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Abstract 
Mean wave overtopping discharge is generally accepted to be a primary design criterion for assessing the 
performance of coastal structures. It is a boundary condition for many coastal flood risk assessments. 
Modern methods for assessing wave overtopping discharges and their consequences are well documented 
and reported. Among the various tools available for assessing wave overtopping, the use of artificial neural 
networks has become increasingly popular. This paper introduces the next stage in the development of 
these models. Using the same source data, the new generic meta-modelling overtopping model reduces 
uncertainties and gives clear guidance on the range and validity of the outputs. 
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Notation 
𝐷𝐷𝑀𝑀 Mahalanobis distance 
𝑓𝑓 function that relates 𝑝𝑝 input variables 𝑥𝑥 to the output 𝑦𝑦, such that 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) 
𝑚𝑚 foreshore slope 
𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑄𝑄𝑚𝑚𝑝𝑝𝑚𝑚𝑚𝑚 discharges predicted and measured, respectively 
𝑅𝑅 set of all real numbers 
𝑅𝑅𝑝𝑝 set of all 𝑝𝑝-dimensional real number vectors 
𝑉𝑉𝑖𝑖𝑖𝑖 (𝑖𝑖, 𝑗𝑗)th entry for the covariance function of the Gaussian process 
𝑋𝑋 𝑛𝑛 x 𝑝𝑝 matrix of input variables, with the ith row being the transpose of vector 𝑥𝑥𝑖𝑖 
𝑥𝑥 𝑝𝑝 x 1 column vector representing one observation of the 𝑝𝑝 input variables 
𝑥𝑥1, 𝑥𝑥2, … 𝑥𝑥𝑛𝑛 a set of 𝑛𝑛 indexed observation of the 𝑝𝑝 input variables 
𝑥𝑥𝑖𝑖

(𝑘𝑘), 𝑥𝑥𝑖𝑖
(𝑘𝑘) 𝑘𝑘th component of vector 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑖𝑖, respectively 

𝑦𝑦 output overtopping rate 
𝛽𝛽  common scale factor used in constructing the nuggets for the Gaussian process 
𝛿𝛿 size of the ‘nugget’ 
𝜇𝜇  𝑝𝑝 x 1 column vector representing the column-wise mean of input variables 𝑋𝑋 
𝛴𝛴 𝑝𝑝 x 𝑝𝑝 square matrix representing the variance-covariance matrix of input variables 𝑋𝑋 
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𝜎𝜎2 a positive universal scale factor used in constructing the covariance matrix 𝑉𝑉 for the 
Gaussian process 

𝜏𝜏 minimum period of an periodic input variable 
𝜑𝜑1,𝜑𝜑2, …𝜑𝜑𝑝𝑝 correlation lengths used in constructing the covariance matrix 𝑉𝑉 for the Gaussian process, 

one for each of the 𝑝𝑝 input variables 

 

1. Introduction 
Given the relatively well-defended coastline of developed countries, wave overtopping of coastal structures 
features significantly in coastal-flood-related failures (both structural failure and excessive flooding). Sea 
levels are rising and coastal flood risk is likely to increase in the future. Methods for predicting wave 
overtopping rates have been applied for designing structures and estimating the related coastal flood risk 
over the last 30 years. There are, however, well-known complexities associated with the dynamic interaction 
of waves, tides and structures and significant uncertainties remain. 

Although there has been an increase in the development and application of advanced computational fluid 
dynamics (CFD) models (Chen et al., 2016; Dimakopoulos et al., 2014; Higuera et al., 2013), empirical 
techniques still dominate in practice (Pullen et al., 2007). In general terms the empirical techniques, largely 
based on physical model experiments, fall into two categories: structure-specific, non-dimensional formulae 
of the type originally developed around 30 years ago (Owen, 1980); and generic (i.e. not structure-specific) 
approaches developed using meta-modelling methods. The former are well documented within the EurOtop 
Manual (Pullen et al., 2007), while the latter have been increasingly applied in recent years and include 
those developed by a range of authors (Formentin et al., 2017; Kingston et al., 2009; Van Gent et al., 2007; 
Zanuttigh et al., 2016). 

