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Abstract 
Over the last 15 years improved awareness of wave impact induced failures has focused attention on the 
need to account for the dynamic response of maritime structures to wave impact load. In this work a non-
linear model is introduced that allows evaluating the effective design load and the potential sliding of caisson 
breakwater subject to both pulsating and impulsive wave loads. The caisson dynamics is modelled using a 
time-step numerical method to solve numerically the equations of motion for a rigid body founded on multiple 
non-linear springs having both horizontal and vertical stiffness. The model is first shown to correctly describe 
the dynamics of caisson breakwaters subject to wave attack, including nonlinear features of wave-structure-
soil interaction. Predictions of sliding distances by the new method are then compared with measurements 
from physical model tests, showing very good agreement with observations. The model succeeds in 
describing the physics that stands behind the process and is fast, accurate and flexible enough to be suitable 
for performance design of caisson breakwaters. 
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1. Introduction 
The capability of wave impact loads to cause the sliding of composite-type breakwaters had been proved in 
the early sixties by Nagai (1966) who stated “It was proven by 1/20 and 1/10 scale model experiments that, 
at the instant when the resultant of the maximum simultaneous shock pressures just exceeds the resisting 
force, the vertical wall slides”. 

Analyses of failures carried out in Europe and Japan over the past 15 years confirm impact loads induced 
sliding to be the most important cause of failure for caisson breakwaters. Nevertheless, despite the 
importance of impulsive loadings and their effects on the dynamic of caisson breakwater have been widely 
recognised, a simple and comprehensive methodology for the assessment of cumulative sliding distance is 
still missing. This paper presents a simple but consistent method for modelling the dynamic response and 
sliding distance of composite breakwaters subject to wave attack. 

In the following, documented cases of sliding-induced failures of caisson breakwaters are briefly summarised 
(§ 2.1) and findings from previous researches on dynamics of caisson breakwaters reviewed (§ 2.2-2.3). A 
non-linear dynamic model for the response of caisson breakwaters subject to wave loading is then presented 
(§ 3), together with a procedure for the generation of wave force time-histories for use in dynamic analysis 
(§ 4). The effectiveness of the model is then verified using simplified force time-histories (§ 5) and finally 
compared to measurements from physical mode tests on sliding of caissons subject to both pulsating and 
breaking wave attack (§ 6) showing very good agreement with both analytical solutions and experimental 
observations. 

2. Literature review 
Research on the dynamics of caisson breakwaters subject to wave loading has mainly concentrated on 
surveying damaged and failed structures, understanding the physics that stands behind the dynamics of 
caissons and defining wave loads for use in dynamic analysis. Accordingly, in the following we summarise 
documented failure of caisson breakwaters and most significant efforts towards the understanding of caisson 
dynamics. 

2.1. Documented Failures 
Oumeraci (1994) gave a review of analysed failure cases for both vertical and composite breakwaters: 17 
failure cases were reported for vertical breakwaters and 5 for composite or armoured vertical breakwaters. 
The author identified wave breaking and breaking clapotis as the most frequent damage source of the 
disasters experienced by vertical breakwaters, by means of (in order of importance): sliding, shear failure of 
the foundation and overturning. 

Franco (1991 and 1994) and Franco and Passoni (1992) summarised the Italian experience in design and 
construction of vertical breakwaters giving a historical review of the structural evolution in the last century 
and critically describing the major documented failures (Catania, 1933; Genova, 1955; Ventotene, 1966; 
Bari, 1974; Palermo, 1983; Bagnara, 1985; Naples, 1987 and Gela, 1991). In all cases the collapse was 
found to be due to unexpected high wave impact loading, resulting from the underestimation of the design 
conditions and the wave breaking on the limited depth at the toe of the structure. 

Knowledge on failure mode of vertical breakwaters has been widened by the large experience inherited in 
recent years from observations made all through last decades in Japan. Among the others, Goda (1974) 
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reported ad re-analysed a large number of historical sliding-induced failures of vertical caisson breakwaters 
in Japan, Hitachi (1994) described the damage of Mutsu Ogawara Port (1991), Takahashi et al. (1994) 
discussed the failures occurred at Sakata (1973-1974) and Hacinohe (1991) Ports. Takahashi et al. (1998) 
discussed results from an extensive field survey of Japanese breakwaters and summarised caisson wall 
failures in the period 1977-1997. Among other findings, the authors confirmed impulsive breaking wave 
pressure to be the main cause of damage for caisson breakwaters, together with the collision of concrete 
blocks against the caisson walls. More recently, Takahashi et al. (2000) analysed 33 major failures occurred 
between 1983 and 1991 and reported typical failures of composite breakwaters; the authors identified sliding 
of caissons and structural failures due to impulsive wave pressure as the most important failure modes for 
caisson breakwaters installed on a steep foreshore and subject to breaking wave attack.  

2.2. Existing Models For Dynamics Of Caisson Breakwaters 
Marinski and Oumeraci (1992) gave a review of the CIS (formerly Soviet Union) design experience on 
dynamic response of vertical structures subject to breaking wave forces. Most of the methods developed in 
the CIS assumed the dynamics of vertical breakwater to be well described by that of a rigid body on a 
homogenous, elastic and isotropic half space with the soil parameters adopted in the model driving the 
overall response of the system. Reviewing the available literature (almost always in Russian), the authors 
identified three schools of thoughts, based respectively on theoretical works by Petrashen (1956), Smirnov 
and Moroz (1983) and Loginov (1962 and 1969). The method suggested by Loginov is the only one to have 
been included in the Russian guidelines for the evaluation of the loadings and their effects on maritime 
structures; The model combines the swaying and rotating motions of the caisson in two rocking motions 
around two separate centres (located respectively above and below the centre of gravity of the caisson) and 
neglects the effect of damping. 

De Groot et al. (1996) extensively review (at time) state of the art methods for design of caisson breakwater 
foundation, including existing approaches to dynamics. On this ground, simplified models for the dynamic 
behaviour of caisson breakwaters have been developed within the framework of the PROVERBS 
(PRObabilistic design tools for VERtical BreakwaterS) research project (see, among others, Oumeraci and 
Kortenhaus, 1994; Oumeraci et al., 1992; Klammer et al., 1994). 

Despite its relative simplicity, the model proposed by Oumeraci and Kortenhaus (1994) represents an 
efficient tool for the exploration of the dynamic response of caisson breakwaters to wave impact loads and a 
remarkable attempt to quantify the relative importance of the applied dynamic load and the dynamics (mass, 
stiffness and damping) of the breakwater (including the superstructure, its foundation soil and the 
surrounding water) on the overall dynamic response of the system as a whole. For these reasons, this model 
is briefly described in the following.  

