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Abstract 
It is well recognised that adaptive and flexible flood risk strategies are required to account for future 
uncertainties. Development of such strategies is however, a challenge. Climate change alone is a significant 
complication but in addition complexities exist trying to identify the most appropriate set of mitigation 
measures, or interventions. There are a range of economic and environmental performance measures that 
require consideration and the spatial and temporal aspects of evaluating the performance of these is 
complex. All of these elements pose severe difficulties to decision makers. This paper describes a decision 
support methodology that has the capability to assess the most appropriate set of interventions to make in a 
flood system and the opportune time to make these interventions, given the future uncertainties. The flood 
risk strategies have been explicitly designed to allow for flexible adaptive measures by capturing the 
concepts of Real Options to evaluate potential flood risk management opportunities. A state of the art flood 
risk analysis tool is employed to evaluate the risk associated to each strategy over future points in time and a 
multi-objective genetic algorithm is utilised to search for the optimal adaptive strategies. The modelling 
system has been applied to a reach on the Thames Estuary (London, England), and initial results show the 
inclusion of flexibility is advantageous while the outputs provide decision makers with supplementary 
knowledge which previously has not been considered. 
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1. Introduction 
Making decisions on long term flood risk management intervention strategies is complex.  Methods are 
required that are capable of identifying the better performing intervention measures whilst also taking into 
account the most effective spatial locations and the most beneficial timing. Given the large portfolio of 
potential flood risk mitigation measures, identifying the most appropriate long term strategy is challenging. 
This problem is further compounded due to the evolving nature of flood risk, in particular with regard to 
climate change. The plausible range of future climate change comprises significant uncertainty, presenting 
decision makers with considerable challenges with regard to long term planning. 
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It is widely recognised that the future uncertainties of climate change need to be accounted for within the 
development of long term strategies to ensure an economical investment and a consistent level of protection 
(eg. Lempert et al., 1996, Evans et al., 2004, Environment Agency, 2009e, DEFRA, 2010, Merz et al., 2010). 
Traditional approaches do not lend themselves to adequately account for climate change uncertainty. In the 
past, strategies were developed, without accounting for future variability (Milly et al., 2008). The requirement 
to account for climate change uncertainty has therefore been the subject of significant research (Adger et al., 
2005, Ingham et al., 2007, Hallegatte, 2009) and methods have been proposed to account for the future 
uncertainty (Hall and Harvey, 2009, Gersonius et al., 2010, Lempert and Groves, 2010). 

Real Options analysis is a recognised approach for encouraging appropriate climate change adaptation and 
mitigation investment decisions (Dobes, 2008, DEFRA, 2010, Gersonius et al., 2010, Woodward et al., 
2011b, Linquiti and Vonortas, 2012).  In this paper, the concepts of Real Options and optimisation are 
applied within the context of flood risk management in coastal areas under climate change uncertainty. This 
methodology makes use of decision trees and multi-objective optimisation to determine the best adaptable 
intervention strategies over a long-term planning horizon. 

2. Background 
2.1. Decision making under climate change uncertainty 
The uncertainty in the future climate is significant and its impact on flood risk management decision making 
is considered to be severe (Ranger et al, 2010). There are a number of methods that can be applied to aid 
decision making under severe uncertainty.  Wald’s Maximin (Wald, 1945) or Laplace’s Principle of 
Indifference (Keynes, 1921) are well known traditional examples. These methods implicitly reflect a particular 
attitude to uncertainty. Implementation of Laplace’s principle is much less conservative compared to that of 
Wald’s maximin, for example. More recently there has been an increasing trend to develop methods that 
seek to identify mitigations measures that are described as robust. The concept of robustness is generally 
defined as having the ability to perform well over a range of future scenarios.  Many of these authors indicate 
that there is a distinct choice to be made between robustness and optimisation and that robust methods are 
preferable (Lempert 2006, Adger 2009; Ben-Haim 2012). 

It is of note however, that the primary objective of a number of these methods is to maximise robustness, it is 
thus evident that optimisation approaches can be coupled with the concept of robustness. Research has 
been undertaken in this regard within the field of robust optimisation. Robust optimisation provides 
techniques to find the best possible outcome whilst accounting for uncertainties (Ben-Tal and Nemirovski, 
1998, Ben-Tal et al., 2006, Beyer and Sendhoff, 2007). With these approaches there is no need to make a 
choice between an optimisation or a robustness method, the objective function of the optimisation problem is 
simply cast in terms of robustness criteria.  Or, in other words, robustness is maximised.  This distinction is 
discussed further by Sniedovich (2011). 