This paper describes the development of a new generic metamodeling overtopping model, based on the 
application of Gaussian process emulation (GPE) techniques. GPE offers several advantages over previous 
methods that used neural networks. The model is named Bayonet GPE (BGPE) as it is an evolution of a 
Bayesian overtopping (Bayonet) model developed by Kingston et al. (2009). It provides a more explicit and 
complete representation of uncertainty and also provides improved guidance to users on the range of validity 
of the model. 

2. Background 
2.1. Meta-modelling 
Meta-models, sometimes known as surrogate models or emulators, are computationally efficient statistical 
models. Under this broad category there is a range of different techniques. They essentially act as 
interpolators between known input/output data points and are often applied to represent computationally 
intensive models, known as simulators (Sacks et al., 1989). In that context the simulator is typically applied 
at points (known as design points) selected to cover an appropriate area of the input parameter space. The 
output of the model is then recorded and the results used to ‘train’ the metamodel. The meta-model is then 
applied in the place of the simulator. Given their efficiency they are often applied to computationally intensive 
procedures; uncertainty and sensitivity analysis and optimisation, for example. These methods can trace 
their origins in several fields. They closely relate to the response surface method (Box and Draper (1959) 
and Hill and Hunter (1966)), which is extensively applied in the field of structural reliability analysis. The 
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methods are also widely utilised in geospatial analysis (Oliver and Webster, 1990). The case study examples 
have been developed (Kennedy et al., 2006), and a general framework for dynamic meta-modelling is 
described by Castelletti et al. (2012). 

2.2. Meta-modelling applications within coastal engineering 
In the context of coastal engineering, different meta-modelling techniques have been applied for different 
processes. For example, radial basis functions and Gaussian process emulators (GPEs) have been used to 
approximate the Swan wave model (Camus et al., 2011; Malde et al., 2016). A neural network has been 
used to assess the failure mechanisms of levees that played a critical aspect in the Hurricane Katrina 
flooding of New Orleans (Kingston et al., 2011). 

The technique that has been applied in specific relation to overtopping comprises a neural network applied to 
a database of physical model experimental data under the EU-funded Clash project (Van Gent et al., 2007), 
hereinafter referred to as CNN. This model was further refined through the inclusion of a Bayesian approach 
to represent uncertainties around the fitted parameters and data (Kingston et al., 2009). More recently, a 
refined neural network has been developed to predict transmission and reflection, as well as overtopping 
(Zanuttigh et al., 2016). The refinements stem from the inclusion of new data and increased parameter 
representation in relation to the foreshore slope and structure permeability. This refined model is now 
available online (hereinafter this is referred to as ONN). 

The approach that has been adopted here focuses specifically on wave overtopping and utilises an existing 
database of physical model data (hence these are the meta-model ‘design points’) but replaces the neural 
network with a GPE. 

GPEs have a number of desirable properties that offer advantages over alternative approaches (Oakley and 
O’Hagan, 2002; O’Hagan, 2006; Van de Schoot et al., 2014). They are applied in a Bayesian framework and 
thereby seek to represent uncertainties explicitly from different sources. In contrast, existing neural network 
wave overtopping models, applied in practice (CNN and ONN), do not take account of uncertainty within the 
physical model data themselves and provide confidence interval estimates based on mean estimates from a 
range of bootstrap samples. No account is taken of the residual errors associated with the fit from each 
bootstrap sample. This can lead to an underestimation of uncertainty (Heskes, 1997; Kingston et al., 2009; 
Papadopoulos et al., 2000). 

2.3. Overtopping model parameterisation 
The CNN comprised 15 parameters. The introduction of the ONN saw the number of input parameters 
extended to include, among other parameters, the foreshore slope (𝑚𝑚). It is of note, however, that the 
foreshore slope is well known to influence wave conditions significantly at the toe of the structure. The wave 
conditions at the toe of the structure are an input to CNN and ONN. Hence, the foreshore slope is implicitly 
accounted for within both of these models. While it is conceivable that residual effects of foreshore slope, not 
accounted for by wave conditions at the structure toe, are present, it remains to be established that these 
residual effects are distinguishable from the general noise associated with the overtopping data. 