The rigid body in the idealised 2D lumped system sketched in Figure 1 has two degrees of freedom, 
respectively the horizontal translation and the rotation around A. For such a system, the equation of motion 
can be re-written in matrix form as follows: 

( ) ( ) ( ) ( )tttt FuKuCuM =⋅+⋅+⋅   (1) 

where: 







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θm0
0mxM  (2) 
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
=

θ tu
tuxu  (6) 

Terms mx, mθ, kx, kθ, cx, cθ in Equations 2 - 4 represent the total mass ( m ), the stiffness ( k ) and the damping  
( c ) of the system against sliding ( x ) and rocking ( θ ) and xL and yL are respectively the lever arm of the 
vertical (Fy) and horizontal (Fx) forces, xA and yA are respectively the coordinates of the centre of rotation of 
the caisson. According to the authors, the stiffness terms can be determined according to Marinski and 
Oumeraci (1992) while the total mass of the system is given by the summation of the mass of the caisson, 
the hydrodynamic mass and the geodynamic mass. The damping coefficients were obtained experimentally 
by means of pendulum tests on the caisson breakwater model itself and for different degrees of immersion 
(Oumeraci et al. 1992).  

 

Figure 1 Dynamic model of caisson breakwater (after Oumeraci and Kortenhaus, 1994) 

Moving from earlier observations during small-scale model tests (Klammer et al. 1994) a simple model for 
the evaluation of the permanent displacement of caisson breakwaters under impact loads has been 
suggested by Oumeraci et al. (1995) de Groot et al. (1996) and Kortenhaus and Oumeraci (1996). According 
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to the authors, the interaction of the super-structure with the foundation soil is driven by adhesion while the 
horizontal force does not exceed the critical value Fxƒ: 

( ) ( )[ ]tFWtF ysc,x −⋅µ=  (7) 

Where µs is the static friction coefficient, W is the weight of the caisson in water and Fy(t) is the wave-
induced uplift force. When the caisson starts to move, a constant friction coefficient µd is applied until the 
horizontal force reduces again to the critical value Fx,c(t) in Equation 7, when the adhesion force starts 
dominating again. 

More recently, the dynamic analysis model proposed by Oumeraci and Kortenhaus (1994) has been 
extended by Wang (2001) to account for reduction in effective impact forces due to sliding and rocking 
motion of caisson breakwaters. Among the possible motions of caisson breakwaters under dynamic load, the 
author distinguished a pure vibrating motion, a vibrating-sliding motion and a vibrating-rocking motion; for 
each of them, a slightly different version of Equation 1 is proposed which accounts for the relative motion of 
the caisson and its foundation. 

Alternative models have been suggested by researches in Japan. Goda (1994) suggested modelling the 
dynamics of a composite breakwater as that of a rigid body suspended on a system of mass and dual 
springs for rotational and horizontal motions, and using the momentum theory of impulsive breaking wave 
forces to estimate the sliding distance of the superstructure. 

Takahashi et al. (1994), investigated the dynamic response and the sliding of breakwater caissons against 
wave impact loads by mean of a FEM model. A more sophisticated, non-linear model was successively 
adapted by Takahashi et al. (1998) to evaluate cumulative sliding of caisson breakwater under breaking 
wave attack. The model was shown to be able to describe the characteristics features of the interaction of 
the caisson with its soil foundation including sliding; nevertheless, the model was found to be relatively 
complex and its application time-consuming. Shimosako et al. (1994) and Shimosako and Takahashi (1999) 
presented a simplified model for the estimation of distance of caisson sliding that was found to compare 
satisfactorily well with data from small-scale physical model tests. According to the authors, the permanent 
displacement can be evaluated as: 

( ) ( )
( )2

32

8 max,ymax,xcd

dmax,ymax,xdmax,ymax,xd

FFWm

WFFWFFt
S

−⋅⋅⋅µ⋅

⋅µ+−⋅⋅µ−−
=  (8) 

Where td represents the duration of triangular wave thrust, µd is the friction coefficient, W is the caisson 
weight in water, Fx,max is the peak value of wave thrust upon the caisson and yx,max is the uplift exerted upon 
the bottom of caisson. The method has been recently adopted in performance-based design (Shimosako 
and Takahashi, 1999) and reliability design (Goda and Takagi, 2000 and Kim and Takayama, 2003) methods 
for caisson breakwaters. 

An alternative simplified method for the evaluation of the permanent displacement of composite breakwater 
subject to wave impacts has been presented by Ling et al. (1999). Nevertheless, the method only considers 
a sinusoidal, long lasting, load and thus suffers from not accounting for the impulsive nature of breaking 
wave loads. 

A summary of the most significant models for dynamics of caisson breakwater proposed in literature is given 
in Table 1. 
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Table 1 Summary of existing models for the dynamics of  caisson breakwaters 

Loinov (1962) 

 

Swaying and rotating motions are combined 
in two rocking motions around two separate 
centres. 

 
Goda (1994) 

 

 

Rigid body suspended on a system of mass 
and dual springs for rotational and horizontal 
motions, includes contribution of the 
geodynamic mass. 

Oumeraci and 
Kortenhaus 

(1994) 
 

Modified by Kortenhaus and Oumeraci (1996) 
to account for sliding of the superstructure 
when the horizontal force exceeds the 
adhesion force. 

Takahashi et al. 
(1994) 

 

FEM - Modified by Takahashi et al. (1998) to 
account for non-linearity of the soil 
foundation. 

 

2.3. Existing models for time-history wave loads on caisson 
breakwaters  

Example time-history load exerted by a breaking wave on the seaward face of a vertical breakwater is 
plotted in Figure 2, showing a sharp pulse superimposed to a slowly varying, pulsating load. In order to 
perform numerical simulation of the dynamic response of caisson breakwater to wave loading, a 
parameterised time-history load needs to be assumed for use in the computations. An example idealised 
load-history is superimposed on an original signal in Figure 2; the triangular spike is characterized by the 
maximum reached by the signal during loading (Pmax) and the time (tr) taken to get to Pmax  from 0. The 
shaded area in Figure 2 represents momentum transfer to the structure during the impact: the impulse. 
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Several simplified models exist in literature for time-history load for use in dynamic analysis of caisson 
breakwater subject to impulsive and quasi-static wave loading (see Cuomo, 2005 for a review), selected 
models are summarised in Table 2.  

