
RUN-TIME OPTIMIZATION OF

ADAPTIVE IRREGULAR APPLICATIONS

A Dissertation

by

HAO YU

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2004

Major Subject: Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/4268743?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

RUN-TIME OPTIMIZATION OF

ADAPTIVE IRREGULAR APPLICATIONS

A Dissertation

by

HAO YU

Submitted to Texas A&M University
in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Approved as to style and content by:

Lawrence Rauchwerger
(Chair of Committee)

Nancy Amato
(Member)

Vivek Sarin
(Member)

Marvin L. Adams
(Member)

Valerie E. Taylor
(Head of Department)

August 2004

Major Subject: Computer Science

iii

ABSTRACT

Run-Time Optimization of Adaptive Irregular Applications. (August 2004)

Hao Yu, B.S., Tsinghua University, PR China;

M.S., Tsinghua University, PR China

Chair of Advisory Committee: Dr. Lawrence Rauchwerger

Compared to traditional compile-time optimization, run-time optimization could

offer significant performance improvements when parallelizing and optimizing adap-

tive irregular applications, because it performs program analysis and adaptive opti-

mizations during program execution. Run-time techniques can succeed where static

techniques fail because they exploit the characteristics of input data, programs’ dy-

namic behaviors, and the underneath execution environment.

When optimizing adaptive irregular applications for parallel execution, a com-

mon observation is that the effectiveness of the optimizing transformations depends

on programs’ input data and their dynamic phases. This dissertation presents a

set of run-time optimization techniques that match the characteristics of programs’

dynamic memory access patterns and the appropriate optimization (parallelization)

transformations.

First, we present a general adaptive algorithm selection framework to automat-

ically and adaptively select at run-time the best performing, functionally equivalent

algorithm for each of its execution instances. The selection process is based on off-line

automatically generated prediction models and characteristics (collected and analyzed

dynamically) of the algorithm’s input data, In this dissertation, we specialize this

framework for automatic selection of reduction algorithms. In this research, we have

identified a small set of machine independent high-level characterization parameters

iv

and then we deployed an off-line, systematic experiment process to generate predic-

tion models. These models, in turn, match the parameters to the best optimization

transformations for a given machine. The technique has been evaluated thoroughly

in terms of applications, platforms, and programs’ dynamic behaviors. Specifically,

for the reduction algorithm selection, the selected performance is within 2% of opti-

mal performance and on average is 60% better than “Replicated Buffer,” the default

parallel reduction algorithm specified by OpenMP standard.

To reduce the overhead of speculative run-time parallelization, we have devel-

oped an adaptive run-time parallelization technique that dynamically chooses efficient

shadow structures to record a program’s dynamic memory access patterns for paral-

lelization. This technique complements the original speculative run-time paralleliza-

tion technique, the LRPD test, in parallelizing loops with sparse memory accesses.

The techniques presented in this dissertation have been implemented in an opti-

mizing research compiler and can be viewed as effective building blocks for compre-

hensive run-time optimization systems, e.g., feedback-directed optimization systems

and dynamic compilation systems.

v

To Haijing, Eric, mom, dad and Meng.

vi

ACKNOWLEDGMENTS

I feel extremely fortunate to have had Dr. Lawrence Rauchwerger as my advisor.

I wish to thank him for his inspiration, technical direction and material support

throughout my time at Texas A&M. His unfailing excitement in research and fully-

dedicated work style have made him a great leader and role model for me. Without his

help this dissertation would not have been possible. He is also a very caring person,

willing to offer help at any time. It was he who made my life in College Station much

easier and my memories of Texas A&M much richer.

I want to express my gratitude to the members of my advisory committee, Nancy

Amato, Vivek Sarin, and Marvin Adams, and my Graduate Council Representative,

Arthur Hobbs, for their interest, valuable insights and earnest help.

During my years at Texas A&M, I have been given the opportunity to work with

excellent students and researchers, especially the previous and current members of our

Parasol compiler group: Francisco Arzu, Julio Carvallo de Ochoa, Francis Dang, Larry

Evans, Guobin He, Tao Huang, Keith Jackson, Alin Jula, William McLendon III,

Devang Patel, Lidia Onica, Koji Ouchi, Silvius Rus, Steven Saunders, Timmie Smith,

Nageswar Tagarathi, Gabriel Tanase, Nathan Thomas, and Dongmin Zhang. I thank

them for building a research environment filled with curiosity, excitement, inspiration,

and joy. In term of system administration, Timmie, Jack Purdue, Robert Main, and

Francis have always been understanding and helpful during my busy research.

In addition, I have always appreciated my experience at the Texas A&M Super-

computing Center, where I have worked with some excellent colleagues: Spiros Vel-

las, Khalid Sarwar Warraich, Vassilis Kostovassilis, Faisal Chaudhry, Zdenko Tomasic,

Keith Jackson, and Michael Thomadakis. They have not only taught me many things,

from parallel systems to program optimization, but also helped me with some of the

vii

experiments presented in this dissertation.

Finally, I would like to thank my family for their support and love in my endeav-

ors. I cannot think of words to express my gratitude to them. It is my life-long task

to return this debt to them.

viii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

A. Motivation . 1

B. Thesis . 3

II ADAPTIVE ALGORITHM SELECTION FRAMEWORK . . . 6

III IRREGULAR REDUCTION PARALLELIZATION 9

A. Essentials of Reduction Parallelization 9

B. Reduction Algorithm Library 11

1. Replicated Buffer (RepBuf) 12

2. Replicated Buffer With Links (RepLink) 15

3. Selective Privatization (SelPriv) 16

4. Local Write (LocalWr) 18

5. Qualitative Comparison 19

C. Preliminary Experimental Results 20

1. Experimental Setup 20

2. Results and Discussion 23

D. Summary . 26

IV ADAPTIVE REDUCTION SELECTION 27

A. Introduction . 27

B. High-Level Parameters . 28

1. The Parameters . 28

2. Decoupled Effects of the Parameters 31

C. Adaptive Reduction Selection 33

1. Setup Phase . 34

2. Dynamic Selection Phase 37

3. Selection Reuse for Dynamic Programs 38

D. Summary . 41

V EXPERIMENTAL RESULTS OF ADAPTIVE REDUCTION

SELECTION . 43

A. Evaluation of Algorithm Selection Framework 43

ix

CHAPTER Page

1. Experimental Setup 43

2. Results of Reduction Algorithm Selection 45

3. Validation for Regular Reductions 49

B. Experimental Results on Dynamic Programs 49

1. 2D Adaptive Mesh Refinement 49

2. Molecular Dynamics 53

3. PP2D in FEATFLOW 57

C. Summary . 61

VI ADAPTIVE RUN-TIME PARALLELIZATION FOR LOOPS

WITH SPARSE MEMORY ACCESSES 62

A. Introduction . 62

B. Foundational Work - the LRPD Test for Dense Problems . 63

1. the LRPD Test . 63

2. Overhead of the LRPD Test for Dense Access Patterns 65

3. Some Specific Problems in Parallelization of Sparse Codes 67

4. Overhead Minimization 68

C. Redundant Marking Elimination 69

1. Same Subscript and Access Type Based Aggregation . 69

2. Grouping of Related References 71

3. Outline of the Grouping Algorithm 72

a. CDG and colorCDG Construction 73

b. Recursive Grouping 74

c. Marking the Groups 75

D. Shadow Structures for Sparse Codes 75

E. Experimental Results . 78

1. Run-time Overhead Reduction 78

2. A Case Study: SPICE 2G6 79

F. Summary . 82

VII RELATED WORK . 84

A. Adaptive Optimization . 84

B. Reduction Parallelization 86

C. Automatic Parallelization 88

VIII CONCLUSIONS . 91

A. Dissertation Research . 91

1. Adaptive Algorithm Selection Framework 91

x

CHAPTER Page

2. Adaptive Run-Time Parallelization 92

B. Future Directions . 92

1. Extension of Run-Time Parallelization for Other

Programming Languages 93

2. High-Performance Libraries 93

3. Dynamic Compilation 94

REFERENCES . 95

VITA . 107

xi

LIST OF TABLES

TABLE Page

I Qualitative comparison of parallel reduction algorithms 19

II Applications and loops to evaluate parallel reduction algorithms . . . 20

III Summary of the decoupled effects . 32

IV Parameter values for the factorial experiment 35

V Specifications of experimental parallel systems 44

VI Actual parameter values . 45

VII Specifications of dynamic inputs of MOLDYN 54

VIII Specifications of grid levels of the input for PP2D 59

IX Effect of the aggregation of markings 79

xii

LIST OF FIGURES

FIGURE Page

1 Overview of the adaptive algorithm selection framework 6

2 Examples of reduction loops . 10

3 An irregular reduction loop and its graphical representation 13

4 Replicated buffer algorithm (pseudo-code) 14

5 Replicated buffer algorithm (graphical representation) 14

6 Replicated buffer with links algorithm (graphical representation) . . 15

7 Selective privatization algorithm (graphical representation) 16

8 Local write algorithm (graphical representation) 18

9 Performance of parallel reduction algorithms 24

10 Overhead of parallel reduction algorithms 25

11 Memory access patterns of replicated buffer algorithm 29

12 Decoupled effect of parameters (on a HP V-Class, with #processors=8) 30

13 Decoupled effect of parameters (on an IBM Regatta p690, with

#processors=16) . 31

14 Setup phase for adaptive selection of reduction algorithms 34

15 The parameterized synthetic reduction loop 35

16 Adaptive reduction parallelization at run-time 38

17 Relative performance of parallel reduction algorithms 46

18 Average relative-speedups . 47

xiii

FIGURE Page

19 High level description of AmrRed2D 50

20 Phase-wise and step-wise effects of dynamically selecting algo-

rithms AmrRed2D with initial mesh sizes 50x50 51

21 Phase-wise and step-wise effects of dynamically selecting algo-

rithms AmrRed2D with initial mesh sizes 300x300 52

22 Relative speedups of adaptively selecting algorithms on AmrRed2D . 53

23 A high level description of MOLDYN 54

24 Phase-wise and step-wise effects of dynamically selecting algo-

rithms MOLDYN (inputs #1) . 55

25 Phase-wise and step-wise effects of dynamically selecting algo-

rithms MOLDYN (input #4) . 56

26 Relative speedups of adaptively selecting algorithms on MOLDYN . 57

27 Relative performance of adaptive algorithm selection for PP2D,

on a HP V-Class . 59

28 Relative performance of adaptive algorithm selection for PP2D,

on an IBM Regatta p690 . 60

29 An example of LRPD test on a DO loop. 65

30 Simple aggregation situations. 70

31 Recursive grouping algorithm . 72

32 Illustration of marking sites after grouping related references 73

33 CDG(a) and colorCDG(b) of the loop example 74

34 Various irregular memory access patterns in a loop. 76

35 Intersections of different run-time memory access regions. 77

36 Performance of SPICE BJT loop with input 1 81

xiv

FIGURE Page

37 Performance of SPICE BJT loop with input 2 82

1

CHAPTER I

INTRODUCTION

A. Motivation

Improving performance on current parallel processors is a very complex task which,

if done “by hand” by programmers, becomes increasingly difficult and error prone.

Programmers have obtained increasingly more help from parallelizing (restructur-

ing) compilers; such compilers address the need to detect and exploit parallelism in

sequential programs written in conventional languages as well as parallel languages

(e.g., HPF). They also optimize data layout and perform other transformations to

reduce and hide memory latency, the other crucial optimization in modern large scale

parallel systems. The success in the “conventional” use of compilers to automatically

optimize code is limited to cases when performance is independent of the input data

of the applications.

A large family of applications that traditional optimizing compiler techniques

can not effectively utilize are “irregular applications.” Irregular applications usu-

ally represent systems in the form of sparse and irregular structures, which corre-

spond to sparse metrics or graphs/meshes representing irregular geometries. Such

programs have been extensively used in most scientific and engineering computational

domains. For instance, N-body simulation and Molecular Dynamic applications [1],

which model particle systems at the particle level, are widely used in disciplines such

as Physics, Chemistry [2], Biology [3], etc. Another application domain is compu-

tation fluid dynamics (CFD), which is widely used in most scientific or engineering

disciplines, e.g. Mechanical Engineering, Astrophysics [4], Nuclear Engineering [5],

The journal model is IEEE Transactions on Parallel and Distributed Systems.

2

Geophysics [6], etc., to simulate or model a fluid system at the “flux” granule-level.

In most irregular applications, the computation depends on indirect data struc-

tures. For instance, sparse metrics or graphs are usually stored in compact formats to

reduce the storage requirement and computation time. The compact representation

must not only store the attributes of the nodes and/or edges, but also store various

indexing information to access the attributes. For such applications, the information

needed for optimization purposes is not available at compile-time because the contents

of such indirect data structures are often read from input data or computed during

program execution. Therefore, the traditional optimization approach (via optimizing

compilers) can hardly deliver a satisfactory performance.

The challenge raised by irregular applications has been addressed via run-time

optimization, which performs program analysis and adaptive optimization during pro-

gram execution. Run-time techniques can succeed where compilation fails because

they have access to the input data. For example, input dependent or dynamic data

distribution, memory accesses guarded by run-time dependent conditions, and com-

plex subscript expressions can all be analyzed unambiguously at run-time.

A very important experience in parallel applications, in comparison to sequential

applications, is that their performance is much more sensitive to input data, system

architecture, and dynamic execution environment. Many important (frequently used

and time consuming) algorithms used in such programs are indeed application-, input-

, and environment-dependent. For example, we have previously shown that, parallel

reduction algorithms are quite sensitive to their input memory reference patterns and

system architectures [7]. Similar conclusions have been reached for parallel sorting

algorithms [8], for FFT algorithms [9], and for regular computations such as matrix

multiplication [10]. In general, adaptive run-time optimization is the key to achiev-

ing improved performance when running irregular applications on today’s parallel

3

systems, and performance can be greatly enhanced if we can adaptively tailor the

optimizations to the particular program execution instance,

B. Thesis

The goal of this dissertation is to explore adaptive run-time optimization techniques

to efficiently parallelize irregular applications. Specifically, this dissertation presents

novel compiler and run-time techniques that allow irregular applications to adaptively

select algorithms or data structures that are most suited to a particular execution

instance.

When codes are irregular (memory references are irregular) and/or dynamic

(memory reference patterns change during the same program execution instance),

it is very likely that important performance-affecting program characteristics will be

input- and environment-dependent. Our preliminary research has demonstrated that

one of the most powerful optimization methods compilers can employ is to substitute

entire algorithms instead of trying to perform low level optimizations on sequences

of code [7]. In Chapter II, we first present a general framework to automatically and

adaptively select at run-time the best performing, functionally equivalent algorithm

for each of its execution instances. The selection process is based on off-line automat-

ically generated prediction models and characteristics of the algorithm’s input data

which is collected and analyzed dynamically. While the framework has also been ap-

plied to adaptively select sorting algorithms [8], in this dissertation, we concentrate

on the automatic selection of reduction algorithms.

In Chapter III, we discuss reduction parallelization and present a small library of

parallel reduction algorithms. With experiments, we demonstrate that the best per-

formance can be obtained only if we dynamically select the most appropriate one for a

4

particular program-input combination. Then in Chapter IV, we present a systematic

and automatic process for generating prediction models that match the parallel reduc-

tion algorithms to execution instances of reduction loops. After establishing a small

set of high-level parameters that can characterize irregular memory reference pat-

terns, we measure the relative performance of the candidate algorithms for a number

of synthetic reduction execution instances in a factorial experiment. This is achieved

by running a synthetic reduction loop which generates reduction references with the

memory reference patterns selected by the factorial experiment. The end result of this

off-line process is a mapping between various points in the memory reference pattern

space and the best available reduction algorithm. At run-time, the memory reference

characteristics of the actual reduction loop are extracted and matched through a

regression to the corresponding best algorithm (using the previously extracted map).

With the experimental results presented in Chapter V, we show that our frame-

work can select the actual best performing algorithms for 85% of the cases studied and

the overall selected performance is within 2% of optimal performance. We also show

that with our framework, a dynamic program can achieve performance improvements

that are not otherwise possible (e.g., applying one algorithm).

The main contribution of this work is an adaptive framework for a systematic

process through which input sensitive prediction models can be built off-line and

used to dynamically select from a particular list of functionally equivalent algorithms

(parallel reductions being just one important example). The same approach can also

be used for various other compiler transformations that cannot be easily analytically

modeled.

In my dissertation research, we have also developed adaptive run-time techniques

to complement existing run-time parallelization techniques. Run-time parallelization

techniqu is to detect and explore parallelism at run-time. In general it inserts extra

5

codes into the original program to facilitate data dependence test. Due to the dynamic

natures of irregular programs, it is difficult to always achieve good performance with

the same run-time parallelization technique. In Chapter VI, we present an adaptive

run-time parallelization technique which can efficiently explore the parallelism of loops

with sparse memory accesses. The theme of the technique is adaptively selecting

the most efficient shadow data structures to record the memory reference patterns

executed by a speculatively parallelized loop.

In Chapter VII, we review related research efforts in the fields of “adaptive

optimization,” “reduction parallelization,” and “automatic parallelization.” Finally,

in Chapter VIII, we summarize the techniques that have been developed and presented

in this dissertation and outline their possible extensions.

6

CHAPTER II

ADAPTIVE ALGORITHM SELECTION FRAMEWORK

In this chapter we give an overview of our general framework for adaptive and auto-

matic low level algorithm selection, the details of which are presented in Chapters III

– V as applied to the optimization of parallel reduction algorithm selection.

In comparison to sequential computing, parallel algorithms for irregular appli-

cations are much more sensitive to their data access patterns, system architecture,

and environment. Specifically, the relative performance of several equivalent parallel

algorithms is application-, input-, and time-dependent. Therefore, for most cases, the

performance can be greatly enhanced if we can tailor the choice of algorithm and its

parameters to the particular instance in which it is used.

Fig. 1 gives an overview of our adaptive framework. We distinguish two phases:

(a) a setup phase and (b) a dynamic selection (optimization) phase.

Characteristics
Changed ?

Selected Algo.

Select Algo.

Optimizing Compiler

Algo. Selection Code

Model
Derivation

Synthetic
Experiments

Yes

Adaptive Executable

Application
Dynamic Selection PhaseSetup Phase

Fig. 1. Overview of the adaptive algorithm selection framework

7

The setup phase occurs once for each computer system and thus, implicitly tailors

our process to a particular architecture. We then establish the input domain and the

output domain (possible optimizations) of the algorithm selection code.

In the particular case presented in this dissertation (i.e., parallel reductions), the

input domain is the universe of all possible and realistic memory reference patterns

— because, as previously shown [7], they crucially impact the obtained performance.

Architecture type is also important, but is used implicitly. Since it would be im-

practical to study the entire universe of memory access patterns, we define a small

set of parameters that can sufficiently characterize them. The domain of possible

optimizations is composed, in our case, of the different parallel reduction algorithms

collected in a library.

We then explore our input domain and find a mapping to the output domain.

In our case we establish a mapping between different points in the input parameter

space (memory reference patterns) and relative performance rankings of the available

algorithms. This task is accomplished off-line by running a factorial experiment. We

generate a number of parameter sets that have the potential cover our input domain.

For each of these data points, we measure the relative performance of our algorithms

on the particular architecture, and rank them accordingly.

We should mention here that we have also tried other methods of exploring the

data space. In [11], we have used a machine learning algorithm to explore the input

space that defines the performance.

The dynamic selection phase occurs during actual program execution. Through

instrumentation (or otherwise) we extract the set of relevant parameters that charac-

terizes the actual input. Then we use the information obtained during the setup phase

to find its corresponding output. Specifically, we use statistical regression to eventu-

ally select the appropriate best performing parallel reduction algorithm. In [11], in

8

turn, we used statically generated decision trees which are dynamically traversed to

select the best algorithms.

In this dissertation we specialize our adaptive framework to parallel reduction

algorithm selection. We first developed a library of reduction algorithms and identified

a set of parameters that can characterize their irregular memory reference patterns.

