MDV1 PF3D7_1216500 26 221 Yes No No No Lower number of 

gametes, reduced 

ookinete and oocyst 

production 

(PBANKA_1432200) 

9.30% 23 – 221 No 

CPP6 PF3D7_1251000 22 186 Yes No Possibly No N/A 5.30% 21 – 186 No 

NOT1c, e PF3D7_1103800 392 3371 No No Yes No N/A 4.80% 361 – 409 No 

901 – 1019 No 

CPP7d PF3D7_0417000 33 275 Yes No Yes No No 87% 24 – 275 No 

LAP5 PF3D7_1451600 100 865 Yes No No No Yes. Defective 

oocysts, impaired 

sporozoite formation 

(PBANKA_1315300) 

75% 21 – 865 No 

APP PF3D7_1454400 90 777 Yes No Yes No No 61% 18 – 777 Yes. 1-amino acid 

deletion (61) 

TLP PF3D7_0616500 160 1371 Yes No Yes No Yes. Not different 

from wild type 

(PBANKA_1116000) 

28% 24 – 1371 Yes. 1-amino acid 

deletion (177), 4-amino 

acid deletion (982-985); 

SNPs (K401R, E556K, 

E557D, Y590D, K591M, 
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Antigen 

Name 
Gene ID 

Molecular 

weight 

(kDa) 

Protein 

length 

(amino 

acids) 

SP 
GPI 

anchor 

TM 

domain 
PPED 

Rodent malaria 

knock-out 

phenotypea  

AP 

Amino acids 

included in 

construct b 

Sequence variation 

present?b 

E592K, E593K, S803C, 

Y885H) 

PEB-P PF3D7_0303900 23 197 Yes No No No No 92% 23 – 197 N 

ID – identifier; GPI – glycosylphosphatidylinositol, SP – signal peptide, TM – transmembrane domain, PPED – predicted protein export domains, AP – antigenicity percentile, 

N/A – not available  

a Rodent malaria gene identified associated with knock-out phenotype provided in brackets. 
b Amino acid sequence based on the 3D7 variant. 
c Domains/fragments of these antigens produced due to the size of the protein. For Pfs230 the domain termed ‘region C’ was chosen, for G377 two domains ‘A2 (amino acids 

184 – 385)’ and ‘B (amino acids 666 – 1146)’ were chosen and for NOT1 two domains ‘domain of unknown function – DUF (amino acids 361 – 409)’ and ‘Complex (amino acids 

901 – 1019)’. 
d Proteins assigned name CPP to denote conserved Plasmodium protein. 
e Included in the list as responses to the protein correlated with TBA in serum samples from several malaria-endemic regions (Stone et al. (2015)499). 
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4.5.1.2 Wheat germ cell-free System protein expression  

4.5.1.2.(a) Construct design 

Gene sequences corresponding to each of the identified antigens were obtained from 

PlasmoDB, based on the lab isolate 3D7, and from the field isolate PfKE04. 

Endogenous nucleotide sequences corresponding to signal peptides, GPI anchors, and 

transmembrane domains were removed. The resulting sequences were then amplified 

from either 3D7 genomic DNA, both 3D7 and PfKE04 genomic DNA where sequence 

variation was present, or cDNA where the genes spanned multiple introns. The PCR 

products were then run on an agarose gel to verify that each product migrated at the 

expected size before cloning (Figure 4.4A). All but one antigen, PIEPS15, were 

amplified using the designed primers. Attempts to optimise PCR conditions by 

gradient PCR in order to test a range of annealing temperatures proved unsuccessful. 

Therefore, work with PIEPS15 did not proceed further. The nucleotide sequence of 

PIEPS15 contains several homopolymeric asparagine repeats, a relatively common 

feature in P. falciparum genes,482 and this could have posed a challenge for successful 

PCR amplification. 

Twenty-four antigens, corresponding to 36 proteins, were thus sub-cloned into the 

Zero Blunt™ TOPO™ vector, which efficiently ligates blunt-ended PCR products 

generated during amplification using the Phusion enzyme (Figure 4.4). One Shot™ 

Top10 E. coli cells were transformed with the generated constructs and colonies 

screened the next day to identify constructs that had the required antigen inserts within 

the cloning site. For those constructs that contained the GOI, the respective gene was 

then excised from the Zero Blunt™ vector via restriction digestion and ligated into 

the linearised expression vector, pEU-MCS-E01. Cloning was unsuccessful for 5 of 

the antigens (APP, GEXP01, PSOP12, Pfs230-C and TLP) as well as one of the 

domains selected for NOT1 (domain of unknown function (DUF)). I attempted to 

screen more colonies during colony PCR and tried out a different DNA ligation 

enzyme. However, none of these approaches worked, and therefore these antigens did 

not proceed further.  

Inability to clone APP, Pfs230-C, TLP and PSOP12 could be explained by their 

relatively large size (> 2kb) which would have resulted in larger recombinant 

constructs than could be reliably cloned in E. coli cells525. Alternatively, factors such 
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as solvent and salt carry-over from PCR product purification and structural 

heterogeneity of PCR products can adversely affect ligation and cloning efficiency526. 

Such variables are, however, difficult to detect and monitor during the cloning 

process. I did, however, attempt to re-clone each failed reaction in a minimum of two 

independent experiments using freshly purified PCR product and low-salt elution 

buffers before excluding the antigen from the production pipeline. Further 

optimisation using a range of insert: vector ratios and ligation conditions may have 

helped; however, a decision had to be made based on time constraints on what protein 

constructs to take forward.  

Once the expression constructs were successfully generated in the pEU-MCS-E01 

plasmid (Figure 4.4B), the plasmids were linearised and sequenced using the Illumina 

MiSeq platform. All reads passed the quality check (had a Phred score of >20 

(indicative of approximately 99% accurate base calling527) for each base along the 

entire read length of approximately 200 bp). Hundreds of thousands of reads were 

generated per plasmid, with tens of thousands of reads mapping back to the reference 

sequence. This allowed each base to be identified with a higher degree of confidence 

and allowed the detection of possible in individual reads. Additionally, the trimming 

of low-quality reads and the use of stringent read-mapping parameters minimised the 

inclusion of reads with low quality scores in the mapping process, which ensured 

success in consensus sequence generation. Results from the sequenced plasmids are 

provided in 9.7Appendix 7. Mapping of the sequenced reads back to the reference 

sequence was carried out to verify that the correct insert had been cloned in the right 

orientation and no mutations had been introduced during the cloning process. Only 

one gene corresponding to one of the G377 domains (A2) did not match its reference 

sequence and was excluded from further analysis. A total of 19 antigens (25 proteins) 

were successfully cloned into the expression plasmid (Figure 4.5) for use in protein 

expression experiments. 
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Figure 4.4: Generation of constructs for expression from the identified gametocyte antigens. (A) 

Specific amplification of a subset of the gametocyte antigens from P. falciparum DNA. 1 – 

amplification of the PfKE04 variant, 2 – amplification of the 3D7 variant. (B) Amplification of the 

genes of interest from the pEU-MCS-E01 wheat germ expression vector following colony PCR using 

flank-to-flank primers, the PCR product generated is larger than the original product size for each 

antigen by 173 base pairs. The numbers 1 - 5 indicate separate colonies screened for integration of the 

gene of interest into the recombinant plasmid.  
 -VE – no template control reaction. 

Numbers in brackets indicate the expected product size in base pairs. 
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Figure 4.5: Flow diagram illustrating the cloning process for the gametocyte antigens in the wheat 

germ cell-free system. The diagram shows the protein production pipeline with a description of the 

antigens that progressed through each cloning step for ultimate protein expression and those that did 

not.  

⁺ Denotes proteins for which one variant dropped off but another remained in the production pipeline. 

4.5.1.2.(b) Protein expression 

Small-scale reactions trial experiments were set-up to test the expression of the 19 

antigens using the wheat germ cell-free expression kit (WEPRO® 7240 kit) optimised 

for the purification of histidine-tagged proteins. From the trial experiments, there was 

evidence of expression for the antigens CPP5, MDV1, CPP3 (PfKE04 and 3D7 

variants), PSOP25 (PfKE04 and 3D7 variants), G377B (PfKE04 and 3D7 variants), 

CPP4 and PEB-P (Figure 4.6) at a moderate to high yield (based on the protein band 

intensity after Coomassie staining). Faint protein bands at the predicted molecular 

weight were observed for PHISTa (PfKE04 and 3D7), Pfs48/45, PSOP1, CPP1, 

CPP2, CPP6 and CPP7 indicating low-level protein expression. Initially, co-

purification of kit-based wheat germ proteins from the translation mix with the 

proteins of interest, particularly at 80 kDa, between 48 – 56 kDa and at <10 kDa, was 

observed. For this reason, I switched to a different protein expression kit optimised 

for the purification of histidine-tagged proteins (WEPRO® 7240H), utilised a higher 

concentration of imidazole during the wash steps of protein purification and reduced 

the quantity of nickel resin used and incubation time during the binding step. This 

significantly improved protein purity (Figure 4.7), and hence the optimised protocol 

was used for all subsequent purification steps. For G377B, the expressed protein 
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appeared to migrate at about twice the predicted molecular weight (band appeared at 

above 100 kDa as opposed to 59 kDa (Figure 4.6)). Moreover, the 3D7 version 

migrated at a slightly higher molecular weight than the PfKE04 version contrary to 

what was expected. The PfKE04 variant contains a 9-base pair insertion.  

 
 

Figure 4.6: Small-scale expression trial using the WEPRO® 7240 wheat germ cell-free expression 

system. SDS PAGE gels showing purified protein from a subset of the 19 gametocyte antigens that 

were successfully cloned into the expression plasmid. Orange arrows indicate where evidence of 

protein expression was observed.  (A). 1 – CPP5, 2 – VATPase, 3 – CPP6, 4 – Pfs48/45, 5 – MDVI, 6 

– CPP3, 7 – CVMPPP PfKE04, 8 – CPP2, 9 –PSOP1, 10 – CPP3 3D7, M – MOCK; (B). 11 – G377 B 

PfKE04, 12 – PSOP25 PfKE04, 13 – G377 B – 3D7; (C). 3 – CPP6, 2 – VATPase, 8 – CPP2, 14 – 

CPP7, 15 – CPP1, 16 – NOT1, 4 – Pfs48/45, 9 – PSOP1; (D). 17 – CPP4, 18 – PEB-P, 19 – PHISTa 

PfKE04, and M – MOCK. 

*L – pre-stained protein ladder 
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Figure 4.7: Mid-scale expression using the WEPRO® 7240H wheat germ cell-free expression 

system. SDS PAGE gels showing a subset of proteins purified using an optimised expression kit and 

more stringent purification protocol. 1 – MDV1, 2 – PSOP25 PfKE04, 3 – PEB-P, 4 – PSOP25 3D7, 5 

– G377 A2, 6 – CPP4 and 7 – CPP5 

*L – pre-stained protein ladder 

 

Western blot analysis confirmed expression for 7 of the antigens (CPP5, MDV1, 

CPP3 (PfKE04 and 3D7 variants), PSOP25 (PfKE04 and 3D7 variants), G377B 

(PfKE04 and 3D7 variants), CPP4 and PEB-P) (Figure 4.8). With MDV1 and 

PSOP25 PfKE04, smaller bands were observed below the expected band size, likely 

indicating truncated or partially degraded protein products generated during protein 

synthesis that co-purified with the protein of interest. For the lower yield antigens, 

only CPP6, CPP7, PSOP1 and PHISTa were observed on the blots.  
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Figure 4.8: Western blot of gametocyte antigens probed with an anti-histidine tag antibody. (A) 

Shows 8 of the gametocyte antigens. CPP5, MDV1 and CPP3 show up sharply on the blot. (B) Shows 

the low yield gametocyte antigens with three times as much protein loaded as in (A). CPP6 shows up 

sharply on the blot while CPP7 shows up faintly. (C) Shows the higher molecular weight proteins, 

PSOP25 shows up sharply on the blot, with PSOP1 and G377 giving weak signals. (D) Shows CPP4, 

PEB-P and PHISTa that give clear bands on the blot. 1 – CPP5, 2 – VATPase, 3 – Pfs48/45, 4 – MDV1, 

5 – CPP3 PfKE04, 6 – CVMPPP, 7 – PSOP1, 8 – CPP3 3D7, 9 – CPP6, 10 – CPP2, 11 – CPP7, 12 – 

CPP1, 13 – NOT1 complex, 14 – PSOP25 PfKE04, 15 – G377B 3D7, 16 – G377B PfKE04, 17 – CPP4, 

18 – PEB-P, 19 – PHISTa PfKE04 and M – Mock. Faint bands indicated by orange arrows. 

*L – pre-stained protein ladder 

 

Plasmids containing the antigens of interest were sent to Dr Eizo Takashima’s 

laboratory (Ehime University, Japan) to validate the results from the small-scale 

expression trials. There, large scale protein expression using the WGCFS on an 

automated platform was carried out (Table 4.2) to increase the chances of detecting 

low-yield protein expression. From the expression tests and analysis of protein yields 

at the 3 ml reaction scale, the antigens CPP4, MDV1, PSOP25 and G377B (PfKE04 

and 3D7 variants) were prioritised for the production of a minimum of 1 mg of protein 

for immunoprofiling and functional assays. Additionally, Pfs230-C and GST (kind 

gifts from Dr Takashima) were expressed for use as positive and negative controls in 

further experiments. The domain termed region C of Pfs230 is the target of potent 

transmission-blocking antibodies283. A summary of the protein production process is 

provided in (Figure 4.9). 
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Table 4.2: Summary of small-scale expression validation at Dr Eizo Takashima's Lab 

Antigen Plasmid Source Yield (μg/3 ml) 
Proceed with large-

scale production 

(Yes/No) 
PSOP25 PfKE04 Michelle 174.1 Yes 

PSOP25 3D7 Eizo 130.1 Yes 
G377 B PfKE04 Michelle 185.0 Yes 

G377 B 3D7 Michelle 124.0 Yes 
MDV1 Michelle 287.6 Yes 
CPP4 Michelle 170.1 Yes 

Pfs230-C Eizo 96.3 Yes 
CPP3 PfKE04 Michelle 33.2 No 

CPP3 3D7 Michelle 33.2 No 
CPP2 Michelle 34.1 No 
CPP6 Michelle 39.3 No 
CPP7 Michelle Too low No 

PHISTa PfKE04 Michelle 7.9 No 
PHISTa 3D7 Michelle Too low No 
P47 PfKE04 Michelle 13.6 No 

P47 3D7 Michelle 19.6 No 
NOT1 complex Michelle 10.5 No 

VATPase Michelle 40.2 No 
CPP1 Eizo 57.6 No 

PSOP1 Eizo 27.1 No 
CVMPPP Eizo 27.0 No 

LAP5 Eizo 20.2 No 
CPP5 Eizo Too low No 

PSOP12 Eizo Too low No 
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Figure 4.9: Flow diagram illustrating the protein production process for the gametocyte antigens 

in the wheat germ cell-free system. The diagram shows the protein production pipeline with a 

description of the antigens that were successfully produced as recombinant protein.  

ⁱ proteins whose corresponding plasmids were sent to Dr Takashima’s lab for expression trials. 

*yield as determined by protein band intensity after Coomassie staining. 

 

4.5.1.3 Mammalian expression system - HEK293E expression 

platform 

4.5.1.3.(a) Construct design 

The HEK293E system was evaluated for the production of a subset of antigens that 

could not be cloned into the pEU-MCS-E01 vector or whose attempted expression in 

the WGCFS resulted in low or no protein yield. A total of 15 antigens were selected 

for protein expression trial experiments. For variant proteins, the PfKE04-based 

sequence was prioritised for construct design owing to the costs associated with 

obtaining commercial constructs. Endogenous signal peptide sequences were replaced 

by the tPA signal sequence for enhanced protein expression508. Additionally, a Kozak 

sequence was introduced upstream of the ATG start codon515, internal glycosylation 

sites were modified and the nucleotide sequences optimised for human codon usage 

to further enhance expression485.  

As with the sequences for wheat germ expression, GPI anchors and transmembrane 

domains were excluded from the final sequence used to design constructs for 

expression. The genes of interest were amplified from the provided GeneArt®-

provided construct (Figure 4.10A) and cloned into the destination pOPINGS vector 
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via in-fusion cloning. Colony PCR was then used to verify that the inserts were 

successfully incorporated into the pOPINGS vector (Figure 4.10B). Cloning of 

PIEPS15 and PSOP12, into the pOPINGS vector was unsuccessful, and therefore 

protein expression was attempted for 13 of the antigens. These two antigens were also 

unsuccessful in the wheat germ system. This suggests that they would require further 

optimisation to test out a range of cloning conditions and vectors, or the expression of 

domains of these genes. A summary of the cloning process is provided in Figure 4.11. 

 

Figure 4.10: Generation of constructs for the expression of the identified gametocyte antigens in 

the HEK293E mammalian system. (A) Specific amplification of a subset of the gametocyte antigens 

from GeneArt® provided constructs. (B) Amplification of the genes of interest from the pOPINGS 

expression vector following colony PCR using T7 forward sequencing primer and an antigen-specific 

reverse primer. The primer combination generates a PCR product that is larger than the original PCR 

product by 300 base pairs. The numbers 1 - 10 indicate separate colonies screened for integration of 

the gene of interest into the recombinant plasmid. 

-VE – no template control reaction to test for non-specific amplification. 

Numbers in brackets indicate the expected size of the PCR product in base pairs. 
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Figure 4.11: Flow diagram illustrating the cloning process for the gametocyte antigens in the 

mammalian expression system. The diagram shows the protein production pipeline with a description 

of the antigens that progressed through each cloning step for ultimate protein expression. 

 

4.5.1.3.(b) Protein expression 

 Of the 13 antigens, three were expressed at a high yield, two at a low yield, and for 

eight, no evidence of protein expression was observed (Figure 4.12). The yield was 

assessed based on the resulting band intensity after Coomassie staining. A single 20 

ml expression trial experiment was carried out as an initial screen for protein 

expression without further optimisation tested due to time constraints. PEB-P, 

CVMPPP and PSOP1 protein expression were confirmed by western blot analysis 

using an antibody against the histidine tag. (Figure 4.13) Therefore, they proceeded 

to large-scale production. Additionally, human secreted alkaline protease (SEAP) was 

also expressed to serve as a negative control in further assays. A summary of protein 

production in the mammalian expression system is provided in Figure 4.14.  
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Figure 4.12: Small-scale expression trial using the HEK293E mammalian expression system. SDS 

PAGE gels showing purified protein from a subset of the gametocyte antigens where evidence of 

protein expression was observed. Orange arrows indicate faint protein bands. 

*L – pre-stained protein ladder 

1 – flow-through, 2 – wash 1, 3 – elution 1, 4 – elution 2, 5 – elution 3, 6 – elution 4, 7 – elution 5 

 

 

                       

        
                       
Figure 4.13: Western blot of gametocyte antigens probed with anti-histidine tag antibody. The 

expressed CVMPPP, PEB-P, PSOP1 and SEAP show up sharply on the blot and migrate at the expected 

size. Numbers in brackets indicate the expected molecular weight in kilodaltons (kDa). A histidine-

tagged protein ladder was included for sizing of the fragments. 
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Figure 4.14: Flow diagram illustrating the protein production process for the gametocyte 

antigens in the mammalian expression system. The diagram shows the protein production pipeline 

with a description of the antigens that were successfully produced as recombinant protein.  

*yield as determined by protein band intensity after Coomassie staining. 

 

4.5.1.4 Mass Spectrometry confirmatory analysis (LC/MS/MS) 

Mass spectrometry analysis was carried out for 8 of the gametocyte antigens that had 

been successfully expressed at high yield (CPP4, MDV1, PEB-P, PSOP25 PfKE04, 

G377B PfKE04 and 3D7, CVMPPP and PSOP1) to confirm the identity of the protein. 

The LC/MS/MS analysis was carried out in-house at KWTRP. Peptides generated 

from each of the purified proteins were blasted against a database of the P. falciparum 

proteome for identification. For each antigen tested, the peptide sequences generated 

positively matched the respective target protein.  

G377B appeared to migrate much slower on the gel than expected, with the 3D7 

variant appearing to migrate slower than the PfKE04 variant (4.5.1.2.(b)). This was 

contrary to what was expected. The PfKE04 variant is predicted to contain an extra 

copy of the ‘PLNHEEDNF’ motif (three in contrast to two copies in the 3D7 variant). 

Moreover, a non-synonymous SNP (F1077L) is present in PfKE04 further 

distinguishing the variants. To investigate this discrepancy further, I sent purified 

protein from both antigens to the Cambridge Centre for Proteomics for LC/MS/MS 

analysis. From the results of the peptide sequencing (Figure 4.15) the PfKE04 variant 

was shown to contain three copies of the ‘PLNHEEDNF’ motif and the associated 
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SNP. On the other hand, none of the generated peptides from the 3D7 variant mapped 

onto the ‘PLNHEEDNF’ motif region. Additionally, the 3D7 variant seemed to 

contain the same SNP as the PfKE04 variant making it difficult to explain the 

observed discrepancies between the variants definitively.  
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Figure 4.15: G377B variant analysis. (A). Pairwise alignment of protein sequences of G377B PfKE04 

and 3D7 variants with red arrows denoting the insertion of the ‘PLNHEEDNF’ and the (F1077L) SNP. 

(B) Mapping of peptides from LC/MS/MS analysis of purified G377B protein variants. Orange boxes 

highlight the regions of variation from the PfKE04 sequence while blue boxes highlight regions from 

the 3D7 sequence. 
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4.5.2 Gamete and ookinete antigens 

4.5.2.1 Potential antigens identified for analysis 

A shortlist of gamete and ookinete antigens was prepared from published gamete and 

ookinete proteome data364 as well as from experimentally-identified potentially 

surface localised proteins (Blagborough A and Angrisano F, personal 

communication). Proteins from the proteome dataset were searched on pathogen 

databases to identify genes with signal peptides, transmembrane domains, GPI 

anchors, protein export motifs, predicted antigenicity (TDR Targets) and for a 

described knock-out phenotype in rodent malaria models. This was done to generate 

criteria for antigen down-selection Following the selection process described in 

4.4.2.2, a list of 21 antigens was generated for analysis (Table 4.3). 

The list included P28 for use as a positive control in the functional assays. The 

P. falciparum ortholog of P28, Pfs25, has been shown to induce antibodies with potent 

TBA292,322,323. Of the antigens identified, SOAP304, GAP50528, GEST74, PH386 and 

CHT1326 have had anti-sera raised against them previously to test for TBA. The 

antigens SEP1, MFR5, and PLP2 have not been directly assessed for transmission-

blocking activity. However, gene knock-out studies have shown that their disruption 

adversely affects parasite development within the midgut. The other antigens were 

uncharacterised as TBV targets at the time of selection, with 6 of them being CPPs.  

To aid future analysis in a human model of infection, I identified the P. falciparum 

orthologs of these proteins where available and examined possible sequence variation 

with the field isolate PfKE04.  Only 4 of the 21 antigens (GEST, PBCPP1, SOAP and 

PLP2) had sequence variation that ranged from insertions/deletions to non-

synonymous SNPs, indicating a high degree of conservation (9.7 Appendix 7). 
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Table 4.3: List of gamete and ookinete candidate antigens for evaluation as transmission-blocking antigens 

Gene 

Name 

Gene ID P. falciparum 

Ortholog 

Molecular 

Weight 

(kDa) 

Protein 

length 

(amino 

acids) 

SP GPI 

anchor 

TM 

Domain 

RMgmDB data AP a Amino acids 

included in 

construct 

Sequence 

variation 

present?b 

P28 PBANKA_0514900 PF3D7_1030900 23.52 213 Yes Yes Yes Yes, slight 

reduction in the 

number of 

ookinetes 

developing into 

oocysts. 

99% 23 – 193 No 

PBCPP1c PBANKA_1105300 PF3D7_0505700 55.058 455 Yes No Yes⁺ No 1% 19 – 455 Yes. 26-amino 

acid deletion 

(211-236); 

SNP (D865E) 

PBCPP2c PBANKA_1463900 PF3D7_1251000 21.594 183 Yes No No No 5% 20 – 183 No 

PBCPP3c PBANKA_1112700 PF3D7_0513000 30.586 268 Yes No No Yes, but no sexual 

stage phenotype 

defined. 

86% 20 – 268 No 

PBCPP4c PBANKA_0719100 PF3D7_0417000 33.51 281 Yes No No No 87% 24 – 281 No 

GAP50 PBANKA_0819000 PF3D7_0918000 44.307 395 Yes No Yes No 39% 25 – 383 No 

PBfam PBANKA_1100700 N/A 34.524 296 Yes No No No N/A 26 – 296 No 

SOAP PBANKA_1037800 PF3D7_1404300 18.2 166 Yes No No Yes, reduced 

oocyst production. 

24% 21 – 166 Yes. SNP 

(G93R) 

SEP1 PBANKA_0524800 PF3D7_1102700 12.234 115 Yes No Yes⁺ Yes, but no sexual 

stage phenotype 

defined. 

89% 23 - 115 No 

GEST PBANKA_1312700 PF3D7_1449000 28.797 249 Yes No No Yes, reduced 

gamete egress, 

fertilisation and 

ookinete-oocyst 

production. 

31% 21 – 249 Yes. SNPs 

(Q123K, 

Q141N, 

N202D) 

PH PBANKA_0417200 PF3D7_0904200 33.011 286 Yes No Yes Yes, reduced 

oocyst production. 

77% 21 – 286 No 

CHT1 PBANKA_0800500 PF3D7_1252200 72 648 Yes No No Yes, reduced 

oocyst production. 

83% 19 – 648 No 
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Gene 

Name 

Gene ID P. falciparum 

Ortholog 

Molecular 

Weight 

(kDa) 

Protein 

length 

(amino 

acids) 

SP GPI 

anchor 

TM 

Domain 

RMgmDB data AP a Amino acids 

included in 

construct 

Sequence 

variation 

present?b 

AP PBANKA_0813400 PF3D7_0912400 53.18 453 Yes No Yes No 78% 21 – 404 No 

PBCPP5c PBANKA_1452300 PF3D7_1237700 23.992 210 Yes No Yes No 1% 24 – 163 No 

M1AAP PBANKA_1410300 PF3D7_1311800 123.351 1064 Yes No No No 84% 19 – 1064 No 

PBCPP6c PBANKA_1452500 PF3D7_1237900 81.03 722 Yes No No No N/A 27 – 722 No 

THX PBANKA_0942500 N/A 49.065 420 Yes No No No N/A 24 – 420 No 

SERCAd PBANKA_0207000 PF3D7_0106300 127.352 1120 No No Yes⁺ No 66% 1 – 1120 No 

VAMPd PBANKA_1303700 PF3D7_1439800 26.901 234 No No No No 69% 1 – 234 No 

MFR5d PBANKA_0918300 PF3D7_1129900 57.089 500 No No Yes⁺ Strongly reduced 

exflagellation, no 

sporozoites 

produced. 

52% 1 – 500 No 

PLP2d PBANKA_1432400 PF3D7_1216700 114.346 999 No No No Male gamete 

shows abnormal 

exflagellation, 

produces only one 

gamete. 

51% 1 – 999 Yes. 6-amino 

acid deletion 

(472-477); 

SNP (K981R) 

ID – identifier; GPI – glycosylphosphatidylinositol, SP – signal peptide, TM – transmembrane domain, AP – antigenicity percentile, N/A – not available 

⁺ Domain structure indicates a multi-pass membrane protein. 
a Antigenicity predicted for the P. falciparum ortholog. 
b Sequence variation identified by comparing the P. falciparum ortholog to the PfKE04 variant. 

c Proteins assigned name CPP to denote conserved Plasmodium protein, prefix PB- added to differentiate from the conserved P. falciparum proteins. 
d Lack a signal peptide though have been localised to the surface by laboratory experiments or prediction by bioinformatic analyses.  
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4.5.2.2 Wheat germ cell-free system 

4.5.2.2.(a) Construct Design 

Sequences corresponding to the genes of interest were retrieved from PlasmoDB and 

were based on the rodent malaria parasite Plasmodium berghei ANKA strain. As with 

the gametocyte antigens (refer to 4.5.1.2) signal peptide sequences, GPI anchors and 

TM domains (where possible) were omitted from the gene sequence used for construct 

design. PBCPP1, SEP, SERCA and MFR5 contained internal TM domains which 

would have required producing several truncated forms of the protein, and hence the 

transmembrane domains were left intact. The selected regions of the GOI were then 

amplified from cDNA prepared from RNA extracted from gamete and ookinete stage 

P. berghei parasites. Again, the PCR primers contained a histidine tag at the end of 

the protein sequence to allow protein purification by affinity chromatography using 

nickel resin. For some of the antigens, gradient PCR optimisation was necessary to 

determine optimal annealing temperatures for amplification as the predicted annealing 

temperature did not work.  

The PCR products were then run on agarose to confirm that they migrated at the 

expected size (Figure 4.16A and B). In order to generate the final constructs for 

protein expression, the amplified PCR products were sub-cloned into the ZeroBlunt™ 

vector before being cloned into the pEU-MCS-E01 expression vector as previously 

described. The final plasmids were screened for the presence of the GOI by colony 

PCR, also as described (Figure 4.16C). For 6 of the antigens (GAP50, PBCPP4, 

PBCPP1, SERCA, PBCPP6, and PLP2), cloning was unsuccessful despite 

optimisation attempts as described in 4.5.1.2.(a). Therefore, these antigens did not 

proceed for protein expression trials. As with the gametocyte antigens, antigens 

greater than 2000 base pairs presented a challenge for cloning with only M1AAP 

cloned into the pEU-MCS-E01 plasmid. At this point, I opted to focus on the 15 

antigens that were cloned successfully for the protein expression trials (Figure 4.17).  
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Figure 4.16: Generation of constructs for expression from the identified gamete and ookinete 

antigens. (A) Specific amplification of a subset of the antigens from P. berghei gamete and ookinete 

DNA. g – gamete cDNA used as the template, o – ookinete cDNA used as the template. (B) Gradient 

PCR used to optimise PCR conditions for the successful amplification of PBCPP6. (C) Amplification 

of the genes of interest from the pEU-MCS-E01 wheat germ expression vector following colony PCR 

using flank-to-flank primers. The numbers 1 - 6 indicate separate colonies screened for integration of 

the gene of interest into the recombinant plasmid. 