Parameter Fqs+ in Table 2 stands for the quasi-static seaward force as predicted by Goda’s method in its 
original formulation (Goda, 1974) while impact maximum (Fmax), rise time (tr) and duration time (td, Figure 2) 
need to be evaluated according to guidance given in the referred documents. Model by Shimosako and 
Takahashi (1999) is the most to sophisticated up to date, and has been widely adopted in Japan as a basis 
for the evaluation of sliding of caisson breakwaters. Based on observations from small scale laboratory 
experiments, Kim et al. (2004) suggested reducing the amplitude of the quasi-static component of about 20% 
when assessing the permanent displacement due to sliding and tilting of caisson breakwaters subject to 
wave impacts. Among the models summarised in Table 2, the “church-roof” proposed by Oumeraci and 
Kortenhaus (1994) and the model by Shimosako et al (1994) (and successive modifications by Shimosako 
and Takahashi, 1999, Kim and Takayama, 2003 and Kim et al. 2004) have been found to give the most 
detailed representation of the variation in time of the overall loading. In this work we used the model 
originally proposed by Shimosako et al. (1994) as it includes both impulsive and pulsating (positive - 
landward and negative – seaward) force. 

Observing Tables 1 and 2, it is evident that since the early 60’s, models for caisson dynamics have 
continuously improved side by side with the gain in knowledge on wave loading and their effects on caisson 
breakwaters. Although representing most of the main features of caisson dynamics, existing models do not 
nevertheless allow to represent the effect of the variation in time of the loading on the coupling between the 
dynamic response of the structure and the bearing capacity of the soil. While the full-dynamic FEM 
presented in Takahashi et al. 1994 is the only to make an exception, it is not yet suitable for use in 
performance design of caisson breakwaters, for which a large number of simulations is needed. Bearing this 
in mind, in the following a non-linear model is proposed that allows accounting for wave-structure-soil 
interaction but is fast and accurate enough to be used in performance design of caisson breakwater based 
on acceptable sliding distance in the design life time (Lupoi et al. 2007). 

 

Figure 2 Example pressure time-history recorded on the seaward face of a seawall during large scale 
physical model tests at CIEM under VOWS research project (Cuomo et al. 2007). 
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Table 2 Summary of existing wave time-history loads for use in the dynamic analysis of caisson breakwaters 
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3. A non-linear model for the dynamics of caisson 
breakwater 

3.1. Dynamics of caisson breakwater subject to wave loading 
In the following, a non-linear model is introduced that allows to evaluate the sliding of caisson breakwater 
subject to both pulsating and impulsive wave loads. The mathematical idealisation of the problem is shown in 
Figure 3, where the caisson is represented by a rigid block sitting on a mattress of non-linear springs. When 
a wave hits the superstructure, the caisson transmits a combination of (horizontal and vertical) forces to the 
foundation soil. The resistance to horizontal and vertical loads are respectively represented by the 
Coulomb’s frictional force developed at caisson-soil interface and by the bearing reaction of the soil. 

 

 

Figure 3 Mathematical idealisation of a caisson breakwater adopted in the present model, the springs 
at the interface between the superstructure and its soil foundation represent non-linear elements described 
in § 3.1 and 3.2 

For a static system, the conditions for at rest are expressed by: 

( ) ( ) ( )[ ]tFgmmtF ywcsx −⋅−⋅µ≤  (9) 

( ) ( )[ ] 0≥−⋅− tFgmm ywc  (10) 

( ) ( ) ( )[ ]gwcLy
L

x xgmmxtF
y

tF ⋅⋅−+⋅−⋅≤
1  (11) 

where µs is the static friction coefficient between the caisson structure and the foundation soil, mc is the mass 
of the caisson structure, mw  is the mass of the volume of water displaced by the caisson, xL and yL are 
respectively the lever arms of vertical and horizontal wave-induced forces, xg is the level arm of the 
gravitational load. 

Equations 9 and 10 describe the equilibrium in the horizontal and vertical direction, respectively, while 
equation 11 represents the moment equilibrium around the corners. The onset of the movement of the body 
is determined when one of the previous equations is no longer valid originating, respectively, sliding (Eq. 9), 
uplift (Eq. 10) and rocking (Eq. 11) motion. 

( )tx

Supporting surface

b

h
( )ty



 
 

 

 
 

Giovanni Cuomo, Giorgio Lupoi, Ken-ihiro Shimosako & Shigeo Takahashi 

HRPP486 10 

The equation of motion can be written according to the more general formulation (valid for both the static and 
dynamic system) as: 

( ) ( ) ( ) ( )tttt FuKuCuM =⋅+⋅+⋅  ,       (12) 

where a dot denotes differentiation with respect to time, M, C and K are, respectively, the mass, the damping 
and the stiffness matrixes at the free degrees of freedom. In the simplified formulation adopted in this paper, 
the vector u is composed by the displacement along x, the displacement along y and the rotation, θ. The 
vertical and the horizontal displacement at each spring, uxi i,xu  and i,yu , are related to the three degrees of 

freedom (ux, uy, uθ) by the following equations: 

xi,x uu =  (13) 

iyi,y xuuu ⋅+= θ , (14) 

where xi is the position of the spring with respect of the centroid of the rigid block. 

The resisting forces at the three degrees of freedom are then evaluated as a function of reaction at each 
spring, by means of the following set of equations: 

( ) ( ) ( ) ( )tuktuctumtF x
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i
i,xxxxx
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1
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( ) ( ) ( ) ( ) ( )( )

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








+⋅⋅+⋅+⋅= ∑

=
θθθθθθ

springn

i
yii,y tutuxktuctumtF

1

  (17) 

In the numerical solution of differential equations (Eq.12) the acceleration, velocity ad displacement a time 
tt ∆+  are expressed in term of acceleration, velocity and displacement at time t . The evolution equations 

are here solved by means of Newmark’s method (Newmark, 1959), while the Newtown-Raphson algorithm 
scheme (Chopra, 2001; Chapter 15) has been adopted to solve for the non-linearity of the system (§ 3.2). 
Precisely, at each time step, we first evaluate the unknown acceleration, velocity and displacement at time 

tt ∆+ , then we check the equilibrium between the applied forces and the resisting ones and iterate until 
convergence is achieved. 