Within the analysis described below the concepts of robustness and optimisation are coupled and hence 
there are parallels with the philosophy of robust optimisation. Note, however, that in a conventional robust 
optimisation approach which makes use of some fixed, rigid intervention strategy, robustness is achieved by 
incorporating flexibility within intervention options (i.e. flexibility and the ability to adapt often provides 
robustness). In the methodology presented here, the robustness is achieved by continuously monitoring the 
uncertain variable(s) of interest (e.g. sea level rise) and allowing for optional, adaptive/flexible intervention 
strategies to be implemented/modified in the future, if and when necessary. All this reduces the need for 



 
 

 

 
Adaptive flood risk management under climate change uncertainty using real options and optimisation 

M Woodward, Z Kapelan and B Gouldby 

HRPP593 3 

large redundant capacity to be built into the flood defence system. The concepts of robustness and 
optimisation are further described below. 

2.2. Real Options in flood risk management 
In flood risk management, a robust strategy is considered to perform well by reducing flood risk through 
economically viable and environmentally sensitive mitigation measures. Previous work in this area (eg. Bruijn 
et al., 2008, Hall and Harvey, 2009) have sought to develop strategies that are robust to climate change 
uncertainties. The strategies that have been developed, are however, still fixed over the planning horizon 
and although they account for climate change variability they are based on particular assumptions about 
future change. The magnitude of future change is however, subject to severe uncertainty (Rayner, 2010). 
Rates of change may therefore be faster or slower than the rates assumed and therefore the planned time 
steps when interventions are required will change. Strategies developed using these approaches may 
therefore typically require large initial costs and can often result in sunk costs if a future state occurs which 
the infrastructure was not tested against (Gersonius et al., 2010). 

The core principle of Real Options analysis is the ability to value flexibility (Dixit and Pindyck 1994). This 
principle encourages the identification of opportunities for incorporating flexibility into the decision making 
process.  Essentially, Real Options allows a decision maker to make changes to an investment decision 
when new information arises in the future. Opportunities such as delaying the investment, abandoning, 
switching, expanding, contracting or having multiple options interacting together are potential choices for 
decision makers (Copeland and Antikarov, 2001, Schwartz and Trigeorgis 2004).  For example, where it is 
beyond doubt that a flood defence has come to the end of its useful life and requires major refurbishment 
there are a range of possible decisions.  Assuming a worst case climate change scenario and constructing a 
flood defence based on this assumption is likely to be sub-optimum as it requires significant up-front 
expenditure and may well constitute an over-design should the worst case scenario not be realised. 
Constructing a defence that is inherently flexible and capable of future modification is one approach for 
implementing flexibility within a flood risk system.  A flood defence system that is constructed in an 
innovative way enabling increases in the level of protection to be readily achievable, should there be a 
requirement, is an example of embedding a Real Option. The option to raise the level of protection (e.g. raise 
the crest level) is purchased at the outset.  The decision whether to exercise the option is delayed to a future 
date when more information regarding future climate change impacts, for example, is known (Woodward et 
al., 2011b). 

There may however, be uncertainty regarding the nature of the mitigation measure.  A range of options may 
exist that could include whether to refurbish a defence, set-back a defence or continue with maintenance 
activities, the cost of which may rise as the structure approaches the end of its design life.  Delaying the 
decision to refurbish and continue with the maintenance is another example of implementing Real Options 
based concepts. Flexibility is maintained and the decision to refurbish or setback is delayed until more 
information is known.  The cost of the option is the increase in maintenance costs as the structure 
deteriorates.  The value of the option lies in the decision to delay major investments until future uncertainties 
are reduced. 

There are many methods and tools available to value flexibility and undertake Real Options Analysis. Many 
are based on financial valuation methods including the Black-Scholes formula (Black and Scholes, 1973, 
Merton, 1973) and the discrete-time option pricing formula (Cox et al., 1979). It is often argued that financial 
valuation methods such as these are not suitable for valuing Real Options (Copeland and Antikarov, 2001). 
Wang and de Neufville (2005) explain that Real Options can be broadly classified into two categories, Real 
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Options ‘in’ systems and Real Options ‘on’ systems. Real Options ‘on’ systems are Real Options that focus 
on the external factors of a system and would benefit most from financial valuation methods. Real Options 
‘in’ systems, on the other hand, incorporate flexibility into the structural design of the system and valuing this 
flexibility using financial tools is less suitable. Methods for Real Options analysis were identified and include 
partial differential equations (McDonald and Siegel, 1986), binomial (Copeland and Antikarov, 2001) and 
trinomial (Zhao and Tseng, 2003) decision trees and stochastic dynamic programming (Wang and de 
Neufville, 2004). 

In the analysis described below, the use of Real Options is aligned with Real Options ‘in’ systems where 
flexibility is inherently captured within the engineering design of the system. De Neufville et al (2005) 
provides an approach to value flexibility for a Real Options ‘in’ systems project and the approach adopted in 
this paper follows a similar procedure evaluating flexibility as the difference between an option with 
embedded flexibility and an option defined in a more conventional, deterministic way. 

