
1 INTRODUCTION 

Granular filters retain base material within the nar-
row constrictions of the void network. Void space is 
three-dimensional and continuous throughout a 
granular filter, making the identification of the nar-
row constrictions which form the boundary between 
voids a difficult and somewhat subjective task. This 
paper presents three methods which can be used to 
identify individual constrictions, and therefore a 
constriction size distribution (CSD) within a granu-
lar material. The three methods are outlined and then 
applied to the same virtual granular filter samples, 
generated using the grain scale discrete element 
modelling (DEM). The results compare the three 
methods, following which the effect of the coeffi-
cient of uniformity (Cu) on CSD is studied. Finally, a 
fundamental explanation is sought for Terzaghi’s 
classic filter rule  D85B > D15F / 4,  where D15F is the 
filter diameter for which 15% of material is smaller 
and  D85B  is the base diameter for which 85% of ma-
terial is smaller (Terzaghi & Peck, 1948), by com-
paring CSDs normalized by D15F for different filters.  

1.1 Background 
Granular filters are typically designed using filter 
rules which compare a characteristic filter particle 
size with the particle size of the base material which 
they must retain (e.g. Sherard & Dunnigan (1989); 
ICOLD (2015)). Since Terzaghi’s original filter rule 
a link has been made between the characteristic filter 
particle diameter and the size of the constrictions 
within the voids, i.e. the  D15F / 4  term in Terzaghi’s 
equation represents the constriction diameter 
(Fannin, 2008).    

Kenney et al. (1985) carried out extensive filter 
testing using filters with Cu = 1.2 to 12 to determine 
the ‘controlling constriction size’ which they defined 
as the smallest constriction which a base particle is 
likely to encounter on a given flow path through the 
filter. They found that across this range of filters 
both D5F  and D15F  gave good estimates of the con-
trolling constriction.  Shire & O’Sullivan (2015) de-
termined the CSDs for virtual granular filters with 
Cu = 1.2 to 6 and varying relative density using the 
Weighted Delaunay method (Reboul et al., 2010).  
Shire & O’Sullivan (2015) found that the CSD 
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curves had similar shapes, and when normalized by 
D5F or D15F the CSD curves had similar values. This 
can be considered a scientific justification for using 
D5F or D15F as characteristic diameters for filter de-
sign, echoing the experimental findings of Kenney et 
al. (1985). 

2 METHODOLOGY  

2.1 Measurement of constrictions 
Modern techniques such as DEM (O’Sullivan, 2011) 
and micro-computed tomography (μCT) (Ketcham & 
Carlson, 2001) allow the full CSD of a granular filter 
to be directly measured.  Three methods for identify-
ing constrictions within the DEM samples were 
used. These are the Weighted Delaunay Method 
(Reboul et al., 2010), the Contact Based Method 
(O’Sullivan et al., 2015) and the Watershed Method 
(Taylor et al., 2015).  Each method has two stages: 
(i) identification of individual voids within the con-
tinuous, 3D void space; (ii) identification and quanti-
fication of constrictions at the boundaries between 
these voids. 

2.2 Weighted Delaunay Method 
The Weighted Delaunay tessellation-based method 
was originally proposed by Al-Raoush et al. (2003) 
and Reboul et al (2010) and is applicable to spheri-
cal particles. A weighted Delaunay triangulation is 
carried out on the particle centroids weighted by 
their diameter, here the Regular Triangulation fea-
ture in CGAL (2013) was used. This creates a series 
of tetrahedral Delaunay cells between particles and 
the void space within each cell is considered to form 
a void (Figure 1). Using a single Delaunay cell to de-
fine a void leads to over-segmentation of the void 
space, as shown using a 2D analogy in Figure 2(a). 
Therefore Delaunay cells are merged using a criteri-
on originally proposed by Al-Raoush et al (2003), 
which considers the largest spheres that can be in-
scribed between the particles making up a single De-
launay cell.  Merging takes place if the overlap be-
tween the inscribed spheres, expressed as a 
percentage of the smaller particle radius, exceeds a 
user-defined level, shown in 2D in Figure 2(b). As 
the selected critical overlap decreases, fewer, larger 
voids will be created. The selection of the critical 
overlap is subjective, meaning that no unique CSD 
can be defined. It should be noted that the separation 
of a 3D void space into discrete voids will always be 
somewhat subjective, whatever method is used. Fol-
lowing a parametric study a critical overlap of 50% 
of the smaller inscribed sphere radius was selected.  