Then we applied a factorial experiment that explores the input space. For each

parameter set, we execute a synthetic parameterized loop that generates a memory

reference pattern on which we evaluate and rank the different algorithms in our library.

A regression method is used to compute prediction models for each parallel reduction

algorithm based on the data from the factorial experiment. Finally, at run-time,

we compute values for the characterization parameters of the reduction operation in

question and use them in our pre-computed models to select the best algorithmic

option.

9

CHAPTER III

IRREGULAR REDUCTION PARALLELIZATION

A. Essentials of Reduction Parallelization

A special and very frequent case of loop dependence patterns occurs in loops which

implement reduction operations. In particular, reductions (also known as updates) are

at the core of a very large number of algorithms and applications – both scientific and

otherwise – and there is a large body of literature dealing with their parallelization.

A reduction variable is a variable whose value is used in one associative and

commutative operation of the form x = x⊗ expr, where ⊗ is the operator and x does

not occur in the expr or anywhere else in the loop. A simple example is statement S1

in Fig. 2-(a). Note code or pseudo-code pieces illustrated in this dissertation align to

FORTRAN The operator ⊗ is exemplified by the + operator, and the access pattern

of array A is read, modify, and write. The function performed by the loop is to add

values computed in each iteration (of the outer loop) to the values stored in array A.

This type of reduction is sometimes called an update.

With the exception of some simple methods using unordered critical sections

(locks), reduction parallelization is performed through a simple form of algorithm

substitution. For example, a sequential summation is a reduction which can be re-

placed by a parallel prefix, or recursive doubling, computation [12, 13].

Irregular reductions usually refer to the S1 statement in Fig. 2-(b). The data

(e.g., array A) are updated in multiple iterations of the loop using associative and

commutative operations and the data elements are then accessed using indirection

arrays (e.g., array X). In irregular applications (typical examples are simulation pro-

grams and programs involving sparse linear algebra), irregular reductions consume

10

i = 1,mdo

real A(n)

do

enddo
enddo

j = 1,n

S1 A(j) = A(j) + expr

(a) Regular reduction loop

real A(n)
integer X(m)

i = 1, mdo

enddo
S1 A(X(i)) = A(X(i)) + expr

(b) Irregular reduction loop

i = 1,m
A(K(i)) = ...

do

... = A(L(i))

enddo
A(X(i)) = A(X(i)) + expr

S1

S2

S3

(c) Reduction needing run-time validation

Fig. 2. Examples of reduction loops

large portion of the programs’ execution time.

In general, there are two tasks required for reduction parallelization: recogniz-

ing the reduction variable, and parallelizing the reduction operation. Here we briefly

describe the available static and run-time techniques for recognizing reduction vari-

ables. In the remainder of the chapter, we assume that such techniques have been

used appropriately and we have a known reduction operation. Our goal is to select

the best parallel reduction algorithm for performing it in parallel.

Static reduction recognition. The problem of recognizing reduction statements

has usually been handled at compile-time by syntactically pattern matching the loop

statements with templates of generic reductions, and then performing a data depen-

dence analysis of the variable under scrutiny to guarantee that it is not used anywhere

11

else in the loop except in the reduction statements [14, 15, 16].

Run-time reduction validation. In cases where data dependence analysis cannot

be performed at compile-time, reductions have to be validated at run-time. For exam-

ple, in Fig. 2-(c), although statement S3 in the loop matches a reduction statement,

it is still necessary to check at run-time that the elements of array A referenced in S1

and S2 do not overlap with those accessed in statement S3. Thus, augmented code

needs to check at run-time that there is no intersection between the references in S3

and those in S1 and/or S2. Of course, all other potential dependences caused by the

references in S1 and S2 will have to be checked, because they cannot be analyzed at

compile-time.

The technique we use to verify such reductions at run-time is the LRPD test,

which is described in detail in [17], and with more implementation guidelines given

in [18]. The main idea of the LRPD test with respect to reduction validation is to

speculatively execute a loop in parallel (including the reduction operation) and sub-

sequently test if the reduction operation was indeed a valid reduction, i.e., it tests

if any data dependences occurred and if the references appearing in the reduction

statements were accessed anywhere else in the loop. If the test passes, the reduction

variables, which were privatized and accumulated on each processor during the spec-

ulative execution, are merged into the shared array after loop termination. If the test

fails, the loop is re–executed in a safe manner, e.g., sequentially.

B. Reduction Algorithm Library

Reductions are associative recurrences, and they can be parallelized in several ways.

Our library currently contains two types of methods: direct update methods, which up-

date shared reduction variables during the parallel execution of the loop, and private

12

accumulation and global update methods, which accumulate in private storage during

the parallel execution of the loop and update shared variables with each processor’s

contribution afterwards. Direct update methods include the classical recursive dou-

bling [12, 13], unordered critical sections [19, 14], and local write [20]. Our library only

includes local write because the others are not competitive for parallelizing reductions

involving array variables. Private accumulation methods in our library include repli-

cated buffer [12, 13, 21, 22], and two novel algorithms we have proposed: replicated

buffer with links and selective privatization [7].

First, we describe a graphical representation for illustrating parallel reduction

algorithms. Fig. 3 gives a sequential irregular reduction loop and its graphical repre-

sentation. The loop has 9 iterations and accesses 5 data elements. Each iteration of

the loop has 2 distinct reduction statements. In the graph, the squares represent data

elements and the circles represent iterations of the reduction loop. Edges between

the squares and the circles indicate data elements accessed by reduction statements

in different iterations. In addition, we assume that 3 processors are used and static

iteration scheduling is used whenever it is applicable.

1. Replicated Buffer (RepBuf)

To allow the original loop to execute as a DOALL (executing the iterations of the loop

concurrently on multiple processors), RepBuf privatizes the reduction variables and

accumulates partial results in private storage. After loop execution, the partial results

are accumulated across processors and the corresponding shared array is updated.

The parallel version of the reduction loop in Fig. 3 and the corresponding graphical

representation are given in Fig. 4 and Fig. 5, respectively.

As shown in Fig. 4, the parallel loop applying RepBuf includes three fully par-

allel loops. The first loop initializes the replicated private array to zeros. The second

13

i = 1,9do

integer X(2,9)
real A(5)
P=3, static iteration scheduling

enddo

......

A(X(1,i))=A(X(1,i))+expr1

A(X(2,i))=A(X(2,i))+expr2

1 5432

87 94 5 61 2 3

A(1:5)

X(2,9)

i=1:9

Fig. 3. An irregular reduction loop and its graphical representation

loop executes the original loop iterations in parallel. Each processor (thread) executes

a part of the original loop iterations and the corresponding reduction operations op-

erate on the processor’s private array. Finally, the third loop updates the shared

variable with all the processors’ contributions.

The advantages of this technique are as below. First, it works well if the access

pattern is dense, i.e., if most elements of the replicated arrays are indeed written

during execution. Second, the method is simple to implement and no additional work

is generated during loop execution. The final cross-processor update (reduction)

is easy to implement (it is fully parallel) and its work increases linearly with the

number of processors (more processors implies more private arrays). Third, individual

reduction operation accessing the replicated reduction variable is very fast (i.e., via

array access).

The disadvantage of RepBuf is that if the reference pattern is sparse or the

average number of iterations referencing a reduction data element (which we call de-

gree of contention) is low, then many elements may not be touched at all or only

14

1 DOALL p = 1, P

pA(1:n,p) = 0

2 DOALL i = 1, M

p = get_pid()

......

pA(X(1,i),p) = pA(X(1,i),p) + expr1

pA(X(2,i),p) = pA(X(2,i),p) + expr2

3 DOALL i = 1, N

A(i) = A(i) + pA(i, 1:P)

Fig. 4. Replicated buffer algorithm (pseudo-code)

1 3 4 52 1 3 4 52 1 3 4 52

1 2 3 4 5 6 87 9

1 3 4 52

Parallel Reduction
on Replicated Array

Cross−processor
Reduction

P2P1 P3

Fig. 5. Replicated buffer algorithm (graphical representation)

by a small subset of the processors. Thus, the maximally allocated private space is

not efficiently used and can create problems associated with referencing a large data

structure during the parallel loop execution (e.g., poor spatial cache locality, page

misses, TLB misses, etc.). Moreover, the final cross–processor reduction performs a

lot of unnecessary work, i.e., instead of being proportional to the actual number of

distinct memory references on each processor, the total work of the phase is propor-

tional to the dimension of the private array; this makes the scheme not scalable with

the number of processors.

15

2. Replicated Buffer With Links (RepLink)

To avoid traversing the not-used (though allocated) private elements at the cross-

processor reduction phase of RepBuf algorithm (the third DOALL loop in Fig. 4),

we have developed RepLink. This algorithm is very similar to RepBuf and is in

essence a sparse storage scheme that can be processed easily in parallel. Here we also

allocate, on all processors, private arrays conformable to the original shared reduction

array. However, we also provide additional links to the private data. The links are

to connect all the used “private copies” of original shared reduction elements. After

the parallel loop finishes, the cross-processor merging operation can be performed

only along the chain of links to visit just the used private elements, thus reducing

the memory footprint and the number of remote misses to those absolutely necessary.

This is useful when the degree of contention is low and only a few processors need to

participate in the merging operation. The scheme is illustrated in Fig. 6.

1 2 3 4 5 6 87 9

1 3 4 52

Parallel Reduction
on Replicated Array

Cross−processor
Reduction

P2P1 P3

1 3 4 52 1 3 4 52 1 3 4 52

Fig. 6. Replicated buffer with links algorithm (graphical representation)

In this algorithm, the links are established either during an inspector phase

or during the merging phase of RepBuf, when the reduction data access pattern

(determined by the contents of index arrays) changes. That is, when we detect

a pattern change, we update the linked list structure. The disadvantage of this

algorithm is that, for the loop execution instance where reduction data access pattern

16

changes, it executes a setup phase which has extra work and requires more memory

to be allocated.

3. Selective Privatization (SelPriv)

To reduce the memory pressure associated with allocating large, sparsely-used repli-

cated arrays, we wish to replicate only array elements that are referenced by multiple

processors. The main idea of SelPriv is to first determine which elements are refer-

enced on multiple processors and then allocate for them (and only for them) private

units. By excluding unused private elements from the fully replicated array, Sel-

Priv maintains a dense private space where all allocated private elements are used

(except for elements allocated to eliminating unnecessary cache coherence traffics).

This releases memory pressure and increases spatial locality in terms of cache usage

and paging activities. The technique is illustrated in Fig. 7.

1 2 3 4 5 6 87 9

1 3 4 52

2 341 2 4 5 1 5

Parallel Reduction
on Replicated Array

Cross−processor
Reduction

P2P1 P3

Fig. 7. Selective privatization algorithm (graphical representation)

In SelPriv, the private space does not align with the original data array. The

straightforward implementation would be to use an indirection array to direct the

references of the original data elements to the selectively privatized elements. To

avoid introducing this additional level of indirection in the reduction operations, we

make a copy of the index array (most applications that we have studied reference their

reduction arrays through subscript arrays) and modify the appropriate elements of

17

the copied index array to point to the selectively privatized data elements. In this

manner, the execution of the parallel loop is not slowed down and the memory usage

is reduced. In the final merging phase, only the privatized portions of the array will

be merged, further improving performance. It should be noted, though, that each

reference during the merging phase is more expensive because the private storage is

not conformable and the links among the private elements of the same shared element

are traversed.

An additional optimization is that we assume the shared data is uniformly dis-

tributed across processors and therefore we only privatize the “remote” data. This

way one processor can always write directly to the original shared array without

any contention. The benefits may seem small but if there are only 2 sharers the

final merge time is significantly reduced, i.e., instead of merging cross-processor, the

shared element is simply updated with one private contribution.

A potential disadvantage of SelPriv is the existence of the copy of the index

array. The size of this index array is proportional to the number of referencs, and is not

necessarily proportional to the distinct number of referencs. So the setup phase needs

to traverse the array and modify all elements where the corresponding data elements

need to be privatized. This traversal can be quite expensive if it cannot be amortized

across many invocations of the loop. An alternative is to use the original subscript

array and modify it where elements need to be privatized; each processor then points

to its own (private) space. Because the subscript array may be also used outside the

scope of the loop, we need to save the original values before modifications are done

and restore them after loop end. In our implementation, we used an additional copy

of the index array.

18

1 2 3 4 5
Global
Reduction
Array

P1 P2 P3

Iterations1 2 43 5 8 9 2 3 5 6 7 9 4 6 7 8

Fig. 8. Local write algorithm (graphical representation) – gray circles represent

replicated iterations

4. Local Write (LocalWr)

LocalWr uses a variation of the “owner–computes” method to parallelize irregular

codes [20]. The reference pattern is first collected in an inspector loop [23] and

is followed by a partitioning of the iteration space based on the “owner-computes”

rule. Memory locations referenced across processors have their iterations replicated

so that the reduction operations access data local to each processor. The technique

is illustrated in Fig. 8.

This algorithm works well when contention across iterations, or a measure called

connectivity by its authors (the ratio of number of iterations and number of distinct

elements referenced), is low and thus work (iteration) replication can be kept to a

minimum. Because this method eliminates any contention through iteration replica-

tion, no critical sections are necessary. Another significant advantage of LocalWr is

the fact that it maximizes locality (via “owner-computes”), and thus its performance

is maximized in distributed memory environments where latency and message passing

are quite expensive.

The disadvantage of this scheme is that the inspector phase can be quite expen-

sive because it traverses and collects all references to the reduction array occurring in

the loop. The resulting data structure may be quite large and its analysis expensive.

19

Another potential drawback of the method is that for reference patterns with high

connectivity, work duplication may be large.

5. Qualitative Comparison

In Table I, we present a qualitative comparison of the algorithms discussed above.

TABLE I

Qualitative comparison of parallel reduction algorithms

Issues RepBuf RepLink SelPriv LocalWr

Good when contention High Low Low Low

Locality Poor Poor Good Good

Need schedule-reuse No Yes Yes Yes

Extra Work No No No Yes

Extra Space NxP NxP NxP+M MxP

M is the number of iterations; N is the size of the reduction array; P is the number of

processors.

In the table, the contention of a reduction is the average number of iterations (#

processors when running in parallel) referencing the same element. When contention

is low, many unused replicated elements in RepBuf are accumulated across proces-

sors, while other algorithms only pass useful data. SelPriv works on a compacted

data space and therefore potentially has good spatial locality. In LocalWr, each

processor works on a specific portion of the data array and therefore potentially has

good temporal and spatial locality. With respect to overhead, RepLink, SelPriv

and LocalWr all have auxiliary data structures that depend on the access pattern

and must be updated when it changes. Their overhead costs can be reduced with

schedule reuse [24].

20

C. Preliminary Experimental Results

In this section we show performance data (speedups) of reduction loops from sev-

eral codes that have been parallelized using known and newly introduced reduction

techniques and have been executed with several different input sets.

1. Experimental Setup

The experimental setup for our speedup measurement consisted of a 16 processor

HP-V class system with 4Gb memory and 4Mb cache per processor, running the

HPUX11 operating system. It is a directory based cache coherent shared memory

machine with uniform memory accesses (UMA). Due to the limited size of our input

sets and constraints on our single user time allocation, we used 8 processors.

TABLE II

Applications and loops to evaluate parallel reduction algorithms

Program Description Lang. Lines Source #inp

IRREG CFD kernel using FE methods F77 223 [20] 4

NBF M.D. kernel (from GROMOS) F77 116 [20], [25] 4

MOLDYN synthetic M.D. program C 688 [20], [26] 4

CHARMM M.D. kernel (from CHARMM) F77 277 [27] 3

SPARK98 unstructured FE simulation C 1513 SPEC’2000 2

SPICE circuit simulation F77 18912 SPEC’92 4

FMA3D 3D FE method for solids F90 60122 SPEC’2000 1

Program Loop Coverage

IRREG apply effects of nodes (do 100) – traverse grid edges ∼ 90%

NBF non-bounded force calc. (do 50) – traverse neighbor list ∼ 90%

MOLDYN non-bounded force calc. – traverse interaction list ∼ 70%

CHARMM non-bounded force calc. – traverse neighbor list ∼ 80%

SPARK98 smvp loop – Symmetric Matrix-Vector Product ∼ 70%

SPICE bjt loop – traverse BJT devices, update circuit nodes 11–45%

FMA3D Scatter Element Nodal Forces Platq loop ∼ 30%

We have augmented the Polaris optimizing compiler [28] to generate different

21

versions of parallel reduction loops implementing 4 parallel reduction algorithms,

which are replicated buffer, replicated buffer with links, selective privatization, and

local write. We have chosen, from a variety of scientific domains, 7 known programs

and kernels, which are specified in Table II and briefly described below. For most

of the programs, we have chosen or specified multiple inputs to explore the input-

dependent nature of irregular programs. While specifying the inputs, we have tried,

where possible, to use data sets that exercise the entire memory hierarchy of our

parallel machine in order to get the performance data of “real-life” applications.

IRREG is an iterative PDE solver used in CFD applications. It uses an un-

structured mesh to model physical structures. The code uses nodes and edges of a

graph to represent its mesh. The reduction loop applies the force associated with

each edge to its two end points. After evaluating the forces at each node the program

performs an irregular reduction to update them with the new values. The different

input sets have almost the same amount of work (# iterations).

NBF is a kernel, computing non-bounded forces among molecules, reduced from

the GROMOS molecular dynamics benchmark [29]. It is typical of two dimensional

N-body simulations in that the code maintains a continuously updated list of the

neighbors with which it interacts. At every time step, forces are evaluated at each

node and applied through a reduction operation across the whole data structure of

the program.

MOLDYN is a synthetic program abstracted from the molecular dynamics code

CHARMM [3]. While it is similar to NBF in the sense that the molecules interact

only with nodes falling in a cutoff distance, the accesses in MOLDYN are different

from NBF. MOLDYN maintains the neighborhood information in a single interaction

list that is updated with a user-specified frequency.

CHARMM is also a kernel reduced from CHARMM [3], which has been used

22

by the CHAOS group at the University of Maryland [27]. Similar to NBF, this kernel

works on the neighbor list but it works in a three dimensional domain (and thus it

updates forces in 3 orthogonal directions stored in 3 arrays). While IRREG, NBF,

and MOLDYN generate their meshes in the program with some random processes

and few controlling parameters read in from the input, CHARMM reads the mesh

from an input file.

SPARK98 is a collection of 10 sparse kernels developed by David O’Hallaron at

CMU [30]. The sparse matrices are induced from a pair of three-dimensional unstruc-

tured finite element simulations of earthquake ground motion in the San Fernando

Valley. Each kernel is a program/mesh pair. There are 5 C programs (smv, lmv,

rmv, mmv, hmv) and 2 relatively small input data sets (sf10 and sf5). We have

chosen the rmv kernel, which computes irregular reductions (same as equake in the

SPEC CPU’2000 benchmark suite). The meshes determine both the size and non-

zero structure of symmetric sparse matrices used. The irregular reduction loop does

matrix vector multiplication. Since the program only stores the upper triangle of the

matrices, although the computation (updating the resulting vectors) associated with

the upper triangle is regular and loop-independent, the computation associated with

the lower triangle consists of irregular updates. This code (written in C) has been

transformed by hand because our compiler infrastructure can handle only Fortran

code.

SPICE 2G6 is a well-known circuit simulation code written in an older For-

tran style. Its main feature is that it does its own memory management inside a

statically allocated large array named VALUE. Therefore all references to arrays are

through indirection, which makes almost any compiler analysis impossible. We have

transformed the code for efficient parallel execution using the run-time techniques

described in [31, 32]. The main reduction loop in subroutine BJT evaluates the device

23

model and updates the mesh nodes of the circuit (reduction). The program iterates

to a fixed point solving a linear system and then re-evaluates the device model for

the newly found values. The BJT device model evaluation loop takes between 11%

and 45% of the total sequential execution time depending on the complexity of the

devices and circuits being simulated. There are 28 distinct reduction statements for

each iteration.

