
ON STRONG FAULT TOLERANCE (OR STRONG

MENGER-CONNECTIVITY) OF MULTICOMPUTER NETWORKS

A Dissertation

by

EUNSEUK OH

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2004

Major Subject: Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/4268742?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ON STRONG FAULT TOLERANCE (OR STRONG

MENGER-CONNECTIVITY) OF MULTICOMPUTER NETWORKS

A Dissertation

by

EUNSEUK OH

Submitted to Texas A&M University
in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Approved as to style and content by:

Jianer Chen
(Chair of Committee)

Donald K. Friesen
(Member)

Jennifer L. Welch
(Member)

Gwan Choi
(Member)

Valerie E. Taylor
(Head of Department)

August 2004

Major Subject: Computer Science

iii

ABSTRACT

On Strong Fault Tolerance (or Strong Menger-Connectivity) of Multicomputer

Networks. (August 2004)

Eunseuk Oh, B.S., Hallym University, Korea;

M.S., Ewha Womans University, Korea

Chair of Advisory Committee: Dr. Jianer Chen

As the size of networks increases continuously, dealing with networks with

faulty nodes becomes unavoidable. In this dissertation, we introduce a new measure

for network fault tolerance, the strong fault tolerance (or strong Menger-connectivity)

in multicomputer networks, and study the strong fault tolerance for popular multi-

computer network structures. Let G be a network in which all nodes have degree d.

We say that G is strongly fault tolerant if it has the following property: Let Gf be a

copy of G with at most d− 2 faulty nodes. Then for any pair of non-faulty nodes u

and v in Gf , there are min{degf (u), degf (v)} node-disjoint paths in Gf from u to v,

where degf (u) and degf (v) are the degrees of the nodes u and v in Gf , respectively.

First we study the strong fault tolerance for the popular network structures such

as star networks and hypercube networks. We show that the star networks and the

hypercube networks are strongly fault tolerant and develop efficient algorithms that

construct the maximum number of node-disjoint paths of nearly optimal or optimal

length in these networks when they contain faulty nodes. Our algorithms are optimal

in terms of their time complexity.

In addition to studying the strong fault tolerance, we also investigate a more

realistic concept to describe the ability of networks for tolerating faults. The tradi-

tional definition of fault tolerance, sustaining at most d− 1 faulty nodes for a regular

iv

graph G of degree d, reflects a very rare situation. In many cases, there is a chance

that a routing path between two given nodes can be constructed though the net-

work may have more faulty nodes than its degree. In this dissertation, we study the

fault tolerance of hypercube networks under a probability model. When each node

of the n-dimensional hypercube network has an independent failure probability p, we

develop algorithms that, with very high probability, can construct a fault-free path

when the hypercube network can sustain up to 2np faulty nodes.

v

To my husband Pablo and my son Josh

vi

ACKNOWLEDGMENTS

First of all, I would like to express my profound gratitude to my advisor, Dr.

Jianer Chen. His guidance and patience made this dissertation possible. His instruc-

tion and insight from the formative stages of the research through the final stages

provided valuable direction to my work.

I am also thankful to the members of my committee, Dr. Donald K. Friesen, Dr.

Jennifer L. Welch, and Dr. Gwan Choi for their encouragement and advice on my

research, as well as Dr. David N. McMurray who served as the Graduate Counsel

Representative on my committee.

Special thanks are due to Dr. Hongsik Choi and Dr. Hyeong-Ok Lee, who have

given me their constant support and advice. I am also grateful to my friends, Dr. Tao

Wang and Dr. Iyad Kanj. As friends and collaborators, they continuously encouraged

and supported me in many ways and made my graduate life more enjoyable and

memorable. I also gratefully acknowledge my friends Jong-Seok Kim and Seo-Young

Ahn for their support and encouragement.

Most of all, thanks to my family who were always there when I needed them.

They were always supportive throughout my research and gave me unconditional love.

I dedicate this dissertation to my family.

vii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

A. Overview . 1

B. Strong Fault Tolerance . 3

C. Routing in Hypercube Networks with High Success

Probability . 8

D. Scope and Organization of the Dissertation 9

II STRONG FAULT TOLERANCE OF THE STAR NETWORKS 11

A. Chapter Overview . 11

B. Properties of Star Networks 12

C. Bridging Paths from a Node to a Substar 16

D. Parallel Routing Algorithm on Faulty Star Networks . . . 23

E. Chapter Summary . 33

III STRONG FAULT TOLERANCE OF THE HYPERCUBE

NETWORKS . 34

A. Chapter Overview . 34

B. Properties of Hypercube Networks 35

C. Case 1: u and v have no Faulty Neighbors 36

D. Case 2: u or v has faulty neighbors 50

E. Parallel Routing Algorithm on Faulty Hypercube Networks 86

F. Chapter Summary . 88

IV ROUTING IN HYPERCUBE NETWORKS WITH FAULTS . . 90

A. Chapter Overview . 90

B. L2-Routing . 90

C. L2-Parallel-Routing . 102

D. Chapter Summary . 106

V CONCLUSIONS . 108

A. Thesis Summary . 108

B. Future Research . 109

viii

Page

REFERENCES . 111

VITA . 118

ix

LIST OF TABLES

TABLE Page

I Edges paired by Prematch-III when r = 4 and n = 6 52

II Success probability of the algorithm L2-Routing 102

III Success probability of the algorithm L2-Parallel-Routing 106

x

LIST OF FIGURES

FIGURE Page

1 Bridging paths from node u to substar Sn[j]: (A) u is in Sn[1];

(B) u is in Sn[i] . 19

2 Parallel routing on the star network with faulty nodes 24

3 Parallel routing on the hypercube network with faulty nodes when

u and v have no faulty neighbors . 45

4 Parallel edge-pairing on the hypercube network with faulty nodes

when both u and v have faulty neighbors 60

5 The algorithm Augmenting . 61

6 The algorithm Augmenting-I . 61

7 The algorithm Aug-I . 62

8 The algorithm Aug-II . 63

9 The algorithm BFS . 70

10 The algorithm Augmenting-II . 78

11 The algorithm Aug-III . 79

12 The algorithm Aug-IV . 80

13 Parallel routing on the hypercube network with faulty nodes 86

14 The algorithm L2-Routing . 91

15 Illustration of the algorithm L2-Routing (“⊗”: faulty nodes, “•”:

non-faulty nodes) . 92

16 The case wj−2 is not adjacent to wj−1 97

17 The algorithm L2-Parallel-Routing 103

1

CHAPTER I

INTRODUCTION

A. Overview

Parallel computing has emerged because of the increasing size and complexity of

computer problems. There is a large class of problems that can be broken down into

smaller tasks and solved efficiently in parallel fashion such as image processing, mod-

eling, and simulation. For such problems, the computational time can be significantly

reduced by using a parallel computer which consists of processors that can work si-

multaneously on different parts of the problem. With increasingly faster and cheaper

processors, parallel computers with a large number of processors have become feasible

and realizable. The number of processors connected for a parallel computer can range

from tens to several millions.

The topology of a parallel computer is called its interconnection network, which

is often modeled as a graph where a processor is represented as a node, and a commu-

nication channel between processors is an edge between corresponding nodes. When

an interconnection network is represented by such a graph, the fault tolerance is often

measured by the vertex connectivity of the corresponding graph. The fault tolerance

of the interconnection networks is the maximum number of nodes that can fail with-

out preventing other non-faulty nodes from communicating. Formally speaking, the

fault tolerance of a graph G is the maximum integer k that does not make G discon-

nect by removing any k nodes [2]. Thus, it is easy to observe that the fault tolerance

of G is precisely one less than its connectivity. Menger [41] showed that if a graph G

is d-connected, then every pair of nodes in G is connected by at least d node-disjoint

The journal model is IEEE Transactions on Computers.

2

paths. Assured by Menger’s theorem, node-disjoint paths have been used to study

the fault tolerance of interconnection networks.

With continuous increases in network size, routing in networks with faults has

become unavoidable. Routing through node-disjoint paths between nodes can not

only provide alternative routes to tolerate faulty nodes but also avoid communication

bottlenecks. Moreover, routing through node-disjoint paths can speed up the trans-

mission time by distributing data among disjoint paths. Thus, the study of disjoint

paths connecting any two nodes can be useful for increasing the reliability of inter-

connection networks, as well as transmission efficiency. A larger number of disjoint

paths is more desirable because of less vulnerability to disconnection.

The study of node-disjoint paths varies according to the number of source and

destination nodes. There are three well-known paradigms: one-to-one routing that

constructs the maximum number of node-disjoint paths in the network between two

given nodes, one-to-many routing that constructs node-disjoint paths in the network

from a given node to a given set of nodes, and many-to-many routing that constructs

node-disjoint paths between a given set of nodes. Using these paradigms, node-

disjoint paths have been extensively studied on networks [8, 18, 26]. Most research on

constructing node-disjoint paths is done in graphs without faults. In this dissertation,

we introduce the concept of strong fault tolerance which characterizes the property of

parallel routing in a network with faulty nodes. We study this strong fault tolerance

on popular interconnection networks such as the star networks and the hypercube

networks. One of our goals is to develop algorithms that in optimal time, construct

node-disjoint paths between two given nodes on interconnection networks with faulty

nodes whose lengths are bounded by the shortest path length plus an additional small

constant.

For a regular graph G of degree d, it can sustain at most d − 1 faulty nodes to

3

guarantee that all non-faulty nodes are connected. It is because a node in G will

be disconnected from G if all neighbors of that node are removed. This traditional

definition of fault tolerance for regular graphs reflects a very rare situation in that

all neighbors incident on a node are faulty. In many cases, for two given nodes in a

regular graph G, there is a chance that a routing path can be constructed between

them though G may have more faulty nodes than its degree. Thus, the traditional

definition of fault tolerance often underestimates the ability of networks to tolerate

network faults; therefore, a more realistic concept to describe a network’s ability to

tolerate faults is needed. One is the probability model. For any two given nodes in a

network, if with very high probability, we can construct a path between them, then

the probability that the network is connected would be very high. We investigate the

fault tolerance of hypercube networks under the probability model. In this research,

our goal is to find routing algorithms that, with very high probability, construct a

fault-free path between any two given nodes in hypercube networks, where hypercube

networks can possibly be disconnected.

B. Strong Fault Tolerance

If two non-faulty nodes u and v of a given graph G are known, then we can easily

detect the number of non-faulty neighbors of the nodes u and v. Based on this

local information, constructing the maximum number of node-disjoint fault-free paths

between them and analyzing the precise bound on the size of the number of faulty

nodes allowed are interesting. Let Gf be a copy of a network G with a set Sf of

faulty nodes, and u and v be non-faulty nodes in Gf . Then, we know degf (u) and

degf (v), where degf (u) and degf (v) are the degrees of the nodes u and v in Gf . We

are interested in constructing the maximum number of node-disjoint paths between

4

u and v in Gf . Obviously, the number of node-disjoint paths between u and v in

Gf cannot be larger than min{degf (u), degf (v)}. Motivated by this observation, we

introduce a new measure for network fault tolerance: the strong fault tolerance.

Bound on the size of the faulty node set: We are interested in knowing the

precise bound on the size of the faulty node set Sf such that for any two non-faulty

nodes u and v in Gf , there are min{degf (u), degf (v)} node-disjoint paths between

them. We observed that if the network G has all its nodes of degree d, then in

general the number of faulty nodes in the set Sf should not exceed d − 2 to ensure

min{degf (u), degf (v)} node-disjoint paths between u and v in Gf . This can be seen

as follows. Let u and v be two nodes in G whose distance is larger than 3. Pick

any neighbor u′ of u and remove the d− 1 neighbors of u′ that are not u. Note that

no neighbor of u′ can be a neighbor of v since the distance from u to v is at least

4. Let the resulting network be Gf . The degrees of the nodes u and v in Gf are d.

However, there are obviously no d node-disjoint paths in Gf from u to v since one of

the d neighbors of u in Gf , the u′, leads to a “deadend”. This motivates the following

definition.

Definition A regular network G of degree d is strongly fault tolerant (or strongly

Menger-connected) if for any copy Gf of G with at most d−2 faulty nodes, every pair

of non-faulty nodes u and v are connected by min{degf (u), degf (v)} node-disjoint

paths in Gf .

Strong fault tolerance characterizes the property of parallel routing in a network

with faulty nodes. Since one of the motivations of network parallel routing is to

provide alternative routing paths when failures occur, strong fault tolerance can also

be regarded as the study of fault tolerance in networks with faults. Parallel routing

5

on networks without faulty nodes has been studied, but there does not appear to

be a systematic study on parallel routing on networks with faults. We study this

strong fault tolerance of two extensively studied interconnection structures, the star

networks and the hypercube networks. First, we give a brief review of previous related

research on these networks.

The n-dimensional star network Sn is an undirected graph consisting of nodes of

degree n − 1. The star network has received considerable attention as an attractive

alternative to the hypercube network model because of its rich structure, smaller

diameter, lower degree, and symmetry properties [2, 54].

Parallel routing on star networks without faulty nodes has been studied in lit-

erature. Sur and Srimani [54] demonstrated that n − 1 node-disjoint paths can be

constructed between any two nodes in Sn in polynomial time. Dietzfelbinger, Mad-

havapeddy, and Sudborough [18] derived an improved algorithm that constructs n−1

node-disjoint paths of length bounded by 4 plus the diameter of Sn. The algorithm

was further improved by Day and Tripathi [17] who developed an efficient algorithm

that constructs n − 1 node-disjoint paths of length bounded by 4 plus the shortest

path length between any two nodes in the star networks. In particular, Chen and

Chen [7] developed an efficient algorithm that constructs n − 1 node-disjoint paths

of optimal length for any two given nodes in Sn. Chen and Chen [8] also studied the

problem of constructing node-disjoint paths between a node and a set of nodes. Gu

and Peng [26] studied the problem of constructing node-disjoint paths connecting a

set of nodes in star networks.

Fault tolerance on the star networks has been studied. The general fault tolerance

properties of the star networks were first studied and analyzed in [1, 2, 3]. The

problem of determining the diameter of a star network with faults was considered in

[3, 23, 34, 51]. Algorithms for node-to-node routing in star networks with faults were

6

developed in [6, 25]. Broadcasting algorithms in star networks with faults have been

considered by a number of researchers [6, 21, 23, 36, 42].

The n-dimensional hypercube network Qn is an undirected graph consisting of

nodes of degree n. The hypercube networks are among the earliest and remain as one

of the most important and attractive network models for multicomputer systems. It

has been used for designing various commercial multiprocessor machines [53].

Saad and Schultz [52] first studied parallel routing on hypercube networks with-

out faulty nodes. Madhavapeddy and Sudborough [40] developed an algorithm that

constructs node-disjoint paths between disjoint source-destination pairs in the hyper-

cube networks. Gu and Peng [28] also proposed an efficient algorithm for the pairwise

disjoint paths between disjoint source-destination pairs. Latifi, Ko, and Srimani [35]

provided a simple algorithm that constructs disjoint paths between one node and

a set of nodes. Krishnamoorthy and Krishnamurthy [32] considered the problem

of determining the diameter of hypercube networks with faulty nodes. Under the

constraint that each non-faulty node must have at least one non-faulty neighbor,

Latifi [33] studied the node-disjoint paths in hypercube networks with faulty nodes.

Latifi used the node-disjoint paths as the method to derive the diameter of the hy-

percube network with faulty nodes. Many fault-tolerant communication algorithms

concentrating on one-to-one routing or broadcasting in hypercube networks have been

proposed [12, 13, 20, 24, 37, 38, 44, 50].

There are studies on fault tolerant routings involving the surviving route graph,

where the diameter of the surviving graph is a measure of the worst case time to

complete a broadcast. Dolev, Halpern, Simons, and Strong [19] studied the effects

of faulty nodes and edges on the diameter of the surviving route graph. Broder,

Dolev, Fischer, and Simons [5] applied the concept in [19] to the product graph, a

cartesian product of component graphs. They derived the fault tolerant properties

7

of the product graphs from the analysis of the surviving route graphs on the compo-

nent graphs. Peleg and Simons [47] further studied a group of graphs such that the

diameter of the surviving graph is bounded by a constant. They developed a routing

method called the kernel construction, which can be used to construct disjoint paths

between two given nodes. Based on the concept of surviving route graph, Rescigno

and Vaccaro [49, 51] studied the fault tolerance of star and hypercube networks. In

addition, Rescigno [49] applied the kernel construction approach to study randomized

parallel routing in star networks. Rescigno’s algorithm is randomized, thus, it does

not always guarantee the maximum number of node-disjoint paths.

Also, there are related studies that utilize node or edge-disjoint paths on other

fault-prone communication networks such as optical and mobile networks. In such

networks, connectivity is related to the concept of network survivability that deals

with a mechanism to protect resources against failures. A common approach to

recover from failures is to provide an alternate path. In optical routing, link failures

are common due to backhoe accidents. Choi, Subramaniam, and Choi [15, 16] utilized

edge-disjoint paths to construct backup paths for failed edges. In mobile networks,

multiple-path methods have been studied for designing routing algorithms to deliver

messages with high success rates and low flooding rates. Lin and Stojmenovic [39]

showed that desirable success rates and flooding rates can be achieved by using c

disjoint paths, where c is a small constant. Other routing schemes that utilize multiple

paths have been proposed [43, 45, 55]. In addition to study of disjoint paths, there

are some efforts to characterize connectivity and fault tolerance of mobile networks in

different contexts [22, 31, 46]. Specifically, Goyal and Caffery [22] suggest an approach

that builds upon connectivity concepts in graph theory.

First, we study the strong fault tolerance for the star networks. Taking advantage

of the orthogonal decomposition of the star networks, we develop an efficient algorithm

8

that constructs node-disjoint paths between any two non-faulty nodes in n-star net-

work Sn with at most n− 3 faulty nodes: for any two non-faulty nodes u and v, our

algorithm constructs min{degf (u), degf (v)} node-disjoint paths of minimum length

plus a small constant between u and v.

Hypercube networks do not have a similar orthogonal decomposition structure.

Thus, the techniques in parallel routing for the star networks with faults are not

applicable to hypercube networks. In order to effectively route parallel paths in

the hypercube networks with faults, we develop new techniques that pre-match the

neighbors of two given nodes. Based on these techniques, we develop an algorithm

that constructs min{degf (u), degf (v)} node-disjoint paths of optimal length for any

pair of nodes u and v in the n-dimensional hypercube network with at most n − 2

faulty nodes.

For both the star networks and the hypercube networks, the time complexity of

our algorithm is optimal.

C. Routing in Hypercube Networks with High Success Probability

Since n-dimensional hypercube Qn is a regular graph of degree n, the fault tolerance of

Qn is n−1. The fault tolerance n−1 reflects only a very rare situation. In most cases,

the hypercube network is still connected when there are more than n−1 faulty nodes.

Though nodes in the hypercube network are disconnected, there is a chance that a

routing path can be constructed between two given nodes. Recently, Chen, Wang,

and Chen [10, 11] introduced a new model of connectivity where local connectivity

of small subcubes implies the global connectivity of the whole hypercube network.

The advantage of using their model is that a probability derived for a subpath in a

subcube or between subcubes allows us to derive the probability for the path in the

9

entire hypercube network. Based on their model, we find a routing path consisting

of subpaths between subcubes plus subpaths inside subcubes. If, with very high

probability, we can construct a subpath between two subcubes or inside a subcube,

then the probability that we can find a path from the source node to the destination

node will be high. In this research, we find an algorithm that, with very high success

probability, can construct a fault-free path without considering the global connectivity

of the hypercube network.

Substantial work has been done on fault tolerant routing in hypercube networks.

For example, Gu and Peng [24, 27] provide a fault tolerant routing scheme. We intro-

duce research on fault tolerance in hypercube networks with a probabilistic approach.

Chen and Shin [14] proposed a routing scheme using depth-first search with an arbi-

trary number of faulty nodes. They showed that depth-first search routing can use

an optimal path with very high probability. Chen, Wang, and Chen [11] analyzed

the probability of the global connectivity of a hypercube network with faulty nodes.

They partitioned a hypercube network into subcubes, and derived the probability of

the global connectivity of the entire hypercube network from the local connectivity

of each subcube. Chen, Kanj, and Wang [9] derived lower bounds for the probability

of fault tolerance of hypercube networks with a large number of faulty nodes. Their

probability analysis is based on the measure for connectivity of hypercube networks.

D. Scope and Organization of the Dissertation

The objective of this research is to further study parallel routing and fault tolerance

on contemporary interconnection networks. The dissertation is organized as follows:

In Chapter II, we study parallel routing in star networks with faulty nodes. First,

we present the concept of bridging paths that connect a given node to a specific substar

10

network in the star network. Based on this concept, we develop an efficient algorithm

that constructs node-disjoint paths between any two non-faulty nodes in the n-star

network with at most n − 3 faulty nodes: for any two non-faulty nodes u and v in

the star network, our algorithm to find min{degf (u), degf (v)} node-disjoint paths.

In Chapter III, we continue studying parallel routing in hypercube networks with

faulty nodes. The techniques used in the study of star networks are not applicable

to hypercube networks. We provide new approaches that construct node-disjoint

paths between pairs of neighbors of two given nodes. Our study is divided into two

cases depending on whether neighbors of two given nodes are faulty or not. In case

there are no faulty neighbors for both source and destination nodes, we pre-pair the

neighbors of the source and the destination nodes by a process, called Prematch-I.

There is a special situation that may block all possible sets of parallel paths between

two neighbors of the source and the destination nodes induced from Prematch-I.

In this situation, we use a different process, called Prematch-II. The third process

Prematch-III covers the case where there is at least one faulty neighbor of the

source or the destination. In Chapter IV, we discuss routing algorithms on hypercube

networks that lead to different success probabilities. The success probability of each

routing algorithm is analyzed as well as time complexity and the length of path.

Numerical results on success probabilities for each routing algorithm are given for

hypercube networks whose dimension is selected between 10 and 40. In Chapter V,

we conclude the dissertation, in which the major contributions of this dissertation are

summarized, along with future research directions.

11

CHAPTER II

STRONG FAULT TOLERANCE OF THE STAR NETWORKS

A. Chapter Overview

In this chapter, we study the strong fault tolerance for the star networks. The n-

dimensional star network Sn (or simply the n-star network) is an undirected graph

consisting of n! nodes labeled with n! permutations on symbols {1, 2, . . . , n}. There

is an edge between two nodes u and v in Sn if and only if the permutation label for

v can be obtained from the permutation label for u by exchanging the positions of

the first symbol and another symbol, or by exchanging the first symbol and another

symbol in u. Thus, the n-star graph has all its nodes of degree n − 1. From the

definition of strong fault tolerance, the number of faulty nodes that Sn can contain

is less than n− 3.

For the n-star network Sn, let Sn[i] be the set of nodes in which the symbol 1

is at the ith position. Akers, Harel, and Krishnamurthy [1] showed that Sn can be

decomposed into subsets such that the set Sn[1] is an independent set, and the set

Sn[i] for i 6= 1 is an (n− 1)-star network. This decomposition is called orthogonal de-

composition structure of the star networks. We observe that the orthogonal partition

of star networks seems very convenient for the construction of node-disjoint paths.

We basically can construct a path in each substar which ensures that the constructed

path in each substar is node-disjoint from the other paths. Since we assume that an

n-star network can have at most n− 3 faulty nodes, a fault-free path in each (n− 1)-

substar can be obtained by applying Day and Tripathi’s algorithm [17]. From this

observation, we developed the concept of bridging paths that connect a given node

to a specific substar network in the n-star network. We develop our parallel routing

12

algorithm based heavily on this concept of bridging paths.

We show that the star networks are strongly fault tolerant and develop an efficient

algorithm that constructs node-disjoint paths between any two nodes in the n-star

network Sn with at most n− 3 faulty nodes: for any two non-faulty nodes u and v in

the network, our algorithm constructs, in time O(n2), min{degf (u), degf (v)} node-

disjoint paths of minimum length plus a small constant between u and v. The time

complexity of our algorithm is optimal and our algorithm requires no prior knowledge

of faulty nodes.

B. Properties of Star Networks

A permutation u = 〈a1a2 · · · an〉 of the symbols 1, 2, . . . , n can be given by a product

of disjoint cycles [4], which is called the cycle structure of the permutation. A cycle

is nontrivial if it contains more than one symbol. Otherwise the cycle is trivial. The

cycle containing the symbol 1 will be called the primary cycle. For example, the per-

mutation 〈32541〉 has the cycle structure (351)(2)(4). The cycles can be interpreted

as follows: the primary cycle (351) indicates that 3 is at 1’s position, 5 is at 3’s posi-

tion, and 1 is at 5’s position. The trivial cycles (2) and (4) indicate that 2 and 4 are

in their “correct” positions.

We define two groups of operations ρi and σa on permutations as follows. Given a

permutation u, for each position i, 1 ≤ i ≤ n, and for each symbol a in {1, 2, . . . , n},
ρi(u) is the permutation obtained from u by exchanging the first symbol and ith

symbol in u, and σa(u) is the permutation obtained from u by exchanging the first

symbol and the symbol a in u.

Let us consider how these operations change the cycle structure of a permutation.

13

Write u in its cycle structure

u = (a11 · · · a1n1 1)(a21 · · · a2n2) · · · (ak1 · · · aknk
)

If the ith symbol a of u is not in the primary cycle, then ρi(u) = σa(u) “merges” the

cycle containing a into the primary cycle. More precisely, suppose that a = a21 (note

that each cycle can be cyclically permuted and the order of the cycles is irrelevant),

then the permutation ρi(u) = σa(u) will have the cycle structure:

ρi(u) = σa(u) = (a21 · · · a2n2a11 · · · a1n1 1)(a31 · · · a3n3) · · · (ak1 · · · aknk
)

If the ith symbol a is in the primary cycle, then ρi(u) = σa(u) “splits” the primary

cycle into two cycles. More precisely, suppose that a = a1j, where 1 ≤ j ≤ n1+1 (here

we have let a1n1+1 = 1), then ρi(u) = σa(u) will have the following cycle structure:

ρi(u) = σa(u) = (a11 · · · a1j−1)(a1j · · · a1n11)(a21 · · · a2n2) · · · (ak1 · · · aknk
)

In particular, if a = a12, then we say that the operation ρi “deletes” the symbol a11

from the primary cycle.

Since the nodes in the n-star network Sn are labeled by the permutations on the

symbols {1, 2, . . . , n}, throughout this paper, we assume that each node in the n-star

network Sn is given by its corresponding permutation. By the definition of the n-star

network Sn, each node u is adjacent to the n−1 nodes ρi(u), 2 ≤ i ≤ n. Equivalently,

the n − 1 neighbors of u are the n − 1 permutations σa(u), where a is any symbol

in {1, 2, . . . , n} except the first symbol in u. A path in Sn from a node u to a node

v corresponds to a sequence of nodes obtained by applying the operations ρi or σa,

starting from the node u and ending at the node v.

Denote by ε the node labeled by the identity permutation, ε = 〈12 · · ·n〉. Since

the n-star network Sn is vertex-symmetric [2], a set of node-disjoint paths from a

14

node u to a node v can be mapped to a set of node-disjoint paths from a node u′

to ε in a straightforward way. Therefore, we will concentrate on the construction of

node-disjoint paths from u to ε in Sn.

Denote the distance from a node u to ε by dist(u). Let u have the cycle structure

u = c1 · · · cke1 · · · em, where ci are nontrivial cycles and ej are trivial cycles. If we

further let l =
∑k

i=1 |ci|, where |ci| denotes the number of symbols in the cycle ci, then

the distance dist(u) from the node u to the identity node ε is given by the following

formula [2].

dist(u) =

l + k if the primary cycle is a trivial cycle

l + k − 2 if the primary cycle is a nontrivial cycle

Combining this formula with the above discussion on the effect of applying the op-

erations ρi and σa on a permutation, we derive the following necessary and sufficient

rules for tracing a shortest path from the node u to the identity node ε in the n-star

network Sn.