Once individual voids have been identified, con-
strictions are measured on the Delaunay cell faces on 
the outside of voids.  A constriction is defined as the 
smallest circle which can be inscribed between the 

three particles making up vertices or a combination 
of the vertex particles and any non-vertex particles 
which overlap the face (Reboul et al, 2010).   
 

Figure 1. Use of Delaunay tetrahedral cell to define voids and 
constrictions 
 

Figure 2. Merging Delaunay cells to form larger voids 

2.3 Contact Based Method 
The contact based method was proposed by 
O’Sullivan et al. (2015) and is a 3D extension of a 
2D method proposed by Li & Li (2009). This algo-
rithm is based on a Delaunay triangulation of the 
contact points between particles, as shown using a 
2D analogy in Figure 3(a). The input comprises the 
particle centroids, particle radii, a list of contacting 
disks and the contact coordinates.  

After the Delaunay triangulation of contact points 
has been carried out the resulting tetrahedral cells are 
classified as either solid or void cells. Solid cells are 
defined as cells for which all four contact points 
forming the vertices share a common particle. In this 
case the cell must be predominantly enclosed within 
the common particle. The remaining cells are classi-
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fied as void cells (tetrahedra in 3D), as shown in 2D 
in Figure 3(b).  The faces of the void cells are then 
analysed to determine if:  (i) they are constrictions 
linking two voids or (ii) the two void cells which 
share the face should be merged to form a larger 
void (Figure 3(c)).  

 

Figure 3. Contact based method: (a) Delaunay triangulation of 
contacts; (b) removal of solid cells; (c) merging of void cells 

 
With reference to Figure 4(a) and (b), if the verti-

ces of a cell face consist of contacts between parti-
cles forming a closed loop of three or four contacting 
particles then the face is defined as a constriction be-
tween two voids. With reference to Figure 4(c), 
where the vertices of a cell face are not part of such a 
closed loop the two cells which share this face are 
merged to form part of a larger void.  

Once the cell faces representing constrictions 
have been identified the largest circle which can be 
inscribed on this face is calculated. The diameter of 
this inscribed circle represents the constriction diam-
eter.  

2.4 Watershed Method 
The Watershed Method was developed by Taylor et 
al. (2015) to allow the identification of constrictions 
within μCT images of real granular filters. It takes as 
an input a voxelised binary image in which voxels 
(3D pixels) represent either void space or soil parti-
cles (Figure 5).  

The advantage of using a voxelised image is that 
any material consisting of void space and solid parti-
cles can be analysed. The main disadvantages of the 
image based technique is that it is memory intensive 
– a minimum of around 30 voxels per particle diam-
eter is required for accurate identification of con-
strictions, meaning that the number of particles 
which could be analysed in an image of 6003 voxels 

was fewer than could be used for the Weighted De-
launay or Contact Based methods.  

The void space part of the image is partitioned in-
to individual voids using a watershed method 
(Taylor et al., 2015). A distance map is created 
which gives the distance that each void voxel is from 
the nearest solid voxel. This can be considered to be 
analogous to a map of topographical elevations, with 
a greater distance from a void being considered a 
lower elevation. As illustrated in Figure 6, the water-
shed algorithm then determines the locations of the 
‘watersheds’ on this distance map. These watersheds 
are considered to be the boundaries between voids. 
In order to screen out small local variations in the 
distance map which could produce false void bound-
aries, the minimum peak-to-trough height (shown by 
the grey arrow in Figure 6) was set to be 1/10th of the 
minimum particle diameter. 