FMA3D is a 3D inelastic, transient dynamic response simulation code based on

the finite element method. We choose one reduction loop in the scatter element

nodal force platq subroutine. The loop we choose updates 8 nodes of each “8-node

hexahedral continuum element” and therefore there are 8 distinct index (subscript)

expressions and three different reductions sharing the same index.

2. Results and Discussion

Fig. 9 shows a quantitative evaluation of the parallel reduction algorithms. All

speedup graphs account to the reduction loops, including all the time associated

with setting up the auxiliary data structures used by the various reduction schemes.

Each bar group within the graphs corresponds to a specific program-input case. The

inputs are labeled with data size (the number of elements of reduction data arrays)

and a parameter (connectivity, which is defined as the ratio of number of iterations of

the reduction loop and the data size). In the graph titled “SPARK98 & FMA3D,” ab-

breviations of the two applications, S for SPARK98 and F for FMA3D, are added to

the labels of the bar groups. The legends of the graphs correspond to 4 parallel reduc-

tion algorithms: replicated buffer (RepBuf), replicated buffer with links (RepLink),

selective privatization (SelPriv), and local write (LocalWr).

For most of the program–input cases, LocalWr does not perform as well as the

other algorithms. This is because LocalWr is designed for systems with distributed

24

100K−100 500K−50 1M−5 2M−1

1

3

5
6
7
8

10

12

IRREG−do100: on HP; P=8; #steps=40

Inputs (Data Size−Connectivity)

S
pe

ed
up

s
RepBuf
RepLink
SelPriv
LocalWr

1.3M−2 256K−5 128K−50 26K−200

1

2

3

4

5

6

7

NBF−do50: on HP; P=8; #steps=40

Inputs (Data Size−Connectivity)

S
pe

ed
up

s

RepBuf
RepLink
SelPriv
LocalWr

49K−71 128K−23 211K−7 324M−2

1
2
3

5
6
7
8

MolDyn−ComputeForces: on HP; P=8; #steps=40

Inputs (Data Size−Connectivity)

S
pe

ed
up

s

RepBuf
RepLink
SelPriv
LocalWr

1M−6 1M−3 2M−1.5

1

2

3

4

5

6

7

CHARMM−do78: on HP; P=8; #steps=100

Inputs (Data Size−Connectivity)

S
pe

ed
up

s

RepBuf
RepLink
SelPriv
LocalWr

187K−0.04 99K−0.06 89K−0.05 34K−0.05

1

3

4

5

6

8
SPICE 2G6−bjt: on HP; P=8; #steps=40

Inputs (Data Size−Connectivity)

S
pe

ed
up

s

RepBuf
RepLink
SelPriv
LocalWr

S:21K−1.6 S:90K−1.6 F:524K−0.17

1
2
3
4
5
6
7
8

SPARK98 & FMA3D loops: on HP; P=8; #steps=40

Applications: Inputs (Data Size−Connectivity)

S
pe

ed
up

s

RepBuf
RepLink
SelPriv
LocalWr

Fig. 9. Performance of parallel reduction algorithms

memory. One exception is an input of IRREG, which works well with LocalWr be-

cause it manages to increase locality and break up the working set among processors.

Thus, in spite of some code replication (about 80% more work due to iteration repli-

cations), the code gets a superlinear speedup for an input with a certain data size.

Overall, we emphasize two observations from the experimental results. First, our

newly proposed parallel reduction algorithms, i.e., RepLink and SelPriv, provide

competitive performance for most of the program–input cases and perform the best

25

Irreg Nbf Moldyn Charmm Spark98 Spice

1

2

3

4

Applications and Input Cases

E
xe

cu
tio

n
T

im
e

R
at

io

Overhead of Algorithms (HP V−Class, P=8)

RepBuf
RepLink
SelPriv
LocalWr

Fig. 10. Overhead of parallel reduction algorithms

for many cases. Secondly, we do not find any parallel reduction algorithm that can

perform the best for all the cases. This motivated us to derive performance models

to select the best performing parallel algorithms for given program–input cases (the

corresponding techniques are described in the next chapter).

Fig. 10 shows the overhead associated with the various parallel reduction al-

gorithms. We set the input parameters to let the reduction pattern change every

instance (for kernels) or to consider only the instances where patterns change (for

real applications). The obtained speedups are normalized to that of the RepBuf

algorithm for each loop-input case, since it is the simplest one and many production

compilers implement the algorithm (specified as default algorithm by OpenMP stan-

dard [33]). The results in Fig. 10 show that SelPriv has a relatively large overhead

due to the restructuring of the private space. LocalWr has a large overhead due

to the inspector loop and work duplication. For SPICE, since all the data accesses

are in the same array Value, we have inserted an inspector to identify the range of

the array where the irregular reductions operate. Because this work has to also be

done for RepBuf, the relative overhead of other algorithms (compared to that of

26

RepBuf) is low comparing to the overhead of other loop-input cases.

D. Summary

In this chapter we discussed in general how to identify reduction operation, a fre-

quent associative (most often also commutitive) operation that can be parallelized

in many ways. We also presented several parallel reduction algorithms, including

both previously developed algorithms and novel algorithms, which we proposed for

efficiently parallelizing irregular and/or sparse reductions. We presented preliminary

experimental results that show that the performance of our novel techniques provide

competitive performance compared to other known techniques for many applications’

dynamic execution instances (application and input combinations).

The first conclusion of this chapter is that our novel algorithms have added a

valuable complement to the family of parallel reduction algorithms. Secondly, the al-

gorithms discussed in this chapter consist of a library of parallel reduction algorithms

which are specialized for different classes of access behaviors. In addition, as long as

we select the right algorithm for any given dynamic execution instance, the overall

performance of irregular reductions can be improved significantly.

In the following chapter, we describe how we specialize our proposed adaptive

algorithm selection framework to select the best parallel reduction algorithms for given

execution instances of irregular reduction loops.

27

CHAPTER IV

ADAPTIVE REDUCTION SELECTION

A. Introduction

As demonstrated in the previous chapter, not all parallel reduction algorithms and/or

implementations are equally suited as substitutes for the original sequential algorithm.

Each dynamic data access pattern of reductions, though irregular, has its own char-

acteristics and will best be parallelized with an appropriately tailored algorithm or a

customized implementation of an existing algorithm.

In this chapter, we discuss how we apply our adaptive algorithm selection frame-

work (outlined in Chapter II), to adapt reduction parallelizations to the actual ref-

erence pattern executed by a reduction loop, i.e., to the particular input data and

dynamic phase of a program. More precisely, we dynamically characterize irregular

reductions’ reference patterns and choose the most appropriate method for paralleliz-

ing it. We use the library of parallel reduction algorithms composed by the algorithms

discussed previously.

The matching of algorithm to reference pattern is performed using a synthetic

experiment approach. First we characterize the data access patterns and reduction

loops with a set of parameters (identified manually) whose values are computed stat-

ically and measured dynamically. Then we automatically generate prediction models

(mapping from parameters to the best parallel algorithms) from synthetic experi-

mental results running a parameterized synthetic reduction loop (parallelized with

various parallel reduction algorithms) with a set of parameter values generated for

a factorial experiment. So far, we have applied both multi-regression and decision

tree learning to generate the models from the synthetic experimental results. The

28

generated prediction models can be applied for different irregular reduction execution

instances with low overhead. All processes for establishing such prediction models

and their use in a real applications are automated.

The rest of this chapter is organized as follows. In Section B, we introduce

a small number of high-level parameters we have identified, which can be used to

characterize reduction access patterns and discriminate the different parallel reduction

algorithms. In Section C, we describe a systematic process through which input

sensitive predictive models can be built off-line and used dynamically to select from

a particular list of functionally equivalent algorithms.

B. High-Level Parameters

In this section, we describe the parameters we have chosen to characterize reduction

operations. Ideally, they should require little overhead to measure and they should

enable us to select the best parallel reduction algorithm from our library for each

reduction instance in the program. We first define the identified parameters, and

then present a summary of the decoupled effects of the parameters on the perfor-

mance of the parallel reduction algorithms to illustrate the effectiveness of the chosen

parameters.

1. The Parameters

Below, we enumerate the parameters in no specific order.

N is the number of data elements involved in the reduction (often the size of

the reduction array). It strongly influences the loop’s working set size, which may

impact performance depending on the machine’s cache size, etc. In some applications,

several reduction arrays have exactly the same access pattern; here N includes the

29

1 2 3 4 5 6 7 8

6400

12800

19200

25600

Processors

B
u

ff
er

 U
sa

g
e

NBF: N=25600,CON=200,P=8

1 2 3 4 5 6 7 8

4000

8000

12000

16384

Processors

B
u

ff
er

 U
sa

g
e

MOLDYN: N=16384,CON=95.8,P=8

1 2 3 4 5 6 7 8

20000

40000

60000

80000

100000

Processors

B
u

ff
er

 U
sa

g
e

IRREG: N=100000,CON=100,P=8

Fig. 11. Memory access patterns of replicated buffer algorithm

data elements for all arrays.

CON, the Connectivity of a loop, is the ratio between the number of iterations

of the loop and N. This parameter is equivalent to the parameter defined by Han

and Tseng in [20]; there, the underlying data structures (corresponding to the irreg-

ular reductions) represent graphs G = (V,E) and Connectivity is defined as |V |/|E|.

Generally, the higher the connectivity, the higher the ratio of computation to commu-

nication, i.e., if the connectivity is high, a small number of elements will be referenced

by many iterations.

MOB, the Mobility per iteration of a loop, is the number of distinct subscripts

of reductions in an iteration. For the local write algorithm, the effect of high iteration

Mobility (actually lack of mobility) is a high degree of iteration replication. MOB is

a parameter that can be measured easily at compile-time.

OTH, represents the Other (non-reduction) work in an iteration. If OTH is

high, a penalty will be paid for replicating iterations. To measure this parameter,

we instrument a parallel loop transformed for the replicated buffer algorithm using

light-weight timers (∼ 100 clock cycles).

SP, Sparsity, is the ratio of the total number of referenced private elements and

total allocated space on all processors using the replicated buffer algorithm (P ×N).

Intuitively, SP indicates whether replicated buffer is efficient.

30

16K 65K 262K 1M 4M
0

2

4

6

8

Parameter N: data array size

A
ve

ra
ge

 S
pe

ed
up

Fixed Parameters: M=2, O=5.41; #samples=46

RepBuf
RepLink
SelPriv
LocalWr

0.2 2 16 128
0

1

2

3

4

5

6

Parameter CON: connectivity

A
ve

ra
ge

 S
pe

ed
up

Fixed Parameters: M=2, O=5.41; #samples=46

RepBuf
RepLink
SelPriv
LocalWr

2 8
0

1

2

3

4

5

6

7

Parameter MOB: mobility

A
ve

ra
ge

 S
pe

ed
up

Fixed Parameters: N=1048576, C=2; #samples=50

RepBuf
RepLink
SelPriv
LocalWr

0 2.5 5 7.5 10
0

2

4

6

8

OTH: non−reduction time / reduction time

A
ve

ra
ge

 S
pe

ed
up

Fixed Parameters: N=1048576, C=2; #samples=50

RepBuf
RepLink
SelPriv
LocalWr

0.02 0.12 0.23 0.53 0.81
0

1

2

3

4

5

6

Parameter SP: sparsity

A
ve

ra
ge

 S
pe

ed
up

Fixed Parameters: M=2, O=5.41; #samples=46

RepBuf
RepLink
SelPriv
LocalWr

1 2 4 6 256 1K 4K 16K
0

2

4

6

8

Parameter CLUS: # clusters

A
ve

ra
ge

 S
pe

ed
up

Fixed Parameters: M=2, O=5.4; #samples=46

RepBuf
RepLink
SelPriv
LocalWr

Fig. 12. Decoupled effect of parameters (on a HP V-Class, with #processors=8)

CLUS, the Number of Clusters, reflects spatial locality and measures whether

the used private elements in the replicated buffer are scattered or clustered on each

processor. Fig. 11 shows three memory access patterns (space usage pattern) that are

executed by applying replicated buffer algorithm. The patterns can be classified as

clustered, partially-clustered, and scattered. Currently, SP and CLUS are measured

by instrumenting parallel reduction loops using the replicated buffer algorithm, and

the overhead is proportional to the number of used private elements. CLUS measures

the average number of clusters of the used private elements on each processor.

31

16K 65K 262K 1M 4M
0

2

4

6

8

Parameter N: data array size

A
ve

ra
ge

 S
pe

ed
up

Fixed Parameters: M=2, O=2.60; #samples=157

RepBuf
RepLink
SelPriv
LocalWr

0.2 2 16 128
0

2

4

6

8

Parameter CON: connectivity

A
ve

ra
ge

 S
pe

ed
up

Fixed Parameters: M=2, O=2.60; #samples=157

RepBuf
RepLink
SelPriv
LocalWr

2 8
0

2

4

6

8

Parameter MOB: mobility

A
ve

ra
ge

 S
pe

ed
up

Fixed Parameters: N=262144, C=16; #samples=55

RepBuf
RepLink
SelPriv
LocalWr

0 2.5 5 7.5
0

2

4

6

8

OTH: non−reduction time / reduction time

A
ve

ra
ge

 S
pe

ed
up

Fixed Parameters: N=262144, C=16.00; #samples=55

RepBuf
RepLink
SelPriv
LocalWr

0.04 0.23 0.81 1
0

2

4

6

8

Parameter SP: sparsity

A
ve

ra
ge

 S
pe

ed
up

Fixed Parameters: M=2, O=2.45; #samples=87

RepBuf
RepLink
SelPriv
LocalWr

1 2 6 8 64 256 1K 4K 16K
0

2

4

6

8

Parameter CLUS: # clusters

A
ve

ra
ge

 S
pe

ed
up

Fixed Parameters: M=2, O=2.60; #samples=157

RepBuf
RepLink
SelPriv
LocalWr

Fig. 13. Decoupled effect of parameters (on an IBM Regatta p690, with #proces-

sors=16)

2. Decoupled Effects of the Parameters

We investigated the decoupled effects of the parameters on the performance of the

parallel reduction algorithms. Although the decoupling is not realistic, it is useful for

discovering qualitative trends.

In Fig. 12 and Fig. 13, we show the decoupled effect of a single parameter on

the speedups of the parallel reduction algorithms in our library. The experiments

were done on a HP V-Class machine (UMA) and an IBM p690 machine (NUMA).

32

The detailed specifications of the two systems are given in Table V of Chapter V.

The graphs are based on instantiating parallel versions of a parameterized synthetic

reduction loop with factorial combinations on selected parameter values (see details

in Section C.1). The vertical axis corresponds to the average speedups on a set of

samples. The title indicates the fixed parameters and the number of samples on which

the graph is based. In the titles, M is MOB; C is CON; and O is OTH. Table III

summarizes the trends illustrated in Fig. 12 and Fig. 13. The trends for RepLink

are similar to RepBuf and are not listed in the table.

TABLE III

Summary of the decoupled effects

Parameters RepBuf SelPriv LocalWr

N ↗ ↑ ↑

CON ↑ ↗ –

MOB ↑ ↘ ↓

OTH ↑ ↑ ↗

SP ↗ ↓ ↘

CLUS ↗ ↑ –

↑: positive effect; ↓: negative effect;↗: little positive effect;↘: little negative effect;

–: no effect.

The effect of N is straightforward, compared to the sequential reduction loop,

SelPriv and LocalWr have much smaller data sets on each processor and there-

fore their speedups increase with N. CON is inversely correlated with inter-processor

communication; hence, larger CON values indicates better scaling for the data

replication-based algorithms (RepBuf and SelPriv), which have two reduction

loops, one accumulating in private space and one accumulating cross-processor shared

data.

LargeMOB values (indicating a large number of references to index arrays) may

imply poor performance for SelPriv, because accesses to the reduction array must

33

access both the original and the modified index arrays; for LocalWr, large MOB

values often result in high iteration replication. Large values of OTH indicate good

performance for RepBuf and SelPriv because the first private accumulation loop

has a larger iteration body; since LocalWr replicates non-reduction work, it will

not benefit as much.

Low SP is good for SelPriv and also for LocalWr, since it correlates with low

contention and hence low iteration replication. For large CLUS, because SelPriv

compacts the sparsely used data space, this algorithm achieves better speedups than

LocalWr and RepBuf, which work on original (non-compacted) data or in private

spaces conformable to the original data.

C. Adaptive Reduction Selection

In this section we elaborate on the setup and dynamic selection phases of our adaptive

algorithm selection framework (see Chapter II). The setup phase is executed only

once, during machine installation, and generates a map between points in the universe

of all inputs (memory reference patterns characterized with the previously defined

parameters) and their corresponding best suited reduction algorithms. The dynamic

selection phase is executed every time a targeted reduction is encountered. It uses the

map built during the setup phase, a parameter collection mechanism to characterize

the memory references, and an interpolation function (the actual algorithm selector)

to find the best suited algorithm in the library.

We then explain how these methods have to change in order to optimize dynamic

programs, i.e., codes change their characteristics during execution.

34

1. Setup Phase

We now outline the design of the initial map between a set of synthetically generated

parameter values and the corresponding performance ranking of the various paral-

lelization algorithms available in our library. The overall setup phase, is illustrated

in Fig. 14.

Experimental
Speedups

Parameterized
Synthetic

Reduction Loop

Experimental
Parameter

Values

Run−Time Algorithm Selection

Run−Time

Speedups[1..S] = F(Parameters)
MODELS:

A Compact Map

Fig. 14. Setup phase for adaptive selection of reduction algorithms

The domain of values that can be taken by the input parameters is explored by

setting up a factorial experiment [34]. Specifically, we choose several values (typical of

realistic reduction loops) for each parameter and generate a set of experiments from

all combinations of the chosen values. The chosen parameter values for our reduction

experiment are shown in Table IV.

To measure the performance of different reduction patterns, we have created a

synthetic reduction loop. The structure of the loop is shown in Fig 15, with C-like

pseudo-code. The non–reduction work and reductions have been grouped in two loop

nests. Because sometimes the native compiler cannot unroll the inner loop nests in the

same manner for different versions of the loop, we have performed this transformation

35

TABLE IV

Parameter values for the factorial experiment

Parameters Values

N (array size) 16384 65536 262144 1048576 4194304

Connectivity 0.2 2 16 128

Mobility 2 8

Other Work 1 4

Sparsity 0.02 0.2 0.45 0.75 0.99

clusters 1 4 20

with an additional pre–processing step. The dynamic pattern depends strictly on the

index array, which is generated automatically via a randomized process satisfying

the requirement specified by the parameters SP and CLUS. OTH is a dynamically

measured parameter that represents the ratio between the time spent performing

reductions and the rest of the loop.

FOR j = 1 to N*CON

FOR i = 1 to OTH /* non-reductions */

memory read & scalar computation;

FOR i = 1 to MOB /* reductions */

data[index[j][i]] += expr;

Fig. 15. The parameterized synthetic reduction loop

The performance ranking of the parallel reduction algorithms in our library is

accomplished by simply executing them all for each parameter combination (i.e.,

synthetically generated access pattern) and measuring their actual speedups, as shown

in Fig. 14.

The end result is a compact map from parameter values to performance (speedups)

of candidate parallel algorithms. From this map we can now create the prediction

code (the models) that can then be used by an application at run-time. We applied

two methods, general linear regression and decision tree learning. In this disserta-

36

tion, we will describe only the modeling process using general linear regression. For

description and experimental results using decision tree learning method, please refer

to our previous publication [11].

As illustrated in Fig. 14, the generated models are polynomial functions from the

parameter values to the speedups of the parallel algorithms. We follow a standard

“term selection” process that automatically selects polynomial terms from a specified

pool [35]. We have specified a maximum model as F = (lgN + lgC +MOB+OTH +

lgS+lgL+1)3, and a minimal model as F = lgN+lgC+MOB+OTH+lgS+lgL+1.