In addition to the above, a decision tree approach is also employed enabling Real, and other more 
conventional intervention, options to be incorporated within an intervention strategy, allowing multiple 
optional intervention paths into the future dependant on the nature and level of climate change. All this, in 
turn, enables more effective adaptation of the analysed engineering system to climate change. 

2.3. Optimisation methods 
Formal optimisation methods have been applied to flood risk management decision making problems for 
many years (eg. Danzig 1956, Voortman and Vrijling, 2003).  More recently evolutionary multiobjective 
optimisation techniques have been developed that have the capability to consider a wide range of multiple 
objectives simultaneously whilst searching through a large portfolio of potential decision variables see for 
example (Savic and Walters, 1997, Kapelan et al., 2003, Behzadian et al., 2009, Dorini et al., 2010, 
Weickgenannt et al., 2010). However despite the obvious advantages, multiobjective optimisation has rarely 
been applied to flood risk management problems.  Woodward et al (2011a) has recently applied the Non-
dominated Sorting Genetic Algorithm II (NSGAII), an evolutionary multiobjective optimisation method (Deb et 
al., 2000), to optimise for short term flood risk intervention strategies where climate change uncertainty is not 
a consideration. The analysis described here extends upon the work presented by Woodward et al (2011a) 
to aid the development of long term flood risk strategies where climate change uncertainty is significant. 

3. Methodology 
3.1. Problem 
The problem of coastal flood risk management is complex and typically involves a range of performance 
measures. For the purposes of demonstrating the concepts of the methodology it is formulated and solved 
here as a multi-objective objective optimisation problem. The two objectives are as follows: 

)max()(1 Benefitxf =         (1) 

)min()(2 Costxf =         (2) 

where Benefit represents the reduced flood risk in the analysed area over a long-term planning horizon (see 
equation (5) below) due to the implementation of a specific intervention (or mitigation measure), when 
compared to the “do nothing” scenario.  Cost represents the total cost incurred over the same time period 
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due to any interventions implemented and the operation and maintenance costs of the flood defence system 
(see equation (9) below). 

In order to facilitate the evaluation of flexibility and adaptability, intervention strategies considered are 
represented as decision trees with multiple paths into the future (see Figure 1), rather than representing 
intervention strategies as single paths fixed over the planning horizon. The structure of the adaptable 
intervention strategy coded as a decision tree consists of specific paths at each time step of the planning 
horizon, where each path or decision node corresponds to a set of intervention measures. The intervention 
measures considered at each decision node include raising the crest level of the defence (this is constrained 
based upon the existing defence footprint specification) and enhancing the defence foundation footprint to 
enable additional crest level raising. In addition, different maintenance regimes of the defences are also 
considered. 

The intervention measures, coded as decision trees, inherently include flexibility providing opportunities to 
delay, contract, expand and abandon investment decisions, depending on how the uncertain future actually 
unfolds (i.e. how the sea level rises in the case study shown here). Thus the value of flexibility is explicitly 
evaluated within the method, thereby incorporating Real “in” Option analysis. The decision variables within 
the optimisation process not only include the intervention measures but also the threshold values on 
uncertain climate change variables. This means information on the optimal timing to make an intervention, 
given the future climate change realisation, is provided to decision makers. 

The decision variables are represented using the following vector: 

( ) ( )
ynn hhmmmssshms TTxxxxxxTXXX ,...,,,...,,,,...,,,

12121, ==
    (3) 

where Xs and Xm, are sub-vectors which represent the specific intervention to apply to each of the defences 

d, in the flood system such that
( )

nssss xxxX ,...,,
21

=
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 where n equals the total 
number of defences in the flood system, Th is the threshold value between decision paths and y is the total 
number of threshold values. Structural interventions, Xs such as raising the height of a defence are defined 
as discrete variables. The decision variable Xm can take the value of four possible maintenance options 
including no maintenance, low, medium and high. 

3.2. Climate Change Uncertainty Characterisation and 
Quantification 

The decision tree intervention strategies shown in Figure 1 are evaluated over the three UKCP09 high, 
medium and low emission scenarios (Murphy et al., 2009) focusing specifically on sea level rise. The data 
provided within the three emission scenarios on sea level rise include yearly predicted increases from 1990 
to 2100 for the 5th, 50th and 95th percentiles. For a given emission scenario, the 5th and 95th percentiles are at 
equidistance from the mean showing evenly distributed data. A normal distribution was therefore used to 
represent the uncertainty on sea level rise values for a given emission scenario (see Figure 2). It was then 
possible to sample from that distribution to produce a range of future realisations to evaluate the intervention 
strategies against. For any specific realisation, the quantile sampled for the first time-step was used for 
subsequent time-steps to ensure credible realisations were obtained. 

