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Summary 
 
 
Simplified calculation of wave orbital velocities 
 
R L Soulsby 
 
Report TR 155 
March 2006 
 
 
Many coastal problems require the calculation of wave-induced orbital velocities at the sea-bed.  
Various methods for calculating orbital velocities, including some new approximations, are 
given in this report, providing an optional trade-off between simplicity and accuracy.  The 
simplest methods are well suited to use in exploratory spreadsheets and desk studies, while the 
more accurate methods are suited to numerical models and detailed design calculations.  The 
cases covered include monochromatic (regular) waves, and irregular (JONSWAP spectrum 
possibly with directionally spreading) waves without currents, plus monochromatic waves in the 
presence of a current.  The conclusions give a guide to the choice of most appropriate method 
for particular purposes. 
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Figures 
Figure 1 Bottom orbital velocity Uw for monochromatic waves of height H and period T.  

Exact curve, Nielsen’s approximation and extrapolation of Nielsen’s approximation 
(Eq. 18) 

Figure 2 Bottom orbital velocity Uw for monochromatic waves of height H and period T.  
Exact curve and cosine approximation (Eq. 20) 

Figure 3 Bottom orbital velocity Uw for monochromatic waves of height H and period T.  
Exact curve and exponential approximation (Eq. 22) with coefficients adjusted to fit 
for (a) shallow water (crosses), (b) deep water (circles) 

Figure 4 Root-mean-square bottom orbital velocity Urms for a JONSWAP spectrum with 
significant wave height Hs and zero-crossing period Tz.  Exact curve and 
exponential approximation (Eq. 28) 

Figure 5 Bottom orbital velocity Uw for monochromatic waves of height H and period T in 
the presence of a current component with Froude number Fr = Up/(gh)½.  Exact 
curves from Eq. 31 
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1. Introduction 
Many coastal problems require the calculation of wave-generated oscillatory (orbital) 
velocities at the sea-bed for applications such as sediment mobility, transport and 
suspension, bed protection measures, and forces on structures.  This is most commonly 
performed by using linear wave theory to transform the wave height and period to the 
orbital velocity in a given water depth as described by e.g. Sleath (1984).  Only non-
breaking waves are considered in this report. 
 
The use of linear wave theory to obtain orbital velocities is justified by the experimental 
work of Kirkgöz (1986), who found that linear theory gave reasonable agreement with 
observed orbital velocities under wave crests over his entire range of parameter settings, 
even at the transformation point of plunging breakers where higher-order theories might 
be expected to give significantly better results.  The velocity under wave troughs was 
significantly smaller than the predicted linear-theory value. 
 
Depending on the complexity of the problem, either a regular (monochromatic) wave or 
irregular (spectral) waves may be considered.  However, the expression for the orbital 
velocity amplitude cannot be written explicitly in terms of depth, wave height and 
period, so indirect methods must be used.  This report extends earlier work by Soulsby 
and Smallman (1986) and Soulsby (1987) to give calculation methods which are simple 
enough to be written in a single cell of a spreadsheet, for ease of use in practical 
applications using spreadsheet methods.  It is less accurate than some methods, but is 
adequate to give at least a reasonable estimate for many desk-study applications. 
 
Despite enormous increases in computer speed and power since 1986, it is still often a 
limitation when using fine grids, long-term simulations, multiple sensitivity tests, or 
stochastic simulations in present day studies.  Efficiency of repeated computations is 
thus still a desirable goal, especially when wave orbital velocities need to be calculated 
at every grid point and every time-step of a numerical model.  The simple methods may 
therefore sometimes be preferred to more accurate methods even in numerical models. 
 

2. Regular (monochromatic) waves 
Following Soulsby and Smallman (1986), consider a wave of amplitude a = H/2 and 
radian frequency ω = 2π/T, where H and T are the wave height and period respectively, 
which gives rise to a maximum orbital velocity Uw at the sea-bed (or, more correctly, 
just outside the thin wave boundary layer near the bed).  Then Uw is obtained using 
small-amplitude linear wave theory from  
 

sinh(kh)
ω

a
U w =  (1) 

 
In the absence of a steady current, the wavenumber k (= 2π/wavelength) is related to the 
frequency ω by the dispersion relation 
 

(kh)tanhgkω2 =  (2) 
 



Sand Transport in Oscillatory Flow   
Simplified calculation of wave orbital velocities 

 

TR 155 2  R. 1.0 

where g is the acceleration due to gravity and h is the water depth.  Define 
dimensionless variables: 

g
h2ωx =  (3) 

khy =  (4) 

ga
hU

F 2

2
w

m =  (5) 