For brevity, C is CON, S is SP, and L is CLUS. Then, from the minimal model,

relevant terms are randomly selected from the 84 terms of the maximum model.

The samples are first separated into training data and testing data. When adding

a term into the model, the training data are used to least square fit the coefficients

and the fitted model is evaluated using the testing data. If the test error is higher than

that of the model before (including the newly added term), the term will be dropped.

Though this sequential term selection process will not give us the optimal model, it is

fast and the automatically generated models have produced good results when used to

predict relative performance of the parallel algorithms on real reduction loops. Here,

the order of the model, 3, is chosen mainly due to practical reasons, such as generating

less experiment samples with less synthetic experimentation time and avoiding term

explosion. For parameter MOB, we have chosen 2 values for the experiment and

we have excluded the terms containing a non-linear MOB factor from the maximum

model. For both OTH and CLUS, though we specified few values, the ones used in

the map are measured and computed from the generated index array.

The final polynomial models contain about 30 terms. The corresponding C

library routines are generated automatically to evaluate the polynomial F () for each

algorithm at run-time.

37

2. Dynamic Selection Phase

During the dynamic selection phase, to avoid executing the parameter collection and

algorithm selection steps for every time a reduction loop is invoked, we use a form

of memoization, decision reuse, which detects if the inputs to our selector function

have changed. When a new instance of a reduction is encountered and the input

parameters have not changed from the previous execution instance, we directly reuse

the previously selected algorithm, thus saving run-time selection overhead. This is

accomplished with standard compiler technology, i.e., the compiler instruments two

version loops for each parallel algorithm (illustrated in Fig. 16).

During this phase, the pre-generated model evaluation routines are called to

estimate speedups of all the algorithms, rank them, and select the best one. The

evaluation of the polynomial models is fast as each of the final models contains only

about 30 terms.

We utilized a research compiler – Polaris [28] – to identify irregular reduction

loops and generate code that performs run-time adaptive reduction selection. The

compiler is capable of extracting the condensed access descriptors of a loop (similar

to an inspector loop) and, where it is not possible, uses our run-time parallelization

pass [17, 36, 31] to collect data during actual loop execution. The compiler inserts

calls to the run-time library that computes the various parameters we are interested

in.

The compiler also instruments multiple versions of parallel reduction loops that

implements the candidate parallelization algorithms. For each algorithm, two ver-

sions of the loop are instrumented. The code construct for one parallel algorithm is

illustrated in Fig. 16. In the diagram, SCH adapt is the adaptive version, which

carries out reduction operations, traces the access pattern of reductions, and updates

38

Pattern Changed?

SCH = select_algorithm(P)
Compute Parameters: P

End

Begin

Yes

SCH_reuse SCH_adapt

Fig. 16. Adaptive reduction parallelization at run-time

auxiliary data structures whenever necessary. SCH reuse is the reusing version,

which is better optimized (only carrying out useful computations) and is called when

the pattern is not changing.

We used a technique we named Global Schedule Reuse Control to reuse the in-

formation across execution instances of the loop. Instead of proving that addresses

do not change from one instance of the loop to the following one(s), we check, at run-

time, for any potential change of addresses in the global context, e.g., we instrument

checks at all places that update the index array. The checking sites are inserted at

the possible outer–most level of the loop nests by utilizing dominance relations.

3. Selection Reuse for Dynamic Programs

In the previous section we described a systematic process to generate prediction mod-

els that can recommend the best parallel reduction algorithm by collecting a set of

static and dynamic parameters. We mentioned that if the memory characterization

39

parameters do not change we can reuse our decision and thus reduce run-time over-

head. This may be of value if the compiler can automatically prove statically that the

reference pattern does not change. If, however this is not possible, which is often the

case for irregular dynamic codes, we have to perform a selection for each reduction

loop instance. In this section we show how to reduce this overhead by evaluating

a trade-off between the run-time overhead of selection and the benefit of finding a

better algorithm.

To better describe the run-time behavior of a dynamic program, we introduce

the notion of dynamic phase. For a loop containing irregular reductions, a phase is

composed of all the contiguous execution instances for which the pattern does not

change. For instance, assume that the access pattern of the irregular reductions

changes at instance t and the next change of pattern is at instance t
′

; the loop

instances in [t, t
′

− 1] form a dynamic phase. We can therefore group the execution

instances of irregular reduction loops into dynamic phases.

We define the reusability of a phase as the number of dynamic instances of the

reduction loop in that phase. It intuitively gives the number of times a loop can

be considered invariant and thus does not need a new adaptive algorithm selection.

That is, the overhead of selecting a better algorithm at run-time can be amortized

over reusability instantiations.

Dynamic irregular programs can present a number of phases each with their own

reusability. However, it may be that even in the case of a phase change, no new

recommendation (for a better algorithm) can be made. This is because simulations

change their characteristics slowly.

In the following we will describe how we include reusability in the previously

developed models to predict phase-wise performance, and thus obtain a better overall

performance. This model will be employed at run-time to decide when it is worth

40

changing the algorithm.

First, we formulate the phase-wise speedup of a parallel algorithm as

R.Tseq

(R− 1).Tpar + (1 +O).Tpar

Then the best algorithm would be the one that has the smallest value of

R +O

Speedup

In the above formulas, R is reusability, O is the ratio of the set-up phase overhead (in

time) and the parallel execution time of one instance of the parallel loop applying the

considered algorithm, and Speedup is the speedup (relative to sequential execution)

of the considered algorithm excluding the set-up phase overhead. Tpar and Tseq are

the execution times of the parallel and sequential loop, respectively, which are solely

used to derive the latter formula.

Using the same off-line experiment process described in previous sections, we

generate models to compute the O (setup overhead ratio). Together with the pre-

dicted speedup (excluding the setup overhead), we are able to evaluate R+O
Speedup

at

run-time and select the best scheme for a dynamic execution phase.

Here, reusability, the number of times a scheme can be reused, is evaluated using

the known compiler technique “schedule reuse” [24], which can find the last definition

point of the memory addresses (similar to loop invariant hoisting [37]).

The higher the redefinition point in the code’s loop-nest hierarchy, the higher

the reusability. If the redefinition of the addresses used in the reduction loop is

done outside a loop nest containing the reduction loop, then reusability is equal to

the number of times the reduction loop is invoked, i.e., the product of the iteration

counts of the loop nest. If the inner loop bounds cannot be evaluated statically, then

it can be measured at run-time.

41

If the compiler cannot perform the loop invariant hoisting (for various reasons),

we can flag the point where assignments to the addresses are made (i.e., detect

changes). This information can be used dynamically to flag the need for a new

algorithm selection. Furthermore, reusability can be collected dynamically and a sta-

tistical prediction scheme can be employed; initially, we assume that reusability is

high because memory reference patterns change slowly in many physical simulations.

In our experiments we apply the schedule reuse technique as well as the dynamic

flagging of address redefinition events. For the codes that are statically hard to ana-

lyze, we profilie and use statistical prediction (running averages) with very accurate

results.

To further reduce the modeling overhead, instead of applying the default (usually

slow) scheme, RepBuf, we simply instrument parameter collection codes on the

fast parallel algorithms, e.g., SelPriv and LocalWr. This way, we do not have

to switch back to the RepBuf scheme to collect the parameters when the pattern

changes, which reduces the execution time for the loop instances.

D. Summary

In this chapter, we described how we specialized our proposed adaptive algorithm

selection framework for parallelizing irregular reductions.

We identified few high-level, architecture-independent parameters to character-

ize programs’ static structure and dynamic data access patterns, and to discriminate

candidate transformations. We developed a systematic model generation process,

including an off-line synthetic experiment process, to generate performance predic-

tion models that are used to dynamically select the most appropriate optimization

transformations among several functionally equivalent candidates.

42

With parallel reduction algorithms being just one important example, our adap-

tive algorithm selection framework can also be used for various other compiler trans-

formations that cannot be easily analytically modeled.

43

CHAPTER V

EXPERIMENTAL RESULTS OF ADAPTIVE REDUCTION SELECTION

In this chapter, we present experimental results on evaluating the effectiveness of

applying our adaptive algorithm selection framework on adaptive reduction selection.

We first show results using a set of static irregular applications to demonstrate that

our framework can select the best performing algorithm and significantly improve

performance. We then show that our technique can adaptively select the best al-

gorithm for each phase of a dynamic program to achieve performance otherwise not

possible.

Since our goal is to dynamically select the best algorithm, we mainly show the

relative performance of the candidate algorithms, to better clarify the approach.

A. Evaluation of Algorithm Selection Framework

In this section we evaluate our automatically generated performance models. We

show performance data (speedups) for reduction loops from several codes parallelized

using the parallel reduction algorithms in our library and executed with several dif-

ferent inputs on multiple platforms. We compare the actual performance data of the

algorithm selected by our automatically generated prediction models with the other

algorithms.

1. Experimental Setup

We studied two parallel systems: an UMA HP V-Class with 16 processors [38] and

a NUMA IBM Regatta p690 system with 32 processors [39]. The machine config-

urations are briefly described in Table V. In the IBM Regatta p690 system, each

POWER4 chip contains 2 processors and a multi-chip module (MCM), which con-

44

TABLE V

Specifications of experimental parallel systems

HP V2200 IBM Regatta p690

CPU Type PA-8200 POWER 4

CPU Clock 200 MHz 1300 MHz

Data Cache 2 MB 32 KB / 1.48 MB / 32 MB

Physical Memory 4 GB 64 GB

CPUs 16 32 / 4 MCMs

Topology 16 × 16 crossbar buses / token ring

OS HP-UX 11.0 AIX 5

Compiler HP f90, c89 xlf r, xlc r

tains 4 POWER4 chips connected via 4 buses. Each chip sends requests, commands,

and data on its own bus but snoops all buses. However, when interconnecting mul-

tiple MCMs, the intermodule buses act as a ring. The result is that communication

across MCMs is significantly slower than that within a MCM.

Due to the limited size of our input sets and constraints on our available single

user time, we used an 8-processor subsystem of the HP machine and a 16-processor

subsystem of the IBMmachine, which was sufficient for us to exercise the architectural

characteristics of these two systems.

For the results obtained on the HP system, we used the same 7 programs (de-

scribed in Table II) used in Section C.1 of Chapter III and ran all the 22 applica-

tion/input combinations. Due to limitations on our single user time allocation, we

did not obtain results for FMA3D on the IBM system, and so we only show results

on the IBM system for 21 application/input cases.

In Table VI, the parameters of the application/input cases are given. As we

mentioned in Section 1 of Chapter IV, among the parameters, theMOB is statically

available. The N and the CON are treated as input dependent. The OTH, SP

and (CLUS) have to be computed or measured at run-time and they have different

values for the same loop and input case on the two machines.

45

TABLE VI

Actual parameter values

APP Static Parameters Dynamic Parameters
HP, P=8 IBM, P=16

N CON MOB OTH SP CLUS OTH SP CLUS

IRREG 100000 100 2 0.98 1 1 0.98 1 1
500000 50 0.88 0.92 37679 0.88 0.92 37679
1000000 5 1.21 0.71 204295 0.83 0.47 248662
2000000 1 1.20 0.22 344600 1.15 0.12 207438

NBF 1280000 2 2 5.34 0.26 2.12 0.59 0.13 2.06
256000 5 5.60 0.25 2.12 0.97 0.12 2.06
128000 50 5.87 0.25 2.12 0.54 0.12 2.06
25600 200 5.26 0.25 2.12 0.44 0.12 2.06

MOLDYN 49152 71.3 2 4.02 0.50 9.99 2.22 0.36 34
127776 23.3 4.12 0.39 19.93 2.44 0.25 61
210912 7 4.57 0.29 46 2.93 0.24 148
324000 2 5.01 0.29 601 2.13 0.24 73

CHARMM 995328 5.97 2 0.22 0.05 30 0.71 0.04 618
995328 2.99 0.41 0.03 16.60 0.94 0.03 601
1990656 1.49 0.38 0.03 16.60 0.38 0.02 630

SPARK98 21282 1.6 2 0.72 0.11 113 0.72 0.11 113
90507 1.63 0.81 0.10 337 0.81 0.10 337

SPICE 186944 0.040 28 2.99 0.06 960 2.99 0.06 960
98691 0.058 2.64 0.06 571 2.64 0.06 571
89026 0.048 3.25 0.06 111 3.25 0.06 111
33726 0.047 3.20 0.06 71 3.20 0.06 71

FMA3D 524286 0.167 8 0.89 0.13 8972

2. Results of Reduction Algorithm Selection

Fig. 17 presents the results obtained on the HP V-Class system and the IBM Regatta

p690 system. Each group of bars shows the relative performance (normalized to the

best speedup obtained for that group) of the four parallel reduction algorithms for

one program/input case. In most cases, the algorithm rankings resulting from the

automatically generated regression model were consistent with the actual rankings.

Overall, our regression model correctly identified the best algorithm for 18 out of 22

cases on the HP system and 19 out of 21 cases on the IBM system. As the arrows

46

in the graphs show, in all the mis-predicted cases the regression model identified the

algorithm that performs close to the best one. Moreover, in all such cases, there was

little performance difference between the best algorithm and the one that our models

recommended.

Irreg Nbf Moldyn Charmm Spark98 Spice Fma3d

0.5

0.8

1

C
=1

00

C
=5

0

C
=5

C

=1

C
=2

C

=5

C
=5

0

C
=2

00

C
=2

14

C
=7

0

C
=2

1

C
=6

C

=1
8

C

=9

C
=4

.5

N
=2

1k

N
=9

0k

N
=1

80
k

N
=9

9k

N
=9

0k

N
=3

4k

C
=0

.5

Recommended algorithms for the missed cases

Applications and Input Cases

N
or

m
al

iz
ed

 S
pe

ed
up

s

RepBuf
RepLink
SelPriv
LocalWr

Irreg Nbf Moldyn Charmm Spark98 Spice

0.5

0.8

1

C
=

10
0

C
=

50

C
=

5

C
=

1

C
=

2

C
=

5

C
=

50

C
=

20
0

C
=

21
4

C
=

70

C
=

21

C
=

6

C
=

18

C
=

9

C
=

4.
5

N
=

21
k

N
=

90
k

N
=

18
0k

N
=

99
k

N
=

90
k

N
=

34
k

Recommended algorithms for the missed cases

Applications and Input Cases

N
or

m
al

iz
ed

 S
pe

ed
up

s

RepBuf
RepLink
SelPriv
LocalWr

Fig. 17. Relative performance of parallel reduction algorithms (obtained on an 8

processors HP V-Class subsystem and a 16 processors IBM Regatta p690 subsystem)

To give a quantitative measure of the performance improvement obtained using

the algorithms recommended by our models, we compute the relative speedup which

we define as the ratio between the speedup of the algorithm chosen by an alternative

47

selection method and the speedup of the algorithm recommended by our model. We

compared the effectiveness of our prediction models against the following alternative

selection methods:

• The Best is a “perfect predictive model,” or an “oracle,” that always selects

the best algorithm for a given loop–input case.

• RepBuf always applies replicated buffer, which is the simplest algorithm and

it is specified as default by OpenMP standard [33].

• Random randomly selects a parallel algorithm. The speedup obtained is the

average speedup of all the candidate parallel algorithms for that case.

• Default always applies the default parallel algorithm for a given platform.

Based on our experimental results, we chose SelPriv and LocalWr as the

default algorithms for the HP and IBM systems, respectively.

HP V−Class, P=8 IBM Regatta, P=16

0.5

0.6

0.7

0.8

0.9

1

Machines and # Processors

A
ve

ra
ge

 R
el

at
iv

e−
S

pe
ed

up
s

RepBuf
Random
Default
Best

Fig. 18. Average relative-speedups

Fig. 18 gives the average relative speedups — normalized (to the speedups ob-

tained when applying the algorithms recommended by our models) speedup across

48

all the loop-input cases. In the graph, the smaller the relative speedup value, the bet-

ter the relative effectiveness of our prediction models. Here, the comparisons show

that our automatically generated prediction models work almost as well as the “per-

fect predictive models,” obtaining more than 98% of the best possible performance.

Comparing to other “non-perfect” selection methods, our prediction models can im-

prove the performance of irregular reductions significantly. Specifically, the average

performance obtained using our prediction model is 60% better than using replicated

buffer, which is the default parallel reduction implementation specified by OpenMP

standard [33].

As mentioned in Fig. 16, our instrumentation introduces extra computation in the

RepBuf algorithm to measure the parameters, OTH, SP and CLUS. We measured

the run-time overhead (normalized to the RepBuf execution time) of collecting these

parameters. While the overhead of measuring OTH has been reduced to a negligible

level using a light-weight timer (≈ 100 clock cycles) and only measuring 0.2% of all

iterations, the overhead of computing SP and CLUS is proportional to the size of

the reduction data array because we instrument the cross-processor reduction phase.

Across all cases, the average overheads on the HP and IBM systems are 11.95% and

11.65%, which can be largely amortized since this overhead is only incurred on loop

instances where the reduction pattern changes.

Finally, we note that knowledge of the dynamically collected parameters (N,

CON, OTH, SP and CLUS) is very important for our models. From Fig. 17,

the best schemes for different inputs change and our technique predicts the best

schemes correctly by collecting and utilizing the dynamically collected parameters

(especially for the bars corresponding to the results for IRREG and CHARMM on

the HP system).

49

3. Validation for Regular Reductions

To test the robustness and generality of our prediction models, we applied them to

two regular reduction loops: loop loops do400 in SU2COR from the SPEC’92 suite,

and loop actfor do500 in BDNA from the PERFECT suite. For regular reduction

loops, the size of the reduction data (usually a vector) is relatively small and all ele-

ments of the vector are accessed in every loop iteration. Either selectively replicating

the vector data or partitioning the vector will not help performance (reducing cross–

processor communications). The experimental results indicate that replicated buffer

is always the best algorithm and that our prediction models give the correct recom-

mendations. Hence, our adaptive reduction selection technique is generally applicable

to all reductions.

B. Experimental Results on Dynamic Programs

In this section, we present experimental results showing that our adaptive algorithm

selection technique can select the best parallelization scheme dynamically and thereby

improve the overall performance of adaptive irregular programs. In this section,

DynaSel represents applying algorithm selection dynamically for every computation-

phase (described in Section 3).

1. 2D Adaptive Mesh Refinement

AmrRed2D is a synthetic program written by us. It is inspired by modern Computa-

tion Fluid Dynamics and Structural Simulation applications which use Adaptive Mesh

Refinement (AMR) [40, 41]. Fig. 19 gives the high-level description of the program.

AmrRed2D implements an irregular reduction on the nodes of an unstructured 2D

triangular mesh and it does not conduct any “useful” computation, e.g., it does not

50

solve any equations to simulate physics. Our purpose here is to simulate the effect of

the adaptive mesh refinement on irregular reductions.

0 Initialize 2D triangular mesh

FOR (each time step: T) DO

IF (T mod F = 0) THEN

1 Refine and coarsen parts of the mesh

2 FOR (each node: A) do

FOR (each neighbor node: B) DO

2.1 Compute interactions of A & B.

2.2 Update data associated to A & B.

Fig. 19. High level description of AmrRed2D

We number the nodes in lexicographic order based on their spatial (x, y) coor-

dinates. After every step of refinement and coarsening of the mesh, the nodes are

re-numbered. Each mesh adaptation (refinement and coarsening) indicates the start

of a new dynamic computation phase. In terms of data distribution, we distribute

the nodes in a blocked manner (each processor hosts a block of nodes with contiguous

node IDs). This way, the characteristics of the reductions change across adaptation

phases; in particular, the inter-processor communication pattern of the reductions

might change. For instance, suppose one node and its neighbor are distributed on

two contiguous processors. After one or more steps of the refinement, the node and

its neighbor may end up being distributed on processors further apart.