Although the three emission scenarios were used, it is important to note that no information on the likelihood 
of the three scenarios is provided within UKCP09 (see Stainforth et al., 2007 for a further discussion on this 
topic).  The approach applied in the case study example was therefore to sample from the three distributions 
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assuming they are equally likely. The methodology is not however, prescriptive in this regard and 
consideration of other approaches or weightings is readily achievable. 

The uncertainties relating to climate change are accounted for by evaluating each intervention strategy over 
the full range of future sea level realisations. Given a future realisation, the decision path taken is determined 
according to a threshold value that has been sampled from the normal distributions of sea level rise. At each 
time-step, if the sea level rise of a given realisation is greater than the threshold, the higher path is taken, if 
less the lower path is taken. 

3.3. Flood Risk Assessment 
Each adaptable intervention strategy (coded as a decision tree) is evaluated over the range of sampled 
future scenarios using a risk analysis model and an intervention costing module. The risk analysis model 
used has been applied to support the development of a long term flood risk intervention strategy on the 
Thames Estuary and the Environment Agency’s National Flood Risk Assessment (Gouldby et al., 2008). 

The model considers a system of flood protection infrastructure protecting the floodplain (Figure 3). The 
floodplain is divided into a series of impact zones and further divided into impact cells. The hydraulic loading 
conditions, (water levels, for example) are represented as continuous random variables acting upon the 
system of defence sections.  The performance of the flood defences is defined by fragility curves (NRC, 
1995, Simm et al., 2009, Schultz et al., 2010). Defence system states are sampled using a standard Monte-
Carlo procedure for each of the loading levels and a hydraulic flood spreading model is used to represent the 
propagation of floodwater across the floodplain according to the topography of the land. The economic 
consequence of flooding is estimated using depth damage curves which analyse the damage to properties 
according to the spread of floodwater (Penning-Rowsell et al., 2005). The model evaluates the spatial 
variation in risk which is defined as: 

dLldglfldPR iL
i

i

n

),()()(
2

1
∫∑

=

=

       (4) 

where R is the risk expressed as Expected Annual Damage (EAD), n is the total number of defence sections, 
l is the hydraulic load at each defence throughout the system, fL(l) is the probability density function of 
hydraulic load, d is a specific defence system state and i is the defence system state index. The function (g) 
represents the consequences of a single discrete flood event (defined in terms of a specific hydraulic loading 
level and a defence system state). 

The risk analysis model can be used to calculate the present day and future flood risk, accounting for climate 
change and mitigation measures that are implemented. More specifically, calculation of the flood risk 
associated with structural and non-structural interventions, Xs, and routine defence maintenance, Xm. can be 
incorporated in the model by modifying the fragility curves, defence information or depth-damage functions. 
Climate change scenarios are represented by modifying the extreme value distributions of hydraulic loads 
while socio-economic development scenarios are represented by modifying the depth-damage functions. 

For a given climate change realisation (e.g. sea level realisation), the actual path through the decision tree is 
determined and the risk analysis model is then used to calculate the associated risk R for that path (see 
equation (4)). The risk of a given intervention strategy at any point in time is a function of the intervention 
measures, the extreme flood events, l, and the performance of the defence infrastructure Xp such that R = 
g(Xs, Xm, l, Xp). The benefits for that path and given realisation can then be obtained as the difference 
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between the ‘do nothing’ option and the path where interventions are applied. The ‘do nothing’ option applies 
no interventions or defence maintenance over the lifetime of the strategy. The benefits are therefore: 

( )
∑
= +

−
=

T

t
t

tptpms

r

XlgXlXXg
Benefit

1 )1(
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     (5) 

Where T is the total number of planning horizon time-steps considered in an intervention strategy, t 
represents the time-step index and r is the discount rate. 

For each intervention strategy there is a requirement to run the risk analysis tool for every sea level rise 
projection to obtain the benefits over a wide range of samples. Depending on the size of the sample, this can 
become computationally expensive. For this reason, a relationship between the outputs of the risk analysis 
tool (EAD) and sea level rise has been established for each intervention strategy analysed, to reduce the 
number of model simulations required. The EAD obtained for each sea level rise sample was found to follow 
an exponential relationship: 

y = Aebx          (6) 

where x represents a given sea level rise value, A and b are constants specific to an intervention strategy 
and y is the EAD for a given intervention strategy at the sea level rise value x. For each intervention strategy, 
the flood risk analysis model is run for the maximum and minimum sea level rise values to generate the 
respective maximum and minimum EAD values. A and b can then be determined using simultaneous 
equations to produce the exponential relationship for that intervention strategy. It is then possible to 
determine the EAD values for the remaining sea level rise samples for that intervention strategy using the 
generated relationship (see example relationship curve in Figure 4). The exponential relationship (equation 
6) was tested for a range of different sea level realisations and different intervention strategies for the case 
study area below, each time showing consistent results. With this relationship (i.e. surrogate model), it is 
possible to significantly reduce the overall computational cost as generating a curve for any intervention 
strategy evaluated requires only two full runs of the risk analysis model. 