 
Then Equation (1) becomes, after use of Equation (2), 
 

(2y)sinh
2yFm =  (6) 

 
and the dispersion relation, Equation (2), becomes 
 

ytanhyx =  (7) 
 
The dimensionless transfer function Fm cannot be written explicitly in terms of x, and 
hence in terms of H and T, because the dispersion relation, Equation (7), cannot be 
written explicitly as y(x).  However as Equation (7) gives a one-to-one correspondence 
between x and y, we see from Equation (6) that Fm is a parametric function of x alone.  
Both Fm and x contain only the known quantities H, T, h and g, and the required 
quantity Uw.  Thus a plot of Fm versus x (obtained by using y as a parameter in 
Equations (6) and (7)), allows Uw to be obtained directly from the known quantities.  
For small values of x (shallow-water waves) the value of Fm tends to one, and Fm 
decreases monotonically with x until it becomes very small for x > 4 (deep-water 
waves). 
 
The quantities Fm and x are unnecessarily complicated for practical calculations, as they 
contain the squares of the quantities of interest and also contain some unnecessary 
constants.  We therefore define more readily usable quantities by first introducing the 
natural scaling period Tn defined by 
 

2
1

g
hTn ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  (8) 

 
Then the required dimensionless quantities are  
 

4
F

2H
TU 2

1

mnw ≡  (9) 

 
and 
 

2π
x

T
T 2

1

n ≡  (10) 

 
A plot of UwTn/2H versus Tn/T (Figure 1) can be used directly for obtaining Uw from H, 
T, g and h. 
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The problem of calculating Uw centres around finding a method of solving Equation (7) 
for y as a function of x.  Various methods are available, with different degrees of 
complexity and different levels of accuracy.  Once y has been calculated, the orbital 
velocity amplitude Uw follows by combining Equations (5) and (6): 
 

( )
2

1

2yh.sinh
2gy

2
HU w ⎥

⎦

⎤
⎢
⎣

⎡
=  (11) 

 
This approach can be called a two-step method (1. solve Equation (7) for y given x, 
2. apply Equation (11)).  Three two-step methods are described below.  It is also 
possible to find approximations to Uw directly as a function of the input variables H, T, 
h and g.  Four of these one-step methods are described below. 
 
The relationship of Uw Tn/2H as a function of Tn/T can be derived exactly by taking 
values of y, deriving x from Equation (7) and hence Tn/T from Equation (10), and 
deriving Fm from Equation (6) and hence UwTn/2H from Equation (9).  The exact curve 
derived this way is shown in Figures 1-3 as a solid line, with approximations to it shown 
as symbols for the one-step methods given in Sections 2.4 to 2.7.  The two-step methods 
given in Sections 2.1 to 2.3 are sufficiently accurate that they are almost 
indistinguishable from the exact curve, and hence have not been presented. 

2.1 NEWTON-RAPHSON ITERATION 
Make successive approximations to the solution of Equation (7) as follows: 
 
Set  yo = x1/2 if 0 ≤ x < 1 (12a) 
 
or yo = x if x ≥ 1 (12b) 
 
Calculate successive values y1, y2, y3, … using the iterative Newton-Raphson formula: 
 
tk = tanh (yk)   (13) 
 

( )2
kkk

kk
k1k t1yt

xtyyy
−+
−

−=+ ,   k = 0, 1, 2, ….. (14) 

 
The relative error in y1 is less than 3 × 10-3, in y2 is less than 10-6, and in y3 is less than 
10-13, for all x.  The relative error in Uw is: <0.15% when derived from y1, <3×10-5% 
when derived from y2, and <3×10-12% when derived from y3.  The errors are largest for 
values of x between 0.5 and 2 and tend to zero for very small x and very large x.  The 
number of iterations can be specified for the required accuracy from the above 
information, making it unnecessary to check for convergence. 

2.2 HUNT’S METHOD 
Hunt (1979) proposed an approximation formula for y(x): 
 
b =  1/(1 + x(0.66667 + x(0.35550 + x(0.16084 + x(0.06320 + x(0.02174 + 
 x(0.00654 + x(0.00171 + x(0.00039 + x⋅ 0.00011))))))))) (15) 
 
y = (x2 + bx)1/2  (16) 
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This is computationally fast because it avoids calculations of tanh y.  The relative error 
in y is less than 10-5 for all x.  The relative error in Uw is <0.02% for all  x.  The error is 
largest for values of x between 1 and 10, and tends to zero for small and large x. 

2.3 GILBERT’S METHOD 
G. Gilbert (personal communication) derived an analytical approximation: 
 
y = x1/2 (1 + 0.2x) for x ≤ 1 (17a) 
 
y = x[1 + 0.2 exp (2 – 2x)] for x > 1 (17b) 
 
The relative error in y is less than 0.01 for all x.  The relative error in Uw is <1% for all 
x.  The error is largest for values of x between 1 and 5, and tends to zero for small and 
large x. 