For AmrRed2D, we experimented with two inputs with different initial mesh sizes

(50x50 and 300x300 nodes, respectively) and different refinement rates (specifying a

fraction of mesh to refine) on the 8-processor subsystem of our HP V-class machine

(see Table V). The first input, with an initial mesh having 50x50 nodes, executes the

reduction loop 600 times and each phase contains 20 instances. The second input,

with an initial mesh having 300x300 nodes, executes the reduction loop 300 times and

51

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 5 10 15 20 25 30

A
ve

ra
ge

 E
xe

cu
tio

n
Ti

m
e

Adaptation Phases (20 steps in each phase)

Phase-Wise Execution Time (start mesh 50x50)

DynaSel
SelPriv

LocalWr

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 100 200 300 400 500 600

E
xe

cu
tio

n
Ti

m
e

Time Steps

Step-Wise Execution Time (start mesh 50x50)

DynaSel
SelPriv

LocalWr

Fig. 20. Phase-wise and step-wise effects of dynamically selecting algorithms Am-

rRed2D with initial mesh sizes 50x50

each phase contains 15 instances. Together with the inputs, the program continuously

refines the lower left part of the mesh within a decreased domain area and coarsens

the rest of the mesh. When the number of the nodes of the entire mesh hits an upper

limit, the program coarsens the entire mesh several times and starts refining again.

Fig. 20 and 21 show the step-wise and phase-wise execution times when ap-

plying different algorithms (with DynaSel as an “algorithm”). The graphs titled

“step-wise execution time” report the execution time in seconds for each execution

52

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0 2 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 E
xe

cu
tio

n
Ti

m
e

Adaptation Phases (15 steps in each phase)

Phase-Wise Execution Time (start mesh 300x300)

DynaSel
SelPriv

LocalWr

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250 300

E
xe

cu
tio

n
Ti

m
e

Time Steps

Step-Wise Execution Time (start mesh 300x300)

DynaSel
SelPriv

LocalWr

Fig. 21. Phase-wise and step-wise effects of dynamically selecting algorithms Am-

rRed2D with initial mesh sizes 300x300

instance (corresponding to time step) of the parallel reduction loop. The graphs titled

“phase-wise execution time” report the average execution time in seconds for each

execution phase of the parallel reduction loop. Since RepBuf performed very poorly

for AmrRed2D, we choose not to include its execution time in the graph in order to

to show the effect of DynaSel more clearly. The main trend of the change of the

step-wise/phase-wise execution time is due to the change of the mesh size (measured

as the number of nodes of the adaptive mesh). There are a couple of observations

53

from these graphs. First, the best parallel algorithms change dynamically during ex-

ecution. Second, for most dynamic phases, DynaSel makes the right decision and

applies the appropriate transformation algorithms. That is, DynaSel capitalizes on

the opportunity for run-time optimization.

50x50 300x300

0.9

1
1.05

Input Mesh Size

R
el

at
iv

e
S

pe
ed

up

Relative Reduction Speedups (AmrRed2D)

SelPriv
LocalWr
DynaSel

Fig. 22. Relative speedups of adaptively selecting algorithms on AmrRed2D

Fig. 22 gives the relative speedups of the reduction loop across all steps for dif-

ferent parallel reduction algorithms. The speedups are normalized to the best results

obtained by applying one algorithm to clarify the improvement. The conclusions here

are that using our adaptive technique to select and apply the best parallel reduction

algorithm for every dynamic phase has little overhead and that it out-performs any

other single algorithm and improves overall performance by ∼ 5%.

2. Molecular Dynamics

Classical molecular dynamics (MD) is a widely used computation tool for simulating

the properties of liquids, solids, and molecules. The atoms or molecules in the system

are treated as point masses and Newton’s equations are integrated to compute their

motion.

54

MOLDYN is a synthetic benchmark, conducting non-bonded force calculations

in a molecular dynamics simulation. It has been widely used for the purpose of

evaluating systematic optimization transformations [20, 26, 42].

Initialize the coordinates of particles.

FOR (N time steps) DO

1 Move particles based on their forces and velocities.

2 IF (N mod K = 0) THEN

Build a neighbor list for each particle (with a

specified radius).

3 FOR (each node: A) DO

FOR (each neighbor: B) DO

Compute the interaction of A and B and update

the forces of A and B.

4 Update the velocities of the particles.

Fig. 23. A high level description of MOLDYN

TABLE VII

Specifications of dynamic inputs of MOLDYN

ID #molecules cut-off radius avg. CON #steps #phases

1 23328 4.0 157 60 23

2 186624 2.5 37.6 60 23

3 100800 2.0 21.8 60 21

4 186624 1.5 6.6 60 21

5 186624 1.2 5.4 60 21

A high-level description of MOLDYN is given in Fig. 23. In this original im-

plementation, Step 2 is an Θ(N 2) operation that iterates through all the pairs of

particles to build a neighbor list for each particle, and Step 3 is in quasi-linear time

and performs the real computations. However, for most molecular dynamics applica-

tions, the non-bonded forces between particles are limited to a range, usually called

the cut-off radius, and there is no need to iterate through every pair of particles to

evaluate their interactions. We replaced the previous implementation of Step 2 with

55

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25

Ex
ec

ut
io

n
Ti

m
e

Adaptation Phases

Phase-Wise Execution Time (N=23328)

DynaSel
LocalWr
RepBuf
SelPriv

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60

Ex
ec

ut
io

n
Ti

m
e

Time Steps

Step-Wise Execution Time (N=23328)

DynaSel
LocalWr
RepBuf
SelPriv

Fig. 24. Phase-wise and step-wise effects of dynamically selecting algorithms MOL-

DYN (inputs #1)

an algorithm using a link-cell data structure to generate the neighbor lists [1]. Here,

space is tiled with 3D cubes with sides slightly greater than the cut-off radius, and the

atoms are placed in the cube containing their centers. This way, the neighbor list for

a particle can be found by checking only the particles residing in neighboring boxes.

With this modification, the execution time of Step 2 is significantly reduced so that it

is comparable to the time required for Step 3 for a simulated system with a realistic

number of particles. Since step 3 is executed more times than Step 2, the execution

time of the modified MOLDYN is now truly dominated by the force computation,

56

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20

Ex
ec

ut
io

n
Ti

m
e

Adaptation Phases

Phase-Wise Execution Time (N=186624-6)

DynaSel
LocalWr
RepBuf
SelPriv

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0 10 20 30 40 50 60

Ex
ec

ut
io

n
Ti

m
e

Time Steps

Step-Wise Execution Time (N=186624-6)

DynaSel
LocalWr
RepBuf
SelPriv

Fig. 25. Phase-wise and step-wise effects of dynamically selecting algorithms MOL-

DYN (input #4)

which is the irregular reduction we would like to optimize.

For MOLDYN, since we have not observed much performance change across

dynamic phases for parallel algorithms, we artificially set the reusability (the number

of steps) for each dynamic phase so that the phase-wise best algorithms can change

due to the different setup overheads of the algorithms. This way, we can examine both

the effectiveness of the prediction models and the efficiency of selecting and switching

algorithms. We experiment with 5 different inputs on the 8-processor subsystem of

our HP V-class machine (see Table V). The input specifications are given in Table VII.

57

Note that different phases may have different numbers of time steps. In this program,

since the CON parameter changes from phase to phase, the connectivity column

is the average value across phases.

23328 55296 108000 186624 186624

0.5

0.75

0.9

1
1.05

1.1

Input Data Size

R
el

at
iv

e
S

pe
ed

up
Relative Reduction Speedups (Moldyn)

RepBuf
SelPriv
LocalWr
DynaSel

Fig. 26. Relative speedups of adaptively selecting algorithms on MOLDYN

Due to space limitations, we show the step-wise and phase-wise execution time

of DynaSel and the best two individual algorithms (RepBuf and SelPriv) in

Fig. 24 and 25 for two inputs (#1 and #4). We note that since the number of

steps of the phases may change, therefore in the phase-wise plots, we plotted the

accumulated time of each phase instead of the average time. Again, the results show

that DynaSel out-performs applying any one algorithm for most cases.

3. PP2D in FEATFLOW

We have applied our adaptive technique to a real program, PP2D in FEATFLOW

package. FEATFLOW is a general purpose subroutine system (in F77) for the numer-

ical solution of the incompressible Navier-Stokes equations in 2D and 3D. The soft-

ware package is comprehensive. It contains preprocessing, solver and post-processing

parts. The solution part contains the solver package purely time dependent (projec-

58

tion schemes) and solving stationary and non-stationary problems in a fully coupled

way. For detailed information of FEATFLOW, please refer to [43].

Particularly, PP2D solves nonlinear coupled equations using multi-grid solvers

and has about 17,000 lines of code (excluding codes of the underneath libraries).

In program PP2D, for the given input-data, we have found a relatively heavy

loop in subroutine GUPWD containing irregular reductions (about 11% of the whole

program). GUPWD updates a sparse matrix with old velocity values associated to

grid nodes. The memory access pattern of the irregular reduction is fully determined

by the indirection data structures describing the sparse matrix.

The program uses multi-grid method to solve linear systems for each time step.

The multi-level grids are predefined (specified in input data) and the sparse matrix

structures associated to different grids are defined in an initialization step outside the

time-step loop. For the input we have, 4 grids are used (the program specifies maximal

number of grid levels as 9). For the reduction loop, the four different sparse-matrix

data structures of the grids are used in an interleaved manner in GUPWD.

Therefore, our adaptive algorithm selection technique can be applied for each grid

level via “schedule reuse.” Specifically, the augmented code selects the best reduction

algorithm for each grid right before the first invocation of the reduction loop for the

grid and the decision is reused for the later invocations for the same grid. As a result,

we can treat the dyanmic invocations of the loop for each grid as an input-dependent

case and only 4 algorithm selections are needed.

Due to the complexity of the program (50k lines of codes for the compilation of

PP2D) and the limitation of our research compiler infrastructure, Polaris, we have

instrumented part of the code by hand.

For PP2D, we have experimented with one input (comp) that is distributed to-

gether with the source code for benchmarking purpose. For this input, the program

59

TABLE VIII

Specifications of grid levels of the input for PP2D

Level #unknowns #nodes #elements #instances

2 12930 1890 920 86

3 52620 7460 3680 86

4 206280 29640 14720 86

5 824720 118160 58880 166

works on 4 grids, with minimal and maximal grid level specified as 2 and 5, respec-

tively. The detailed specifications (in the interests of adaptive reduction selection) of

the 4 grids are given in Table VIII.

Total Lev=5 Lev=4 Lev=3 Lev=2

0.1
0.2

0.5
0.6
0.7

1
1.1
1.2

1.8

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Normalized Execution Time (to DynaSel), HP V−Class, P=8

LocalWr
RepBuf
SelPriv
DynaSel

Fig. 27. Relative performance of adaptive algorithm selection for PP2D, on a HP

V-Class

Fig. 27 gives the relative execution time of the GUPWD loop obtained on our

HP V-Class system (see Table V). The legends RepBuf, LocalWr and SelPriv

are results obtained by apply the specified algorithms for all 4 levels. The legends

DynaSel corresponds to apply our adaptive algorithm selection framework to select

and apply algorithms for different grid levels. All the execution time are normalized

to the execution time of the GUPWD loop applying DynaSel. In the graph, we

60

Total Lev=5 Lev=4 Lev=3 Lev=2

0.1
0.2

0.5
0.6
0.7

1
1.1
1.2

1.8

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Normalized Execution Time (to DynaSel), IBM Regatta, P=16

RepBuf
SelPriv
DynaSel
LocalWr

Fig. 28. Relative performance of adaptive algorithm selection for PP2D, on an IBM

Regatta p690

also show the relative time for the 4 grid levels. These times are normalized to the

corresponding execution time of the GUPWD loop applying DynaSel. On this HP

system, although our DynaSel has selected the best algorithm (SelPriv for all the

grid levels), it did not improve the overall performance of the loop. Nevertheless,

this experiment shows that our DynaSel introduced negligible overhead (because

the dynamic algorithm selection code is only called once for each grid). Note that

for level 3, the graph shows that SelPriv is about 5% faster than DynaSel. This

is because the actual execution time of one loop instance for the coarse grid levels

(e.g., level 2 and level 3) is fairly short (0.0025sec for level 2 and 0.01sec for level 3),

which are close to the parallel loop forking overhead of the system [44]. We expect

that larger inputs would have more stabler results.

Fig. 28 gives the relative execution time of the same loop obtained on the 16-

processor subsystem of the IBM Regatta p690 (see Table V). The relative time for all

the grid levels indicate that the performance of DynaSel for each grid level align to

the actual best algorithm for the grid level (due to correctly selection between Sel-

61

Priv and LocalWr) . This way, DynaSel obtains the overall best performance,

which is shown via the group of bars marked as “Total” in the graph.

At this point, we want to note that for all dynamic applications we have exper-

imented, AmrRed2D, MOLDYN and PP2D, though the performance improvement

using our adaptive algorithm selection framework is limited (upto 8%), the results

demonstrate the success of our technique on capitalizing the opportunity for run-time

optimization. The performance improvement is otherwise not possible.

C. Summary

In this chapter, we have illustrated the effectiveness of our adaptive reduction selection

technique (an important application of our adaptive algorithm selection framework

on parallelizing irregular reductions).

Our experiments on the IBM Regatta and HP V-Class systems show that our

framework: (a) selects the best performing algorithms in 85% of the cases studied;

(b) for the best possible algorithms were not selected all the time, the overall perfor-

mance was still within 2% of the optimal scheme’s performance; (c) achieves better

performance by adaptively selecting the best algorithm for each phase of a dynamic

program; and (d) adapts to the underlying machine architecture.

In short, through our experiments, we have demonstrated that the presented

adaptive algorithm selection framework can model programs’ irregular and dynamic

behavior extremely well and can customize solutions every time we need to. The

end result of using this framework is that much better sustainble performance can be

achieved.

62

CHAPTER VI

ADAPTIVE RUN-TIME PARALLELIZATION FOR LOOPS WITH SPARSE

MEMORY ACCESSES

A. Introduction

Current parallelizing compilers cannot identify a significant fraction of parallelizable

loops because they have complex, or statically insufficiently defined access patterns.

As parallelizable loops arise frequently in practice, Rauchwerger and Padua have

introduced a general speculative parallelization framework for their identification.

In [17], they have shown that employing run-time techniques that trace “relevant”

memory references and decide whether a loop is parallel or not is a viable method to

improve the results of classic, static automatic parallelization.

While previous work on speculative parallelization [36] has shown that this

method is inherently scalable, its practical success depends on the fraction of ideal

speedup that can be obtained on modest to moderately large parallel machines. Max-

imum parallelism can be obtained only through a minimization of the run-time over-

head of the method, which in turn depends on its level of integration within a classic

restructuring compiler and on its adaptation to characteristics of the parallelized

application.

In this chapter we present a set of compiler and run-time techniques designed

specifically for optimizing the run-time parallelization of loops with irregular and

sparse memory access patterns. We show how we minimize the run-time overhead

associated with the speculative parallelization of sparse applications by using static

control- and data-flow information to reduce the number of memory references that

have to be collected at run-time. We then present heuristics to speculate on the

63

reference type and data structures used by the program and thus reduce the memory

requirements needed for tracing the sparse access patterns. Experimental results

conclude the chapter. All static and dynamic techniques introduced here represent a

sparse implementation of the LRPD test [17].

B. Foundational Work - the LRPD Test for Dense Problems

To detect and exploit loop level parallelism in various cases encountered in irregular

applications, a number of techniques [45, 46, 47, 48, 17] have been developed. Several

representative techniques are: (i) a speculative method to detect fully parallel loops

(the LRPD test [17]); (ii) an inspector/executor technique [45] to compute wavefronts

(sequences of mutually independent sets of iterations that can be executed in parallel);

and (iii) a technique for parallelizing WHILE loops (DO loops with an unknown number

of iterations and/or containing linked list traversals) [48]. In this chapter we refer

mostly to the LRPD test and how it is used to detect fully parallel loops. To make this

dissertation self-contained we briefly describe a simplified version of the speculative

LRPD test. A detailed description can be found in [46, 17].

1. the LRPD Test

The LRPD test speculatively executes a loop in parallel and subsequently tests

whether any data dependence could have occurred. If the test fails, the loop is

re-executed in a safe manner, e.g., sequentially. To qualify more parallel loops, ar-

ray privatization and reduction parallelization can be speculatively applied and their

validity tested after loop termination.1 For brevity the details related to reduction

1Privatization creates, for each processor cooperating on the execution of the loop,
private copies of the program variables. A shared variable is privatizable if it is always
written in an iteration before it is read, e.g., many temporary variables [49, 50, 51].

64

recognition and parallelization are not given here; it is tested in a similar manner as

independence and privatization. The LRPD test is fully parallel and requires time

O(a/p + log p), where p is the number of processors, and a is the total number of

accesses made to the array under data dependence test in the loop.

Consider a DO loop for which the compiler cannot statically determine the access

pattern of a shared array A (Fig. 29(a)). The LRPD test allocates shadow array Aw

for marking the write accesses, Ar for the read accesses, and an array Anp, for flagging

non-privatizable elements. The loop is augmented with code (Fig. 29(b)) that marks,

during speculative execution, the shadow arrays every time A is referenced (based

on specific rules). The result of the marking can be seen in Fig. 29(c). For the first

time, an element of A is written in an iteration and the corresponding element in the

write shadow array Aw is marked. If, during any iteration, an element of A is read,

but never written, then the corresponding element in the read shadow array Ar is

marked. Another shadow array Anp is used to flag the elements of A that cannot be

privatized. An element of Anp is marked if the corresponding element of A is both read

and written, and is read first in any iteration.

After the speculative parallel execution, a post-execution analysis, illustrated in

Fig. 29(c), determines whether there were any cross-iteration dependencies between

statements referencing A as follows. If any(Aw(:)∧Ar(:))
2 is true, then there is at least

one flow- or anti-dependence that was not removed by privatizing A (some element

is read and written in different iterations). If any(Anp(:)) is true, then A is not pri-

vatizable (some element is read before being written in an iteration). If Atw, the

total number of writes marked during the parallel execution, is not equal to Atm, the

total number of marked elements (computed after the parallel execution), then there

2any returns the “OR” of its vector operand’s elements , i.e., any(v(1 : n)) =
(v(1) ∨ v(2) ∨ . . . ∨ v(n)).

65

is output dependence (existing elements written concurrently in different iterations).

However, if A is privatizable (i.e., if any(Anp(:)) is false), then these dependencies are

removed by privatizing A.

Fig. 29. An example of LRPD test on a DO loop. (a) sequential loop; (b) trans-

formed for speculative execution, the markwrite and markread operations update the

appropriate shadow arrays; (c) shadow arrays after loop execution. In this example,

the test fails

2. Overhead of the LRPD Test for Dense Access Patterns

The overhead spent performing the LRPD test, tracing the accesses to A and verifying

the validity of the parallel execution, scales well with the number of processors and

data set size of the parallelized loop. For dense access patterns the best choice for the

shadow structures are shadow arrays conformable to the arrays under test because

they provide fast random access to its elements and can be readily analyzed in parallel

during the post-execution analysis phase. The efficiency of the algorithm is high

because (almost) all allocated shadow elements are used. We can break down the

extra time spent on speculatively parallelizing a loop with the LRPD test into the

following components:

1. The initialization of shadow structures - takes time proportional to the size of

the shadow structures (arrays).

66

2. Checkpointing the state of the program before entering speculation takes time

proportional to the number of distinct shared data elements that may be modi-

fied by the loop. The work involved is approximately equal to saving all modified

shared arrays and is thus highly program dependent.

3. The overhead associated with the speculative execution of the loop is equal to

the time spent marking (recording) the references to the arrays under test, i.e.,

proportional with the dynamic count of the references to the arrays.

4. The final analysis of the marked shadow structures is, in the worst case, propor-

tional to the number of distinct memory references marked on each processor

and to the (logarithm of the) number of processors. For dense access patterns,

this phase is equivalent to a parallel merge of p shadow arrays (p is the number

of processors).

5. In case the speculation fails, the safe re-execution of the loop may cost as much

as the restoration of the saved (via checkpointing) variables and a sequential

re-execution of the original loop.