3.4. Costs 
The approach to costing the intervention options developed here identifies costs for 61 different defence 
classes used within the risk model which were formulated for the National Flood Risk Assessment of 
England, (Environment Agency, 2009a). The basis of the cost model established by Woodward et al (2011a) 
extends the Cost Estimation Model given by Phillips (2008).  The costs associated with structural 
interventions, Cs, take into consideration the mobilisation (M) and operating costs (Od), the quantity of work 
required (Qj) and the costs of materials (W j): 

∑
=

++=
m

j
jjDs WQOMC

1        (7) 

where m is the number of maintenance and construction items. 

Maintenance costs, Cm, for four different levels can be evaluated: do nothing, low, medium and high.  The 
different maintenance levels are reflected within the model by different rates of deterioration, associated with 
the fragility curves, Gouldby et al (2008). The rates used with in this model are obtained from the 
Environment Agency of England and Wales (2009d) with the associated costs obtained from (Environment 
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Agency, 2009c).The total costs, Ct, for a given point in time is simply the maintenance costs plus the 
structural intervention costs: 

mst CCC +=           (8) 

The total cost of an intervention path sums up the costs at each point in time and then discounts these back 
to the present day such: 

( )∑
= +

=
T

t
t

t

r

C
Cost

1 1         (9) 

Where r represents the discount rate, T is the number of time periods and Ct is the total cost for time period t 
as defined in equation (5). 

The overall methodology described in this paper is illustrated in a flow chart in Figure 5. 

4. Case Study 
The methodology has been applied on an area of the Thames Estuary (Figure 6). The Thames Estuary in 
London, England is an area that is susceptible to flooding. A large scale flood event could have a 
devastating impact as it accommodates over a million residents and workers, 500,000 homes and 40,000 
non-residential properties (Environment Agency, 2009a, Dawson et al., 2005, Lavery and Donavan, 2005, 
Lonsdale et al., 2008). The threat of flooding on the Thames Estuary occurs from a number of different 
sources, including high sea levels and surges propagating from the North Sea into the Estuary and extreme 
fluvial flows along the Thames and its tributaries (Environment Agency, 2009b). Protection against flooding is 
provided by a range of fixed defences and actively operated barriers and flood gates. The majority of the 
defences were designed to protect against a 1-in-1000 year flood however, at the present day these flood 
defences are gradually deteriorating. In the longer term, with the potential impacts of climate change, the 
need to consider a range of intervention measures is evident. It is however recognised in the planning for the 
future of the Thames Estuary that the decisions made today can impact the ability to adapt in the future. It is 
important to ensure that the flood management system put in place does not become a burden for future 
generations but is adaptable to any changes faced (Environment Agency, 2009b).  For example, if it is likely 
that there will be a requirement to raise or adapt flood defences, it is necessary to ensure that space is 
provided now to allow for these changes in the future. The Thames Estuary is therefore a suitable case study 
to investigate the use of the Real Options concepts and optimisation methods described in this paper for 
flood risk management. 

For reasons of computational practicality, this study focuses on a specific reach, Thamesmead, within the 
Estuary, (Figure 6). It is important to note that some data have been somewhat modified and hence the 
results presented here do not reflect the true risk within Thamesmead.  This area contains 79 defences 
which have been classified into five groups according to defence characteristics (e.g. Defence Type and 
Condition Grade) and location. The five groups consist of a range of defence types including brick and 
masonry and sheet pile vertical walls, and rip-rap and rigid embankments. 

The case study looks at two different situations (Case 1 and Case 2). Firstly, the optimisation model is 
applied in a deterministic manner whereby only one future climate change realisation is considered, the 50th 
quartile of the high UKCP09 emission scenario. For this case where it is assumed that the future is certain, 
there is no need to build in flexibility and thus use a decision tree structure. The strategy is instead a single 
fixed path over the planning horizon. The second case assumes the future is uncertain and therefore 
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considers multiple future realisations, adopting the decision tree structure for the intervention options to 
enable flexibility in long term planning. Two differing future paths are considered in this case study to 
demonstrate the Real Options decision tree approach. A comparison of the two approaches is also 
undertaken. 

In both cases, the intervention strategies consider a planning horizon of 100 years with intervention 
measures considered at every 50 year time step. The decision variables which are considered within the 
intervention strategies include raising the crest level of defences, increasing the capacity of the defences for 
future expansion and the level of maintenance applied. The NSGA2 parameters used for all optimisation 
runs are summarised in Table I. 