 -VE – no template control reaction. 

* Numbers in brackets indicate the size in base pairs of the expected PCR product. 

 

 
Figure 4.17: Flow diagram illustrating the cloning process for the gamete and ookinete antigens 

in the wheat germ cell-free expression system. The diagram shows the protein production pipeline 

with a description of the antigens that progressed through each cloning step for ultimate protein 

expression and those that did not. 
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4.5.2.2.(b) Protein expression 

Fifteen antigens proceeded to protein expression trials in small-scale reactions using 

the same protocol set up during the expression of the gametocyte antigens in the wheat 

germ system (refer to 4.5.1.2). For 10 of the antigens, there was no evidence of protein 

expression, with only three antigens showing up on the SDS PAGE gels (Figure 

4.18). The low expression rate was contrary to what I had observed with the 

gametocyte antigens (refer to 4.5.1.2). To confirm these results, I picked 8 of the 

antigens and loaded three times as much protein onto an SDS PAGE gel prior to 

carrying out a western blot in a bid to detect lowly expressed proteins. From the blot, 

expression of Fam was confirmed while PBCPP3 and VAMP showed up faintly on 

the blot. This suggested low protein yields for at least some of the antigens. Therefore, 

I sought to explore whether yields could be improved by adding a glutathione-S-

transferase (GST) fusion tag to the N-termini of the proteins. GST tagging can aid the 

production of soluble protein as has been described529,530. 

 I first carried out a trial with the THX protein and cloned the PCR product (containing 

a histidine sequence added by the reverse PCR primer) into the pEU-E01-GST-N2 

vector (9.6 Appendix 6). This vector contains an N-terminal GST tag sequence 

(Figure 4.19A). I then compared protein expression between the single tag and the 

dual tag proteins in a small-scale expression trial. Unfortunately, the GST tag did not 

appear to improve protein yield for THX (Figure 4.19B), and therefore I did not 

attempt this approach for the rest of the antigens. Owing to the low success 

experienced with expressing the gamete and ookinete proteins in the wheat germ 

system (Figure 4.20), I opted to re-attempt protein expression in the bacterial system. 

However, as protein expression was observed for CHT1, THX and Fam, these proteins 

were sent to Dr Takashima’s lab for expression validation and possible production 

scale-up (Table 4.4). From the yields obtained after large-scale production, CHT1, 

THX and Fam were considered for functional assays; however, cost considerations 

precluded production of Fam. 
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Figure 4.18: Small-scale expression trial using the WEPRO® 7240H wheat germ cell-free 

expression system. SDS PAGE gels showing purified protein from a subset of the 15 gametocyte 

antigens that were successfully cloned into the expression plasmid. Orange arrows indicate possible 

protein expression. 

* L-pre-stained protein ladder 

1 – flow-through, 2 – wash 1, and 3 - elution 

                                   

Figure 4.19: Dual tagging of THX protein for improved protein expression. (A) Amplification of 

the genes of interest from the pEU-MCS-E01 and pEU-E01-GST-N2 (dual tag) wheat germ expression 

vectors following colony PCR using flank-to-flank primers. The numbers 1 – 5 indicate separate 

replicate amplifications. (B) Western blots of purified THX protein probed with the anti-histidine tag 

antibody. 1 – single tagged THX (histidine tag); 2 – dual tagged THX (glutathione-s-transferase (GST) 

and histidine tags). (C) Western blots of purified THX protein probed with GST tag antibody. 1 – single 

tagged THX (histidine tag); 2 – dual tagged THX (GST and histidine tags). 
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Figure 4.20: Flow diagram illustrating the protein production process for the gamete and 

ookinete antigens in the wheat germ cell-free system. The diagram shows the protein production 

pipeline with a description of the antigens successfully produced as recombinant protein.  

ⁱ proteins whose corresponding plasmids were sent to Dr Takashima’s lab for expression trials 

*yield as determined by protein band intensity after Coomassie staining. 

Table 4.4: Summary of small-scale expression validation at Dr Eizo Takashima's Lab 

Antigen Plasmid Source Yield (μg/3 ml) Proceed with large-

scale production 

(Yes/No) 
CHT1 Michelle 386.46 Yes 
THX Michelle 76.14 Yes 
Fam* Michelle 120.24 Yes 

* Owing to cost considerations, Fam was not expressed at a larger scale for functional assays 

 

4.5.2.3 Bacterial expression system 

4.5.2.3.(a) Construct design 

The same nucleotide sequences corresponding to the genes of interest identified 

during construct design for expression in the wheat germ system were used to prepare 

constructs for expression in Rosetta-gami™ bacterial cells. The regions of interest 

were amplified from parasite genetic material using primers compatible with infusion 

cloning into the pOPINS3C vector. This vector was chosen as it contains a small 

ubiquitin-related modifier (SUMO) tag sequence upstream of the gene of interest that 

fuses with the target protein during expression. The SUMO tag has been described to 
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increase protein solubility529. Additionally, the vector contains an N-terminal histidine 

tag upstream of the SUMO tag to allow for affinity purification using nickel beads.  

Again, cloning was unsuccessful for PLP2, PBCPP1 and SERCA. Additionally, AP 

was not successfully cloned. Cloning was successful for 17 of the antigens, however, 

for six of these (PBCPP4, PBCPP6, M1AAP, SEP, THX and GEST), there appeared 

to be discrepancies in the sequenced plasmids when mapped onto the reference 

sequence ( 9.7 Appendix 7). The discrepancies indicated that possible mutations had 

been introduced during the cloning process, at least in the plasmids selected for 

sequencing. For verification, additional colonies could have been screened, and their 

plasmids extracted and sequenced. However, owing to time constraints, these were 

excluded, and hence 11 antigens proceeded to expression trials (Figure 4.21). 

 

 

Figure 4.21: Flow diagram illustrating the cloning process for the gamete and ookinete antigens 

in the Rosetta-gami™ bacterial expression system. The diagram shows the protein production 

pipeline with a description of the antigens that progressed through each cloning step for ultimate protein 

expression and those that did not. 
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4.5.2.3.(b) Protein expression 

Small scale expression trials were carried out for the 11 antigens. Expression was 

observed for all but MFR5 and GAP50 (Figure 4.22), giving a much higher success 

rate than the WGCFS. I also attempted to express SUMO tag protein as a negative 

control; however, no protein was detected in the expression trial. Furthermore, though 

CHT1 was expressed, it was not possible to recover soluble protein during protein 

purification, possibly due to protein aggregation during protein expression leading to 

the production of insoluble protein525. Of the eight remaining antigens, P28, PH, 

SOAP, VAMP, PBCPP2, PBCPP3 were reasonably expressed and for these, protein 

production was scaled up for functional work (Figure 4.23).  A summary of the 

protein production pipeline for the gamete and ookinete-stage antigens in the bacterial 

system is provided in Figure 4.24. 

 

Figure 4.22: Western blot analysis of the small-scale expression trial. Small scale expression trials 

for 11 of the gamete and ookinete proteins in the Rosetta-gami™ bacterial expression system. 

Soluble and pellet fractions were analysed to test for evidence of protein expression. For (A) the 

extracted protein was purified before analysis by western blot, for (B) and (C), un-purified protein 

extract and the pellet fraction were analysed on the western blot. 

L – pre-stained protein ladder 

1 – pellet, 2 – flow-through, 3 – eluate. S- soluble fraction and P – pellet fraction. 
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Figure 4.23: Purified protein from the gamete and ookinete antigens after large scale protein 

production. SDS PAGE gels showing purified protein from six of the gamete and ookinete antigens 

that were successfully expressed in the bacterial expression system. 

*L – pre-stained protein ladder 

 

 

 

Figure 4.24: Flow diagram illustrating the protein production process for the gamete and 

ookinete antigens in the Rosetta-gami™ bacterial expression system. The diagram shows the 

protein production pipeline with a description of the antigens that were successfully produced.  

*yield as determined by protein band intensity after Coomassie staining. 
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4.5.2.4 Mass-spectrometry confirmatory analysis 

Mass spectrometry analysis was carried out for the eight gamete and ookinete-stage 

antigens as a second verification of the protein identity. For THX and CHT1, the mass 

spectrometry was carried out in-house at the KWTRP Mass Spectrometry facility. 

Peptides generated from each of the purified proteins were sequenced and blasted 

against a database of the P. falciparum proteome as the P. berghei database was 

unavailable. For THX, the peptides positively matched the THX protein ortholog in 

P. falciparum. Unfortunately, no peptides were generated for CHT1, and I was unable 

to repeat the analysis for verification. For P28, SOAP, PH, VAMP, PBCPP2 and 

PBCPP3, the analysis was outsourced to the Cambridge Centre for Proteomics for 

LC/MS/MS analysis. The peptides generated from the six proteins positively matched 

their respective gene when searched on the P. berghei protein database. 

4.5.3 Summary of protein production 

A summary of the antigens successfully produced and the expression system they 

were produced in is provided below in Table 4.5. 
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Table 4.5: Summary of antigens successfully produced as recombinant protein 

Candidate name Gene ID Parasite stage Parasite species Expression system* 

Pfs230 PF3D7_0209000 Gametocyte P. falciparum WGCFS 

CVMPPP PF3D7_1314500 Gametocyte P. falciparum Mammalian 

PEB-P PF3D7_0303900 Gametocyte P. falciparum Mammalian 

PSOP1 PF3D7_0721700 Gametocyte P. falciparum Mammalian 

CPP4 PF3D7_0208800 Gametocyte P. falciparum WGCFS 

MDV1 PF3D7_1216500 Gametocyte P. falciparum WGCFS 

G377B 3D7 PF3D7_1250100 Gametocyte P. falciparum WGCFS 

G377B PfKE04 PF3D7_1250100 Gametocyte P. falciparum WGCFS 

PSOP25 3D7 PF3D7_0620000 Gametocyte P. falciparum WGCFS 

PSOP25 PfKE04 PF3D7_0620001 Gametocyte P. falciparum WGCFS 

P28 PBANKA_0514900 Gamete and ookinete P. berghei Bacterial 

PBCPP2 PBANKA_1463900 Gamete and ookinete P. berghei Bacterial 

PBCPP3 PBANKA_1112700 Gamete and ookinete P. berghei Bacterial 

SOAP PBANKA_1037800 Gamete and ookinete P. berghei Bacterial 

PH PBANKA_0417200 Gamete and ookinete P. berghei Bacterial 

CHT1 PBANKA_0800500 Gamete and ookinete P. berghei Bacterial 

THX PBANKA_0942500 Gamete and ookinete P. berghei Bacterial 

VAMP PBANKA_1303700 Gamete and ookinete P. berghei Bacterial 

SEAP N/A Control N/A Mammalian 

GST N/A Control N/A WGCFS 

* WGCFS – wheat germ cell-free expression system. 
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4.6 Discussion 

The work described in this chapter outlines the identification of potential target 

antigens from Plasmodium sexual stages for further characterisation by 

immunoprofiling and transmission-blocking assays. To identify antigens with high 

expression in the mature stage five gametocyte, I used proteomic rather than 

transcriptomic data. Owing to the potential for mRNA degradation or delayed mRNA 

translation (e.g. as known for Pfs25)361,531,532, proteomic data provides a more accurate 

picture of stage-specific expression patterns. A total of 25 antigens from the 

gametocyte stage and 21 antigens from the gamete and ookinete stage were identified.  

The majority of the identified antigens (19 of the gametocyte antigens and 16 gamete 

and ookinete antigens) had not been studied as TBV candidates and hence provided 

attractive targets for study. 

As the whole genome sequence of a lab-adapted field isolate from Kilifi was available, 

I decided to analyse the presence of sequence variation in the target antigens. Antigen 

polymorphism is a challenge for vaccine design as strain-specific responses limit the 

efficacy of highly polymorphic vaccine candidates, for instance, the blood-stage 

antigens AMA1256 and MSP-2254. Though exhibiting less polymorphism than blood 

stage antigens, Pfs230 and Pfs48/45 contain non-synonymous SNPS and 

indels203,425,487,533,534; hence the impact this variation can have on vaccine efficacy 

needs to be investigated.  

In order to analyse sequence variation in the selected antigens, I compared respective 

sequences from the Plasmodium falciparum strain 3D7 to those from the field strain 

PfKE04. There was evidence of sequence variation ranging from SNPs to 

insertions/deletions (indels) for 11 of the gametocyte antigens and only 4 of the 

gamete and ookinete antigens. As gamete/ookinete antigens are not expressed in the 

human host, extensive polymorphism resulting from immune pressure (as seen with 

immunodominant antigens such as AMA1 and MSP-2367,535,536) does not occur. 

Therefore, the level of sequence variation would be lower than that of gametocyte 

antigens. The most common variation was indels, ranging in size from one amino acid 

(APP) to 50 amino acids (PSOP25) (Table 4.1 and Table 4.3). SNPs were also 

present, with four of the gametocyte antigens and one gamete/ookinete antigen having 

more than one SNP along the sequence.  
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The AT-rich genome of P. falciparum contains extensive low complexity regions 

characterised by homopolymers of single amino acids, heteropolymers of repeated 

motifs or irregularly repeated stretches of amino acids482–484. Such regions are 

typically in exposed regions of proteins and are prone to diversification either by 

deletion, mutation or recombination events, possibly as an immune evasion strategy. 

The extent to which sequence variation affects the efficacy of a candidate antigen can 

vary. For instance, the three amino acid deletion in Pfs230-C identified in PfKE04 has 

also been identified in field isolates in Ghana425. The study in Ghana found that 30% 

of their sequenced samples had this polymorphism. However, the sequence variation 

did not lead to differential immune responses to Pfs230. I produced both variants of 

PSOP25 and G377B intending to analyse whether there was an impact on immune 

recognition (Chapter 5) or functional activity of antibodies raised against the proteins 

(Chapter 6). 

Initial protein expression trials were carried out in the WGCFS as it has successfully 

produced P. falciparum genes 491,494,537. Direct cloning of the GOI into the WGCFS 

expression vector after amplification was unsuccessful and therefore, I chose to use a 

sub-cloning approach. I first cloned the PCR products into an optimised cloning vector 

before excising them and cloning them into the expression vector. This approach 

proved most successful, and I was able to clone 19 of the gametocyte antigens and 15 

of the gamete/ookinete antigens. Evidence of protein expression was evident for 14 

of the gametocyte antigens, a success rate of  74% which is comparable to that 

reported by Fan et al. (2013)492 who expressed P. falciparum merozoite antigens in 

the WGCFS. Due to cost and time considerations, I chose to scale up production for 

4 of the antigens (CPP4, MDV1, PSOP25 (PfKE04 and 3D7) and G377 (domain B, 

PfKE04 and 3D7).  

As the mammalian system has also successfully produced P. falciparum 

antigens485,488, I also attempted expression of a subset of proteins in the HEK293E 

system. Nucleotide sequences corresponding to the GOI were codon optimised and 

had all potential N-glycosylation sites modified to enhance protein expression488. Five 

of 13 proteins were produced, and only three of these were produced at a high enough 

yield to allow scale-up. While this was lower than the success rate of 68% reported 

by Daria et al. (2017)304, I was unable to optimise expression conditions for the 

unsuccessful antigens owing to time constraints. Therefore, I cannot confidently 
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comment on their expression potential. Therefore, in total, I was able to produce seven 

gametocyte antigens (including two antigens with variants) in either system for further 

evaluation. Additionally, Pfs230-C was included as a positive control bringing the 

total number of gametocyte antigens to eight. 

Curiously, the G377 variants migrated at double their expected molecular weight, and 

the sequence variation between them was not definitively verified. G377 protein has 

an abundance of acidic amino acid residues that could result in reduced binding of 

SDS, and hence they remain insufficiently denatured during electrophoresis538–540. 

Insufficient denaturation may retard their progress during electrophoresis. The 

expected variation between the G377B variants may not have been observed due to 

the complete deletion of the ‘PLNHEEDNF’ motif for 3D7 and acquisition of the 

PfKE04 SNP. The 3D7 isolate used in this study may have acquired novel mutations 

over time in continuous culture, distinguishing its sequence from the reference 

sequence on PlasmoDB. Cultured parasites do acquire mutations over time that allow 

them to better adapt to in vitro culture, for instance, loss-of-function mutations in 

genes required for sexual stage progression541. Nevertheless, the differential migration 

pattern did indicate a difference between G377B 3D7 and PfKE04, and hence I 

decided to proceed with the two variants in further assays. 

 I had a much lower success rate when expressing the gamete and ookinete antigens 

in the wheat germ system. Few were expressed (5 of 15) and protein yields were lower 

than with the gametocyte antigens. However, I was able to obtain sufficient yields of 

CHT1 and THX for further work. Protein expression was reattempted for all antigens 

in the bacterial expression system. I chose a modified bacterial strain that provides an 

oxidising environment for disulphide bond formation and is also supplemented with 

rare tRNAs to overcome codon bias496,497. In this way, I hoped to circumvent the 

challenges of producing eukaryotic proteins in bacterial cells, for instance, insoluble 

or truncated protein and low success rates, 480,525. Additionally, I chose to fuse the 

recombinant protein to a SUMO tag to enhance solubility529. Of the 11 antigens tested 

in small-scale expression trials, eight antigens were expressed, and six of these were 

expressed at high yield to give a success rate of roughly 73%. This was encouraging 

and potentially highlights an improved protocol for producing protein in the bacterial 

expression system where success rates as low as 6.3%480 or 7%481 have been reported. 
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Therefore, the total number of gamete/ookinete antigens for evaluation stood at eight 

(P28, PH, SOAP, VAMP, PBCPP2, PBCPP3, CHT1 and THX). 

4.6.1 Limitations 

The target was to produce full-length protein for the gametocyte, gamete and ookinete 

antigens where possible, for this reason, I set a target to only express proteins smaller 

than 120 kDa. It was apparent, however, that for the majority of proteins 

approximately 80 kDa or larger, both cloning and protein expression were 

unsuccessful in the wheat germ or bacterial systems. Expression success in both 

systems is inversely correlated with protein size485,493; a phenomenon also evident in 

this work. In retrospect, working with domains of these proteins may have yielded 

better results. Additionally, I was unable to express proteins with multiple internal 

transmembrane domains. In these cases, the expression of the longest ectodomains 

may have been a better option.  

Furthermore, scale-up of production was only possible for a subset of the potential 

antigens expressed in the wheat germ expression system due to the associated costs 

and time constraints. Several of the potentially more exciting candidates (the majority 

of the CPPs from the gametocyte antigens) were excluded from further evaluation. 

However, these can be the subject of future studies. Moreover, due to the relatively 

large number of proteins targeted for expression and the various expression systems 

evaluated, and owing to the time constraints of the PhD, cloning and expression 

conditions for the failed antigens were not extensively optimised. Despite this, a total 

of 16 antigens for immunological and functional characterisation were produced. 

Finally, validation of the protein structure was not carried out, and therefore I cannot 

verify that the recombinant proteins produced assume their native conformation as 

within the parasite. Time constraints and limited quantities of proteins available made 

it challenging to complete this work during my PhD, and further work would be 

required to address this. 

4.6.2 Summary of overall findings 

In summary, through the exploitation of publicly available Plasmodium proteomic 

datasets and by using a tried-and-tested approach for antigen selection, I identified 

and prioritised antigens for evaluation as TBV candidates. The majority of the 

antigens are ‘novel’ and hence provide ideal candidates for pre-clinical evaluation. As 
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a single, reliable expression platform for heterologous production of Plasmodium 

proteins does not yet exist, I evaluated different systems to maximise expression 

success. Protein production was challenging, with difficulties arising at gene 

amplification, construct design, and finally at the protein expression step. 

Nevertheless, I produced eight gametocyte antigens and eight gamete and ookinete 

antigens for immunological and functional evaluation.  
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Chapter 5  

Naturally Acquired Immune Responses to the Identified 

Gametocyte Antigens 

5.1. Introduction 

Early studies demonstrated that immune responses to a range of gametocyte antigens 

were readily detectable in the sera of malaria exposed individuals, and developed 

rapidly after primary infection193,201,542,543. The majority of circulating gametocytes 

are destroyed within the human host before transmission to mosquitoes can occur. 

This destruction results in a multitude of gametocyte proteins being presented to the 

host's immune system, subsequently stimulating an immune response27,332. The 

naturally acquired immune response is mostly humoral, and there is evidence that 

these responses are capable of inhibiting parasite development within the mosquito, 

thereby interrupting transmission74,200. The ability of these immune responses to 

interrupt the infectious reservoir has stimulated interest in understanding the dynamics 

of natural immunity to gametocytes as this could inform the development74 and 

implementation of transmission-blocking vaccines222. 

Early investigations into NAI to sexual stage antigens, based on studies of Pfs230 and 

Pfs48/45, observed that not all malaria-exposed individuals made responses to either 

antigen201,423,544,545. The lack of response was not explained by a lack of parasite 

exposure and seemed to suggest genetic restriction. However, further studies in twins 

and individuals with similar HLA genotypes showed that the ability to respond to 

either antigen is not genetically determined423,546,547. Potential explanations for the 

lack of response may relate to genetic variation in Pfs230 and Pfs48/45 leading to 

isolate-specific responses423,544, impaired T helper cell function leading to reduced 

antibody production423, short-lived antibody responses and/or low immunogenicity of 

the antigens547.  

Interestingly, Riley et al. (1994), in a longitudinal study, demonstrated the existence 

of stable responses to Pfs230 in adults423. However, like some more recent 

studies217,218, Graves et al. (1988) did not find an association between increasing age 

and responses to Pfs230 or Pfs48/45201. While associations with age have been 

discrepant, there is suggestion of a maturation of the sexual stage immune response 



202 

 

with repeated parasite exposure 545 as well as increased antibody prevalence548. More 

studies are required to improve our understanding of naturally immunity to 

Plasmodium sexual stages. 

Seroepidemiological studies in endemic populations are typically used to understand 

the acquisition of naturally acquired immunity. Serological status, as defined by the 

level of antibody responses to key parasite antigens, is used as a marker of individual 

and population-level exposure to P. falciparum infection469,549–552. Such studies are 

useful for exploring temporal changes in transmission intensity or defining 

transmission hotspots469,550,553. A second approach utilises seroepidemiological 

studies to identify factors associated with carriage of antibodies to P. falciparum 

antigens. Indicators of parasite exposure, such as age, malaria transmission intensity 

and parasite prevalence, are assessed for associations with immune responses to 

parasite antigens. The second approach has been widely utilised in studies aimed at 

exploring naturally acquired anti-gametocyte immunity200,203,227, and is the approach 

that I take in this current chapter to explore antibody responses to the antigens 

identified in Chapter 4.   

5.2.Rationale 

From the seroepidemiological studies on sexual stage antigens carried out so far, 

based mostly on antibody responses to Pfs230 and Pfs48/45, there exist discrepancies 

in the associations observed with age, transmission intensity and transmission 

season422 (refer to Chapter 2, section 2.1). Therefore, it is crucial to improve our 

understanding of these associations. Furthermore, I speculate that gametocyte carriage 

is also likely to impact naturally acquired immune responses to gametocyte antigens. 

Gametocyte carriage and asexual parasitaemia are rarely explored in 

seroepidemiological analyses of naturally acquired responses to sexual stage antigens. 

A host of factors may influence gametocyte carriage (refer to Chapter 3, section 3.1), 

for example, host genetics, particularly, the haemoglobinopathies conferring 

protection against severe malaria128–130. Based on this premise, I decided to explore 

an array of factors relating to parasite exposure and gametocyte carriage to dissect the 

critical factors associated with naturally acquired immune responses to gametocyte 

antigens. 
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To contextualize the associations I observe, I also evaluated antibody responses to 

AMA1, a highly immunogenic asexual stage antigen203,550,552 widely studied in the 

context of seroprevalence. Aside from Pfs230, the other gametocyte antigens under 

investigation have not been profiled; hence trends seen with AMA1 antibody 

responses could shed some light on associations seen with these antigens. 

Additionally, I used a preparation of crude extract from a gametocyte culture to serve 

as a marker of gametocyte exposure. A crude extract prepared from the asexual 

parasite stages (schizont extract) is a demonstrated marker of exposure to asexual 

parasites551,554,555, lending credibility to this approach. The antibody response to 

gametocyte extract has not been evaluated as a potential marker of recent gametocyte 

exposure, and hence I sought to investigate its prognostic ability. 

Through this analysis, I sought to understand how age, transmission season, parasite 

carriage as well as factors influencing parasite carriage influence antibody responses 

to a panel of largely uncharacterised gametocyte antigens. I used as targets the 

recombinant proteins generated in Chapter 4 (Table 4.5) for this work. First, I hoped 

to identify potential TBV candidates. The panel of antigens that I investigated 

included Pfs230, an antigen to which naturally acquired immunity has been well 

described (Chapter 2). I hypothesise that antigens with similar patterns of association 

may be potential vaccine candidates. Second, I hoped to identify antigens with 

potential as serological markers of recent exposure to gametocytes. Such antigens 

could serve as indicators of populations where TBVs could be prioritised227 or serve 

as part of control strategies to monitor the effectiveness of TBV implementation. For 

this work, I used sera from three cohort studies that provided data on different age 

groups, varied transmission intensities, seasonality and the variation of antibody 

responses over time. 

5.3. Objectives 

The main objective of this analysis was to analyse Plasmodium falciparum 

gametocyte-specific surface antigens as targets of naturally acquired antibodies. 

5.3.1. Specific Objectives 

• Determine the seroprevalence of gametocyte-specific antibodies in individuals 

naturally exposed to malaria. 
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• Describe the dynamics of naturally acquired immune responses to P. 

falciparum gametocyte antigens in relation to (1) commonly used markers of 

parasite exposure (age, transmission intensity, transmission season, and 

parasite prevalence), and (2) risk factors for gametocyte carriage. 

• Explore how antibody responses to the gametocyte antigens relate to 

infectiousness to mosquitoes. 

5.4. Materials and Methods 

5.4.1. Materials 

A summary of commercially available reagents is provided in 9.4 Appendix 4, along 

with recipes for the buffers and solutions used in this work (9.5 Appendix 5). 

5.4.2. Methods 

5.4.2.1. Description of cohorts used for analysis 

For these seroepidemiological analyses, samples and data from three cohorts were 

used. These cohorts included both children and adults, as described below, accounting 

for a combined sample set of 542 individuals. The KMLRC cohort comprised of three 

subcohorts of children followed up longitudinally, with cross-sectional surveys 

carried out to assess asymptomatic P. falciparum infections. The AFIRM cohort 

comprised both children and adults and had sampling carried out in the wet season 

and the dry season. For the LAMB cohort, a group of adults who tested positive for 

parasites on screening were recruited. They were sampled over four months at six time 

points; once every two weeks for the first month, and once a month after that. A map 

showing the locations of populations sampled is provided in Chapter 3, Figure 3.1. 

A summary of the cohorts is provided in Table 5.1 below. 

Table 5.1: Summary of the cohorts included in the immunoprofiling 

Cohort Location (s) Study Design 
Period of Sample 

Collection 

Population 

Sampled 

Sample 

Size 

KMLRC 
Ngerenya 

and Junju 

Cross-

sectional 

surveys 

1998 - 2016 Children  272 

AFIRM Junju  

Cross-

sectional 

(seasonally 

spaced) 

January 2014 - 

February 2015 

Children and 

Adults 
216 
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Cohort Location (s) Study Design 
Period of Sample 

Collection 

Population 

Sampled 

Sample 

Size 

LAMB Junju Longitudinal 
June 2015 - October 

2015 
Adults 54 

 

5.4.2.1.(a) Kilifi Malaria Longitudinal Rolling Cohort (KMLRC) 

A detailed description of the study design and sampling protocol for the KMLRC 

cohort has been provided in Chapter 3, section 3.4. A subset of the archived samples 

from the cohort was selected for immunoprofiling. The samples were selected by first 

identifying all gametocyte positive individuals over the 1998 – 2016 follow-up period; 

a total of 364 samples were identified at this point. Two sets of controls matched by 

age, sex and cohort were then selected, one set was asexual parasite positive but 

gametocyte negative, and the second set was asexual parasite negative and gametocyte 

negative. This gave a total sample set of 1092 samples for analysis. Some of the sera 

samples had been depleted over time, and only a fraction of samples from Ngerenya 

and Junju locations were available for analysis. Of the 1092 samples, 66 of the 

gametocyte-positive, 72 of the asexual parasite positive and 134 of the parasite 

negative samples from the shortlisted samples had sera available for analysis. 

Therefore, a total of 272 samples from the KMLRC cohort were used for the analysis. 

As in Chapter 3, Ngerenya was divided into Ngerenya early (1998 – 2001), a period 

of moderate transmission and Ngerenya late (2002 – 2016), a period of low 

transmission. In this chapter, Ngerenya and Junju will be referred to as subcohorts of 

the KMLRC cohort. 

5.4.2.1.(b) Measurement of Malaria Transmissibility in Adults and 

Children (AFIRM) 

The AFIRM study was carried out in Junju location, Kilifi, to describe the proportion 

of mosquito infections in an area of moderate malaria transmission intensity. Details 

of this cohort have previously been published72. The study design was cross-sectional 

with two surveys carried out, one during the rainy season and one in the dry season. 