 

Figure 4. Identification of constrictions in contact based meth-
od: (a) three-particle constriction; (b) four-particle constriction; 
(c) face connecting two void cells which are part of a single, 
larger void (O’Sullivan et al., 2015) 

 
Unlike the Contact and Weighted Delaunay 

Methods, constriction boundaries identified by the 
Watershed Method are not planes, but are irregular 
surfaces, as shown in Figure 7.  On these irregular 
surfaces the constriction diameters are defined as the 
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local maxima of the distance map on the constriction 
surface. This leads to the identification of many in-
dividual constrictions on the constriction surface 
(Figure 7(a)). Taylor et al. (2015) outline a four step 
procedure to remove the erroneous local maxima so 
that only meaningful constrictions are identified. For 
large, irregular constriction surfaces more than one 
valid constriction can be identified (Figure 7(b)).  

 

Figure 5. Voxelised image with voxels representing either solid 
space (white) or void space (black). 

 

Figure 6. Conceptual diagram showing watershed algorithm 

 
Figure 7. Constriction surfaces (Taylor et al., 2015). (a) All lo-
cal maxima; (b) erroneous maxima removed to leave only true 
constrictions 

3 GENERATION OF FILTER SAMPLES  

Virtual granular filters were generated using the 
DEM code granular LAMMPS (Plimpton 1995). The 
filters have linearly graded PSDs with Cu = 1.2 to 6, 
as shown in Figure 8. Each filter was generated with 
periodic boundaries and particles initially randomly 
placed in the model domain. The filters were then 
isotropically compressed to a mean normal stress p′ 
= (σ′1 + σ′2 + σ′3) / 3 = 50 kPa where σ′1 , σ′2 ,  σ′3 are 
the three principal stresses. An inter-particle friction 
coefficient of μ = 0.3 was used, which was selected 
to match the measured value of glass beads and al-
lowed a relatively loose sample to be created. The 
number of particles used in each simulation is shown 
in Table 1. A subset of each sample was used for the 
more memory intensive Watershed Method. The 
Watershed algorithm was applied only to the sam-
ples with Cu = 1.5, 3 and 4.5.  

 
Figure 8. Particle size distributions of filters analysed 
 
Table 1: Number of particles used to calculate constrictions  
Coefficient 
of uni-
formity 

Void 
ratio 

Number of particles analysed 

Weighted Delaunay 
and Contact 

Watershed 

1.2 0.714 8262 N/A 
1.5 0.658 9313 2476 
2 0.555 12115 N/A 
3 0.455 22600 10189 
4.5 0.384 44821 8567 
6 0.314 59183 N/A 

4 RESULTS 

4.1 Comparison of CSDs generated with different 
methods 

Figure 9(a-c) shows the constriction size distribu-
tions generated using each of the three methods with 
filters of Cu = 1.5, 3 and 4.5 respectively. In each 
case the constriction diameters, Dc are normalized by 
the smallest filter particle D0F. For the Weighted De-
launay Method the variation of the CSD with merg-
ing overlap is also presented.  



It can be seen in Figure 9 that the methods gener-
ate broadly comparable CSDs with slightly better 
agreement between the CSDs for Cu = 3 and 4.5 
than for Cu = 1.5. Each method results in a mini-
mum constriction size which approximately matches 
the analytical minimum for spherical particles Dc,min 
≈ 0.155D0F. The Weighted Delaunay CSD varies de-
pending on the overlap chosen for void merging – 
the variation in CSD resulting from a 0% to 100% 
change in overlap is of a similar magnitude to the 
variation between the three methods. 

 

Figure 9. Comparison of normalized constriction size distribu-
tions using different methods: (a) Filter Cu = 1.5; (b) Cu = 3; Cu 
= 4.5. Overlap (O) of 0, 50 & 100% presented for WD Method 

 

The fact that three constriction algorithms, each of 
which has a logical basis, generate different CSDs 
again highlights the fact that there is no unique CSD 
for a given granular filter.   