Each of these steps (except the sequential re-execution) is fully parallel and scales

with the number of processors. An important measure of performance of run-time

parallelization is its relative efficiency. We define this efficiency as the ratio between

the speedup obtained through the automatic run-time parallelization techniques and

the speedup obtained through hand-parallelization. In case hand-parallelization is not

possible due to the dynamic nature of the code, then an ideal speedup is used. Another

measure of performance is potential slowdown, i.e., the ratio between sequential, un-

parallelized execution time and the time it takes to speculate, fail, and re-execute.

Our goal is to simultaneously maximize these two measures (equal to 1) and thus

67

obtain an optimized application with good performance.

While we do not consider increasing efficiency and reducing potential slowdown

as being orthogonal, in this chapter we focus on presenting avenues to improve relative

efficiency, i.e., how to increase speedups obtained for successful speculation.

3. Some Specific Problems in Parallelization of Sparse Codes

The run-time overhead associated with loops exhibiting a sparse memory access pat-

tern has the same break-down as the one described in the previous section. The

scalability and relative efficiency of the technique is, for practical purposes, jeopar-

dized if we use the same implementation as the one used for dense problems.

The essential difficulty in sparse codes is that the size of the arrays under test

may be orders of magnitude larger than the number of distinct elements referenced by

the parallelized loop. Therefore, the use of shadow arrays can become prohibitively

expensive. In addition to allocating much more memory than necessary (and cause

all the known problems), the work of the initialization, analysis and checkpointing

phases would not scale with data size and/or number of processors. We would have

to traverse more elements than have been actually referenced by the loop and thus

drastically reduce the relative efficiency of our general technique.

For these reasons we conclude that sparse codes need compacted shadow struc-

tures. However, such data structures (e.g., hash tables, linked lists, etc) do not have,

in general, the desirable random, fast access time of arrays. This in turn increases the

overhead represented by the actual marking (tracing) of references under test during

the execution of the speculatively parallelized loop.

Another important optimization specific to sparse codes is the parallelization

of reductions. This is a quite common operation in scientific codes and also has to

be specialized for cases of sparse codes. Since we have presented such techniques

68

in previous chapters of this dissertation, they will not constitute the focus of this

chapter.

Sparse codes rely almost exclusively on indirect, often multi–level addressing.

Furthermore, such loops may traverse linked lists (implemented with arrays) and use

equivalenced offset arrays to build C-like structures. These characteristics, as we

will show later, result in a statically un-analyzable situation in which even the most

standard transformations like loop distribution and constant propagation, cannot

be performed (all statements end up in one strongly connected component). It is

therefore clear that different, more aggressive techniques are needed. We will further

show that a possible solution to these problems is the use of compiler heuristics to

speculate on the type of the data structures used by the original code, which can be

verified at run-time.

A representative and complex example can be found in subroutine BJT of SPICE

2G6 [52], a well known and widely used circuit simulation code. The unstructured loop

(implemented with GOTO statements) traverses a linked list and evaluates the model

of a transistor. It then updates the global circuit matrix (via sparse and irregular

reductions). All shared memory references are to arrays that are equivalenced to the

same name (value) and use several levels of indirection. Because almost all references

may be aliased, no classic compiler analysis can be directly applied.

4. Overhead Minimization

Our simple performance model of the LRPD test gives us the general directions for

performance improvement. To reduce slowdown we need to improve the probability

of successful parallelization and reduce the time it takes to fail a speculation. The

techniques handling this problem are important but will not be detailed here. Instead,

we will now present several methods to reduce the run-time overhead associated with

69

run-time parallelization. First we present, in Section C), a generally applicable tech-

nique that uses compile-time (static) information to reduce the number of references

that need to be traced (marked) during speculative execution. Then in Section D

we will present a method for sparse codes that speculates about the data structures

and reference patterns of the original loop and customizes the shape and size of the

shadow structures.

C. Redundant Marking Elimination

1. Same Subscript and Access Type Based Aggregation

While in previous implementations of the LRPD test we traced every reference to the

arrays under test we find that such an approach incorporates significant redundancy.

We only need to detect attributes of the reference pattern that will insure correct

parallelization of loops. For this purpose, we classify memory references, similar to

[53], as: (1) read only (RO), (2) write-rirst (WF), (3) read-first-write (RW), and (4)

not referenced (NO). Here, NO or RO references can never introduce data dependence;

WF references can always be privatized; and RW accesses must occur in only one

iteration (or processor), otherwise they will potentially cause flow-dependences and

invalidate the speculative parallelization. The overall goal of the algorithm is to mark

only the necessary and sufficient sites to unambiguously establish the type of reference,

WF, RO, RW, or NO by using the dominance (on the control graph) relationship.

Based on the control flow graph of the loop, we can aggregate the markings of read

and/or write references (to the same address) into one of the categories listed above

and replace them with a single marking instruction. The intuitive and elementary

rule for combining Reads and Writes to the same address is shown in Fig. 30.

The algorithm relies on a depth first traversal of the control dependence graph

70

A B C D

RO(NO)

RO(NO) WF(NO) WF(NO) RW(NO) RW(NO) WF(NO) RW(NO)

WF(NO) RW(NO) RW(NO) ANY(NO)

E F G H

NO(RO) NO(WF) NO(RW) RW,WF

ANY(NO)WF(NO)RO(NO)

NO

RO RO(RW) RO(RW)RO(RW)

Fig. 30. Simple aggregation situations. Notes: the currently visited node is the

root of an elementary CDG. XX represents the reference type before an aggregation

and (YY) represents the type after an aggregation. For example, in (D), if the root is

RW or WF, then it remains that way and the previous marks of the children, if any,

are removed.

(CDG) [15] and the recursive combination of the elementary constructs shown in

Fig. 30. First all Read and Write references are initialized to RO and WF respectively.

Then, at every step of the CDG traversal we attempt to aggregate the siblings with the

parent of the subgraph, remove the original marks and update the one at the root of

the subgraph (or add a new one when applicable). When the marks of siblings cannot

be directly replaced with the mark of the parent (because they are not of the same

type), then references (marks) and their predicates are combined via logical union

and passed to the next level. The final output of the algorithm is a loop with fewer

marks than the number of memory references under test. Simplification of boolean

expressions will further reduce the marking sites. The effectiveness of this method is

program dependent and thus does not always lead to significant improvement (less

marks).

It is important to remark that if predicates of references are loop invariant,

71

then the access pattern can be completely analyzed before the loop execution in

an inspector phase. This inspector is equivalent to a LRPD test (or simpler run-

time check) of a generalized address descriptor. Such address descriptors have been

implemented in a more restricted form (for structured control-flow graphs) [54].

2. Grouping of Related References

We say that two memory addresses are related if they can be expressed as a function

of the same base-pointer. For example, when subscripts are of the form ptr + affine-

function, then all addresses starting at the point ptr are related. Here, both the

ptr and the affine-function are specified based on their relation to the indices of

the loop nest under test. The ptr is the sub-expression of a subscript that can not

be represented as a linear function of the loop indices, where the affine-function is

otherwise. For example, in SPICE, we find many indices to be of the form ptr +

const, where const takes values from 1 to 50. In fact they are constructed through

offsets of EQUIVALENCE declarations for the purpose of building C-like structures. The

ptr takes a different value at every iteration. Intuitively, two related references of the

same type can be aggregated for the purpose of marking if they are executed under

the same control flow conditions, or more aggressively, if the predicates guarding two

references have “logical imply” relation between them.

Formally, we define a marking group as a set of subscript expressions of references

to an array under a run-time test that satisfies the following conditions: (1) the

addresses are derived from the same base-pointer; (2) for every path from the entry

of the considered block to its exit, all related array references are of the same type,

i.e., they have the same attribute from the list WF, RO, RW, and NO. The grouping

algorithm (outlined in Fig. 31 and further explained in the following section) tries

to find a minimum number of disjoint sets of references of maximum cardinality

72

extract_grp (N, Bcond)

Input: CdgNode N

Predicate Bcond

Output: Grouping localGrp

S1 localGrp = compute_local_grp(N, Bcond)

IF (N leads branch nodes) then

FOR (each branch node B leaded from N) DO

Grouping branchGrp

Predicate new_Bcond =

Bcond AND (Predicate of branch B)

FOR (each cdg node N1 rooted in B) DO

subGrp = extract_grp(N1, new_Bcond)

S2 branchGrp = grp_union(branchGrp, subGrp)

S3 localGrp = grp_intersect(localGrp, branchGrp)

return localGrp

Fig. 31. Recursive grouping algorithm

(subscript expressions) to the array under test. Once these groups are found, they

can be marked as a single abstract reference. The net result is: (a) a reduced number

of marking instructions (because we mark several individual references at once) and

(b) a reduced size (dimension) of the shadow structure that needs to be allocated

because we map several distinct references into a single marking point. Fig. 32 gives

an example showing the instrumented markings after applying the grouping algorithm.

In the example, assume predicate A is loop variant so that the compiler could not hoist

the marking codes out of the loop.

3. Outline of the Grouping Algorithm

This section gives more details of the grouping algorithm that we have mentioned in

the previous section.

73

Before marking

S0 DO i = 1,N

S1 IF (A) THEN

S2 A(B(i)+1) = ...

S3 A(B(i)+2) = ...

S4 A(B(i)+3) = ...

ELSE

S5 .. = A(B(i)+2)

S6 .. = A(B(i)+3)

S7 .. = A(B(i)+4)

ENDIF

S8 IF (A) THEN

S9 A(B(i)+5) = ...

S10 A(B(i)+6) = ...

ENDIF

ENDDO

Groups:

grp1: {B(i)+i | i=1,5,6}

grp2: {B(i)+i | i=2,3}

grp3: {B(i)+i | i=4}

After grouping and marking

S0 DO i = 1,N

S1 IF (A) THEN

MARK_WRITE(grp1)

S2 A(B(i)+1) = ...

MARK_WRITE(grp2)

S3 A(B(i)+2) = ...

S4 A(B(i)+3) = ...

ELSE

MARK_READ(grp2)

S5 .. = A(B(i)+2)

S6 .. = A(B(i)+3)

MARK_READ(grp3)

S7 .. = A(B(i)+4)

ENDIF

S8 IF (A) THEN

S9 A(B(i)+5) = ...

S10 A(B(i)+6) = ...

ENDIF

ENDDO

Fig. 32. Illustration of marking sites after grouping related references

a. CDG and colorCDG Construction

We represent control dependence relationships in a control dependence graph [15],

with the same vertices as the CFG and an edge (X − cd→ Y) whenever Y is control

dependent on X. Fig. 33(a) shows the CDG for the loop example in Fig. 32. In

Fig. 33(a), each edge is marked as a predicate expression. For multiple nodes that

are control dependent on one node with the same predicate expression (e.g., Node

S2, S3, S4 are control dependent on node S1 with predicate expression A) we put a

branch node between S1 and S2, S3, S4 with label A. We name the resulting graph a

colorCDG: the white node is the original CDG node and the black node is a branch

node. The corresponding colorCDG for the example in Fig. 32 is shown in Fig. 33(b),

74

���

���

���

���

���

���

���

���

	�	�	�	�		�	�	�	�		�	�	�	�		�	�	�	�		�	�	�	�	

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�����������������������������������

�����������������������������������

��

���

���

���

������
������
���

������
������
���

������
������
���

������
������
���

S0

S1 S8

1 <= N1 <= N

A A A A A!A !A!A

S2 S3 S4 S5 S6 S7 S9 S10

������

������ ������ ������

��
�

���
���

 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
!�!�!�!�!�!�!�!�!�!�!�!�!�!!�!�!�!�!�!�!�!�!�!�!�!�!�!!�!�!�!�!�!�!�!�!�!�!�!�!�!!�!�!�!�!�!�!�!�!�!�!�!�!�!

"�"�"�"�"�"�"�"�""�"�"�"�"�"�"�"�"#�#�#�#�#�#�#�#�##�#�#�#�#�#�#�#�# $�$�$�$�$�$�$�$�$$�$�$�$�$�$�$�$�$
%�%�%�%�%�%�%�%�%%�%�%�%�%�%�%�%�% &&

'�'�'�'�''�'�'�'�'(�(�(�((�(�(�()�)�)�))�)�)�)
��*�**�*�*�* +�+�+�+�++�+�+�+�+

,�,�,�,,�,�,�, -�-�-�--�-�-�-
.�.�.�..�.�.�. /�//�/0�00�0 1�1�1

1�1�1
2�22�2

S0

S1 S8

S2 S3 S4 S5 S6 S7 S9 S10

1 <= N

A Not A A

Fig. 33. CDG(a) and colorCDG(b) of the loop example

where node S1 represents a IF statement which leads to two branch nodes. Each of

these two nodes leads to multiple CDG nodes which are control dependent on the

edges S1---A and S1---Not A.

b. Recursive Grouping

For each CDG node, the extract grp function of our recursive grouping algorithm

(in Fig. 31) returns the group sets of the current sub-colorCDG. Siblings are visited

in control flow order. In our example, the grouping heuristic is applied in three

places: S1, S2, S3. Since references in one CDG node have the same predicate,

the compute local grp function needs only to put subscripts with the same base-

pointer and access type into one group. grp union does the same work as that of

compute local grp except that the operators are groups of subscripts. When two

groups with common elements (same subscript expressions) cannot be combined, their

intersection (a set operation) is computed, This intersection operation can generate

three new groups:

out group1 = group1− group2

out group2 = group1 ∩ group2

out group3 = group2− group1

75

The access type and predicate properties of out group1 and out group3 remain those

of group1 and group2. The access type and predicate properties of out group2 are

the union of those of group1 and group2.

c. Marking the Groups

In this step, compiler simply mark the groups where the first element of a group is

referenced.

D. Shadow Structures for Sparse Codes

Many sparse codes traverse linked structures when processing their data structures.

The referenced pointers can, in principle, take any value (in address space) and give

the overall “impression” of being very sparse and random. For example, in SPICE

2G6, the device evaluation loops (in subroutine LOAD and its descendants, e.g., BJT)

traverse linked lists and process C-like structures pointed to by each node in the

list. Because the program does its own memory management out of a large statically

allocated array, all pointers index into the same space (the code uses different array

names but are overlaid). This makes the task of efficiently shadowing and representing

memory references extremely difficult.

However a static analysis reveals a single-statement strongly connected com-

ponent, a recurrence between address and data, that is initialized before the loop

and whose values are used as indices in the loop body. It is of the form loc =

NODPLC(loc). Furthermore, we find more such recurrences in the loop body, with the

difference that they are initialized within the loop.

After this type of static analysis, we speculate with a high degree of confidence

that the code traverses a linked list and that the addresses it references are in some

76

1 2 3 5 64
A

1
B

C
3,451,2,6

2 3 4 5 6

Fig. 34. Various irregular memory access patterns in a loop. (A) regular accesses

indeed; (B) monotonic accesses with variable strides; (C) random accesses

“advantageous” order which is amenable to optimization.

We therefore identify the base-pointers used by the loop (the various names of

overlaid names) and classify the accesses associated to them as:

1. monotonic accesses with constant stride;

2. monotonic accesses with variable stride;

3. random accesses.

Fig. 34 and 35 show examples of such accesses. For each of these possible reference

patterns we have adopted a specialized representation.

– Monotonic constant strides can be represented by a closed-form descriptor and

thus be recorded in a triplet [offset,stride,count].

– Monotonic addresses with variable stride can be recorded in an array with the

additional fields [min,max] of their value.

– Random addresses can be stored in hash tables (if we expect a large number

of them) or simple lists which are sorted later. Range information is also be

maintained and recorded.

The run-time marking routines are adaptive, i.e., they verify the class of the access

77

A

B

inner span
stride

base_pointer1(i)+1,+2,+3,+6

base_pointer1(i)+4,+5,+7

base_pointer3(i)+0

base_pointer4(i)+0

C

D

Fig. 35. Intersections of different run-time memory access regions. (A) and (B)

have the same base-pointers, inner span, and stride. Actual array reference indices

are different because they are in two groups. To verify no overlap between A and B,

only check whether ’stride > inner span’; (A) and (C) have different base-pointers,

and C doesn’t have constant stride. To verify for no overlap between A and C, merge

A and C and check for collisions; (C) and (D) To verify for no overlap between C and

D, compare ranges.

pattern and use the simplest possible form of representation. Ideally, all references

can be stored as a triplet, dramatically reducing space requirements. In the worst

case, the shadow structures are proportional to the number of marked references. The

type of reference, i.e., WF, RO, RW, and NO are recorded in a bit vector which is as

long as the number of recorded references.

After loop execution, the analysis of the recorded references uses algorithms that

range from the simplest to the most time consuming.

The test of the data dependence conditions is done by detecting whether pointers

(and their associated groups, as defined in Section C) collide through the following

hierarchical procedure:

– check for overlap of address ranges traversed by the base-pointers (linked lists)

using min/max information;

– if there is overlap, check for collision of the shadow structures associated to a

78

pair of base-pointers.

We have implemented, in our run-time library, the comparisons for all the possible sit-

uations. The comparison between two triplets is done analytically. The comparisons

among sorted lists and hash tables are through merging, which have linear complex-

ity. The comparisons among triplets and sorted lists/hash tables also have linear

complexity. If at any time a collision is detected, then the type of reference is read

from the bit vector for that particular address and any possible data dependence will

be detected.

This scheme uses shadow data structures that are, in general, more expensive

(no random access) to access and analyze than the shadow arrays used in dense prob-

lems. However, if the speculation about the code’s reference pattern is correct, then

storage requirements are minimized and only inexpensive operations are performed.

Of course, should the speculation fail, then the only advantage of this technique is

its compact storage. As we show in the following section, we have devised reasonably

accurate compile-time heuristics for a successful speculation.

E. Experimental Results

1. Run-time Overhead Reduction

We implemented the previously presented method of reducing marking points in a

program through the grouping algorithm in the POLARIS compiler infrastructure

[28].

The grouping algorithm has been implemented as part of our run-time paralleliza-

tion pass, the last optimization/transformation step before the code generation pass

in Polaris. We have run it on several important loops from the Perfect Benchmarks

(SPICE 2G6, Ocean), SPEC (TFFT2), and a N-body code from NCSA (P3M).

79

TABLE IX

Effect of the aggregation of markings

Program SPICE 2G6 P3M OCEAN TFFT2

Loop BJT loop PP do100 FTRVMT CFFTZ
do9109 do#1

#references under test 259 24 18 18

#markings w/o grouping 150 24 6 18

#markings w/ grouping 13 9 3 8

Reduction of static markings 91.3% 62.5% 50% 55%

Reduction of dynamic markings 84% 41% 50% 69%

Loop speedup ratio 1.46 1.54 1.21 1.69

Table IX summarizes the effects of our compile-time techniques that reduce the

run-time tracing overhead. In the table, we give the number of references to the

arrays under run-time test in the original code, the number of references that were

marked in a previous implementation of the LRPD test (that already had some opti-

mizations based on simple dominator relation between references), and the resulting

static and dynamic counts of marking sites after applying the grouping technique.

The “loop speedup ratio” is the ratio of the speedups of the speculative parallel loop

obtained with and without applying our proposed techniques. The results show that

the reductions of both static and dynamic counts of marking sites are significant in

all cases and does indeed contribute to improved performance.

2. A Case Study: SPICE 2G6

We have chosen the loop in subroutine BJT of the program SPICE 2G6 as the target

of our detailed experiment. This loop has an almost identical access pattern as most of

the device evaluation steps and represents between 11% and 45% of the total execution

time of the code. The SPICE 2G6 is a program with sparse memory accesses that

offers us the opportunity to evaluate our grouping methods (which are also applicable

to dense codes), the choice of shadow structures, and sparse reduction validation and

80

optimized parallelization (discussed in previous chapters of this dissertation).