The dynamic properties (mass, stiffness and damping) of the system that are represented in the model 
include contributions by the superstructure, the water surrounding the structure and the soil foundation. In 
the present formulation, the two contributions are evaluated according to Equations 2 - 4 (Oumeraci and 
Kortenhaus, 1994), where the transitional and rotational hydrodynamic masses are given respectively by 
(Pedersen, 1997): 

25430 d.m wx,hyd ⋅ρ⋅=  (18) 
22180 d.m w,hyd ⋅ρ⋅=θ  (19) 

where ρw  is the water density and d  the water depth in front of the wall. A more sophisticated model is 
employed for the description of the dynamics properties of the soil foundation, whose linear (§ 3.1) and non-
linear (§ 3.2) aspects are described in details in the following. 
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3.2. Dynamic properties of soil foundation, linear aspects 
For massless strip foundation resting on the surface of an elastic undamped homogeneous half plane Wolf 
(1988, Chapter 2) derived the following expressions for the vertical ( yK ) and horizontal ( xK ) stiffness (per 

unit length): 

( ) GK y ⋅ν+= 241  (20) 
( ) GK x ⋅ν+= 251  (21) 

where ν= 0.33 is the Poisson’s ratio and G is the shear modulus. 

For the damping term ( C ) the classical expression by Lysmer and Richart (1966) has been adopted: 

sGr.C ρ⋅⋅
ν−

= 2
01

43 , (22) 

in which ρs is the mass density of the soil and the characteristic dimension of the equivalent circular footing 

has been taken as π/0 blr = , b and l being the planar dimensions of the caisson. 

The shear modulus G  in Equations 20, 21 and 22 above is given by [ ])(EG ν+= 12  in which Young’s 

modulus E  of the foundation soil underneath the caisson (that is at an effective vertical stress vσ ) has been 
taken as (Lunne et al., 1997): 

'
v

'
v

'
v /EE

0

0
100

2
σ

σ∆+σ
=

 (23) 

in which E100 is the Young’s modulus of the soil foundation corresponding to an effective strain '
vσ  = '

0vσ  = 

100kPa and '
v

'
v

'
v 0σ−σ=σ∆  is the additional effective strain with respect to '

v0σ . When no direct 

measurements are available at the site, values of 100E  can be taken from those listed in literature (see, 
among others: Gazetas, 1991 and Oumeraci et al. 2001 and references therein). In our computations we 
assumed 100E = 350MPa, that is our soil foundation to consist of medium dense sand. 

In the linear case, the mass, damping and stiffness matrixes for the equation of motion presented in Eq.12 
are given by: 
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Although in a relatively simplified fashion, Equations 20, 21 and 22 effectively characterise the linear 
behaviour of the soil foundation of the breakwater while the superstructure sits on the rubble mound. 
Nevertheless, during most violent impacts, wave induced horizontal (shoreward) and vertical (uplift) loads 
may indeed concur to partially up-lift the caisson from its original position so that only part of the foundation 
participates to resist sliding. In such cases, Equations 9-14 do not provide anymore a realistic description of 
the dynamics of the system since they require tensile capacity to be provided between the structure and the 
soil. In the following, an improved model is introduced that allows accounting for partial lifting of the caisson 
from its soil foundation. 

3.3. Non-linear aspects 
In the present model, the soil foundation has been modelled by means of non-linear finite elements (springs) 
to allow accounting for the following non-linear features of foundation soil: 
− the inability of carrying axial tension; 
− the dependency of the friction between the caisson and the foundation soil on the effective strain at the 

interface. 

Bearing this in mind, the vertical and horizontal response of each spring has been coupled, resulting in the 
following expressions for the stiffness, respectively in the vertical and the horizontal direction: 

( ) ( )


 ≤

=
otherwise
for 

0
0tuk

tk i,yi,y
i,y  (27) 
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 (28) 

where iyk ,  is the vertical stiffness of each spring i  given by ky,I = Ky / nspring; kx,i is the horizontal stiffness 

expressed as a linear function of the vertical force Fy,i(t),  i,yF  is the vertical force acting on the i-th spring at 

rest (gravitational load); i,xk  is the horizontal stiffness at rest given by springxi,x nKk = ; xu  is the 

displacement at incipient sliding corresponding to xsx KWu ⋅µ= . The resistance force due to friction is 

equal to ( )tF i,yS ⋅µ  at rest and to ( )tF i,yD ⋅µ  during sliding and sµ  and dµ  are respectively the static and 

the dynamic friction coefficients, taken respectively as 0.6 and 0.4. 

A representation of the force-displacement relationships for both the horizontal and the vertical directions is 
shown in Figure 4. 
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Figure 4 Force-displacement relationship of horizontal (top) and vertical (bottom) resistance forces. 
The horizontal motion (top) is described by means of a friction model as a function of the vertical force: 
Fy,i(t), the yield displacement: xu  and the static and dynamic friction coefficients: µs and µd. The vertical 
motion (bottom) is described by means of a bilinear model, function of the vertical displacement uy,i(t). 

4. GENERATION OF TIME-HISTORY LOADS 
4.1. Non-breaking wave time-history loads 
Under non-break waves attack, time-history loads are assumed to follow a slowly varying, sinusoidal path. 
For the j-th wave, the following expression is assumed for the generation of both horizontal and vertical force 
time history loads F(t): 
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where jT  is the wave period and +qsF  and −qsF  are the quasi static (in turn horizontal and vertical) positive 

(shoreward, uplift) and negative (seaward, suction) force corresponding to pressure distribution predicted 
using respectively models by Goda (2000) and Sainflou (1928). Reduction coefficient qsα  has been set 

equal to 0.8 according to recommendations by Kim et al. (2004), based on recent physical model tests at 
University of Kyoto. Level arms of overturning moments due to forces in Equation 29 are evaluated 
integrating pressure distribution by the corresponding theories. 

4.2. Breaking wave time-history loads 
Typical breaking wave time-history load on a vertical wall is plotted in Figure 2, showing a high magnitude - 
short duration peak superimposed to a slowly varying pulsating load. Cuomo et al. (2010) analysed breaking 
wave loads on vertical walls recorded during large-scale physical model tests. The authors found that 
breaking wave impact pressures might well exceed those predicted by most established prediction methods 
and suggested a new set of formulae for both the impulsive and the pulsating components of the loading. 

Accordingly, breaking wave time-history loads are evaluated as follows. First, the amplitude of the impulsive (

max,xF ) horizontal components of breaking waves loads is computed as (Cuomo et al. 2010): 

( ) 








 −
−⋅⋅⋅ρ⋅α=

d
dd

dLHgF b
swmaxmax,x 1  (30) 

Where ds and L(ds) are the water depth at the toe of the breakwater and the corresponding wave length 
related to T = Tm, d is the water depth in front of the caisson wall, db  is the water depth at breaking. Note 
that since Equation 30 was derived to predict random wave impact force at 1/250 significant level using wave 
height, H = Hs (and assuming H1/250 = 1.8 Hs where Hs  is the significant wave height) a reduction factor 
αmax= 1/1.8 needs to be applied to be consistent with the physics when using Equation 30 with 
monochromatic waves of height H. 