4.1. Results and Discussion 
Figure 7 displays the optimal Pareto front obtained in Case 1 evaluated against one future realisation, 
showing the trade-off between flood risk reduction and costs. A range of intervention strategies on the Pareto 
front have been highlighted including the strategy with the highest Net Present Value (NPV) (triangle) and 
the highest Benefit Cost Ratio (BCR) (square) for illustrative purposes. NPV is the present value of the net 
benefit (difference between benefit and cost). 

Using the respective positioning of these strategies on the Pareto front, decision makers can make a well 
informed decision, comparing the different strategies available to select the most appropriate. A solution 
cannot be improved with respect to one objective without causing a negative effect on the other objective. 
For example improving the benefit will result in an increase in the cost. Decisions can also be determined 
according to specific target levels that must be met for each criterion. For example a specific flood risk 
reduction level that must be reached or if there is a constraint in the total expenditure allowed. 

Table II displays a summary of the 5 optimal strategies from the Pareto front that have been highlighted. 
Comparing strategies C and D it can be seen that, for a minimal increase in cost, the benefits in terms of 
flood risk reduction can be significantly improved, favouring strategy C. Similarly, comparing strategy B and 
C, the increase in benefits for strategy B does not outweigh the considerable increase in costs. 

The suggested intervention measures for these five strategies vary (see Table II). Strategy E for example, 
applies the minimum number of intervention options, only applying a low maintenance regime and achieves 
the highest BCR. For an increase in cost and a large increase in flood risk reduction, strategy D applies a 
medium level of maintenance instead of a low level. To achieve a further increase in flood risk reduction, 
structural interventions are required. 

Strategies A, B and C comprise either a low or medium maintenance over the 100 years as well as a height 
increase to at least one group of defences in at least one of the time steps. In all three solutions, the 
defences in group 1 are increased by 1.33m. Group 1 defences protect a highly developed area in a 
vulnerable location to storm surges, and by increasing the height of these defences enables a significant 
amount of the risk to be reduced. 

Figure 8 displays results from Case 2, where the Pareto front of the 200th generation was optimised for 
flexible long term strategies which inherently capture the Real Options concepts. A total of 1000 sea level 
rise samples were used to evaluate each intervention strategy on the Pareto front. Four intervention 
strategies on the Pareto front have been identified, solutions A to D, including the solution with the highest 
NPV (triangular point) and the highest BCR (square point). Table III displays the benefits, costs, NPV and 
BCR for these strategies while Figure 9 displays the structure of each of the four solutions and the 
intervention measures for each path. 
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Solution B obtains the highest NPV. This solution comprises the incorporation of refined foundations to three 
groups of defences at the first time step, to enable further elevation increase, as well as raising two of these 
groups. At the next time step of solution B, the bottom path represents a ‘do nothing’ option which is the 
chosen path for sea level realisations with a rise less than 0.37m. In this case, if the sea level rise increase 
does not go beyond this threshold no additional investment needs to be spent on interventions. For the sea 
level realisations which have a sea level greater than 0.37m the top intervention path is taken where the 
defences crest levels will be raised. 61 % of the 1,000 sea level rise samples were directed to the top path 
while only 29% took the bottom. For solutions C and D, it is also recommended that if the sea level rises 
above 0.37m it is optimal to take the top path, otherwise take the bottom. 

Strategy A on the other hand comprises taking the top path if the sea level rise increase goes beyond 0.52m, 
otherwise take the bottom path. Solution B achieves a very similar benefit compared to solution A but for a 
significantly lower cost which improves the overall NPV. The difference in cost can be attributed to the way 
the flexibility is used. Strategy A here does not purchase the ‘insurance policy’ for the second time step (i.e. 
does not extend the defences footprint at the first time step in order to have the opportunity at a later date to 
increase the height. Instead Strategy A delays any decision to widen or raise the defence). For strategy A, if 
the sea level rise is beyond the threshold, a greater capacity for crest level raising therefore needs to be 
introduced. This requires additional costs. Although the option is flexible in that a decision is delayed until 
more is known about the future impacts of climate change, the costs in the way this flexibility is used is less 
favourable. Solutions B and C instead purchase this ‘insurance policy’ to enable flexibility to be inherently 
built into the defences. B is then able to achieve similar benefits to A but for a reduction in costs of 56% and 
thus showing B to be more favourable. 

In this case study, strategy A applies Real “On” Options, using a delay in the investment. Flexibility is not 
built into the design of the defences as the defences infrastructure needs to be modified in the second time 
step if the top path is taken. Strategy C applies Real “In” Options by building flexibility into the design of the 
system. In the second time step, the defence can be easily adapted to account for an increase in sea level 
rise. 