Exploration of the ONN has shown the predicted results are more sensitive to 𝑚𝑚 than would be expected. 
This may be indicative of over-parameterisation and the associated over-interpolation of noise present in the 
data, associated with the fitting process. 
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For reasons relating to economy, known issues with the over-parameterisation of neural network models 
(Gaume and Gosset, 2003) and insufficient evidence within the data to support the inclusion of additional 
parameters within BGPE, faith was maintained with the original CNN parameterisation that excludes the 
foreshore slope (𝑚𝑚). It is also of note that recent developments relating to the ONN model have seen the 
removal of the m parameter from its configuration (Zanuttigh, 2017, personal communication). 

2.4. Application limits of generic overtopping models 
As with all empirical methods, it is important to consider the range of applicability of the model in terms of the 
input parameters used for predictions. Meta-modelling methods are developed to predict through the 
interpolation of known output results. Although the fitted functions can provide estimates beyond the range of 
the data, there is little theoretical basis for their use in this regard. The CNN, widely used in practice, 
specifies input parameter guidance based, primarily, on the maximum and minimum range of the data used 
to train the model, for each of the specific input parameters (Coeveld et al., 2005). It is of note, however, that 
the practice of using the maximum and minimum values of each input parameter to define the range of 
applicability is questionable, particularly when parameters are correlated. There can be significant areas of 
the input parameter space unpopulated and hence predictions in these areas are generated by extrapolation 
not interpolation. This is illustrated in concept in Figure 1. This effect can be significantly exacerbated in a 15 
dimension parameter space. Figure 2 shows an example of the areas of unpopulated parameter space for 
the existing underlying physical model data used to train the meta-models. 

 

 

Figure 1: Conceptual diagram showing incomplete parameter space coverage for correlated parameters 

 

The desire to extend the range of applicability of the model outside the range of the training data is perhaps 
understandable given the prevalence of existing structures in this parameter space and the additional 
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expense associated with constructing site-specific physical models or more sophisticated numerical models. 
It is, however, appropriate to recognise and acknowledge explicitly that predictions resulting from 
extrapolation should be treated accordingly. Within the approach described here, specific attention has been 
directed towards the provision of guidance relating to the area of applicability of the model. The Mahalanobis 
distance (MD) (Mahalanobis, 1930) provides a quantifiable measure that can guide users on regions of valid 
application. This aspect is described in detail below. 

 

 

Figure 2: Sub-set of overtopping data showing incomplete parameter space coverage 
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3. BGPE generic overtopping model 
3.1. The overtopping database 
The overtopping database (OTD) is based on the database collated under the Clash project (Van der Meer 
et al., 2009; Van Gent et al., 2007) and extended to include tests completed at HR Wallingford and Ghent 
University since the conclusion of Clash. The original database comprises data collated from a range of 
laboratories including the Clash partners, the Danish Hydraulic Institute, Sogreah and the Port Airport and 
Research Institute (Japan). There are now 13 500 entries of wave overtopping test results, represented by 
parameters that describe the hydraulic and structural characteristics of the tests. It also contains information 
about the reliability of the tests and the complexity of the test structures, represented by a reliability factor 
(RF) and complexity factor (CF), respectively. The RF ranges from 1 (very reliable) to 4 (not reliable), while 
the CF also ranges from 1 (very simple) to 4 (very complex). In previous analyses these factors have been 
combined into a single weight factor (WF). The WF was calculated according to WF=(4−RF)(4−CF), so high 
WF relates to data that are considered reliable. 

The WF is used to calculate some of the performance metrics detailed below. In contrast to previous 
analyses, however, the WF, a somewhat subjective measure, is not an integral part of the fitting of BGPE. 
Uncertainty associated with the measurements is, however, explicitly included through the inclusion of an 
error term. 