The positive pulsating component (Fqs+) of the load is again evaluated using formulation by Goda (1974), 
which has been found to give the best representation of shoreward pulsating wave loads also under breaking 
wave attack (Cuomo et al. 2010). The negative pulsating component (Fqs-) is evaluated according to Sainflou 
(1928). 

The resulting force time-history for the j-th breaking wave load is evaluated as: 
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 (31) 

To ensure consistency between impact maxima (Fx, max) and rise-time (tr), in Equation 31 the latter is 
evaluated according to the procedure described in section 4.2.2. 

The vertical (uplift) force is still obtained using Equation 31, but replacing Fqs+ and Fqs- with their 
corresponding vertical components evaluated respectively according to Goda (1974) and Sainflou (1928), 
while the following expression (Oumeraci et al., 2001) is used to evaluate the impact uplift force Fy, max as a 
function of the horizontal impact force Fx, max: 

( ) 27040
450 b

ed.H.
F

.F
br

max,x
max,y ⋅

++
⋅=  (32) 

in which Hbr  is the breaker height (§ 4.2.1), b is the caisson width, d is the water depth in front of the caisson 
wall and e the depth by which the caisson is imbedded in the mound. Equation 32 derives from simplifying 
the expression for uplift forces given in Oumeraci et al. (2001) assuming a zero uplift pressure at the 
shoreward end of the caisson. Lever arms of overturning moments due to forces in Equations 30-32 are 
evaluated integrating pressure distribution by the corresponding theories (Goda, 1974;Sainflou, 1928; 
Oumeraci et al. 2001) up the wall. 

4.2.1. Evaluation of breaker height and water depth at breaking 

Breaker height and water depth at breaking play a major role in wave loading of caisson breakwater and 
their correct evaluation is a key issue when assessing the stability of a caisson under breaking wave attack. 
To evaluate wave loads at the structure using the present model, the following information is needed: wave 
height at the toe of the structure (Hs,toe), the water depth at breaking (db) and the limiting breaker height (Hbr) 
in front of the structure. In the present formulation Hs,toe is evaluated applying the Miche (1944) criterion for 
breaking while db  and Hbr are evaluated according to the breaking criteria described in Oumeraci et al. 
(2001). 

4.2.2. Consistency between impact maxima and rise time 

Due to conservation of momentum, the impulse is a finite quantity and thus most violent impact loads will 
necessary correspond to very short duration and vice-versa. Several attempts have been made to define a 
functional relation between wave impact maxima and rise times (see Cuomo (2005) for a review) including 
analytical formulations (based on conservation of momentum and compressibility of air-water mixture) and 
empirical relations, usually in the form: 

b
rmax,x taF ⋅=  (33) 
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Here, consistency between generated wave impact maxima and rise time has been insured by means of the 
following simplified procedure. For each wave height Hi and period Ti, the impact force Fx,max,i and the quasi 
static force Fas+i, are evaluated respectively according to Equation 30 and Goda (1974), together with the 

dimensionless impact force += qsmax,x
* FFF . The normalised impact rise time mr Ttt =*  is then assumed 

to obey a log-normal distribution, that is: 

( ) ( )
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σ
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−⋅
π⋅σ⋅

=σµ 2

2

22
1 *

r
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r

*
r

tlnexp
t

,,tf  (34) 

To ensure consistency between impact maxima and rise times, parameters σ and µ in Equation 34 are taken 

as a function of *F  as follows: 

( ) µ⋅=µ µ
b** FaF  (35) 

( ) σ⋅=σ σ
b** FaF  (36) 

where the empirical parameters aµ = 0.34, bµ = -3.42 and aσ = 0.87, bσ = -0.26 have been fit to data gathered 
during physical model tests described in Cuomo et al. (2010). A realisation for tr corresponding to a given F* 
is hence randomly generated according to Equation 34 with parameters σ  and µ given in Equations 35 and 
36 as a function of F*. 

Figure 5 shows the comparison of example generated (circles) dimensionless impact maxima (Fmax / Fqs+) 
and rise time (tr / Tm), with prediction using Equation 34 at 50% (black dots) and 95% (grey dots) non-
exceedance probability levels. It might be noticed that consistency between wave impact maxima and rise 

times is only partially insured by the procedure described above as variability in *
rt  is only partially coupled 

with impact maxima by means of existing functional relationship between parameters σ  and µin 

Equations 35 and 36 and values of F*. A deeper coupling between variability in *
rt  and F* might have been 

obtained by considering the joint probability of impact maxima and rise-time as suggested in Cuomo et al. 
(2009), based on joint probability distribution of impact maxima and rise times. Although less rigorous than 
the latter, the former formulation has been found to give an efficient and intuitive representation of the 
effective variability in impact maxima and rise times and is therefore been employed in the present 
calculations. 
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Figure 5 Example impact maxima and rise times (circle) randomly generated  according to procedure 
in §4.2 using monochromatic waves H=0.45m, T=3s, d=0.4m. 

 

5. Verification of the dynamic model and illustrative 
example calculations 

5.1. Quasi-static application of a horizontal force exceeding the 
static friction resistance (Fx>µsFy) 

We applied a static horizontal (shoreward) force on the seaward face of the caisson at the still water level 
(s.w.l.) thus generating a clockwise overturning moment that tends to overturn the caisson shorewards. 

Results are shown in Figure 6, in terms of (from top to bottom) horizontal reaction, horizontal displacement, 
vertical reaction and displacement at each of the four springs used to model the soil foundation. From left to 
right graphs refer to springs along the caisson base from the seaward to the shoreward face.  

The effect of the overturning moment is evident in the bottom panels, showing vertical reactions linearly 
increasing moving from the shoreward towards the seaward end of the caisson. The effect of overturning 
moment is also noticeable in the top panels, with horizontal reactions increasing from left to right, accordingly 
to the fact that spring stiffness increases with increasing vertical load. 
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Figure 6 Response to statically applied horizontal force (applied shoreward at s.w.l.) at locations of 
the four spring elements located along the caisson-soil foundation interface. From top to bottom: horizontal 
reaction, horizontal deformation, vertical reaction and vertical deformation. Geometrical and dynamic 
characteristics for this example case as follows: l = 1.0m, b = 0.78m, h = 1.12m, d = 0.40m, Ky=2.9E+07 
kN/m; Kx=2.3E+05 kN/m; D =1.7E+02 kNs/m, W = 8.24 kN. 