It is important to note that on the Kenyan coast, parasite transmission occurs all year 

round, although with increased transmission following the onset of the rainy 

season158,556.  There is no widely accepted definition of the start and the end of the 
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malaria transmission season. Therefore, to define the dry and wet seasons, monthly 

rainfall data collected between 2013 – 2015 was used. Different participants were 

recruited at each cross-sectional survey and recruitment was carried out between 

January 2014 and April 2014 for the dry season (additional participants were recruited 

between January 2015 and February 2015) and between May and December for the 

rainy season. Children and adults were recruited into the study regardless of parasite 

status. Samples were collected from the age categories 2 – 5 years, 6 – 18 years and 

> 18 years in a ratio of 1:1:2 under the hypothesis that older individuals potentially 

contribute more to the infectious reservoir72. The key inclusion criteria were informed 

consent, age greater than two years, and willingness to provide a single 5 ml venous 

blood sample. Individuals with acute disease or severe chronic conditions were 

excluded. At the time of sampling, rapid diagnostic tests were performed using 

Carestart RDTs®, and individuals who tested positive were given a full course of anti-

malarial treatment. Blood drawn from the participants was used to assess 

infectiousness using membrane feeding assays, following an established protocol557, 

and to detect parasites both microscopically and by molecular methods. Infectiousness 

was defined as the ability of an individual to infect at least one mosquito. Molecular 

detection and quantification of all parasites was done by 18S rRNA quantitative 

nucleic acid sequence-based amplification (QT-NASBA) and 18S qPCR while 

specific detection of female gametocytes was carried out by Pfs25 mRNA QT-

NASBA558,559. A total of 216 samples (72 from adults, 72 from children over five 

years and 72 from children under five years) were selected at random from the main 

AFIRM dataset for analysis. 

5.4.2.1.(c) Longitudinal Assessment of Malaria Transmissibility 

(LAMB) Cohort 

The LAMB study was a longitudinal analysis of the kinetics of parasite prevalence 

and infectivity that was carried out in Junju location. Asymptomatic adults were the 

key population investigated in the LAMB study and were recruited between June to 

October 2015. The study was designed to collect samples at six time points for 

analysis: days 0, 14, 28, 56, 84 and 112. At each time point, a venous blood sample 

was taken (5 ml) for membrane feeding assays using an established protocol557 and 

for parasite detection by microscopy and molecular methods. The molecular methods 

were as follows:18S quantitative PCR (18S qPCR) for the detection of all parasites, 
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and Pfs25 quantitative reverse transcriptase PCR (Pfs25 qRT-PCR) to detect female 

gametocytes. 

Additionally, the number of parasite clones in each infection, multiplicity of infection 

(MOI), was determined by genotyping the polymorphic MSP2 locus by nested PCR. 

Fluorescently labelled primers targeted to the IC and FC27 regions were used as 

previously described560. This was followed by sizing of the PCR-generated fragments 

by multi-coloured capillary electrophoresis in a DNA sequencer. The MOI detection 

was outsourced to the in-house KWTRP sequencing facility. 

Inclusion criteria into the study were a minimum of 240 parasites/μl or the presence 

of gametocytes upon screening. A total of 380 individuals were consented and 

screened for recruitment into the study. However, after detailed parasitological 

screening, only 73 individuals were eligible for recruitment. Of the 73 individuals, 19 

individuals were excluded from the study for reasons such as withdrawal of consent, 

loss to follow-up and ineligibility upon further screening. This left 54 individuals for 

enrolment in the study (Figure 5.1). Not all individuals were present for sample 

collection at each time point due to a variety of challenges. These challenges are listed 

in the legend to Figure 5.1. Therefore, a total of 285 samples were eventually 

collected at the end of follow-up. A histogram of the number of samples each 

participant contributed has been added to the supplementary material (9.9 Appendix 

9). 
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Figure 5.1 Participant recruitment into the LAMB longitudinal cohort study. Flow diagram 

showing the selection process of individuals to enrol into the LAMB cohort. Reasons for exclusion are 

shown at each step.  

*Not all participants were able to provide samples at each timepoint for reasons described below: 

- Four individuals withdrew consent after enrolment: 2 at Day 0, 1 at Day 14 and 1 at Day 56 

- One individual was lost to follow-up 

Reasons for non-attendance of scheduled visits included: funeral attendance, family visits outside the 

study area and refusal by spouse due to household obligations. 

 

5.4.2.2. Preparation of gametocyte extract (GE) and AMA1 

A crude extract was prepared from mature gametocytes to analyse gametocyte 

exposure in the cohorts studied. P. falciparum NF54 asexual parasites were cultured 

in complete culture media in an incubator at conditions of 92% N2, 3% O2, 5% CO2 

and temperature of 37ºC. The asexual parasites were maintained at 5% hematocrit and 
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6% parasitaemia. The culture was synchronised twice by sorbitol treatment on the day 

preceding gametocyte induction, at 0 – 6 hours post-invasion (determined by the 

morphology of the infected red blood cell) and at 18 – 24 hours. On the day of 

induction, day 0, the parasitaemia was diluted to 1% and fresh O+ red blood cells 

added to the culture to attain 5% haematocrit. From day one onwards, the media was 

changed daily with the temperature maintained at 37ºC during media changes. 

Gametocytaemia was monitored daily, and on day 13, when the gametocytes were 

between stages IV and V and at 3% gametocytaemia, the gametocyte-infected red 

blood cells were harvested. As asexual parasites were not cleared after induction, it is 

possible that low levels of asexual parasites and immature gametocytes were present 

in the culture at harvest. To prepare the extract, the culture was first spun down at 

1800 rpm for 5 minutes to pellet the cells and remove culture media. The pellet was 

then diluted in carbonate bicarbonate buffer at a ratio of 1:5 and sonicated for 30 

minutes. After this, the pellet was rapidly freeze-thawed three times by placing it at -

80ºC for 10 minutes, followed by thawing at room temperature for 10 minutes. The 

prepared extract was then stored at -80 ºC awaiting ELISA. 

The AMA1 protein used was expressed in the mammalian HEK293E system and was 

a kind gift from Dr James Tuju. 

5.4.2.3. Enzyme-Linked Immunosorbent Assay (ELISA) 

5.4.2.3.(a) Checkerboard titration 

To determine the optimum concentration of antigen and dilution of serum to use for 

the immunoprofiling, checkerboard ELISAs were carried out (9.8 Appendix 8). A 

three-day ELISA was conducted using the ELISA protocol described by Murungi et 

al. (2019)561 with a few modifications. On the first day, 100 µL of the purified 

recombinant protein prepared in coating buffer was serially diluted 2-fold from a 

starting concentration of 4 μg/ml to 0.5 μg/ml. The different dilutions of protein were 

then coated onto a 96-well Immulon 4 HBX plate such that the lowest dilution (0.5 

μg/ml) occupied wells A1-A12, with duplicates on B1-B12, and the highest 

concentration wells G1-G12 and H1-H12 (Figure 5.2). For gametocyte extract, two 

sets of dilutions were prepared, 1:50 – 1:400 and 1:500 – 1:4000, and these were 

coated on the plates. The plate, coated with either recombinant protein or gametocyte 

extract, was then incubated at 4°C overnight. On the next day, the plate was washed 
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four times with phosphate-buffered saline (PBS) containing 0.05% tween-20 (PBS/T). 

The plate was then blocked with 200 µL of blocking buffer for five hours at room 

temperature, and after this, the plates were washed three times with PBS/T.   

A previously defined and characterised pool of hyper-immune sera (PHIS) obtained 

from a random selection of adult residents of Junju location, Kilifi182,187, and a pool 

of non-exposed sera from European adults (non-immune sera, PNIS) was used as 

positive and negative controls respectively. The adults from Junju location are 

presumed to have had high exposure to malaria and hence possess NAI to malaria. 

While transmission-blocking activity has not been tested for PHIS, it is strongly 

reactive to asexual stage antigens and has shown evidence of recognition of the 

gametocyte antigens MDV1, CPP3 and CPP5 (9.9 Appendix 9).  The two control sera 

were prepared in blocking buffer at dilutions of 1:100, 1:200, 1:400, 1:800 and 1:1000 

before 100 μl of each dilution of PHIS was added sequentially (from lowest to highest 

dilution) from wells A1-H1 up to A5-H5. 100 ul of blocking buffer was added to wells 

A6-H6 and A12-H12 to serve as an assay control (blank). The PNIS, diluted similarly 

to the PHIS, was added sequentially from wells A7-H7 to A11-H11 and the plate then 

incubated at 4°C overnight.  

On the third day, the plate was washed three times in PBS/T before 100 µL of 

secondary antibody (polyclonal rabbit anti-human IgG-HRP) was added at a dilution 

of 1: 5,000 and the plate incubated at room temperature for three hours. The plate was 

then washed four times, and 100 µL of o-phenylenediamine dihydrochloride (OPD) 

substrate was added, and the plate incubated at room temperature for 15 minutes. 

Colour development was stopped by adding 25 µL of 2 M sulphuric acid (H2SO4). 

Absorbance was then read at 492 nM to determine the optical density (O. D) of each 

sample. 
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Figure 5.2: Template used for the checkerboard ELISA. A) Template used for checkerboard 

titration of the different recombinant antigens. B) Template used for checkerboard titration of 

gametocyte extract. Two sets of dilutions were prepared, 1 in 50 to 1 in 400, and 1 in 500 to 1 in 4000. 

The dilutions 1 in 500 to 1 in 4000 were plated in a similar format to the 1 in 50 to 1 in 400 dilutions. 

GE – gametocyte extract; PHIS – pooled hyperimmune sera; PNIS – pooled non-immune sera.  

 

5.4.2.3.(b) Standardised ELISA 

To determine the reactivity of the serum samples to the antigens, gametocyte extract, 

and AMA1, a standardised ELISA was run using a similar protocol to the 

checkerboard ELISA. In this case, however, a single concentration of antigen (1 μg/ml 

for the gametocyte antigens, 0.5 μg/ml for AMA1 and 1 in 250 dilution for GE) was 

coated onto the 96-well ELISA plate (Figure 5.3). A standardised ELISA was chosen 

to facilitate comparisons of data from different ELISA plates562. Additionally, a single 

dilution of test sera was tested, being: 1 in 200 (or 1 in 100 for lowly reactive antigens) 

for the gametocyte antigens; 1 in 1000 (or 1 in 2000 for adult sera tested) for AMA1, 

and 1 in 500 for GE). Four individual non-immune sera (NIS) were tested alongside 

the test sera as negative controls at the start of the ELISAs. However, these were 

increased to eight when more non-immune serum samples became available. The NIS 

was tested against measles antigen to verify that they were indeed reactive (9.8 

Appendix 8). Two positive controls were used, PHIS and PGP (a pool of 80 sera from 

A

1 in 100 1 in 200 1 in 400 1 in 800 1 in 1000 Blank 1 in 100 1 in 200 1 in 400 1 in 800 1 in 1000 Blank

Antigen 1 2 3 4 5 6 7 8 9 10 11 12

0.5ug/ml A

B

1ug/ml C

D

2ug/ml E

F

4ug/ml G

H

B

1 in 100 1 in 200 1 in 400 1 in 800 1 in 1000 Blank 1 in 100 1 in 200 1 in 400 1 in 800 1 in 1000 Blank

GE 1 2 3 4 5 6 7 8 9 10 11 12

1 in 50 A

B

1 in 100 C

D

1 in 200 E

F

1 in 400 G

H

PHIS NIS

PHIS NIS
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gametocyte-positive individuals from the AFIRM cohort, including 36 of the test 

samples, with high gametocytaemia as determined by QT- NASBA). A serial dilution 

of malaria immune globulin (MIG) was also included on each plate to allow for 

relative quantification of antibody levels in arbitrary units. The MIG used was 

prepared from the purified immunoglobulin G (98% IgG) of a pool of 834 Malawian 

adult sera originally manufactured for use as therapy in children with cerebral 

malaria563. All samples were run in duplicate, with duplicates run on a separate plate.  

 

Figure 5.3: Template used for the standard ELISA. Sam – sample; UK – sera from European 

malaria naïve individuals; PHIS – pooled hyperimmune sera; PGP – pooled gametocyte-positive sera; 

highlighted in blue is the serial dilution of malaria immune globulin (MIG) used to prepare a standard 

curve for relative quantification.  

 

 

5.4.2.4. Statistical Analysis 

All samples were run in duplicate, and therefore before analysis, the mean OD and 

co-efficient of variation were calculated.  Samples with a coefficient of variation 

higher than 20% were repeated. Where samples were repeated, only the measurements 

of the repeat duplicate measurements were used in the analysis. A four-parameter 

hyperbolic standard curve was generated from the serially diluted MIG present on 

each plate. The antibody concentration of each sample was then extrapolated from the 

MIG curve run on the same plate. In order to determine seropositivity to each antigen, 

a cut-off was calculated by taking the mean antibody concentration of the NIS plus 

three standard deviations for increased stringency422 (refer to Chapter 2, section 2.6). 

A two proportions z-test was used to compare seroprevalence estimates between 

G377B variants and also between sampling seasons. Additionally, the Cochrane-

Armitage test was used to test for a linear trend in proportions. For comparisons of 

the demographic characteristics of participants from the different cohorts a two 

proportions z-test was used for the AFIRM cohort, a three proportions test for the 
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KMLRC subcohorts and a 6 proportions test for the LAMB cohort. For summaries of 

parasite density in relation to the variables age, sickle cell status, a-thalassaemia 

status, cohort, season and sampling timepoint, comparisons between groups were 

tested for significance using the Kruskal-Wallis test where variable had more than one 

category. If the test was significant, post-hoc analysis using the Dunn’s test with 

Bonferroni correction was used for pairwise comparisons. Where a categorical 

variable had only two groups, the Wilcoxon rank-sum test was used. 

Linear regression models were used to assess the factors associated with the levels of 

antibodies to the gametocyte antigens. The models were used to assess how well the 

covariates age, parasite prevalence, sickle cell genotype, α-thalassaemia genotype, 

transmission intensity, and season predicted the magnitude of antibody responses to 

the antigens, as well as the breadth of response. Age was used as a categorical variable 

with the ‘0 – 5-year’ age group chosen as the reference category. As the KMLRC 

cohort included repeated measures for individuals, I calculated cluster-robust standard 

errors with clustering specified to occur by participant ID. Owing to the small sample 

size of the LAMB cohort, a linear mixed effects model, with participant ID included 

as a random effect was used. Both univariable and multivariable models were 

analysed, and these included all the variables under investigation. No backwards 

selection was carried out to assess the associations seen with all the variables and 

examine how these associations varied across antigens.  

To assess associations the factors associated with infectivity to mosquitoes, the 

frequency of infectiousness (with infectiousness coded as a binary variable) was 

tabulated according to the variables age and parasite status. A Fisher’s exact test used 

to test for significant differences among the categories of the variables.  
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5.5. Results 

5.5.1. Demographic characteristics of study participants 

5.5.1.1. KMLRC 

The demographic characteristics of the study participants are presented in Table 5.2. 

The majority of observations were from children aged 0 – 5 years of age in all 

subcohorts (Ngerenya early - 64%, Ngerenya late - 60% and Junju - 52%, p = 0.3017). 

Asexual parasite prevalence was 78% in Ngerenya early, 60.4% in Junju and 19% in 

Ngerenya late. Gametocyte prevalence was 25% in Ngerenya early, 33% in Junju and 

8% in Ngerenya early. Though cases were initially matched with controls (based on 

age, sex and cohort), the matching was lost after sample retrieval. Thus, this is 

reflected in the variable prevalence of asexual parasites in the sub-cohorts, with a 

disproportionate number of controls in Ngerenya late. The prevalence of sickle cell 

trait genotype (AS) was quite varied among the subcohorts with the lowest prevalence 

in Ngerenya early 2%, with higher prevalence in Ngerenya late 17.6% and Junju 27% 

(p = 0.0009). The higher prevalence of sickle cell trait in Ngerenya late likely results 

from a loss in matching after sample retrieval where a majority of Ngerenya early 

samples were missing and not an actual increase in prevalence over time. On the other 

hand, close to half the participants were heterozygous for α – thalassaemia (Ngerenya 

early 47.7%, Ngerenya late 52.8% and Junju 50%, p = 0.43). 
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Table 5.2: Demographic characteristics of observations from a subset of the KMLRC cohort study participants 

 Subcohort  

 Ngerenya 
Junju p – value* 

  Early Late 

Total number of observations  50 126 96  

Number of observations from females (%) 25 (50.0) 40 (31.7) 45 (46.9) 0.0235 

Number of observations per age group (%)     

0 - 5 years 32 (64.0) 76 (60.3) 50 (52.1) 0.3017 

6 - 10 years 14 (28.0) 41 (32.5) 29 (30.2) 0.8281 

11-15 years 4 (8.0) 9 (7.1) 17 (17.7) 0.0339 

Temperature (°C), median (IQR) . 36.9 (36.6 - 37.1) 36.5 (36.2 - 36.9)  

Number of asexual parasite positive observations (%) 39 (78.0) 24 (19.0) 58 (60.4) <0.0001 

Number of gametocyte positive observations (%) 25 (50.0) 8 (6.3) 33 (34.4) <0.0001 

Number of observations with sickle genotype (%)     

AA 49 (98.0) 103 (82.4) 70 (72.9) 0.0009 

AS  1 (2.0) 22 (17.6) 26 (27.1) 0.0009 

 Number of observations with α-thalassaemia genotype (%)     

Normal 18 (40.9) 39 (31.7) 31 (32.3) 0.8566 

Heterozygous 21 (47.7) 65 (52.8) 48 (50.0) 0.4329 

Homozygous 5 (11.4) 19 (15.4) 17 (17.7) 0.4678 

     

Missing data     

Sickle genotype . 1 .  

 α-thalassaemia genotype 6 3 .  

Temperature 50 . .   

* A three proportions Z-test was used to compare the proportions among the KMLRC subcohorts
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5.5.1.2. AFIRM 

There were slightly higher numbers of participants sampled in the wet season, 120 

participants compared to 96 participants sampled in the dry season (Table 5.3). 

However, there was no statistically significant difference in the representation of 

participants from each of the age categories for both the dry and wet seasons.  Parasite 

prevalence was higher in the wet season compared to the dry season when detection 

was carried out using rapid diagnostic tests, 28.3% vs 12.5% in the wet and dry 

seasons respectively (p = 0.0078). No difference was observed between parasite 

carriage in the dry and the wet season when molecular methods were used (18S qPCR: 

32.5% vs 41.7% (p = 0.21) and NASBA 18S: 49.2% vs 50% (p = 1)), indicating a 

high proportion of submicroscopic parasite carriage in the dry season. 18SA similar 

pattern was indicated for gametocyte prevalence, as detected by female-gametocyte 

specific NASBA Pfs25 (24% vs 25.8% in the wet and dry seasons respectively (p = 

0.87)). Additionally, for parasite detection by microscopy, no significant difference in 

parasite carriage was observed in the dry and the wet season (16.7% vs 8.3% (p = 

0.11) for asexual parasites and 1% vs 3.3 % (p = 0.51) for gametocytes in the wet and 

dry seasons respectively). The prevalence of sickle cell trait was lower than that of α-

thalassaemia (17.4% on average), with approximately half the participants 

heterozygous for α – thalassaemia. There was no statistically significant difference in 

the proportion of participants with the different sickle cell and a-thalassaemia 

genotypes in the dry compared to the wet season.    
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Table 5.3: Demographic characteristics of participants from the AFIRM cohort study  

 
Season  

  Dry Wet p – value* 

Total number  96 120  

Number of females (%) 61 (63.5) 61 (50.8) 0.0829 

Number per age group (%) 
  

 

0 - 5 years 27 (28.1) 45 (37.5) 0.1912 

6 - 15 years 33 (34.4) 39 (32.5) 0.8845 

>15 years 36 (37.5) 36 (30) 0.3093 

Temperature (°C), median (IQR) 36.6 (36.3 - 37.0) 36.6 (36.2 - 36.8)  

Number RDT positive (%) 12 (12.5) 34 (28.3) 0.0079 

Parasite Prevalence    

 qPCR (18s) 40 (41.7) 39 (32.5) 0.2121 

NASBA (18s) 48 (50) 59 (49.2) 1.0000 

Asexual parasite prevalence - Microscopy (%)  8 (8.3) 20 (16.7) 0.1078 

Gametocyte prevalence (%)  

  
 

 Microscopy  1 (1.0) 4 (3.3) 0.5108 

 NASBA (Pfs25) 23 (24) 31 (25.8) 0.8744 

Sickle genotype (%)    

AA 77 (80.2) 102 (85) 0.4550 

AS  19 (19.8) 18 (15) 0.4550 

α - Thalassaemia genotype (%)   
 

Normal 30 (31.3) 38 (31.7) 1.0000 

Heterozygous 51 (53.1) 56 (46.7) 0.4200 

Homozygous 15 (15.6) 26 (21.7) 0.3418 

* A two-proportions Z-test was used to compare the proportions between the dry and wet seasons.
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5.5.1.3. LAMB 

A total of 54 adults, mostly female (88%, median age 29.5 years), were recruited on 

screening, though not all were present for sampling at each time point (Table 5.4). 

All individuals considered for the study were positive for asexual parasites upon 

screening. However, on day 0, the day of enrolment, only 16% had microscopically 

detectable parasites with 48.1% positive by 18S qPCR. No treatment was provided to 

the participants prior to the study.   Over the follow-up period, parasitaemia as 

detected by RDT varied significantly over the timepoints (p = 0.03). However, no 

significant variation in parasite prevalence over the timepoints was observed when 

parasite detection was by qPCR (p = 0.95). Asexual parasite prevalence as detected 

by microscopy also did not vary significantly over the 6 timepoints of follow up (p = 

0.21). For gametocytaemia, only one individual tested positive for gametocytes by 

microscopy during the follow-up period, and this was at day 14. Molecular detection 

by qRT-PCR detected more gametocyte carriers and indicated significant variation in 

gametocyte prevalence over the timepoints (p = 0.01). The frequencies of the different 

sickle cell and α-thalassaemia genotypes were similar to those described for the 

AFIRM cohort and were not significantly different between timepoints (p >0.05) 

 



219 

 

Table 5.4: Demographic characteristics of participants from the LAMB cohort study  

  Day of Follow-up  

  Screening Day 0 Day 14 Day 28 Day 56 Day 84 Day 112 

p – 

value*  

Total number 54 54 38 50 46 48 49  

Age (years), median (IQR) 
29.5 (23 - 43) 

29.5 (23 - 

43) 
30.5 (23 - 40) 31 (26 - 44) 31 (25 - 43) 31 (25 - 43) 31 (25 - 44)  

Number of females (%) 47 (88) 47 (87) 34 (89.5) 43 (86.0) 41 (89.1) 41 (85.4) 42 (85.7) 0.9874 

Temperature (°C), median (IQR) 

36.7 (36.4 - 

36.8) 

36.4 (36 - 

36.7) 

36.2 (35.9 - 

36.8) 

36.3 (36 - 

36.5) 

36.3 (35.9 - 

36.6) 

36.4 (36 - 

36.7) 

36.4 (36 - 

36.6) 
 

Number RDT positive (%) ND 22 (40.7) 17 (44.7) 11 (22.0) 9 (19.6) 13 (27.1) 11 (22.4) 0.0293 

Parasite prevalence – 18S qPCR (%) ND 26 (48.1) 21 (55.3) 23 (46.0) 21 (48.8) 25 (52.1) 24 (49.0) 0.9468 

Asexual parasite prevalence - 

Microscopy (%)  
54 (100) 9 (16.7) 9 (25.7) 4 (8) 9 (20.9) 5 (10.6) 10 (20.4) 0.2139 

Gametocyte prevalence (%)          

 Microscopy  3 (5.6) 0 1 (2.9) 0 0 0 0 0.2230 

 qPCR  ND 11 (20.4) 8 (21.1) 8 (16) 1 (2.2) 2 (4.2) 4 (8.2) 0.0098 

Sickle genotype (%)         

AA 42 (77.8) 42 (77.8) 28 (73.7) 39 (78.0) 35 (76.1) 38 (79.2) 39 (79.6) 0.9889 

AS  12 (22.2) 12 (22.2) 10 (26.3) 11 (22.0) 11 (23.9) 10 (20.8) 10 (20.4) 0.9889 

α - Thalassaemia genotype (%)         

Normal 22 (41.5) 22 (41.5) 14.0 (37.8) 21 (42.9) 19 (42.2) 20 (42.6) 20 (41.7) 0.9981 

Heterozygous 24 (45.3) 24 (45.3) 18 (48.6) 22 (44.9) 21 (46.7) 21 (44.7) 22 (45.8) 0.9993 

Homozygous 7 (13.2) 7 (13.2) 5 (13.5) 6 (12.2) 5 (11.1) 6 (12.8) 6 (12.5) 0.9996 

Number with anaemia (%) ND 19 (35.2) 11 (28.9) 17 (34.0) 18 (39.1) 15 (32.6) 21 (42.9) 0.7996 

 
        

Missing Data         

Microscopy . . 3 . 3 1 .  

α - Thalassaemia genotype  1 1 1 1 1 1 1  

Anaemia . . . . . 2 .  
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  Day of Follow-up  

  Screening Day 0 Day 14 Day 28 Day 56 Day 84 Day 112 

p – 

value*  

Age  4 4 2 3 3 3 3  

Total number 54 54 38 50 46 48 49  

* A six-proportions Z-test was used to compare proportions between the sampling timepoints. 
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5.5.2. Seroprevalence to gametocyte antigens 

Immune responses were measured to the gametocyte antigens that were identified and 

produced successfully as recombinant protein (Chapter 4, section 4.6). Additionally, 

antibody responses were measured to AMA1 (a known marker of exposure to asexual 

parasites203,550,552) and GE (a potential marker of exposure to gametocytes). The 

analysis was limited to the AFIRM cohort, where sampling was carried out for all age 

groups (children and adults). The median seroprevalence to the gametocyte antigens 

was 59.5% ranging from 38.9% for PSOP1 to 76.9% for G377B 3D7 (Table 5.5). 

Seroprevalence to G377B 3D7 and to G377B PfKE04 (71.3%) was relatively high, 

with no difference in seroprevalence to the two variants (p = 0.23, 2-proportions Z-

test). While antibody responses to Pfs230 were not the most prevalent 42.6% of the 

population studied had responses to Pfs230. Antibody responses to GE were highly 

prevalent with seroprevalence estimates of 87.8% closely matching estimates to 

AMA1 (87.9%).  

 

Table 5.5: Seroprevalence of immune responses to the gametocyte antigens, AMA1 and 

gametocyte extract 

Antigen Na Seropositive Prevalence (%) 

Pfs230 148 63 42.6 

CVMPPP 216 120 55.6 

PEB-P 216 125 57.9 

PSOP1 216 84 38.9 

CPP4 216 127 58.8 

MDV1 216 130 60.2 

G377B 3D7 216 166 76.9 

G377B PfKE04 216 154 71.3 

AMA1 215 189 87.9 

Gametocyte Extract 205 180 87.8 
a Antibody responses to PfKE04 were not measured for the AFIRM cohort owing to depletion of 

protein. 
b Total number of samples assayed for each antigen; the total AFIRM sample set consisted of 216 

individuals. However, not all samples were tested for each antigen as antigen quantities were limited 

and did not allow testing the entire sample set for each antigen. 

 

In an age-stratified analysis, with age divided into three categories: 0 – 5 years, 6 – 15 

years and >15 years, there was a significant trend towards increasing seroprevalence 

with age for all antigens except for CPP4 (p = 0.06, Figure 5.4). As for season there 
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was no difference in seroprevalence between the dry and the wet seasons for any of 

the antigens (Figure 5.5). 

 

Figure 5.4: Seroprevalence to the gametocyte antigens, AMA1 and gametocyte extract in the 

AFIRM cohort analysed by age group.  Bar plots showing the prevalence of antibodies to the various 

gametocyte antigens, AMA1 and gametocyte extract within the different age categories. The Cochran-

Armitage test for trend was used to test for a linear trend in increasing seroprevalence with age, 

respective p-values are presented at the top of each panel. Error bars show 95% binomial confidence 

intervals (Clopper–Pearson interval). 
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Figure 5.5: Seroprevalence to the gametocyte antigens, AMA1 and gametocyte extract in the 

AFIRM cohort analysed by season. Bar plots showing the prevalence of antibodies to the various 

gametocyte antigens, AMA1 and gametocyte extract in the dry and the wet seasons. A two-proportions 

z-test was used to compare proportions in the dry and wet seasons. Respective p values are presented 

at the top of each panel. Error bars show 95% binomial confidence intervals (Clopper–Pearson 

interval). 

 

5.5.3. Factors associated with the magnitude of antibody response to the 

gametocyte antigens   

Next, I assessed how determinants of parasite exposure (age, parasite prevalence, 

season and transmission intensity) as well as host genetic factors (sickle and α – 

thalassaemia genotypes) relate to the levels of antibodies against the gametocyte 

antigens. I selected these variables based on literature reporting associations with 

gametocyte carriage or gametocyte-specific immune responses68,70,79,227,415. 

Furthermore, age, parasite prevalence and transmission intensity were also identified 

as prognostic indicators of gametocytaemia from the epidemiological analysis I 

carried out in Chapter 3. 
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5.5.3.1. Relationship between parasitaemia and possible factors 

influencing anti-gametocyte immune responses 

Before analysing predictors of immune responses to the gametocyte antigens, I 

investigated how some of the covariates above (age, sickle cell genotype, α-

thalassaemia genotype, transmission intensity (subcohort) and season) relate to 

asexual parasite and gametocyte densities. For this, I analysed data from the KMLRC 

and AFIRM cohorts. Parasite densities (asexual parasite and gametocyte) were 

determined microscopically for the KMLRC and did not differ between the sickle or 

α-thalassaemia genotypes (Figure 5.6 A and B). When looking at the relationship 

between age and parasite densities, higher asexual parasite densities were recorded in 

children aged 0 – 5 years compared to their counterparts aged 6 – 15 years (p = 0.02) 

(Figure 5.6 C)). However, gametocyte densities were similar across all age groups. 

Additionally, parasite densities (asexual parasite or gametocyte) did not differ among 

the sub-cohorts (Figure 5.6 D).  