3.2. Emulation method 
GPEs are applied in a Bayesian framework and thereby seek to represent uncertainties from different 
sources explicitly. GPEs return a perfect prediction, with zero variance, at the design points (assuming the 
training data set does not contain random noise) and hence are relatively flexible and not constrained to a 
specified regression form. Away from the design points, the variance is non-zero, reflecting uncertainty 
through consideration of distance from the design points. 

In context here, the GPE forms the function (𝑓𝑓), which relates a vector of input variables 𝑥𝑥 comprising the 
structural properties (geometry and protection type) and the input hydraulic loading conditions (sea 
conditions) to the output overtopping rate (𝑦𝑦). A prior distribution, which represents initial beliefs or 
knowledge about the function 𝑓𝑓, was specified and then updated to obtain a prior distribution, with the data 
available within the database containing the measured overtopping rates, 𝑦𝑦 = {𝑦𝑦1 = 𝑓𝑓(𝑥𝑥1), … ,𝑦𝑦𝑛𝑛 = 𝑓𝑓(𝑥𝑥𝑛𝑛)}. 
For any new set of input conditions, 𝑥𝑥�, the posterior mean of the distribution of 𝑓𝑓(𝑥𝑥�) provides a point estimate 
(mean) of the overtopping rate, and the posterior variance of 𝑓𝑓 represents the uncertainty around this 
estimate. 

Where it is known the data themselves contain uncertainty (noise), this can be included within the model 
fitting through an error term known as a ‘nugget’ (Andrianakis and Challenor, 2012). It is well known that 
there is uncertainty associated with physical model experiments. Successive tests with the same conditions 
in the same laboratory can yield some variation. Moreover, equivalent tests in different laboratories can 
exhibit significant uncertainties. It is desirable to account for these uncertainties in predictive models that are 
based on these data. In the application here, the ‘nugget’ has been used to capture these uncertainties. 

Therefore, in summary, the application of the GPE here provides output predictions of wave overtopping 
rates that include uncertainties associated with the physical model data themselves, as well as uncertainties 
associated with the model fit in relation to the distance from the design points. 
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The mathematical formulation of the GPE and ‘nugget’ used in the application here is described in detail in 
the Appendix. 

3.3. Limits of application of BGPE 
Like all empirical models, the input parameter range of validity is constrained by the limits of the OTD. Given 
the 15 dimension set of parameters, a number of which are correlated, it is not straightforward to deduce the 
range of valid application. To aid practitioners in the application of BGPE, the MD has therefore been used. 
MD is a measure of a point from a multivariate distribution. Unlike Euclidean distance (ED), the MD accounts 
for correlated parameters, an important factor in the overtopping data. MD between a specific set of 
observations 𝑥𝑥 and a set of 𝑛𝑛-dimensional observations 𝑋𝑋 is given by 

𝐷𝐷𝑀𝑀(𝑥𝑥,𝑋𝑋) = �(𝑥𝑥 − 𝜇𝜇)𝑇𝑇Σ−1(𝑥𝑥 − 𝜇𝜇) 

where the column vector 𝜇𝜇 and the square matrix Σ are the mean and the variance-covariance matrix of set 
𝑋𝑋 respectively. 

Figure 3 highlights one element of the set 𝑥𝑥, and shows the difference between ED and MD. The concentric 
circles (Euclidean) and ellipsoids (Mahalanobis) are equidistant in terms of their respective measures. The 
top panel (A) compares two distances to a specific point (the cross symbol) in the sample data set. For 
example, a point on the coordinates (5, 5) would have an MD of 2 but an ED of 2·6. The point is considered 
closer using the MD as it recognises the positively correlated nature of the sample data set. Conversely in 
the lower panel (B), considering the distance between point (2, 5, −2·5) and the cross symbol, the MD of 3 is 
higher than the ED of 2. Again, this difference arises as a result of the positive correlation. The critical value 
for the MD for a significance level depends on both the size of the training data set and the number of 
parameters (Ververidis and Kotropoulos, 2008). The MD is provided as an output from BGPE, alongside 
estimates of the wave overtopping rate and associated uncertainty. 