Shortest Path Rules

Rule 1. If the primary cycle is a trivial cycle in u, then in the next node

on any shortest path from u to ε, a nontrivial cycle ci is merged into the

primary cycle. This corresponds to applying the operation σa on u with

a ∈ ci;

Rule 2. If the primary cycle c1 = (a11a12 · · · a1n1a1n1+1) is a nontrivial

cycle in u, where a1n1+1 = 1, then in the next node on any shortest path

from u to ε, either a nontrivial cycle ci 6= c1 is merged into the primary

cycle (this corresponds to applying the operation σa on u, where a ∈ ci),

or the symbol a11 is deleted from the primary cycle c1 (this corresponds

to applying the operation σa12 on u).

15

Fact 2.1. A shortest path from u to ε in Sn is obtained by a sequence of

applications of the Shortest Path Rules, starting from the permutation u.

Fact 2.2. If an edge [u, v] in Sn does not lead to a shortest path from u to

ε, then dist(v) = dist(u) + 1. Consequently, let P be a path from u to ε in which

exactly k edges do not follow the Shortest Path Rules, then the length of the path P

is equal to dist(u) + 2k.

Two simple procedures will be used in following a shortest path from a node u to

ε. The first is called the “Delete” procedure, written as → D· · · →, which repeatedly

deletes the first symbol in the non-trivial primary cycle. The second one is called the

“Merge-Delete” procedure [7], written as → M+D· · · →, which works in two stages: first

repeatedly merges in an arbitrary order each of the nontrivial cycles into the primary

cycle, then repeatedly deletes the first symbol in the primary cycle. It is easy to

verify that both the “Delete” procedure and the “Merge-Delete” procedure follow the

Shortest Path Rules strictly.

For the n-star network Sn, let Sn[i] be the set of nodes in which the symbol 1

is at the ith position. Then the set Sn[1] is an independent set (i.e., no two nodes

in Sn[1] are adjacent to each other), and the subgraph induced by the set Sn[i] for

i 6= 1 is a (n− 1)-dimensional star network (which will also be called a “substar” and

denoted as Sn[i] without any confusion). Note that a node is in the substar Sn[i],

i 6= 1, if and only if the primary cycle of the node is of form (· · · i1), and a node is in

Sn[1] if and only if the primary cycle of the node is a trivial cycle (1).

A nice property of the Delete procedure and Merge-Delete procedure is that if

they start with a node u in the substar Sn[i], i 6= 1, then all nodes, possibly except

the last one, on the constructed shortest path are also in the substar Sn[i].

16

C. Bridging Paths from a Node to a Substar

Our parallel routing algorithm is heavily based on the concept of bridging paths that

connect a given node to a specific substar network in the n-star network. In this

section, we give formal definitions for bridging paths, and study its properties. We

will also consider the complexity of extending a bridging path into a path from the

given node u to the node ε.

The following lemma will serve as a basic tool in our construction of node-disjoint

paths in the parallel routing algorithm.

Lemma C.1 Let u be any non-faulty node in the substar Sn[i] with ki ≤ n− 3 faulty

nodes, i 6= 1. A fault-free path P from u to ρi(ε) can be constructed in Sn[i] in time

O(kin + n) such that at most two edges in P do not follow the Shortest Path Rules.

In case the primary cycle of u is (i1), the constructed path P has at most one edge

not following the Shortest Path Rules.

Proof. We first assume that the substar Sn[i] has no faulty nodes and show that

there are n− 2 node-disjoint paths from u to ρi(ε) in Sn[i].

The node u in Sn[i] has the cycle structure of form (a1a2 · · · api1) ∗ ∗∗, where

“∗ ∗ ∗” stands for the “other cycles” in u.

The n − 2 node-disjoint paths in Sn[i] from the node u to the node ρi(ε) are

constructed as follows (note that the node ρi(ε) has only one nontrivial cycle that is

of form (i1)), where the sequences → D· · · → and → M+D· · · → are the “Delete” and the

“Merge-Delete” procedures described in Section B.

For each h, 1 ≤ h ≤ p, we construct a path from u to ρi(ε) in Sn[i], as follows:

u = (a1 · · · api1) ∗ ∗∗ → (ah+1 · · · api1)(a1 · · · ah) ∗ ∗∗ → D· · · → (2.1)

17

(i1)(a1 · · · ah) ∗ ∗∗ → (a1 · · · ahi1) ∗ ∗∗ → M+D· · · → (ahi1)→ (i1) = ρi(ε) (2.2)

This path is disjoint with the other constructed paths because the first part of it

contains a unique cycle (a1 · · · ah) while the second part of it contains a cycle with a

unique pattern (· · · ahi1). It is easy to verify that at most two edges in this path do

not follow the Shortest Path Rules.

For each symbol b not in the primary cycle, we construct a path from u to ρi(ε)

in Sn[i] as follows (note that the symbols in each cycle can be cyclically rotated):

u = (a1 · · · api1) ∗ ∗∗ σb→ (b · · · b′a1 · · · api1) ∗ ∗∗ → D· · · → (2.3)

→ (b′a1 · · · api1) ∗ ∗∗ → (b′a1 · · · ap)(i1) ∗ ∗∗ → (a1 · · · apb
′i1) ∗ ∗∗ → (2.4)

→ D· · · → (b′i1) ∗ ∗∗ → M+D· · · → (b′i1)→ (i1) (2.5)

This path is disjoint with the other constructed paths because the first part of it

contains a cycle of a unique pattern (· · · b′a1 · · · api1) (note that each different symbol

b gives a different symbol b′), and the second part of it contains a cycle of a unique

pattern (· · · b′i1). Note that if b is in a nontrivial cycle in u, then the first edge in the

path follows the Shortest Path Rules, and the path has at most one edge not following

the Shortest Path Rules. On the other hand, if b is in a trivial cycle in u, then the

first edge does not follow the Shortest Path Rules, which gives (ba1 · · · api1) ∗ ∗∗, so

we directly get the first pattern in line (2.4), and the rest of the part of the path has

at most one edge not following the Shortest Path Rules (note that if p = 0 then the

node (b′a1 · · · api1) ∗ ∗∗ is the same as the node (b′i1) ∗ ∗∗ in line (2.5)). Thus, in any

case, the path has at most two edges not following the Shortest Path Rules.

Note that lines (2.1)-(2.5) construct exactly n − 2 node-disjoint paths in Sn[i].

It is also easy to verify that the construction of each of these paths takes time O(n),

and is independent of the construction of the other paths.

18

In case the node u has a primary cycle (i1), all the n− 2 paths are constructed

based on the lines (2.4)–(2.5). Let b be any symbol, b 6= 1, i. In this case, if b is in a

trivial cycle in u, then the second node on the path is (bi1) ∗ ∗∗ (the edge from u to

this node does not follow the Shortest Path Rules). Thus, the sequence→ M+D· · · → in

line (2.5) can be applied to (bi1) ∗ ∗∗ directly in which all edges follow the Shortest

Path Rules. Thus, there is exactly one edge on the path not following the Shortest

Path Rules. On the other hand, if b is in a nontrivial cycle in u, then the first edge

from u to (b · · · b′i1) ∗ ∗∗ follows the Shortest Path Rules. Thus, after the sequence

→ D· · · → in line (2.4), we arrive at a node of form (b′i1), on which again the sequence

→ M+D· · · → in line (2.5) can be applied. Thus, in this case, the constructed path is

actually a shortest path.

This concludes that in case the primary cycle of u is (i1), each of the n − 2

node-disjoint paths constructed in (2.1)-(2.5) contains at most one edge not following

the Shortest Path Rules.

Since there are ki ≤ n − 3 faulty nodes in the substar Sn[i], at least one of the

above n − 2 constructed paths contains no faulty nodes. Such a path can be found

by tracing at most ki + 1 of the above n− 2 node-disjoint paths. Since tracing each

such path takes time O(n) and is independent of the construction of the other paths,

we conclude that a fault-free path P from u to ρi(ε) in the substar Sn[i] can be

constructed in time O(kin + n) such that the path P contains at most two edges not

following the Shortest Path Rules, and in case the primary cycle of u is (i1), the path

P contains at most one edge not following the Shortest Path Rules.

The construction of the n− 2 node-disjoint paths from u to ρi(ε) in the substar

Sn[i] in the proof of Lemma C.1 is essentially a modification of the parallel routing

algorithm developed in [17], with the n-star network being replaced by the substar

19

u’

u

u

(B)(A)

u’

S [i]n S [1]n S [j]n S [i]n S [1]n S [j]n

Fig. 1. Bridging paths from node u to substar Sn[j]: (A) u is in Sn[1]; (B) u is in Sn[i]

Sn[i].

Let u be a node in the n-star network Sn, and let u′ be a neighbor of u in the

substar Sn[i], where i 6= 1. From each neighbor v of u′, we can construct a path from

u, via u′ and v, to the substar Sn[1] then to a substar Sn[j], where j 6= 1, i, as follows:

if v is in Sn[1], then the next node is ρj(v), while if v is in Sn[i], then the next two

nodes are v′ = ρi(v) and v′′ = ρj(v
′). This structure will be very important in our

construction of node-disjoint paths in the n-star network. Let us formally define this

as follows:

Definition Let u be a node in the n-star network Sn and u′ be a neighbor of u in

the substar Sn[i], i 6= 1. For each neighbor v of u′, v 6= u, a (u′, j)-bridging path

(of length at most 4) from u to the substar Sn[j], j 6= 1, i, is defined as follows: if

v is in Sn[1] then the path is [u, u′, v, ρj(v)], while if v is in Sn[i] then the path is

[u, u′, v, ρi(v), ρj(ρi(v))].

Thus, from each neighbor u′ in Sn[i] of the node u, i 6= 1, there are n− 2 (u′, j)-

bridging paths of length bounded by 4 that connect the node u to the substar Sn[j].

See Fig. 1 for an intuitive illustration for bridging paths.

20

Since no two nodes in Sn[i] share the same neighbor in Sn[1] and no two nodes in

Sn[1] share the same neighbor in Sn[j], for any neighbor u′ of u, two (u′, j)-bridging

paths from u to Sn[j] have only the nodes u and u′ in common. Moreover, for any

two neighbors u′ and u′′ of u in Sn[i] (in this case, the node u must itself also be in

Sn[i]), since u′ and u′′ have no other common neighbor except u (see, for example,

[8, 17]), a (u′, j)-bridging path from u to Sn[j] and a (u′′, j)-bridging path from u to

Sn[j] share no nodes except u.

Definition Let u be a node in Sn and let u′ be a neighbor of u in Sn[i], i 6= 1.

A (u′, j)-bridging path P from the node u to the substar Sn[j] is divergent if in the

subpath of P from u to Sn[1], there are three edges not following the Shortest Path

Rules.

Note that the subpath from u to Sn[1] of a (u′, j)-bridging path P contains at

most three edges. In particular, if the subpath contains only two edges, then the path

P is automatically non-divergent.

In case there are no faulty nodes in the n-star network, each divergent (u′, j)-

bridging path can be efficiently extended into a path from u to ρj(ε), as shown in the

following lemma.

Lemma C.2 There is an O(n) time algorithm that, given a divergent (u′, j)-bridging

path P from a node u to a substar Sn[j], extends P into a path Q from u to ρj(ε), such

that at most 4 edges in Q do not follow the Shortest Path Rules, and the extended

part is entirely in the substar Sn[j]. Moreover, for two divergent (u′, j)-bridging paths

P1 and P2, the two corresponding extended paths Q1 and Q2 have only the nodes u,

u′, and ρj(ε) in common.

21

Proof. Let P be a divergent (u′, j)-bridging path from the node u to the substar

Sn[j], where u′ is a neighbor of u. Since the path P is divergent, it has length 4 and

the node u′ is in Sn[i], i 6= 1. Thus, the path P can be written as P = {u, u′, v, v′, v′′},
where u′ is in Sn[i], v is a neighbor of u′ in Sn[i], v′ = ρi(v) is in Sn[1], and v′′ = ρj(v

′)

is in Sn[j].

Let u′ = (a1 · · · api1) ∗ ∗∗, where “∗ ∗ ∗” stands for “other cycles”. Since the

edge [u′, v] does not follow the Shortest Path Rules and v is in Sn[i], the node v

must have the form either v = (ba1 · · · api1) ∗ ∗∗, where (b) is a trivial cycle in u′, or

v = (a1 · · · aq)(aq+1 · · · api1) ∗ ∗∗, where 2 ≤ q ≤ p. Now, since [v, v′] is an edge in Sn

and v′ is in Sn[1], the node v′ must be of the form either v′ = (ba1 · · · api)(1) ∗ ∗∗, or

v′ = (aq+1 · · · api)(1)∗∗∗. Moreover, since the edge [v, v′] does not follow the Shortest

Path Rules, when v′ = (aq+1 · · · api)(1) ∗ ∗∗, we must have q + 1 ≤ p. In summary, if

P is a divergent path, then the fourth node v′ on P must be of form (b1b2 · · · i)(1),

where the cycle (b1b2 · · · i) is non-trivial. Moreover, the (u′, j)-bridging path P is

distinguished from other (u′, j)-bridging paths by the symbol b1 in the above format

(i.e., two different divergent (u′, j)-bridging paths will have two different symbols b1

in the above format).

Now consider the fourth edge [v′, v′′] on the path P , where v′′ is in Sn[j], j 6= 1, i.

If the symbol j is in a trivial cycle in the node v′, then j is not in the non-trivial cycle

(b1b2 · · · i). The extended path Q is obtained by:

Q : u→ u′ → v → v′ = (b1b2 · · · i)(1) ∗ ∗∗ → v′′ = (b1b2 · · · i)(j1) ∗ ∗∗ →

→ (b2 · · · ib1j1) ∗ ∗∗ → M+D· · · → (b1j1)→ (j1) = ρj(ε) (2.6)

The extended path Q has no common nodes in Sn[j], except ρj(ε), with the paths

22

extended from the other (u′, j)-bridging paths since the symbol b1 distinguishes the

path Q from other extended paths: the first part of Q has a unique cycle (b1b2 · · · i)
while the second part of Q has a cycle of the unique format (· · · b1j1).

If the symbol j is in a non-trivial cycle in the node v′, then there are two possible

cases:

Case 1. The symbol j is not in the cycle (b1b2 · · · i). The extended path Q is:

Q : u→ u′ → v → v′ = (b1b2 · · · i)(1) ∗ ∗∗ → v′′ = (b1b2 · · · i)(· · · j1) ∗ ∗∗ →

→ D· · · → (b1b2 · · · i)(j1) ∗ ∗∗ → (b2 · · · ib1j1) ∗ ∗∗ → M+D· · · →

→ (b1j1)→ (j1) = ρj(ε) (2.7)

Again, because of the symbol b1, the extended path Q has no common nodes in Sn[j],

except ρj(ε), with the paths extended from the other (u′, j)-bridging paths.

Case 2. The symbol j is in the cycle (b1b2 · · · i).
If j = b1, then (b1b2 · · · i) = (b2 · · · ij), and the path Q is:

Q : u→ u′ → v → v′ = (b2 · · · ij)(1) ∗ ∗∗ → v′′ = (b2 · · · ij1) ∗ ∗∗ →

→ M+D· · · → (ij1)→ (j1) = ρj(ε) (2.8)

This path is node-disjoint from the paths extended from the other (u′, j)-bridging

paths because all nodes of it in Sn[j] contain a cycle with a unique format (· · · ij1).

If j 6= b1, then (b1b2 · · · i) = (b1 · · · j · · · i), and the path Q is:

Q : u→ u′ → v → v′ = (b1 · · · j · · · i)(1) ∗ ∗∗ → v′′ = (· · · ib1 · · · j1) ∗ ∗∗ →

→ (· · · ib1 · · ·)(j1) ∗ ∗∗ → (· · · ib1j1)
M+D· · · → (b1j1)→ (j1) = ρj(ε) (2.9)

Again this path is node-disjoint from the paths extended from the the other (u′, j)-

bridging paths because of the symbol b1.

23

For all cases, we can easily verify that the constructed path Q contains at most

4 edges not following the Shortest Path Rules and that the part of Q extended from

the (u′, j)-bridging path P is entirely in the substar Sn[j]. Finally, from the sequences

(2.6)-(2.9), it can be easily seen that the construction of the extended path Q takes

time O(n) and is independent of the construction of other extended paths.

D. Parallel Routing Algorithm on Faulty Star Networks

We present our parallel routing algorithm on star networks with faults in Fig. 2.

Suppose that the n-star network Sn has at most n−3 faulty nodes. Assume that

the node ε is non-faulty. For each non-faulty node u in Sn, let degf (u) be the degree

of the node u in Sn with the faulty nodes removed. For any given non-faulty node u

in the star network with faults, our algorithm constructs min{degf (u), degf (ε)} node-

disjoint fault-free paths from u to ε such that the length of the paths is bounded by

dist(u) + 8. We provide more detailed explanations for each step of the algorithm

below.

Step 1 of the algorithm constructs certain number of paths between non-faulty

neighbors of the node u and non-faulty neighbors of the node ε. Step 2 of the algorithm

maximally pairs the rest of the non-faulty neighbors of u with the rest of the non-faulty

neighbors of ε. It is easy to see that the number g of pairs constructed in Step 2 plus

the number of paths constructed in Step 1 is exactly min{degf (u), degf (ε)}. Since

Step 3 of the algorithm constructs a path from u to ε for each pair constructed in Step

2, the algorithm Parallel-Routing-Star constructs exactly min{degf (u), degf (ε)}
paths from u to ε. What remains to be seen is how these paths are constructed,

in time O(n2), so that they are fault-free, node-disjoint, and of length bounded by

dist(u) + 8.

24

Algorithm. Parallel-Routing-Star

Input: a non-faulty node u in the n-star network Sn with at most n − 3
faulty nodes.

Output: min{degf (u), degf (ε)} node-disjoint fault-free paths of length ≤
dist(u) + 8 from u to ε.

1. if the node u is in Sn[1]
1.1. then

for each index j 6= 1 such that both ρj(u) and ρj(ε) are non-faulty
do

construct a path Pj of length ≤ dist(u)+6 from u to ε such that
all internal nodes of the path are in Sn[j];

1.2. else (* the node u is in a substar Sn[i], i 6= 1 *)
1.2.1. if the node ρi(ε) is non-faulty

then pick a non-faulty neighbor v of u and construct a path Pv

of length ≤ dist(u) + 4 from u to ε such that all internal
nodes of Pv are in Sn[i] and Pv does not intersect a (u′, j)-
bridging path for any non-faulty neighbor u′ 6= v of u;

1.2.2. if the neighbor u1 = ρi(u) of u in Sn[1] is non-faulty
then find an index j, j 6= 1, i, such that both ρj(u1) and ρj(ε)

are non-faulty, and extend the path [u, u1, ρj(u1)] to
a path P1 of length ≤ dist(u) + 8 from u to ε such that
all nodes between ρj(u1) and ρj(ε) are in Sn[j];

2. let u′1, . . ., u′s and ρj1(ε), . . ., ρjt(ε) be the non-faulty neighbors of u
and ε, respectively, not used in step 1, maximally pair them:
(u′1, ρj1(ε)), . . ., (u′g, ρjg(ε)), where g = min{s, t};

3. for each pair (u′, ρj(ε)) constructed in step 2 do
3.1. if there is a non-divergent (u′, j)-bridging path P with neither

faulty nodes nor nodes used by other paths
then pick this (u′, j)-bridging path P
else pick a divergent (u′, j)-bridging path P with neither faulty

nodes nor nodes used by other paths;
3.2. extend the (u′, j)-bridging path P into a fault-free path Pu′ of

length ≤ dist(u) + 8 from u to ε such that the extended part in Pu′
is entirely in Sn[j];

Fig. 2. Parallel routing on the star network with faulty nodes

25

Step 1 of the algorithm

In case the node u is in Sn[1], for each index j 6= 1 such that both ρj(u) and

ρj(ε) are non-faulty, we construct a path Pj from u to ε such that all internal nodes

of Pj are in the substar Sn[j]. By Lemma C.1, we can construct in time O(kjn + n)

a path Qj without faulty nodes from ρj(u) to ρj(ε) in the substar Sn[j] such that

at most two edges in Qj do not follow the Shortest Path Rules, where kj ≤ n − 3

is the number of faulty nodes in the substar Sn[j]. Thus, the concatenation of the

edge [u, ρj(u)], the path Qj, and the edge [ρj(ε), ε] gives the path Pj without faulty

nodes from u to ε in which at most three edges do not follow the Shortest Path Rules

(note that the edge [ρj(ε), ε] always follows the Shortest Path Rules). By Fact 2.2,

the length of the path Pj is bounded by dist(u) + 6. This path Pj is disjoint with

other paths constructed in Step 1 because all internal nodes of Pj are in the substar

Sn[j] while no other constructed paths use any node in Sn[j].

In case the node u is in a substar Sn[i], i 6= 1, we construct at most two paths

from u to ε in Step 1.

If the node ρi(ε) is non-faulty, by Lemma C.1, we can construct in time O(kin+n)

a path Qv without faulty nodes from u to ρi(ε) in the substar Sn[i] (where v is the

second node on the path) such that at most two edges in Qv do not follow the Shortest

Path Rules, where ki ≤ n − 3 is the number of faulty nodes in Sn[i]. This path Qv

plus the edge [ρi(ε), ε] gives a path Pv of length bounded by dist(u) + 4 in which all

internal nodes are in the substar Sn[i]. Moreover, we need to show that the path Pv

can be constructed without intersecting with any (u′, j)-bridging path from u for any

non-faulty neighbor u′ 6= v of u and any j. Suppose that the path Pv intersects some

(u′, j)-bridging paths for non-faulty neighbors u′ 6= v of u. Let w be the last node

on Pv that belongs to a (u′, j)-bridging path Qu′ for a non-faulty neighbor u′ 6= v of

u and for some index j. Note that the neighbor u′ of u is uniquely determined by

26

the node w since for two different neighbors u′ and u′′ of u in Sn[i], a (u′, j′)-bridging

path and a (u′′, j′′)-bridging path have no common nodes except u. Therefore, we

can use the path Pu′ instead of the path Pv, where Pu′ is the subpath of Qu′ from u

to w plus the subpath of Pv from w to ε. It is easy to verify that the length of the

path Pu′ is not larger than the length of the path Pv, and that the path Pu′ does not

intersect any (u′′, j′′)-bridging path from u for any non-faulty neighbor u′′ 6= u′ of u

and for any j′′ 6= 1, i.

If the neighbor u1 = ρi(u) of u in Sn[1] is non-faulty, consider the n − 2 pairs

(ρj(u1), ρj(ε)) of neighbors of u1 and ε, where j 6= 1, i. Since the n-star network Sn

has at most n− 3 faulty nodes, one of these pairs (ρj(u1), ρj(ε)) has both nodes non-

faulty. By Lemma C.1, a fault-free path Q1 from ρj(u1) to ρj(ε) can be constructed

in the substar Sn[j] in time O(kjn + n) such that at most two edges of Q1 do not

follow the Shortest Path Rules, where kj ≤ n− 3 is the number of faulty nodes in the

substar Sn[j]. Now the concatenation P1 of the path [u, u1, ρj(u1)], the path Q1, and

the edge [ρj(ε), ε] gives a fault-free path from u to ε of length bounded by dist(u)+8.

Note that this path is obviously node-disjoint with the path constructed in Step 1.2.1.

Step 2 of the algorithm

It is easy to see that Step 2 of the algorithm takes time O(n).

Step 3 of the algorithm

We consider Step 3 of the algorithm for two different cases.

Case 3.1. The node u is in Sn[1].

Consider each pair (ρh(u), ρj(ε)) constructed in Step 2. Note we must have h 6= j,

and the nodes ρh(ε) and ρj(u) must be faulty since otherwise the index h or the index

j would have been picked in Step 1.1.

We construct a path Qhj from u to ε by concatenating a (ρh(u), j)-bridging path

27

from u to Sn[j] with a path Q′
j entirely in the substar Sn[j]. Note that such a path

Qhj contains one node in Sn[1] and all other nodes in Sn[h] and Sn[j]. We say that

a node in Sn[1] is occupied if it has been used by a path Qhj for a pair (ρh(u), ρj(ε))

constructed in Step 3 of the algorithm. Inductively, assume that for r pairs in Step

3 of the algorithm, r such node-disjoint paths satisfying the required conditions have

been constructed, r < g. Now we consider the (r + 1)st pair (ρh(u), ρj(ε)).

Each (ρh′(u), ρj′(ε)) of the previous r pairs implies at least two faulty nodes:

the node ρh′(ε) in Sn[h′] and the node ρj′(u) in Sn[j′], and one occupied node in

Sn[1]. Also notice that the paths constructed in Step 1.1 do not use any nodes in

Sn[1]. Thus, the number of faulty nodes in the sets Sn[1], Sn[h], and Sn[j] is at most

(n−3)−2r = n−2r−3. Let kj be the number of faulty nodes in Sn[j], kj ≤ n−2r−3.

Case 3.1.A. There is a non-divergent (ρh(u), j)-bridging path Phj = [u, u′, v, v′, v′′]

with neither faulty nodes nor occupied nodes from u to Sn[j]. Thus, at least one of

the first three edges of Phj follows the Shortest Path Rules. Consider the last edge

[v′, v′′] on Phj

If the edge [v′, v′′] also follows the Shortest Path Rules, then the path Phj has at

most two edges not following the Shortest Path Rules. According to Lemma C.1, we

can construct a path Q′
j without faulty nodes in the substar Sn[j] from v′′ to ρj(ε) in

time O(kjn + n) such that at most two edges in Q′
j do not follow the Shortest Path

Rules. Now the concatenation of the (ρh(u), j)-bridging path Phj, the path Q′
j, and

the edge [ρj(ε), ε] gives a path Pρh(u) without faulty nodes from u to ε such that at

most 4 edges in Pρh(u) do not follow the Shortest Path Rules. By Fact 2.2, the length

of the path Pρh(u) is bounded by dist(u) + 8.

If the edge [v′, v′′] does not follow the Shortest Path Rules, then the path Phj may

have three edges not following the Shortest Path Rules. Since v′ is in Sn[1], it has the

form (1)∗∗∗. Now v′′ is in Sn[j] and the edge [v′, v′′] does not follow the Shortest Path

28

Rules. Thus, v′′ must be of the form (j1) ∗ ∗∗. By Lemma C.1, a path Q′
j without

faulty nodes from v′′ to ρj(ε) in Sn[j] can be constructed in time O(kjn+n) in which

at most one edge does not follow the Shortest Path Rules. Now the concatenation

of the (ρh(u), j)-bridging path Phj, the path Q′
j, and the edge [ρj(ε), ε] gives a path

Pρh(u) without faulty nodes from u to ε in which at most 4 edges do not follow the

Shortest Path Rules. By Fact 2.2, the path Pρh(u) has length of at most dist(u) + 8.

Therefore, in this case, for the pair (ρh(u), ρj(ε)) in Step 3 of the algorithm, we

can always construct, in time O(kjn+ n), a path Pρh(u) with neither faulty nodes nor

occupied nodes and of length bounded by dist(u) + 8 from node u to node ε. This

path is node-disjoint with all previously constructed paths since the part extended

from the (ρh(u), j)-bridging path Phj is entirely in the substar Sn[j] that is not used

by any other paths.

Case 3.1.B. All non-divergent (ρh(u), j)-bridging paths from u to Sn[j] contain

either faulty nodes or occupied nodes.

Total there are n− 2 (ρh(u), j)-bridging paths from u to Sn[j]. Suppose that q′

of them contain either faulty nodes or occupied nodes, and that q = n − 2 − q′ of

them contain neither faulty nodes nor occupied nodes.

We first show q > 0. Assume the contrary q = 0. Then q′ = n−2. Since any two

(ρh(u), j)-bridging paths from u have only the nodes u and ρh(u) in common and there

are at most n−3 faulty nodes in Sn, q′1 of these n−2 (ρh(u), j)-bridging paths contain

only occupied nodes, where q′1 > 0. Each of the rest q′2 = q′−q′1 = n−q′1−2 (ρh(u), j)-

bridging paths contains at least one faulty node. Thus, there are at least q′1 occupied

nodes. In consequence, at least q′1 paths have been constructed by the algorithm for

q′1 pairs (ρh′(u), ρj′(ε)). (Note that each constructed path occupies exactly one node

in the set Sn[1].) Each (ρh′(u), ρj′(ε)) of these pairs implies two faulty nodes ρj′(u)

and ρh′(ε), which cannot be on any of the (ρh(u), j)-bridging paths from u. Thus,

29

the total number of faulty nodes in the n-star network Sn would have been at least

q′2 + 2q′1 = n + q′1 − 2 > n− 3, contradicting the assumption that the n-star network

Sn has at most n − 3 faulty nodes. This shows q > 0, i.e., there is at least one

(ρh(u), j)-bridging path that contains neither faulty nodes nor occupied nodes.