This inclusion of flexibility, Real “On” Options increases the cost of the investment compared to strategies 
without flexibility. In this example, even with the increase in cost, the incorporation of flexibility can still 
improve the overall investment decision, this can be seen through the comparison of the Case 1 and Case 2 
results. 

In order to compare the adaptable strategies (i.e. strategies obtained assuming an uncertain future) with the 
deterministic strategies (i.e. strategies obtained assuming a certain future), the Pareto fronts obtained using 
the two approaches have been re-evaluated with the same set of 1000 future sea level rise samples. This 
enables the comparison of the performance of the two sets of solutions in a like with like situation. Figure 10 
displays the two re-evaluated Pareto fronts. From this figure it can be seen that the inclusion of flexibility 
within the intervention strategies has increased the overall cost of the solutions when there is an uncertain 
future. This inclusion of flexibility does however also provide the opportunity to significantly increase the 
benefits in terms of flood risk reduction resulting in a considerable improvement to the overall investment. 
For example, the decision tree based optimisation overall has been able to obtain solutions with significantly 
higher benefits than the deterministic approach. This is partly due to the additional optional paths in the 
decision tree solutions. Each path can be optimised to a smaller range of climate change samples and 
therefore provide better flood protection. Additionally, the deterministic solutions were optimised according to 
one climate change realisation and therefore when analysing the solutions over a range of samples, it is 
likely that these solutions will not fair so well under different samples and thus bring in less benefits. 
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For example, strategies Ad and ARO both have similar costs with ARO incurring a 13% higher cost than Ad. But 
in return ARO receives a 29% higher benefit. This improves the overall NPV by 29%. The intervention options 
for Ad apply a medium maintenance to group 1 and 3 across both time steps. ARO instead enhances the 
foundations of G1 and G4 in the first time step and is then able to raise the crest level along the top path if 
the sea level rise is above 0.30m or spend less money and only apply maintenance to group 1 if the sea 
level is less than 0.30m. In addition to the above, strategies Bd and BRO have similar costs (differ only by 
0.7%) but the flexible strategy BRO returns a larger benefit by 8% and again improves the NPV, this time by 
9% (see Table IV). Strategy Bd only raises and widens the defences in group 1 by 1m. BRO is able to widen 
the base of the defences in Group 1 and 4 in the first time step, then in the second time step decides on the 
height of the crest level increase according to the climate change realisation. If the sea level increases 
beyond 0.56m, it is suggested the defences are raised by 1m in group 1 and apply maintenance to group 4 
where as if it doesn’t go beyond this threshold, a raise of 0.66m to group 1 is suggested. Having the flexibility 
within the strategy enables a more effective investment to be planned. 

From these two examples it can be seen that with similar costs, the adaptable strategies (coded as decision 
trees) that make use of the Real Options concept will return higher benefits and thus dominate (in the Pareto 
sense) the deterministic, rigid strategies. This is because the decision tree solutions have been designed to 
account for the future uncertainties of climate change by developing alternative, customised strategies 
appropriate for specific realisations of climate change thus covering, in a flexible manner, a large range of 
possible future realisations. In addition to this, the concept of Real Options, which effectively acts as an 
insurance policy, is ensuring that the options available to the decision maker are kept open in the future (at a 
cost), i.e. that certain intervention options can be implemented later on, if, when and in the quantity required. 
The deterministic solutions on the other hand were developed based on a single forecasted future realisation 
only and without allowing for any flexibility in the intervention strategy. Therefore in the face of uncertainty 
where many different scenarios could potentially occur, the deterministic solutions may not be sufficient. 
These are therefore not as favourable and have been shown to be dominated by solutions which account for 
the future uncertainties of climate change. 

5. Conclusions 
This paper describes a new methodology to support decision making in long-term flood risk management. An 
existing flood risk assessment model has been coupled with a costing model, an NSGA2 multi-objective 
optimisation algorithm and the concepts of Real Options and adaptive engineering design with intervention 
strategies represented using decision trees specified over the pre-defined planning horizon. The resulting 
system trials different flexible intervention measures, using the intelligent option searching characteristics of 
the NSGAII, it then evaluates the costs associated with the interventions and their benefits, in terms of flood 
risk reduction taking account of future climate change uncertainty. This process is iterated until a Pareto 
Front, or ”trade off” curve, is formed producing optimal decision tree strategies for flood risk management. 

The decision trees display the most appropriate intervention measures at various planning horizon time 
steps depending on the how the future unfolds. Threshold values are optimised to determine, given a future 
projection, which intervention route is best to follow. The use of Real Options Analysis enables the flexibility 
within the decision trees to be valued and thus account for the future uncertainties of climate change.  