4. Performance of BGPE 
A range of tests have been undertaken to validate BGPE. These include comparison with the measured 
data, ONN and empirical formulae from the EurOtop manual (EurOtop, 2016). Graphical and quantitative 
analysis, using the root-mean-square error (RMSE), has been used for the comparison. These comparisons 
utilise log (Q), as opposed to Q. This is due to the large range of Q within the data and the form of the 
overtopping equations, which are based on the observed rates in the physical model experiments. To take 
into account the reliability of the test measurements and to maintain consistency with previous analyses, the 
WF was implemented. A weighted RMSE has therefore been calculated as well, which is defined as 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑤𝑤 =  �
∑ 𝑊𝑊𝑊𝑊 ∗ �log�𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� − log (𝑄𝑄𝑚𝑚𝑝𝑝𝑚𝑚𝑚𝑚)�2𝑁𝑁
𝑖𝑖=1

∑ 𝑊𝑊𝑊𝑊𝑁𝑁
𝑖𝑖=1

 

where 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  and 𝑄𝑄𝑚𝑚𝑝𝑝𝑚𝑚𝑚𝑚 are the discharges predicted and measured, respectively. All the values of RMSE 
associated with each assessment carried out in this analysis are presented in Table 1. 
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Figure 3: Comparison of the Mahalanobis distance (right column) to the Euclidean distance (left column) – 
based on the distance between the rest of the sample to point A (top row) and point B (bottom row) 
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Table 1: RMSE values for each assessment 
Model/data Description RMSE Weighted 

RMSE 

BGPE 
(All data used in training) 

BGPE performance when fitted to all of the data and predicting 
all of the data it has been trained on. 

0.23 0.05 

BGPE 
(Validation dataset) 

BGPE cross-validation performance when trained on a subset of 
90% of the data and used to predict the remaining 10% of data 
not used in the training. 

0.30 0.08 

BGPE 
(Smooth structures) 

BGPE performance when trained on all of the data and used to 
predict a subset of results for simply sloping structures �𝑦𝑦𝑓𝑓 = 1�.  
This facilitates direct comparison with the ONN (row below). 

0.21  0.04  

ONN 
(Smooth structures) 

ONN performance when trained on all of the data and used to 
predict a subset of results for simply sloping structures �𝑦𝑦𝑓𝑓 = 1�. 
This facilitates direct comparison with BGPE (row above) 

0.28 0.08 

BGPE 
(Smooth simple slope 
structures) 

BGPE performance when trained on all data and used to predict 
a subset of results for smooth �𝑦𝑦𝑓𝑓 = 1� simply sloping structures.  
This facilitates comparison with structure specific empirical 
formulae from EurOtop (row below). 

0.21 0.04 

EurOtop Empirical Formulae 
(EFF) (Smooth simple slope 
structures) 

Structure specific EurOtop empirical formulae performance used 
to predict a set of results for smooth �𝑦𝑦𝑓𝑓 = 1� simply sloping 
structures. This facilitates comparison with BGPE (row above). 