Few participants from the AFIRM cohort had microscopically detectable 

gametocytes, limiting a robust analysis. However, an analysis of relationships 

between the aforementioned covariates and sub-microscopic parasite densities was 

possible. From the analysis, there were no differences in sub-microscopic parasite 

densities across the sickle or α-thalassaemia genotypes, as also seen with the KMLRC 

cohort (Figure 5.7 A and B). Additionally, sub-microscopic parasite densities did not 

vary with age groups (Figure 5.7 C). For season, there were higher parasite densities 

in the wet season, and this was statistically significant for both all parasites (p = 0.02) 

and gametocytes (p = 0.01) (Figure 5.7 D). 
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Figure 5.6: Variation in parasite density categorised by factors predictive of gametocyte carriage in the KMLRC cohort. Asexual parasite and gametocyte densities by 

A) Sickle genotype, B) α-thalassaemia genotype, C) Age group, D) Sub-cohort (moderate transmission (Ngerenya early and Junju) and low transmission (Ngerenya late)) with 
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parasitaemia detected by microscopy.  Comparisons carried out by Wilcoxon test and Kruskal-Wallis test (post-hoc analysis after Kruskal-Wallis carried out using Dunn’s test 

with Bonferroni correction). Number of parasite positive individuals (N) is included at the top of each graph for each category. α-thalassaemia: Norm – normal, Het – 

heterozygous, and Homo – homozygous. The boxes of boxplots display the median bound by the first and third quartiles, with the whiskers depicting the lowest and highest 

values (excluding outliers). The dots indicate individual datapoints. 
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Figure 5.7: Variation in parasite density categorised by factors predictive of gametocyte carriage in the AFIRM cohort. Asexual parasite and gametocyte 

densities by A) Sickle genotype, B) α-thalassaemia genotype, C) Age group, D) Season with parasitaemia detected by 18S NASBA (all parasites) and Pfs25 NASBA 

(female gametocytes).  Comparisons carried out by Wilcoxon test and Kruskal-Wallis test. Number of parasite positive individuals (N) is included at the top of each 

graph for each category. α-thalassaemia: Norm – normal, Het – heterozygous, and Homo – homozygous. The boxes of boxplots display the median bound by the first 

and third quartiles, with the whiskers depicting the lowest and highest values (excluding outliers). The dots indicate individual datapoints. 
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5.5.3.2. Factors associated with the magnitude of antibody response to 

the gametocyte antigens: KMLRC cohort    

I explored the relationship between age, parasitaemia (asexual and gametocyte 

positivity (as detected by microscopy)), sickle and α-thalassaemia genotypes, and the 

magnitude of antibody responses to the gametocyte antigens. Additionally, I evaluated 

how transmission intensity relates to anti-gametocyte antibody responses. Linear 

regression models were used to predict associations with antibody concentration from 

the specified covariates, with age included as a categorical variable. Associations seen 

in the univariable analysis are in 9.9 Appendix 9, while the multivariable analyses are 

discussed below. As matching of cases and controls was lost owing to the depletion 

of some of the initially selected samples for the KMLRC cohort analysis (5.4.2.1.(a)), 

the results of the univariable analysis would be confounded and hence only the results 

of the multivariable analysis are interpreted.  

In the multivariable analysis (Table 5.6), a significant association between concurrent 

asexual parasitaemia and increased magnitude of antibody response was observed for 

all antigens. Conversely, gametocyte positivity was significantly associated with 

increased antibody responses to AMA1, GE, CVMPPP, PEB-P, and CPP4 (p <0.05). 

Additionally, statistically significant associations between increasing age and 

increased immune responses to AMA1, Pfs230, G377B 3D7 and G377B PfKE04 were 

observed. For sickle cell trait, no association with antibody concentration was 

observed for any of the antigens. On the other hand, α-thalassaemia heterozygosity 

(estimate -0.24, 95% CI: -0.45, -0.03, p = 0.02) and homozygosity (estimate -0.3, 95% 

CI: -0.57, -0.04, p = 0.03) were associated with reduced responses to GE. From the 

multivariable analysis, a clear association with transmission intensity was not evident. 

Residing in Ngerenya late was only associated with reduced immune responses to GE 

(estimate -0.30, 95% CI: -0.54, -0.06, p = 0.02) and G377B 3D7 (estimate -0.12, 95% 

CI: -0.23, -0.004, p = 0.04). 

For both G377B variants, similar associations between increasing age and increased 

antibody responses as well as increased antibody responses with concurrent 

parasitaemia were observed. Additionally, predictive models for both variants had 

similar R2 values (G377B 3D7 R2 = 0.36, G377B 10668 R2 = 0.36). Models predicting 

the magnitude of antibody responses to the PSOP25 variants did not show associations 
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with age, with only PSOP25 PfKE04 showing an association with concurrent asexual 

parasitaemia. The R2 value for the model predicting the magnitude of antibody 

responses to PSOP25 PfKE04 (R2 = 0.18) was marginally higher than that of PSOP25 

3D7 (R2 = 0.16).   
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Table 5.6 Multivariable linear regression analysis of the factors predicting the magnitude of antibody response to the gametocyte antigens, AMA1 and gametocyte 

extract – KMLRC cohort 

  Pfs230 CVMPPP PEB-P PSOP1 

Covariate Estimate  95% CI 
p 

value 
Estimate  95% CI 

p 

value 
Estimate  95% CI 

p 

value 
Estimate  95% CI 

p 

value 

Age Group                     

0 - 5 years  0.00 . . 0.00 . . 0.00 . . 0.00 . . 

6 - 10 years 0.15 0.04, 0.25 0.0056 0.06 -0.05, 0.17 0.2857 0.02 -0.09, 0.14 0.6728 0.05 -0.07, 0.17 0.4236 

11 - 15 years 0.17 0.03, 0.31 0.0193 0.06 -0.13, 0.25 0.5172 -0.02 -0.18, 0.14 0.8106 0.13 -0.08, 0.34 0.2312 

Asexual parasite 

positive 0.25 0.12, 0.39 0.0003 0.28 0.14, 0.42 0.0001 0.28 0.14, 0.42 0.0001 0.17 0.01, 0.33 0.0418 

Gametocyte positive 0.02 -0.11, 0.15 0.7498 0.18 0.03, 0.34 0.0225 0.17 0.01, 0.33 0.0353 0.08 -0.09, 0.24 0.3520 

Sickle     .                

Normal  0.00 . . 0.00 . . 0.00 . . 0.00 . . 

Heterozygous 0.00 -0.12, 0.12 0.9801 -0.01 -0.14, 0.11 0.8159 0.05 -0.07, 0.18 0.4088 0.06 -0.08, 0.21 0.3977 

α-thalassaemia     .                

Normal  0.00 . . 0.00 . . 0.00 . . 0.00 . . 

Heterozygous -0.01 -0.12, 0.09 0.8245 0.06 -0.06, 0.18 0.2926 -0.04 -0.15, 0.07 0.5284 -0.01 -0.13, 0.11 0.9114 

Homozygous -0.03 -0.17, 0.11 0.6879 -0.05 -0.2, 0.09 0.4653 -0.01 -0.16, 0.14 0.9069 0.13 -0.07, 0.33 0.2082 

Subcohort    .                

Junju 0.00 . . 0.00 . . 0.00 . . 0.00 . . 

Ngerenya early -0.15 -0.3, 0.01 0.0679 -0.05 -0.24, 0.14 0.5965 -0.03 -0.21, 0.14 0.7291 0.04 -0.16, 0.24 0.6904 

Ngerenya late -0.03 -0.15, 0.09 0.6353 0 -0.13, 0.13 0.9848 0 -0.12, 0.13 0.9530 -0.03 -0.19, 0.13 0.7003 

  CPP4 MDV1 G377B 3D7 G377B PfKE04 

Covariate Estimate  95% CI 
p 

value 
Estimate  95% CI 

p 

value 
Estimate  95% CI 

p 

value 
Estimate  95% CI 

p 

value 

Age Group                    

0 - 5 years  0.00 . . 0.00 . . 0.00 . . 0.00 . . 

6 - 10 years 0.08 -0.02, 0.17 0.1297 0.10 0, 0.21 0.0579 0.20 0.09, 0.31 0.0002 0.21 0.11, 0.32 0.0001 

11 - 15 years -0.01 -0.14, 0.12 0.8783 0.12 -0.12, 0.37 0.3194 0.19 0.03, 0.35 0.0173 0.24 0.08, 0.39 0.0033 
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Covariate 

CPP4 MDV1 G377B 3D7 G377B PfKE04 

Estimate  95% CI 
p 

value 
Estimate  95% CI 

p 

value 
Estimate  95% CI 

p 

value 
Estimate  95% CI 

p 

value 

Asexual parasite 

positive 0.19 0.07, 0.31 0.0014 0.20 0.07, 0.34 0.0033 0.27 0.15, 0.39 <0.001 0.25 0.13, 0.37 <0.001 

Gametocyte positive 0.15 0.01, 0.28 0.0318 0.16 -0.01, 0.32 0.0592 0.1 -0.02, 0.23 0.1091 0.09 -0.03, 0.22 0.1516 

Sickle                     

Normal  0.00 . . 0.00 . . 0.00 . . 0.00 . . 

Heterozygous -0.02 -0.14, 0.09 0.7038 -0.11 -0.23, 0.01 0.0689 0 -0.14, 0.13 0.9554 0.01 -0.13, 0.15 0.8872 

α-thalassaemia                     

Normal  0.00 . . 0.00 . . 0.00 . . 0.00 . . 

Heterozygous 0.00 -0.1, 0.09 0.9236 0.01 -0.11, 0.13 0.8471 0.04 -0.07, 0.15 0.4963 0.01 -0.09, 0.11 0.8500 

Homozygous -0.04 -0.18, 0.09 0.5056 -0.1 -0.24, 0.03 0.1315 -0.03 -0.2, 0.14 0.7373 -0.07 -0.25, 0.11 0.4667 

Subcohort                     

Junju 0.00 . . 0.00 . . 0.00 . . 0.00 . . 

Ngerenya early -0.12 -0.28, 0.04 0.1352 -0.02 -0.23, 0.19 0.8785 -0.11 -0.27, 0.06 0.1978 -0.11 -0.26, 0.05 0.1739 

Ngerenya late 
0.01 -0.1, 0.12 0.8821 0 -0.12, 0.12 0.9528 -0.12 

-0.23, -

0.004 0.0426 -0.11 -0.22, 0.01 0.0669 

  PSOP25 3D7 PSOP25 PfKE04 AMA1 GE 

Covariate Estimate  95% CI 
p 

value 
Estimate  95% CI 

p 

value 
Estimate  95% CI 

p 

value 
Estimate  95% CI 

p 

value 

Age Group                     

0 - 5 years  0.00 . . 0.00 . . 0.00 . . 0.00 . . 

6 - 10 years 0.11 0, 0.22 0.0516 0.07 -0.06, 0.19 0.2848 0.39 0.13, 0.64 0.0029 0.11 -0.1, 0.32 0.3087 

11 - 15 years 0.01 -0.12, 0.15 0.8324 0.12 -0.03, 0.27 0.1145 0.68 0.29, 1.07 0.0006 0.22 -0.08, 0.53 0.1478 

Asexual parasite 

positive 0.09 -0.07, 0.25 0.2824 0.18 0.02, 0.34 0.0284 1.04 0.75, 1.32 <0.001 0.45 0.21, 0.68 0.0002 

Gametocyte positive 0.12 -0.01, 0.25 0.0675 0.14 -0.01, 0.3 0.0737 0.46 0.12, 0.81 0.0089 0.28 0.02, 0.54 0.0313 

Sickle                      

Normal  0.00 . . 0.00 . . 0.00 . . 0.00 . . 

Heterozygous -0.01 -0.13, 0.11 0.8516 0.02 -0.11, 0.14 0.8042 -0.09 -0.41, 0.23 0.5899 0.13 -0.09, 0.36 0.2453 
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Covariate 

PSOP25 3D7 PSOP25 PfKE04 AMA1 GE 

Estimate  95% CI 
p 

value 
Estimate  95% CI 

p 

value 
Estimate  95% CI 

p 

value 
Estimate  95% CI 

p 

value 

α-thalassaemia                      

Normal  0.00 . . 0.00 . . 0.00 . . 0.00 . . 

Heterozygous -0.08 -0.2, 0.04 0.2111 0.03 -0.11, 0.17 0.7010 -0.13 -0.4, 0.14 0.3335 -0.24 -0.45, -0.03 0.0222 

Homozygous -0.10 -0.23, 0.03 0.1155 -0.1 -0.25, 0.05 0.1784 -0.05 -0.4, 0.31 0.7999 -0.3 -0.57, -0.04 0.0250 

Subcohort                   

Junju 0.00 . . 0.00 . . 0.00 . . 0.00 . . 

Ngerenya early -0.16 -0.32, 0 0.0534 -0.14 -0.34, 0.06 0.1756 -0.02 -0.4, 0.36 0.9154 -0.20 -0.49, 0.1 0.1853 

Ngerenya late -0.03 -0.15, 0.1 0.6939 0.06 -0.06, 0.17 0.3531 -0.19 -0.48, 0.1 0.2054 -0.3 -0.54, -0.06 0.0150 

P values in bold are statistically significant (p<0.05). 
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5.5.3.3. Factors associated with the magnitude of antibody response: 

AFIRM cohort   

The AFIRM cohort provided an opportunity to analyse the relationship between 

season and immune responses to the gametocyte antigens. Additionally, as 

parasitaemia was measured by microscopy and by the highly sensitive nucleic acid 

sequence-based amplification (NASBA, 18S for all parasites and female gametocyte 

specific Pfs25 for gametocytes), it was possible to explore the effect of patent versus 

sub-patent parasitaemia. Results from the univariable analysis are provided in 9.9 

Appendix 9. 

In both the univariable multivariable analyses, increasing age was associated with 

higher antibody responses to Pfs230, AMA1 and GE (
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Table 5.7). For G377B PfKE04, only the >15-year age group remained independently 

associated with higher antibody responses in the multivariable analysis. Older age 

(>15 years of age) was similarly associated with increased antibody responses to 

CVMPPP, PSOP1 and G377B 3D7. The >15-year age group was only associated with 

increased antibody responses to PEB-P in the multivariable analysis, indicating that 

the strength of this association may have been increased after adjusting for 

confounding factors or a non-causal relationship. Antibody responses to CPP4 were 

not associated with age.  

Both univariable and multivariable analyses indicated that parasite positivity (either 

patent or sub-patent) was associated with increased responses to all the antigens 

except for Pfs230 or PSOP1. For Pfs230, sub-patent parasitaemia was not 

independently associated with the magnitude of antibody response after adjusting for 

age and gametocyte positivity.  For CVMPPP, PEB-P, MDV1, G377B (both variants) 

and GE, both patent and sub-patent parasitaemia were associated with an increased 

magnitude of antibody responses. In an analysis limited to parasite positive 

individuals and including the same covariates as in the full models (9.9 Appendix 9), 

patent parasitaemia was not associated with higher antibody responses to any of the 

gametocyte antigens when compared to sub-patent parasitaemia. With sub-patent 

gametocyte positivity, gametocyte positivity was only an independent predictor of the 

magnitude of antibody response to Pfs230 after adjusting for age and asexual 

parasitaemia (estimate 0.23, 95% CI: 0.02 – 0.44, p = 0.03).  

 

When I considered season, there was no evidence that it was independently predictive 

of antibody responses to any of the antigens. Conversely, the sickle AS genotype was 

associated with reduced antibody responses to PEB-P in both univariable and 

multivariable analysis (multivariable analysis: estimate -0.24, 95% CI: -0.42 – 0.05, 

p = 0.01). None of the gametocyte antigens was significantly associated with the α-

thalassemia genotypes. As observed in the KMLRC, similar associations between 

increasing age and increased antibody responses as well as increased antibody 

responses with concurrent parasitaemia were observed for both G377B variants, with 

marginal differences in the R2 values of models predicting the magnitude of antibody 

responses to either antigen (G377B 3D7 R2 = 0.34, G377B 10668 R2 = 0.36). 
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Table 5.7: Multivariable linear regression models of the factors predicting the magnitude of antibody response to the gametocyte antigens, AMA1 and gametocyte 

extract – AFIRM cohort  

  Pfs230 CVMPPP PEB-P PSOP1 

Covariate Estimate  95% CI 
p 

value 
Estimate  95% CI 

p 

value 
Estimate  95% CI 

p 

value 
Estimate  95% CI 

p 

value 

Age Group                    
0 - 5 years  0.00 . . 0.00 . . 0.00 . . 0.00 . . 

6 - 15 years 0.19 0.03, 0.34 0.0172 0.10 -0.09, 0.3 0.3032 -0.08 -0.25, 0.09 0.3566 0.07 -0.08, 0.22 0.3905 

>15 years 0.56 0.4, 0.71 <0.001 0.26 0.07, 0.46 0.0093 0.18 0, 0.35 0.0453 0.50 0.35, 0.65 <0.001 

Parasitaemia             

        Parasite negative 0.00 . . 0.00 . . 0.00 . . 0.00 . . 

Sub-patent only 0.07 -0.08, 0.22 0.3704 0.30 0.11, 0.49 0.0028 0.19 0.02, 0.36 0.0300 0.04 -0.11, 0.19 0.5671 

Patent -0.06 -0.34, 0.23 0.6936 0.35 0.01, 0.68 0.0436 0.36 0.07, 0.66 0.0169 0.20 -0.06, 0.46 0.1309 

Gametocyte positive 0.23 0.02, 0.44 0.0300 0.11 -0.14, 0.37 0.3879 0.13 -0.09, 0.35 0.2403 0.07 -0.12, 0.26 0.4809 

Sickle                     
Normal  0.00 . . 0.00 . . 0.00 . . 0.00 . . 

Heterozygous 0.13 -0.03, 0.3 0.1091 -0.18 -0.39, 0.03 0.0932 -0.24 -0.42, -0.05 0.0126 0.00 -0.16, 0.16 0.9899 

α-thalassaemia                     
Normal  0.00 . . 0.00 . . 0.00 . . 0.00 . . 

Heterozygous -0.08 -0.24, 0.07 0.2736 0.03 -0.15, 0.22 0.7362 0.12 -0.04, 0.28 0.1567 -0.01 -0.16, 0.13 0.8635 

Homozygous -0.06 -0.25, 0.13 0.5541 -0.07 -0.3, 0.17 0.5835 0.16 -0.04, 0.37 0.1187 0.11 -0.07, 0.29 0.2415 

Season                 
Dry 0.00 . . 0.00 . . 0.00 . . 0.00 . . 

Wet -0.11 -0.24, 0.02 0.0982 -0.12 -0.28, 0.04 0.1512 0.11 -0.03, 0.26 0.1189 0.06 -0.06, 0.19 0.3429 
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Covariate 

CPP4 MDV1 G377B 3D7 G377B PfKE04 

Estimate  95% CI 
p 

value 
Estimate  95% CI 

p 

value 
Estimate  95% CI 

p 

value 
Estimate  95% CI 

p 

value 

Age Group 
            

0 - 5 years  0.00 . . 0.00 . . 0.00 . . 0.00 . . 

6 - 15 years 0.01 -0.14, 0.16 0.9012 0.15 0, 0.31 0.0574 0.16 0, 0.31 0.0500 0.16 -0.01, 0.32 0.0593 

>15 years 0.08 -0.07, 0.23 0.2978 0.45 0.3, 0.61 <0.001 0.48 0.32, 0.63 <0.001 0.50 0.34, 0.66 <0.001 

Parasitaemia             

       Parasite negative 0.00 . . 0.00 . . 0.00 . . 0.00 . . 

Sub-patent only 0.16 0.01, 0.31 0.0387 0.32 0.16, 0.48 <0.001 0.34 0.19, 0.49 <0.001 0.36 0.2, 0.52 <0.001 

Patent 0.25 -0.01, 0.5 0.0633 0.40 0.12, 0.67 0.0047 0.29 0.03, 0.56 0.0329 0.34 0.06, 0.62 0.0175 

Gametocyte positive 0.03 -0.16, 0.23 0.7528 0.08 -0.12, 0.29 0.4406 0.13 -0.07, 0.33 0.2144 0.16 -0.05, 0.37 0.1320 

Sickle              

Normal  0.00 . . 0.00 . . 0.00 . . 0.00 . . 

Heterozygous -0.04 -0.21, 0.12 0.5930 -0.02 -0.19, 0.15 0.8289 -0.06 -0.23, 0.11 0.4973 -0.16 -0.33, 0.02 0.0817 

α-thalassaemia              

Normal  0.00 . . 0.00 . . 0.00 . . 0.00 . . 

Heterozygous -0.01 -0.15, 0.14 0.9410 0.00 -0.15, 0.15 0.9735 0.02 -0.13, 0.16 0.8371 0.09 -0.07, 0.24 0.2661 

Homozygous 0.03 -0.15, 0.21 0.7257 0.09 -0.09, 0.28 0.3253 -0.05 -0.24, 0.13 0.5879 0.02 -0.17, 0.22 0.8111 

Season             

Dry 0.00 . . 0.00 . . 0.00 . . 0.00 . . 

Wet 0.00 -0.13, 0.12 0.9864 0.00 -0.13, 0.13 0.9767 0.03 -0.1, 0.16 0.6370 -0.01 -0.14, 0.13 0.9332 
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Covariate 

AMA1 GE     

Estimate  95% CI 
p 

value 
Estimate  95% CI 

p 

value 
      

Age Group       
      

0 - 5 years  0.00 . . 0.00 . .       

6 - 15 years 0.37 0.11, 0.63 0.0065 0.25 0, 0.49 0.0472       

>15 years 0.82 0.55, 1.08 <0.001 0.85 0.6, 1.09 <0.001       

Parasitaemia             

        Parasite negative 0.00 . . 0.00 . .       

Sub-patent only 0.26 0, 0.52 0.0514 0.44 0.2, 0.68 <0.001       

Patent 0.56 0.1, 1.01 0.0169 0.56 0.15, 0.98 0.0081       

Gametocyte positive 0.54 0.2, 0.88 0.0023 0.13 -0.17, 0.44 0.3968       

Sickle        
      

Normal  0.00 . . 0.00 . .       

Heterozygous 0.03 -0.25, 0.32 0.8266 -0.12 -0.38, 0.14 0.3782       

α-thalassaemia        
      

Normal  0.00 . . 0.00 . .       

Heterozygous 0.23 -0.02, 0.48 0.0770 -0.03 -0.26, 0.21 0.8213       

Homozygous 0.33 0.02, 0.65 0.0380 0.16 -0.13, 0.45 0.2711       

Season       
      

Dry 0.00 . . 0.00 . .       

Wet -0.02 -0.24, 0.2 0.8789 -0.02 -0.22, 0.19 0.8835       

P values in bold are statistically significant (p<0.05). 
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5.5.3.4. Breadth of response analysis 

The factors associated with the recognition of a greater number of antigens, which I 

termed the breadth of response, were also investigated. For this, I analysed each of the 

cohorts (KMLRC, AFIRM and LAMB) separately. For the KMLRC, only the 

adjusted analysis is interpreted as explained in section 5.5.3.2. From the multivariable 

analysis of the KMLRC cohort, (Table 5.8) increased age was associated with 

increased breadth of antigen recognition. Additionally, the 6 – 10-year age group was 

associated with increased breadth (estimate 0.10, 95% CI: 0.03 – 0.16, p = 0.004). 

Concurrent parasitaemia, whether asexual parasites (estimate 0.20, 95% CI: 0.13, 

0.28, p<0.0001) or gametocytes (estimate 0.12, 95% CI: 0.03 – 0.21, p = 0.002) was 

also associated with an increased breadth of recognition. As for sickle and α-

thalassaemia genotypes, there were no associations observed. 

Similarly, for the AFIRM cohort, increasing age and concurrent parasitaemia (as 

detected by molecular methods) were associated with increased breadth (9.9 

Appendix 9). For the LAMB cohort, concurrent parasitaemia (as detected by PCR) 

was not associated with the breadth of recognition in either univariable or 

multivariable analysis (Table 5.9). However, sampling timepoint was associated with 

breadth of antigen recognition. In the univariable analysis, there was decreased 

breadth associated with days 56 to 112. After adjusting for the other variables, only 

the association with day 86 and decreased breadth remained (estimate -0.06, 95% CI: 

-0.11, -0.02, p = 0.008). 



239 

 

Table 5.8: Linear regression analysis of the factors influencing the number of antigens recognised by the study participants – KMLRC cohort 

  Univariable Multivariable 

Covariate Mean 95% CI Estimate  95% CI p value Estimate  95% CI p value 

Age Group         

0 - 5 yrs  0.58 0.54, 0.63 0.00 . . 0.00 . . 

6 - 10 yrs   0.10 0.03, 0.17 0.0069 0.10 0.03, 0.16 0.0036 

11 - 15 yrs   0.11 -0.01, 0.23 0.0730 0.09 -0.02, 0.2 0.1084 

Asexual parasite positive   0.26 0.2, 0.32 <0.001 0.20 0.13, 0.28 <0.001 

Gametocyte positive   0.20 0.13, 0.27 <0.001 0.12 0.03, 0.21 0.0073 

Sickle          

Normal  0.62 0.58, 0.66 0.00 . . 0.00 . . 

Heterozygous   0.06 -0.03, 0.15 0.2001 0.02 -0.06, 0.1 0.6297 

α - Thalassaemia          

Normal         0.67 0.6, 0.73 0.00 . . 0.00 . . 

Heterozygous   -0.06 -0.14, 0.02 0.1555 -0.03 -0.1, 0.04 0.3869 

Homozygous   -0.05 -0.16, 0.05 0.3144 -0.02 -0.12, 0.07 0.6236 

Cohort         

Junju 0.70 0.65, 0.76 0.00 . . 0.00 . . 

Ngerenya Early   0.01 -0.09, 0.11 0.8851 -0.03 -0.13, 0.08 0.6351 

Ngerenya Late   -0.17 -0.24, -0.09 <0.001 -0.04 -0.12, 0.04 0.2991 

 

* Mean of the number of antigens recognised (breadth, expressed as a proportion) for the reference group, with corresponding 95% confidence interval. 
a Parasitaemia as determined by microscopy. 
P values in bold are statistically significant (p<0.05). 
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Table 5.9: Linear regression analysis of the factors influencing the number of antigens recognised by the study participants – LAMB cohort 

 

Covariate 

Univariable Multivariable 

Mean 95% CI Estimate  95% CI p value Estimate  95% CI p value 

Day         

Day 0 0.83 0.78, 0.89 0.00 . . 0.00 . . 

Day 14   -0.03 -0.07, 0.02 0.1987 -0.03 -0.08, 0.02 0.2240 

Day 28   -0.03 -0.08, 0.01 0.0909 -0.03 -0.08, 0.01 0.1414 

Day 56   -0.06 -0.1, -0.02 0.0034 -0.04 -0.09, 0 0.0653 

Day 84   -0.08 -0.12, -0.04 0.0003 -0.06 -0.11, -0.02 0.0083 

Day 112   -0.06 -0.1, -0.02 0.0047 -0.04 -0.09, 0 0.0826 

Parasite positivea   0.03 -0.01, 0.06 0.1317 0.02 -0.02, 0.06 0.2399 

Gametocyte positivea   0.02 -0.02, 0.07 0.3285 0.00 -0.05, 0.05 0.8869 

Sickle          

Normal  0.8 0.75, 0.85 0.00 . . 0.00 . . 

Heterozygous   -0.04 -0.15, 0.07 0.4981 0.01 -0.11, 0.13 0.9268 

α - Thalassaemia          

Normal  0.78 0.7, 0.85 0.00 . . 0.00 . . 

Heterozygous   0.02 -0.08, 0.13 0.6384 0.06 -0.05, 0.17 0.3257 

Homozygous   0.02 -0.13, 0.17 0.8228 0.02 -0.15, 0.19 0.8202 

Anaemia         

No  0.79 0.74, 0.84 0.00 . . 0.00 . . 

Yes   0.01 -0.03, 0.05 0.6205 0.00 -0.04, 0.04 0.9247 

Multiplicity of Infection         

No 0.79 0.74, 0.84 0.00 . . 0.00 . . 

Yes   0.02 -0.01, 0.05 0.2286 0.01 -0.03, 0.05 0.7236 

 

* Mean of the number of antigens recognised (breadth, expressed as a proportion) for the reference group, with corresponding 95% confidence interval. 
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a Parasitaemia as determined by PCR (18S qPCR for all parasites and Pfs25 qRT-PCR for female gametocytes). 
P values in bold are statistically significant (p<0.05). 
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5.5.4. Dynamics of antibody responses over time – LAMB cohort  

Little is known about how naturally acquired anti-gametocyte immunity changes over 

time, and how this relates to the various markers of malaria exposure. To better 

understand these dynamics, I analysed data from the LAMB cohort, a cohort of adults 

recruited and followed up for 112 days with regular sampling to detect parasites and 

the infectivity of participants. 

5.5.4.1. Parasite density and prevalence over the follow-up period 

Parasite detection was carried out by both microscopy and molecular detection;18S 

qPCR for all parasites and Pfs25-female-specific qRT-PCR for gametocytes. Parasite 

densities appeared stable with no significant variation over the follow-up period when 

detection was by qPCR (p = 0.75) (Figure 5.8 (A)). Similarly, when detection was by 

microscopy (Figure 5.8 (B)), asexual parasite densities did not vary significantly over 

the follow-up period (p = 0.54). As for gametocyte densities, there was no clear trend 

observed. Though densities appeared stable between day 0 and day 28 (qRT-PCR 

detection, p = 0.86), few individuals were positive at the later time points (Figure 5.8 

(C)). Only one individual had microscopically detectable gametocytes throughout 

follow-up.  
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Figure 5.8: Parasite density over 112 days of follow-up in the LAMB cohort. (A) Parasite density over follow-up period as detected by 18S qPCR. (B) Asexual parasite 

density over follow-up period as detected by microscopy. (C) Gametocyte density over the follow-up period as detected by Pfs25 qRT-PCR (detects female gametocytes). 