4.2 Variation of CSD with coefficient of uniformity 
Figures 10 to 12 present the CSDs for all filters ana-
lysed, which had coefficient of uniformity (Cu) val-
ues of Cu = 1.2 to 6 for each of the three methods 
used. In each case the constriction diameters are 
normalized by the smallest filter particle (D0F) and 
the commonly characteristic filter diameter D15F. 
Where D15F is used the range of median constriction 
diameters are also given on the figure.   

With reference to Figures 10(a), 11(a) and 12(a), 
the constriction diameters normalized by D0F tend to 
increase with Cu. This is logical as the average filter 
particle diameter will also increase. However, as Cu 
≥ 3 the CSDs become similar and for Cu ≥ 4.5 the 
CSDs are practically the same. Shire et al. (2015) 
present data which shows that small filter particles 
are more likely to form constrictions, and this proba-
bly accounts for the similarity of the CSDs for high-
er Cu materials.  
  The CSDs normalized by the characteristic filter 
diameter D15F are presented in Figures 10(b), 11(b) 
and 12(c). For each method the CSDs form a rela-
tively narrow band of curves.  

The CSDs from the Weighted Delaunay Method 
(Fig. 10(b)) form a narrow band for the filters with 
Cu ≤ 4.5 (Dc50 ranges from 0.26-0.29 D15F). The 
CSD of the most widely graded filter (Cu = 6) lies to 
the left of the more narrowly graded filters (Dc50 = 
0.23 D15F).  

The Contact Based Method results in CSDs curves 
which become less steep as Cu increases. This is par-
ticularly noticeable for the filter with Cu = 1.2. Over-
all the Contact Based Method gives a broadly similar 
result to the Weighted Delaunay Method, with a a 
range of median constriction diameters of Dc50 = 
0.22 – 0.27 D15F.  

Only three filters were analysed using the Water-
shed Method, and the three resulting CSDs are very 
similar when normalized by D15F and each has a me-
dian constriction diameter of Dc50 ≈ 0.27 D15F.  



 

Figure 10. CSDs normalized by characteristic filter diameters 
for filters of  Cu = 1.2 to 6 from the Weighted Delaunay Meth-
od with O = 50% (Shire et al., 2015).  

5 DISCUSSION AND CONCLUSIONS  

The continuous and irregular nature of void space in 
granular filters means that the measurement of CSDs 
is a subjective process. Here three methods for the 
measurement of CSDs are presented, each with its 
own logical basis. Each method results in a different 
CSD and in the case of the Weighted Delaunay 
Method different CSDs depending on the user-
defined merging overlap.  

Despite the difference in the methods and result-
ing CSDs, some common trends can be established. 
Firstly, for linearly graded filters with the same 
smallest particle (D0F) the constrictions become larg-
er as the coefficient of uniformity (Cu) increases 
from 1.2 to 3.0. However, when Cu ≥ 4.5 the CSDs 
become very similar.  

The second trend is that CSDs from filters in the 
range Cu = 1.2 to 6 become relatively similar when 
they are normalized by the characteristic filter diam-
eter D15F. This agrees well with the experimental 
findings of Kenney et al. (1985) that the largest co-
hesionless base particle which could be eroded 
through granular filters of Cu = 1.2 to 12 was rela-
tively similar when normalized by D15F. Shire et al. 
(2015) additionally found that CSDs differ with the 

relative density of the filter, but for a given relative 
density normalization by D15F or D5F produces simi-
lar CSDs.  Together, these findings lend support to 
the use of D15F in empirical rules e.g. Terzaghi & 
Peck (1948) and Sherard & Dunnigan (1989).  
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Figure 11. CSDs normalized by characteristic filter diameters 
for filters of Cu = 1.2 to 6 using the Contact Method 
 

 
Figure 12. CSDs normalized by characteristic filter diameters 
for filters of Cu = 1.5 to 4.5 using the Watershed Method 
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