0.52 0.28 

4.1. BGPE against measured overtopping rates 
In common with previous overtopping models (CNN, ONN), it is possible to compare the predictive 
performance of BGPE using the measured data from physical models on which it is based. It is, however, 
important to note that standard BGPEs, unlike ANNs, predict, with no variance, the design points (i.e. the 
measured data on which the BGPE is based). A resulting plot of measurements against predictions from 
BGPE would therefore show all data points lying on the perfect prediction line. Similar plots with ANN models 
tend to show considerable scatter as a result of the ANN smoothing the response function (Van Gent et al., 
2007; Zanuttigh et al., 2016). In the case of BGPE, the so-called ‘nugget’ has been introduced to account for 
the known noise (measurement uncertainty) within the overtopping data (Appendix). Figure 4 shows point 
prediction outputs from BGPE (i.e. using the mean value of the ‘nugget’) for the measured overtopping data. 
An inspection of Figure 4 shows a good prediction with little uncertainty for relatively high discharges (>10 
(l/s)/m). This is consistent with findings from comparison of physical model data over many years; this is 
discussed further in EurOtop (Pullen et al., 2007). Uncertainty increases significantly with lower discharges. 
Below 1 (l/s)/m 90% of the data fall within + or − a factor of 5. The resulting scatter is directly related to the 
inclusion of the ‘nugget’ (i.e. the noise in the overtopping data). The implementation of the ‘nugget’ is 
described in the Appendix. The uncertainty associated with the ‘nugget’ itself can also be included within the 
predictions and this is shown in Figure 5. Inclusion of the ‘nugget’ uncertainty increases the upper limits of 
predictive uncertainty from BGPE by approximately an order of magnitude. It is of note that this source of 
measurement uncertainty is not explicitly included with equivalent ANN models, CNN and ONN. The 
estimates of uncertainty associated with these neural network models should therefore be treated with this in 
mind. 
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Figure 4: Performance of the BGPE based on the 
measured data – mean predictions 

 

Figure 5: Performance of the BGPE based on the 
measured data – with 90% credible intervals 

  

4.2. BGPE cross-validation 
While it is insightful to understand the performance of BGPE against the measured data it has been trained 
with, for application in practice it is more important to understand its performance using data that were not 
available for training. To do this it was necessary to undertake a cross-validation analysis, whereby a subset 
of data was selected for validation purposes. 

Approximately 10% of the data were chosen to form the validation data, and the BGPE was re-trained on the 
remaining 90% of the data (i.e. omitting the subset of validation data) and then used to predict the validation 
data. In a realistic situation, the prediction point should fall within a reasonable distance of the training data 
set, as measured by MD. Therefore, a hierarchical clustering analysis was used to ensure that both the 
training and validation subsets are evenly spread across the entire distribution of the full data set. 

The results of this analysis for point (mean predictions) of BGPE are shown in Figure 6 and summarised in 
Table 1. It is evident, as would be expected, that the performance of BGPE on the validation data shows an 
increase in uncertainty in the predictions. This is a result of the emulator explicitly recognising, and 
incorporating, the predictive uncertainty that arises as a result of distance from the ‘known’ design points. 
This increase in uncertainty can be observed in both the scatter of the plot (Figure 6) and the value of the 
RMSE. In general terms, 90% of the data are within a factor of 10 when using the mean estimate of the 
‘nugget’. When uncertainty in relation to the distance from the design points and the ‘nugget’ is included 
(Figure 7), the credible bounds that cover 90% of the data extend over more than four orders of magnitude in 
places. 
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Figure 6: Cross-validation performance of the BGPE 
using non-training data – mean predictions 

 

Figure 7: Cross-validation performance of the BGPE 
using non-training data – with 90% credible intervals 

 

4.3. BGPE against ONN 
When comparing BGPE with the ONN, it is necessary to consider the different input parameters used by the 
models. Given the additional parameters included within the ONN not in BGPE, any comparison between the 
models needs to define a subset of the measurement data set where there is no influence of the additional 
input parameters. A data set where the roughness factor (𝛾𝛾f) was 1 (i.e. impermeable) and a shallow 
foreshore slope (m parameter in ONN) was present, was therefore used. The comparison of the two models 
is shown in Figure 8 where it is evident that the BGPE offers a marginal improvement in the prediction over 
ONN, and this is confirmed by slightly lower RMSE (Table 1). 

As well as the point predictions it is also of relevance to compare the estimates of uncertainty (Figure 9). 
When viewing this comparison it is important to note that this is not a like-for-like comparison. Within the 
ONN uncertainty estimates, no account is taken of the residual errors associated when fitting the bootstrap 
samples that are used in the prediction. These residual errors are explicitly accounted for within BGPE 

through the ‘nugget’ and, moreover, this contributes a significant portion to the overall uncertainty estimate. 