5.2. Shock spectra of a SDOF system (Fx<<µsFy) 
The model has been applied to derive the "response spectrum" for a single degree of freedom system 
subject to pulse excitation, that is its "shock spectrum". The time-history load describing the pulse shape is 
defined by the following triangular path: 
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For different values of tr, Equation 37 describes a symmetrical triangular path having magnitude Fx,max and 
duration 2tr. Results are presented in the range 0 < tr / T0 < 5 (T0 being the natural period of vibration of the 
SDOF) on the left hand side of Figure 7 in terms of the amplification factor defined as:  
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where ux(t) is the horizontal displacement and xu is the static horizontal displacement defined as the ratio of 

the load intensity to the stiffness of the system xxx KFu = . 

Numerical results (circles) are almost superimposed to the analytical solution (dashed line) on the left hand 
side of Figure 7, demonstrating the efficiency of the model. 

Effect of sliding on the dynamic response of caisson breakwater is highlighted on the right hand side of 
Figure 7, showing the modification of the shock spectra of the same caisson breakwater subject to an 
horizontal impulse having intensity comparable to the static sliding resistance of the caisson. A few 
conclusions can be derived by observing plots on the right hand side of Figure 7: 

- for 0Ttr <<  the dynamic response of the structure reduces the force effectively felt by the caisson so 

that no-sliding occurs even for WF sx ⋅> µmax,  (static sliding resistance, SSR); 

- for 0Ttr ≅  the dynamic response of the structure amplifies the force effectively felt by the caisson so 

that sliding occurs even for WF sx ⋅< µmax, . 

 

Figure 7 Shock spectrum for caisson breakwater subject to pulse excitation. Response to the 
application of an horizontal force having magnitude smaller (left) and larger (right) than the static sliding 
resistance (SSR). 

When compared to predictions by the static formulation by Shimosako et al. (1999), results using the present 
model show that (Figure 8): 

- for 1/ 0 <<Ttr  the dynamic model predicts no-sliding even if WF sx ⋅> µmax, ; 

- for 1/ 0 ≅Ttr  the dynamic model predicts larger sliding than the static approach, in particular, 
including the dynamic response of the structure might result in sliding of the structure even for 

WF sx ⋅< µmax, , 
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- for 1/ 0 >>Ttr , sliding predicted by the dynamic model is lower than estimates by the static approach 
due to the reduction of effective load due to motion of the structure. 

 

Figure 8 Permanent displacement due to pulse excitation having maxima slightly lower (left) and 
higher (right) then the static sliding resistance, comparison of predictions by static approach by Shimosako et 
al. (1999, black marks)  and the present model (white marks). 

5.3. Dynamics of caisson breakwater subject to non-breaking and 
breaking wave time-history loads 

Example time history loads for the case of a single non-breaking and breaking wave are represented 
respectively on the left hand side of Figures 9 and 10. From top to bottom, thin solid lines represent the 
horizontal (shoreward) and vertical (upward) forces and the overturning (clockwise) moment. Results are 
shown in terms of reactions (left) and deformations (right) for the caisson as a whole (solid thick line) as well 
as for springs at different locations along the interface between the caisson and its soil foundation (dotted 
line). The variation in time of the static sliding resistance (SSR) is also shown in the top left panel, 
highlighting instants of incipient sliding and relative motion between structure and foundation. 

As the wave reaches the structure it applies a shoreward load to the caisson and the reactions of the 
foundation elements initially increase all over the interface. As the load increases, the caisson rotates 
shoreward and the seaward end of the caisson is up-lifted. At this time, both the horizontal and vertical 
reactions exerted by the foundation elements underneath the seaward end of the caisson start decreasing 
(up to zero, when the contact between the superstructure and the foundation is lost) while the elements at 
the shoreward end of the interface are heavily loaded. Once the water surface starts moving downwards, 
and a through starts appearing in front of the caisson wall, the shoreward load decreases and the caisson 
starts rotating seaward. When the wave trough reaches the structure, the loading process inverts until 
another wave reaches the structure. 

If, at any time during the loading, the static sliding resistance is exceeded by the reaction that is required to 
the caisson for at rest, the caisson slides. At this point, the horizontal bearing capacity of the soil foundation 
instantaneously decreases as the incipient motion reduces the friction at the interface between the 
superstructure and the soil foundation, as the caisson begins to move, the velocity (dashed-dotted lines on 
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the right hand side of Figures 9 and 10) rapidly increases and reaches its maximum, then decrease until the 
caisson suddenly stops (top right panel). As highlighted in Figure 9, the sliding of the caisson breakwater due 
to pulsating wave pressure develops over a significant amount of time and a single wave is able to dislocate 
the superstructure and to move it for a considerable distance. Sliding due to breaking wave pressure follows 
a completely different path, with sudden and short-lasting motion of the structure (note change of time scale 
between Figures 9 and 10). 

 

 

Figure 9 Dynamic response of a caisson breakwater subject to non-breaking wave loads exceeding 
the static sliding resistance; note initial vertical displacement due to settling of the caisson under self-weight. 
Geometrical and dynamic characteristics for this example case as follows: l = 1.0m, b = 0.78m, = 1.12m, d = 
0.80m, Ky=1.4E+05 kN/m; Jx=1.5E+05 kN/m; D =4.8E+02 kNs/m, W = 8.24 kN. 
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Figure 10 Dynamic response of a caisson breakwater subject to breaking wave loads exceeding the 
static sliding resistance; note initial vertical displacement due to settling of the caisson under self-weight. 
Geometrical and dynamic characteristics for this example case as follows: l = 1.0m, b = 0.78m, h = 1.12m, d 
= 0.40m, Ky=1.5E+05 kN/m; Kx=1.6E+05 kN/m; D =6.1E+02 kNs/m, W = 16.17 kN. 

6. COMPARISON WITH MEASUREMENTS FROM 
PHYSICAL MODEL TESTS 

6.1. Physical model tests. 
Experiments at Port and Airport Research Institute (PARI) were performed in the 105m long, 3m wide and 
2.5m deep wave flume of the Maritime Structures Division.  

A schematic representation of the experimental setup is reproduced in Figure 11. Two sets of tests were 
carried out respectively under pulsating and breaking wave attack. During the latter set of experiments, 
waves were forced to break in front of the structure by means of an extra-berm built in front of the structure 
(dashed line in figure) which reduced further the water depth in front of the wall (from 0.8m to 0.4m).  

Experiments are described in detail in Shimosako et al. (1994) and Shimosako and Takahashi (1999). 
Regular waves were generated in the range 0.428 - 0.619m  ( 4...2,1H in, Tables 3 and 4) while the wave 
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period was kept constant and equal to 3.04s. Effect of caisson weight was tested in the range of 6.9-8.9 kN (

4,...2,1W  in Table 3) for non breaking waves and 11.3-19.4 kN ( 5,...2,1W  in Table 4) for breaking waves.  