According to the assumption, the q (ρh(u), j)-bridging paths without faulty nodes

and occupied nodes are all divergent. By Lemma C.2, these q (ρh(u), j)-bridging paths

can be extended into q paths from u to ρj(ε) such that each path contains at most

4 edges not following the Shortest Path Rules. The constructed paths contain no

occupied nodes since the extended part of each path is entirely in the substar Sn[j].

Moreover, no two of these q paths share a node that is not u, ρh(u), and ρj(ε).

We claim that at least one of these q extended paths contains no faulty nodes.

To the contrary, if each of these q extended paths contains at least one faulty nodes,

then the total number of faulty nodes in the sets Sn[1], Sn[i], and Sn[j] is at least

q + (q′ − r) = n − r − 2 > n − 2r − 3. (Recall that r is the number of paths that

have been constructed by the algorithm so far. Thus, among the q′ (ρh(u), j)-bridging

paths that contain either faulty nodes or occupied nodes, at least q′− r of them must

contain at least one faulty node each.) This contradicts the fact that there are at

most n− 2r − 3 faulty nodes in the sets Sn[1], Sn[i], and Sn[j].

Thus, an extended path Q′
hj from u to ρj(ε) with neither faulty nodes nor oc-

cupied nodes can be constructed. This path Q′
hj plus the edge [ρj(ε), ε] gives a path

Pρh(u) with neither faulty nodes nor occupied nodes from u to ε in which at most

4 edges do not follow the Shortest Path Rules. Thus, the length of the path Pρh(u)

is bounded by dist(u) + 8. Moreover, the path Pρh(u) can be constructed in time

O(kjn + n) by tracing at most kj + 1 of the extended paths from u to ρj(ε). Finally,

this path is node-disjoint with all previously constructed paths since its extended part

is entirely in the substar Sn[j], which is not used by any other paths.

30

Case 3.2. The node u is in the substar Sn[i], i 6= 1.

In this case, the node u has one neighbor in Sn[1], and n − 2 neighbors in Sn[i]

(see Figure 1). Note that if the neighbor ρi(u) of u in Sn[1] is non-faulty, then a

path from u to ε via ρi(u) has been constructed in Step 1.2.2. Thus, we only need to

consider the neighbors of u that are in Sn[i].

Again we assume that the algorithm has constructed r paths from u to ε by

extending r bridging paths from u. Now consider the (r + 1)st pair (u′, ρj(ε)).

Since the n-star network contains no cycle of length less than 6 [8, 17], two

neighbors of u share no common neighbors except u. Let u1 and u2 be two neighbors

of u in Sn[i]. Since no two nodes in Sn[i] have the same neighbor in Sn[1] and no two

nodes in Sn[1] have the same neighbor in Sn[j], a (u1, j1)-bridging path and a (u2, j2)-

bridging path share no common nodes except u for any j1 and j2. Therefore, for the

previous r paths from u to ε constructed by the algorithm by extending bridging paths

from u, none of them would intersect a (u′, j)-bridging path. Thus, no (u′, j)-bridging

path contains an occupied node.

Thus, if there is a non-divergent (u′, j)-bridging path Phj with no faulty nodes,

we can extend the path Phj, in the way of Case 3.1.A, into a path Pu′ from u to ε

such that the length of the path Pu′ is bounded by dist(u) + 8, and the extended

part of Pu′ is entirely in the substar Sn[j]. On the other hand, if all non-divergent

(u′, j)-bridging paths contain faulty nodes, then, as in Case 3.1.B, we can extend at

least one divergent (u′, j)-bridging path from u into a path Pu′ from u to ε such that

the length of the path Pu′ is bounded by dist(u) + 8, and the extended part of Pu′ is

entirely in the substar Sn[j].

We are ready to state our main theorem.

Theorem D.1 If the n-star network Sn has at most n − 3 faulty nodes and the

31

node ε is non-faulty, then for a non-faulty node u in Sn, in time O(n2) the algo-

rithm Parallel-Routing-Star constructs min{degf (u), degf (ε)} node-disjoint fault-

free paths of length bounded by dist(u) + 8 from the node u to the node ε.

Proof. As we have discussed in detail above, the algorithm Parallel-Routing-

Star constructs min{degf (u), degf (ε)} node-disjoint fault-free paths of length bounded

by dist(u) + 8 from the node u to the node ε. The only thing remaining is to show

that the running time of the algorithm is bounded by O(n2).

Each path is constructed by the algorithm by searching a proper path in a specific

substar Sn[j], which takes time O(kjn + n), where kj is the number of faulty nodes

in the substar Sn[j]. No substar is used in extending more than one such path.

Therefore, the time complexity for constructing all these paths is bounded by

O(k2n + k3n + · · ·+ knn + n(n− 1)) = O((k2 + k3 + · · · kn + n− 1)n)

where kj is the number of faulty nodes in the substar Sn[j]. By our assumption

k2 + k3 + · · · kn ≤ n − 3. Thus, the time complexity of the algorithm Parallel-

Routing-Star is bounded by O(n2).

Theorem D.1 shows that in the n-star network Sn with at most n−3 faulty nodes,

for any non-faulty node u, we can construct min{degf (u), degf (ε)} node-disjoint fault-

free paths from u to ε such that the length of the paths is bounded by dist(u) + 8.

The following example shows that the bound on the path length in the theorem is

actually almost optimal.

Consider the n-star network Sn. Let the source node be u = (21). Here we have

omitted the trivial cycles in the cycle structure. Then dist(u) = 1. Suppose that

all neighbors of u and all neighbors of ε are non-faulty. By Theorem D.1, there are

32

n − 1 node-disjoint fault-free paths from u fro ε. Thus, for each i, 3 ≤ i ≤ n, the

edge [u, ui] leads to one Pi of these node-disjoint paths from u fro ε, where ui = (i21).

Note that the edge [u, ui] does not follow the Shortest Path Rules. Now suppose that

the node (i2)(1) is faulty, for i = 3, 4, . . . , n − 1 (so there are n − 3 faulty nodes).

Then the third node on the path Pi must be vi = (ji21) for some j 6= 1, 2, i, and

the edge [ui, vi] does not follow the Shortest Path Rules. Since the only edge from

vi that follows the Shortest Path Rules is the edge [vi, ui], the next edge [vi, wi] on

Pi again does not follow the Shortest Path Rules. Now since all the first three edges

on Pi do not follow the Shortest Path Rules, by Fact 2.2, dist(wi) = dist(u) + 3 = 4,

and the path Pi needs at least four more edges to reach ε. That is, the length of the

path Pi is at least 7 = dist(u) + 6. Thus, with n − 3 faulty nodes, among the n− 1

node-disjoint paths from u to ε, at least n− 3 of them must have length larger than

or equal to dist(u) + 6.

The situation given above seems a little special since the distance dist(u) from

u to ε is very small. In fact, even for large distance nodes u, we can still construct

many examples in which some of the node-disjoint fault-free paths connecting u and

ε must have length at least dist(u) + 6. For example, let u = (a1a2 · · · an−31), where

〈a1a1 · · · an−3〉 is any permutation of any n − 3 symbols in {2, 3, . . . , n}. Let i 6∈
{a1, . . . , an−3, 1}, and suppose that the nodes (ia1)(a2 · · · an−31), (ia1a2)(a3 · · · an−31),

. . ., (ia1 · · · an−3)(1) are faulty. Then degf (u) = degf (ε) = n− 1 and there are n− 1

node-disjoint paths from u to ε. Similar to the analysis given above, we can verify

that the path from u to ε whose second node is (ia1 · · · an−31) must have length larger

than or equal to dist(u) + 6.

33

E. Chapter Summary

In this chapter, we have demonstrated that the star networks are strongly fault tol-

erant. We have presented an algorithm of running time O(n2) that for two given

non-faulty nodes u and v of n-star network with at most n − 3 faulty nodes, con-

structs the maximum number (i.e., min{degf (u), degf (v)}) of node-disjoint fault-free

paths from u to v such that the length of the paths is bounded by dist(u, v) + 8. We

have shown that the time complexity of our algorithm is optimal, and the length of

the paths constructed by our algorithm is almost optimal. Moreover, our algorithm

does not require prior knowledge of the failures: in a single round communication, the

algorithm can find out the faulty neighbors of the nodes u and v, then the algorithm

constructs the node-disjoint paths and avoids faulty nodes whenever they are encoun-

tered during the routing. Finally, the study of strong fault tolerance shows another

advantage of the star networks over the popular hypercube networks. In particular,

the orthogonal partition of the star networks makes the construction of node-disjoint

paths very convenient while other popular network topologies, such as the hypercube

networks, do not seem to have this nice decomposition structure.

34

CHAPTER III

STRONG FAULT TOLERANCE OF THE HYPERCUBE NETWORKS

A. Chapter Overview

In the previous chapters, the concept of the strong fault tolerance was introduced and

studied for the star networks. In this chapter, we continue the study of the strong

fault tolerance for the hypercube networks.

The study of strong fault tolerance in the star networks showed that node-disjoint

paths can be constructed efficiently based on the orthogonal partition of the star net-

works with faults, which decomposes the n-star network into n−1 (n−1)-dimensional

substar networks and an independent set I of (n − 1)! nodes. Roughly speaking, a

path from a non-faulty neighbor of the source node u to a non-faulty neighbor of the

destination node v is constructed in a separated (n− 1)-dimensional substar, and the

independent set I helps the paths to enter the substar from a proper node.

We observe that the techniques used in studying star networks are not ap-

plicable to the case for hypercube networks. Specifically, the hypercube networks

do not seem to have similar orthogonal decomposition structure. Parallel routing

in the n-dimensional hypercube networks may require constructing n node-disjoint

paths, while an n-dimensional hypercubes can be decomposed into at most n (n−1)-

dimensional subcubes. Therefore, there may be no extra nodes available that can

help to distribute the paths into the subcubes.

We develop new techniques that construct node-disjoint paths between pairs of

neighbors of the source node u and the destination node v in a hypercube network Qn.

First, a prematching process pairs non-faulty neighbors of u and v in Qn. For given

pairs of neighbors of u and v, we introduce three procedures to construct paths by

35

permutations of edge sequences between them. Node-disjoint paths are constructed

by searching proper paths, ensuring that each node in a path is not used by other

paths. Our algorithm constructs node-disjoint paths in optimal time, and the length

of the paths is also optimal in the hypercube network Qn: For any two non-faulty

nodes u and v in Qn with at most n − 2 faulty nodes, the algorithm constructs

min{degf (u), degf (v)} node-disjoint paths of minimum length plus 4 between u and

v in time O(n2).

B. Properties of Hypercube Networks

An n-dimensional hypercube Qn is an undirected graph consisting of 2n nodes rep-

resented by binary numbers from 0 to 2n − 1, and n2n−1 edges connecting nodes

whose binary representations differ by exactly one bit. An edge is called an i-edge

if two nodes connected by it differ in the ith bit (the first bit is the leftmost bit).

The Hamming distance between two nodes u and v, dist(u, v) is the length of the

shortest path from u to v. Actually, dist(u, v) is the number of bits in which the

binary representations of u and v differ. Since the hypercube Qn is vertex-symmetric,

a set of node-disjoint paths from a node u′ to a node v′ can be mapped to a set of

node-disjoint paths from the node u = 1r0n−r to the node v = 0n in a straightfor-

ward way, where r = dist(u, v). Therefore, we will concentrate on the construction

of node-disjoint paths from the node u of the form 1r0n−r to the node v of the form

0n in Qn.

The node connected from the node u by an i-edge is denoted by ui, and the node

connected from the node ui by a j-edge is denoted by ui,j. A path P from the node

u = 1r0n−r to the node v = 0n can be uniquely specified by a sequence of labels of

the edges on P in the order of traversal. In particular, a path from the node u to

36

the node v that uses an i1-edge, an i2-edge, . . ., an ir-edge, in that order, will be

denoted by u〈i1, i2, . . . , ir〉v. For example, for the nodes u = 111100 and v = 000000,

u〈3, 1, 4, 2〉v specifies the path 111100→ 110100→ 010100→ 010000→ 000000. We

extend this notation for a single label sequence to a set of label sequences, as follows.

Let S be a set of label sequences, then the notation u〈 S 〉v denotes the set of paths:

u〈 S 〉v = { u〈j1, j2, . . . , jr〉v | (j1, j2, . . . , jr) is a label sequence in S }

For example, suppose S = {(3, 1, 4, 2), (1, 4, 2, 3), (4, 2, 3, 1), (2, 3, 1, 4)}, then u〈 S 〉v
consists of four paths from u to v: u〈3, 1, 4, 2〉v, u〈1, 4, 2, 3〉v, u〈4, 2, 3, 1〉v, and

u〈2, 3, 1, 4〉v.

We say that an edge [w1, w2] does not lead to a shortest path (from w1) to a node

w3 if dist(w1, w3) ≤ dist(w2, w3).

Fact B.1 If an edge [w1, w2] in Qn does not lead to a shortest path to w3, then

dist(w2, w3) = dist(w1, w3) + 1. In general, if in a path P from a node w1 to a node

w3, there are exactly k edges that do not lead to a shortest path to w3, then the length

of the path P is equal to dist(w1, w3) + 2k.

It is known [52] that for any two nodes u and v in Qn, there exist n node-

disjoint paths such that dist(u, v) of them are of length dist(u, v), and the remaining

n− dist(u, v) of them are of length dist(u, v) + 2.

C. Case 1: u and v have no Faulty Neighbors

Our parallel routing algorithm is based on an effective pairing of the neighbors of the

nodes u = 1r0n−r and v = 0n. First, we assume that the nodes u and v have no faulty

neighbors. We pair the neighbors of u and v by the following strategy:

37

Prematch-I

{ Assumption: u and v have no faulty neighbors. }
1. pair ui with vi−1 for 1 ≤ i ≤ r 1 ;

2. pair uj with vj for r + 1 ≤ j ≤ n;

Under the pairing given by Prematch-I, we construct parallel paths between

the paired neighbors of u and v using the following procedure:

Procedure-I

1. For 1 ≤ i ≤ r, and the paired neighbors ui and vi−1, we construct

n− 2 node-disjoint paths between ui and vi−1, which consist of r− 2

paths

ui〈 S1 〉vi−1, (3.1)

where S1 is the set of all cyclic permutations of the sequence (i +

1, . . . , r, 1, . . . , i− 2), plus n− r paths of the form

ui〈 h, i + 1, . . . , r, 1, . . . , i− 2, h 〉vi−1, (3.2)

for all h, r + 1 ≤ h ≤ n.

2. For r + 1 ≤ j ≤ n, and the paired neighbors uj and vj, we construct

n−1 node disjoint paths between uj and vj, which consist of r paths

uj〈 S2 〉vj (3.3)

1The calculation for indices between 1 and r can be given by a rather lengthy
formula based on modular operation. For simplicity, we only need to remember the
following three special cases: Let i be an index between 1 and r. (1) for i = 1, i− 1
is interpreted as r and i− 2 is interpreted as r − 1; (2) for i = 2, i− 2 is interpreted
as r; and (3) for i = r, i + 1 is interpreted as 1.

38

where S2 is the set of all cyclic permutations of the sequence (1, 2, . . . , r),

plus n− r − 1 paths of the form

uj〈 h, 1, 2, . . . , r, h 〉vj, (3.4)

for all h 6= j, and r + 1 ≤ h ≤ n.

The paths constructed by cyclic permutations of a sequence are pairwise disjoint.

Thus, the paths constructed in (3.1) for each pair of neighbors ui and vi−1 are pairwise

disjoint. The paths constructed for ui and vi−1 in (3.2) are also pairwise disjoint

because each contains a unique label h. Finally, since each path in (3.2) has the bit

h flipped, where r + 1 ≤ h ≤ n, it must be node-disjoint with any path in (3.1). In

conclusion, the n − 2 paths in (3.1) and (3.2) constructed for the neighbors ui and

vj−1 must be node-disjoint. Similarly, we can verify that the n− 1 paths in (3.3) and

(3.4) constructed for the neighbors uj and vj are also node-disjoint.

For r = 1, or r = n = 2, or r = n = 3, parallel routing is straightforward because

it is not difficult to see that a fault-free path between any two non-faulty neighbors

of u and v can be always found if all neighbors of u and v are non-faulty. Thus, we

assume n > r when r = 2 or 3, or r > 3. For a path P = ui〈j1, . . . jk, . . . jt〉vj from ui

to vj, we define ui〈j1, . . . jk〉 as the node on the path P starting from ui and following

the edge labels in 〈j1, . . . jk〉.

Lemma C.1 If a path Px constructed by Procedure-I for a pair (ux, vy) shares a

common node with a path Ps constructed by Procedure-I for a pair (us, vt), x 6= s,

then Px must be of the form ux〈s, . . .〉vy.

Proof. For two paths Px and Ps such that Px is for the pair (ux, vy) and Ps is for

the pair (us, vt), x 6= s, assume that Px and Ps have a common node w0 = ux〈. . . k〉 =

39

us〈. . . k′〉. By our construction, x does not appear in the sequence 〈. . . k〉, and s does

not appear in the sequence 〈. . . k′〉. Thus, the xth bit and sth bit of w0 must be

different from that of u. In particular, s and x must appear in the sequences 〈. . . k〉
and 〈. . . k′〉, respectively. Thus, we must have w0 = ux〈. . . s, . . . k〉 = us〈. . . x, . . . k′〉.
We show below that the node w0 must have the form ux〈s, . . . k〉. In consequence,

the path Px must be of the form ux〈s, . . .〉vy.

Case 1. 1 ≤ x ≤ r and 1 ≤ s ≤ r.

Suppose the common node w0 is of the form ux〈. . . s0, s, . . . k〉 = us〈. . . x, . . . k′〉,
then s0 must be either s− 1 (if s 6= x + 1), s− 3 (if s = x + 1), or h for some h > r.

If s0 = s− 1 then the node us〈. . . x, . . . k′〉 has the (s− 1)th bit identical to that of u

(note by our construction, s − 1 does not appear in the sequence 〈. . . k′〉) while the

node ux〈. . . s0, s, . . . k〉 has the (s − 1)th bit different from that of u, resulting in a

contradiction. If s0 = s − 3 and s = x + 1 then we also get a contradiction because

x = s−1 and x cannot appear in the sequence 〈. . . k′〉 for the mode us〈. . . k′〉. Finally,

if s0 = h then w0 must be of the form ux〈h, x + 1, . . . k〉 = us〈h, s + 1, . . . k′〉, where

〈x + 1, . . . k〉 is a prefix of 〈x + 1, . . . r, 1, . . . x − 2, h〉 and 〈s + 1, . . . k′〉 is a prefix of

〈s + 1, . . . r, 1, . . . s− 2, h〉. Since x 6= s, it is easy to see that this is impossible. Thus,

the index s0 = h is impossible, and w0 must be of the form w0 = ux〈s, . . . k〉.
Case 2. 1 ≤ x ≤ r and r + 1 ≤ s ≤ n, or r + 1 ≤ x ≤ n and 1 ≤ s ≤ r.

First assume 1 ≤ x ≤ r and r + 1 ≤ s ≤ n. The sequence in the path Px must

be of the form ux〈h, x + 1, . . . , h〉vx−1 for some h > r since s > r. Since h is the only

index larger than r in this sequence and s > r, we must have h = s. Thus, the path

Px must be of the form ux〈s, . . . k, . . .〉vx−1. Now assume r+1 ≤ x ≤ n and 1 ≤ s ≤ r.

Then the common node w0 must be of the form ux〈. . . s, . . . k〉 = us〈x, s + 1, . . . k′〉.
Suppose w0 = ux〈. . . s0, s . . . k〉, then s0 must be either s− 1 or h for some h > r. If

s0 = s−1 then it makes a contradiction because s−1 does not appear in the sequence

40

〈x, s + 1, . . . k′〉. If s0 = h, then since x, h > r, ux〈. . . s0, s, . . . k〉 has at least two bits

higher than r(the xth and the hth) different from u, while us〈x, s + 1, . . . k′〉 has only

1 bit higher than r(the xth) different from u. This would be a contradiction. Thus,

w0 must be of the form w0 = ux〈s, . . . k〉.
Case 3. r + 1 ≤ x ≤ n and r + 1 ≤ s ≤ n.

The sequences in Px and Ps cannot be a permutation of (1, . . . r) because x, s > r

and x 6= s. Thus, w0 must be of the form ux〈s, . . . k〉 = us〈x, . . . k′〉.
Combining all these, we complete the proof.

Corollary C.2 Let (ux, vy) and (us, vt) be two pairs given by Prematch-I. Then

there is at most one path in the path set constructed by Procedure-I for the pair

(ux, vy) that shares common nodes with a path in the path set constructed by Procedure-

I for the pair (us, vt).

Proof. We have shown that in Lemma C.1, if a path Px constructed by Procedure-

I for a pair (ux, vy) shares a common node with a path Ps constructed by Procedure-I

for a pair (us, vt), x 6= s, then Px must be of the form ux〈s, . . .〉vy. It implies that when

Px and Ps have common nodes, then the forms of Px and Ps are uniquely decided,

i.e., at most one path Px for (ux, vy) has common nodes with a path Ps constructed

for (us, vt).

Corollary C.3 For a pair (ui, vi−1), 1 ≤ i ≤ r given by Prematch-I, a path of

the form ui〈i + 1, . . . r, 1, . . . i − 2〉vi−1 has no common nodes with any other paths

constructed by Procedure-I.

Proof. Suppose the path Pi of the form ui〈i+1, . . . r, 1, . . . i−2〉vi−1 shares a node

with other paths, then by Lemma C.1, the node must be of the form ui+1〈i, . . .〉. How-

41

ever, by our construction, no path for the pair (ui+1, vi) is of the form ui+1〈i, . . .〉vi.

We have shown that for each paired nodes by Prematch-I, the algorithm Proce-

dure-I constructs at least n− 2 node-disjoint paths between them. Since there may

be up to n−2 faulty nodes, in the worst case, there can be a pair (ui, vi−1) of nodes by

Prematch-I where 1 ≤ i ≤ r, for which all n−2 paths constructed by Procedure-I

are blocked. Note that between a pair (uj, vj) with r + 1 ≤ j ≤ n, Procedure-I

constructs n − 1 node-disjoint paths. In this case, we pair the neighbors of u and v

by the following rule:

Prematch-II

1. ui is paired with vi−2;

2. ui−1 is paired with vi;

3. ui+1 is paired with vi−1;

4. For other neighbors of u and v, use Prematch-I

For each pair constructed by Prematch-II, we construct a path as follows.

Procedure-II

{ Assumption: there is a pair (ui, vi−1), 1 ≤ i ≤ r given by Prematch-I

such that all n − 2 paths constructed by Procedure-I for (ui, vi−1) are

blocked by faulty nodes. }

1. For a pair (ui, vi−2), the path Pi = ui〈i−1, i+1, . . . , r, 1, . . . , i−3〉vi−2;

2. For a pair (ui−1, vi), the path Pi−1 = ui−1〈i + 1, i + 2, . . . r, 1, . . . , i−
2〉vi;

42

3. For a pair (ui+1, vi−1), the path Pi+1 = ui+1〈i + 2, . . . , r, 1, . . . , i −
2, i〉vi−1;

4. For other pairs, construct paths as follows: For pair (ug, vg−1), g 6=
i−1, i, i+1, 1 ≤ g ≤ r, the path Pg = ug〈g+1, . . . , r, 1, . . . , g−2〉vg−1;

For pair (uj, vj), r + 1 ≤ j ≤ n, the path Pj = uj〈2, 3, . . . , r, 1〉vj if

i = 1, and Pj = uj〈1, 2, . . . , r〉vj if i 6= 1.

Lemma C.4 Suppose that the hypercube Qn contains at most n − 2 faulty nodes,

and that all n − 2 paths constructed by Procedure-I for the pair (ui, vi−1), where

1 ≤ i ≤ r, are blocked by faulty nodes, then the algorithm Procedure-II constructs

n fault-free parallel paths of length bounded by dist(u, v) + 2 from u to v.

Proof. It easy to see that Paths constructed by Procedure-II have length

bounded by dist(u, v) + 2. In fact, except paths of form uj〈. . .〉vj, r + 1 ≤ j ≤ n,

whose length is dist(u, v) + 2, other paths have length dist(u, v).

First, we show that all n paths constructed by Procedure-II are fault-free.

After that, we will show that these n paths are node-disjoint. Denote the set of the

n − 2 paths constructed by Procedure-I for the pair (ui, vi−1) by Fi. Since Qn has

at most n− 2 faulty nodes, every faulty node is on a path in Fi.

The path Pi = ui〈i − 1, i + 1, . . . , r, 1, . . . , i − 3〉vi−2 and the paths in Fi only

share the node ui because every node in a path in Fi has its (i− 1)th bit identical to

that of u while nodes except ui in Pi have the (i− 1)th bit different that of u. Since

every faulty node is on a path in Fi and ui is non-faulty, the path Pi is fault-free.

The path Pi−1 = ui−1〈i+1, . . . , r, 1, . . . , i− 2〉vi and the paths in Fi have no common

nodes because ith bits in nodes in Pi−1 and in nodes in paths in Fi are different.

Thus, the path Pi−1 is fault-free. The path Pi+1 = ui+1〈i+2, . . . , r, 1, . . . , i− 2, i〉vi−1

43

and the paths in Fi only share the node vi−1 because nodes in Pi+1 except vi−1 (=

ui+1〈i + 2, . . . , i − 2, i〉) have the ith bit identical to that of u while nodes in the

paths in Fi have the ith bit different from that of u. Since vi−1 is non-faulty, the

path Pi+1 is also fault-free. A path of form Pg = ug〈g + 1, . . . , r, 1, . . . , g − 2〉vg−1,

where 1 ≤ g ≤ r and g 6= i − 1, i, i + 1, has no common nodes with any paths in Fi

by Lemma C.1 (since g + 1 6= i). Thus, the path Pg is fault-free. Finally, consider a

path Pj constructed for the pair (uj, vj), r + 1 ≤ j ≤ n. If i = 1, all faulty nodes are

in paths between u1 and vr and Pj is of the form uj〈2, 3, . . . , r, 1〉vj. Therefore, all

nodes in paths in Fi have their first bit different from that of u while all nodes in the

path Pj (except vj) have their first bit identical to that of u. Since j > r, the path

Pj has no common nodes with the paths in Fi. Thus, Pj is fault-free. In case i 6= 1,

Pj is of the form uj〈1, 2, . . . , r〉vj, and Pj has no common nodes with any paths in Fi

by Lemma C.1 (since i 6= 1). This, again, shows that Pj is fault-free.

Therefore, all paths constructed by Procedure-II are fault-free.

Now we show that paths constructed by Procedure-II are node-disjoint.

It is easy to see that Pi and Pi−1 have no common nodes because of the index

i. Similarly, Pi−1 and Pi+1 have no common nodes because of the index i− 1, and Pi

and Pi+1 have no common nodes because of the index i. Thus, paths Pi−1, Pi, and

Pi+1 are disjoint. Moreover, two paths of the forms ug〈g + 1, . . . r, 1, . . . g − 2〉vg−1

and vg′〈g′ + 1, . . . r, 1, . . . g′ − 2〉vg′−1, where 1 ≤ g 6= g′ ≤ r, and g, g′ 6= i− 1, i, i + 1,

are node-disjoint by Lemma C.1. Moreover, it is easy to see that two paths of the

forms uj〈∝〉vj and uj′〈∝〉vj′ , where r + 1 ≤ j 6= j′ ≤ n and ∝ is either 〈1, 2, . . . r〉
or 〈2, 3, . . . r, 1〉 are node-disjoint, and that a path of the form uj〈∝〉vj, where r +

1 ≤ j ≤ n and 〈∝〉 is either 〈1, 2, . . . r〉 or 〈2, 3, . . . r, 1〉, is node-disjoint with the

paths Pi−1, Pi, and Pi+1, and with a path of the form ug〈g + 1, . . . r, 1, . . . g − 2〉vg−1,

1 ≤ g ≤ r, g 6= i − 1, i, i + 1. What remains is to show that a path of the form

44

ug〈g + 1, . . . r, 1, . . . g − 2〉vg−1, where 1 ≤ g ≤ r, g 6= i − 1, i, i + 1 is node-disjoint

with the paths Pi−1, Pi, and Pi+1.