Kruskal-Wallis tests were used to compare parasite densities at the different timepoints, number of parasite positive individuals (N) is included at the top of each graph for each 

timepoint. Trend lines shown were estimated using LOESS smoothing, with the red line indicating the estimated mean and the shaded grey areas the 95% confidence intervals. 

The boxes of boxplots display the median bound by the first and third quartiles, with the whiskers depicting the lowest and highest values (excluding outliers). The dots indicate 

individual datapoints.
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5.5.4.2. Factors associated with the magnitude of antibody response to 

the gametocyte antigens  

In addition to looking at sampling timepoint (day), I also explored how the variables 

specified in 5.5.3 above impact the magnitude of antibody responses to the 

gametocyte antigens over time. Additionally, as information on haemoglobin levels 

and MOI were available, and may be associated with gametocyte carriage77,228,564, I 

investigated these factors as well. I included day as a categorical variable to better 

assess how antibody responses varied at each of the time points using day 0 as the 

reference category. Results from the univariable analysis are provided in 9.9 

Appendix 9, while the results from multivariable analyses are presented here (Table 

5.10). 

There was no evidence for a decline in the magnitude of antibody response over the 

follow-up period for G377B 3D7, PSOP25 (both variants) and AMA1. Additionally, 

there was no longer evidence for a decline in antibody responses to CVMPPP, MDV1 

and PSOP1 after adjusting for parasite prevalence. For Pfs230 and CPP4, there was a 

fluctuation in responses over time with decreases in the magnitude of antibody 

response at day 28 for Pfs230 (estimate -0.14, 95% CI: -0.25, -0.02, p = 0.02) and day 

56 for CPP4 (estimate -0.13, 95% CI: -0.24, -0.01, p = 0.03). While in the univariable 

analysis there was an indication for a steady decline in the magnitude of response 

associated with days 28 up to 112 for PEB-P and GE, only day 112 remained 

associated with a decrease in antibody responses to PEB-P and day 28 for GE 

(estimate -0.14, 95% CI: -0.23, -0.06, p = 0.001 and estimate -0.05, 95% CI: -0.1, -

0.001, p = 0.049 respectively) after multivariable analysis. Additionally, day 112 was 

now also associated with a decrease in the magnitude of responses to G77B PfKE04 

(estimate -0.10, 95% CI: -0.18, -0.02, p = 0.02). Gametocyte prevalence fluctuated 

significantly over the follow-up period (Table 5.4), which may relate to the 

fluctuation seen in antibody levels for some gametocyte antigens. 

Parasitaemia was not an independent predictor of antibody responses to any antigens 

after adjusting for the other variables. Likewise, sickle cell trait was not associated 

with antibody responses to any of the antigens. However, associations were seen with 

α-thalassemia. Homozygous individuals were associated with increased antibody 
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responses to MDV1 (estimate 0.48, 95% CI: 0.17, 0.79, p = 0.004) and G377B 3D7 

(estimate 0.43, 95% CI: 0.03, 0.82, p = 0.04). Anaemia was associated with increased 

antibody responses to PEB-P (estimate 0.10, 95% CI: 0.02, 0.17, p = 0.02), with 

G377B 3D7, AMA1 and PEB-P no longer associated after adjusting for day and 

parasite positivity. For MOI, it was not an independent predictor of the magnitude of 

antibody responses to any of the antigens. 

While being homozygous for α-thalassaemia was associated with an increased 

magnitude of response to both G377B variants, there was a difference in the 

associations with sampling timepoint.  The magnitude of antibody response to G377B 

3D7 variant was stable over time, while day 112 was associated with decreased 

antibody responses to G377B PfKE04.  Differences in the R2 values of models 

predicting the magnitude of antibody responses to either antigen were marginal 

(G377B 3D7 R2 = 0.18, G377B PfKE04 R2 = 0.17). There were no associations 

between any of the variables investigated and the magnitude of antibody response to 

either of the PSOP25 variants. Additionally, differences in the R2 values of models 

predicting the magnitude of antibody responses to either antigen were marginal 

(PSOP25 3D7 R2 = 0.08, PSOP25 PfKE04 R2 = 0.03). 
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Table 5.10: Multivariable linear regression analysis (mixed effects model) of the factors predicting the magnitude of antibody response to the gametocyte antigens, 

AMA1 and gametocyte extract. 

 

Covariate 

Pfs230 CVMPPP PEB-P PSOP1 

Estimate  95% CI 
p 

value 
Estimate  95% CI 

p 

value 
Estimate  95% CI 

p 

value 
Estimate  95% CI 

p 

value 

Day                     

Day 0 0.00 . . 0.00 . . 0.00 . . 0.00 . . 

Day 14 -0.03 -0.16, 0.09 0.5941 -0.07 -0.21, 0.07 0.3081 -0.02 -0.11, 0.07 0.6670 0.05 -0.08, 0.18 0.4710 

Day 28 -0.14 -0.25, -0.02 0.0176 -0.11 -0.23, 0.01 0.0843 -0.03 -0.11, 0.05 0.5033 0.03 -0.09, 0.14 0.6606 

Day 56 -0.08 -0.2, 0.04 0.1708 -0.07 -0.21, 0.06 0.2700 -0.03 -0.12, 0.05 0.4292 -0.02 -0.14, 0.11 0.7940 

Day 84 -0.11 -0.23, 0 0.0616 -0.09 -0.22, 0.03 0.1481 -0.08 -0.16, 0 0.0564 -0.03 -0.15, 0.09 0.6548 

Day 112 
-0.04 -0.16, 0.08 0.4901 -0.06 -0.19, 0.07 0.3504 -0.14 

-0.23, -

0.06 0.0014 -0.06 -0.19, 0.06 0.3068 

Parasitaemia                     

Parasite negative 0.00 . . 0.00 . . 0.00 . . 0.00 . . 

Sub-patent only 0.03 -0.07, 0.14 0.5245 0.02 -0.09, 0.13 0.7042 0.05 -0.02, 0.13 0.1563 0.01 -0.09, 0.12 0.7990 

Patent 0.00 -0.12, 0.13 0.9646 -0.02 -0.16, 0.12 0.7851 0.01 -0.08, 0.11 0.7739 0.07 -0.07, 0.2 0.3370 

Gametocyte positive 0.04 -0.09, 0.17 0.5607 0.10 -0.05, 0.24 0.2020 0.08 -0.01, 0.18 0.0922 0.09 -0.05, 0.23 0.2165 

Sickle                      

Normal  0.00 . . 0.00 . . 0.00 . . 0.00 . . 

Heterozygous -0.07 -0.32, 0.18 0.5916 -0.26 -0.61, 0.09 0.1535 -0.09 -0.38, 0.21 0.5751 0.18 -0.1, 0.46 0.2059 

α-thalassaemia                      

Normal  0.00 . . 0.00 . . 0.00 . . 0.00 . . 

Heterozygous 0.02 -0.21, 0.26 0.8629 0.29 -0.04, 0.61 0.0898 0.01 -0.27, 0.28 0.9598 0.19 -0.07, 0.45 0.1687 

Homozygous 0.18 -0.17, 0.53 0.3254 -0.13 -0.61, 0.36 0.6158 -0.09 -0.5, 0.32 0.6739 -0.03 -0.42, 0.36 0.8969 

Anaemia                     

No  0.00 . . 0.00 . . 0.00 . . 0.00 . . 

Yes 0.05 -0.06, 0.15 0.3688 0.04 -0.08, 0.15 0.5213 0.10 0.02, 0.17 0.0159 0.02 -0.09, 0.13 0.7460 
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Covariate 

Pfs230 CVMPPP PEB-P PSOP1 

Estimate  95% CI 
p 

value 
Estimate  95% CI 

p 

value 
Estimate  95% CI 

p 

value 
Estimate  95% CI 

p 

value 

MOI                     

No 0.00 . . 0.00 . . 0.00 . . 0.00 . . 

Yes 0.03 -0.06, 0.13 0.4964 0.09 -0.02, 0.2 0.1000 -0.04 -0.11, 0.04 0.3291 0.04 -0.06, 0.14 0.4447 

 

Covariate 

CPP4 MDV1 G377B 3D7 G377B PfKE04 

Estimate  95% CI 
p 

value 
Estimate  95% CI 

p 

value 
Estimate  95% CI 

p 

value 
Estimate  95% CI 

p 

value 

Day                    

Day 0 0.00 . . 0.00 . . 0.00 . . 0.00 . . 

Day 14 -0.03 -0.15, 0.08 0.5744 0.01 -0.09, 0.12 0.7869 -0.01 -0.17, 0.14 0.8534 -0.01 -0.1, 0.07 0.7428 

Day 28 -0.05 -0.15, 0.06 0.3741 -0.07 -0.16, 0.02 0.1439 -0.08 -0.21, 0.05 0.2432 0.01 -0.07, 0.08 0.8575 

Day 56 -0.13 -0.24, -0.01 0.0280 -0.02 -0.12, 0.08 0.7321 -0.01 -0.16, 0.13 0.8420 -0.03 -0.11, 0.06 0.5247 

Day 84 -0.05 -0.16, 0.06 0.3464 -0.05 -0.15, 0.05 0.3133 -0.06 -0.2, 0.08 0.4155 -0.05 -0.13, 0.03 0.1882 

Day 112 -0.02 -0.13, 0.09 0.7268 -0.02 -0.11, 0.08 0.7391 -0.04 -0.18, 0.1 0.5983 -0.10 -0.18, -0.02 0.0170 

Parasitaemia                     

Parasite negative 0.00 . . 0.00 . . 0.00 . . 0.00 . . 

Sub-patent only 0.03 -0.06, 0.13 0.5094 0.08 -0.01, 0.16 0.0790 0.01 -0.11, 0.13 0.8684 -0.01 -0.08, 0.06 0.7582 

Patent 0.00 -0.12, 0.12 0.9859 0.09 -0.01, 0.2 0.0920 -0.14 -0.29, 0.02 0.0839 -0.04 -0.13, 0.05 0.3966 

Gametocyte positive 0.03 -0.09, 0.16 0.6168 0.11 -0.01, 0.22 0.0678 0.11 -0.05, 0.27 0.1637 0.03 -0.06, 0.12 0.5053 

Sickle                      

Normal  0.00 . . 0.00 . . 0.00 . . 0.00 . . 

Heterozygous -0.06 -0.32, 0.2 0.6562 -0.01 -0.3, 0.28 0.9408 -0.03 -0.33, 0.27 0.8315 -0.07 -0.34, 0.2 0.5927 

α-thalassaemia                      

Normal  0.00 . . 0.00 . . 0.00 . . 0.00 . . 

Heterozygous 0.14 -0.1, 0.38 0.2658 0.14 -0.13, 0.41 0.3072 0.26 -0.02, 0.54 0.0753 0.18 -0.07, 0.43 0.1750 

Homozygous -0.05 -0.41, 0.32 0.8047 0.52 0.13, 0.92 0.0135 0.58 0.16, 1 0.0092 0.43 0.06, 0.8 0.0294 

Anaemia                     

No  0.00 . . 0.00 . . 0.00 . . 0.00 . . 

Yes 0.01 -0.09, 0.11 0.8170 0.03 -0.06, 0.12 0.5432 0.08 -0.04, 0.21 0.2041 0.05 -0.03, 0.12 0.2083 
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Covariate 

CPP4 MDV1 G377B 3D7 G377B PfKE04 

Estimate  95% CI 
p 

value 
Estimate  95% CI 

p 

value 
Estimate  95% CI 

p 

value 
Estimate  95% CI 

p 

value 

MOI                     

No 0.00 . . 0.00 . . 0.00 . . 0.00 . . 

Yes -0.03 -0.12, 0.07 0.5893 0.05 -0.04, 0.13 0.2650 0.02 -0.1, 0.14 0.7610 -0.05 -0.12, 0.02 0.1555 

 

Covariate 

PSOP25 3D7 PSOP25 PfKE04 AMA1 GE 

Estimate  95% CI 
p 

value 
Estimate  95% CI 

p 

value 
Estimate  95% CI 

p 

value 
Estimate  95% CI 

p 

value 

Day                     

Day 0 0.00 . . 0.00 . . 0.00 . . 0.00 . . 

Day 14 0.07 -0.05, 0.2 0.2384 0.05 -0.03, 0.12 0.2387 0.10 -0.04, 0.24 0.1814 -0.01 -0.07, 0.05 0.8478 

Day 28 -0.03 -0.14, 0.08 0.5658 -0.02 -0.08, 0.05 0.6224 -0.05 -0.17, 0.08 0.4862 -0.05 -0.1, -0.001 0.0493 

Day 56 -0.06 -0.17, 0.06 0.3352 0.01 -0.06, 0.08 0.7811 0.04 -0.1, 0.17 0.5879 -0.03 -0.09, 0.02 0.2541 

Day 84 -0.09 -0.2, 0.03 0.1321 -0.03 -0.1, 0.04 0.3833 0.01 -0.12, 0.14 0.8750 -0.05 -0.1, 0.01 0.0848 

Day 112 0.02 -0.1, 0.13 0.7675 -0.03 -0.1, 0.04 0.3919 0.20 0.07, 0.34 0.0036 -0.05 -0.11, 0.002 0.0616 

Parasitaemia                     

Parasite negative 0.00 . . 0.00 . . 0.00 . . 0.00 . . 

Sub-patent only 0.03 -0.07, 0.13 0.5670 0.00 -0.07, 0.06 0.8839 -0.01 -0.13, 0.11 0.8438 0.02 -0.03, 0.07 0.4808 

Patent -0.04 -0.17, 0.08 0.4974 0.04 -0.03, 0.12 0.2800 -0.06 -0.2, 0.09 0.4468 0.03 -0.03, 0.09 0.2823 

Gametocyte positive -0.01 -0.13, 0.12 0.9331 0.02 -0.06, 0.1 0.5952 0.07 -0.09, 0.23 0.3780 0.04 -0.02, 0.11 0.1681 

Sickle                      

Normal  0.00 . . 0.00 . . 0.00 . . 0.00 . . 

Heterozygous 0.01 -0.21, 0.24 0.9157 -0.01 -0.23, 0.22 0.9421 -0.10 -0.6, 0.41 0.7100 -0.02 -0.4, 0.35 0.8985 

α-thalassaemia                      

Normal  0.00 . . 0.00 . . 0.00 . . 0.00 . . 

Heterozygous 0.20 -0.01, 0.41 0.0698 0.11 -0.1, 0.31 0.3156 0.01 -0.46, 0.48 0.9619 0.18 -0.17, 0.52 0.3205 

Homozygous 0.09 -0.23, 0.4 0.5978 0.21 -0.1, 0.52 0.1961 0.11 -0.63, 0.84 0.7765 0.01 -0.5, 0.52 0.9695 

Anaemia                     

No  0.00 . . 0.00 . . 0.00 . . 0.00 . . 

Yes 0.04 -0.06, 0.15 0.3909 0.00 -0.06, 0.06 0.9947 0.03 -0.09, 0.15 0.6363 0.03 -0.02, 0.08 0.2212 
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Covariate 

PSOP25 3D7 PSOP25 PfKE04 AMA1 GE 

Estimate  95% CI 
p 

value 
Estimate  95% CI 

p 

value 
Estimate  95% CI 

p 

value 
Estimate  95% CI 

p 

value 

MOI                     

No 0.00 . . 0.00 . . 0.00 . . 0.00 . . 

Yes 0.07 -0.03, 0.16 0.1734 -0.03 -0.09, 0.03 0.3039 -0.07 -0.19, 0.04 0.2231 -0.01 -0.06, 0.04 0.7168 

P values in bold are statistically significant (p<0.05).
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5.5.5. Factors influencing infectiousness to mosquitoes 

Direct membrane feeding assays were carried out using autologous sera from study 

participants of the AFIRM and LAMB cohorts to determine infectiousness to 

mosquitoes. Only six individuals were infectious to mosquitoes in both cohorts; hence 

power is limited for this analysis (9.9 Appendix 9). I limited the analysis to 

participants with gametocytaemia, as detected by molecular methods, on the basis that 

this is the group most likely to transmit to mosquitoes379,474,565. I chose to evaluate age 

and parasite positivity in relation to infectiousness as they significant associations 

with antibody levels in the prior analyses. I tabulated the frequency of infectiousness 

by age and parasite status for both AFIRM and LAMB cohorts and carried out a 

fisher’s exact test to test for significant differences in the categories. The influence of 

patent asexual parasitaemia compared to sub-patent parasitaemia was also included in 

the analysis. From the analysis, there was no evidence to suggest an influence of 

parasite status (Table 5.11) or age group (Table 5.12) on infectiousness for the 

AFIRM cohort (p = 0.15 and p = 0.30) respectively). Similarly, there was no influence 

of parasite status for the LAMB cohort (p = 1) (Table 5.13).  

 

Table 5.11: 3 x 2 tables of the frequency of infectiousness by parasite status in the AFIRM cohort 

 Infectiousness 

Parasite Status No  Yes 

Asexual Parasite Negative 1 0 

Sub-patent parasitaemia 28 0 

Patent parasitaemia 22 3 

Total 51 3 

 

Table 5.12: 3 x 2 tables of the frequency of infectiousness by age-group in the AFIRM cohort 

 Infectiousness 

Age Group No  Yes 

0 - 5 years 15 2 

6 - 15 years 18 1 

>15 years 18 0 

Age Group No  Yes 

Total 51 3 

 



251 

 

 

Table 5.13: 3 x 2 tables of the frequency of infectiousness by parasite status in the LAMB cohort 

 Infectiousness 

Parasite Status No  Yes 

Asexual Parasite Negative  5 0 

Sub-patent parasitaemia 14 2 

Patent parasitaemia 11 1 

Total 30 3 
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5.6.Discussion 

In order to improve our understanding of naturally acquired immune responses to 

sexual stage antigens, I carried out seroepidemiological analyses using as targets the 

gametocyte proteins produced in Chapter 4 (Table 4.5) and sera from three cohorts 

of malaria-exposed individuals. Combining insights from Chapter 2 and Chapter 3, 

I explored the relationship between key markers of malaria exposure as well as 

predictive indicators of gametocyte carriage to describe the factors associated with 

immune responses to sexual stage antigens. The targeted gametocyte proteins were 

CVMPPP, PEB-P, PSOP1, CPP4, MDV1, G377 (domain B, G377B), and PSOP25. 

Additionally, I included Pfs230 which has been extensively characterised in the 

context of anti-gametocyte immunity74,200,203,218,415, and AMA1, which has been 

widely studied in the context of immune responses to asexual stages469,549–552. I also 

analysed immune responses to a prepared extract from a culture of mature 

gametocytes (GE) to evaluate its utility as a marker of recent exposure to gametocytes.  

To determine whether the gametocyte antigens are antibody targets, I calculated the 

seroprevalence to each antigen using data from the AFIRM cohort. Antibody 

responses to MDV1, G377B (3D7 and PfKE04 variants) and GE were highly 

prevalent (>60%), as were responses to AMA1 as previously described549,551,552. 

Interestingly, though PSOP1 is hypothesised to be expressed predominantly at the 

ookinete stage,566 it was recognised by the immune sera.  Possibly, though expression 

may peak at the ookinete stage, it may begin much earlier. A previous study on the P. 

berghei proteome did detect the high expression of the PSOP1 homologue 

(PBANKA_0619200) in gametocytes567, demonstrating a lack of exclusivity to the 

ookinete stage.  For Pfs230, the estimated seroprevalence was 42.6%. Based on 

previous studies of seroprevalence to Pfs230 214,227,415,568, estimates have been shown 

to vary widely depending on the study design and assay protocol employed (Chapter 

3). Therefore, direct comparison of Pfs230 seroprevalence from this study with that 

from other studies is challenging.  

There has been debate as to whether seroprevalence to gametocyte antigens increases 

with age, based on studies to Pfs230 and Pfs48/45. Some studies describe no increase 

with age 202,217,218,423, and others indicate an increase in seroprevalence with 

age200,203,222,568. In the AFIRM cohort, an increase in seroprevalence with age for all 
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the antigens (except CPP4) was observed. This supports the argument that individuals 

living in malaria-endemic areas do develop some level of long-lived antibody 

responses to sexual stage antigens. Additionally, seroprevalence to gametocyte 

antigens has been shown in some studies to be boosted during the malaria transmission 

season200,217,227. Within the AFIRM cohort, there was no general trend towards higher 

seroprevalence in the wet season among the antigens tested. Though parasite densities 

were higher in the wet season (Figure 5.7), there was substantial submicroscopic 

parasite carriage in the dry season (Table 5.3). Chronic submicroscopic gametocyte 

exposure has been described to boost anti-gametocyte antibodies222 and could be 

responsible for sustaining antibody responses in the dry season.  

In addition to seroprevalence, I also investigated factors that influence the magnitude 

of response to the gametocyte antigens using data from the three cohorts in separate 

multivariable analyses conducted using linear regression models. As with 

seroprevalence, there was an association between increasing age and increased 

antibody responses to the gametocyte antigens in the KMLRC and AFIRM cohorts. 

This was particularly evident for Pfs230 and G377 (both variants) where gradual 

increases in the magnitude of antibody responses with age were observed for both the 

KMLRC and AFIRM cohorts. A similar age-dependent increase was described by 

Stone et al. (2018) in their study, not only for Pfs230 and Pfs48/45 but also for a panel 

of novel antigens they thought to be important for NA-TBI74.  

Further, concurrent parasitaemia (asexual parasitaemia for the KMLRC cohort) was 

associated with increased antibody responses to the antigens in the KMLRC and 

AFIRM cohorts. Asexual parasitaemia is a strong predictor of gametocyte 

carriage217,459,465 (also see Chapter 3, section 3.6), which could in turn influence 

antibody responses to sexual stage antigens. Notably, in a sub-analysis of patent vs 

sub-patent parasitaemia for the AFIRM cohort, both patent and sub-patent 

parasitaemia were associated with higher antibody responses to CVMPPP, PEB-P, 

MDV1, G377B (both variants) and GE, in comparison to parasite negative 

individuals. However, when limited to parasite positive individuals, patent 

parasitaemia was not associated with higher responses to these antigens in comparison 

to sub-patent parasitaemia. This suggests that both patent and sub-patent parasite 

densities are equally important for boosting antibody responses to sexual stage 

antigens. There was no strong evidence to indicate that transmission intensity was an 
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independent predictor of the magnitude of antibody response to the gametocyte 

antigens in adjusted analysis. Due to challenges with proper matching of cases and 

controls in the KMLRC, this finding would require further verification in future 

analysis.  

In multivariable analyses, gametocyte carriage was not always a strong independent 

predictor of antibody responses to the gametocyte antigens. In the KMLRC, 

microscopically determined gametocytaemia was associated with increased 

magnitude of antibody responses to GE, CVMPPP, PEB-P, and CPP4. However, in 

the AFIRM cohort (with gametocyte detection by molecular methods), gametocyte 

carriage did not independently predict gametocyte carriage. Though biologically 

plausible, the relationship between concurrent gametocytaemia and sexual stage 

responses may be confounded by 1) pre-existing responses from prior gametocyte 

exposure that persists after gametocyte clearance or suppression to submicroscopic 

levels, or 2) the lag between gametocyte exposure and acquisition of responses, 

relating to the time it takes to clear the circulating gametocytes for antigen 

presentation to the immune system203,217,218,222,569. Nonetheless, an association 

between patent gametocytaemia and increased anti-gametocyte responses was 

indicated in the KMLRC cohort for the gametocyte antigens CPP4, CVMPPP, and 

PEB-P as well as for GE. This could serve as evidence for a role for these antigens as 

markers of recent exposure to high-density gametocytaemia. Further investigation in 

larger, independent cohorts would be required to confirm these findings. Additionally, 

as GE is prepared from a gametocyte culture rather than recombinant protein, it could 

provide a more convenient means of screening individuals for gametocyte exposure. 

Interestingly, in the sub-analysis of patent vs sub-patent parasitaemia in the AFIRM 

cohort, for Pfs230, gametocyte carriage (which was almost exclusively sub-patent, 

Table 5.3) was an even stronger predictor of antibody responses than asexual 

parasitaemia. A potential explanation for this might be that sub-patent gametocyte 

carriage could be a marker of individuals with chronic exposure to low-density 

parasite infections who then experience continuous boosting of responses200,570. This 

may allow the development of more long-lived stable antibody responses217, which 

may be a better predictor of responses to Pfs230 in comparison to patent parasitaemia. 
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 In addition to parasitaemia, haemoglobinopathies have also been shown in some 

studies to increase gametocyte carriage79,442, which I hypothesised would result in 

increased antibody responses to the gametocyte antigens. What I found for sickle cell 

trait in the AFIRM cohort, was that for PEB-P, there was a modest association 

between sickle cell trait and reduced antibody responses. Individuals with sickle cell 

trait are protected from severe malaria and are less likely to experience the pathologies 

associated with clinical malaria128,130,133, experiencing lower-density chronic 

infections instead79. Therefore, if indeed PEB-P is a marker of recent higher density 

parasitaemia, then this may explain the inverse relationship seen with sickle cell trait. 

This was the only significant observation observed across the three cohorts, and 

therefore further investigation to ascertain this finding is required.  Varied 

associations between the different gametocyte antigens and α-thalassaemia were 

observed. This made it challenging to define the relationship between α-thalassaemia 

and the magnitude of anti-gametocyte antibody responses.  

Season did not appear to be a strong predictor of antibody responses to the gametocyte 

antigens. Increases in responses to Pfs230 and Pfs48/45 in the rainy season have been 

described200,217,227, presumably as a result of increased parasite prevalence and 

density. Parasite transmission occurs all year round at the Kenyan coast, though 

increased transmission is observed following the onset of the rainy season. This is 

evidenced by the fact that though parasite densities did increase in the rainy season 

(Figure 5.7), parasite prevalence as detected by molecular methods was similar in the 

two seasons (Table 5.3). Sampling timepoint in the rainy season may also affect the 

magnitude of response seen. By sampling at the onset, the peak and after the rainy 

season, Ouedraogo et al. (2011) showed that antibody responses to Pfs230 were 

highest at the peak of the rainy season but returned to initial levels by the end of the 

rainy season217. Sampling at such stated intervals over the rainy season instead of 

continuous sampling over the rainy season may provide a better approach to detecting 

an influence of season on boosting antibody responses to the gametocyte antigens. 

The LAMB cohort provided an opportunity to investigate the dynamics, and 

potentially the longevity, of immune responses to the gametocyte antigens over time. 

For AMA1, antibody responses appeared stable over the four months of follow-up, as 

reported in the literature550,552. Similarly, antibody responses to the gametocyte 

antigens CVMPPP, MDV1, PSOP1, G377B 3D7 and both variants of PSOP25 
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appeared stable over time, with the other antigens showing varied fluctuations over 

the different timepoints. The Longevity of anti-gametocyte immunity has not been 

widely studied as most studies have been cross-sectional, or longitudinal with long 

sampling intervals (Chapter 2). Two studies have directly estimated the longevity of 

antibody responses to Pfs230 and Pfs48/45. Both described a short half-life, with 

Bousema et al. (2010) estimating an antibody half-life of 92 and 83 days 

respectively222, while Ouedraogo et al. (2018) estimating a half-life of roughly a 

month200. Determination of half-life was by different methods with Ouedraogo et al. 

(2018)200 also accounting for parasite exposure in addition to time, and this may 

explain the shorter half-life reported. Further investigation on a larger sample set, over 

a longer follow-up period, across all age groups, and with regular sampling is 

warranted. 

. Anaemia and MOI have previously been associated with increased gametocyte 

carriage77,228,564, which could lead to an association with increased immune responses 

to the gametocyte antigens. In the LAMB cohort, though there was an indication of 

increased immune responses to the PEB-P in individuals with anaemia, no association 

was seen with MOI. An association with anaemia could further serve to suggest an 

association for PEB-P with gametocyte carriage. As none of the previous associations 

between parasite prevalence was observed in the LAMB cohort, it may well be that 

small sample size, and an all adult cohort, do not provide the best means to disentangle 

factors predictive of anti-gametocyte immunity.  

In addition to examining factors influencing antibody responses to individual 

antigens, I also looked at the breadth of response. Increasing age, gametocyte 

positivity and asexual parasite positivity were associated with the recognition of a 

higher number of antigens in both the KMLRC and AFIRM cohorts, and this has 

previously been described227,568. Moreover, as data on participant infectivity to 

mosquitoes was available for the AFIRM and LAMB cohorts, I hoped to investigate 

how anti-gametocyte antibody responses impacted infectiousness. Unfortunately, few 

individuals were infectious, limiting the power to carry out robust analyses.  

For two of the antigens included in this study, variants based on 3D7 and a field isolate 

(PfKE04) were tested. Extensive polymorphism in vaccine candidates can impact 

vaccine efficacy in the field owing to the induction of variant-specific 
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responses236,254,256,571; therefore, this is an essential factor to consider. Though 

gametocyte antigens are relatively conserved572, sequence variation does exist for 

some of the antigens. Acquah et al. (2017) studied the effects of variation in the 6C 

region of Pfs48/45 (a single non-synonymous SNP) and C0 region of Pfs230 (nine 

base pair deletion) on antibody responses 425. They found no impact of these variations 

on antibody responses to the two antigens. 

 In this study, seroprevalence did not differ between variants of G377 in the AFIRM 

cohort. However, in the analysis of the factors associated with the magnitude of 

response to the antigens, associations were not always similar between variants of 

G377B and PSOP25. Nevertheless, associations with increasing age and concurrent 

parasitaemia and increased magnitude of antibody response were observed to both 

G377B variants in the KMLRC and AFIRM cohorts. To assess whether there are 

variant-specific differences in antibody responses, it will be necessary to carry out 

competition ELISAs using immune sera raised against each variant antigen. Owing to 

limited protein quantities and time constraints of the PhD, it was not possible to 

conduct competition ELISAs.   

5.6.1. Limitations 

The three cohorts allowed independent evaluation of the ability of some of the factors 

relating to malaria exposure to predict responses to the gametocyte antigens. 