Figure 9 shows the noticeable differences in the uncertainty bands associated with the two models. At higher 
discharges, the ONN has close to two orders of magnitude uncertainty, even though a significant source of 
uncertainty is not included within the estimate, whereas BGPE is closer to one order of magnitude, when 
more sources of uncertainty are considered. 

In conclusion, for this specific data set, BGPE provides uncertainty estimates that have lower predictive 
uncertainty than the ONN and also includes more sources of uncertainty within these predictions. 
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Figure 8: Comparison of BGPE (left) to ONN (right) using data with roughness = 1 – mean predictions 

 

Figure 9: Comparison of BGPE (left) to ONN (right) using data with roughness = 1 – with respective 
uncertainty measures 

 

4.4. Comparison with EurOtop empirical formulae 
In this section, the performance of BGPE is compared with structure-specific non-dimensional formulae from 
EurOtop II. This manual provides empirical formulae for specific types of structures, but does not cover the 
full range of structures that appear in the overtopping database. For the purposes of the comparison, smooth 
simply sloping structures have been selected from the database, so all the formulae that have been applied 
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are described in chapter 5 of the EurOtop II manual. The comparison of the qualitative predictive 
performance of these two approaches using the mean estimates is shown in Figure 10. This shows a more 
robust performance of BPGE and this is confirmed in Table 1. 

 

Figure 10: Qualitative prediction performance versus empirical methods 

 

5. Discussion 
Estimation of wave overtopping rates is a key aspect in the design of coastal structures and coastal flood risk 
analysis. It is well known that due to the complexities of the physical processes there are significant 
uncertainties associated with the estimation of overtopping discharges. Robust engineering design 
recognises and accounts for these uncertainties. 

Existing empirical methods for estimating wave overtopping rates offer limited quantified information on 
uncertainties. This generally comprises a rule of thumb ‘order of magnitude’ estimate, or quantified estimates 
that exclude important sources of uncertainty and hence provide uncertainty underestimates. The model, 
BGPE, enables the estimation of wave overtopping rates with similar or improved performance when 
compared to existing approaches. In contrast to existing approaches, however, it facilitates a more thorough 
quantified estimate of uncertainty than has hitherto been possible. Consideration of this uncertainty offers the 
opportunity for developing a more robust basis for engineering design. 

Like all empirical models, the predictive capability of models like the EurOtop formulae, CNN, ONN and 
BGPE is limited to the bounds of the range of physical model tests on which they are based. Given the 
multidimensional input parameter space and correlated nature of these input parameters, it is not necessarily 
apparent when specified structures, and their hydraulic loading conditions, are within the bounds of the 
physical model tests. Previous guidance in relation to the applicability bounds of the CNN model used 
minimum and maximum ranges of each input parameter, under the assumption that the input parameters 
were independent of one another. It has also been shown that this significantly overstates the range of 
applicability. It has also been shown that the MD, which explicitly includes correlation of input parameters, 
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offers a useful measure for assessing the proximity of a proposed set of input conditions to the data that 
underlie the empirical model. This measure can be used to make an assessment of the validity of 
predictions, thereby avoiding a situation that can arise with users unknowingly using estimates that are 
outside the range of the underlying data. 

6. Conclusions 
Practical empirical methods for calculating wave overtopping rates of structures have been applied for many 
years for coastal engineering design and flood risk analysis purposes. These methods are well known to 
contain significant sources of uncertainty. There are limitations with regard to the extent of quantitative 
uncertainty information that has been available to date. BGPE addresses this by implementing a 
comprehensive method that takes account of a wider range of uncertainties, while maintaining, or in some 
cases improving, the robustness of the mean predictions.  