Suppose g 6= i − 2. Since g 6= i − 1, i, i + 1, the path Pi must be of the form

Pi = ui〈. . . g0, g, . . .〉vi−2 and g0 = g − 1. Thus, Pi and a path of the form ug〈g +

1, . . . r, 1, . . . g − 2〉vg−1 have no common nodes because of the index g − 1. Also, the

path Pi−1 must be of the form Pi−1 = ui−1〈. . . g0, g, . . .〉vi and g0 = g − 1. Thus,

Pi−1 and a path of the form ug〈g + 1, . . . r, 1, . . . g − 2〉vg−1 have no common nodes

because of the index g − 1. Finally, the path Pi+1 must either be of the form Pi+1 =

ui+1〈. . . g0, g, . . .〉vi−1 and g0 = g − 1 when g 6= i + 2, or Pi+1 = ui+1〈g, . . .〉vi−1

(= ug−1〈g, . . .〉vi−1) when g = i+2. For both cases, they have no common nodes with

a path of form ug〈g+1, . . . r, 1, . . . g−2〉vg−1 because of the index g−1. Now, consider

the case g = i−2. Since g = i−2, the path Pi from ug+2 to vg and a path of the form

ug〈g + 1, . . . r, 1, . . . g − 2〉vg−1 have no common nodes because of the index g. Also,

all nodes in the path Pi−1 = ug+1〈. . . , g〉vg+2 have their gth bit identical to that of

u(except vg+2) while all nodes in a path of the form ug〈g+1, . . . r, 1, . . . g−2〉vg−1 have

their gth bit different from that of u. Nodes vg−1 and vg+2 are identical only when

r = 3. However, if r = 3, then Procedure-II is not executed. Finally, all nodes in

the path Pi+1 from ug+3 to vg+1 have their (g+1)th bit identical to that of u while all

nodes in a path of the form ug〈g+1, . . . r, 1, . . . g−2〉vg−1 except ug have their (g+1)th

bit different from that of u. Similarly, ug(vg−1) and ug+3(vg+1) are identical only when

r = 3(r = 2), respectively. Thus, a path of form ug〈g +1, . . . r, 1, . . . g−2〉vg−1, where

1 ≤ g ≤ r, g 6= i− 1, i, i + 1 is node-disjoint with the paths Pi−1, Pi, and Pi+1.

Therefore, all paths constructed by Procedure-II are pairwise node-disjoint.

We summarize all above discussions in the algorithm called Parallel-Routing-

Cube-I. The algorithm Parallel-Routing-Cube-I is given in Fig. 3.

45

Algorithm. Parallel-Routing-Cube-I

{Assumption: u and v have no faulty neighbors. }
Input: non-faulty nodes u = 1r0n−r and v = 0n in Qn with at most n− 2
faulty nodes.

Output: min{degf (u), degf (v)} parallel fault-free paths of length ≤
dist(u, v) + 4 from u to v.

for each pair (ui, vj) given by Prematch-I do
1. if all paths for (ui, vj) by Procedure-I include faulty nodes

then use Prematch-II and Procedure-II to construct n parallel
paths from u to v;
STOP.

2. if there is a fault-free unused path from ui to vj by Procedure-I
then mark the path as used by (ui, vj);

3. if all fault-free paths constructed for (ui, vj) include used nodes
if n = r = 4
then construct 4 paths between u and v by cyclic permutations

of a sequence (1, 3, 2, 4) when i = 3 or a sequence (2, 4, 3, 1)
when i = 4;

else
pick the first fault-free path P for (ui, vj), and for the pair
(ui′ , vj′) that uses a node on P , find a new path;

Fig. 3. Parallel routing on the hypercube network with faulty nodes when u and v

have no faulty neighbors

Lemma C.4 guarantees that step 1 of the algorithm Parallel-Routing-Cube-I

constructs n fault-free parallel paths of length ≤ dist(u, v) + 2 from u to v. Step 3

of the algorithm requires further explanation. In particular, we need to show that

for the pair (ui′ , vj′), we can always construct a new fault-free path from ui′ to vj′ in

which no nodes are used by other paths. This is ensured by the following lemma.

Lemma C.5 Let (ui, vj) and (ui′ , vj′), i′ < i be two pairs given by Prematch-I such

that two paths constructed for (ui, vj) and (ui′ , vj′) share a node. Then the algorithm

Parallel-Routing-Cube-I can always find fault-free paths for (ui, vj) and (ui′ , vj′),

in which no nodes are used by other paths.

Proof. We prove this lemma based on the assumption that step 3 of Parallel-

46

Routing-Cube-I can be invoked once during the execution. This assumption will be

proved in the following lemma. We assume that we will search a fault-free and unused

path for each pair given by Prematch-I in order of cyclic permutations as given in

Procedure-I in the following discussion. For example, u1, 〈2, . . .〉vr, u1〈3, . . .〉vr, · · ·,
u2〈3, . . .〉v1.

Case 1. 1 ≤ i ≤ r.

If r ≤ 3, then we can always find a fault-free and unused path for the pair

(ui, vi−1), 1 ≤ i ≤ r. Thus, we assume r ≥ 4.

Case 1.1. i = 1 or 2.

If i = 1 or 2, then either we can find fault-free and unused paths for the pair

(u1, vr) and (u2, v1) because the path sets for pairs (u1, vr) and (u2, v1) do not share

common nodes, or use Prematch-II and Procedure-II when all paths for (u1, vr)

or (u2, v1) include faulty nodes.

Case 1.2. 3 ≤ i ≤ r − 1 when 1 ≤ i′ ≤ i− 2 or i = r when 2 ≤ i′ ≤ i− 2.

Suppose ui〈i′, . . .〉vi−1 is the first used path we found in step 3 of Parallel-

Routing-Cube-I. Then paths ui′〈b, . . .〉vi′−1, i′ + 1 ≤ b ≤ i − 1, must be faulty.

Otherwise, ui〈i′, . . .〉vi−1 would not contain nodes used on the path ui′〈i, . . .〉vi′−1

because ui′〈b, . . .〉vi′−1, i′ + 1 ≤ b ≤ i− 1 would be fault-free and unused. Thus, there

are at least i − i′ − 1 faulty paths for pair (ui′ , vi′−1). Since ui〈i′, . . .〉vi−1 is the first

used path, paths ui〈g, . . .〉vi−1, 1 ≤ g ≤ i′ − 1, are faulty. Also, all other unused

paths of the form ui〈g, . . .〉vi−1, g > i, should be faulty if we execute step 3. There

are n − i such paths. Since only the path ui′〈i, . . .〉vi′−1 for pair (ui′ , vi′−1) shares

common nodes with a path constructed for pair (ui, vi−1), we already detect at least

(i − i′ − 1) + (i′ − 1) + (n − i) = n − 2 faulty nodes in the hypercube. Thus, if a

path of the form ui′〈b, . . .〉vi′−1, b > i, exists, it is fault-free and unused. We show

that either such a path exists or step 3 of Parallel-Routing-Cube-I is not executed

47

unless n = r = 4.

If n > r, then we can find a fault-free and unused path for the pair (ui′ , vi′−1)

such as ui′〈r + 1, . . .〉vi′−1 in step 3. If n = r > 4 and i′ 6= i − 2, then step 3

of Parallel-Routing-Cube-I is not executed because there exists a fault-free and

unused path such as ui〈i′ + 1, . . .〉vi−1. Recall that i′ 6= i − 1 because sets of paths

constructed for pair (ui, vi−1) and (ui−1, vi−2) do not share common nodes. In case

n = r > 4 and i′ = i − 2, we can find a fault-free and unused path for the pair

(ui′ , vi′−1) such as ui′〈i + 1, . . .〉vi′−1. Specifically, i′ = i − 2 and i = n, then we find

ui′=n−2〈1, . . .〉v(i′−1)=n−3, which is fault-free and unused. In case n = r = 4, proof is

straightforward.

Case 2. r + 1 ≤ i ≤ n.

We show that step 3 of Parallel-Routing-Cube-I cannot be executed, and

there exists at least one fault-free and unused path for (ui, vi). By way of contradic-

tion, we assume that all fault-free paths constructed for (ui, vi) include used nodes

and ui〈i′, . . .〉vi is fault-free and the first used path we found in step 3.

Case 2.1. 1 ≤ i′ ≤ r.

If r = 2 or 3, then paths constructed for (ui′ , vi′−1) do not include the index

i, and there are no common nodes in paths constructed for the pairs (ui′ , vi′−1) and

(ui, vi). Thus, we assume r ≥ 4.

Suppose i′ = 1. Then paths u1〈b, . . .〉vr, where 2 ≤ b ≤ r−1 and r+1 ≤ b ≤ i−1,

are faulty. Otherwise, they are fault-free and unused, and ui〈1, . . .〉vi would not

contain nodes used on the path u1〈i, . . .〉vr. Thus, there are at least (r − 2) + (i −
r − 1) = i − 3 faulty paths for the pair (u1, vr). Since we execute step 3, all other

unused paths ui〈g, . . .〉vi, g > i must be faulty. Thus, we already detect at least

(i−3)+(n−i) = n−3 faulty nodes in the hypercube. In addition, the path ui〈2, . . .〉vi

must be faulty. Otherwise, u2〈i, . . .〉v1 is used, and paths u2〈b, . . .〉v1, 3 ≤ b ≤ r, also

48

should be faulty. Since r ≥ 4, there are at least two such paths. It yields at least

n− 1 faulty nodes and contradicts the assumption that there are at least n− 2 faulty

nodes in the hypercube. Now, since r ≥ 4 and we already detect at least n− 2 faulty

nodes, the path ui〈3, . . . , 〉vi should be faulty-free. Also, it cannot include nodes used

by the path u3〈i, . . .〉v2 because it means that the path u3〈4, . . .〉v2 is also faulty.

It shows a contradiction of the assumption that all fault-free paths constructed for

(ui, vi) include used nodes.

Suppose i′ = 2. Then paths u2〈b, . . .〉v1, where 3 ≤ b ≤ i − 1, and paths

ui〈g, . . .〉vi, where g = 1 and g > i, should be faulty. Thus, we already detect at least

(i− 3) + 1 + (n− i) = n− 2 faulty nodes. Since r ≥ 4, paths ui〈g, . . .〉vi, 3 ≤ g ≤ r,

are fault-free and unused. It again manifests contradiction.

Suppose 3 ≤ i′ ≤ r. Then paths ui′〈b, . . .〉vi′−1, 1 ≤ b ≤ i′ − 2, are faulty or

used. Suppose a path of the form ui′〈b, . . .〉vi′−1, 1 ≤ b ≤ i′− 2, is used, then paths of

the form ub〈b + 1, . . . , r, 1, . . . , b − 2〉vb−1 must be faulty. Otherwise, it is faulty-free

and unused, and ui′〈b, . . .〉vi′−1 would not be used. Recall that a path of the form

ub〈b + 1, . . . , r, 1 . . . , b − 2〉vb−1 has no common nodes with other paths constructed

by Procedure-I. Also, paths ui′〈b, . . .〉vi′−1, i′+1 ≤ b ≤ i− 1, and paths ui〈g, . . .〉vi,

where 1 ≤ g ≤ i′ − 1 and g > i, are faulty. Since g 6= i′ and i′ ≥ 3, it yields at least

(i′−2)+(i− i′−1)+(i′−1)+(n− i) = n−1 faulty nodes. Thus, the path ui〈i′, . . .〉vi

itself is fault-free and unused. Therefore, we can find a fault-free and unused path

for the pair (ui, vi), r + 1 ≤ i ≤ n, and step 3 is not executed.

Case 2.2. r + 1 ≤ i′ ≤ n.

Similarly, since ui〈i′, . . .〉vi is the first used path for (ui, vi), paths ui′〈b, . . .〉vi′ ,

where 1 ≤ b(6= i′) ≤ i−1, are faulty or used. Suppose a path of the form ui′〈b, . . .〉vi′ ,

1 ≤ b ≤ r, is used, then the path ub〈b + 1, . . . r, 1, . . . , b − 2 > vb−1 should be

faulty. Suppose a path of the form ui′〈b, . . .〉vi′ , r + 1 ≤ b(6= i′) ≤ i − 1, is used,

49

then the path ub〈1, . . . , r〉vb should be faulty. Since a path of the form ui′〈b, . . .〉vi′ ,

1 ≤ b(6= i′) ≤ i− 1, a path of the form ub〈b+1, . . . , r, 1 . . . , b− 2〉vb−1, 1 ≤ b ≤ r, and

a path of the form ub〈1, . . . r〉vb, r + 1 ≤ b(6= i) ≤ i − 1, have no common nodes, it

yields i− 2 faulty nodes. Also, paths ui〈g, . . .〉vi, where 1 ≤ g ≤ i′− 1, and g > i, are

faulty. Since g 6= i′, we already detect at least (i− 2) + (i′ − 1) + (n− i) = n + i′ − 3

faulty nodes in Qn. Since r ≥ 1, we have i′ ≥ 2, and it yields at least n − 1 faulty

nodes. Thus, ui〈i′, . . .〉vi itself should be fault-free and unused. Therefore, step 3 of

Parallel-Routing-Cube-I is not executed.

In the above lemma, we assume that step 3 of Parallel-Routing-Cube-I can

be invoked at most once during the execution. We prove this below.

Lemma C.6 Step 3 of Parallel-Routing-Cube-I is invoked at most once during

the whole execution.

Proof. Once step 3 is invoked, from Lemma C.5, there are at least n − 2 faulty

nodes on paths ui′〈i, . . .〉vi′−1, where i′ + 1 ≤ b ≤ i − 1, and ui〈b, . . .〉vi−1, where

1 ≤ b ≤ i′ − 1 and b > i. It suffices to show that Parallel-Routing-Cube-I

constructs a fault-free and unused path for each other pair (ux, vy), x 6= i, i′ without

invoking step 3 again. Recall that i and i′ are between 1 and r, and step 3 is not

executed when i > r.

From corollary C.3, a path of the form ug〈g+1, . . . , r, 1, . . . , g−2〉vg−1, 1 ≤ g ≤ r

has no common nodes with any other paths constructed by Procedure-I. Thus, paths

ug〈g + 1, . . . , r, 1, . . . , g − 2〉vg−1, 1 ≤ g ≤ r and g 6= i, i′ are fault-free and unused.

Therefore, for each pair (ug, vg−1), g 6= i, i′, Parallel-Routing-Cube-I constructs a

path of the form ug〈g + 1, . . . , r, 1, . . . , g − 2〉vg−1. Let (g, g + 1, . . . , r, 1, . . . , g − 1),

1 ≤ g(6= i, i′) ≤ r be a sequence in the path constructed for a pair (ug, vg−1). Since

50

r ≥ 4, there exists at least one such path. For each pair (uj, vj), r+1 ≤ j ≤ n, we can

construct a path of the form uj〈g, g+1, . . . , r, 1, . . . , g−1〉vj. Since each path includes

a unique index j, it is node-disjoint with paths of the form ug〈g + 1, . . . , r, 1, . . . , g −
2〉vg−1. Also, by Lemma C.1, it is node-disjoint with paths constructed for pairs

(ui, vi−1) and (ui′ , vi′−1) because g 6= i, i′. It shows that we can find a fault-free and

unused path for all other pairs (ux, vy), x 6= i, i′.

D. Case 2: u or v has faulty neighbors

So far, we have assumed that all neighbors of the source node u and the destination

node v are non-faulty. Now we relax such a restriction to deal with faulty neigh-

bors of two nodes u and v. If only one of u or v has faulty neighbors, we can use

Parallel-Routing-Cube-I to find min{degf (u), degf (v)} parallel paths by a slight

modification: We first assume that u and v have no faulty neighbors. Then it can

be regarded as case 1 with at most n − 3 faulty nodes. Thus, for two given nodes u

and v that have no faulty neighbors in Qn with at most n− 3 faulty nodes, we apply

Parallel-Routing-Cube-I, and then discard the paths including faulty neighbors

of u or v. This will give us min{degf (u), degf (v)} node-disjoint paths between u

and v. Therefore, we assume that both u and v have faulty neighbors. We provide

Prematch-III to pair the edges incident on the neighbors of the nodes u and v,

instead of the neighbors themselves.

Prematch-III

{ Assumption: Both u and v have faulty neighbors.}

for each edge [ui, ui,i′] where 1 ≤ i, i′ ≤ n and i 6= i′ do

51

1. if 1 ≤ i, i′ ≤ r 2 and i′ = i + 1, then pair [ui, ui,i′] with the edge

[vi−1,i−2, vi−1];

2. if 1 ≤ i, i′ ≤ r and i′ = i − 1, then pair [ui, ui,i′] with the edge

[vi′−1,i′−2, vi′−1];

3. otherwise, pair [ui, ui,i′] with the edge [vj,j′ , vj], where the indices j

and j′ are such that Prematch-I pairs the node ui′ with vj, and the

node ui with vj′ .

4. if a pair of edges has a faulty node, mark it as faulty.

For a non-faulty node ui, 1 ≤ i ≤ n, and each neighbor ui,i′ of ui, i 6= i′,

Prematch-III can pair the edge [ui, ui,i′] with the unique edge [vj,j′ , vj]. Thus, for

a non-faulty node ui, there are at most n− 1 pairs of edges with ui. Also, a node u

has at least one faulty neighbor that is not included in edges paired with ui. Thus,

for a non-faulty node ui, there exist at least two non-faulty pairs of edges with ui.

On the other hand, for a non-faulty node vj, an edge [vj,j−1, vj], 1 ≤ j ≤ r can be

paired with [uj+1, uj+1,j+2] and [uj+2, uj+2,j+1], where nodes uj+1,j+2 and uj+2,j+1 are

identical. That is, Prematch-III can make n − 1 pairs of edges with vj such that

at most n − 2 pairs are disjoint. However, since we assume that v has at least one

faulty neighbor, there exists a faulty node vg, g 6= j, which is not included in pairs of

edges with vj. Thus, there is at least one non-faulty pair of edges with vj. Regardless

of faulty nodes, Table I shows an example of all possible pairs of edges that can be

constructed by Prematch-III when r = 4, and n = 6.

Lemma D.1 If a pair of edges p1 = ([ux, ux,x′], [vy,y′ , vy]) given by Prematch-III

shares a common node with a pair of edges p2 = ([us, us,s′], [vt,t′ , vt]) where x 6= s and

2The operations on indices are by mod r.

52

Table I. Edges paired by Prematch-III when r = 4 and n = 6

[u2, u2,3][v1,4, v1] [u3, u3,2][v1,4, v1] [u4, u4,2][v1,3, v1] [u5, u5,2][v1,5, v1] [u6, u6,2][v1,6, v1]

[u1, u1,3][v2,4, v2] [u3, u3,4][v2,1, v2] [u4, u4,3][v2,1, v2] [u5, u5,3][v2,5, v2] [u6, u6,3][v2,6, v2]

[u1, u1,4][v3,2, v3] [u2, u2,4][v3,1, v3] [u4, u4,1][v3,2, v3] [u5, u5,4][v3,5, v3] [u6, u6,4][v3,6, v3]

[u1, u1,2][v4,3, v4] [u2, u2,1][v4,3, v4] [u3, u3,1][v4,2, v4] [u5, u5,1][v4,5, v4] [u6, u6,1][v4,6, v4]

[u1, u1,5][v5,4, v5] [u2, u2,5][v5,1, v5] [u3, u3,5][v5,2, v5] [u4, u4,5][v5,3, v5] [u6, u6,5][v5,6, v5]

[u1, u1,6][v6,4, v6] [u2, u2,6][v6,1, v6] [u3, u3,6][v6,2, v6] [u4, u4,6][v6,3, v6] [u5, u5,6][v6,5, v6]

y 6= t, given by Prematch-III, then x = s′ and x′ = s.

Proof. For two pairs of edges p1 = ([ux, ux,x′], [vy,y′ , vy]) and p2 = ([us, us,s′], vt,t′ , vt]),

x 6= s and y 6= t, assume that p1 and p2 have a common node w0. Then w0 = ux,x′ =

us,s′ , or w0 = vy,y′ = vt,t′ .

Case 1. w0 = ux,x′ = us,s′ .

Suppose the common node w0 is ux,x′ = us,s′ , then ux,x′ is also identical to us′,s

because us,s′ = us′,s. Since we assume that x 6= s, we have x = s′ and x′ = s.

Case 2. w0 = vy,y′ = vt,t′ .

Suppose the common w0 is vy,y′ = vt,t′ , then y = t′ and y′ = t because we assume

that y 6= t. If 1 ≤ x, x′ ≤ r and x′ = x + 1, then the edge [ux, ux,x′] is paired with

the edge [vy,y′ , vy] = [vx−1,x−2, vx−1] by Prematch-III. However, by our construction,

no edge paired by Prematch-III is of the form [vx−2,x−1, vx−2]. If 1 ≤ x, x′ ≤ r and

x′ = x−1, then the edge [ux, ux,x′] is paired with the edge [vy,y′ , vy] = [vx′−1,x′−2, vx′−1]

by Prematch-III. Again, by our construction, no edge paired by Prematch-III is

of the form [vx′−2,x′−1, vx′−2]. For other cases, the edge [ux, ux,x′] is paired with the

edge [vy,y′ , vy] where the indices y and y′ are such that Prematch-I pairs ux′ and

vy, and pairs ux and vy′ . Consider an edge paired with the edge [vy′,y, uy′]. The edge

[vy′,y, vy′] is paired with the edge [us, us,s′] where the indices y′ and y are such that

53

Prematch-I pairs us′ and vy′ , and us and vy. Thus, we have x = s′ and x′ = s.

A pair of edges ([ui, ui,i′], [vj,j′ , vj]) given by Prematch-III can be identified by

the first two indices i and i′ in an edge with a neighbor ui of u. Thus, if we represent

all pairs of edges with ui in a column i of a matrix, then we need only the index i′ to

identify each pair of edges with ui. Also, each pair of edges with a node ui includes

a unique node vj. Thus, for each pair of edges ([ui, ui,i′], [vj,j′ , vj]), we can represent

it by using the index i′ in row j and column i of a matrix. From this observation, we

represent edges paired by Prematch-III as a matrix M = [ek] such that for an edge

[ui, ui,i′], an entry ek in row j and column i is,

ek =

i′ if the edge [ui, ui,i′] is paired with the edge [vj,j′ , vj] by Prematch-III,

0 otherwise

The following matrix M represents pairs of edges shown in Table I.

M =

0 3 2 2 2 2

3 0 4 3 3 3

4 4 0 1 4 4

2 1 1 0 1 1

5 5 5 5 0 5

6 6 6 6 6 0

(3.5)

For example, an edge pair ([u3, u3,4], [v2,1, v2]) is represented as an entry with a value

4 in row 2 and column 3 of the matrix in (3.5). Also, an edge with node ui cannot

be paired with any edge with vi by Prematch-III. Thus, a value of an entry in row

i and column i is 0.

The collection of all paired edges given by Prematch-III will be used as an

input for an algorithm Parallel-Edge-Pairing which is given in Fig. 4. Consider

54

in a matrix M , two entries ek and e′k in different columns such that ek = x′ and ek

is in row y and column x, and e′k = x and e′k is in row t and column x′, x 6= x′.

Then the entry ek represents a pair of edges p1 = ([ux, ux,x′], [vy,y′ , vy]), and the entry

e′k represents a pair of edges p2 = ([ux′ , ux′,x], [vt,t′ , vt]). These entries ek and e′k in

different columns of M represent pairs of edges having a common node ux,x′ = ux′,x.

In this case, we say these entries are common. From Lemma D.1, the entry ek in

the matrix M has the unique common entry e′k. We write ek to indicate the entry

e′k. For example, in the matrix M in (3.5), let ek (= 2) be an entry in row 1 and

column 4. Then ek (= 4) is an entry in row 3 and column 2. The algorithm Parallel-

Edge-Pairing gives us a set E of min{degf (u), degf (v)} entries in M such that no

two entries are common, and are in the same row or column. For each entry given by

Parallel-Edge-Pairing, we can identify a corresponding pair of edges constructed

by Prematch-III. We construct a path between them by Procedure-III whose

sequence of labels in the path follows Procedure-I.

Procedure-III

Input: an entry ek given by Parallel-Edge-Pairing.

Output: for a pair of edges ([ui, ui,i′], [vj,j′ , vj]) constructed by Prematch-

III that corresponds with the given entry ek, a fault-free path of the form

ui〈i′, . . . j′〉vj.

1. For the entry ek given by Parallel-Edge-Pairing, identify the cor-

responding pair of edges constructed by Prematch-III.

2. If a corresponding pair of edges is of the form ([ui, ui,i′], [vi−1,i−2, vi−1]),

1 ≤ i, i′ ≤ r and i′ = i + 1, then construct a path ui〈i′, . . . i− 2〉vi−1

given by Procedure-I;

55

3. If a corresponding pair of edges is of the form ([ui, ui,i′], [vi′−1,i′−2, vi′−1]),

i ≤ i, i′ ≤ r and i′ = i− 1, then construct a path by flipping i′ and i

in the path ui′〈i, . . . , i′ − 2〉vi′−1 given by Procedure-I;

4. If a corresponding pair of edges is of the form ([ui, ui,i′], [vj,j′ , vj]),

construct a path by flipping j and j′ in the path ui〈i′, . . . j〉vj′ given

by Procedure-I;

Since the sequence in paths constructed by Procedure-III follows Procedure-

I, flipping only the first two indices or the last two indices, Lemma C.1 can be applied

to a path constructed by Procedure-III when the first two indices in the path are

flipped. If, for a non-faulty pair of edges ([ux, ux,x′], [vy,y′ , vy]), a path Px is constructed

by flipping the last two indices, Px shares some common nodes with a path Ps for

a non-faulty paired edges ([us, us,s′], [vt,t′ , vt]) when either ux,x′ = us,s′ , or vy = vt.

Note that if vy,y′ and vt,t′ are identical, then ux,x′ and us,s′ are also identical. Thus,

Lemma C.1 can be applied to a path constructed by Procedure-III when the last

two indices in the path are flipped. Now, when u and v have faulty neighbors,

the problem of finding min{degf (u), degf (v)} non-faulty node-disjoint paths can be

transformed into the problem of finding min{degf (u), degf (v)} entries in the matrix

M such that no two entries are faulty and common, and are in the same row or column,

plus constructing paths by Procedure-III for corresponding non-faulty node-disjoint

pairs of edges given by Prematch-III.

Example: For a given two non-faulty nodes u = 111100 and v = 000000 in Qn, let

faulty nodes be u5 = 111110, v6 = 000001, u2,3 = 100100, and u4,2 = 101000. A

matrix M of corresponding faulty entries (ones marked by ⊗ and ×) and entries e1,

e2, e3, e4, and e5 (ones in []) such that no two entries are common and are in the

same row or column is:

56

0 3⊗ 2⊗ 2⊗ 2× [e5 = 2]

3 0 4 [e4 = 3] 3× 3

[e1 = 4] 4⊗ 0 1 4× 4

2 [e2 = 1] 1 0 1× 1

5 5 [e3 = 5] 5 0 5

6× 6× 6× 6× 6× 0

(3.6)

Node u5 is faulty, so we mark all entries in column 5 as faulty (ones marked by ×).