However, not all variables were tested for each of the cohorts (e.g. unavailability of 

data on submicroscopic parasite carriage and infectivity in the KMLRC cohort), or 

they were not available due to study design (e.g. transmission intensity for AFIRM 

and season for KMLRC). Therefore, in cases where associations seemed unclear, 

(lack of clear trend with season) or where larger numbers would have possibly 

generated more robust evidence (analysis of infectiousness), a more extensive dataset 

would have been beneficial.  

Additionally, only the LAMB cohort was longitudinal with follow-up carried out at 

relatively frequent intervals. However, the sample size was small and consisted only 

of adults making it challenging to ascertain and generalise the associations seen. 

Longitudinal studies with frequent sampling across all age groups will allow us to 

discern better the relationship between recent versus prior parasite exposure and 

sexual stage antibody kinetics200,203, particularly if antibody responses are measured 
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both at the microscopic and submicroscopic level217. Such studies will also need to 

examine TBA at each of these time points to allow the impact on infectiousness to be 

evaluated568. 

For this study, I analysed a small panel of antigens which I endeavoured to produce 

as full-length ectodomains (refer to Chapter 4). While I was able to identify patterns 

of association as described in the literature, it is possible that naturally acquired sexual 

stage immune responses cannot be wholly elucidated from a subset of gametocyte 

antigens. Several studies have employed microarray platforms for the simultaneous 

detection of responses to hundreds of antigens156,227,568, giving a possibly more 

representative picture of NAI to malaria. Indeed, it could very well be that breadth of 

response (or lack thereof) rather than responses to a small panel of antigens would be 

better prognostic indicators of individuals contributing disproportionately to the 

infectious reservoir. 

 That said, the utility of my approach is that it interrogates a smaller number of 

antigens that can be characterised more extensively in functional assays. I also 

evaluated the ability of a crude gametocyte extract (GE) to predict individuals with 

likely gametocyte exposure. Though GE seems to have some utility in predicting 

exposure to gametocytes, it could potentially contain shared antigens between asexual 

and sexual stages and hence may not be entirely gametocyte specific. Though care 

was taken to minimise the presence of asexual stage parasites and immature 

gametocytes, the gametocyte extract could contain some contamination from these 

stages. This could be mitigated against (at least for asexual stage antibody responses) 

by adjusting for responses to schizont lysate in future analysis. Unfortunately, owing 

to time constraints, I was unable to measure responses to schizont lysate for this study.  

Finally, validation of the protein structure was not carried out, and therefore I cannot 

verify that the recombinant proteins produced assume their native conformation. 

Therefore, while the proteins do appear to be targets of naturally acquired antibody 

responses in this analysis, these results are preliminary and would require verification 

once information on the conformation of the recombinant protein is available. 

5.6.2. Summary of overall findings 

In summary, key factors that strongly associated with responses to the gametocyte 

antigens were age and concurrent parasitaemia. Notably, age-dependent acquisition 
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of responses to Pfs230 and boosting by sub-microscopic gametocyte densities may 

indicate that some level of immunological memory to gametocyte antigens. The 

association was only observed in a small subset of samples hence would warrant 

further investigation to exclude any impact of sample bias. Nevertheless, it highlights 

the importance of taking into account submicroscopic parasitaemia when describing 

the dynamics of naturally acquired responses to gametocyte antigens. Of the antigens 

tested, G377B seemed to share patterns of association with Pfs230 in comparison to 

the other antigens, and hence it would be interesting to see how immune sera raised 

against G377B performs in functional transmission-blocking assays.  

PEB-P, CVMPPP, MDV1 and GE appeared to have potential as serological markers 

of recent gametocyte exposure. The evidence presented here warrants further 

evaluation of their prognostic ability. Few individuals were infectious in the cohorts 

studied; hence analyses were not well powered to explore features associated with 

infectiousness.  
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Chapter 6  

Evaluation of identified gametocyte, gamete and ookinete antigens 

as candidate transmission-blocking vaccines 

6.1 Introduction 

Transmission-blocking vaccines (TBVs) target the extracellular sexual stages of the 

parasite that develop within the mosquito midgut or mosquito midgut ligands that 

interact with the parasite during its development within the mosquito. Immune 

responses raised by TBVs exploit the relatively large ‘window of opportunity’ (~24 

hours) presented during parasite transition from gametocyte to gamete to 

ookinete517,573. During this transition, the parasite remains extracellular; hence 

numerous targets are readily accessible to antibodies or drugs, allowing interruption 

of parasite development. Evidence suggests that transmission-blocking activity 

(TBA) is predominantly antibody mediated74,213 with host antibodies shown to persist 

for as long as 24 hours within the midgut at titres lethal to the parasite209. In order to 

determine whether a candidate antigen possesses TBA, functional activity is 

commonly assessed in mosquito feeding assays (MFAs).  

The functional assays in use include mosquito feeding assays such as the standard 

membrane feeding assay (SMFA), direct membrane feeding assay (DMFA) and direct 

feeding assay (DFA). In these assays, the biological endpoint measured is a disruption 

of oocyst development. Aside from evaluating oocyst development, assays can also 

evaluate inhibition of exflagellation321,377,386,387 or ookinete development395,396 

(ookinete development assay, IVOA). The features, merits and demerits of each assay 

are discussed at length in the introduction (Chapter 1, section 1.8.). Owing to a 

greater potential for standardisation, the SMFA is currently the ‘gold standard’ 

assay390–392. However, the DMFA and DFA are also essential as they better replicate 

field conditions and hence present a more realistic view of the expected efficacy of a 

TBV in the population378,379.  

TBA can be presented as either the reduction in oocyst burden in the mosquito (oocyst 

intensity) or reduction in the number of infected mosquitoes (oocyst prevalence). 

Despite reporting different endpoints, these two metrics provide complementary 

information to assess the efficacy of a TBI. From a public health perspective, 
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reductions in oocyst prevalence are thought to more readily predict a reduction in the 

potential for transmission405,574,575. This is because mosquitoes with low numbers of 

oocysts can still develop sporozoites and transmit malaria574. To challenge this 

assertion, studies have shown that not all oocysts rupture to release sporozoites576–579. 

Hence in low-density infections, typical of field-caught mosquitoes, failure of oocyst 

rupture may render a mosquito non-infectious. Solely reporting reductions in oocyst 

prevalence may thus underestimate the TBA of an intervention. However, Stone et al. 

(2013) showed little impact of oocyst non-rupture in infections with low oocyst 

densities, with only 14% of the oocysts failing to rupture and nearly all ruptured 

oocysts resulting in salivary gland sporozoites574. Therefore, oocyst prevalence may 

not significantly overestimate infectivity.  

Methodological constraints impacting the accuracy of estimates of reduction in oocyst 

prevalence and intensity also need to be considered when assessing TBV efficacy. 

The estimation of TBA depends on parasite exposure which is assessed by 

determining mosquito infection rates in the absence of the intervention under 

investigation, i.e. in control mosquitoes. The average oocyst number in control 

mosquitoes exerts more influence on estimates of reduction in oocyst prevalence than 

oocyst intensity in the SMFA. Demonstrating reductions in prevalence where the 

infection intensity is high (>50 average oocyst counts in control mosquitoes) even 

when significant reductions in oocyst intensity are observed391,406,410 is challenging. 

While oocyst counts in the field are on average below 5 per mosquito580–583, infection 

intensity is much higher during experimental infection and is hard to control and 

standardise between assays410. Therefore, as estimates of reduction in oocyst intensity 

are more robust to fluctuations in parasite exposure, oocyst intensity may be a better 

metric to use when comparing candidate antigens during evaluation and ranking of 

TBV candidates using the SMFA405,410.  

Estimates of reduction in oocyst intensity are, however, not impervious to 

experimental variation. The overdispersed nature of oocyst burden impacts the 

precision of oocyst intensity estimates391. Indeed, Medley et al. (1993) in a pooled 

analysis of SMFA data, showed that >70% of all oocysts were found in only10% of 

the mosquitoes dissected409. Where an intervention has high efficacy, more significant 

reductions in oocyst intensity result in decreased parasite aggregation, and hence more 

precise estimates are observed391. Conversely, interventions with low efficacy will 
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show much higher variability in efficacy estimates in replicate assays. Precision and 

accuracy can be increased by dissecting more mosquitoes to increase power409 or by 

carrying out multiple feeds with varied experimental conditions (for instance, 

different sources of infected blood and parasite exposures)391,410. Analysis of the data 

can then use mixed models to take into account the effect of these experimental 

variables on the observed infection levels, thus providing more robust estimates391. 

As neither oocyst prevalence nor oocyst intensity is a ‘perfect’ metric, and both 

provide relevant information by which to evaluate the efficacy of a TBV candidate, it 

is strongly recommended that both metrics be reported391. Additionally, noting the 

impact of parasite exposure on TBA estimates, the average number of oocysts in the 

control group should also be reported as it provides critical information with which to 

interpret efficacy estimates.  

6.2 Rationale 

The limited number of lead vaccine candidates necessitates the identification and 

characterisation of novel TBV candidates. So far, Pfs25 and Pfs230 are the only 

antigens in clinical trials (Pfs25 ClinicalTrials.gov Identifier: NCT01867463, and 

Pfs230 NCT02334462 and NCT02942277. Data on the efficacy of Pfs230 from the 

trials are currently publicly unavailable. Results from clinical trials of Pfs25 have thus 

far shown limited immunogenicity with the induction of low titre short-lived 

responses296,376. A more immunogenic TBV is required, and therefore efforts to 

identify promising candidates to add onto the development pipeline should be 

intensified.  

In malaria-exposed individuals, responses to gametocyte antigens other than Pfs230 

and Pfs48/45 have been identified and associated with TBA strongly indicating that 

there are other antigens capable of mediating TBA282. This work seeks to evaluate a 

set of relatively novel candidate antigens (identified in Chapter 4) as potential TBV 

candidates. These candidates encompass antigens expressed over the developmental 

stages of the parasite within the mosquito midgut. In this way, the chances of 

identifying targets that induce antibodies (either by natural parasite exposure or by 

vaccination) which can disrupt the parasite during this extended window of 

opportunity are increased. 



263 

 

To increase the chances of producing recombinant protein in their native 

conformation, multiple protein expression platforms with previously reported success 

in producing properly folded protein were chosen. Sera raised against the gametocyte 

antigens were tested in the SMFA as a primary functional assay. Testing candidates 

against P. falciparum by DFA or DMFA requires gametocyte positive blood from 

human volunteers which requires extensive identification of such individuals and 

ethical considerations378,379. Therefore, candidates with proven TBA efficacy may be 

preferable for testing using the DFA or DMFA.  

On the other hand, the gamete and ookinete antigens investigated were based on the 

rodent parasite, P. berghei, as it is challenging to produce sufficient quantities of P. 

falciparum ookinetes for in vitro assays. The DFA was chosen as a practical primary 

assay to assess TBA, with the IVOA also used as a complementary assay. An 

advantage of the IVOA is that it can shed light on the biological function of a 

candidate antigen as it primarily assesses inhibition exerted at the point of gamete to 

ookinete development377. Candidate antigens thus identified can then be further tested 

in SMFAs at various antibody titres and parasite exposures to ascertain TBA. The 

ability to triage candidates in this way would provide a practical number of candidates 

to screen in an SMFA where various variables are to be investigated. 

6.3 Objectives 

The main objective of this work was to evaluate the transmission-blocking activity of 

the identified sexual stage antigens (refer to Chapter 4). 

6.3.1 Specific objectives 

• Raise antibodies against the gametocyte, gamete and ookinete antigens in 

rodents. 

• Assess the immunogenicity of antisera against the gametocyte antigens using 

immunoassays. 

• Assess the functional activity of antibodies to the gametocyte antigens using 

the SMFA and of antibodies to the gamete and ookinete antigens using both 

the DFA and IVOA. 
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6.4 Materials and Methods 

6.4.1 Materials 

A summary of commercially available reagents is provided in 9.4 Appendix 4 and 

the recipes for the buffers and solutions used in this study provided in 9.5 Appendix 

5. 

6.4.2 Methods 

6.4.2.1 Vaccination regimen 

For the functional work, the proteins prepared in Chapter 4 were used for 

vaccinations, a summary of the antigens investigated is presented in Table 6.1. All 

procedures for the mouse studies were carried out following the UK Animals 

(Scientific Procedures) Act (UK Home Office License PPL 70/8788) and were 

approved by the Imperial College Animal Welfare and Ethical Review Body. This 

work was carried out at Imperial College over four months. Six to eight-week-old 

BALB/c mice were vaccinated with the antigens using a protein-in-adjuvant prime-

boost regimen; a vaccine delivery platform that comprises a recombinant protein 

formulated in an adjuvant to enhance its immunogenicity584 and has been widely 

applied in the evaluation of TBV candidates291,318,326,489. I aimed to vaccinate five mice 

per antigen, however, owing to limited quantities of some antigens and the need to 

obtain sufficient quantities of sera for analysis, the number of mice immunised per 

antigen ranged from three to ten.  

The mice were anaesthetised and then vaccinated subcutaneously with the antigens 

two times following a three-week interval as prime and boost vaccine injection 

administrations respectively. Fifty μg of protein prepared in TiterMax Gold® 

Adjuvant (mixed at a ratio of 1:1) was vaccinated at the prime and 30 μg of protein at 

the boost. TiterMax Gold® is a potent water-in-oil emulsion adjuvant consisting of a 

block copolymer, CRL-8300, squalene and a sorbitan monooleate585. This adjuvant is 

stable, can be used with a variety of proteins, is minimally reactogenic, can stimulate 

complement activation and induce high antibody titres586.  The use of TiterMax 

Gold® in rodent301,587, simian588 and avian589 vaccinations has been shown to induce 

potent immune responses. Two weeks after the boost, sera were harvested from the 

mice by terminal anaesthesia and cardiac puncture. Sera from non-vaccinated controls 

were also harvested for use in the functional assays. 
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Table 6.1: Summary of antigens for mice vaccination 

Candidate name Gene ID Parasite stage Parasite species Expression system* Mice vaccinated (N) 

Pfs230 PF3D7_0209000 Gametocyte P. falciparum WGCFS 5 

CVMPPP PF3D7_1314500 Gametocyte P. falciparum Mammalian 10 

PEB-P PF3D7_0303900 Gametocyte P. falciparum Mammalian 8 

PSOP1 PF3D7_0721700 Gametocyte P. falciparum Mammalian 4 

CPP4 PF3D7_0208800 Gametocyte P. falciparum WGCFS 5 

MDV1 PF3D7_1216500 Gametocyte P. falciparum WGCFS 5 

G377B 3D7 PF3D7_1250100 Gametocyte P. falciparum WGCFS 4 

G377B PfKE04 PF3D7_1250100 Gametocyte P. falciparum WGCFS 9 

PSOP25 3D7 PF3D7_0620000 Gametocyte P. falciparum WGCFS 10 

PSOP25 PfKE04 PF3D7_0620001 Gametocyte P. falciparum WGCFS 6 

P28 PBANKA_0514900 Gamete and ookinete P. berghei Bacterial 5 

PBCPP2 PBANKA_1463900 Gamete and ookinete P. berghei Bacterial 4 

PBCPP3 PBANKA_1112700 Gamete and ookinete P. berghei Bacterial 4 

SOAP PBANKA_1037800 Gamete and ookinete P. berghei Bacterial 5 

PH+ PBANKA_0417200 Gamete and ookinete P. berghei Bacterial 5 

CHT1 PBANKA_0800500 Gamete and ookinete P. berghei Bacterial 5 

THX PBANKA_0942500 Gamete and ookinete P. berghei Bacterial 3 

VAMP PBANKA_1303700 Gamete and ookinete P. berghei Bacterial 5 

SEAP N/A Control N/A Mammalian 10 

GST N/A Control N/A WGCFS 3 

 

* WGCFS – wheat germ cell-free expression system.  
+ For PH, one mouse was culled after vaccination and hence only four mice proceeded to DFA analysis
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6.4.2.2 Endpoint enzyme-linked immunosorbent assay (ELISA) 

Endpoint ELISAs were conducted to determine the antigen-specific vaccine-induced 

IgG antibody titres. Recombinant protein corresponding to each antigen under 

investigation was first diluted down to 2 μg/ml in PBS before coating onto an ELISA 

plate. The plate was then left at room temperature overnight. The next day, the wells 

of the plate were washed four times using PBS/Tween (PBS/T) before 100 μl of 

blocking buffer was added and the plate incubated at room temperature for two hours. 

Five hundred microlitre stocks of sera at 1:500 dilution from each vaccinated mouse, 

collected at the five-week post-prime time point, were then prepared. For PEB-P, it 

was necessary to use a higher serum dilution series of 1:1000 to 1: 2187000 for PEB-

P to determine the endpoint titre owing to the high titres observed for some of the 

mice. Pooled sera from naïve mice were prepared similarly as a negative control. After 

two hours of blocking, the blocking buffer was discarded from the plate, and 300 μl 

of diluted sera (from the 500 μl stock) added to the wells of row A in duplicate (i.e. 

serum added from one mouse added to wells A1 and A2, and from another added to 

A3 and A4 (Figure 6.1). Two hundred microlitres of blocking buffer were added to 

all the wells of rows B – H, after which 100 μl of diluted serum was withdrawn from 

row A and serially diluted down the plate. 

 

Figure 6.1: Template used for the Endpoint ELISA. Naïve – pooled sera from non-immunised mice 

used as a negative control; Blank – wells where no antigen or sera were added to account for the 

background absorbance of the plate during the analysis of optical density values. 

 

 The plate was then incubated at room temperature for two hours before being washed 

four times with PBS/T. Fifty microlitres of secondary antibody (goat anti-mouse 

whole IgG conjugated to HRP diluted 1 in 5000 in PBS/T was then added to the plate, 

and the plate incubated at room temperature for one hour. The plate was then washed 

four times with PBS/T and 100 μl of OPD substrate added per well before incubating 

1 2 3 4 5 6 7 8 9 10 11 12 Serum Dilution

A Naïve 1 Naïve 1 Mouse 1 Mouse 1 Mouse 2 Mouse 2 Mouse 3 Mouse 3 Mouse 4 Mouse 4 Blank Blank 1 in 500

B Naïve 1 Naïve 1 Mouse 1 Mouse 1 Mouse 2 Mouse 2 Mouse 3 Mouse 3 Mouse 4 Mouse 4 Blank Blank 1 in 1500

C Naïve 1 Naïve 1 Mouse 1 Mouse 1 Mouse 2 Mouse 2 Mouse 3 Mouse 3 Mouse 4 Mouse 4 Blank Blank 1 in 4500

D Naïve 1 Naïve 1 Mouse 1 Mouse 1 Mouse 2 Mouse 2 Mouse 3 Mouse 3 Mouse 4 Mouse 4 Blank Blank 1 in 13500

E Naïve 1 Naïve 1 Mouse 1 Mouse 1 Mouse 2 Mouse 2 Mouse 3 Mouse 3 Mouse 4 Mouse 4 Blank Blank 1 in 40500

F Naïve 1 Naïve 1 Mouse 1 Mouse 1 Mouse 2 Mouse 2 Mouse 3 Mouse 3 Mouse 4 Mouse 4 Blank Blank 1 in 121500

G Naïve 1 Naïve 1 Mouse 1 Mouse 1 Mouse 2 Mouse 2 Mouse 3 Mouse 3 Mouse 4 Mouse 4 Blank Blank 1 in 364500

H Naïve 1 Naïve 1 Mouse 1 Mouse 1 Mouse 2 Mouse 2 Mouse 3 Mouse 3 Mouse 4 Mouse 4 Blank Blank 1 in 1093500
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the plate to allow colour development. The plate was then read three times at 10-

minute intervals (10 minutes, 20 minutes and 30 minutes). This was done to identify 

the timepoint at which the maximal signal was attained. From the preliminary 

endpoint trials, 30 minutes was determined as the incubation time that allowed 

maximal signal detection, and was the incubation time used subsequently. The 

endpoint titre was then calculated as the x-axis intercept of the dilution curve at which 

the optical density (OD) of the wells with test sera reached that of the naïve sera plus 

three times the standard deviation (SD).  

6.4.2.3 Standardised ELISA 

Standardised ELISAs were carried out as described by Miura et al. (2008)562. This 

was done to allow for quantification of vaccine-induced antibody titres in arbitrary 

ELISA units (AUs). The day before the standardised ELISA, an ELISA plate was 

coated with the respective antigen for which a standard was being prepared, and 

incubated overnight at 4°C. The next day, the plate was washed four times with PBS/T 

before blocking buffer was added to the plate and the plate incubated at room 

temperature for two hours. Sera standards for which AUs were to be determined were 

prepared by pooling an equal volume of sera from three mice with the highest endpoint 

titres (mice vaccinated with the same antigen). Two 15 ul aliquots were prepared for 

use, and from these, duplicate 1:1000 dilutions were prepared. The 1:1000 dilution 

was then serially diluted up to a concentration of 1:512000. The blocking buffer was 

aspirated from the wells before 100 μl of the serially diluted sera pool was added to 

wells 1 – 10 of rows A and B (duplicate samples run in row B (Figure 6.2). The 

individual sera were then diluted, and 100 μl run as a sample on the rest of the plate 

in duplicate at dilutions of 1:2000, 1:4000 and 1:8000.  

 

Figure 6.2: Template used for the Standardised ELISA. Naïve – pooled sera from non-vaccinated 

mice used as a negative control; Blank – wells where no antigen or sera were added to account for the 

background absorbance of the plate during the analysis of optical density values; NIH – pooled sera 

prepared from all mice vaccinated with a respective antigen. 

 

 1 2 3 4 5 6 7 8 9 10 11 12

A 1:1000 1:2000 1:4000 1:8000 1:16000 1:32000 1:64000 1:128000 1:256000 1:512000 Blank Blank

B 1:1000 1:2000 1:4000 1:8000 1:16000 1:32000 1:64000 1:128000 1:256000 1:512000 Blank Blank

C Mouse 1 Mouse 2 Mouse 3 Mouse 4 Mouse 5 NIH Naïve

D Mouse 1 Mouse 2 Mouse 3 Mouse 4 Mouse 5 NIH Naïve

E Mouse 1 Mouse 2 Mouse 3 Mouse 4 Mouse 5 NIH Naïve

F Mouse 1 Mouse 2 Mouse 3 Mouse 4 Mouse 5 NIH Naïve 1 in 2000

G Mouse 1 Mouse 2 Mouse 3 Mouse 4 Mouse 5 NIH Naïve 1 in 4000

H Mouse 1 Mouse 2 Mouse 3 Mouse 4 Mouse 5 NIH Naïve 1 in 8000
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Additionally, a general pool of sera prepared by combining sera from mice vaccinated 

with a specific antigen (regardless of titre) was also quantified alongside the 

individual sera. The volume of serum contributed by each mouse to this general pool 

varied depending on the volume of serum harvested from each mouse. The goal was 

to prepare a 1 ml pool of sera against each antigen for functional assays. Sera were 

pooled to provide a sufficient volume of purified IgG for the SMFA (see section 

6.4.2.5 below). After adding the sera, the plate was incubated at room temperature for 

two hours after which the plate was washed, secondary antibody added (goat anti-

mouse whole IgG conjugated to HRP), and the plate incubated for one hour. Signal was 

detected by adding 100 μl of OPD to the plate and incubating for 15 minutes before 

colour development was stopped by adding 25 µL of 2M H2SO4. Absorbance was 

then read at 492 nM to determine the OD. An independent repeat of the standardised 

ELISA was carried out on a separate day using the second aliquot of the standard. 

 In order to compute the AUs, the starting dilution of 1:1000 was assigned 20 AUs, 

and a four-parameter curve fitted from data generated from the diluted standard. AUs 

of the standard were determined using the coefficients of the four-parameter curve 

(lowest asymptote, highest asymptote, point of inflection and Hill’s slope). The 

average of the AUs from the two independent runs was calculated as the AUs of the 

prepared standard, provided the difference between two runs did not exceed 30%. If 

the difference between AUs exceeded 30%, then a second set of two independent runs 

was carried out. Repeat experiments were carried out (two independent replicates) for 

the standards prepared for G377B 3D7 and MDV1. The AUs of the individual sera 

and general pool were then read off the standard curve generated from the standard. 

6.4.2.4 Western blots with immune sera 

Western blot analysis was carried out as described in 4.4.5.2.(a), with a few 

modifications. The primary antibody used was the general pool of immune sera 

diluted 1:10000 in blocking buffer (TBS/T containing 4% skim milk). The membrane 

was first incubated with the primary antibody overnight at 4°C; on the next day, the 

membrane was washed three times with TBS/T and incubated with secondary 

antibody (goat anti-mouse whole IgG conjugated to HRP) diluted at 1:5000 for one 

hour. The membrane was then washed and visualised as described. This was carried 
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out for CVMPPP, PEB-P, SEAP and G377B 3D7 where sufficient protein quantities 

were available. 

6.4.2.5 Standard membrane feeding assay (SMFA) – P. falciparum 

candidates 

SMFAs, against P. falciparum candidate antigens, were carried out at the reference 

laboratory for this assay, Laboratory of Malaria and Vector Research, National 

Institutes of Health (NIH) by Dr Kazutoyo Miura. The SMFAs were carried out using 

a standardised protocol as described in Miura et al. 2013410. Briefly, IgG was purified 

from the 1 ml pool of mouse sera raised against each of the antigens (Table 6.1) and 

adjusted to a concentration of 750 μg/ml. A culture of mature stage V gametocytes 

was first pelleted, and the culture media replaced with normal human serum (with 

complement) and red blood cells and adjusted to between 0.15 – 0.2% 

gametocytaemia and 50% haematocrit. Sixty μl of the test sera were mixed with 200 

μl of the gametocyte mixture and this mixture fed to 50 female Anopheles stephensi 

mosquitoes through a membrane feeder. In addition to the test sera, monoclonal 

antibody 4B7 (whose target is the TBV candidate Pfs25) that has demonstrated potent 

transmission-blocking activity323 was included as an internal positive control. For the 

negative controls, mosquitoes were either fed with naïve mouse IgG (adjusted to the 

same concentration as the purified IgG from mice vaccinated with the test antigens), 

or with naïve normal human serum (NHS). TBA was then estimated using either the 

naïve mouse IgG control (for test antigens) or NHS control (for mAb 4B7). After eight 

days, 20 mosquitoes per test sera were dissected, and oocysts counts recorded. Assays 

were valid only if mosquitoes fed without 4B7 or normal mouse sera had a mean of 

four or more oocysts per mosquito.  

6.4.2.6 Direct feeding assay – P. berghei candidates 

In order to assess the efficacy of the sera against the P. berghei candidate antigens, 

direct feeding assays were carried out on mice previously vaccinated with the gamete 

and ookinete antigens on the day that sera were to be harvested (5 weeks post-

vaccination). The DFAs were carried out by Dr Andrew Blagborough’s team at his 

lab in Imperial College London. Six days prior to the assay, mice were injected 

intraperitoneally with 200 μl of phenylhydrazine (PH) to stimulate reticulocytosis; 

this has been shown to promote and increase gametocyte production395. Three days 
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before the assay, the mice were infected with P. berghei ANKA strain, clone 2.34. 

Parasitaemia was measured by microscopy in all mice prior to the mosquito feeds to 

ensure that all mice (control and test mice) were successfully infected. The day before 

the assay, 50 mosquitoes were transferred into a feeding cup, 5 cups (one for each 

mouse) were prepared for each test serum. On the day of the assay, the mice were 

anaesthetised and placed on top of a cup of mosquitoes. Gametocyte densities were 

also measured in all mice on the day of the feed, and the densities are provided in 

9.910 Appendix 10. Gametocyte densities varied per mouse, with no discernible 

patterns between cohorts of vaccinated mice and gametocytaemia. The gametocyte 

densities observed were typical in terms of scale and range with previous infections 

carried out at the Blagborough lab (Blagborough A, Personal communication). 

Feeding was then allowed to repletion. The cups of mosquitoes were then returned to 

the incubator. The next day, the mosquitoes were examined to detect unfed or partially 

fed mosquitoes and those that had not taken a blood meal taken out of the cups. The 

mosquitoes were then maintained on 8% (w/v) fructose, 0.05% (w/v) p- aminobenzoic 

acid at 19 – 22°C and 50 – 80% relative humidity for ten days before they were 

dissected. After this, oocysts counts per mosquito and the number of infected 

mosquitoes per antigen were determined. 

6.4.2.7 In vitro ookinete conversion assay (IVOA) 

The in vitro ookinete conversion assay was carried out as described by Blagborough 

et al. (2013)395. Test sera obtained from mice vaccinated with the gamete and ookinete 

antigens were prepared in RPMI containing 20% fetal calf serum (FCS) at a final 

volume of 100 μl. The diluted sera were then added to the wells of a 24-well plate. 

Parasitised blood (20 μl) from PH-treated mice was first resuspended in 450 μl of 

ookinete medium to activate the culture before adding to the test sera in the 24-well 

plate to give final sera dilutions of 1:5. Pre-immune sera were also included alongside 

the test sera as a negative control. The plate was then incubated for 24 hours at 19°C. 

On the next day, 100 μl of culture was pelleted by centrifugation at 500 x g for three 

minutes and the supernatant discarded. The pellet was washed one time with ookinete 

medium before resuspension in 50 μl of RPMI containing Cy3-conjugated Pbs28 mAb 

clone 13.1397 diluted at 1:500. The mixture was then incubated on ice for 10 minutes, 

and then a volume of ten microlitres was transferred onto a glass slide and covered 

with a coverslip and the edges sealed with petroleum jelly. Ookinetes and 



271 

 

macrogametes were then enumerated under a fluorescence microscope at 10 x 

magnification. Three biological replicates were carried out for each test serum. 

6.4.2.8 Statistical analysis 

Reductions in the oocyst burden (oocyst intensity) and the prevalence of infected 

mosquitoes (oocyst prevalence) were estimated to assess transmission-blocking 

activity (TBA). This was done using generalised linear mixed models (GLMM) with 

a zero-inflated negative binomial structure (where appropriate) for oocyst intensity, 

and a binomial error structure for oocyst prevalence, as described by Churcher et al. 