Current guidance for the applicable range of the CNN wave overtopping model relies on the extrapolation 
properties of the underlying neural network in some cases. There is little theoretical basis for extrapolating 
empirical models beyond the range of the data. MD offers a measure that provides useful guidance to users 
on the range of applicability (i.e. the bounds of the underlying multidimensional database). It is envisaged 
that further developments will involve the release of this model in a web-based interface. This is with a view 
to supporting its application in practice. 
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8. Appendix: Mathematical formulation of the BGPE 
and the ‘nugget’ effect 

A response function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) for univariate responses 𝑦𝑦 ∈ 𝑅𝑅 and 𝑝𝑝-dimensional inputs 𝑥𝑥 = {𝑥𝑥(1), … , 𝑥𝑥(𝑝𝑝)} ∈
𝑅𝑅𝑝𝑝 is said to follow a Gaussian process distribution if for any finite number 𝑛𝑛, the responses 𝑦𝑦 = {𝑦𝑦1 =
𝑓𝑓(𝑥𝑥1), … , 𝑦𝑦𝑛𝑛 = 𝑓𝑓(𝑥𝑥𝑛𝑛)} follow a 𝑛𝑛-dimensional multivariate normal distribution, the mean and covariance matrix 
of which are both functions of inputs {𝑥𝑥1, … 𝑥𝑥𝑛𝑛}. 

The mean function can be any function of 𝒙𝒙 ∈ 𝑅𝑅𝑝𝑝, but the covariance function must satisfy the property that 
the resulting covariance matrix is always non-negative-definite.  In this paper, the mean of the Gaussian 
process was assumed to be constant whereas the (𝑖𝑖, 𝑗𝑗)-th entry of the covariance matrix, V𝑖𝑖𝑖𝑖, was given by  

V𝑖𝑖𝑖𝑖 = 𝜎𝜎2𝑒𝑒𝑥𝑥𝑝𝑝 �−�
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where variable 𝑥𝑥𝑖𝑖
(𝑘𝑘) and 𝑥𝑥𝑖𝑖

(𝑘𝑘) are the 𝑘𝑘th component of input 𝒙𝒙𝑖𝑖 and 𝒙𝒙𝑖𝑖 respectively; parameter 𝜎𝜎2 is a positive 

universal scale factor; parameters �𝜓𝜓1, … ,𝜓𝜓𝑝𝑝� are called correlation lengths and are applied individually to 
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each of the 𝑝𝑝 components of the inputs; operator �𝑥𝑥𝑖𝑖
(𝑘𝑘) − 𝑥𝑥𝑖𝑖

(𝑘𝑘)� denotes the absolute difference �𝑥𝑥𝑖𝑖
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(𝑘𝑘)� if 

the 𝑘𝑘-th component of the inputs 𝒙𝒙 is non-periodic, or the circular distance min�𝑥𝑥𝑖𝑖
(𝑘𝑘) − 𝑥𝑥𝑖𝑖

(𝑘𝑘)� , 𝜏𝜏 − �𝑥𝑥𝑖𝑖
(𝑘𝑘) − 𝑥𝑥𝑖𝑖

(𝑘𝑘)� 
with period 𝜏𝜏 if it is periodic. 

Under this model, if two 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑖𝑖 are statistically similar, then the resulting outputs 𝑦𝑦𝑖𝑖 and 𝑦𝑦𝑖𝑖 should be highly 
correlated. The similarity between 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑖𝑖 is quantified by the distance between them after normalisation by 
the correlation lengths 𝜓𝜓. When fitting the Gaussian process to the training data set, parameters 𝜎𝜎2,𝜑𝜑𝑘𝑘2 and 
the constant mean are all estimated using a Bayesian inference method, as introduced in Oakley and 
O’Hagan (2002). 

When accounting for the uncertainty in the output data 𝑦𝑦, the ‘nugget’ effect is added to the above 
formulation, such that the diagonal terms of the covariance matrix are increased by a specific amount (see 
Andrianakis and Challenor, 2012). Mathematically, the added ‘nugget’ also increases the stability of the 
parameter estimation for correlation lengths 𝜓𝜓 as the resulting covariance matrix is more likely to be non-
negative definite. In this paper, the size of the ‘nugget’ 𝛿𝛿 was assumed to be inversely proportional to the 
WF, that is 𝛿𝛿 = 𝛽𝛽/𝑊𝑊𝑊𝑊, where the scale parameter 𝛽𝛽 is estimated jointly with the other parameters for the 
GPE. 
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