Similarly, node v6 is faulty, so we mark all entries in row 6 as faulty. In this case,

we say such a row or column is faulty. Also, node u4,2 is faulty, so we mark the

corresponding entry with the value 2 in row 1 and column 4 and the entry with the

value 4 in row 3 and column 2 as faulty. Similarly, we mark faulty entries for a faulty

node u2,3. For disjoint non-faulty entries e1, e2, e3, e4, and e5 in M , we identify pairs

of edges constructed by Prematch-III as follows:

(1) for the entry e1, the corresponding pair of edges is ([u1, u1,4], [v3,2, v3])

(2) for the entry e2, the corresponding pair of edges is ([u2, u2,1], [v4,3, v4])

(3) for the entry e3, the corresponding pair of edges is ([u3, u3,5], [v5,2, v5])

(4) for the entry e4, the corresponding pair of edges is ([u4, u4,3], [v2,1, v2])

(5) for the entry e5, the corresponding pair of edges is ([u6, u6,2], [v1,6, v1])

For each corresponding pair of edges given by Prematch-III, we construct a

path by Procedure-III as follows:

(1) for the paired edges ([u1, u1,4], [v3,2, v3]), construct a path u1〈4, 2〉v3 by

rule 3 of Procedure 3 from the path u4〈1, 2〉e3 constructed by Procedure-

I, flipping the first indices 4 and 1.

57

(2) for the paired edges ([u2, u2,1], [v4,3, v4]), construct a path u2〈1, 3〉v4 by

rule 3 of Procedure 3 from the path u1〈2, 3〉e4 constructed by Procedure-

I, flipping the first indices 1 and 2.

(3) for the paired edges ([u3, u3,5], [v5,2, v5]), construct a path u3〈5, 4, 1, 2〉v5

by rule 4 of Procedure 3 from the path u3〈5, 4, 1, 5〉e2 constructed by

Procedure-I, flipping the last two indices 5 and 2.

(4) for the paired edges ([u4, u4,3], [v2,1, v2]), construct a path u4〈3, 1〉v2 by

rule 3 of Procedure 3 from the path u3〈4, 1〉e2 constructed by Procedure-

I, flipping the first two indices 3 and 4.

(5) for the paired edges ([u6, u6,2], [v1,6, v1]), construct a path u6〈2, 3, 4, 6〉v1

by rule 4 of Procedure 3 from the path u6〈2, 3, 4, 1〉e6 constructed by

Procedure-I, flipping the last two indices 1 and 6.

Thus, the corresponding min{degf (u), degf (v)} node-disjoint paths from u to v de-

rived from the matrix M in (3.6) are:

(1) u〈1, 4, 2, 3〉v
(2) u〈2, 1, 3, 4〉v
(3) u〈3, 5, 4, 1, 2, 5〉v
(4) u〈4, 3, 1, 2〉v
(5) u〈6, 2, 3, 4, 6, 1〉v

In Figure 4, we present the algorithm Parallel-Edge-Pairing that finds min{degf (u), degf (v)}
non-faulty entries such that no two entries are common, and are in the same row or

column of the matrix M .

58

Definition For a row R or a column C of the matrix M , the row R or the column

C is said to be feasible if in R or C, there is a non-faulty entry whose value is not 0.

Also, for an entry ei in a row R and a column C of the matrix M , and a set E of

non-faulty entries such that no two entries are common, and are in the same row or

column in M , the row R, the column C, and the entry ei are said to be used by ei if

the entry ei is in E.

From the above definition, if for an entry ei in a row R and a column C, the

entry ei is in E, then R or C is used by the entry ei, and the entry ei is also used. If

in R or C, there is no entry in E, then R or C is unused. Thus, for an entry ei in a

row R′ and a column C ′, R′ or C ′ is unused unless R is R′, C is C ′, or an entry ej,

i 6= j in R′ or C ′ is in E. In addition, a row or column used by the entry ei in E is

feasible because the value of ei in E is not 0, and ei is not faulty. We assume that

when an entry ei in a row R and a column C is added to E or removed from E, the

entry ei, the row R, and the column C are accordingly marked as used or unused.

Let us denote notations for describing algorithms. For an entry ei of M , we

denote R(ei) as a row with ei, and C(ei) as a column with ei. Let R be a row j of

M . Then entries in R of M represent pairs of edges with a node vj. If 1 ≤ j ≤ r,

then the row R consists of n entries such that one entry has a value 0, one entry has

a value j + 2, and n− 2 entries have a value j + 1. Also, if r + 1 ≤ j ≤ n, then the

row R consists of n entries such that one entry has a value 0, and n−1 entries have a

value j. Let C be a column j of M . Then we denote C as a row that represents pairs

of edges with a node vj−1 if 1 ≤ j ≤ r, or with a node vj if r + 1 ≤ j ≤ n. Similarly,

for a row R that represents pairs of edges with a node vj−1 if 1 ≤ j ≤ r, or with a

node vj if r + 1 ≤ j ≤ n, we denote R as a column j. Then for an entry ei in R, ei is

59

in R. For example, in the matrix M in (3.5), row 3 consists of entries such that one

entry has a value 0, one entry has a value 1, and 4 entries have a value 4. Also, row

6 consists of entries such that one entry has a value 0 and 5 entries have a value 6.

Let R be row 1, and C be column 6. Then R is column 2, and C is row 6. Also, for

an entry ei = 2 in row 1 (which is R) and column 5, ei = 5 is in row 5 and column 2

(which is R).

Let α be the set of faulty rows in M , and β be the set of faulty columns in

M . Then we denote R(ei)/β as a set of entries in R(ei) excluding entries in faulty

columns, and C(ei)/α as a set of entries in C(ei) excluding entries in faulty rows. For

two entries ei and ej in M , we write as ei → ej if ei and ej are in the same row, and

ei is visited before ej. Also, we write as ei ⇒ ej if ei and ej are in the same column,

and ei is visited before ej. Finally, we write as ei = ej, if ei and ej are identical such

that ei and ej have the same value and are in the same row and column. Otherwise,

we write ei 6= ej. In Fig. 4, we present the algorithm Parallel-Edge-Pairing that

finds min{degf (u), degf (v)} non-faulty entries in M .

For a set E of ∆ entries in M such that no two entries are common and are in

the same row or column, the algorithm Augmenting is used to find the set E of

size ∆ + 1, or of size min{degf (u), degf (v)} when all non-faulty entries in an unused

column are used, or are in used rows. The algorithm Augmenting is given in Fig. 5.

Specifically, in the algorithm Augmenting, we use the algorithm Augmenting-I to

handle the case that there is a used entry in unused row and column, and use the

algorithm Augmenting-II to handle the case that all non-faulty entries in an unused

column are in used rows. The algorithm Augmenting-I is given in Fig. 6.

To show the correctness of the algorithm Augmenting-I, we first discuss the

correctness of the algorithms Aug-I given in Fig. 7 and Aug-II given in Fig. 8

60

Algorithm. Parallel-Edge-Pairing

Input: the matrix M of entries that correspond with edges paired by
Prematch-III.

Output: a set E of min{degf (u), degf (v)} non-faulty entries in M such
that no two entries are common and are in the same row or column.
Initially, E = φ.

1. find a non-faulty and unused entry ei;
2. E = {ei};
3. for each feasible and unused column C do
3.1 if |E|=min{degf (u), degf (v)} then STOP.
3.2 find a feasible and unused row R;
3.3 if there is an entry ej in C such that ej is non-faulty, ej is not

in E, and R(ej) is unused
then E = E ∪ {ej};

3.4 else if all non-faulty entries in C are used, or are in used rows
if R is C
then find a non-faulty entry ej in C such that ej → e′j

and e′j is in E;
E = E − {e′j}; E = E ∪ {ej};
let C(e′j) be C;
go to step 3.3;

else call Augmenting(E,R,C);

Fig. 4. Parallel edge-pairing on the hypercube network with faulty nodes when both

u and v have faulty neighbors

by going through each step, assuring that entries in E are not common and are in

different rows and columns. For a used entry e1 in feasible and unused R and C such

that an entry e1 is in E, let C be a column i, b1 be an entry in R(e1) and C(e1), and

b2 be an entry in R(e1) and C(e1).

Lemma D.2 For a given set E of entries such that no two entries are common and

are in the same row or column, feasible and unused row R and column C, and a used

entry e1 in R and C, if the entry e1 is the only non-faulty entry in R(e1), then the

algorithm Aug-I increases the size of E by one.

61

Algorithm. Augmenting(E, R, C)

Input: a set E of ∆ entries such that no two entries are common, and are
in the same row or column, feasible and unused row R and column C.

Output: the set E of size ∆ + 1, or of size min{degf (u), degf (v)}.
1. case 1. for an entry e1 in R and C, e1 is used by e1

call Augmenting-I(E, R(e1), C(e1), e1);
2. case 2. in C, all non-faulty entries e1, e2, . . . , eh are in rows used

by e′1, e
′
2, . . . , e

′
h such that for all i, 1 ≤ i ≤ h, e′i is

in E, and ei → e′i, respectively
call Augmenting-II(E, R, C);

Fig. 5. The algorithm Augmenting

Algorithm. Augmenting-I(E, R(e1), C(e1), e1)

Input: a set E of ∆ entries such that no two entries are common and are
in the same row or column, feasible and unused row R(e1) and column
C(e1), and a used entry e1 in R(e1) and C(e1) such that e1 is in E.

Output: the set E of size ∆ + 1, or of size min{degf (u), degf (v)}.
1. Let C(e1) be a column i, b1 be an entry in R(e1) and C(e1), and b2

be an entry in R(e1) and C(e1);
2. case 1. e1 is the only non-faulty entry in R(e1)

call Aug-I(E, R(e1), C(e1), e1);
3. case 2. both entries b1 and b2 are non-faulty

E = E − {e1}; E = E ∪ {b1, b2};
4. case 3. b1 is non-faulty but b2 is 0 or faulty
4.1 if there is a non-faulty entry k3 in R(e1) such that k1 → k2

and k2 ⇒ k3 where k1 is non-faulty and is in C(e1), and k2

is in E
then E = E − {k2}; E = E ∪ {k1, k3};

4.2 else call Aug-II(E,R(e1), C(e1), e1);
5. case 4. b1 is 0 or faulty
5.1 if b2 is non-faulty

then E = E − {e1}; E = E ∪ {e1};
call Augmenting-I(E, R(e1), C(e1), e1);

5.2 else use Aug-II(E, R(e1), C(e1), e1), where for step 3.3
in Aug-II, apply the algorithm used in case 3 of Aug-II;

Fig. 6. The algorithm Augmenting-I

62

Algorithm. Aug-I(E, R(e1), C(e1), e1)

Input: a set E of ∆ entries in M such that no two entries are common
and are in the same row or column, feasible and unused row R(e1) and
column C(e1), and a used entry e1 in R(e1) and C(e1) such that e1 is in
E.

Output: the set E of size ∆ + 1.

{Assumption: e1 is the only non-faulty entry in R(e1).}
1. find a non-faulty entry e2 in C(e1), where e2 = i− 1, 1 ≤ i ≤ r;
2. find an entry e4 in R(e1) such that e2 → e3 and e3 ⇒ e4 where e3 is

in E;
3. if e4 is non-faulty

then E = E − {e3}; E = E ∪ {e2, e4};
4. else e4 = 0

find a non-faulty entry e5 such that e3 ⇒ e5, and e5 and e5 are
in the same row, or e5 is unused;
if R(e5) is unused
then E = E − {e3}; E = E ∪ {e2, e5};
else (R(e5) is used by e6 in E)

find a non-faulty entry e7 in R(e1) such that e5 → e6

and e6 ⇒ e7;
E = E − {e3, e6}; E = E ∪ {e2, e5, e7};

Fig. 7. The algorithm Aug-I

Proof. Suppose, in a column i, C, there is a used entry e1(= j) by e1 such that

e1 is in E. If j = i− 1 or i + 1, 1 ≤ i, j ≤ r, then both e1 and e1 are in the same row

R(e1). Since we assume that e1 is used, and R(e1) is unused such that R(e1) does

not contain an entry in E, we have j 6= i− 1 or i + 1 when 1 ≤ i, j ≤ r. Suppose e1

is the only non-faulty entry in R(e1). Then i is in between 1 and r, and there must

be at least n − 3 faulty entries in R(e1), and thus |α| = 1. Since |α| = 1 and Qn

has at most n− 2 faulty nodes, R(e1)/β does not have faulty entries. If n = 4, then

we have one faulty row and one faulty column. Thus, in R(e1), there exists another

non-faulty entry except e1. Therefore, we assume that n ≥ 5.

Step 1 of the algorithm

Since the value of an entry in R(e1) is 0, i, or i + 1 (that is, R(e1) is C(e1)), all

entries in C except entries e1 and e2 (= i− 1) are faulty. Note that e2 and e2 are in

63

Algorithm. Aug-II(E, R(e1), C(e1), e1)

Input: a set E of ∆ entries such that no two entries are common, and are
in the same row or column, feasible and unused row R(e1) and column
C(e1), and a used entry e1 in R(e1) and C(e1) such that e1 is in E.

Output: the set E of size ∆ + 1, or of size min{degf (u), degf (v)}.
{Assumption: the entry b1 in R(e1) and C(e1) is non-faulty, but the entry
b2 in R(e1) and C(e1) is 0 or faulty. Also, there is no non-faulty unused
entry k3 such that k1 → k2 and k2 ⇒ k3 where k1 is non-faulty and is in
C(e1), and k2 is in E. }
1. find a non-faulty entry e2(6= e1) in R(e1);
2. if C(e2) is unused

then E = E − {e1}; E = E ∪ {e1, e2};
3. else(C(e2) is used by e3 in E)
3.1 find an entry e4 in R(e3) and C(e1) such that e3 → e4 and e3 is

in E;
3.2 if e4 is non-faulty

then E = E − {e1, e3}; E = E ∪ {e1, e2, e4};
3.3 else e4 = 0 or faulty

find an entry e5 in R(e3) and C(e1) such that e3 → e5,
case 1. e5 is non-faulty, and e5 and e2 are not common

E = E − {e1, e3}; E = E ∪ {b1, e2, e5};
case 2. e5 and e2 are common and e4 = 0

E = E − {e3}; E = E ∪ {b1, e5};
case 3. e5 and e2 are common and e4 is faulty, or e5 is 0

or faulty
find a non-faulty entry e6 such that e3 → e6;
if C(e6) is unused

if e6 is unused, or e6 and e3 are common
then E = E − {e1, e3}; E = E ∪ {e1, e2, e6}
else call BFS(M);

if C(e6) is used by e7 in E
find a non-faulty entry e8 in C(e1) or C(e1) such that
e3 → e6, e6 ⇒ e7, and e7 → e8, where e8 and e2

are not common;
if e8 is unused, or e8 and e7 are common
then E = E − {e1, e3, e7}; E = E ∪ {e1, e2, e6, e8}
else call BFS(M);

Fig. 8. The algorithm Aug-II

64

the same row.

Step 2 of the algorithm

In step 3.4 of the algorithm Parallel-Edge-Pairing, we assume that all non-

faulty entries in column i are used or are in used rows. Thus, e2 is used by an entry

e3, or is in R(e2) used by an entry e3 in E such that e2 → e3. Let e4 be an entry in

R(e1) such that e3 ⇒ e4.

Step 3 of the algorithm

Suppose e4 is non-faulty. Then e4 must be unused because either e4 is in R(e1)

or in C(e1). Thus, e4 can be added to E after removing e3 from E. Next, we want

to insert an entry e2 to E. Since e2 = i− 1, 1 ≤ i ≤ r, and e2 and e2 are in the same

row, entries e2 and e4 cannot be common. Also, the entry e2 is unused unless e2 is e3.

The entry e4 is in R(e1), so R(e2) and R(e4) are different rows. Also, the entry e4 is

in C(e4) which is used by e3 in E, so C(e2) and C(e4) are different columns. Thus, e2

can be added to E. It shows that the size of E increases by one because we remove

e3 from E, and add e2 and e4 to E.

Step 4 of the algorithm

If e4 = 0, then e4 cannot be added to E, and we need to search other entries.

Note that e4 cannot be faulty because R(e1)/β does not have faulty entries. Let C(e3)

be a column a, a 6= i. Then C(e3)/α does not have faulty entries except an entry

e′ in C(e3) and R(e1) because common entries of all faulty entries in R(e1) are in

C(e1). We show that we can find a non-faulty entry e5 (6= e4) in C(e3) such that e5

and e5 are in the same row, or e5 is unused. Suppose n = 5, then there is at least

one non-faulty entry e5 such that e3 ⇒ e5 because |α| = 1. If e5 is used by e5 in E,

then e5 and e5 must be in the same row because one row must be faulty, and other

rows R(e1) and R(e2) are used by e1 and e3, respectively. Suppose n ≥ 6, then there

exists at least two non-faulty entries in C(e3) except e3. Let these entries be b and

65

b′. If b (or b′) is a − 1 or a + 1 where 1 ≤ a, b, b′ ≤ r, then we can find an entry e5

such that e5 and e5 are in the same row. Otherwise, entries b and b′ cannot be used

at the same time because their common entries b and b′ would be in the same row.

In that case, one must be unused.

Now, if R(e5) is unused, then e5 can be added to E after removing e3 from E.

Since e2 = i− 1 and is in C(e1), e2 and e5 are not common. Also, if e2 is used, then

e2 is e3. Since R(e2) and R(e5) are different, and C(e2) and C(e5) are also different,

e2 can be added to E, and the size of E increases by one. If R(e5) is used by an entry

e6 in E, then we need to show that there exists a non-faulty unused entry e7 in R(e1)

such that e5 → e6 and e6 ⇒ e7. A value of e7 is j or j + 1. Note that the value of

e7 cannot be 0 because e4 = 0. If e7 = j, then e7 is in C(e1), which is already used

by e1 in E. If e7 = j + 1, then e7 is unused because e7 is also in the unused row

R(e1), and thus, e7 cannot be in E. The entry e5 is not in R(e1), so R(e5) and R(e7)

are different. Also, the entry e5 is not in C(e6) and e6 ⇒ e7, so C(e5) and C(e7)

are different. Now, e5 and e7 can be added to E after removing e3 and e6 from E.

Similarly, we can show entries e2, e5, and e7 are not common, and R(e2) is different

to R(e5) or R(e7), and C(e2) is different to C(e5) and C(e7). Therefore, e2 can be

added to E, and the size of E increases by one.

From the above discussion, we show that for the given set E of entries in M

such that no two entries are common and are in the same row or column, feasible and

unused row and column with the used entry in the algorithm Aug-I, the algorithm

Aug-I increases the size of E by one.

Lemma D.3 For a given set E of entries such that no two entries are common, and

are not in the same row of column, feasible and unused row R and column C, and a

used entry e1 in R and C, if the entry b1 in R(e1) and C(e1) is non-faulty, but the

66

entry b2 in R(e1) and C(e1) is 0 or faulty, and there is no non-faulty unused entry

k3 such that k1 → k2 and k2 ⇒ k3 where k1 is non-faulty and is in C(e1), and k2 is

in E, then the algorithm Aug-II increases the size of E by one, or finds the set E of

size min{degf (u), degf (v)}.

Proof. Let b1 be an entry in R(e1) and C(e1), and b2 be an entry in R(e1) and

C(e1).

Step 1 of the algorithm

Suppose there are non-faulty entries b1 and e2(6= b2) in R(e1). First, we show

that e2 must not be used by e2 in E. The value of an entry e2 is i, and then e2 is in

C(e1). Since C(e1) is unused, e2 cannot be in E. Thus, e2 is unused.

Step 2 of the algorithm

Suppose C(e2) is unused. Then we can add e2 to E after removing e1 from E.

Since e1 6= e2, e1 and e2 are not common. Also, R(e1) and R(e2) are different because

we assume that R(e1) is unused. Since C(e1) and C(e2) are different, and e1 becomes

unused by removing e1 from E, we can add e1 to E, and the size of E increases by

one.

Step 3 of the algorithm

Suppose C(e2) is used by an entry e3 in E.

Step 3.1 of the algorithm

If C(e2) is used by an entry e3 in E, then we find an entry e4 in R(e3) and C(e1)

such that e3 → e4 and e3 is in E. Note that e4 6= b1 because e3 cannot be in R(e1).

Step 3.2 of the algorithm

Suppose e4 is non-faulty. If e4 = j− 1, 1 ≤ j ≤ r, then e4 and e4 are in the same

row. In this case, e4 must be e3 if e4 is used. Otherwise, e4 is unused because e4 is

67

in R(e1). Also, e4 is not e2. Thus, we can add e4 to E after removing e1, and e3. We

assume e2 ⇒ e3 and e3 → e4, so e2 and e4 are not in the same row or column. Also,

by removing e1 and e3 from E, R(e2) and C(e2) become unused. Thus, we can add e2

to E. Finally, we want to add e1 to E. An entry e1 is not e2 or e4. Thus, e1, e2, and

e4 are not common. Since R(e1) or C(e1) cannot contain e3 or e1, R(e1) is different

to R(e2) or R(e4), and C(e1) is different to C(e2) or C(e4). Therefore, we can add e1

to E, and the size of E increases by one because we remove e1 and e3 from E, and

add e1, e2, and e4.

Step 3.3 of the algorithm

Suppose e4 = 0 or e4 is faulty. Then we find an entry e5 in R(e3) and C(e1) such

that e2 ⇒ e3 and e3 → e5 where e3 is in E.

Case 1. e5 is non-faulty, and e5 and e2 are not common.

If e5 and e2 are not common, then an entry e5 is in R(e1), or e5 and e5 are in

the same row R(e3). Thus, we can add e2 and e5 to E by removing e1 and e3. Now

we can add b1 = j + 1 in R(e1) and C(e1) to E, and the size of E increases by one

because we remove e1 and e3 from E, and add b1, e2, and e5 to E.

Case 2. e5 and e2 are common and e4 = 0.

Let k be a value of e5. Note that k must be between 1 and r because R(e2) is

C(e5), and e3 is non-faulty. Then a value of e3 must be k + 1, and e3 is in row k − 1

and column k because e5 and e2 are common. Also, the value of an entry in row k−1

and column k − 1 is 0. Since we assume that e4 = 0 and e4 is in R(e3) and C(e1),

the entry e4 is in row k − 1 and column k − 1. From this observation, we know that

C(e1) is column k − 1. Also, b1 (= k) is in row k − 2 and column k − 1, and b1 (=

k− 1) is in row k− 2 and column k. Thus, we can add b1 and e5 to E after removing

e3 from E. Obviously, b1 and e5 are not common, and they are in different rows and

columns. Thus, the size of E increases by one because we remove e3 from E and add

68

b1 and e5.

Case 3. e5 and e2 are common and e4 is faulty, or e5 = 0 or faulty.

Let p be the number of non-faulty unused entries except e5 in R(e3), including

e3 when it is non-faulty and is in R(e3). Also, let q be the number of faulty entries

in R(e1)/β, and q′ be the number of faulty entries in C(e1)/α.

Case 3.1. e5 and e2 are common and e4 is faulty.

First, we search a non-faulty entry e6 such that e3 → e6, and e3 is in E. We show

that p ≥ 1. For entries b1 and e4 where e2 ⇒ e3 and e3 → e4, we assume that b1 is non-

faulty, and e4 is faulty. It implies that there are at least (q+|β|)+(n−q−|β|−3) = n−3

faulty entries in R(e1) and C(e1)/α. Thus, we have |α| = 1. Since we already found

at least n− 2 faulty entries in M , there is no faulty entry in R(e3)/β except e4. Also,

there is no used entry in R(e3) except e3 because e5 and e2 are common. It implies

R(e3) is C(e3), and R(e3) and C(e3) are only used by e3. Thus, p ≥ n−|β|−4 because

we exclude an entry with a value 0, e3, e4, and e5, where 1 ≤ |β| ≤ n− 3− 4 = n− 7.

Thus, unless n ≤ 5 and |β| = 1, we have p ≥ 1, which implies we can find at least

one non-faulty unused entry e6 in R(e3), or a used entry e6 such that e6 and e3 are

common. Suppose n ≤ 5 and |β| = 1. If b2 6= 0, then b2 and e4 must be faulty. Since

|α| ≥ 1 and β| ≥ 1, it is easy to prove that there would be more than n − 2 faulty

nodes in Qn. If b2 = 0, then the number of faulty entries in R(e1) and C(e1)/α is at

least (q + |β|)+ (n− q−|β|− 2) = n− 2. Since |α| ≥ 1, there are at least n− 1 faulty

nodes in Qn, which again contradicts the assumption that there are at most n − 2

faulty nodes in Qn. Therefore, we can find at least one non-faulty unused entry e6

or a used entry e6 (where e6 and e3 are common) in R(e3). Now, if C(e6) is unused,

then we can add e1, e2 and e6 to E after removing e1 and e3 from E.

If C(e6) is used by an entry e7 in E, then we continuously search a non-faulty

69

unused entry e8 in C(e1) or C(e1) such that e3 → e6, e6 ⇒ e7, and e7 → e8, where

e8 and e2 are not common. We show that there exists at least one such non-faulty

unused entry e8 in C(e1) or C(e1). Consider p non-faulty entries dj, 1 ≤ j ≤ p in

R(e3) such that dj is unused or e3, and dj ⇒ d′j, d′j → d′′j , and d′j → d′′′j where d′j is

in E, d′′j is in C(e1), and d′′′j is in C(e1). Assume by way of contradiction that entries

d′′j and d′′′j , 1 ≤ j ≤ p, are all faulty or 0. Let q′′ be the number of faulty entries

in R(e1) plus the number of entries d′′j , 1 ≤ j ≤ p, which are faulty or 0. Then

q′′ = |β|+ q + p ≤ n− 3, assuming that there is an entry d′′j such that d′′j = 0. Since

p ≥ 1, d′′′j in C(e1) is faulty where d′j → d′′′j , and thus d′′′j is in R(e1). We also showed

that the value of b2 cannot be 0. Thus, b2 (= i + 1) and d′′′j are faulty, and q ≥ 2.

Therefore, we have p ≤ n−|β|−5, contradicting the assumption that p ≥ n−|β|−4.

It shows that there exists at least one non-faulty entry d′′j in C(e1). It contradicts the

assumption that entries d′′j , 1 ≤ j ≤ q, are all faulty or 0. If d′′j is in R(e1) or R(d′j),

then there exists at least one non-faulty entry e8 in C(e1) such that e8 is unused, or

e8 and e7 are common. Since e8 in C(e1) and e2 in R(e1) cannot be common, we can

add e1, e2, e6, and e8 to E after removing e1, e3, and e7.

Case 3.2. e5 = 0 or e5 is faulty.

Similar to case 3.1, first we search a non-faulty entry e6 such that e3 → e6 and

e3 is in E. We show that for most of cases, p ≥ 1 holds. In case p < 1, we show

n is constant and provide min{degf (u), degf (v)} non-faulty entries in M by using

the algorithm BFS(M) which is shown in Fig. 9. If C(e6) is used by e7, then we

continuously search a non-faulty entry e8 in C(e1) or C(e1) such that e8 and e2 are

not common. To prove the existence of such an entry e8, we again consider p non-

faulty entries dj, 1 ≤ j ≤ p in R(e3) such that dj is unused or e3 and di ⇒ d′j,

d′j → d′′j , and d′j → d′′′j where d′j is in E, d′′j is in C(e1), and d′′′j is in C(e1). By way of

contradiction, we assume again that entries d′′j and d′′′j , 1 ≤ j ≤ p, are all faulty or 0.

70

Algorithm. BFS(M)

Input: the matrix M of entries that correspond with edges paired by Prematch-III

Output: a set E of min{degf (u), degf (v)} non-faulty entries in M such that no two
entries are common, and are in the same row or column. Initially, E = φ.

Phase 1: construct a network G = (X, Y) from a source node s, where X is a set of
nodes and Y is a set of edges in G.

{Assumption: each node in G contains the field row, column, and set. }
let Q be a queue. Initially, Q = φ;
X = {s}; Y = φ;
row[s] = NULL; column[s] = NULL; set[s] = NULL;
Q← s;
while Q is not empty do

v ← Q;
for each non-faulty entry e in an each column C of M do

if e is not in set[v], R(e) is not in row[v], and C(e) is not
in column[v]

then Q← e;
X = X ∪ {e}; Y = Y ∪ {[v, e]};
row[e] = row[v] ∪R(e);
column[e] = column[v] ∪ C(e);
set[e] = set[v] ∪ {e};

Phase 2: find a node e in G such that |set[e]|=min{degf (u), degf (v)}.
perform a Breath first search on G starting from s;
if for a node e in G, the size of set[e] is min{degf (u), degf (v)}, then
let E = set[e], and STOP.