(2012)391. The percentage reduction in oocyst intensity and oocyst prevalence was 

then calculated as: 

[1 − (
𝑎

𝑏
)] × 100% 

Where a is the mean oocyst intensity of the test or the infection prevalence of 

the test and b is the mean oocyst intensity of the control or the infection 

prevalence of the control. 

 

Additionally, for the analysis of DFA data, where information on mosquito infectivity 

from each vaccinated mouse (host) was available, the effect of blood source was 

included in the GLMM as a random effect. A Fisher’s exact test was used to estimate 

p -values where oocyst prevalence in control mosquitoes was 100%. 

 To calculate ookinete conversion rates, the percentage of ookinetes formed relative 

to the original number of macrogametes was calculated as described by Blagborough 

et al. (2013)395. Ookinete conversion rates were compared between samples exposed 

to the test antisera and those exposed to sera from naïve mice using an unpaired two-

sample T-test. Additionally, inhibition of ookinete conversion was calculated using 

the equation below: 

[1 − (
𝑎

𝑏
)] × 100% 

Where a is the mean ookinete conversion in the presence of test sera 

and b the mean ookinete conversion in the presence of control sera. 



272 

 

6.5 Results 

6.5.1 Gametocyte antigens 

6.5.1.1 Preliminary analysis of immunogenicity 

6.5.1.1.(a) Endpoint ELISA 

To determine mice with the highest antibody response to the respective antigens post-

vaccination, I assessed the vaccine-induced antibody titre for each mouse five weeks 

post the initial vaccination, two weeks after the boost to coincide with peak boost 

responses.  Except for two of the mice vaccinated with PSOP25 3D7, all the mice 

seroconverted; however, there was considerable variability in vaccine-induced 

responses within each group of mice (Figure 6.3). Notably, Pfs230-C and CPP4 

induced responses appeared to be comparatively low. Data from the endpoint ELISAs 

informed the standardised ELISAs carried out to estimate antibody titre. 

 

Figure 6.3: Vaccine-induced antibody responses in mice to the gametocyte antigens. Boxplots 

showing the log-transformed endpoint titre of vaccine-induced responses to each antigen. The boxes 

of boxplots display the median bound by the first and third quartiles, with the whiskers depicting the 

lowest and highest values (excluding outliers). Each point represents a single mouse within a group 

vaccinated with a single antigen.  
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6.5.1.1.(b) Western blot analysis  

In addition to the endpoint ELISA, for a subset of the antigens, I also assessed whether 

vaccine-induced antibodies raised to each antigen correctly recognised its respective 

antigen on a western blot. I carried this out for the antigens CVMPPP, PEB-P, SEAP 

and G377B 3D7. From the analysis (Figure 6.4), each antigen tested recognised its 

specific antigen confirming immunogenicity. Cross-reactivity was observed for the 

G377 variants, where G377B 3D7 protein was recognised by sera from mice 

vaccinated with either G377B 3D7 or G377B PfKE04. Both G377B proteins migrate 

at a higher molecular weight than expected (see chapter 4.5.1.4), potentially due to 

the abundance of acidic amino acid residues resulting in reduced binding of sodium 

dodecyl sulphate (SDS) and hence they remain insufficiently denatured during 

electrophoresis538–540. 

Interestingly, the G377B 3D7 variant migrates at a higher molecular weight than the 

G377B PfKE04 despite a nine amino acid deletion in the 3D7 variant (refer to sections 

4.5.1.2.(b) and 4.5.1.4). The reason for this remains unclear and would require further 

structural characterisation of the two variants. From the western blot results, it 

appeared that despite the variation, there could exist shared epitopes between the two 

variants.   
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Figure 6.4: Western Blots showing the specific recognition of the recombinant antigens by 

immune sera. (A) Recombinant CVMPPP, PEB-P and SEAP were probed with antibodies raised in 

mice to each respective antigen. The blots show specific recognition of each antigen with no cross-

reactivity. CVMPPP – 17.4 kDa, PEB-P – 24.4 kDa, and SEAP – 64 kDa. (B) Recombinant G377B 

3D7was probed with antibodies raised in mice to both variants of the antigen. 1 – G377B 3D7 59 kDa 

(but migrates above 100 kDa). 
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6.5.1.2 Standardised ELISA 

A standardised ELISA developed to accurately quantify antibody titre (reported in 

AUs) of a reference serum, and subsequently quantify the AUs of test sera562 was used 

to quantify antibody titre in sera generated against each antigen. Based on the results 

of the endpoint ELISA (Figure 6.3), I pooled an equal volume of sera from three mice 

with the highest sera to create a reference serum for each antigen. I used the reference 

serum to estimate the AU for each serum sample from individual mice as well as a 

pool of sera generated from all the mice for use in functional assays. The results were 

similar to the endpoint analysis, with a varied immunological response seen for each 

antigen and mouse (Figure 6.5).  

 

Figure 6.5: Antibody titre induced in mice post-vaccination with the gametocyte antigens. 

Boxplots showing the log-transformed antibody titre in arbitrary ELISA units (AUs) of vaccine-

induced responses to each antigen. The AUs of the pool to NIH coloured in blue. Standardised ELISAs 

for three of the mice vaccinated with PEB-P were not performed as quantities of sera were limited. The 

boxes of boxplots display the median bound by the first and third quartiles, with the whiskers depicting 

the lowest and highest values (excluding outliers). Each point represents a single mouse within a group 

vaccinated with a single antigen.  
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Additionally, antibody titres were estimated for the sera pool generated for each 

antigen. These sera pools were for use in SMFA work described in section 6.5.1.3 

below. Antibody titres varied per antigen, with PEB-P having the highest AU (40,163 

AU) while Pfs230-C had the lowest AU (1,645 AU) (Table 6.2). 

Table 6.2: Antibody of a pool of sera from mice vaccinated with the same antigen 

Antigen AU* of pooled sera 

CVMPPP 24,756 

PEB-P 40,163 

PSOP1 11,102 

SEAP 38,867 

Pfs230-C 1,645 

MDV1 10,379 

CPP4 1,886 

G377B 3D7 22,262 

G377B PfKE04 6,486 

PSOP25 3D7 3,689 

PSOP25 PfKE04 9,877 

GST 5,199 

*AU – antibody units. 

6.5.1.3 SMFA analysis 

In order to evaluate the ability of antibodies raised against the antigens to inhibit 

infectivity to mosquitoes, standard membrane feeding assays were carried. 

P. falciparum (NF54)-infected gametocyte cultures were fed to mosquitoes in the 

presence of purified total IgG. A monoclonal antibody against Pfs25 with established 

transmission-blocking properties, mAb 4B7323, together with anti-Pfs230 IgG, was 

used as positive controls. IgG against the protein SEAP and GST were used as 

negative controls for proteins expressed in the mammalian and wheat germ expression 

systems respectively. Additionally, naïve IgG from non-vaccinated mice was used as 

an assay negative control from which TBA estimates were derived. Naïve normal 

human serum was used as a negative control for the mAb 4B7. Twenty mosquitoes 

were dissected to analyse oocyst counts and infection prevalence for each IgG pool. 

From the first SMFA, analysis of oocyst burden per mosquito indicated significant 

variation in the oocyst burden of mosquitoes fed on IgG against the various antigens 

(p <0.0001, Figure 6.6).   
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Figure 6.6: Oocyst burden in infected mosquitoes fed on IgG against the gametocyte antigens. 

Box plots showing the oocyst counts per mosquito group (N = 20) fed on a blood meal containing 

purified IgG against the gametocyte antigens mixed with P. falciparum NF54 gametocytes. mAb 4B7 

was included as a positive control; SEAP and GST were used as negative control antigens; normal sera 

and human sera were used as sources of negative control IgG. The boxes of boxplots display the median 

bound by the first and third quartiles, with the whiskers depicting the lowest and highest values 

(excluding outliers). Each point represents a single mouse within a group vaccinated with a single 

antigen. 

 

I then carried out analysis to evaluate the transmission-blocking activity by looking at 

reductions in oocyst intensity and prevalence relative to naïve sera (Table 6.3). I chose 

to use naïve mouse sera as a standard comparator as no transmission-blocking activity 

was observed in the mosquitoes fed on IgG from antigen controls when compared 

against naïve mouse IgG. Antibodies induced against PSOP1 significantly reduced 

oocyst intensity (59.4%, 95% CI 27.71 – 78.72, p = 0.004). Though IgG against 

Pfs230 (32.53% 95% CI -5.30 – 60.80%, p = 0.15), G377B 3D7 (34.36% 95% CI 0.27 

– 57.31%, p = 0.12) and G377B PfKE04 (33.03% 95% CI -15.09 – 63.28%, p = 0.15) 

did not significantly reduce oocyst intensity, they were prioritised for a repeat SMFA 

to ascertain if indeed no TBA was present. No reductions in oocyst prevalence were 

observed for any of the IgG tested.   
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Mean oocyst counts in the control mosquitoes, for both the naïve mouse sera and 

malaria naïve human donor, were above 50 indicating high parasite exposure in the 

assay. Evidence of high parasite exposure can also be seen in the low estimates of 

reduction in oocyst prevalence. mAb 4B7 showed no reduction in oocyst prevalence 

despite showing a 90% reduction in oocyst intensity. 
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Table 6.3: Transmission-blocking activity of antisera* against the gametocyte antigens as estimated using generalised linear mixed models 

Antisera 
Median oocyst 

intensity  
IQR 

Inhibition of 

intensity 
95% CI  p value 

Infection 

prevalence 

(%) 

Inhibition of 

prevalence  
95% CI  p value 

Pfs230 33 11.5, 68.75 32.53 -5.30, 60.80 0.15 100 0 - . 

CVMPPP 54 10.75, 92 4.33 -46.79, 42.43 0.86 100 0 - . 

PEB-P 44.5 29.75, 78.25 15.06 -23.78, 44.43 0.44 100 0 - . 

PSOP1 14 2, 39 59.4 27.71, 78.72 0.004 85 15 4.17, 37.50 0.2308 

PSOP25 3D7 38 23.25, 85.5 10.32 -35.26, 40.05 0.59 100 0 - - 

PSOP25 PfKE04 40.5 21.25, 73.75 9.57 -36.94, 41.71 0.68 95 5 0.00, 30 1 

G377B 3D7 27 13.5, 57.75 34.36 -0.27, 57.31 0.12 90 10 0.00, 32.47 0.4872 

G377B PfKE04 25.5 11.5, 42.5 33.03 -15.09, 63.28 0.15 95 5 0.00, 28.18 1 

CPP4 46 3, 82.75 15.97 -31.63, 53.72 0.61 80 20 5.57, 42.86 0.1060 

MDV1 83 21, 103.5 -21.88 -74.59, 17.99 0.41 100 0 - 1 

SEAP 44.5 14.5, 77 17.89 -27.40, 46.96 0.42 95 5 0.00, 37.50 1 

GST 65.5 26, 108.5 -13.56 -64.54, 24.02 0.57 100 0 - . 

Control¹ 60.5 38.38, 76.13 -  - 100 - - - 

mAb 4B7 5 1, 8.25 91.67 80.29, 95.59 <0.0001  15 4.17, 38.89 0.1154 

Control² 90.5 31.25,114 -  - 100 - - - 

* Total IgG purified from the antisera were used in the experiments. 
1 Control IgG from naïve mice used as a negative control for purified IgG from vaccinated mice.  
2 Control serum from a malaria naïve human donor used as a negative control for mAb 4B7.IQR – interquartile range. 

(-) – transmission-blocking activity not calculated for controls; no reduction in oocyst prevalence seen. 

CI – confidence interval; p values in bold are statistically significant at significance level 0.05 (estimated using a Fisher’s exact test). 
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Noting the variability associated with estimates of TBA for interventions with an 

efficacy below 80%391,392, a repeat SMFA was carried out using IgG against Pfs230, 

PSOP1 and both variants of G377B. This was done to ascertain if IgG against these 

antigens were indeed associated with TBA. In this experiment, anti-G377B 3D7 IgG 

showed reductions in oocyst intensity (60%, 95% CI 12.60 – 82.60%, p = 0.03 (Table 

6.4)). Unfortunately, TBA observed with PSOP1 was not replicated in the second 

feed, and no TBA was observed with IgG against Pfs230 and G377B PfKE04. 

Significant reductions in oocyst prevalence were seen with IgG against G377B 3D7 

(31.58% 95% CI 9.52 – 56.60%, p = 0.04) but not with any of the other IgG tested. In 

contrast to the first SMFA, parasite exposure was lower in the second SMFA (median 

oocyst counts in the control mosquitoes < 30, p = 0.009 (Wilcoxon test for difference 

in average oocyst density between feeds for the naïve mouse IgG control)). This was 

also reflected in the higher reductions in oocyst prevalence for relatively similar 

reductions in oocyst intensity.  
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Table 6.4: Transmission-blocking activity of sera against a subset of the gametocyte antigens as estimated using generalised linear mixed models 

Antisera 
Median oocyst 

intensity  
IQR 

Inhibition 

of intensity  
95% CI p value 

Infection 

prevalence 

(%) 

Inhibition of 

prevalence 
95% CI  p value 

Pfs230 46 22.5, 75.75 -50.28 -129.73, 5.11 0.09 100 0 - - 

PSOP1 27.5 8, 52.25 12.71 -36.83, 48.65 0.647 85 10.53 -7.69, 31.58 0.31 

G377B 3D7 4 0, 15.25 60 12.60, 82.60 0.03 55 31.58 9.52, 56.60 0.04 

G377B PfKE04 31 15.5, 62.25 -19.29 -100.87, 33.25 0.56 90 5.26 -9.97, 25.00 0.56 

Control¹ 28 20, 42 - - - 95 - - - 

mAb 4B7 0 0, 4 89.83 72.72, 96.36 0.0002 45 30.77 -30.62, 64.56 0.21 

Control² 9 0, 26.05 - - - 65 
   

* Total IgG purified from the antisera were used in the experiments. 
1 Control IgG from naïve mice used as a negative control for purified IgG from vaccinated mice.  
2 Control serum from a malaria naïve human donor used as a negative control for mAb 4B7.IQR – interquartile range. 

(-) – transmission-blocking activity not calculated for controls; no reduction in oocyst prevalence seen. 

CI – confidence interval; p values in bold are statistically significant at significance level 0.05. 
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6.5.2 Gamete and ookinete antigens 

6.5.2.1 Direct feeding assays 

Similar to the gametocyte antigens, I tested whether vaccine-induced responses 

against the gamete and ookinete antigens possessed TBA. For this, direct feeds by 

mosquitoes on P. berghei infected mice were carried out, and oocyst intensity and 

prevalence estimated ten days post-feeding. Animals vaccinated against P28 were 

included as positive control while naïve mouse sera were used as a negative control. 

Oocyst burden varied significantly (p < 0.05) among groups of mosquitoes that fed on 

the different mice immunised with the antigens, as well as the control mice (Figure 

6.7) . Notably, no correlation was seen between gametocyte densities measured before 

the feed and TBA outcomes (0 Appendix 10). 
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 In a combined analysis of data from of all mosquitoes fed on mice vaccinated with a 

single antigen (Table 6.5), modest TBA was seen for P28 (49.12% 95% CI 34.37 – 

60.55%, p <0.0001), SOAP (45.62% 95% CI 30.95 – 57.17%, p <0.0001) and 

PBCPP2 (36.85% 95% CI 21.29 – 49.33%, p <0.0001). Additionally, sera against 

P28, PH, THX, SOAP, and PBCPP2 yielded statistically significant reductions in 

oocyst prevalence. Based on the observed TBA, I proceeded to further analyse the 

functional activity of these sera in the IVOA assay, using sera from individual mice 

showing the highest TBA (Table 6.6) for the antigens P28, PH, THX, VAMP, SOAP 

and PBCPP2. 

 

Figure 6.7: Oocyst burden in infected mosquitoes fed on sera against the gamete and ookinete 

antigens. Box plots showing the oocyst counts per mosquito group (N ~ 50 mosquitoes per mouse) fed 

on mice vaccinated with the gamete and ookinete antigens. Antisera against P28 were included as 

positive controls; sera from naïve mice were used as negative controls. The boxes of boxplots display 

the median bound by the first and third quartiles, with the whiskers depicting the lowest and highest 

values (excluding outliers). Each point represents a single mouse within a group vaccinated with a 

single antigen. 
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Table 6.5: Combined transmission-blocking activity of mice vaccinated with the gamete and ookinete antigens as estimated using generalised linear mixed models 

Antisera 

Median 

oocyst 

intensity  

IQR 

Inhibition 

of intensity 

(%) 

 95% CI (%) p value 

Infection 

prevalence 

(%) 

Inhibition of 

prevalence 

(%) 

 95% CI 

(%) 
p value 

P28 5 0, 29 49.12 34.37, 60.55 <0.0001 70 21.05 6.28, 46.25 <0.0001 

PH 18 3, 52 -2.53 -29.30, 18.70 0.833 82 8.24 0.11, 28.91 0.04 

THX 17 1, 70.5 11.9 -20.93, 35.81 0.43 79 10.02 0.28, 38.59 0.03 

CHT 1 24 7, 52 17.02 -0.79, 31.68 0.06 87 0.39 -3.50, 13.54 0.92 

VAMP 28 4, 60 1.85 -18.89, 18.98 0.8483 84 6.1 -0.93, 22.70 0.13 

SOAP 7 1, 29 45.62 30.95, 57.17 <0.0001 78 14.59 3.56, 34.63 0.0007 

PBCPP2 13 1, 33 36.85 21.29, 49.33 <0.0001 79 12.01 1.94, 31.96 0.006 

PPBCPP3 27 6, 55.25 1.28 -19.43, 18.40 0.8943 84 5.68 -1.07, 22.23 0.15 

Control¹ 29 9, 62.25 - - - 88 - - - 

1 Control sera from naïve mice. 

IQR – interquartile range. 

(-) – transmission-blocking activity not calculated for controls. 

CI – confidence interval; p values in bold are statistically significant at significance level 0.05.  
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Table 6.6: Transmission-blocking activity of individual mice vaccinated with the gamete and ookinete antigens as estimated using generalised linear mixed models 

Antisera Mouse* 
Median Oocyst 

Intensity (IQR) 

Inhibition of Intensity 

(lower, upper 95% CI 

(%)) 

p - value 

Infection 

prevalence 

(%) 

Inhibition of 

Prevalence (lower, 

upper 95% CI (%)) 

p - value 

P28 1 43.5 (7.25, 77.25) -32.41 (-87.5, 6.5) 0.1138 84 5.04 (-3.13, 29.18) 0.3924 

 2 2 (0, 8) 70.3 (54.71, 80.52) <0.001 60 32.17 (10.65, 60.93) <0.001 

 3 29 (6, 51) 11.52 (-37.95, 43.25) 0.5890 93 -4.78 (-6.94, 15.62) 0.4308 

 4 1.5 (0, 10) 80.41 (70.11, 87.16) <0.001 56 36.7 (13.49, 64.99) <0.001 

 5 2 (0, 13.75) 75.45 (58.8, 85.37) <0.001 56 36.7 (13.49, 64.99) <0.001 

 
       

PH 1 67.5 (24, 133.5) -99.65 (-179.3, -42.72) <0.001 96 -8.52 (-7.85, 6.23) 0.1300 

 2 21 (5, 59.25) -0.13 (-44.28, 30.51) 0.9945 90 -1.74 (-5.75, 18.41) 0.7574 

 3 7.5 (0.25, 35.5) 10.85 (-44.1, 44.84) 0.6394 74 16.35 (1.98, 44.25) 0.0108 

 4 8 (0, 21.75) 56.7 (36.76, 70.35) <0.001 66 25.39 (6.71, 54.3) <0.001 

 
       

THX 1 49 (18.25, 98) -69.11 (-141.84, -18.25) 0.0040 93 -4.97 (-6.98, 14.95) 0.4074 

 2 55 (24, 88) -26.96 (-81.2, 11.05) 0.1885 98 -10.28 (-8.29, 7.09) 0.1106 

 3 0 (0, 2) 94.87 (91.45, 96.93) <0.001 48 46.04 (19.32, 73.19) <0.001 

 
       

CHT 1 1 16 (5, 30.25) 28.75 (-1.98, 50.22) 0.0639 94 -6.26 (-7.23, 10.38) 0.2597 

 2 40.5 (28, 65.5) -5.15 (-45.57, 24.05) 0.7624 92 -4 (-6.52, 14.46) 0.4727 

 3 16 (3, 40.5) 23.49 (-19.24, 50.9) 0.2370 79 10.14 (-1.47, 38.73) 0.1313 

 4 63.5 (12.75, 76) -36.49 (-133.59, 20.24) 0.2564 86 3.1 (-6.09, 45.69) 0.7577 

 5 16 (3, 37.5) 45.99 (10.46, 67.42) 0.0169 84 4.62 (-4.09, 33.56) 0.5109 

 
       

VAMP 1 86 (50.5, 99) 100 (-inf, 100) 0.9999 93 -4.67 (-7.27, 22.59) 0.5236 

 2 35 (4, 67) -26.89 (-82.28, 11.67) 0.1975 78 12.08 (-0.29, 39.85) 0.0615 

 3 32.5 (11.5, 53.25) -5.58 (-63.42, 31.78) 0.8074 89 -0.48 (-5.71, 24.46) 0.9409 

 4 16 (3, 35) 37.75 (11.37, 56.28) 0.0085 82 7.31 (-2.18, 32.46) 0.2232 

 5 12 (2.5, 25.5) 61.34 (35.69, 76.76) <0.001 77 12.48 (-1.03, 44.11) 0.0945 
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Antisera Mouse* 
Median Oocyst 

Intensity (IQR) 

Inhibition of Intensity 

(lower, upper 95% CI 

(%)) 

p - value 

Infection 

prevalence 

(%) 

Inhibition of 

Prevalence (lower, 

upper 95% CI (%)) 

p - value 

 
       

SOAP 1 12.5 (1.25, 48.5) 8.78 (-32.79, 37.34) 0.6313 76 14.09 (0.89, 41.49) 0.0256 

 2 3 (0, 16.5) 61.89 (42.6, 74.7) <0.001 62 29.91 (9.3, 58.8) <0.001 

 3 10 (2.25, 23.5) 21.71 (-24.62, 50.81) 0.3022 78 11.83 (-0.17, 38.6) 0.0566 

 4 2.5 (1, 12.75) 76.03 (64.92, 83.62) <0.001 76 14.09 (0.89, 41.48) 0.0255 

 5 27 (4, 61) 30.67 (-17.89, 59.23) 0.1763 96 -8.52 (-8.14, 19.64) 0.2741 

 
       

PBCPP2 1 15 (1, 34.5) 27.55 (-4.54, 49.78) 0.0849 78 11.83 (-0.17, 38.6) 0.0566 

 2 3 (0, 25.75) 53.59 (30.77, 68.88) <0.001 68 23.13 (5.47, 51.93) <0.001 

 3 11.5 (2, 28.75) 18.81 (-29.4, 49.06) 0.3809 78 11.83 (-0.17, 38.6) 0.0566 

 4 20 (10.25, 41.5) 34.96 (3.89, 55.98) 0.0308 93 -5.51 (-7.4, 19.39) 0.4304 

 
       

PBCPP3 
1 

50.5 (27.25, 

76.75) 
-43.23 (-98.05, -3.59) 0.0297 94 -4 (-6.52, 14.47) 0.4728 

 2 24 (8, 60.5) 8.16 (-30.34, 35.28) 0.6339 84 5.04 (-3.13, 29.19) 0.3923 

 3 31.5 (7.25, 48.25) 4.48 (-43.18, 36.27) 0.8244 88 0.52 (-4.92, 22.17) 0.9275 

 4 14.5 (0, 28.75) 34.46 (4.68, 54.94) 0.0271 70 20.87 (4.27, 49.47) 0.0016 

Control¹ All 29 (9, 62.25) - - 88 - - 

1 Control sera from naïve mice. 

IQR – interquartile range. 

(-) – transmission-blocking activity not calculated for controls. 

CI – confidence interval; p values in bold are statistically significant at significance level 0.05.  

* Mice in bold had significant TBA above 50% and were prioritised for the IVOA.
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6.5.2.2 In vitro ookinete conversion assay (IVOA) 

For P28, PH, THX, VAMP, SOAP and PBCPP2, where individual antisera showed 

>50% reduction in oocyst intensity, I also evaluated TBA using the IVOA. The IVOA 

assesses the ability of anti-sexual stage interventions to inhibit the transition from 

gametes to ookinetes, thereby interrupting transmission395,590. As with the DFA 

analysis (6.5.2.1), P28 and SOAP antisera from individual mice also showed 

reductions in ookinete conversion. For P28, mean conversion rates were 50% (SD 

5.36, p = 0.01), 33% (SD 12.63 p = 0.02), and 46% (SD 2.73, p <0.0001) for sera from 

mice 2, 4 and 5 respectively (Table 6.7). These conversion rates were similar to those 

observed for SOAP antisera (mouse 1: 47%, SD 2.91, p <0.0001 and mouse 2: 

43.62%, SD 2.73, p <0.0001). On the other hand, sera against PBCPP2, PH, THX and 

VAMP though promising in the DFA analysis did not significantly reduce ookinete 

conversion rates.  
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Table 6.7: Transmission-blocking activity of individual mouse sera against a subset of the gamete 

and ookinete antigens (IVOA) 

Antisera Mouse 
Mean ookinete 

conversion ratei 

Standard 

deviation 
p value 

Inhibition of 

ookinete 

conversion (%) 

P28 2 50.01 5.36 0.0061 35.88 
 4 33.21 12.63 0.0233 57.42 
 5 45.58 2.73 <0.0001 41.56 

PH 4 80.46 6.61 0.5896 -3.17 

THX 3 71.97 7.56 0.2995 7.72 

VAMP 5 69.62 6.37 0.1402 10.73 

SOAP 2 47.01 2.91 <0.0001 39.73 
 4 43.62 2.73 <0.0001 44.07 

PBCPP2 2 41.92 21.49 0.0995 46.25 

Control1 1 78.57 5.99 - - 

 2 76.74 1.85 - - 

 3 78.66 1.84 - - 

i Inhibition of conversion calculated relative to conversion rates seen with naïve mouse sera. Mean of 

three biological replicates. 
1 Control sera from naïve mice. 

CI – confidence interval; p values in bold are statistically significant at significance level 0.05. 
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6.6 Discussion 

This chapter describes the work carried out to assess the functional activity of 

antibodies raised against the identified sexual stage antigens (refer to Chapter 4, 

sections 4.5.1.1and 4.5.1.2). Recombinant proteins corresponding to the candidate 

antigens, comprising antigens highly expressed in gametocytes, gametes and 

ookinetes, were produced in various expression systems and used to vaccinate mice 

for antibody production. The generated antibodies were then used in functional assays 

to evaluate their potential of the identified antigens as TBV candidates. To this end, I 

carried out SMFA analysis using antisera against the gametocyte antigens and carried 

out DFA analysis using antisera against the gamete and ookinete antigens. For the 

DFAs, feeds were carried out on individual mice allowing assessment of TBA in 

individual mice as well as a pooled analysis. 

Endpoint ELISAs carried out on sera raised against the gametocyte antigens revealed 

that the proteins were all immunogenic, with antibody responses detectable to each of 

the antigens. The immunogenicity was also confirmed on a subset of antigens by 

western blot analysis using the corresponding recombinant protein. Specific 

recognition of the respective antigen was observed for CVMPPP, PEB-P and G377B 

3D7. Moreover, there appeared to be cross-recognition of the G377B 3D7 variant by 

sera from mice vaccinated with the PfKE04 variant. Sequence variation was identified 

between the two variants (refer to Chapter 4 sections 4.5.1.1and 4.5.1.4) which could 

impact protein structure leading to the induction of variant-specific responses. This 

can be detrimental for vaccine efficacy in the field, as has been seen for highly 

polymorphic asexual stage antigens such as AMA1 and MSP-2254,256. Reassuringly, 

the western blot analysis provided preliminary, though indirect, evidence of shared 

epitopes between the G377B 3D7 and G377B PfKE04 variants. Such conserved 

epitopes would be highly beneficial to overcoming antigenic diversity204.  

Notably, for a majority of the antigens, there was considerable variation in the 

antibody titre per mouse within groups of mice vaccinated with the same antigen. 

Variation in antibody production in mice has been described, even for inbred strains 

of mice such as the BALB/c used for this work591, and could relate to variations in 

stochastic or environmental influences, or be driven by epigenetic or genetic 

factors592. Moreover, antibody titres induced by the different gametocyte antigens 
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varied, with the highest titres observed in PEB-P and CVMPPP-vaccinated mice, 

while the lowest titres were observed in Pfs230-C and CPP4 vaccinated mice. 

Structural analysis to ascertain protein conformation was not carried out for the 

antigens. Therefore, it is not possible to compare immunogenicity between the 

antigens used for this study.  

For future work, vaccination protocols using optimised antigen concentrations, 

different adjuvants, and longer intervals between the priming dose and booster dose 

could be explored to increase antibody titres593,594. Additionally, other vaccine 

delivery platforms such as viral vectors that have been successfully used to induce 

potent functional immune responses to sexual stage antigens289,595 could be explored. 

A better approach may be to combine a viral vector prime with a protein-in-adjuvant 

boost as this approach has been described to enhance antibody and cellular responses 

as well as improve the quality of antibody response (IgG isotype and avidity)584,596,597.  

The low antibody titres observed for Pfs230-C were unexpected. A previous study by 

Miura et al. (2013) reported high immunogenicity following vaccination of mice with 

wheat germ cell-free system-produced Pfs230-C221. Differences in vaccination 

protocol (adjuvant, mouse strain and the time interval between prime and boost) or 

possible inefficiencies during protein production may explain the low anti-Pfs230 titre 

observed in this study. While Titermax Gold® (used in this study) has been described 

to induce potent antibody responses301,587–589, it is possible that when formulated with 

Montanide ISA 720 (Miura et al. study221) Pfs230 induces a more robust antibody 

response.  