 

Figure 11 Experimental setup used in the small-scale physical model tests performed at PARI 
(units:  cm). 

 

Table 3 Summary of regular wave conditions and geometrical configurations adopted for physical model 
tests at PARI under non-breaking wave attack. 

H T hs d W 
m s m m kN 

H1 = 0.428 3.04 1.14 0.8 W1 = 7.8 
H2 = 0.524 3.04 1.14 0.8 W1 = 7.8 
H3 = 0.569 3.04 1.14 0.8 W1 = 7.8 
H1 = 0.428 3.04 1.14 0.8 W2 = 7.5 
H2 = 0.524 3.04 1.14 0.8 W2 = 7.5 
H3 = 0.569 3.04 1.14 0.8 W2 = 7.5 
H4 = 0.619 3.04 1.14 0.8 W2 = 7.5 
H1 = 0.428 3.04 1.14 0.8 W3 = 8.2 
H2 = 0.524 3.04 1.14 0.8 W3 = 8.2 
H3 = 0.569 3.04 1.14 0.8 W3 = 8.2 
H4 = 0.619 3.04 1.14 0.8 W3 = 8.2 
H1 = 0.428 3.04 1.14 0.8 W4 = 8.9 
H2 = 0.524 3.04 1.14 0.8 W4 = 8.9 
H3 = 0.569 3.04 1.14 0.8 W4 = 8.9 
H4 = 0.619 3.04 1.14 0.8 W4 = 8.9 
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Table 4 Summary of regular wave conditions and geometrical configurations adopted for physical model 
tests at PARI under breaking wave attack. 

H T hs d W 
m s m m kN 

H2 = 0.524 3.04 1.14 0.4 W1 = 11.3 
H1 = 0.428 3.04 1.14 0.4 W2 = 13.7 
H2 = 0.524 3.04 1.14 0.4 W2 = 13.7 
H3 = 0.569 3.04 1.14 0.4 W2 = 13.7 
H4 = 0.619 3.04 1.14 0.4 W2 = 13.7 
H1 = 0.428 3.04 1.14 0.4 W3 = 16.2 
H2 = 0.524 3.04 1.14 0.4 W3 = 16.2 
H3 = 0.569 3.04 1.14 0.4 W3 = 16.2 
H4 = 0.619 3.04 1.14 0.4 W3 = 16.2 
H1 = 0.428 3.04 1.14 0.4 W4 = 17.8 
H2 = 0.524 3.04 1.14 0.4 W4 = 17.8 
H3 = 0.569 3.04 1.14 0.4 W4 = 17.8 

H4 = 0.619 3.04 1.14 0.4 W4 = 17.8 
H1 = 0.428 3.04 1.14 0.4 W5 = 19.4 
H2 = 0.524 3.04 1.14 0.4 W5 = 19.4 

 

Tests were carried out by taking measurements of 15 consecutive waves (Nz = 15) for a given test condition. 
Test conditions are summarised in Table 3 and 4 respectively for physical model tests carried out using non-
breaking and breaking wave conditions. 

Comparison of predictions with measurements from physical model tests at PARI. 

Numerical simulations were performed using time-history loads generated according to the procedure 
described in § 4-1 and 4.2. For each experiment (that is for each wave condition and geometrical 
configuration) 10 realizations were simulated. In this section, results from numerical simulations are 
compared with measurements at PARI for experiments under both non-breaking and breaking wave 
conditions. Although the physical model tests were performed using monochromatic waves, some variability 
of wave height at the toe of the structure was observed during testing. To account for this effect, waves in 
the numerical simulations have been assigned a random variability of about 20% of the nominal wave height. 

Sliding distances measured during the experiments are compared with those predicted by the model, in 
terms of the mean, maximum and minimum total (over a Nz = 15 waves test) sliding distance. 

Example calculation 

In order to facilitate application of the procedure described in this paper, an example calculation is presented 
in this section for one of the configurations tested during the physical model tests at PARI. Input data are 
summarised in Table 5.  

The dynamic characteristics of the soil foundation, in terms of global horizontal and vertical stiffness and 
global damping can be calculated using Equations 20, 21 and 22, and are summarised in Table 6.  
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Table 5 Geometrical and geotechnical characteristics of an example configuration tested during physical 
model tests at PARI. 

Caisson length (in wave direction) l  1.00 m 

Caisson width (orthogonal to wave direction) b  0.78 m 

Caisson weight in water W  8.24 kN 

Young’s modulus at σv’ = 100kPa 100E  3.5 105 kPa 

Shear modulus at σv’ = 100kPa 100G  1.3 105 kPa 

Poisson’s ratio ν  0.33 - 

Soil foundation density sρ  2300 kg/m3 

Water depth at the wall d  0.80 m 

 

Table 6 Dynamic characteristics of an example configurations tested during physical model tests at PARI. 

Caisson weight in water W  8.24 kN 

Mass M  1464 kg 

Vertical stiffness yK  1.4 105 kN/m 

Horizontal stiffness xK  1.5 105 kN/m 

Damping C  4.8 102 kNs/m 

Natural period of vibration (undamped) nT  0.02 s 

 

Non-breaking wave attack. 

Time-series of wave-forces and corresponding reactions and deformations are shown in Figure 12 for a 
regular waves test. When sliding occurs under non-breaking waves attack, the static sliding resistance is 
exceeded for a significant amount of time and the resulting permanent displacement is large (§ 5.3). 
Furthermore, since pulsating wave forces are less variable than impacts, a large number of waves within a 
single storm might induce sliding of the superstructure. This is the case when waves exceeding the wave 
condition assumed in the deterministic design reach the breakwater without breaking. Such condition is 
particularly dangerous for caissons and usually results in significant sliding of caissons units or failure of the 
breakwaters. Both the aforementioned effects are clearly visible in the horizontal displacement time-history 
shown in the top-right panel of Figure 12.  
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Figure12 Dynamic response of caisson breakwaters subject to non-breaking wave attack, results from 
a single realization using Nz =15 waves, geometrical and dynamic characteristics for this example case are 
as in Figure 9. 

Results from simulations under non-breaking wave attack are summarised in Figure 13, in terms of 
maximum, mean and minimum total sliding distance (over 10 realizations of each Nz = 15 waves test) as a 
function of the incident wave height and of the caisson weight. From left to right results refer to tests run with 
increasing caisson weight in the range 6.9 kN (W1) – 8.9 kN (W5) and increasing wave height in the range 
H = 0.428m - 0.619m. 