Fig. 9. The algorithm BFS

We show that most cases find at least one non-faulty entry d′′j in C(e1). If we cannot

find such an entry d′′j , we again show n is constant and provide min{degf (u), degf (v)}
non-faulty entries in M by using the algorithm BFS(M). We discuss each case in

detail.

Case 3.2.1. e5 = 0 and e4 is faulty.

Since there are at least (q + |β|) + (n − q − |β| − 3) = n − 3 faulty entries in

R(e1) and C(e1)/α, there is no faulty entry in R(e3)/β except e4. If e4 = j − 1, then

p ≥ n − |β| − 5 because we exclude e3, e4, e4, e5, and a used entry e′ such that e′

and e3 are not common, where 1 ≤ |β| ≤ n − 3 − 5 = n − 8. If e4 6= j − 1, then

71

p ≥ n− |β| − 4 because we exclude e3, e4, e5, and a used entry e′ such that e′ and e3

are not common, where 1 ≤ |β| ≤ n− 3− 4 = n− 7. Thus, unless n ≤ 6 and |β| = 1

when e4 = j−1, or unless n ≤ 5 and |β| = 1 when e4 6= j−1, there exists at least one

non-faulty unused entry e6 or a used entry e6 (where e6 and e3 are common) in R(e3).

In this case, if C(e6) is unused, then we can add e1, e2, and e6 to E after removing e1

and e3 from E. If n ≤ 5, then b2 (= i+1) and e4 are faulty. Since |α| ≥ 1 and |β| ≥ 1,

there are at least four faulty nodes in Qn, n ≤ 5. It contradicts the assumption that

there are at most n− 2 faulty nodes in Qn. Consider the case e4 = j − 1 when n = 6

and |β| = 1. In this case, it is possible that there is only one non-faulty entry e6

which is used by e6 (6= e3). Since there is only one faulty entry b2 in C(e1), there

are at least two non-faulty entries in C(e1) except e1. Thus, non-faulty entries k1, k2,

and k3 exist such that k1 → k2 and k2 ⇒ k3 where k1 is in C(e1), k2 is in E, and k3

is in R(e1) which falls into step 4.1 of the algorithm Augmenting-I.

If C(e6) is used by e7 in E, then similar to case 3.1, we continuously search a

non-faulty entry e8 in C(e1) or C(e1). Suppose n ≥ 7 and |β| ≥ 1 when e4 = j − 1.

Then we showed that p ≥ n − |β| − 5 ≥ 1. Since b2 (= i + 1) is faulty, we have

q ≥ 1. In this case, q′′ = |β| + p + q ≤ n − 3. Since q ≥ 1, we have p ≤ n − |β| − 4,

which implies all entries d′′j , 1 ≤ j ≤ p, in C(e1) can be faulty or 0. However, in this

case, we claim non-faulty entries k1, k2, and k3 exist such that k1 → k2 and k2 ⇒ k3

where k1 is in C(e1), k2 is in E, and k3 is in R(e1) which falls into step 4.1 of the

algorithm Augmenting-I. For h ≥ n− q′−|α|−2 non-faulty entries in C(e1) except

e1, consider entries kj, k′j, and k′′j , 1 ≤ j ≤ h such that kj → k′j and k′j ⇒ k′′j where kj

is in C(e1), k′j is in E, and k′′j is in R(e1). Recall that q′ is the number of faulty entries

in C(e1)/α. If all k′′j , 1 ≤ j ≤ h, are faulty or 0, then the number of faulty entries

in C(e1) plus such entries k′′j , 1 ≤ j ≤ h is q′ + |α| + h, which is bounded by n − 3.

Thus, h ≤ n − q′ − |α| − 3, contradicting the assumption that h ≥ n − q′ − |α| − 2.

72

Therefore, entries k1, k2, and k3 exist such that k1 → k2 and k2 ⇒ k3 where k1 is in

C(e1), k2 is in E, and k3 is in R(e1).

Suppose n ≥ 6 and |β| ≥ 1 when e4 6= j−1. Then we showed that p ≥ n−|β|−4 ≥
1. Since b2 (= i+1) is faulty, we have q ≥ 1. Also, we have q′′ = |β|+q+p ≤ n−3. If

q ≥ 2, then we have p ≤ n−|β|−5, contradicting the assumption that p ≥ n−|β|−4.

If q = 1, and thus p = 1, then p ≤ n − |β| − 4 ≤ n − 5 and n = 6. In this case, it

is possible that we cannot find a non-faulty unused entry e8(6= e2) in C(e1) or C(e1).

Also, it is possible that we cannot find non-faulty entries k1 → k2 and k2 ⇒ k3 such

that k1 is in C(e1), k2 is in E, and k3 is in R(e1). In this case, we call BFS(M) to find

five non-faulty entries such that no two entries are common, and are in the same row

or column. The algorithm BFS(M) is a modification of the standard breadth-first

search algorithm and finds a set E of size min{degf (u), degf (v)}. The existence of

such five entries can be examined by using the following example, where entries are

as in the above discussion: first we find e1, e2, and then e7 in R(e3). It is easy to

see that they are not common, and are in different rows and columns. Note that e7

must be in R(e3) because p = 1, and there is one used entry in R(e3) which is not e3.

Next, we find an entry d in R(e1) and C(e2). The entry d is non-faulty and unused

because d is in C(e1), or d and d are in the same row. Finally, we find an entry d′ in

an unused row and column (which is C(e7)), where d′ 6= 0 because an entry in C(e7)

with a value 0 is in R(e1).

Thus, unless e4 6= j − 1 and n = 6, there is an entry e6 such that e3 → e6 where

e6 is unused or e3. If C(e6) is used by e7 in E, then we can find a non-faulty entry e8

in C(e1) such that e7 ⇒ e8, and e8 is unused, or e8 and e7 are common. Therefore,

we can add e1, e2, e6, and e8 to E after removing e1, e3, and e7 from E.

Case 3.2.2. e5 is faulty and e4 = 0.

73

Since there are at most (q + |β|) + (n − q − |β| − 4) = n − 4 faulty entries in

R(e1) and C(e1)/α, there is at most one faulty entry in R(e3)/β except e5. Suppose

there is one faulty entry e′5(6= e5) is in R(e3)/β. Then p ≥ n − |β| − 5 because we

exclude entries e3, e4, e5, e′5, and a used entry e′ such that e′ and e3 are not common,

where 1 ≤ |β| ≤ n− 3− 5 = n− 8. Thus, unless n ≤ 6 and |β| = 1, we have p ≥ 1,

and we can find at least one non-faulty unused entry e6, or a used entry e6 such that

e6 and e3 are common. If n ≤ 6, |β| = 1, and b2 = i + 1, then entries b2, e5, and

e′5 are faulty. Since |α| ≥ 1 and |β| ≥ 1, in M , there are at least n − 1 faulty nodes

in Qn. It contradicts the assumption that there are at most n − 2 faulty nodes in

Qn. If n ≤ 6, |β| = 1, and b2 = 0, then the number of faulty entries in R(e1) and

C(e1)/α is at least (q + |β|)+(n− q−|β|−3) = n−3. Since |α| ≥ 1, and e′5 is faulty,

there are at least n − 1 faulty nodes in Qn. It again leads to the contradiction. It

shows p ≥ 1. In addition, the entry e5 must be in R(e1). If C(e6) is used by e7, then

q′′ = |β|+ q + p ≤ n− 4. If b2 = i + 1, then entries e5 and b2 are faulty. Thus, q ≥ 2,

and we have p ≤ n− |β| − 6. It contradicts the assumption that p ≥ n− |β| − 5. If

b2 = 0, then the number of faulty entries in R(e1) and C(e1)/α is at least n−3. Since

|α| ≥ 1 and e′5 is faulty, there are at least n− 1 faulty nodes in Qn, which again leads

to a contradiction. It shows that we can find a non-faulty entry e8 in C(e1) such that

e7 → e8, and e8 is unused, or e8 and e7 are common.

Suppose there is no such faulty entry e′5. Then p ≥ n − |β| − 5 because we

exclude entries e3, e4, e5, e5, a used entry e′ such that e′ and e3 are not common,

where 1 ≤ |β| ≤ n− 3− 5 = n− 8. Unless b2 = i + 1, e5 = i− 1, n = 6 and |β| = 1,

all discussion above can be applied similarly. If b2 = n + 1, e5 = i − 1, n = 6, and

|β| = 1, then it is possible that there is only one used entry e6 in R(e3) which is used

by e6 (6= e3). Also, it is possible that we cannot find non-faulty entries k1, k2, and k3

such that k1 → k2 and k2 ⇒ k3 where k1 is in C(e1), k2 in E, and k3 in R(e1). In

74

this case, we call BFS(M) to find five non-faulty entries such that no two entries are

common, and are in the same row or column. The existence of such entries is shown

by the following example, where entries are as in the above discussion: First, we find

e1, e2, and e6, and then d in R(e6) and C(e1). The entry d is non-faulty and unused

because d is in R(e1), or d and d are in the same row R(e6). Finally, we find an

entry d′ in unused row and column (which is C(e6)). For the entry d′, d′ 6= 0 because

an entry in C(e6) with a value 0 is in R(e1). Moreover, d′ is non-faulty and unused

because d′ is in R(e3) and d′ and e6 are not common.

Case 3.2.3. e5 and e4 are faulty.

Since there are at least (q + |β|)+(n− q−|β|−3) = n−3 faulty entries in R(e1)

and C(e1)/α, there is no faulty entry in R(e3)/β except e4 and e5. Also, |α| = 1 and

e5 must be in R(e1). If e4 = j − 1, then p ≥ n− |β| − 6 because we exclude a entry

with a value 0, e3, e4, e4, e5, and a used entry e′ such that e′ and e3 are not common,

where 1 ≤ |β| ≤ n − 3 − 6 = n − 9. If e4 6= j − 1, then p ≥ n − |β| − 5 because we

exclude a entry with a value 0, e3, e4, e5, and a used entry e′ such that e′ and e3 are

not common, where 1 ≤ |β| ≤ n − 3 − 5 = n − 8. Thus, unless n ≤ 7 and |β| = 1

when e4 = j − 1, and unless n ≤ 6 and |β| = 1 when e4 6= j − 1, we have p ≥ 1

and, in R(e3), there exist at least one non-faulty unused entry e6, or a used entry e6

such that e6 and e3 are common. In addition, b2 6= 0 because if not, the number of

faulty entries in R(e1) and C(e1)/α is at least (q + |β|) + (n− q − |β| − 2) = n − 2.

Since |α| = 1, there are at least n− 1 faulty nodes in Qn. If n ≤ 6 and |β| = 1, then

entries b2, e4, and e5 are faulty. Since |α| = 1 and |β| = 1, there are at least n − 1

faulty nodes in Qn. It contradicts the assumption that there are at most n− 2 faulty

nodes in Qn. Thus, unless e4 = j − 1, n = 7, and |β| = 1, we can find at least one

non-faulty unused entry e6 or a non-faulty entry e6(= e3). If e4 = j − 1, n = 7, and

|β| = 1, then we can show non-faulty entries k1, k2, and k3 exist such that k1 → k2

75

and k2 ⇒ k3 where k1 is in C(e1), k2 is in E, and k3 is in R(e1).

If C(e6) is used by e7 in E, then we continuously search a non-faulty entry e8

in C(e1) or C(e1). Suppose n ≥ 8 and |β| ≥ 1 when e4 = j − 1. Then we showed

p ≥ n − |β| − 6 ≥ 1. In this case, q′′ = |β| + q + p ≤ n − 3. If q ≥ 4, then we have

p ≤ n− |β| − 7, which contradicts the assumption that p ≥ n− |β| − 6. Thus, we can

find at least one non-faulty entry e8 in C(e1). If q ≤ 3, then there exist non-faulty

entries k1, k2, and k3 such that k1 → k2 and k2 ⇒ k3 where k1 is in C(e1), k2 is in

E, and k3 is in R(e1). Suppose n ≥ 7 and |β| ≥ 1 when e4 6= j − 1. Then we showed

p ≥ n − |β| − 5 ≥ 1. Again, q′′ = |β| + q + p ≤ n − 3. If q ≥ 3, then we have

p ≤ n − |β| − 6 which again leads to the contradiction. If q = 2, then p = 1 or 2.

Since p ≤ n−|β|−5 ≤ n−7, we have n = 7 or 8. If n = 8, then there are at least two

non-faulty entries (6= e1) in R(e1). Since q = 2, for a non-faulty entry e2 in R(e1), we

can find entries e4 and e5 such that e2 ⇒ e3, e3 → e4, and e3 → e5, where e5 = 0 or

e5 is non-faulty, which does not fall into case 3.2.3. Thus, it suffices to show the case

n = 7 when q = 2. Unless non-faulty entries k1, k2, and k3 exist such that k1 → k2

and k2 ⇒ k3 where k1 is in C(e1), k2 is in E, and k3 is in R(e1), we call BFS(M) to

find six non-faulty entries such that no two entries are common, and are in the same

row or column. The existence of such entries is given by the following example, where

entries are as in the above discussion: First, we find entries e1, e3, and e7, and then

an entry d in R(e1) and C(e′6) where e′6 is a used entry in R(e3), and e′6 and e3 are

not common. The entry d is non-faulty and unused because d is in C(e1), or d and d

are in the same row R(e1). Next, we find an entry d′ in R(e′6) and C(e1). The entry

d′ is non-faulty and unused because d′ is in R(e1), or d′ and d′ are in the same row

R(e′6). Finally, we find an entry d′′ in an unused row and column (which is C(e′6)).

We need to show d′′, e3, and e7 are not common. Since R(e2) is C(e2), the entry e3

is in R(e2), where we already found the entry e7. Thus, d′′ and e3 are not common.

76

Also, since R(e′6) is C(e′6), d′′ is in R(e′6) (which is also R(e3)). Thus, d′′ and e7 are

not common. Therefore, unless e4 6= j − 2 and n = 7, we can find a non-faulty entry

e8 in C(e1) such that e7 → e8, and e8 is unused, or e8 and e7 are common. Now, we

can add e1, e2, e6, and e8 to E after removing e1, e3, and e7 from E.

From the above discussion, we show that for the given set E of non-faulty entries,

feasible and unused row and column with the used entry in an algorithm Aug-II,

the algorithm Aug-II increases the size of E by one, or finds min{degf (u), degf (v)}
non-faulty entries such that no two entries are common, and are in the same row or

column.

Lemma D.4 For a given set E of entries such that no two entries are common, and

are in the same row or column, feasible and unused row R and column C, and an

entry e1 in R and C, if the entry e1 is used by e1 such that e1 is in E, then the

algorithm Augmenting-I increases the size of E by one, or finds the set E of size

min{degf (u), degf (v)}.

Proof. Let C(e1) be a column i, b1 be an entry in R(e1) and C(e1), and b2 be an

entry in R(e1) and C(e1).

Case 1. e1 is the only non-faulty entry in R(e1).

We use the algorithm Aug-I to increase the size of E by one. It is verified by

Lemma D.2.

Case 2. both entries b1 and b2 are non-faulty.

Let e1 = j. Then b1 = j + 1 and b2 = i + 1. In this case, b1 can be added to E

after removing e1 from E. Also, b1 = j + 1 and b2 = i + 1, i 6= j, are not common,

and they are not in the same row or column. Thus, we can add b2 to E, and the size

of E increases by one because we remove e1 from E, and add b1 and b2.

77

Case 3. b1 is non-faulty, but b2 is 0 or faulty.

Since there are at least two non-faulty entries in a column of M , we can find a

non-faulty entry k1 (6= e1) in C(e1). Suppose there are non-faulty entries k1, k2, and

k3 such that k1 → k2 and k2 ⇒ k3 where k1 is in C(e1), k2 is E, and k3 is in R(e1).

If k1 = i − 1, then k1 and k1 are in the same row. Thus, if k1 is used, then k1 and

k2 are common. If k1 6= i− 1, then k1 is in R(e1) and k1 is unused. Thus, the entry

k1 can be added to E after removing k2 from E. Since the entry k3 is in C(e1), k3 is

unused, and we can add k3 to E. If there are no such non-faulty entries k1, k2, and

k3, then we use the algorithm Aug-II to increase the size of E by one, or to find

min{degf (u), degf (v)} non-faulty entries in M such that no two entries are common,

and are in the same row or column. It is verified by Lemma D.3.

Case 4. b1 is 0 or faulty.

If b1 is 0 or faulty but b2 is non-faulty, then we exchange e1 and e1, and then

apply the algorithm Augmenting-I. That is, we set E = E−{e1} and E = E∪{e1}.
Since removing e1 from E makes R(e1) and C(e1) unused, we can apply the algorithm

Augmenting-I with an entry e1 in R(e1) and C(e1). For other cases, we apply the

algorithm Aug-II with a slight modification in step 3.3. That is, in step 3.3, we rule

out cases 1 and 2, and then apply the algorithm used for case 3. Similar to Lemma D.3,

we can show that the correctness of step 5.2 of the algorithm Augmenting-I.

From the above discussion, we show that the algorithm Augmenting-I increases

the size of E by one, or finds min{degf (u), degf (v)} non-faulty entries in M such that

no two entries are common, and are in the same row or column.

So far, we discussed the correctness of the algorithm Augmenting-I. In the fol-

lowing lemma, we continue discussing about the correctness of the algorithm Augmenting-

78

Algorithm. Augmenting-II(E, R, C)

Input: a set E of ∆ entries such that no two entries are common, and are
in the same row or column, feasible and unused row R and column C.

Output: the set E of size ∆ + 1, or of size min{degf (u), degf (v)}.
{Assumption: in C, all non-faulty entries e1, e2, . . . , eh are in rows used
by e′1, e

′
2, . . . , e

′
h such that for all i, 1 ≤ i ≤ h, e′i is in E, and ei → e′i,

respectively. }
1. let e′′i be an entry in R such that e′i ⇒ e′′i ;
2. if there is a non-faulty entry e′′i in R

then call Aug-III(E, R, C);
3. else call Aug-IV(E, R, C);

Fig. 10. The algorithm Augmenting-II

II, which is used in the algorithm Augmenting. The algorithm Augmenting-II

is given in Fig. 10. Recall that we use the algorithm Augmenting-II to handle

the case that all non-faulty entries in an unused column are in used rows. To show

the correctness of the algorithm Augmenting-II, we discuss the correctness of the

algorithms Aug-III given in Fig. 11 and Aug-IV given in Fig. 12 by going through

each step.

First, we show how we can find the unused row R and column C such that R is

not C. For feasible and unused row R and column C, suppose R is C. Then in a row

R′ which is different to R, we find a non-faulty entry ej such that ej → e′j, e′j is in E,

and C(e′j) is not R. If both ej and ej are not in R′, then ej is in R. Since the entry

ej in R is unused, we can add ej after removing e′j from E. If both ei and ej are in

R′, then regardless of whether ej and e′j are common or not, we can add ej to E after

removing e′j from E. Now, C(e′j) becomes feasible and unused. Thus, we let C(e′j)

be C. In this way, we have row R and column C such that R is not C. Note that

once we set C(e′j) to be C, all non-faulty nodes in C may not be used, or are in used

rows. That is, we cannot directly call the algorithm Augmenting. Thus, we execute

step 3.3 again before calling the algorithm Augmenting(E, R, C) in step 3.4 of the

79

Algorithm. Aug-III(E, R, C)

Input: a set E of ∆ entries such that no two entries are common, and are
in the same row or column, feasible and unused row R and column C.

Output: the set E of size ∆ + 1, or of size min{degf (u), degf (v)}.
{Assumption: for non-faulty entries ei in C, e′i in E, and e′′i in R, 1 ≤ i ≤ h
such that ei → e′i and e′i ⇒ e′′i , we can find a non-faulty entry e′′i in R. }
1. if ei is unused, or ei and e′i are common
1.1 if e′′i is unused

then E = E − {e′i}; E = E ∪ {ei, e
′′
i };

1.2 else E = E − {e′i}; E = E ∪ {ei};
call Augmenting-I(E, R(e′′i), C(e′′i), e

′′
i);

2. else (ei is used by ei in E, and ei and e′i are not common)
2.1 if e′′i is unused

then E = E − {e′i}; E = E ∪ {e′′i };
call Augmenting-I(E, R(ei), C(ei), ei);

2.2 else
find a feasible row R′ such that an entry in R′ and C is 0
or faulty;
find a non-faulty entry dj in R′ such that for a non-faulty
entry ej in C, ej → e′j and e′j ⇒ dj where ej is unused, or ej

and e′j are common, and e′j is in E;
if R′ is unused
then E = E − {e′j}; E = E ∪ {ej};
else (R′ is used by dk in E)

find an entry d′k in R such that dk ⇒ d′k;
E = E − {e′j, dk}; E = E ∪ {ej, d

′
k, };

if dj is unused
then E = E ∪ {dj};
else call Augmenting-I(E,R(dj), C(dj), dj);

Fig. 11. The algorithm Aug-III

80

Algorithm. Aug-IV(E, R, C)

Input: a set E of ∆ entries such that no two entries are common, and
are in the same row or column, feasible and unused row R and column C
(which is not R).

Output: the set E of size ∆ + 1, or of size min{degf (u), degf (v)}.
{Assumption: for non-faulty entries ei in C, e′i in E, and e′′i in R, 1 ≤ i ≤ h
such that ei → e′i and e′i ⇒ e′′i , we cannot find a non-faulty entry e′′i .}
1. find a feasible row R′ such that an entry in R′ and C is 0 or faulty;
2. find a non-faulty entry di in R′ such that for a non-faulty entry ei

in C, ei → e′i and e′i ⇒ di where ei is unused, or ei and e′i
are common, and e′i is in E;

3. if R′ is unused
3.1 then E = E − {e′i}; E = E ∪ {ei};
3.2 if di is unused

then E = E ∪ {di};
3.3 else call Augmenting-I(E, R(di), C(di), di);
4. else (R′ is used by dk in E)
4.1 let d′k be an entry in R such that dk ⇒ d′k,
4.2 find an entry e′j in E such that for a non-faulty entry ej in C,

ej → e′j and R is C(e′j);
4.3 find non-faulty entries k1, k2, and k3 such that e′j ⇒ k1, k1 → k2

and k2 ⇒ k3 where k2 is in E, and k3 is in R′;
4.4 if d′k is unused

then E = E − {e′i, dk}; E = E ∪ {ei, d
′
k};

if di is unused
then E = E ∪ {di};
else call Augmenting-I(E,R(di), C(di), di);

4.5 else
E = E − {e′j, k2, dk}; E = E ∪ {ej, k1, d

′
k};

if k3 is unused
then E = E ∪ {k3};
else call Augmenting-I(E,R(k3), C(k3), k3);

Fig. 12. The algorithm Aug-IV

81

algorithm Parallel-Edge-Paring.

Lemma D.5 For a given set E of entries such that no two entries are common, and

are in the same row or column, feasible and unused row R and column C of M , if

there is a non-faulty entry e′′i in R such that ei → e′i and e′i ⇒ e′′i where ei is non-

faulty and is in C, and e′i is in E, then the algorithm Aug-III increases the size of

E by one, or finds the set E of size min{degf (u), degf (v)}.

Proof. Suppose, in C, all non-faulty entries e1, e2, . . . , eh are in rows used by

e′1, e
′
2, . . . , e

′
h such that for all ei, 1 ≤ i ≤ h, ei → e′i and e′i is in E, respectively. Also,

suppose there is a non-faulty entry e′′i in R such that e′i ⇒ e′′i . Let g be the number

of faulty entries in C/α, and b1 be an entry in R and C.

We first show that there is at least one non-faulty entry e′′i in R when b1 = 0,

or there are only two non-faulty entries in C. Note that the entry b1 is 0 or faulty

because we assume that all non-faulty entries in C are in used rows. By way of

contradiction, assume that there is no such non-faulty entry e′′i . Suppose b1 = 0, then

there are at least n− g−|α|− 2 faulty entries in R/β. Thus, in Qn, there are at least

|α|+ |β|+ g + (n− g− |α| − 2) = n + |β| − 2 ≥ n− 1 faulty nodes. It contradicts the

assumption that there are at most n− 2 faulty nodes in Qn. Suppose there are only

two non-faulty entries in C. That is, h = 2. Then |α| + g ≥ n − 3, and there is at

least one faulty entry in R/β. Thus, in Qn, there are at least n− 3 + |β|+ 1 ≥ n− 1

faulty nodes. It shows again the contradiction. Therefore, if b1 = 0 or h = 2, then

we can find at least one non-faulty entry e′′i in R such that e′i ⇒ e′′i . Specifically, if

h = 2, then there are at least two non-faulty entries e′′i and e′′h, 1 ≤ i, j ≤ h in R. In

this case, one of entries must be unused.

Step 1 of the algorithm

82

Suppose ei is unused, or ei and e′i are common. If e′′i is unused, then we can add

entries ei and e′′i to E after removing e′i from E. Thus, the size of E increases by one.

If e′′i is used, then we add ei to E after removing e′i from E. Now, the used entry e′′i is

in an unused row and column. Thus, we can call Augmenting-I(E, R(e′′i), C(e′′i), e
′′
i).

From Lemma D.4, the algorithm Augmenting-I increases the size of E by one, or

finds the set E of size min{degf (u), degf (v)}. Therefore, the lemma holds.

Step 2 of the algorithm

Suppose ei is used, and ei and e′i are not common.

Step 2.1 of the algorithm

Suppose e′′i is unused. Then we can add e′′i to E after removing e′i from E. Now,

the used entry ei is in an unused row and column, so we can call Augmenting-

I(E, R(ei), C(ei), ei). From Lemma D.4, the lemma holds.

Step 2.2 of the algorithm

Suppose e′′i is used, then we find a feasible row R′ such that an entry in R′ and C

is 0 or faulty. If there is no such feasible row, then there are n−|α| non-faulty entries

in C. It implies we already found a set E of size n − |α| = min{degf (u), degf (v)}.
Thus, we assume that we can find a feasible row R′. Also, for a non-faulty entry ej

in C, we find a non-faulty entry dj in R′ such that ej → e′j and e′j ⇒ dj where ej

is unused, or ej and e′j are not common, and e′j is in E. To show the existence of a

non-faulty entry dj, we consider h entries dj, 1 ≤ j ≤ h, in R′ such that ej → e′j and

e′j ⇒ dj where h ≥ 3, ej is non-faulty and in C, and e′j is in E. Then there are at

least two such non-faulty entries dj1 and dj2 , 1 ≤ j1, j2 ≤ h in R′ because there is at

most one faulty entry in R′. Recall that if h = 2 then we can find an unused entry

e′′j in R. Thus, there are non-faulty entries ej1 and ej2 in C such that ej1 → e′j1 and

e′j1 ⇒ dj1 , and ej2 → e′j2 and e′j2 ⇒ dj2 where e′j1 and e′j2 are in E. If both ej1 and ej2

are used, then either ej1 is used, and ej2 and e′j2 are common, or ej2 is used, and ej1

83

and e′j1 are common. Otherwise, one of entries ej1 and ej2 is unused. It shows that

we can find a non-faulty entry dj in R′ such that ej → e′j and e′j ⇒ dj where ej is in

C and e′j is in E.

Now, if R′ is unused, then we can add ej to E after removing e′j from E. We again

add dj to E if dj is unused, or call Augmenting-I(E, R(dj), C(dj), dj) if dj is used.

If R′ is used by an entry dk (6= di, 1 ≤ i ≤ h) then there is a non-faulty entry d′k in R

such that dk ⇒ d′k. Since we assume that e′′i in R is used, the entry d′k in R cannot be

used. Thus, we can add entries ej and d′k to E after removing entries e′j and dk from E.

Similarly, we add dj to E if dj is unused, or call Augmenting-I(E, R(dj), C(dj), dj)

if dj is used. Thus, the lemma holds.

From the above discussion, we show that the algorithm Aug-III increases the

size of E by one, or finds the set E of size min{degf (u), degf (v)}.

Lemma D.6 For a given set E of entries such that no two entries are common, and

are in the same row or column, feasible and unused row R and column C of M , if,

there is no non-faulty entry e′′i in R such that ei → e′i and e′i ⇒ e′′i where ei is non-

faulty and is in C, and e′i is in E, then the algorithm Aug-IV increases the size of

E by one, or finds the set E of size min{degf (u), degf (v)}.