BALB/c mice (used in this study) have been successfully used to raise functional 

antibodies to a variety of P. falciparum antigens291,318,386,517, including Pfs230289. 

Therefore, it is unlikely that the choice of mouse strain had a severe impact on 

immunogenicity in this study. Further to improving the vaccination regimen, it would 

also be critical to verify that the recombinant protein used in this study was produced 

in proper conformation. Pfs230 has a complex tertiary structure486,487 hence 

improperly folded protein can impair antigen processing and presentation or lead to 

premature protein denaturation before encountering immune cells thereby reducing 

immunogenicity (reviewed in Saylor et al. (2020)598 and Scheiblhofer et al. (2017)599). 
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The low anti-Pfs230 titres could also explain the lack of TBA observed in the first and 

second feeds.  Pfs230 is a leading vaccine candidate with anti-Pfs230 antibodies 

demonstrating greater than 90% efficacy in reducing both oocyst intensity and 

prevalence in animal studies213,221,289,489. Antibody titre has been described to be a key 

determinant of TBA, where higher TBA is associated with higher antibody 

titres213,296,322,600.  

Likewise, high avidity213,601 and IgG isotype213 (a high IgG2/IgG1 ratio) have also 

been associated with higher TBA. The mosquito midgut is a ‘ harsh, highly proteolytic 

environment’ hence high antibody titres and high avidity are required to efficiently 

inhibit parasite development517. Furthermore, the activity of antibodies against Pfs230 

is enhanced in the present of complement206 and therefore, as mouse IgG2 and IgG3 

fix human complement better than IgG1213,602, a high IgG2/IgG1 is thought to enhance 

TBA.  Currently, ‘gold-standard’ cut-offs of titre, avidity and IgG2/IgG1 ratio above 

which high and reproducible TBA is achievable following vaccination with Pfs230 

have not been defined.  

From the results of the first SMFA analysis, only PSOP1 showed modest reduction in 

oocyst intensity (59%). None of the antisera against the other candidate antigens was 

associated with reductions in oocyst prevalence. None of these candidate antigens has 

been evaluated as TBV candidates in a P. falciparum model of infection, with only 

P. berghei PSOP25 (PbPSOP25) evaluated as a TBV candidate. Considerable TBA 

(> 60% and 25 – 31% reductions in oocyst intensity and prevalence respectively) was 

observed by Zheng et al. (2017) with anti-PbPSOP25 sera302,517. Furthermore, their 

work also demonstrated a role for PSOP25 protein in the maturation of ookinetes. 

 Unfortunately, the PSOP25 variants produced for this study showed negligible TBA, 

possibly illustrating a need to improve antibody titres and also ascertain that native 

epitopes were recapitulated in the proteins used for vaccination. Alternatively, it might 

be that while the rodent PSOP25 protein plays an essential role in fertilisation, the P. 

falciparum homolog may have a non-essential function. This phenomenon has been 

observed with Pfs47, where Pfs47 plays an essential role in fertilisation in P. berghei 

but not in P. falciparum286,603.  

SMFA analysis was repeated for antisera against both variants of G377B as well as 

PSOP1 where a trend towards modest TBA was observed in the first SMFA analysis. 
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In the repeat, only, G377B 3D7 showed a 60% reduction in oocyst intensity and a 

32% reduction in oocyst prevalence. G377 protein is associated with the osmiophilic 

bodies of gametocytes524,604, and from knock-out studies, it is believed to be vital in 

aiding female gametocytes egress from the erythrocyte605 and may also be involved 

in oocyst formation606. The modest TBA observed in the second feed, and evidence 

for a role in sexual stage development indicate that G377B may have potential as a 

TBV target. However, conflicting results in the replicate SMFAs make it challenging 

to conclusively judge G377B and PSOP1 as a TBV candidates.  Gene knockout 

studies of PSOP1 have not conclusively described a sexual stage phenotype, though 

some evidence suggests functional redundancy as the PSOP1 knockout did result in 

comparable oocyst and sporozoite burden as the wildtype519,520. Further experiments 

will be required to ascertain the TBA of G377B and PSOP1. 

CVMPPP has been implicated as a potential TBV candidate, albeit indirectly, by 

Stone et al. (2018) who found that sera from individuals with high responses to 

CVMPPP were also more likely to exhibit >90% TBA74.  

Relatively high antibody titres were observed in mice vaccinated with CVMPPP and 

PEB-P, and therefore the lack of TBA may not be linked to antibody titre. Further 

analysis to confirm protein structure, surface localisation and antibody quality may 

provide insight into the lack of functional activity. Additionally, as both antigens were 

produced in the mammalian system, internal N-glycosylation sites were modified to 

improve protein expression485 as N-linked glycans are thought to be absent in P. 

falciparum512,513. Kapulu et al. (2015), however, showed with Pfs48/45 that 

modification of N-glycosylation sites could adversely impact TBA,289 possibly by 

inadvertently modifying key epitopes607,608. Hence this could also explain why despite 

high antibody titres, TBA was not observed with either CVMPPP or PEB-P. 

As with G377B, MDV1 localises to the osmiophilic bodies609 and likely has an 

essential role in gametocyte egress and ookinete development based on rodent malaria 

knock-out studies522,523. Antisera against MDV1 did not exhibit any TBA in this study 

despite relatively high antibody titres post-vaccination. Further analysis to confirm 

protein structure and surface localisation is warranted. Moreover, investigations into 

the quality of response regarding avidity and IgG isotype could indicate whether 
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optimising the vaccination regimen (use of a different platform or adjuvant) may 

enhance functional activity.  

CPP4 has not been evaluated as a TBV candidate or for a role in sexual stage 

development. For anti-CPP4 sera, no TBA (reductions in oocyst intensity or 

prevalence) was observed.  As with Pfs230, CPP4 was poorly immunogenic; hence 

the low antibody titres could explain the low TBA observed. CPP4 has been deemed 

essential to parasite survival owing to its refractoriness to mutagenesis610 and 

therefore may warrant further investigation as a TBV candidate following 

optimisation of immunogenicity.  

 In addition to factors such as suboptimal antibody titres or improperly folded protein, 

the variability of the SMFA may also pose a challenge to detecting TBA. In 

experiments with high infection rates, high parasite exposure negatively correlates 

with  TBA405. Interventions with high TBA may still be able to block transmission at 

high parasite exposure, but moderate TBA would be challenging to detect. In the first 

SMFA experiment, the mean oocyst counts in the control experiments were above 50 

oocysts, which could explain the low reductions in oocyst prevalence observed. 

Furthermore, the limited dynamic range of the SMFA 80 – 100% complicates the 

ascertainment of moderate TBA221. The significant measurement error of the assay 

makes it near impossible to obtain consistent TBA estimates in repeat assays where 

the inhibitory activity is low221,405. A clear demonstration is seen in the lack of 

reproducibility in replicate SMFA results for Pfs230, PSOP1 and G377B antisera. A 

way around this is to carry out multiple feeds with different concentrations of antisera, 

at different gametocyte exposures and multiple blood sources391,405,410. However, this 

was not possible in this current work owing to time constraints. 

To evaluate the potential of the identified gamete and ookinete antigens as TBV 

candidates, antisera against P. berghei P28 protein, homologous to Pfs25, was used 

as a positive control. Anti-Pb28 sera have shown greater than 90% TBA in DFA 

analysis194,611,612. From the pooled analysis, anti-Pb28 sera showed moderate 

reductions in oocyst intensity (49%) and prevalence (21%), however, three mice 

showed higher TBA (>70% and >30% reductions in oocyst intensity and prevalence 

respectively) in the individual analysis. The lower activity seen in comparison to other 

studies and with two of the mice may be linked to antibody titre, which as previously 
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mentioned positively correlates with TBA. Due to time constraints, I was unable to 

quantify antibody titres as I did with the gametocyte antigens and therefore could not 

assess the impact of antibody titre on the TBA observed. Another explanation could 

be that the protein expression platform used may have yielded a protein of lower 

immunogenicity. Matsuoka et al. (1994) observed low immunogenicity of E. coli 

produced Pb28 that resulted in 33% TBA which they hypothesised was due to 

inefficiently folded protein613.   

Nevertheless, there was detectable TBA in the DFA analysis with the Pb28 protein 

used, and this was confirmed in the IVOA analysis where anti-Pb28 sera showed 

between 33% - 50% reduction in ookinete conversion rates. Similar to anti-Pb28, sera 

against SOAP and a previously uncharacterised antigen, PBCPP2, also showed TBA 

in the DFA (both antigens) and IVOA (SOAP) analyses. SOAP is a secreted protein 

associated with ookinete micronemes that may play a role in ookinete invasion of the 

midgut614. Individual antisera against SOAP (from mice with the highest TBA) were 

associated with reductions of >60% and between 14 - 30% in oocyst intensity and 

prevalence respectively, as well as a 40% reduction in ookinete conversion rates. 

These results are promising and indicate that SOAP warrants further investigation as 

a TBV candidate. One other study that evaluated the TB potential of SOAP did not 

find an association with TBA505; this discrepancy could relate to differences in protein 

constructs used and their ability to recreate native epitopes. The function of PBCPP2 

protein is currently unknown, and therefore an explanation for its role in mediating 

TBA remains unclear. However, based on data from PlasmoDB, PBCPP2 is described 

as a putative HSP20-like chaperone and may contain domains associated with binding 

heat shock proteins. Therefore, PBCPP2 may play a role in gamete development 

triggered under stress-conditions within the mosquito midgut615. 

There was also evidence to suggest modest TBA associated with antisera to PH, 

VAMP and THX (when TBA of individual mice was analysed) in the DFA but not 

the IVOA.  Assay endpoints differ between the DFA and IVOA and hence the 

mechanisms by which antisera to the three antigens mediate TBA may only be evident 

at the ookinete-oocyst transition. PH has been evaluated as a TBV candidate by Kou 

et al. (2016). The authors observed a dose-dependent inhibition of ookinete 

conversion, that was almost completely blocked at the highest concentration 

examined, as well as approximately 50% and 10% reductions in oocyst intensity and 
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prevalence. Therefore, the recombinant PH protein used in this study may not have 

been as immunogenic, although this requires further investigation of antibody titre 

generated following vaccination. VAMP and THX proteins have not been investigated 

as TBV targets, neither has a sexual-stage phenotype been investigated by gene 

knock-out studies hence it is difficult to interpret the TBA seen in the context of what 

is known. On the other hand, though CHT1, a chitinase that aids ookinete passage 

through the peritrophic membrane325, has been described to induce TBA326 this was 

not reproduced in this study. Similarly, antisera to PBCPP3, an as-yet-uncharacterised 

protein, also did not demonstrate TBA in either of the TB assays utilised.  

These preliminary analyses on the candidate gametocyte, gamete and ookinete 

antigens while highlighting potential TBV candidates for further investigation, also 

indicate a need to carry out additional analyses to (1) confirm protein conformation 

and immunogenicity, (2) confirm localisation to ascertain that the targets are 

accessible to antibodies, and (3) evaluate and optimise antibody titres induced by 

vaccination. Though only modest TBA was observed where TBA was detected, there 

is evidence to suggest that TBIs with low efficacy (below 80%) can be efficacious in 

the field when parasite transmission is low401, particularly if combined with a pre-

erythrocytic vaccine313. Moreover, unlike in experimental conditions, oocyst 

distribution in field-caught mosquitoes is highly overdispersed with the majority of 

mosquitoes harbouring fewer than five oocysts and only a few mosquitoes with a high 

oocyst burden405,580–583. Therefore, even TBVs with modest TBA can potentially have 

an impact in reducing parasite transmission in the field. 

6.6.1 Limitations 

Though the work presented here is preliminary, there is evidence to suggest the 

identification of a few novel TBV candidates. The TBA observed, however, was 

modest, with none of the candidate antigens showing above 80% TBA. Limited 

quantities of sera were available, and hence it was not possible to replicate the 

functional assays using different antibody concentrations and levels of parasite 

exposure, particularly for the SMFA. Such measures have been proposed as a way to 

reduce the uncertainty of SMFA-based TBA estimates391,405,410.  

While one might be tempted to doubt the potential of the antigens as TBV candidates, 

there are several other reasons for the low efficacy observed including reduced 
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immunogenicity arising from either failure to produce correctly folded recombinant 

protein efficiently or from a sub-optimal vaccination protocol.  Owing to time 

considerations and challenges with obtaining sufficient quantities of proteins 

(particularly for the wheat germ produced proteins), I was unable to carry out 

structural analysis to verify the conformation of the proteins. Where proteins adopt 

complex tertiary structures (for instance Pfs230486,487), recreating conformational 

epitopes in recombinant protein is key to inducing functional antibodies613. Therefore, 

these results are preliminary and would require verification once information on the 

conformation of the recombinant protein is available. Structural analysis would also 

enable clarification of the discrepant results for Pfs230 where the recombinant protein 

produced appeared a target of natural immunity in malaria exposed individuals 

(Chapter 5) but did not induce high TBA. 

Additionally, I chose to use a tried-and-tested protocol for vaccination; however, the 

results indicate that the protocol may require optimisation possibly by using a 

different vaccination platform, adjuvant, longer interval between prime and boost or 

a higher or lower antigen concentration593,594. Again, due to limited time, I could only 

measure antibody titre for the gametocyte antigens. However, as it is well described 

that titre is key to TBA213,322,600, improved titres could also improve the TBA seen for 

the gamete and ookinete antigens. I was also unable to carry out surface localisation 

experiments for the candidate antigens, which could be achieved using 

immunofluorescence assays. Confirming the localisation of the antigens would have 

also aided the interpretation of the results from the functional assays, as one could 

then speculate whether the target antigens are indeed accessible to the TB antibodies. 

6.6.2 Summary of overall findings 

To summarise, the work presented here indicates that the proteins SOAP and PBCPP2 

can induce TBA.  For the antigens highlighted, the TBA observed (both reductions in 

oocyst intensity and oocyst prevalence) was modest. As these analyses are 

preliminary, there is potential to improve antibody titres induced during vaccination 

which could, in turn, improve the TBA induced by these antigens. Additionally, for 

G377, though not conclusive, there is early evidence to suggest that the sequence 

variation between 3D7 and the field isolate PfKE04 does not appear to impact 

immunogenicity. Though cross-recognition indicates shared epitopes that may 
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overcome parasite diversity in the field, G377B PfKE04 was not associated with TBA 

as G377B 3D7 was in the replicate SMFA. Antibody titres (Table 6.2) were much 

higher for the G377B 3D7 variant (22,000 AU) in comparison to G377B PfKE04 

variant (6,486 AU), and this could have impacted the level of TBA seen with the two 

variants. Alternatively, the sequence variation may indeed impact TBA; further 

investigation is therefore required to understand the impact of the observed 

polymorphism.   

Future work to verify protein structure can also highlight any shortcomings in 

recombinant protein production that could be alleviated by the use of a different 

protein expression platform. Furthermore, the proteins have peak expression at 

different stages of sexual development (gametocyte/gamete to ookinete), which can 

be confirmed by surface localisation and further functional assays. Therefore, there is 

a possibility to explore the synergy between the antigens and to identify combinations 

with superior TBA. The number of candidate antigens to add to the TBV testing 

pipeline can thus be increased. 
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Chapter 7  

Concluding Remarks and Future Plans 

7.1 Summary of main findings 

The need for novel tools to add to the existing options of malaria control interventions 

has reinvigorated efforts to develop transmission-blocking vaccines (TBVs). To this 

end, three lead candidate antigens are under various stages of clinical development. 

Prioritisation of these candidates was not based on comparative assessments of 

efficacy but rather on the historical identification. Therefore, it calls in to question 

whether there are other antigens with equal or superior transmission-blocking activity 

(TBA) that should be included in the development pipeline.  

Moreover, our understanding of naturally acquired transmission-blocking immunity 

(NA-TBI) remains incomplete. NA-TBI can provide a means to guide antigen 

discovery and provide useful information that could aid the eventual implementation 

and assessment of TBVs203 and improve our understanding of the human infectious 

reservoir74,200. Unfortunately, the few studies looking into NA-TBI of sexual stages 

are not enough to provide a clear consensus on the critical features of anti-gametocyte 

immunity. The body of work presented in this thesis aims to address the above 

knowledge gaps by characterising a set of novel sexual stage antigens, spanning the 

gametocyte, gamete and ookinete stages, as targets of TBI. 

To improve our understanding of anti-gametocyte immunity, I (1) carried out a 

systematic review and meta-analysis of studies that assessed responses to Pfs230 and 

Pfs48/45 in African populations (Chapter 2), (2) investigated gametocyte carriage in 

a longitudinally monitored cohort of children (Chapter 3); (3) produced and profiled 

immune responses to a set of newly identified gametocyte antigens as well as to 

Pfs230 (Chapter 4 and Chapter 5). Key findings from these analyses were that: 

(a) Host age is an essential factor influencing the prevalence and magnitude of 

antibody responses to sexual stage antigens. Evidence of a gradual increase in 

responses with age was most marked for Pfs230 and for G377 (domain B) but 

not for PEB-P indicating that only a subset of gametocyte antigens may 

generate stable, long-lived responses. For PEB-P, a stronger association was 

observed with patent gametocytaemia than with age. 
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(b) Concurrent parasitaemia was also an essential determinant of natural 

immunity to gametocyte antigens. Higher density infections boosted responses 

to the gametocyte antigens, though submicroscopic gametocytaemia was also 

seen to boost responses to Pfs230.  

These results can have two important implications. Firstly, the availability of 

proteomic datasets and bioinformatic tools to mine them coupled with high throughput 

protein expression and antibody screening tools could increase the number of antigens 

identified with a potential role in TBI. Screening for antigens that are associated with 

more stable antigen responses may provide a rational criterion for selecting candidates 

for further evaluation of functional activity. Secondly, though these results are 

preliminary, a subset of gametocyte-specific antigens that are possibly associated with 

concurrent gametocytaemia was identified. Structural analysis to confirm the structure 

of the recombinant protein used for the immunoassays will be required. However, if 

confirmed, the identified antigens could be exploited to develop screening tools to 

identify individuals or populations at a higher risk for transmission616,617. Moreover, 

such screening tools could prove useful in serological assays aimed at monitoring the 

efficacy of TB interventions in the field. Additional information on age, transmission 

intensity and previous malaria exposure, variables that were associated with 

gametocyte carriage in the epidemiological analysis, could also be used in conjunction 

with the serological tools.  

Another valuable insight from the epidemiological analysis was that the adoption of 

ACTs as first-line treatment for malaria in the Kilifi Malaria Longitudinal Rolling 

Cohort might have contributed to reduced post-treatment gametocyte carriage. These 

results are preliminary as the analysis does not provide definitive proof for a role for 

ACTs; however, they provide an interesting study for future investigations of the 

epidemiology of gametocyte carriage in the KMLRC. Previous studies have shown 

that ACTs can impact post-treatment gametocyte carriage and onward infectiousness 

to mosquitoes462–464. Therefore, the use of drug combinations that promote 

gametocyte clearance as well as the development of novel antimalarials with action 

against both asexual and sexual parasite stages can accelerate malaria elimination 

efforts.  
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In addition to exploring the associations between age and parasitaemia with 

gametocyte carriage and anti-gametocyte immunity, I also evaluated the potential for 

boosting of anti-gametocyte immunity following the malaria transmission season. 

Unfortunately, results from the seroepidemiological analyses carried out did not 

provide conclusive evidence of boosting of responses and could not indicate the 

longevity of responses to the panel of antigens tested. However, challenges in teasing 

out these associations highlight critical considerations for future seroepidemiological 

studies. First, the investigation of seasonal variation in anti-gametocyte antibody 

responses should possibly be done in areas where a clear demarcation exists between 

malaria transmission seasons. Second, the assessment of NA-TBI should ideally be 

done using longitudinal prospective cohort studies across all age groups where 

clinical, parasitological, infectivity and antibody data are assessed frequently. 

Further to assessing NA-TBI, I evaluated the TBA of antibodies raised against a set 

of chiefly uncharacterised gametocyte, gamete and ookinete antigens (Chapter 6). 

For the gametocyte antigens, I included two antigens (G377 and PSOP25) that 

exhibited sequence variation between the widely studied lab isolate 3D7 and PfKE04 

(a local Kilifi field isolate).  

Modest TBA was observed for Pfs230, G377B (both PfKE04 and 3D7 variants) and 

PSOP1. Due to challenges in ascertaining moderate TBA using the SMFA, the results 

were only replicated for the G377B 3D7 variant. The lack of reproducibility also made 

it difficult to ascertain the impact of the sequence polymorphism on TBA. In one 

feeding experiment, both G377B variants showed comparable TBA but not in the 

second experiment. Encouragingly, in the immunoprofiling analysis, G377B PfKE04 

and G377B 3D7 showed similar patterns of association signalling the existence of 

conserved epitopes that may overcome sequence diversity. However, this will require 

further investigation.  

Previous associations between antibodies to Pfs230 and high-level transmission-

blocking activity (TBA) suggest that reduced protein immunogenicity or sub-optimal 

vaccine delivery could explain the modest TBA observed. This was also indicated in 

the low antibody titres generated post-vaccination and provides a means to improve 

the TBA of these candidates. Encouragingly, antisera against the gamete and ookinete 

antigens P. berghei SOAP and a conserved uncharacterised antigen, PBCPP2, 
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exhibited TBA similar to that observed using antisera against Pb28 in both DFA and 

IVOA. Further investigation of their potential as TBV candidates is warranted. Some 

evidence of TBA was also observed with antisera against PH, VAMP and THX in the 

DFA. As noted previously, confirmation of the structure of the recombinant protein 

used to raise the antibodies for functional assays will be paramount. This will allow 

verification of TBA (or lack thereof) seen with the candidate antigens and allow 

prioritisation of candidates for optimisation of protein production, and further 

functional evaluation. 

7.2 Recommendations for future work 

The work presented in this thesis can be extended in future studies by refining the 

approach used to assess NA-TBI and validating the potential candidate antigens 

identified in this work.  

7.2.1 Characterisation of NA-TBI 

Despite the analysis carried out in chapters three and five, pertinent questions 

regarding boosting of naturally acquired sexual stage responses during the 

transmission season and the longevity of such responses remain unanswered. Natural 

boosting of vaccine-induced responses in the field is thought to be an advantage of 

TBV vaccines based on pre-fertilisation antigens such as Pfs230 and Pfs48/45. A TBV 

should remain efficacious over at least one transmission season289,618. However, the 

rapidly waning titres observed with the Pfs25-based TBV197,296 indicates a potential 

challenge in achieving long-lasting protection in the field. Preliminary evidence of 

boosting following natural infection was shown in a study by Ouedraogo et al. (2018) 

where anti-Pfs230 and anti-Pfs48/45 responses were measured at the start, peak, and 

end of the transmission season200. The authors demonstrated variable boosting of 

responses over the transmission season that was more evident for Pfs48/45 than 

Pfs230. Therefore, further studies are required to verify the magnitude of such 

boosting and whether this translates to enhanced TBA. 

Moreover, investigations into the development and maintenance of NA-TBI in 

relation to gametocyte density and duration of gametocytaemia in prospective 

longitudinal cohorts will improve our understanding of the dynamics and longevity of 

such immune responses200. Ideally, this should be carried out using a diverse panel of 

gametocyte-specific antigens. This would allow the identification of antigens with a 
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possible association to recent exposure to gametocytes that could be incorporated into 

serodiagnostic tools to define and monitor changes in the infectious reservoir. Results 

from the immunoprofiling suggest that a subset of the gametocyte antigens, most 

notably PEB-P, as well as crude gametocyte extract could serve as markers of recent 

gametocyte exposure; their prognostic ability should be investigated further.   

7.2.2 Improving protein expression 

Variable success with producing full-length ectodomains corresponding to the 

identified sexual stage antigens resulted in the production of 16 out of the 47 antigens. 

Characterisation of the remaining 31 antigens may identify more TBV candidates. 

Exploration of different protein expression platforms and optimising antigen 

sequences to overcome the P. falciparum ‘AT-bias’ could enhance the production of 

recombinant protein. Various platforms not investigated in this study that have been 

used to produce recombinant sexual stage antigens successfully include the 

baculovirus288,303,619, Lactococcus lactis314,425, and algal620 expression systems. Where 

full-length protein production remains a challenge, protein structures of these antigens 

could be analysed in silico using epitope prediction software to identify potential 

epitopes or domains which may be more amenable to expression. The identification 

of critical domains of Pfs230 (region C283,289) and Pfs48/45 (fragment 10C314,621) 

capable of inducing potent TBA supports the use of fragments rather than full-length 

protein where size or complex tertiary structure impedes protein production. 

7.2.3 Improving immunogenicity and efficacy (TBA) 

Analysis of post-vaccination antibody titres after mice were vaccinated with the 

gametocyte proteins indicated that the majority of antigens were modestly 

immunogenic. Antibody titre has proven a useful correlate of TBV efficacy, and the 

low titres observed in this study for Pfs230 explain the modest TBA observed. This 

could also be true for the other gametocyte antigens, particularly CPP4, PSOP25 (both 

variants), MDV1 and G377B PfKE04 variant. Immunogenicity could be improved by 

optimising antigen concentrations, using different adjuvants622, using other antigen 

delivery platforms such as viral vectors289,584,595–597, or optimising the vaccination 

schedule593,594 which could in turn increase the TBA observed. In a comparative 

assessment of 11 adjuvants in a mouse model of infection, Milicic et al. (2017) 

identified two adjuvants, Abisco®-100 and CoVaccineHTTM that were associated with 
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potentiated vaccine-induced responses and enhanced efficacy622. The ability of these 

adjuvants to improve the immunogenicity of the antigens studied in this work could 

be explored. 

Other approaches could involve conjugating the proteins to immunogenic molecules 

such as Pseudomonas aeruginosa exoprotein A (EPA)623,624 or outer membrane 

protein complex (OMPC) of Neisseria meningitidis serogroup B625. Alternatively, the 

use of viral vectors for antigen delivery rather than protein-in-adjuvant formulations 

could enhance both immunogenicity and potential longevity of the generated 

response. The ChAd63-MVA viral vector platform has been used successfully in 

heterologous prime-boost regimens for pre-erythrocytic248,251,252, asexual191,507, and 

sexual stage antigens289, resulting in the induction of both antibody and cellular 

responses. Importantly, Kapulu et al. (2015), using the ChAd63-MVA platform for 

vaccine delivery in a rodent model, demonstrated induction of responses to Pfs230, 

Pfs48/45 and AnAPN1 that were sustained for 350 days post-vaccination289 without 

the need for a booster dose. The potential for this approach to induce long-lasting 

responses to sexual stage antigens should be explored further in clinical trials. 

7.2.4 Testing the P. falciparum orthologs of promising P. berghei 

candidates 

Evaluation of gamete and ookinete antigens was based on a rodent model of malaria 

infection owing to the challenges of producing sufficient quantities of P. falciparum 

gametes and ookinetes in vitro for functional work. Advances in culture techniques 

399,400 are providing solutions to circumvent this. In the future, it will be possible to 

use cultured P. falciparum gametes and ookinetes for TB assays such as the ookinete 

conversion assay. Alternatively, a rodent model could still be used but would require 

that mice be challenged with a chimeric P. berghei parasite that expresses the 

P. falciparum protein under investigation. Chimeric P. berghei parasites have been 

developed that express pre-erythrocytic252,329 and sexual stage antigens289,313,595,626 

allowing the evaluation of P. falciparum-based vaccines in mouse vaccine efficacy 

studies.  

Evaluation of TBA of the P. falciparum orthologs of the promising P. berghei 

candidates can also be achieved by SMFA analysis where cultured gametes and 

ookinetes are not required. Confirmation of the TBA seen in this study with sera 
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against the rodent proteins SOAP and PBCPP2 in P. falciparum will be of utmost 

importance if they are to be prioritised as TBV candidates. As PBCPP2 is an 

uncharacterised conserved Plasmodium protein, delineation of its structure and 

function could improve our understanding of sexual stage biology and provide 

insights on how to enhance its immunogenicity and efficacy. Moreover, the 

identification of orthologs in other Plasmodium species, e.g. P. vivax, may lead to the 

identification of conserved regions that could be targeted in a pan-species TBV. 

7.2.5 Exploring the efficacy of multi-stage vaccine combinations  

There is increasing support and evidence for the design of malaria combination 

vaccine that encompasses targets spanning various developmental stages of the 

parasite. Future work could also evaluate the possibility of combining promising 

antigens identified from this study with pre-erythrocytic or asexual stage targets. The 

synergy between pre-erythrocytic, asexual and sexual stage antigens co-administered 

in vaccines has been demonstrated to reduce both levels of infection and malaria 

transmission313,316, highlighting a promising avenue for antimalarial vaccine 

development. Indeed, a study by Brod et al. (2018) showed synergy between the 

leading pre-erythrocytic vaccine candidate RTS,S/AS01 and the leading TBV 

candidate Pfs25 in mice627. Future studies should investigate more efficacious 

combinations and evaluate delivery platforms that ensure functional antigen-specific 

immune responses are generated to each vaccine component. 

7.3 Final Remarks 

This thesis aimed to provide an advancement of our understanding of NA-TBI and 

characterise a set of novel antigens as TBV candidates to inform TBV development 

efforts. This body of work has highlighted the potential for long-lived sexual stage 

responses and the influence of concurrent parasitaemia in the boosting of these 

responses. Additionally, indicators of recent gametocyte exposure such as age, 

parasitaemia, and malaria exposure were confirmed, and potential serological markers 

of recent exposure (PEB-P, CVMPPP, MDV1 and GE) identified. These could prove 

useful for evaluating the infectious reservoir. Finally, preliminary functional 

characterisation of the novel antigens identified the antigens SOAP and PBCPP2 as 

promising targets for further evaluation as vaccine candidates.  
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