As expected, results from numerical simulations confirm that for a given caisson weight, the sliding distance 
increases for increasing wave heights while for a given wave height, the sliding decreases with increasing 
caisson weight. When compared to measurements from physical model tests, the model seems to give a 
good prediction of total sliding distances (top panel in Figure 13) when the caisson weight is relatively small 
(W1), while the model overestimates sliding when the caisson weight increases (W2 – W4).  
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Figure 13 Sliding under non-breaking wave attack, comparison of measurements from physical model 
tests (*) and prediction by the present model (dots) and Shimosako et al. 1999 (circle). 

When compared to predictions by Shimosako et al. (1999), both approach seem to capture the same overall 
trend, although predictions by the two models are significantly different, with the present model generally 
giving a safer estimation of total sliding distance. 

Breaking wave attack. 

Time-series of wave-force and corresponding reactions and deformations are shown in Figure 14 for a 
regular waves test.  

Two major sliding events are clearly distinguishable in the otherwise slowly varying horizontal displacement 
time-history (top-right panel). When sliding occurs under breaking waves attack, the static sliding resistance 
is exceeded for a small amount of time and the resulting permanent displacement is therefore small (§ 5.3). 
Furthermore, since impulsive wave forces are extremely variable, during a storm only a small number of 
waves might be able to cause the superstructure to slide. Nevertheless, if the tidal excursion is significant (as 
it is in the case of the North European and Japanese coasts) heavy breaking might frequently occur at the 
structure, and impact magnitude might then be amplified by the dynamic response of the structure, with the 
effective load resulting in significant sliding of the caisson. 
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Figure 14 Dynamic response of caisson breakwaters subject to breaking wave attack, results from a 
single realization using Nz =15 waves, geometrical and dynamic characteristics for this example case are as 
in Figure 10. 

Results from simulations under breaking wave attack are summarised in Figure 15, in terms of maximum, 
mean and minimum total sliding distance (over 10 realizations of each Nz = 15 waves test) as a function of 
the incident wave height and of the caisson weight. From left to right results refer to tests run with increasing 
caisson weight and increasing wave height. Not surprising, sliding decreases with increasing caisson weight, 
nevertheless, for a given caisson weight increasing of sliding with incoming wave height is not monotonic. 
This is due to non-linear effect introduced by wave breaking in both wave impact maxima (Equation 30) and 
rise times.  

Indeed, due to the rapid variation of the water depth in front of the structure the highest waves will break 
before reaching the structure, resulting in relatively low maxima; on the other hand, waves reaching the wall 
without breaking will necessary have a lower height and thus less energy, resulting again in relatively low 
impact maxima. The highest impact maxima actually resulting from waves that curl just before hitting the 
structure but not exactly at the wall. 
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Figure 15 Sliding under breaking wave attack, comparison of measurements from physical model tests 
(*) and prediction by the present model (dots) and Shimosako et al. 1999 (circle). 

Moreover, whilst the same impact maxima might theoretically correspond to different combination of the 
incoming wave height and water depth (Equation 30), the corresponding impact rise times will be larger for 
waves that are larger at the toe of the structures, which would necessarily result in a larger quasi-static load. 
Therefore, as far as the stability of the caisson is concerned, waves slightly higher than the breaker height 
corresponding to the water depth in front of the wall Hbr = Hbr(d) will be more critical (and the most critical 
overall indeed) than those slightly lower than Hbr since the impacts induced by the former will transmit a 
larger impulse. This is confirmed in Figure 15, with maximum sliding distance corresponding to wave heights 
ranging between 0.524m and 0.569m, the water depth in front of the wall being d = 0.4m. 

 

CONCLUSIONS AND FURTHER WORK 
A non-linear dynamic model for the dynamics of caisson breakwaters subject to wave forces has been 
presented. Differences to previous formulations include both the generation of time-history loads to use in 
the analysis and the description of the non-linear features of the interaction between the superstructure and 
the foundation soil. In particular, impact pressure maxima and rise times are derived from data recorded at 
high sample rate during large scale physical model tests, which ensures a good description of peak pressure 
evolution in time. The effective reaction at the interface is derived by resolving in time the dynamic equation 
of motion in which sliding is also accounted for by means of a non-linear model assumed for the behaviour of 
the soil foundation. 
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The model succeeds in describing the main features of the dynamic response of caisson breakwaters under 
both breaking and non-breaking wave attack and is fast enough to be used in probabilistic design methods 
as well as in fragility analysis of such kind of structures. Although resolving for the rotation of the 
superstructure during motion, the model doesn’t account for the effect of permanent tilting angle on residual 
displacement of caisson breakwater. At time of writing, the authors are considering the quantification of 
relative importance of residual rotation of the superstructure, as a further development of the present model. 
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Notation 
b  minimum planar dimension of caisson breakwater 

C  Damping matrix 

d  water depth in front of the caisson wall 

e  depth by which the caisson is embedded in the rubble mound 

E  Young’s modulus 

100E  Young’s modulus corresponding to an effective strain of 100kPa 

F  Force vector 

xF
, yF  horizontal and vertical force respectively 

qsF  quasi-static force 

*F  dimensionless impact force 

G  shear modulus 

g  Gravity acceleration 

H  Wave height 

brH  breaker height 

sH  Significant wave height 

250/1H  Wave height at 1/250 significance level 

h  Caisson height 

K  Stiffness matrix 

yx KK ,  horizontal and vertical stiffness respectively 

l  maximum planar dimension of caisson breakwater 

M  Mass matrix 

cm  caisson mass 

hydm  hydrodynamic mass  

wm  mass of water displaced by the caisson 

zN  number of waves in a physical model test 

P  Pressure 

S  Permanent displacement 

0r  characteristic dimension of the equivalent circular footing 

t  Time 

mT  Mean wave period 
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0T  Natural period of vibration of the structure 

rt  rise time 

dt  duration time 

*t  dimensionless impact rise-time 

u  Displacement vector 

u  Velocity vector 

u  Acceleration vector 

W  weight of caisson in water 

x , y , θ  horizontal, vertical and rotational axes 

Ax , Ay  coordinates of the centre of rotation of the caisson 

gx  lever arm of the gravitational load 

Lx , Ly  lever arm of the vertical ( yF ) and horizontal ( xF ) forces respectively 

α  empirical coefficient 

sµ  static friction coefficient 

dµ  dynamic friction coefficient 

wρ  density of water 

sρ  density of soil foundation 

ν  Poisson’s ratio 
'
vσ  effective strain 

'
0vσ  reference effective strain 
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