Proof. In Lemma D.5, we showed that there is at least one-non-faulty entry e′′i

in R if b1 = 0 or there are only two non-faulty entries in C, where b1 is an entry in

R and C. Thus, we assume that b1 is faulty, and there are at least three non-faulty

entries in C. Let g be the number of faulty entries in C/α.

Step 1 of the algorithm

Suppose, in C, all non-faulty entries e1, e2, . . . , eh are in rows used by e′1, e
′
2, . . . , e

′
h

such that for all ei, 1 ≤ i ≤ h, ei → e′i and e′i is in E, respectively. Also, suppose we

84

cannot find a non-faulty entry e′′i in R such that e′i ⇒ e′′i . Then we find a feasible row

R′ such that an entry in R′ and C is 0 or faulty.

Step 2 of the algorithm

Similar to step 2.2 of the algorithm Aug-III, we can find a non-faulty entry di

in R′ such that for a non-faulty entry ei in C, ei → e′i and e′i ⇒ di where ei is unused,

or ei and e′i are common, and e′i is in E.

Step 3 of the algorithm

Suppose R′ is unused. Then we can add ei to E after removing e′i from E. We

again add di to E if di is unused, or call Augmenting-I (E, R(di), C(di), di). Thus,

the lemma holds.

Step 4 of the algorithm

Suppose R′ is used by dk in E, then we can find an entry d′k in R such that

dk ⇒ d′k. First, we find an entry e′j in E such that ej → e′j, e′j is in C, and R is

C(e′j). We assume that we cannot find a non-faulty entry e′′i in R such that ei → e′i

and e′i ⇒ e′′i where ei is non-faulty and is in C, and e′i is in E. Thus, there are at least

n− g − |α| − 2 faulty entries R, where we assume that among entries e′′i , 1 ≤ i ≤ h,

an entry has a value 0, and two entries, say e′′j and e′′k, are common. Thus, in Qn,

there are at least |α|+ |β|+ g +(n− g−|α|− 3) = n− 2 faulty nodes. In this case, R

is C(e′j) or C(e′k) because if two entries e and e′ in the same row are common, then

R(e) is C(e) or C(e′). Without loss of generality, assume that R is C(e′j).

Next, we find non-faulty entries k1, k2, and k3 such that e′j ⇒ k1, k1 → k2, and

k2 ⇒ k3 where k2 is in E, and k3 is in R′. To show the existence of such non-faulty

entries k1, k2, and k3, we consider h − 1 entries dg (6= e′j), 1 ≤ g ≤ h − 1, in C(e′j)

such that an entry in R(dg) and C is non-faulty. Since there are h− 3 faulty entries

in C(e′j), there exists at least one non-faulty entry dg such that e′j ⇒ dg. Since a

non-faulty entry in C is in a used row, the entry dg is in a row used by an entry, say

85

d′g. What remains is to show that we can find a non-faulty entry d′′g in R′ such that

d′g ⇒ d′′g . If R′ is not C, then there is no faulty entry in R′/β. Also, dj = 0 because

we assume dj is not non-faulty. Thus, d′′g is non-faulty. If R′ is C, then the number

of non-faulty entries in C must be n− |α| − 2. Otherwise, we can find a row R′ such

that R′ is not C. Also, an entry b′1 in R′ and C must be 0, and entries in R′/β except

dj are non-faulty. Thus, d′′g is non-faulty. It shows that we can find non-faulty entries

k1, k2, and k3 such that e′j ⇒ k1, k1 → k2, and k2 ⇒ k3 where k2 is in E, and k3 is in

R′.

If d′k is unused, then we can add ei and d′k to E after removing e′i and dk from

E. We again add di to E if di is unused, or call Augmenting-I (E, R(di), C(di), di).

If d′k is used, then entries e′j and d′k must be common. Also, k1 is unused because k1

is in R which is unused. Thus, we can add ej, k1, and d′k to E after removing e′j,

k2, and dk from E. We again add k3 to E if k3 is unused, or call Augmenting-I

(E, R(k3), C(k3), k3). Thus, the lemma holds.

From the above discussion, we show that the algorithm Aug-IV increases the

size of E by one, or finds the set E of size min{degf (u), degf (v)}.

Lemma D.7 For a given set E of entries such that no two entries are common,

and are in the same row or column, feasible and unused row R and column C of M ,

if all non-faulty entries in C are in used rows, then the algorithm Augmenting-II

increases the size of E by one, or finds the set E of size min{degf (u), degf (v)}.

The following theorem directly comes from Lemma D.4 and Lemma D.7.

Theorem D.8 For a given set E of entries such that no two entries are common,

and are in the same row or column, the algorithm Augmenting increases the size of

E by one, or finds the set E of size min{degf (u), degf (v)}.

86

Algorithm. Parallel-Routing-Cube

Input: non-faulty nodes u = 1r0n−r and v = 0n in Qn with at most n− 2
faulty nodes.

Output: min{degf (u), degf (v)} parallel fault-free paths of length
≤ dist(u, v) + 4 from u to v.

1. case 1. u and v have no faulty neighbors
use Parallel-Routing-Cube-I

2. case 2. u or v has faulty neighbors
case 2.1. only one of u or v has faulty neighbors

use Parallel-Routing-Cube-I, regarding u and v have no
faulty neighbors;
discard paths including faulty neighbors of u or v;

case 2.2. both u and v have faulty neighbors
for each entry ek given by Parallel-Edge-Pairing do

find a corresponding paired edge ([ui, ui,i′], [vj,j′ , vj])
given by Prematch-III;
construct a path of the form ui〈i′, . . . j′〉vj

by Procedure-III;

Fig. 13. Parallel routing on the hypercube network with faulty nodes

E. Parallel Routing Algorithm on Faulty Hypercube Networks

First, consider the lower bound of the length of the min{degf (u), degf (v)} node-

disjoint paths from a node u = 1r0n−r to a node v = 0n in hypercube Qn. Suppose

a neighbor node of u, ui, r + 1 ≤ i ≤ n be non-faulty, and we want to find a path

from u to v via ui. Assume that all neighbors of ui are faulty except two nodes u

and ui,i′ , r + 1 ≤ i′(6= i) ≤ n. Then a fault-free path of the form u〈i, i′, . . .〉v from u

to v has length at least dist(u, v) + 4. Thus, the length of the min{degf (u), degf (v)}
disjoint paths from u to v is at least dist(u, v) + 4.

For two non-faulty nodes u = 1r0n−r and v = 0n in Qn, our algorithm constructs

min{degf (u), degf (v)} node-disjoint fault-free paths from u to v such that the length

of the paths is bounded by dist(u, v) + 4. The algorithm called Parallel-Routing-

cube is given in Fig. 13.

We summarize all these discussions in the following theorem.

87

Theorem E.1 If the hypercube network Qn has at most n− 2 faulty nodes, then for

each pair of non-faulty nodes u and v in Qn, in time O(n2) the algorithm Parallel-

Routing-Cube constructs min{degf (u), degf (v)} node-disjoint fault-free paths of length

bounded by dist(u, v) + 4 from u to v.

Proof. First, we discuss the length of min{degf (u), degf (v)} node-disjoint fault-

free paths.

If there are no faulty neighbors of u and v, min{degf (u), degf (v)} node-disjoint

paths are constructed by Procedure-I or Procedure-II. Suppose a pair (ui, vj) is

given by Prematch-I. If 1 ≤ i ≤ r, the sequence of a path Pi from ui to vi−1 is a

permutation of 〈i+1, i+2, . . . r, 1, . . . , i−2〉, and the length of the path P is dist(u, v).

If the sequence of a path Pi is of the form 〈h, i + 1, . . . r, 1, . . . i− 2, h〉, the length of

Pi is dist(u, v) + 2. If r + 1 ≤ i ≤ n, the sequence of a path Pi from ui to vi is a

permutation of (1, . . . r), and the length of Pi is dist(u, v) + 2. If the sequence of Pi

is the form 〈h, 1, . . . r, h〉, the length of Pi is dist(u, v) + 4. Thus, paths constructed

by Procedure-I is a length of at most dist(u, v) + 4.

If paths are constructed by Procedure-II or Procedure-III, the length is still

at most dist(u, v)+4 because all paths constructed by Procedure-II or Procedure-

III are constructed based on Procedure-I, only flipping the first or last two indices

in the paths.

We now discuss the time complexity of the algorithm Parallel-Routing-Cube.

For each pair given by Prematch-I, a path is constructed by the algorithm by

searching a proper path in a set of paths between them, which takes time O(ki∗n+n),

where ki is the number of faulty nodes in the set of paths for the pair (ui, vj). If we

find a fault-free and unused path of the form ui′〈i, . . .〉vj′ for a pair (ui′ , vj′), i′ < i,

then mark a node ui,i′ as a used node. In such a way, we can detect used paths in

88

time O(i) since at most i − 1 used paths for (ui, vj). If all fault-free paths for the

pair (ui, vj) include used nodes, we pick any fault-free path P for (ui, vj), and for the

pair (ui′ , vj′) that used a node P , find a new path. As we have discussed previously

in detail, this happens once during the whole execution. Thus, the time complexity

is bounded by (k1n+ . . .+knn+n2) = O(n2) since the number k1 + . . . kn is bounded

by n− 2.

If for a pair (ui, vj) given by Prematch-I, all possible paths are blocked by

faulty nodes, we simply ignore all paths constructed for other pairs (ui′ , vj′), i′ < i,

and apply Procedure-II. Thus, it takes additional O(n2) time to construct paths

for pairs given by Prematch-II.

For pairs given by Parallel-Edge-Pairing, paths are constructed by Procedure-

III. Each step of Augmenting-I and Augmenting-II takes O(n) time. Thus, in

time O(n2), Parallel-Edge-Pairing finds non-faulty disjoint paired edges. Thus, we

conclude that the time complexity for constructing paths between non-faulty neigh-

bors of u and v is bounded by O(n2).

F. Chapter Summary

In this chapter, we have studied the strong fault tolerance of the popular hypercube

networks and shown that hypercube networks are strongly fault tolerant. We have

presented an algorithm of running time O(n2) that for two given non-faulty nodes u

and v in a n-dimensional hypercube Qn with at most n− 2 faulty nodes, constructs

min{degf (u), degf (v)} node-disjoint fault-free paths from u to v such that the length

of the paths is bounded by dist(u, v) + 4. The time complexity of our algorithm is

optimal. The length of the paths constructed by our algorithm is also optimal because

we can construct pairs of nodes u and v in the hypercube Qn with n− 2 faulty nodes

89

for which any set of n parallel paths connecting u and v has at least one path of

length dist(u, v) + 4.

90

CHAPTER IV

ROUTING IN HYPERCUBE NETWORKS WITH FAULTS

A. Chapter Overview

In this chapter, we study fault tolerant routing in hypercube networks under a proba-

bility model. We develop techniques that enable us to perform formal analysis on the

success probability of the routing schemes. We assume that failure probability of each

node in the hypercube network is independent and every node has the same failure

probability. We partition the hypercube networks into subcubes with small size and

traverse subcubes to find a path between two given nodes: If the source node and

destination node are in the same subcube, we use breadth-first Search to find a path

in the subcube. If the source node and destination node are in different subcubes,

we traverse subcubes to find a path connecting them. If we regard each subcube as a

single node, then these subcubes can be found by performing dimension-order routing

along subcubes. Based on this simple algorithm, we develop a routing algorithm that

for two given nodes in the hypercube network, can find a fault-free path with very

high probability.

B. L2-Routing

Suppose each node in an n-cube Qn is labeled by a distinct binary string b1b2 · · · bn.

Then each binary string b1b2 · · · bn−k of length n− k corresponds to a k-dimensional

subcube (or shortly a k-subcube) Qk of 2k nodes, where each node in Qk is labeled

as b1 · · · bn−kx1 · · · xk, xj ∈ {0, 1}. Two k-subcubes b1 · · · bn−k∗ and b′1 · · · b′n−k∗ are

neighboring if the strings b1 · · · bn−k and b′1 · · · b′n−k have exactly one different bit.

First, we give a brief description on our routing algorithm called L2-Routing,

91

Algorithm. L2-Routing

Input: two non-faulty nodes u = x1x2 · · · xn and v = y1y2 · · · yn in the
n-cube network Qn.

Output: a fault-free path in Qn from u to v.

1. w = u, and initialize the path P = [w];
2. for i = 1 to n− k, such that wi 6= yi do {assuming w = w1w2 · · ·wn}
2.1 if w′ = w1 · · ·wi−1wiwi+1 · · ·wn is non-faulty

then extend the path P to w′; let w = w′;
2.2 else if there is a j, (j is examined in the strict order

j = n− k + 1, n− k + 2, . . . , n) such that both
q = w1 · · ·wi−1wiwi+1 · · ·wj−1wjwj+1 · · ·wn and
q′ = w1 · · ·wi−1wiwi+1 · · ·wj−1wjwj+1 · · ·wn are non-faulty

then extend the path P to q then to q′; let w = q′;
else stop (‘routing fails’);

3. apply Breadth-first search in the k-subcube w1 · · ·wn−k ∗ ∗ to
route from w to v.

Fig. 14. The algorithm L2-Routing

which is given in Fig. 14. L2 is so named because for a path constructed by our

algorithm from the source node to the destination node, the length of the subpath

of the path connecting one node in a subcube and the other node in its neighboring

subcube is bounded by 2. We assume that n-cube Qn is decomposed into k-subcubes,

where k is a positive integer less than n and can be chosen arbitrarily. For two given

non-faulty nodes u = x1 · · · xn and v = y1 · · · yn, suppose the Hamming distance

between the substrings x1 · · · xn−k and y1 · · · yn−k is h. Then step 2 of the algorithm

L2-Routing traverses through h + 1 k-subcubes Q0
k, · · ·, Qh

k, where k-subcube Qi
k =

y1..ym(i)xm(i)+1 · · · xn−k ∗ ∗, 0 ≤ i ≤ h and m(i) is the index of the ith different bit

between u and v. The source node u is in Q0
k = x1x2 · · ·xn−k ∗∗, the destination node

v is in Qh
k = y1y2 · · · yn−k ∗ ∗, and Qi−1

k and Qi
k are neighboring k-subcubes.

If h = 0, then u and v are in the same k-subcube Q0
k. In this case, we use

Breadth-first search inside Q0
k to find a path between u and v whose length is at most

k + 2.

92

Q0
k

s
u

-

Q1
k

s
sQQs
s

S
S

s
A
A
A

-

Q2
k

⊗
s

⊗QQ
s

S
S

s
A
A
AU -

Q3
k

⊗
s
⊗
s . . .

Qh−1
k

s- -

Qh
k

s

s

↑↗
v

Fig. 15. Illustration of the algorithm L2-Routing (“⊗”: faulty nodes, “•”: non-faulty

nodes)

If h > 0, then we traverse k-subcubes Q0
k, · · ·, Qh

k. Suppose we arrive at a node

w in Qi
k, and the neighbor w′ of w in Qi+1

k is non-faulty. Then the subpath from u

to v is extended by connecting the edge between w and w′. If the neighbor of w is

faulty, then we find a non-faulty neighbor q of w in Qi
k such that the neighbor q′ of q

in Qi+1
k is also non-faulty. In this case, the subpath from u to v is extended between

w and q′ via q. Once we arrive at a node w in the k-subcube Qh
k, we route from w to

v within Qh
k by using Breadth-first search.

An illustration of the algorithm L2-Routing is presented in Fig. 15.

Lemma B.1 Suppose that the algorithm L2-Routing routes successfully from u to

v, then in time O(hk + k2k), L2-Routing finds a fault-free path P of length bounded

by 2h + k + 2.

Proof.

For two given nodes u = x1x2 · · ·xn and v = y1y2 · · · yn, suppose the Hamming

distance between the substrings x1 · · · xn−k and y1 · · · yn−k is h. First, we show that

the length of the path P is bounded by 2h + k + 2. The algorithm L2-Routing

traverses through h + 1 k-subcubes, Q0
k, . . . , Q

h
k, where u is in Q0

k and v is in Qh
k. For

two neighboring k-subcubes Qi−1
k and Qi

k, 1 ≤ i ≤ h, once we arrive a node in Qi
k,

93

we move to the other node in Qi+1
k within at most 2 hops. Thus, there are at most

2h hops on the path from the node u to a node w in the k-subcube Qh
k. From the

node w in Qh
k, we route from w to v within Qh

k by using Breadth-first Search, which

takes at most k + 2 hops. Therefore, if the algorithm L2-Routing finds a fault-free

path P from the node u to the node v, then the length of the path P is bounded by

2h + k + 2.

Step 2 of the algorithm L2-Routing will execute at most h times. During each

execution of the loop, we route from a k-subcube to its neighboring k-subcube by

trying at most k + 1 pairs of adjacent nodes. Since only at most 2(k + 1) nodes

will be tested for two neighboring subcubes, the time for the loop is bounded by

O(h(k + 1)) = O(hk). In Step 3, Breadth-first Search takes time O(k2k). Thus, the

running time of the algorithm L2-Routing is bounded by O(hk + k2k).

We compute the success probability of the algorithm L2-Routing. Note that

each node in the n-cube Qn belongs to a unique k-subcube in Qn. We define an event

as follows:

Event Hit(w)

The node w is contained in a k-subcube Qi
k, and w is the first node in Qi

k

on the routing path constructed by the algorithm L2-Routing.

We can extend the definition of the event Hit to a sequence of nodes w0, w1, . . . , wj

in Qn, where j ≤ h, w0 = u, and wi is a node in the k-subcube Qi
k, 0 ≤ i ≤ j:

Hit(w0w1 · · ·wj) =
j⋂

i=1

Hit(wi)

That is, Hit(w0w1 · · ·wj) is the event that wi is the first node in Qi
k on the routing

path constructed by the algorithm L2-Routing for all 1 ≤ i ≤ j. It is easy to see that

the event Hit(w0w1 · · ·wj) uniquely determines a partial routing path constructed by

94

L2-Routing from u to wj. Moreover, since step 2.2 of the algorithm examines the

index j in the strict order j = n− k + 1, n− k + 2, . . . , n, for two different sequences

u,w1, . . . , wj and u,w′
1, . . . , w

′
j, the events Hit(uw1 · · ·wj) and Hit(uw′

1 · · ·w′
j) are

disjoint.

Finally, we define an event that the routing path constructed by the algorithm

L2-Routing can successfully reach the k-subcube Qj
k:

Reach(Qj
k) =

⋃

wj∈Qj
k

Hit(wj)

Lemma B.2 Pr[Reach(Qj
k)] ≥ (1− pk+1(2− p)k)(1− pk(2− p)k−1)j−1, for all 1 ≤

j ≤ h.

Proof. A routing path constructed by the algorithm L2-Routing from the node

u to a node wj in Qj
k must go through the k-subcubes Q0

k, Q1
k, . . ., Qj

k. Thus, we

must have:

Reach(Qj
k) =

⋃

w1∈Q1
k

· · · ⋃

wj∈Qj
k

Hit(uw1 · · ·wj)

According to the definition of Reach(Qj
k) and because for two different sequences

u,w1, . . . , wj and u,w′
1, . . . , w

′
j, the events Hit(uw1 · · ·wj) and Hit(uw′

1 · · ·w′
j) are

disjoint, we have:

Pr[Reach(Qj
k)] =

∑

w1∈Q1
k

· · · ∑

wj∈Qj
k

Pr[Hit(uw1 · · ·wj)]

We prove the lemma by induction on j. Let w0 = u, we have:

Pr[Reach(Qj
k)] (4.1)

=
∑

w1∈Q1
k

· · · ∑

wj∈Qj
k

Pr[Hit(w0w1 · · ·wj)]

95

=
∑

w1∈Q1
k

· · · ∑

wj∈Qj
k

Pr[Hit(wj) | Hit(w0w1 · · ·wj−1)] · Pr[Hit(w0w1 · · ·wj−1)]

=
∑

w1∈Q1
k

· · · ∑

wj−1∈Qj−1
k

Pr[Hit(w0w1 · · ·wj−1)] ·
∑

wj∈Qj
k

Pr[Hit(wj) | Hit(w0w1 · · ·wj−1)]

We consider the probability Pr[Hit(wj) | Hit(w0w1 · · ·wj−1)] for different nodes

wj in the k-subcube Qj
k. We divide the discussion into two cases.

Case 1. j = 1, or j ≥ 2, and wj−1 is adjacent to wj−2.

If j = 1, then wj−1 = u, thus no assumption is made on the status of the neighbors

of wj−1 in Qj−1
k under the event Hit(w0w1 · · ·wj−1) = Hit(u). Now suppose j ≥ 2

and wj−1 is adjacent to wj−2. Then in the k-subcube Qj−2
k , we moved directly from

wj−2 to wj−1. Thus, step 2.2 of the algorithm L2-Routing was not executed. In

consequence, again, no assumption on the status of the neighbors of the node wj−1 in

the k-subcube Qj−1
k is made. In summary, in both cases, the status of the neighbors

of wj−1 in Qj−1
k is independent of the event Hit(w0w1 · · ·wj−1).

Case 1.1. The distance between wj−1 and wj is larger than 2; therefore, the algo-

rithm has no way to reach the node wj in Qj
k under the condition Hit(w0w1 · · ·wj−1).

Thus, in this case, we have:

Pr[Hit(wj) | Hit(w0w1 · · ·wj−1)] = 0

Case 1.2. The distance from wj−1 to wj is 1, i.e., wj is adjacent to wj−1. Under

the assumed condition, Hit(wj) if and only if wj is non-faulty. Thus in this case we

have:

Pr[Hit(wj) | Hit(w0w1 · · ·wj−1)] = 1− p

Case 1.3. The distance from wj−1 to wj is 2. Then there is a neighbor w′
j−1

of wj−1 in Qj−1
k such that w′

j−1 and wj are adjacent. Suppose that w′
j−1 is the ith

neighbor of wj−1 in Qj−1
k (that is, w′

j−1 and wj−1 differ by the (n− k + i)th bit). By

96

the algorithm, we must have:

• the neighbor of wj−1 in Qj
k is faulty;

• for each pair {w′′
j−1, w

′′
j } of nodes, where w′′

j−1 is the gth neighbor of wj−1 in

Qj−1
k and w′′

j is in Qj
k and adjacent to w′′

j−1, g = 1, 2, . . . , i−1, at least one node

is faulty; and

• the ith neighbor w′
j−1 of wj−1 in Qj−1

k and the neighbor wj of w′
j−1 in Qj

k are

both non-faulty.

Therefore, in this subcase, we have the probability:

Pr[Hit(wj) | Hit(w0w1 · · ·wj−1)] = p(1− (1− p)2)i−1(1− p)2 = pi(1− p)2(2− p)i−1

Summarizing all these situations, we get:

∑

wj∈Qj
k

Pr[Hit(wj) | Hit(w0w1 · · ·wj−1)]

= Pr[case 1.2] +
k∑

i=1

Pr[case 1.3, and w′
j−1 is the ith neighbor of wj−1]

= (1− p) +
k∑

i=1

pi(1− p)2(2− p)i−1

= 1− pk+1(2− p)k

In particular, if j = 1, then:

Pr[Reach(Q1
k)] =

∑

w1∈Q1
k

Pr[Hit(w1)] =
∑

w1∈Q1
k

Pr[Hit(w1) |Hit(w0)] = 1−pk+1(2−p)k

Thus, the lemma is verified for j = 1.

Case 2. j ≥ 2, and wj−1 is not adjacent to wj−2.

In this case, the node w′
j−1 in Qj−1

k that is adjacent to wj−2 must be faulty,

and the node w′
j−2 in Qj−2

k that is adjacent to wj−1 is non-faulty and is a neighbor

97

Qj−2
k

swj−2

Qj−1
k

⊗
w′j−1

}g − 1..⊗
QQ sQQ

s
S

S ⊗
S
S

s
A
A
A s

A
A
A

s

B
B
B
BB

w′j−2
QSSA
A

wj−1

Fig. 16. The case wj−2 is not adjacent to wj−1

of wj−2 (see Fig. 16 for references). Suppose that w′
j−2 is the qth neighbor of wj−2

in Qj−2
k . Note that the q − 1 pairs {w′′

j−2, w
′′
j−1} have been checked, where w′′

j−2 is

the ith neighbor of wj−2 in Qj−2
k and w′′

j−1 is the ith neighbor of w′
j−1 in Qj−1

k , for

i = 1, . . . , q−1. Because a hypercube contains no cycles of length 3 [52] and w′
j−1 and

wj−1 are adjacent, no neighbors of wj−1 is a neighbor of w′
j−1. Therefore, besides the

node w′
j−1, the status of the other k − 1 neighbors of wj−1 in Qj−1

k is independent of

the event Hit(w0w1 · · ·wj−1). (Note that w′
j−1 is the qth neighbor of wj−1 in Qj−1

k .)

Case 2.1. The distance between wj−1 and wj is larger than 2. Then as before,

again we have:

Pr[Hit(wj) | Hit(w0w1 · · ·wj−1)] = 0

Case 2.2. The distance from wj−1 to wj is 1. As in Case 1.2, in this case

Hit(wj) if and only if wj is non-faulty. Thus we have:

Pr[Hit(wj) | Hit(w0w1 · · ·wj−1)] = 1− p

Case 2.3. The distance from wj−1 to wj is 2. Then there is a neighbor xj−1

of wj−1 in Qj−1
k such that xj−1 and wj are adjacent. Suppose that xj−1 is the ith

neighbor of wj−1 in Qj−1
k . Note that i 6= q since the qth neighbor of wj−1 in Qj−1

k is

w′
j−1 which is faulty. Thus, we have:

98

• the neighbor of wj−1 in Qj
k is faulty;

• for each pair {w′′
j−1, w

′′
j } of nodes, where w′′

j−1 is the gth neighbor of wj−1 in

Qj−1
k and w′′

j is in Qj
k and adjacent to w′′

j−1, g = 1, 2, . . . , i−1, at least one node

is faulty; and

• the ith neighbor w′
j−1 of wj−1 in Qj−1

k and the neighbor wj of w′
j−1 in Qj

k are

both non-faulty.

Thus, in case i < q, we have:

Pr[Hit(wj) | Hit(w0w1 · · ·wj−1)] = p(1− (1− p)2)i−1(1− p)2 = pi(1− p)2(2− p)i−1

while in case i > q, since the qth neighbor w′
j−1 of wj−1 in Qj−1

k is already faulty

under the condition Hit(w0w1 · · ·wj−1), we have:

Pr[Hit(wj) | Hit(w0w1 · · ·wj−1)] = p(1− (1− p)2)i−2(1− p)2 = pi−1(1− p)2(2− p)i−2

Summarizing the above discussion, we have for Case 2 the probability:

∑

wj∈Qj
k

Pr[Hit(wj) | Hit(w0w1 · · ·wj−1)]

= Pr[case 2.2] +
q−1∑

i=1

Pr[case 2.3, and w′
j−1 is the ith neighbor of wj−1]

+
k∑

i=q+1

Pr[case 2.3, and w′
j−1 is the ith neighbor of wj−1]

= (1− p) +
g−1∑

i=1

pi(1− p)2(2− p)i−1 +
k∑

i=g+1

pi−1(1− p)2(2− p)i−2

= 1− pk(2− p)k−1

Combining the discussion in Cases 1-2, and since 1−pk+1(2−p)k ≥ 1−pk(2−p)k−1,

99

we get:
∑

wj∈Qj
k

Pr[Hit(wj) | Hit(w0w1 · · ·wj−1)] ≥ 1− pk(2− p)k−1

Therefore, from the Equation (4.1), we get:

Pr[Reach(Qj
k)]

=
∑

w1∈Q1
k

· · · ∑

wj−1∈Qj−1
k

Pr[Hit(w0w1 · · ·wj−1)] ·
∑

wj∈Qj
k

Pr[Hit(wj) | Hit(w0w1 · · ·wj−1)]

≥ (1− pk(2− p)k−1)
∑

w1∈Q1
k

· · · ∑

wj−1∈Qj−1
k

Pr[Hit(w0w1 · · ·wj−1)]

= (1− pk(2− p)k−1)Pr[Reach(Qj−1
k)]

Now by induction on j, and noticing that Pr[Reach(Q1
k)] = 1 − pk+1(2 − p)k, we

complete the proof of the lemma.