2.4 NIELSEN’S METHOD 
Nielsen (1985) used a series expansion to obtain the following one-step approximation 
to the orbital velocity, which, when written out fully, is given by: 
 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ π

−=
2

n5.0
w T

T2
3
11h/gH5.0U  for 20.0

T
Tn <  (18) 

 
The comparison of Equation (18) with the exact curve is shown in Figure 1.  Equation 
(18) is accurate to within 1% for Tn/T < 0.20 (the limit of validity stated by Nielsen).  If 
it is extrapolated beyond that limit of Tn/T (deeper water or higher frequencies) it 
rapidly becomes a serious under-estimate (even negative), so the limit should be strictly 
observed.  Although this method is very accurate for small Tn/T, it is desirable to have 
methods that can be used over the entire practical range of Tn/T. 

2.5 SOULSBY AND SMALLMAN METHOD 
Soulsby and Smallman (1986) gave the following one-step approximation to the transfer 
function Fm

1/2, without having to go via the dispersion relation: 
 
Fm

1/2 = (1 – 0.670x + 0.110x2)1/2 for 0 ≤ x < 1 (19a) 
 = 1.72 x1/2 exp (-0.9529x) for 1 ≤ x < 3.2 (19b) 
 = 2 x1/2 e-x for x ≥ 3.2 (19c) 
 
Uw can then be obtained from Equation (9).  The relative error is less than 1% for all x. 

2.6 SOULSBY COSINE APPROXIMATION 
A one-step method was devised recently to allow the orbital velocity to be calculated to 
a reasonable approximation within a single cell of a spreadsheet.  This is useful when 
calculating tables of results for wave-induced forces, sediment transport, etc. in 
spreadsheet form.  Figure 2 shows a plot of Uw Tn/2H versus Tn/T, with the “exact” 
curve approximated by a cosine in the range 0 ≤ Tn/T ≤ 0.4.  This leads to the 
approximation formula 
 
Uw = 0.25 H (g/h)1/2[1 + cos(8.055ξ)] for ξ < 0.4 (20a) 
=0 for ξ ≥ 0.4 (20b) 
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where  
 

T
T

gT
hξ n

2

2
1

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=   (21) 

 
The approximation curve gives relative errors in the orbital velocity with a maximum 
under-estimate of 3.3% at ξ = 0.14 (longish period waves) and a maximum over-
estimate of 18% at ξ = 0.29 (shortish period waves).  At values of ξ > 0.34 the relative 
under-estimate is large, but since the velocities generated by these short-period, deep-
water waves will be very small, the error is less important. 

2.7 SOULSBY EXPONENTIAL APPROXIMATION 
Subsequent to obtaining the cosine approximation, it has been found that a more 
accurate fit can be obtained by using an exponential approximation (Figure 3, crosses): 
 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛=

2.45

w

2
1

2
1

T
4.41exp

h
g

2
HU

g
h  (22) 

 
This method is accurate to better than ± 1.1% for Tn/T < 0.21, and hence gives a similar 
accuracy to the Nielsen method (±1% for Tn/T < 0.20) in this range.  For Tn/T > 0.21, 
Equation (22) gives an increasingly large relative over-estimate, but it can be used 
reasonably satisfactorily for all depths and periods because it tends asymptotically to 
zero.  Equation (22) has a simplifying advantage over Equation (20) for spreadsheet use, 
in that a single equation covers all inputs.  It also gives non-zero velocities for 
Tn/T > 0.4. 
 
The coefficients 4.41 and 2.45 were chosen as a compromise giving greater accuracy for 
small ξ, which usually correspond to the largest velocities.  Equation (22) over-
estimates by >10% for ξ > 0.26.  However, the velocities for ξ > 0.26 will usually be 
very small so that errors are less important.  For cases of deep water or short-period 
waves a better fit is obtained by using values of the coefficients of 4.45 and 2.75 instead 
of 4.41 and 2.45 in Eq (22).  This gives a better accuracy for Tn/T > 0.2 (Figure 3, 
circles). 
 
For some applications, particularly using spreadsheets, methods 2.6 or 2.7 will be 
sufficiently accurate.  For applications requiring greater accuracy the methods described 
in Sections 2.1 to 2.3 can be used. 
 