The unstructured loop was first brought to a structured DO loop form (a separate

pass we developed in Polaris). Then, through a different technique, we distributed

the dominating recurrence outside the loop. This is in fact the loop containing the

linked list traversal that controls the traversal of all data structures of the loop and

has the form LOC = NODPLC(LOC). This first loop is executed sequentially and all

pointers are collected in a temporary array of pointers that is used by the remainder

of the BJT loop (and has random access).

We then have used the run-time pass of the compiler to instrument the minimal

number of reference groups for run-time marking. The loop invariant part of marked

addresses was hoisted outside the loop and set up as an inspector loop. It represents

the flow-insensitive traversal of all base-pointers (13 of them) that the loop can ref-

erence. These are the base-pointers of all marking groups. The predicates guarding

their actual execution are loop variant and have to be left for marking inside the loop

itself. The traversal and analysis of the inspector loop give us a conservative result

whether there is any cross-processor collision (overlap) among the references. The

shadow data structures used by our run-time library for reference tracing are triplets

for 7 pointers, list of values for 3 other pointers and hash tables for the reduction

operand addresses. Had our “guess” been incorrect, then our adaptive run-time li-

brary would have automatically “demoted” the triplets (for linked lists with constant,

monotonic stride) to lists and then hash tables. The run-time library also collects

range information on the fly (min/max values of specific base-pointers).

We generate 4 versions of the loop representing a combination of four situations:

1. conservative test (inspector) is sufficient to qualify the loop as parallel;

2. speculative execution is needed in order to mark the dynamic existence of the

81

2 3 4 5 6 7 8
0

1

2

3

4

5

6

Number of Processors

S
pe

ed
up

Speedup (SPICE: BJT_do)

Hand parallel version
Compiler instrumented version

2 4 6 8
0

10

20

30

40

Number of Processors

E
xe

cu
tio

n
T

im
e

(s
ec

.)

Execution Time (SPICE: BJT_do)

Inspector Loop
Reduction Collection
Parallel Loop

Fig. 36. Performance of SPICE BJT loop with input 1 (The input is extended from

the input file of SPEC89-92. The sequential coverage of loop BJT is about 11%)

groups (based on the actual control flow) and qualify/disqualify the loop as

parallel after execution;

3. the reduction parallelization needs to be verified (not described in this chapter);

4. the parallelization is known to be valid because it has been proven in a previous

instantiation and no modification of addresses has been found in the outer loop.

Finally, we have instrumented (with the help of the same grouping algorithms) the

remainder of the outer-loop containing calls to BJT to flag any modification of shared

integer array variables (potential address modifications).

Depending on the dynamic situation, simple code generated by the compiler

decides which version to run.

In our experiments with two different input sets, we had to run the conservative

inspector and validate the reduction parallelization only 2 times when address mod-

ifications outside the BJT loop were flagged. (For the reduction validation, it was

sufficient to show that the range of the reduction operand addresses did not overlap

with the rest of the references.) The experimental setup for our speedup measure-

82

2 3 4 5 6 7 8
0

1

2

3

4

5

6

Number of Processors

S
pe

ed
up

Speedup (SPICE: BJT_do)

Hand parallel version
Compiler instrumented version

2 4 6 8
0

200

400

600

800

1000

1200

Number of Processors

E
xe

cu
tio

n
T

im
e

(s
ec

.)

Execution Time (SPICE: BJT_do)

Inspector Loop
Reduction Collection
Parallel Loop

Fig. 37. Performance of SPICE BJT loop with input 2 (The input is implementing a

256-bits adder (extended from a 8-bits adder). The sequential coverage of loop BJT

is about 31%)

ment consisted of a 16 processor HP-V class system with 4Gb memory, running the

HPUX11 operating system.

In Fig. 36 and 37 we show the speedups obtained for two input sets. The graphs

report speedup with no run-time checking but with our reduction parallelization and

actual overall obtained speedup. The results show that obtained speedups scale up to

8 processors. We do not report numbers for a larger number of processors because our

input set was fairly small. (Forking overhead is 5% of the serial time - very significant).

Additional insights are presented, i.e., overall execution time breakdown.

F. Summary

This chapter presents compile-time and run-time techniques to increase the potential

speedup and efficiency of parallel loops that parallelized via speculative run-time

parallelization techniques. Great emphasis was put on efficiently applying run-time

parallelization for sparse codes. The run-time library adaptively selects the most

83

profitable shadow data structures to minimize the run-time marking overhead and

memory usage. The techniques presented complement the existing speculative run-

time parallelization technique (the LRPD test) for efficiently parallelizing loops with

sparse memory accesses.

The detailed case study, SPICE, is one of the most difficult codes, and our

techniques proved themselves to be quite useful. We believe that other sparse codes

will behave similarly or better. SPICE is an interesting case study because it requires

all the methods presented in this chapter and – more importantly – it is most similar

to the problems arising in C codes: memory management, extensive use of pointers,

linked structure traversals, etc. By parallelizing SPICE we have shown that the

techniques presented here are generally applicable. More specifically, we have gained

valuable experience applicable to C programs.

84

CHAPTER VII

RELATED WORK

In this chapter, we review work related to our research. The techniques reviewed

under “adaptive optimization,” “reduction parallelization,” and “automatic paral-

lelization” are related to our adaptive algorithm selection framework, novel irregular

parallel reduction algorithms, and adaptive run-time parallelization techniques, re-

spectively.

A. Adaptive Optimization

There does not appear to be a great body of work in the area of adaptive selection of

low level algorithms. Brewer [55] is probably the most extensive previous work aimed

at making a framework for this decision process. In this approach, performance mod-

els are consulted to determine the expected running time of possible implementation,

with the minimum running algorithm then chosen for use. These models are linear

systems provided, along with some code annotations, by the end user. A bench-

marking phase determines the coefficients of these models, and the entire process has

been shown to be effective for both selecting among parallel sorting algorithms and

determining data distribution for a parallel equation solver.

Li, Garzaran, and Padua [56] present an approach for choosing between several

sequential sorting algorithms based on data size, data entropy, and an installation

benchmarking phase that correctly selects the best algorithm for the given situation.

However, no attempt is made to generalize the technique into a general approach

and no discussion of the more difficult parallel case is given. There has been many

previous works aim at tuning specific algorithm parameters. Examples are Spiral [57]

and FFTW [9] for FFT signal processing, and ATLAS [10] for matrix multiplica-

85

tion. These approaches are very narrow (though quite effective) in scope and do not

constitute a general framework for generic algorithm selection.

In practice, profiling is widely used to obtain information about the dynamic

characteristics of a program [55, 58]. To enable profile-directed (feedback-directed)

optimizations, many commercial compilers have options such as: -fb and -fb create

options of SGI compilers [59], -qpdf1 and -qpdf2 options of IBM AIX XL compil-

ers [60], +P option of HP PA9000 cc compiler [61], etc. Profiling obtains coarse-grain

dynamic information related to common program behaviors such as hot-spots and

fine-grain dynamic information such as hardware counter values [62]. Most tech-

niques involving profile-directed optimization are based on the assumption that the

actual execution environment is similar to that of the profiling run(s); this limits the

applicability of the approach.

Another somewhat relevant approach is that of dynamic feedback [63], which

selects code variants based on on-line profiling, to try to overcome limitations on

the applicability of off-line profiling. Dynamic feedback selects code variants based

on the measured execution times of a few execution instances for all the candidate

code variants during a sampling phase. The different code variants are generated at

compile-time. For programs with periodic behaviors, our technique can select the

best candidate optimization only after one execution instance of the code chunk (to

be optimized); dynamic feedback usually requires several execution instances of the

code chunk.

To put run-time optimization techniques in use systematically, optimizing com-

pilers have been extended to generate multiple versions [64] or highly parameterized

codes [65]. The limitations of these approaches are that multiple versioning could lead

to code explosion, and parameterized code could slow down program execution. To

overcome these limitations, dynamic compilation systems have been proposed. Dy-

86

namic compilation systems, with representative examples as DyC [66], Tempo [67],

ADAPT [68], etc., generate optimized and specialized code variants during program

execution and are therefore able to make use of run-time information, e.g., on-line

code or value profiling information, to specialize code sections. Recently, a more

specific approach of dynamic compilation systems – trace-based optimization sys-

tems (e.g., DYNAMO [69] and JAVA just-in-time compiler [70]), have been utilized

in real-life applications. These systems apply efficient optimizations for programs’

hot–spots, detected via on-the-fly profiling, and the performance gain is based on the

frequent reuse of highly optimized code chunks.

Compared to optimizing compilers, dynamic compilation systems are believed to

be a more general paradigm for optimizing dynamic programs. Some of them have

been applied in improving the performance of sequential programs or internet-based

applications. However, little effort has been undertaken for scientific applications,

especially for irregular programs.

B. Reduction Parallelization

Reduction parallelization is a very effective optimization and many related techniques

have been proposed in the literature. In Chapter III, we briefly discussed some

fundamental work on reduction recognition [14, 17, 18] and parallelization [19, 14, 12,

13, 21, 22]. Here we discuss some recently developed irregular reduction parallelization

techniques.

The “owner computes” method has been mostly employed in the parallelization

of irregular codes. The most straightforward reduction parallelization technique ap-

plying the “owner computes” rule is the data affiliated loop proposed by Lin and

Padua [22]. In this technique, each processor traverses all the iterations in the re-

87

duction loop and checks whether the reduction array entry (or entries) referenced in

the current iteration has been assigned to it. The owned assignments are executed

while the rest are simply skipped. This basic technique introduces two major over-

heads. First, every reduction statement in the loop is guarded by a predicate to check

whether the reduction is operating on local data. Second, it executes every iteration

even if the iteration does not contain any reduction operation on the local data.

Two techniques have been proposed to improve the data affiliated loop method.

local write [20] generates a schedule to have each processor only go through the it-

erations that have more than one reduction on local data. While the intention is to

reduce the replication ratio, the technique does not remove the predicate guarding

each reduction statements. Slightly different from local write, Data write affinity [71]

avoids both iteration replication and the predicates guarding the reductions intro-

duced by the data affiliated loop. For loops containing multiple reduction statements,

they introduce P − 1 synchronizations for group computations into non-conflicting

phases to ensure mutual exclusion for reductions. Because of the synchronizations,

the “owner computes” rule is violated and therefore its performance is not as good

as that of local write [72]. Potential disadvantages of methods utilizing the “owner

computes” rule are that they may heavily replicate unnecessary computations and

load balance is not sustained (unlike “data replication” based methods).

Recently, Zoppetti and Agrawal [73] developed a technique to parallelize adaptive

irregular reduction loops on a multi-threaded architecture. The technique follows a

fixed iteration distribution and pipelines the reduction data across processors. The

update of the data happens only when the data is moved in the processor where the

corresponding reduction operation resides. The computation is divided into k × P

stages, where P is the number of processors and k is a small constant. The paper

shows results for k as 2 and 4. To avoid the synchronization overhead for machines

88

supporting the fine-grained multi-threaded program execution model, the technique

overlaps computation and communication. These experimental results were obtained

in a simulation environment. The potential drawback of this technique is associated to

the computation “stages,” which may introduce unnecessary communication (pipeline

data sections to irrelevant computation threads) or load imbalance.

Adaptive Data Repository (ADR) infrastructure [74] was developed to perform

range queries with user-defined aggregation operations on multi-dimensional datasets,

which are generalized reductions. In the ADR infrastructure, three data aggregation

strategies are used: fully replicated accumulation, sparsely replicated accumulation,

distributed accumulation, which are analogous to RepBuf, SelPriv and LocalWr

discussed in this paper. These experiments have shown that none of the three strate-

gies worked best for various query patterns and that prediction models were desired.

C. Automatic Parallelization

It has long been realized that not only is programming parallel and distributed pro-

grams a tedious, error-prone task, but also that the performance of programs running

on such systems is disappointing without good system-level support. The only avenue

for bringing parallel processing to every desktop is to make parallel programming as

easy as programming current uniprocessor systems. The traditional path to achieve

this goal is through good programming languages, and mainly, through automatic

compiler parallelization and optimization.

In scientific programs, the execution of loops dominates the overall performance

of whole programs and therefore much effort has been concentrated on parallelizing

loops. A loop can be executed in fully parallel form, without synchronization, if

and only if the desired outcome of the loop does not depend in any way upon the

89

execution ordering of the data accesses from different iterations (or groups of iterations

on different processors). In order to determine whether or not the execution order

of the data accesses affects the semantics of the loop, the data dependence relations

between the references to the same arrays in the loop body must be analyzed. The

available techniques for array data dependence analysis include: Banerjee’s test [75],

Omega test [76], Range test [77], Interprocedural memory classification analysis [53]

, etc.

While the flow-dependences express a fundamental relationship in the data flow

of the program, anti- and output-dependences can be removed by array privatization.

Array privatization identifies arrays that are used as temporary work spaces within a

loop iteration and allocates private (temporary) copies of the arrays for each thread.

Compile-time array privatization techniques [49, 51, 78] combine control-flow and

data-flow information to query whether there are any read references to array elements

which are not preceded by write references to the same elements.

Another important technique to enable parallelization is reduction parallelization.

Reduction parallelization and its related work has already been discussed in detail

(previously in Chapter III and here).

Putting many of these techniques together, researchers have lately developed in-

tegrated techniques [53, 79] and infrastructures [80, 81], which successfully parallelize

more loops statically.

To complement static compiler parallelization techniques that explore the par-

allelism of dynamic and irregular applications, run-time parallelization techniques,

postponing program analysis until program execution, have been applied. All run-

time optimizations (in general) consist of at least two activities: (a) a test of a set of

run-time values as a trace of all relevant memory accesses and (b) the execution of one

of the compiler generated options. If the test phase is performed before the execution

90

of the loop and has no side effects, i.e., it does not modify the state of the original

program variables (shared), then the technique is called inspector/executor [45] . Its

run-time overhead consists only of the time to execute the inspection phase. If the

test phase is done at the same time as the execution of the aggressively optimized

loop and, in general, the state of the program is modified during this process, then the

technique is called speculative execution [17, 82, 36]. Its associated overhead consists

of the test itself and the saving of the program state (checkpointing). If the optimiza-

tion test fails, extra overhead is paid during a program ante-loop state restoration

phase before the conservative version of the code can be executed. In this scenario

the initial optimized loop execution time becomes an additional overhead too.

The above run-time parallelization techniques have relatively large overhead be-

cause they analyze all the points referenced. Recently, researchers have adopted com-

prehensive compiler-time techniques that combine control-flow and data-flow analysis,

to generate efficient run-time tests that decide whether the loops are parallel or not by

evaluating a small set of run-time values [82, 83]. Although these techniques reduce

run-time overhead dramatically, i.e., from proportional to the number of dynamic

references to that proportional to the size of the data (or even constant), they are

far from silver bullets. Therefore, comprehensive run-time test techniques (i.e., the

LRPD test [17] and the adaptive techniques described in Chapter VI) are still needed

to treat worst case scenarios.

91

CHAPTER VIII

CONCLUSIONS

Motivated by the fact that adaptive run-time optimization is the key for achieving sus-

tainable performance for irregular applications running on today’s high-performance

systems, this dissertation has concentrated on run-time parallelization and optimiza-

tion of adaptive/dynamic irregular applications. This has been identified as a partic-

ularly difficult task for programmers and limited success has been reached. In this

chapter, we first summarize research presented in this dissertation and then briefly

present some future directions that could follow from this dissertation.

A. Dissertation Research

The main contributation of this dissertation is a set of compiler and run-time tech-

niques that can adaptively select and deploy algorithms or data structures that are

most suited to a particular program execution instance.

1. Adaptive Algorithm Selection Framework

The Adaptive Algorithm Selection framework presented in this dissertation provides

a systematic process for generating prediction models that can select, at run-time, the

best performing, functionally equivalent algorithm for each of its execution instances.

The setup phase occurs once for each computer system to implicitly tailor the process

to a particular architecture. With pre-defined high-level characterization parameters

and a synthetic experiment process, a mapping between different points in the pa-

rameter space and a relative performance ranking of the available algorithms is built

and interpreted into algorithm selection codes. The dynamic selection phase occurs

during actual program execution in order to collect the actual parameters and execute

92

pre-generated selection codes to select and deploy the the most suited algorithms or

implementations.

Chapters III – V concentrate on specializing our adaptive framework to paral-

lel reduction algorithm selection. The experimental results presented in Chapter V

show that our framework can model program’s irregular and dynamic behavior and

customize solutions every time this is needed. Specifically, for reduction algorithm

selection, the selected performance is within 2% of optimal performance and on av-

erage 60% better than “replicated buffer”, the default parallel reduction algorithm

specified by OpenMP standard [33]. In addition, the results show that the framework

is portable and when applied for dynamic applications, it can achieve performance

otherwise (e.g., applying only one algorithms) not possible.

2. Adaptive Run-Time Parallelization

The daptive run-time parallelization techniques presented in Chapter VI automati-

cally detect and explore parallelism of loops in irregular programs with sparse memory

accesses. With compile-time analysis and augmentation, the developed run-time li-

brary (with low run-time overhead) adaptively selects appropriate shadow data struc-

tures among: list, hash table, and closed-form representation to record the memory

reference patterns executed by a loop. The techniques complement existing specula-

tive run-time parallelization techniques (e.g., the LRPD test) for parallelizing loops

with variant memory access characteristics.

B. Future Directions

Trends show that future computing platforms are quite likely to be comprised of

parallel and/or distributed systems. Applications running on such platforms exhibit

93

dynamic behavior with respect to their computation and communication needs. We

believe that adaptive optimization is generally an effective strategy to achieve a high

level of performance for programs running on high-performance systems. This dis-

sertation has revealed new improvements for achieving good performance on high-

performance applications and systems. This section touches on research directions

that are important and can be approached through extensions of this work.

1. Extension of Run-Time Parallelization for Other Programming Languages

At this point, the techniques described in this dissertation are implemented in Polaris,

which is a research parallelizing compiler for Fortran 77. However, we believe that

most of the techniques developed for modern, irregular Fortran 77 codes can be easily

applied in Fortran 90, C, or C++. For example, for a C loop traversing a linked-list

and processing structures associated to the nodes of the list, we can first traverse

the linked list only and assign the addresses of the corresponding structures to a

vector and then process the corresponding structures in parallel. While processing

the structures in parallel, we can detect whether any contention on shared data or

mutation on the linked list occurred.

2. High-Performance Libraries

It is fairly natural to extend the functionality of our adaptive algorithm selection

framework for developing high-performance, domain-specific libraries. For example,

a call to a library subroutine can be easily identified and replaced by the most appro-

priate optimized candidate library routine. We can implement an adaptive parallel

container in a C++ generic programming platform (e.g., STAPL [8] – STandard

Adaptive Parallel Library, a parallel counterpart of STL that is being developed by

94

our colleagues at Texas A&M University) to adaptively select a specific container

among candidates such as vector, list, and tree, based on a program’s dynamic mem-

ory access pattern.

3. Dynamic Compilation

The adaptive optimization technology described in this dissertation generates multi-

ple versions at compile-time and adaptively selects among the generated versions at

run-time. To avoid the potential code explosion introduced by multi-versioning and

utilizing more powerful, systematic adaptive optimization, we would like to investi-

gate techniques such as dynamic compilation, which optimize programs and generate

new code at run-time.

95

REFERENCES

[1] S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,”

Journal of Computational Physics, vol. 117, pp. 1–19, 1995.

[2] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, and

et al., Gaussian 98, Revision A.11, Gaussian, Inc., Pittsburgh PA, 2001.

[3] “CHARMM: A program for macromolecular energy, minimization, and dynamics

calculations,” Journal of Computational Chemistry, vol. 4, no. 6, p. 187, 1983.

[4] R. I. Klein, R. T. Fisher, C. F. McKee, and J. K. Truelove, “Gravitational

collapse and fragmentation in molecular clouds with adaptive mesh refinement,”

in Proceedings of the International Conference on Numerical Astrophysics 1998

(NAP1998), T. H. D. K. S.M. Miyama, K. Tomisaka, Ed., Tokyo, Japan, Mar.

1998.