We define the Event Con as follows:

Event Con(Qk)

Each non-faulty node in a k-subcube Qk with at most 2k− 3 faulty nodes

has at least one non-faulty neighbor.

Lemma B.3 Pr[Con(Qk)] ≥

k−1∑

i=0

pi(1− p)2k−i

2k

i

 +

2k−3∑

i=k

pi(1− p)2k−i

2k

i

− 2k

2k − (k + 1)

i− k

Proof. Since a k-subcube Qk has 2k nodes, the probability that Qk has exactly i

faulty nodes is:

pi(1− p)2k−i

2k

i

If i ≤ k − 1, then each node in Qk has at least one non-faulty neighbor. Thus,

the probability that Qk has i, i ≤ k − 1, faulty nodes, and each node in Qk has at

100

least one non-faulty neighbor is:

pi(1− p)2k−i

2k

i

If i ≥ k, then it is possible that some nodes in Qk have no non-faulty neighbor.

Moreover, in Qk with at most 2k − 3 faulty nodes, there is at most one non-faulty

node whose neighbors are all faulty. By way of contradiction, suppose there are two

non-faulty nodes u and v in Qk such that their neighbors are all faulty. Then there

are at least 2k−2 faulty nodes in Qk because any two nodes in a hypercube can have

at most two common neighbors. It contradicts the assumption that Qk has at most

2k − 3 faulty nodes.

There are 2k ways to choose such a non-faulty node that has no non-faulty

neighbor. After that node is chosen, its k neighbors must all be faulty. Since the rest

i− k faulty nodes can be placed on any positions, there are

2k − (k + 1)

i− k

 cases.

Thus, if Qk has i, k ≤ i ≤ 2k − 3, faulty nodes, the probability that each node in Qk

has at least one non-faulty neighbor is:

pi(1− p)2k−i

2k

i

− 2k

2k − (k + 1)

i− k

Thus, the probability that each non-faulty node in Qk with at most 2k−3 faulty

nodes has at least one non-faulty neighbor is:

k−1∑

i=0

pi(1− p)2k−i

2k

i

 +

2k−3∑

i=k

pi(1− p)2k−i

2k

i

− 2k

2k − (k + 1)

i− k

Lemma B.2 and Lemma B.3 give the following theorem.

101

Theorem B.4 Suppose that the node failure probability in the n-cube is p. Then

for any two non-faulty nodes u and v, the algorithm L2-Routing constructs a path

from u to v with probability at least Pr[Reach(Qh
k)] + Pr[Con(Qh

k)] − 1, where

Pr[Reach(Qh
k)] ≥ (1− pk+1(2− p)k)(1− pk(2− p)k−1)h−1 and Pr[Con(Qh

k)] =

k−1∑

i=0

pi(1− p)2k−i

2k

i

 +

2k−3∑

i=k

pi(1− p)2k−i

2k

i

− 2k

2k − (k + 1)

i− k

Proof. Let h be the Hamming distance between x1 · · ·xn−k and y1 · · · yn−k. Under

the event Reach(Qh
k) ∩ Con(Qh

k), the algorithm L2-Routing routes successfully

from u to v. The lemma holds because:

Pr[Reach(Qh
k) ∩Con(Qh

k)]

= 1− Pr[Reach(Qh
k) ∩Con(Qh

k)]

= 1− Pr[Reach(Qh
k) ∪Con(Qh

k)]

≥ 1− Pr[Reach(Qh
k)]− Pr[Con(Qh

k)]

= Pr[Reach(Qh
k)] + Pr[Con(Qh

k)]− 1

Specifically, for given n, k, and p, Pr[Reach(Qh
k)] + Pr[Con(Qh

k)] − 1 gives a

lower bound on the success probability for the L2-Routing when h = n−k. Let us set

k = 5 and the node failure probability to p = 6% and calculate the success probability

of the algorithm L2-Routing for different dimension of n-cube. The results are given

in Table II. The value of node failure probability p is chosen so that we can make

the lower bound of success probability over 99%. From this table, it shows that when

the node failure probability is less than or equal to 6%, the L2-Routing algorithm

routes successfully with probability over 99.9%.

102

Table II. Success probability of the algorithm L2-Routing

Dimension of Hypercube Qn Success Probability

p = 6%

10 ≥ .9995

15 ≥ .9994

20 ≥ .9993

25 ≥ .9992

30 ≥ .9992

35 ≥ .9991

40 ≥ .9991

C. L2-Parallel-Routing

In L2-Routing, we use one single path through h+1 k-subcubes for finding a routing

path from u to v. If we can use node-disjoint paths from u to v, then we can improve

the success probability to find a path between them. Suppose the source node u =

x1x2 · · ·xn−k ∗∗ is in the k-subcube Qk, and the destination node v = y1y2 · · · yn−k ∗∗
is in the k-subcube Q′

k. Also, suppose that the Hamming distance between the

substrings x1x2 · · · xn−k and y1y2 · · · yn−k is h. Then we can pair a neighbor ui of u

and a neighbor vj of v by Prematch-I which is introduced in Chapter III. For the

paired neighbors ui and vj, if ui and vj are non-faulty, then we can use L2-Routing

between ui and vj with a slight modification. That is, if 1 ≤ i ≤ h, then we traverse

through h − 1 k-subcubes by converting the bits xb of ui into yb of vj in the order

of b = i, i + 1, . . . , h, 1, . . . , i − 2, j. Also, if h + 1 ≤ i ≤ n − k, then we traverse

through h + 1 k-subcubes by converting the bits xb of ui into yb of vj in the order

103

Algorithm. L2-Parallel-Routing

Input: two non-faulty nodes u = x1x2 . . . xn and v = y1y2 . . . yn in the
n-cube network Qn.

Output: a fault-free path in Qn from u to v.

1. let u is in a k-subcube Qk and v is in a k-subcube Q′
k;

2. let h be the Hamming distance between x1x2 · · ·xn−k and y1y2 · · · yn−k;
3. for each pair (ui, vj) given by Prematch-I such that ui and vj

are non-faulty do
3.1 case 1. 1 ≤ i ≤ h

use the L2-Routing along k-subcubes Q1
k, Q

2
k, . . . , Q

h−1
k in the

order of dimension i, i + 1, . . . , h, 1, . . . , i− 2, j where
ui ∈ Q1

k = u1 · · ·ui · · ·un−k ∗ ∗ and
vj ∈ Qh−1

k = v1 · · · vj · · · vn−k ∗ ∗;
3.2 case 2. h + 1 ≤ i ≤ n− k

use the L2-Routing along k-subcubes Q1
k, Q

2
k, . . . , Q

h+1
k in the

order of dimension i, 1, 2, . . . , h, j where
ui ∈ Q1

k = u1 · · ·ui · · ·un−k ∗ ∗ and
vj ∈ Qh+1

k = v1 · · · vj · · · vn−k ∗ ∗;
3.3 if L2-Routing return a fault-free path P between ui and vj

then
extend P into the path from u to v;
return the path P ;

4. return NULL; (‘routing fail’)

Fig. 17. The algorithm L2-Parallel-Routing

of b = i, 1, 2, . . . , h, j. The algorithm called L2-Parallel-Routing is presented in

Fig. 17.

If we regard each k-subcube as a single node, then the Qn is regarded as an n−k

dimensional hypercube Qn−k. From Lemma C.1, for two pairs (ux, uy) and (us, vt)

given by Prematch-I, k-subcubes traversed between ux and vy and k-subcubes tra-

versed between us and vt are disjoint. That is, we perform the routing along the

k-subcubes corresponding to each path in the set of node-disjoint paths between u

and v.

Lemma C.1 Suppose that the algorithm L2-Parallel-Routing routes successfully

from u to v, then in time O(kn(h + 2k)), L2-Parallel-Routing finds a fault-free

104

path P of length bounded by 2h + k + 4, where h is the Hamming distance between

x1 · · · xn−k and y1 · · · yn−k.

Proof. For a pair (ui, vj) given by Prematch-I, suppose both ui and vj are non-

faulty. If 1 ≤ i ≤ h, then step 3.1 of the algorithm L2-Parallel-Routing traverses

through h − 1 k-subcubes Q1
k, . . . , Q

h−1
k , where ui is in Q1

k and vj is in Qh−1
k . If

h + 1 ≤ i ≤ n − k, then step 3.2 of the algorithm L2-Parallel-Routing traverses

through h + 1 k-subcubes Q1
k, . . . , Q

h+1
k , where ui is in Q1

k and vj is in Qh+1
k . Since

we move from a node in a k-subcube Qi
k to a node in its neighboring k-subcube Qi+1

k

within at most 2 hops, the length of the path P between ui and vj constructed by

the algorithm L2-Routing is bounded by 2h + k + 2. Step 3.3 of the algorithm L2-

Parallel-Routing extends P to the path from u to v by adding two edges < u, ui >

and < vj, v >. Thus, if the algorithm L2-Parallel-Routing finds a fault-free path P

from the node u to the node v, then the length of the path P is bounded by 2h+k+4.

From Lemma B.1, steps 3.1 and 3.2 of the algorithm L2-Parallel-Routing takes

O(hk+k2k). Since step 3 of the algorithm L2-Parallel-Routing will execute at most

n− k times, the running time of the algorithm L2-Parallel-Routing is bounded by

O((n− k)(hk + k2k)) = O(kn(h + 2k)).

We compute the success probability of the algorithm L2-Parallel-Routing in

the following theorem:

Theorem C.2 Suppose that the node failure probability in the n-cube is p. Then for

any two non-faulty nodes u and v, the algorithm L2-Parallel-Routing constructs

a path from u to v with probability at least 1 − (1 − (1 − p)2(Pr[Reach(Qh
k)] +

Pr[Con(Qh
k)]− 1))n−k.

105

Proof. For 1 ≤ i ≤ n−k, if both ui and vj are non-faulty, and ui can reach vj by the

algorithm L2-Routing, then u can reach vj in one hop, and vj can reach v in one hop.

That is, the node u can reach the node v by going through the path between ui and vj.

From Theorem B.4, with a probability of at least Pr[Reach(Qh
k)]+Pr[Con(Qh

k)]−1,

the algorithm L2-Routing constructs a path from ui to vj. Step 3 of the algorithm

L2-Parallel-Routing will execute at most n − k times. During each execution of

the loop, the probability that the algorithm L2-Parallel-Routing cannot return a

fault-free path is at most 1 − (1 − p)2(Pr[Reach(Qh
k)] + Pr[Con(Qh

k)] − 1). Since

k-subcubes traversed in each iteration are disjoint, the failure probability that for

each pair (ui, vj) given by Prematch-I, ui cannot reach vj is independent. Thus, the

probability that u cannot reach v in the algorithm L2-Parallel-Routing is at most

(1 − (1 − p)2(Pr[Reach(Qh
k)] + Pr[Con(Qh

k)] − 1))n−k. Therefore, the probability

that the algorithm L2-Parallel-Routing constructs a path from u to v is at least

1− (1− (1− p)2(Pr[Reach(Qh
k)] + Pr[Con(Qh

k)]− 1))n−k.

For given n, k, and p, 1− (1− (1− p)2(Pr[Reach(Qh
k)] + Pr[Con(Qh

k)]− 1))n−k

gives a lower bound on the success probability for the L2-Parallel-Routing when

h = n − k. Table III shows the success probability of the algorithm L2-Parallel-

Routing for different dimensions of n-cube when k = 4, and p = 20%. From this

table, it shows that when failure probability is lower than or equal to 20%, the

algorithm L2-Parallel-Routing routes successfully with probability over 99%. When

the dimension of the hypercube is getting larger, the success probability is very close

to 1. Compared to L2-Routing, the algorithm L2-Parallel-Routing can tolerate

much larger node failure probability p.

106

Table III. Success probability of the algorithm L2-Parallel-Routing

Dimension of Hypercube Qn Success Probability

p = 20%

10 ≥ .9919

15 ≥ .9997

20 ≥ .99998

25 ≥ .9999985

30 ≥ .9999998

35 ≥ .99999996

40 ≥ .99999999

D. Chapter Summary

We have presented two routing algorithms, L2-Routing and L2-Parallel-Routing

that construct a fault-free path between any two given non-faulty nodes in hypercube

networks. Without considering the global connectivity of the whole network, the

suggested algorithms construct a fault-free path between any two given nodes in

hypercubes with very high probability. When the failure probability for each node is

6%, for any hypercube whose dimension is not larger than 40, the probability that

our algorithm L2-Routing can find a fault-free path is over 99.9%. Suppose that we

are given a source node u = x1x2 · · · xn, and a destination node v = y1y2 · · · yn, and

that the Hamming distance between the strings x1x2 · · · xn−k and y1y2 · · · yn−k is h.

Suppose L2-Routing routes from u to v through 5-subcubes Q0
5, Q

1
5, . . . , Q

h
5 , then in

time O(h+c), L2-Routing finds a fault-free path of length bounded by 2h+7. Since

h is bounded by O(n), the length of the routing path constructed by L2-Routing is

107

bounded by O(n). We further investigated our routing algorithm to allow a larger

failure probability. We applied a method suggested in Chapter III to L2-Parallel-

Routing. By using disjoint paths from u to v, when the failure probability for each

node is no more than 20%, the probability that our algorithm L2-Parallel-Routing

can find a fault-path is over 99%.

108

CHAPTER V

CONCLUSIONS

A. Thesis Summary

Strong fault tolerance is a natural extension of the study of network fault tolerance

and parallel routing. In particular, it is the study of fault tolerance on large size

networks with faulty nodes. In Chapter II and Chapter III, we demonstrated that

the popular interconnection networks, such as the star networks and the hypercube

networks, are strongly fault tolerant. We presented an algorithm of running time

O(n2) that for two given non-faulty nodes u and v, constructs the maximum number

(i.e., min{degf (u), degf (v)}) of node-disjoint fault-free paths from u to v such that

the length of the paths is bounded by dist(u, v)+8 for the star networks and bounded

by dist(u, v) + 4 for the hypercube networks. The time complexity of our algorithm

is optimal since each path from u to v in the network Sn or Qn may have a length

as large as Θ(n), and there can be as many as Θ(n) node-disjoint paths from u to

v. Thus, even printing these paths should take time O(n2). We have shown that

the length of the paths constructed by our algorithm for the star networks is almost

optimal. For the n-cube network Qn, the length of the paths constructed by our

algorithm is bounded by dist(u, v) + 4. It is not difficult to see that this is the best

possible, since there are node pairs u and v in Qn with n− 2 faulty nodes, for which

any group of min{degf (u), degf (v)} parallel paths from u to v contains at least one

path of length at least dist(u, v) + 4.

In chapter IV, we investigated the fault tolerance of hypercube networks by using

a probability model. In this research, we focused on developing routing algorithms

that, for two given nodes in n-cubes, can find a fault-free path with very high probabil-

109

ity while keeping the length of the path bounded by O(n). We assume that each node

in hypercube networks has an independent failure probability. Under this model, we

analyzed the success probability that algorithms can return a fault-free path. With-

out considering the global connectivity of the whole network, the suggested routing

algorithms find a fault-free path with very high success probability. Compared to the

previous scheme proposed in [9], our schemes would be more attractive for users who

want to find a fault-free routing path without considering the global connectivity of

the whole network.

B. Future Research

The hypercube networks and the star networks are the first two classes of networks

whose strong fault tolerance have been proved. For star networks, the strong fault

tolerance was proved based on the orthogonal partition of the star networks, while for

hypercube networks, the strong fault tolerance was proved by careful pre-matching of

the neighbors of the source and destination nodes. Strong fault tolerance for networks

with bounded degree, such as ring networks, mesh networks, and butterfly networks,

are relatively easier. On the other hand, strong fault tolerance for unbounded degree

networks, such as networks based on Cayley graphs, seems much more difficult. It

will be interesting to study the strong fault tolerance of other hierarchical networks

with unbounded degree.

The probability model used for the hypercube networks can be applied to other

hierarchical network structures such as a variety of hypercube variations. Specifically,

our model can be easily applied to k-ary n-dimensional hypercube networks which

are general forms of binary hypercube networks. Also, studying the probability of

fault tolerance for networks with degree bounded by a small constant would be inter-

110

esting. In this thesis, we assume that each node in the networks has a uniform and

independent failure probability. In reality, nodes may have different failure probabili-

ties which make the distribution of node failure probability nonuniform. In addition,

nodes may be related and fail at the same time, so that node failures may not be

independent. Our study can be extended to handle these probability models.

111

REFERENCES

[1] S. B. Akers, D. Harel, and B. Krishnamurthy, “The Star Graph: An Attractive

Alternative to The n-Cube,” Proc. Intl. Conf. of Parallel Processing, pp. 393-400,

1987.

[2] S. B. Akers and B. Krishnamurthy, “A Group Theoretic Model for Symmetric

Interconnection Networks,” IEEE Trans. on Computers, vol. 38, pp. 555-565,

1989.

[3] S. B. Akers and B. Krishnamurthy, “The Fault Tolerance of Star Graphs,” Proc.

2nd International Conference on Supercomputing, San Francisco, CA, pp. 270-

276, 1987.

[4] G. Birkhoff and S. MacLane, A Survey of Modern Algebra, New York: The

Macmillan Company, 1965.

[5] A. Broder, D. Dolev, M. J. Fischer, and B. Simons, “Efficient Fault-Tolerant

Routings in Networks,” Information and Computation, vol. 75, no. 1, pp. 52-64,

1987.

[6] N. Bagherzadeh, N. Nassif, and S. Latifi, “A Routing and Broadcasting Scheme

on Faulty Star Graphs,” IEEE Trans. on Computers, vol. 42, pp. 1398-1403,

1993.

[7] C. C. Chen and J. Chen, “Optimal Parallel Routing in Star Networks,” IEEE

Trans. on Computers, vol. 46, pp. 1293-1303, 1997.

[8] C. C. Chen and J. Chen, “Nearly Optimal One-to-Many Parallel Routing in Star

Networks,” IEEE Trans. Parallel, Distrib. Syst., vol. 8, pp. 1196-1202, 1997.

112

[9] J. Chen, I. A. Kanj, and G. Wang, “Hypercube Network Fault Tolerance: A

Probabilistic Approach,” Proc. International Conference on Parallel Processing,

Vancouver, B.C., Canada, pp. 65-72, 2002.

[10] J. Chen, G. Wang, and S. Chen, “Routing in Hypercube Networks with A Con-

stant Fraction of Faulty Nodes,” Proc. 4th International Conference on Algo-

rithms and Architecture for Parallel Processing, pp. 605-616, 2000.

[11] J. Chen, G. Wang, and S. Chen, “Locally Subcube-Connected Hypercube Net-

works: Theoretical Analysis and Experimental Results,” IEEE Trans. on Com-

puters, vol. 51, no. 5, pp. 530-540, 2002.

[12] G. -M. Chiu and S. -P. Wu, “A Fault-Tolerant Routing Strategy in Hypercube

Multicomputers,” IEEE Trans. Computers vol. 45, pp. 143-154, 1996.

[13] M. -S. Chen and K. G. Shin, “Adaptive Fault-Tolerant Routing in Hypercube

Multicomputers,” IEEE Trans. Computers vol. 39, pp. 1406-1416, 1990.

[14] M. -S. Chen and K. G. Shin, “Depth-First Search Approach for Fault-Tolerant

Routing in Hypercube Multicomputers,” IEEE Trans. Parallel and Distributed

Systems, vol. 1, no. 2, pp. 152-159, 1990.

[15] H. Choi, S. Subramaniam, and H. -A. Choi, “Loopback Recovery from Double-

Link Failures in WDM Optical Mesh Networks,” IEEE/ACM Trans. Networks,

to appear

[16] H. Choi, S. Subramaniam, and H. -A. Choi, “On Double-Link Failure Recovery

in WDM Optical Networks,” Proc. INFOCOM, New York, 2002.

[17] K. Day and A. Tripathi, “A Comparative Study of Topological Properties of

Hypercubes and Star Graphs,” IEEE Trans. Parallel, Distrib. Syst. , vol. 5, pp.

113

31-38, 1994.

[18] M. Dietzfelbinger, S. Madhavapeddy, and I. H. Sudborough, “Three Disjoint

Path Paradigms in Star Networks,” Proc. 3nd IEEE Symposium on Parallel and

Distributed Processing, Dallas, TX, pp. 400-406, 1991.

[19] D. Dolev, J. Y. Halpern, B. Simons, and H. R. Strong, “A New Look at Fault-

Tolerant Network Routing,” Information and Computation, vol. 72, no. 3, pp.

180-196, 1987.

[20] P. Fraigniaud, “Asymptotically Optimal Broadcasting and Gossiping in Faulty

Hypercube Multicomputers,” IEEE Trans. Computers vol. 41, pp. 1410-1419,

1992.

[21] S. Fujita, “A Fault-Tolerant Broadcast Scheme in the Star Graph under the

Single-Port, Half-Duplex Communication Model,” IEEE Trans. on Computers,

vol. 48, pp. 1123-1126, 1999.

[22] D. Goyal and J. Caffery, Jr. “Partitioning Avoidance in Mobile Ad Hoc Net-

works Using Network Survivability Concepts,” Proc. 7th IEEE Symposium on

Computers and Communications, Taormina, Italy, 2002.

[23] L. Gargano, A. Rescigno, and U. Vaccaro, “Minimum Time Broadcast in Faulty

Star Networks,” Discrete Applied Mathematics, vol. 83, pp. 97-119, 1998.

[24] Q. -P. Gu and S. Peng, “Optimal Algorithms for Node-to-Node Fault Tolerant

Routing in Hypercubes,” The Computer Journal vol. 39, pp. 626-629, 1996.

[25] Q.-P. Gu and S. Peng, “Fault Tolerant Routing in Hypercubes and Star Graphs,”

Parallel Processing Letters, vol. 6, pp. 127-136, 1996.

114

[26] Q.-P. Gu and S. Peng, “An Efficient Algorithm for k-Pairwise Disjoint Paths in

Star Graphs,” Information Processing Letters, vol. 67, pp. 283-287, 1998.

[27] Q.-P. Gu and S. Peng, “Unicast in Hypercubes with Large Number of Faulty

Nodes,” IEEE Trans. Parallel and Distributed Systems, vol. 10, pp. 964-975,

1999.

[28] Q. -P. Gu and S. Peng, “An Efficient Algorithm for the k-Pairwise Disjoint

Paths Problem in Hypercube,” J. Parallel and Distributed Computing, vol. 60,

pp. 764-774, 2000.

[29] P. Hall, “On Representatives of Subsets,” J. London Math. Soc., vol. 10, pp.

26-30, 1935.

[30] J. Jwo, S. Lakshmivarahan, and S. K. Dhall, “Characterization of Node Disjoint

(Parallel) Path in Star Graphs,” Proc. 5th Intl. Parallel Processing Symp., pp.

404-409, 1991.

[31] K. Li, “Topological Characteristics of Random Multihop Wireless Networks,”

Proc. 23rd Conf. Distributed Computing Systems Workshops Providence, Rhode

Island, 2003.

[32] M. S. Krishnamoorthy and B. Krishnamurthy, “Fault Diameter of Interconnec-

tion Networks,” Comput. Math. Appl., vol. 13, pp. 577-582, 1987.

[33] S. Latifi, “Combinatorial Analysis of the Fault-Diameter of the n-Cube,” IEEE

Trans. Computers vol. 42, pp. 27-33, 1993.

[34] S. Latifi, “On the Fault-Diameter of the Star Graph,” Information Processing

Letters, vol. 46, pp. 143-150, 1993.

115

[35] S. Latifi, H. Ko, and P. K. Srimani, “Node-to-Set Vertex Disjoint Paths in Hyper-

cube Networks,” Technical Report CS-98-107, Colorado State University, 1998.

[36] N. W. Lo, B. S. Carlson, and D. L. Tao, “Fault Tolerant Algorithms for Broad-

casting on the Star Graph Network,” IEEE Trans. on Computers, vol. 46, pp.

1357-1362, 1997.

[37] S. Lee and K. Shin, “Interleaved All-to-All Reliable Broadcast on Meshes and

Hypercubes,” Proc. Int’l Conf. Parallel Processing, pp.III-110-113, 1990.

[38] T. C. Lee and J. P. Hayes, “Routing and Broadcasting in Faulty Hypercube Com-

puters,” Proc. third Conf. Hypercube Concurrent Computers and Applications,

pp. 625-630, 1988.

[39] X. Lin and I. Stojmenovic, “Location-based Localized Alternate, Disjoint and

Multi-path Routing Algorithms for Wireless Networks,” J. Parallel and Dis-

tributed Computing, vo. 63, pp. 22-32, 2003.

[40] S. Madhavapeddy and I. H. Sudborough, “A Topological Property of Hyper-

cubes: Node Disjoint Paths,” 2nd IEEE Symposium on Parallel and Distributed

Processing, pp. 532-539, 1990.

[41] K. Menger, “Zur Allgemeinen Kurventheorie,” Fund. Math., vol. 10, pp. 96-115,

1927.

[42] G. D. Marco and U. Vaccaro, “Broadcasting in Hypercubes and Star Graphs with

Dynamic Faults,” Information Processing Letters, vol. 66, pp. 321-326, 1998.

[43] A. Nasipuri, R. Castaneda, S. R. Das, “On-demand Multipath Routing for Mo-

bile Ad Hoc Networks,” Proc. INFOCOM, New York, 1999.

116

[44] S. Park and B. Bose, “All-to-All Broadcasting in Faulty Hypercubes,” IEEE

Trans. on computers, vol. 46, pp. 749-755, 1997.

[45] M. Pearlman, Z. Haas, P. Sholander, and S. S. Tabrizi, “Alternate Path Routing

in Mobile Ad Hoc Networks,” Proc. IEEE MILCOM, Los Angeles, CA, 2002.

[46] K. Paul, R. Roychoudhuri, and S. Bandyopadhyay, “Survivability Analysis of Ad

Hoc Wireless Network Architecture,” Proc. Mobile and Wireless Communication

Networks-MWCN, LNCS 1818, pp. 31-46, 2000.

[47] D. Peleg and B. Simons, “On Fault Tolerant Routings in General Networks,”

Information and Computation, vol. 74, no. 1, pp. 33-49, 1987.

[48] M. O. Rabin, “Efficient Dispersal of Information for Security, Load Balancing,

and Fault Tolerance,” Journal of ACM, vol. 36, pp. 335-348, 1989.

[49] A. A. Rescigno, “Fault-Tolerant Parallel Communication in the Star Network,”

Parallel Processing Letters, vol. 7, pp. 57-68, 1997.

[50] P. Ramanathan and K. Shin, “Reliable Broadcast in Hypercube Multicomput-

ers,” IEEE Trans. Computers vol. 37, pp. 1654-1657, 1988.

[51] A. A. Rescigno and U. Vaccaro, “Highly Fault-Tolerant Routing in the Star and

Hypercube Interconnection Networks,” Parallel Processing Letters, vol. 8, pp.

221-230, 1998.

[52] Y. Saad and M. H. Schultz, “Topological Properties of Hypercubes,” IEEE

Transactions on Computers, vol. 37, pp. 867-872, 1988.

[53] C. L. Seitz, “The Cosmic Cube,” Communication ACM, vol. 28, pp. 23-23, 1985.

117

[54] S. Sur and P. K. Srimani, “Topological Properties of Star Graphs,” Computers

Math. Applic., vol. 25, pp. 87-98, 1993.

[55] S. Vutukury and J. J. Garcia-Luna-Aceves, “MDVA: A Distance-vector Multi-

path Routing Protocol,” Proc. INFOCOM, Anchorage, AK, 2001.

118

VITA

Eunseuk Oh was born on March, 29, 1971 in Chuncheon, Korea. She received

her B.S. degree in Computer Science from Hallym University and her M.S. degree

in Computer Science from Ewha Womans University in 1994 and 1996, respectively.

Since September of 1997, she has been with the Computer Science Department at

Texas A&M University pursuing her Ph.D. under the supervision of Dr. Jianer Chen.

Her areas of interests include fault tolerant routing in interconnection networks, de-

sign of interconnection networks, network survivability, graph algorithms, and com-

binatorics. Her permanent mailing address is 2310 Westcreek Lane, College Station,

Texas, 77845, USA.

The typist for this thesis was Eunseuk Oh.