The use of evolutionary multi-objective optimisation algorithms has the potential to provide a greater range of 
information to decision makers.  The system is capable of outputting a set of trade off solutions which 
present a range of potential flood risk mitigation intervention strategies. Each strategy is optimal according to 
given criteria (costs, benefits) and presents information describing the most appropriate intervention 
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measures to implement, when and where. The application of the new methodology an area of the Thames 
Estuary demonstrates the benefits that Real Options optimisation can bring to flood risk management 
decision making. 

Future work will include applying the methodology developed and presented here to even more complex 
real-life case studies with wider range of intervention measures considered and more detailed decision tree 
structures considered. Future work will also consider transferring some of the concepts shown here to other 
water engineering systems (e.g. urban water infrastructure systems). 
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7. Figures 
 

 
Figure 1: Intervention strategy represented as decision tree 

 

 
 

 
Figure 2: Normal distributions of sea level rise for each high, medium and low emission scenario for the year 
2030 
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Figure 3: Conceptual illustration of the modelled system (Gouldby et al., 2008) 

 

 
 

 
Figure 4: Exponential relationship between EAD and sea level rise 
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Figure 5: Flow chart of the methodology 
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Figure 6: The present day flood risk to the flood area of interest on the Thames Estuary with the 5 groups of 
defences protecting the floodplain 

 

 
 

 
Figure 7: Pareto front obtained using deterministic optimisation approach 
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Figure 8: Pareto Front obtained using Real Options-based optimisation 
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Figure 9: Summary of the intervention strategies identified in Figure 6. Each strategy is a decision tree with 
two optional paths at the second time step (T2) with the percentage of samples evaluated at each path 
undertaken. The first row of each block represents the group (G) where the interventions are being 
implemented, the second row represents height increases in metres, the third row represents width 
increases in metres and the final row represents the defence maintenance (0 = no maintenance, L = low, M 
= medium, H = high) 
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Figure 10: The Pareto Front of the Real Options optimisation and deterministic optimisation. 
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8. Tables 
Table 1: Summary of the NSGA parameters used 

Parameter Description Value 

Generations 200 

Population Size 500 

Crossover Type Bit tournament crossover 

Crossover Rate 0.7 

Mutation Rate 0.03 

Discount Rate Based on the Green Book declining discount rate 
(HM Treasury, 2009) 

 

Table 2: Summary of the benefits, costs, NPV, BCR and intervention measures of select strategies from the 
Pareto front highlighted in Figure 5. 

Strategy 
Benefit 

(£M) 
Cost 
(£M) 

NPV 
(£M) BCR Intervention Measures 

A 77.31 2.41 74.89 32.08 Time Step 1 
Raise G1 by 1.33m, G2 by 1.00m and G4 

by 0.33m 
Time Step 2 

Raise G3 by 0.66m 
Medium Maintenance to G3 and G4 

B 77.29 1.55 75.74 49.86 Time Step 1 
Raise G1 by 1.33m, apply medium 

maintenance to G3 
Time Step 2 

Apply medium maintenance to G3 

C 77.28 0.79 76.49 97.82 Time Step 1 
Low maintenance to G1,G3 and G4 

Time Step 2 
Raise G1 by 1.33m 

Low maintenance to G3 

D 49.87 0.72 49.15 69.26 Time Step 1 
Medium  maintenance to G1, G3 and G4 

Time Step 2 
Medium Maintenance to G3 

E 12.53 0.11 12.42 113.91 Time step 1 
Low maintenance to G1, G3 and G4  
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Table 3: The benefits, costs, NPV and BCR of the solutions highlighted in Figure 6 

Strategy 
Benefit 

£M 
Cost 

£M 
NPV 

£M BCR 

A 104.45 4.31 100.14 24.23 

B 104.22 1.88 102.34 55.44 

C 94.97 1.87 93.10 50.79 

D 79.23 0.84 78.39 94.32 

 

Table 4: A comparison of two solutions from the Real Options Pareto front and Deterministic Pareto front 
when evaluated over the same 1000 climate change scenarios as highlighted in Figure 8 

Strategy 
Benefit 

£M 
Cost 

£M 
NPV 

£M BCR 

Ad 47.76 0.72 47.04 66.33 

ARO 67.20 0.83 66.37 80.96 

% difference 28.93 13.25 29.12 18.07 

Bd 76.58 1.38 75.20 55.49 

BRO 83.81 1.40 82.41 59.86 

% difference 8.63 1.43 8.75 7.97 

 


	1. Introduction
	2. Background
	2.1. Decision making under climate change uncertainty
	2.2. Real Options in flood risk management
	2.3. Optimisation methods

	3. Methodology
	3.1. Problem
	3.2. Climate Change Uncertainty Characterisation and Quantification
	3.3. Flood Risk Assessment
	3.4. Costs

	4. Case Study
	4.1. Results and Discussion

	5. Conclusions
	6. References
	7. Figures
	8. Tables