[5] M. Mathis, N. M. Amato, and M. L. Adams, “A general performance model for

parallel sweeps on orthogonal grids for particle transport calculations,” in Pro-

ceedings of the 14th ACM International Conference on Supercomputing (ICS’00),

Santa Fe, NM, May 2000, pp. 255–263.

[6] G. A. Glatzmaier and P. H. Roberts, “A three-dimensional self-consistent com-

puter simulation of a geomagnetic field reversal,” Nature, vol. 377, pp. 203–209,

1995.

[7] H. Yu and L. Rauchwerger, “Adaptive reduction parallelization techniques,”

in Proceedings of the 14th ACM International Conference on Supercomputing

(ICS’00), Santa Fe, NM, May 2000, pp. 66–77.

96

[8] P. An, A. Jula, S. Rus, S. Saunders, T. Smith, G. Tanase, N. Thomas, N. M. Am-

ato, and L. Rauchwerger, “STAPL: An adaptive, generic parallel c++ library,”

in Proceedings of the 14th Annual Workshop on Languages and Compilers for

Parallel Computing (LCPC’01), Cumberland Falls, KY, Aug. 2001, pp. 193–208.

[9] M. Frigo, “SPL: A language and compiler for DSP algorithms,” in Proceedings

of the ACM SIGPLAN 1999 Conference on Programming Language Design and

Implementation (PLDI’99), Atlanta, GA, 1999, pp. 169–180.

[10] R. C. Whaley, A. Petitet, and J. Dongarra, “Automated empirical optimizations

of software and the ATLAS project,” Parallel Computing, vol. 27, no. 1–2, pp.

3–25, 2001.

[11] H. Yu, F. Dang, and L. Rauchwerger, “Parallel reduction: An application of

adaptive algorithm selection,” in Proceedings of the 15th Annual Workshop on

Languages and Compilers for Parallel Computing (LCPC’02), College Park, MD,

July 2002, pp. 171–185.

[12] C. P. Kruskal, “Efficient parallel algorithms for graph problems,” in Proceedings

of the 1986 International Conference on Parallel Processing (ICPP’86), Univer-

sity Park, PA, Aug. 1986, pp. 869–876.

[13] F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays,

Trees, Hypercubes. San Francisco, CA: Morgan Kaufmann, 1992.

[14] H. P. Zima, Supercompilers for Parallel and Vector Computers. New York, NY:

ACM Press, 1991.

[15] M. Wolfe, High Performance Compilers for Parallel Computing. Boston, MA:

Addison-Wesley, 1995.

97

[16] K. Kennedy and R. Allen, Optimizing Compilers for Modern Architectures: A

Dependence-based Approach. San Francisco, CA: Morgan Kaufmann, 2001.

[17] L. Rauchwerger and D. A. Padua, “The LRPD test: Speculative run-time paral-

lelization of loops with privatization and reduction parallelization,” in Proceed-

ings of the ACM SIGPLAN 1995 Conference on Programming Language Design

and Implementation (PLDI’95), La Jolla, CA, June 1995, pp. 218–232.

[18] D. Patel and L. Rauchwerger, “Principles of speculative run–time paralleliza-

tion,” in Proceedings of the 11th Annual Workshop on Languages and Compilers

for Parallel Computing (LCPC’98), Chapel Hill, NC, Aug. 1998, pp. 330–351.

[19] R. Eigenmann, J. Hoeflinger, Z. Li, and D. A. Padua, “Experience in the au-

tomatic parallelization of four perfect benchmark programs,” in Proceedings of

the 4th Annual Workshop on Languages and Compilers for Parallel Computing

(LCPC’91), Santa Clara, CA, Aug. 1991, pp. 65–83.

[20] H. Han and C.-W. Tseng, “Improving compiler and run-time support for adaptive

irregular codes,” in Proceedings of the 7th IEEE International Conference on

Parallel Architectures and Compilation Techniques (PACT’98), Paris, France,

Oct. 1998, pp. 393–400.

[21] W. M. Pottenger, “Theory, techniques, and experiments in solving recurrences

in computer programs,” Ph.D. dissertation, Department of Computer Science,

University of Illinois at Urbana-Champaign, Urbana, IL, May 1997.

[22] Y. Lin and D. A. Padua, “On the automatic parallelization of sparse and ir-

regular fortran programs,” in Proceedings of the 4th International Workshop on

Languages, Compilers and Run-time Systems for Scalable Computers (LCR’98),

Pittsburgh, PA, May 1998, pp. 41–56.

98

[23] J. Wu, J. H. Saltz, S. Hiranandani, and H. Berryman, “Runtime compilation

methods for multicomputers,” in Proceedings of the 1991 International Confer-

ence on Parallel Processing (ICPP’91), Vol. II - Software, D. H. Schwetman, Ed.

Boca Raton, FL: CRC Press, Inc., 1991, pp. 26–30.

[24] J. H. Saltz, R. Mirchandaney, and K. Crowley, “Run-time parallelization and

scheduling of loops,” IEEE Transactions on Computers, vol. 40, no. 5, pp. 603–

612, May 1991.

[25] R. von Hanxleden, “Handling irregular problems with Fortran D – a preliminary

report,” in Proceedings of the 4th Workshop on Compilers for Parallel Computers

(CPC’93), Delft, Netherlands, Dec. 1993, pp. 353–364.

[26] C. Ding and K. Kennedy, “Improving cache performance of dynamic applications

with computation and data layout transformations,” in Proceedings of the ACM

SIGPLAN 1999 Conference on Programming Language Design and Implementa-

tion (PLDI’99), Atlanta, GA, May 1999, pp. 229–241.

[27] Y.-S. Hwang, B. Moon, S. D. Sharma, R. Ponnusamy, R. Das, and J. H. Saltz,

“Runtime and language support for compiling adaptive irregular programs on

distributed-memory machines,” Software - Practice and Experience, vol. 25,

no. 6, pp. 597–621, 1995.

[28] W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoeflinger, T. Lawrence,

J. Lee, D. A. Padua, Y. Paek, W. M. Pottenger, L. Rauchwerger, and P. Tu,

“Advanced program restructuring for high-performance computers with Polaris,”

IEEE Computer, vol. 29, no. 12, pp. 78–82, Dec. 1996.

[29] W. F. van Gunsteren and H. J. C. Berendsen, “GROMOS: GROningen MOlec-

ular Simulation software,” Laboratory of Physical Chemistry, University of

99

Groningen, Nijenborgh, The Netherlands, Tech. Rep., 1988.

[30] D. R. O’Hallaron, J. R. Shewchuk, and T. R. Gross, “Architectural implications

of a family of irregular applications,” School of Computer Science, Carnegie

Mellon University, Pittsburgh, PA, Tech. Rep. CMU-CS-97-189, Nov. 1997.

[31] H. Yu and L. Rauchwerger, “Run-time parallelization overhead reduction tech-

niques,” in Proceedings of the 9th International Conference on Compiler Con-

struction (CC’00), Berlin, Germany, Mar. 2000, pp. 232–248.

[32] F. Dang, H. Yu, and L. Rauchwerger, “The R-LRPD test: Speculative paral-

lelization of partially parallel loops,” in CDROM/Abstracts Proceedings of the

16th International Parallel and Distributed Processing Symposium (IPDPS’02),

Fort Lauderdale, FL, Apr. 2002.

[33] OpenMP Fortran Application Program Interface, Version 2.0, OpenMP

Architecture Review Board, 2000. [Online]. Available: http://www.openmp.org

[34] R. Jain, The Art of Computer Systems Performance Analysis. Hoboken, NJ:

John Wiley & Sons, Inc., 1991.

[35] A. Miller, Subset Selection in Regression (Second Edition). Boca Raton, FL:

Chapman & Hall/CRC, 2002.

[36] D. Patel and L. Rauchwerger, “Implementation issues of loop-level speculative

run-time parallelization,” in Proceedings of the 8th International Conference on

Compiler Construction (CC’99), Amsterdam, The Netherlands, Mar. 1999, pp.

183–197.

[37] T. Autrey and M. Wolfe, “Initial results for glacial variable analysis,” in Pro-

ceedings of the 9th Annual Workshop on Languages and Compilers for Parallel

100

Computing (LCPC’96), San Jose, CA, Aug. 1996, pp. 120–134.

[38] “PARASOL Systems,” PARASOL Lab, Department of Computer Science,

Texas A&M University, College Station, TX. [Online]. Available: http:

//parasol.tamu.edu

[39] “agave — IBM Regatta p690,” Texas A&M University Supercomputing Facility,

College Station, TX. [Online]. Available: http://sc.tamu.edu

[40] L. Oliker and R. Biswas, “Parallelization of a dynamic unstructured application

using three leading paradigms,” in Proceedings Supercomputing ’99 (CDROM),

Portland, OR, 1999, p. 39.

[41] J. G. Castanos and J. E. Savage, “Repartitioning unstructured adaptive meshes,”

in Proceedings of the 14th International Parallel and Distributed Processing Sym-

posium (IPDPS’00), Cancun, Mexico, May 2000, pp. 823–832.

[42] J. Mellor-Crummey, D. Whalley, and K. Kennedy, “Improving memory hierarchy

performance for irregular applications using data and computation reorderings,”

International Journal of Parallel Programming, vol. 29, no. 3, pp. 217–247, 2001.

[43] S. Turek and C. Becker, FEATFLOW: Finite Element Software for the Incom-

pressible Navier-Strokes Equations, User Manual, Release 1.1, University of Hei-

delberg, Institute for Applied Mathmatics, Heidelberg, Germany, Feb. 1998.

[44] R. Iyer, N. M. Amato, L. Rauchwerger, and L. Bhuyan, “Comparing the memory

system performance of the HP V-Class and SGI Origin 2000 multiprocessors

using microbenchmarks and scientific applications,” in Proceedings of the 13th

ACM International Conference on Supercomputing (ICS’99), Rhodes, Greece,

June 1999, pp. 339–347.

101

[45] H. Berryman and J. H. Saltz, “A manual for PARTI runtime primitives,” ICASE,

NASA Langley Research Center, Hampton, VA, Interim Report 90-13, 1990.

[46] L. Rauchwerger, “Run–time parallelization: A framework for parallel computa-

tion,” Ph.D. dissertation, Department of Computer Science, University of Illinois

at Urbana-Champaign, Urbana, IL, Sept. 1995.

[47] L. Rauchwerger, N. M. Amato, and D. A. Padua, “A scalable method for run-time

loop parallelization,” International Journal of Parallel Programming, vol. 26,

no. 6, pp. 537–576, July 1995.

[48] L. Rauchwerger and D. A. Padua, “Parallelizing WHILE loops for multiprocessor

systems,” in Proceedings of the 9th International Parallel Processing Symposium

(IPPS’95), Santa Barbara, CA, Apr. 1995, pp. 347–356.

[49] P. Tu and D. A. Padua, “Automatic array privatization,” in Proceedings of

the 6th Annual Workshop on Languages and Compilers for Parallel Computing

(LCPC’93), Portland, OR, Aug. 1993, pp. 500–521.

[50] D. E. Maydan, S. P. Amarasinghe, and M. S. Lam, “Data dependence and data-

flow analysis of arrays,” in Proceedings of the 5th Annual Workshop on Languages

and Compilers for Parallel Computing (LCPC’92), New Haven, CN, Aug. 1992,

pp. 434–448.

[51] Z. Li, “Array privatization for parallel execution of loops,” in Proceedings of the

6th ACM International Conference on Supercomputing (ICS’92), Washington,

D.C., July 1992, pp. 313–322.

[52] L. Nagel, “SPICE2: A computer program to simulate semiconductor circuits,”

Ph.D. dissertation, University of California at Berkeley, Berkeley, CA, May 1975.

102

[53] J. Hoeflinger, “Interprocedural parallelization using memory classification anal-

ysis,” Ph.D. dissertation, Department of Computer Science, University of Illinois

at Urbana-Champaign, Urbana, IL, Aug. 1998.

[54] Y. Paek, J. Hoeflinger, and D. A. Padua, “Simplification of array access pat-

terns for compiler optimizations,” in Proceedings of the ACM SIGPLAN 1998

Conference on Programming Language Design and Implementation (PLDI’98),

Montreal, Canada, June 1998, pp. 60–71.

[55] E. A. Brewer, “High-level optimization via automated statistical modeling,” in

Proceedings of the 5th ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming (PPOPP’95), Santa Barbara, CA, Aug. 1995, pp. 80–91.

[56] X. Li, M. J. Garzaran, and D. A. Padua, “A dynamically tuned sorting library,”

in Proceedings of the 2004 International Symposium on Code Generation and

Optimization (CGO’04), Palo Alto, CA, Mar. 2004, pp. 111–122.

[57] J. Xiong, J. Johnson, R. Johnson, and D. A. Padua, “SPL: A language and com-

piler for dsp algorithms,” in Proceedings of the ACM SIGPLAN 2001 Conference

on Programming Language Design and Implementation (PLDI’01), Snowbird,

UT, 2001, pp. 298–308.

[58] M. Mock, C. Chambers, and S. J. Eggers, “Calpa: a tool for automating selective

dynamic compilation,” in Proceedings of the 33rd Annual ACM/IEEE Interna-

tional Symposium on Microarchitecture (MICRO33), Monterey, CA, Dec. 2000,

pp. 291–302.

[59] MIPSpro Compiling and Performance Tuning Guide, Silicon Graphics, Inc.,

1999.

103

[60] XL Fortran for AIX User’s Guide, Version 8, IBM Corp., 2002.

[61] HP C/HP-UX Programmer’s Guide, Ninth Edition, Hewlett-Packard Company,

2000.

[62] N. M. Amato, J. Perdue, A. Pietracaprina, G. Pucci, and M. Mathis, “Predict-

ing performance on SMPs. a case study: The SGI power challenge,” in Proceed-

ings of the 14th International Parallel and Distributed Processing Symposium

(IPDPS’00), Cancun, Mexico, May 2000, pp. 729–737.

[63] P. C. Diniz and M. C. Rinard, “Dynamic feedback: An effective technique for

adaptive computing,” in Proceedings of the ACM SIGPLAN 1997 Conference on

Programming Language Design and Implementation (PLDI’97), Las Vegas, NV,

May 1997, pp. 71–84.

[64] M. Byler, J. Davies, C. Huson, B. Leasure, and M. Wolfe, “Multiple version

loops,” in Proceedings of the 1987 International Conference on Parallel Process-

ing (ICPP’87), St. Charles, IL, Aug. 1988, pp. 312–318.

[65] R. Gupta and R. Bodik, “Adaptive loop transformations for scientific programs,”

in Proceedings of the 7th IEEE Symposium on Parallel and Distributeed Process-

ing(SPDP’95), San Antonio, TX, Oct. 1995, pp. 368–375.

[66] J. Auslander, M. Philipose, C. Chambers, S. J. Eggers, and B. N. Bershad, “Fast,

effective dynamic compilation,” in Proceedings of the ACM SIGPLAN 1996

Conference on Programming Language Design and Implementation (PLDI’96),

Philadelphia, PA, May 1996, pp. 149–159.

[67] C. Consel, L. Hornof, R. Marlet, G. Muller, S. Thibault, and E.-N. Volanschi,

104

“Tempo: specializing systems applications and beyond,” ACM Computing Sur-

veys, vol. 30, no. 3es, p. 19, 1998.

[68] M. J. Voss and R. Eigenmann, “High-level adaptive program optimization with

ADAPT,” in Proceedings of the 8th ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming (PPOPP’01), Snowbird, UT, June 2001,

pp. 93–102.

[69] V. Bala, E. Duesterwald, and S. Banerjia, “DYNAMO: a transparent dynamic

optimization system,” in Proceedings of the ACM SIGPLAN 2000 Conference

on Programming Language Design and Implementation (PLDI’00), Vancouver,

BC, Canada, May 2000, pp. 1–12.

[70] M. P. Plezbert and R. K. Cytron, “Does ’just in time’ = ’better late than

never?’,” in Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages (POPL’97), Paris, France, Jan. 1997, pp.

132–145.

[71] E. Gutierrez, O. G. Plata, and E. L. Zapata, “A compiler method for the parallel

execution of irregular reductions in scalable shared memory multiprocessors,”

in Proceedings of the 14th ACM International Conference on Supercomputing

(ICS’00), Santa Fe, NM, May 2000, pp. 78–87.

[72] H. Han and C.-W. Tseng, “A comparison of parallelization techniques for irregu-

lar reductions,” in Proceedings of the 15th International Parallel and Distributed

Processing Symposium (IPDPS’01), San Francisco, CA, Apr. 2001, p. 27.

[73] G. M. Zoppetti, G. Agrawal, and R. Kumar, “Compiler and runtime support

for irregular reductions on a multithreaded architecture,” in CDROM/Abstracts

105

Proceedings of the 16th International Parallel and Distributed Processing Sym-

posium (IPDPS’02), Fort Lauderdale, FL, Apr. 2002.

[74] T. Kurc, C. Chang, R. Ferreira, A. Sussman, and J. Saltz, “Querying very

large multi-dimensional datasets in ADR,” in CDROM Proceedings of the 1999

ACM/IEEE Conference on Supercomputing — SC’99 (Conference on High Per-

formance Networking and Computing), Portland, OR, Nov. 1999.

[75] U. Banerjee, Dependence Analysis for Supercomputing. Norwell, MA: Kluwer

Academic Publishers, 1988.

[76] W. Pugh, “The Omega test: A fast and practical integer programming algorithm

for dependence analysis,” in Proceedings Supercomputing ’91, Albuquerque, NM,

Nov. 1991, pp. 4–13.

[77] W. Blume and R. Eigenmann, “The Range test: A dependence test for symbolic,

non-linear expressions,” in Proceedings Supercomputing ’94, Washington D.C.,

Nov. 1994, pp. 528–537.

[78] J. Gu, Z. Li, and G. Lee, “Experience with efficient array data flow analysis for

array privatization,” in Proceedings of the 6th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming (PPOPP’97), Las Vegas, NV,

June 1997, pp. 157–167.

[79] Y. Lin and D. A. Padua, “Compiler analysis of irregular memory accesses,” in

Proceedings of the ACM SIGPLAN 2000 Conference on Programming Language

Design and Implementation (PLDI’00), Vancouver, BC, Canada, June 2000, pp.

157–168.

[80] M. Hall, J. Anderson, S. Amarasinghe, B. Murphy, S.-W. Liao, E. Bugnion, and

106

M. Lam, “Maximizing multiprocessor performance with the SUIF compiler,”

IEEE Computer, vol. 29, no. 12, pp. 84–89, Dec. 1996.

[81] W. Blume, R. Eigenmann, K. Faigin, J. Grout, J. Hoeflinger, D. A. Padua, P. Pe-

tersen, W. M. Pottenger, L. Rauchwerger, P. Tu, and S. Weatherford, “Polaris:

The next generation in parallelizing compilers,” in Proceedings of the 7th An-

nual Workshop on Languages and Compilers for Parallel Computing (LCPC’94),

Ithaca, NY, Aug. 1994, pp. 141–154.

[82] M. Gupta and R. Nim, “Techniques for speculative run-time parallelization of

loops,” in CDROM Proceedings of the 1998 ACM/IEEE Conference on Super-

computing — SC’98 (Conference on High Performance Networking and Com-

puting), San Jose, CA, Nov. 1998.

[83] S. Rus, L. Rauchwerger, and J. Hoeflinger, “Hybrid analysis: Static & dynamic

memory reference analysis,” in Proceedings of the 16th ACM International Con-

ference on Supercomputing (ICS’02), New York, NY, June 2002, pp. 274–284.

107

VITA

Hao Yu was born on December 22, 1972 in Datong, Shanxi Province, PR China.

In 1989, he entered Tsinghua University and received his B.S. and M.S. degrees in

Computer Science in 1994 and 1997, respectively. He began pursuing a Ph.D. degree

in Computer Science at Texas A&M University in 1997. Since then, he has worked as

a graduate research assistant for Dr. Lawrence Rauchwerger and in the Texas A&M

Supercomputing Center.