3. Irregular (spectral) waves 
Under natural conditions the wave climate is represented by a spectrum of waves of 
different frequencies, amplitudes and directions.  In many cases the only parameters 
which are known about the sea-conditions are the significant wave height Hs and the 
zero-crossing period Tz.  The best that can then be done is to fit a realistic surface 
elevation spectrum Sη(ω) to these two parameters.  One of the most widely accepted 
two-parameter spectra is the JONSWAP spectrum (Hasselman et al, 1973), given by 
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ψ(ω)

4

p

52
η γ

ω
ω

4
5expωg2π)(S

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−α=ω

−

−  (23) 

where 
 

( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

ωβ

ωω
=ωψ 2

p
2

2
p

2
-

-exp)(  (24) 

 
Here ωp is the radian frequency at the peak of the spectrum, γ and β are constants, and α 
is a variable which depends on the wind-speed and duration.  We use the standard 
values of the constants, γ = 3.3 and β = 0.07 for ω < ωp, β = 0.09 for ω > ωp.  The 
variables α and ωp can be related to Hs and Tz respectively, so that a particular sea-state 
described only by Hs and Tz corresponds to a particular JONSWAP spectrum. 
 
Following the method described by Soulsby and Smallman (1986) and Soulsby (1987), 
the root-mean-square orbital velocity Urms at the sea-bed can be computed by summing 
the velocity contributions from each frequency (derived by linear wave theory) over the 
whole range of frequencies.  This can be presented in a similar way to that given for 
monochromatic waves in Section 2, but now plotting (Urms Tn)/Hs as a function of 
(Tn/Tz) in terms of the spectral parameters Hs and Tz.  As before, Tn = (h/g)1/2.  The 
computed values were tabulated by Soulsby and Smallman (1986).  An approximation 
to this curve presented by Soulsby and Smallman (1986), and a new, simpler, 
approximation devised for use in spreadsheet applications, are presented below.  
Soulsby (1987) also treated the alternative spectral forms of Pierson-Moskowitz, 
Bretschneider, ISSC and ITTC, but these are not dealt with here because the JONSWAP 
form is more appropriate for the limited-depth applications that usually apply for 
sediment transport and bed protection studies. 

3.1 SOULSBY AND SMALLMAN METHOD 
Soulsby and Smallman (1986) presented the approximation formula 
 

( )32s

nrms

At1

0.25
H

TU

+
=  (25) 

 
where 
 

( )[ ] 6
1615.54t0.566500A ++=  (26) 

 
and 
 

2
1

g
h

T
1

T
Tt

zz

n
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==  (27) 

 
This approximation fits the exact computed values to an accuracy of better than 1% in 
the range 0 ≤ Tn/Tz ≤ 0.54.  Velocities are very small for Tn/Tz > 0.54. 
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3.2 SOULSBY EXPONENTIAL APPROXIMATION 
A slightly less accurate, but rather simpler, approximation has been devised to allow the 
r.m.s. orbital velocity from a JONSWAP spectrum to be calculated with a single cell of 
a spreadsheet.  This uses the following exponential approximation (Figure 4): 
 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛⎟
⎠
⎞

⎜
⎝
⎛=

2.1

z

s
rms

2
1

2
1

g
h

T
65.3exp

h
g

4
H

U  (28) 

 
The accuracy of this fit is rather better than the fit presented for monochromatic waves 
in Section 2.7.  The accuracy of Equation (28) is as follows: 
 
relative error < 1.2% over-estimate for 0 ≤ t < 0.14 
 < 1.0% under-estimate for 0.14 ≤ t < 0.34 
 < 4% over-estimate for 0.34 < t ≤ 0.40 
 < 35% under-estimate for 0.40 < t ≤ 0.54 
 > 35% under-estimate for t > 0.54, 
 
where t is given by Equation (27).  Again, velocities are very small for Tn/Tz > 0.54. 
 
For many applications this method will be sufficiently accurate, since the JONSWAP 
spectrum is itself only an approximation to actual measured spectra.  However, 
applications in deep water, or for short-period waves (large t) might benefit from the 
more accurate method described in Section 3.1. 
 

4. Other factors 
4.1 PRESENCE OF A CURRENT 

When monochromatic waves propagate in the presence of a depth-uniform current of 
speed U, the wave dispersion relation (Equation 2) must be modified to: 
 
( ) ( )khtanhgkUkcos 2 =φ−ω  (29) 
 
The direction φ of the current is defined such that φ = 0° corresponds to a current 
travelling in the same direction as the wave, and φ = 180° corresponds to a current 
travelling in the opposite direction to the wave. Equation (29) applies to any direction φ, 
but it is seen that only the component of current parallel to the direction of wave 
propagation has an effect on the wave dispersion.  Defining this component as 
 

φ= cosUUp  (30) 
 
the non-dimensional form of Equation (29) can be written, by analogy with 
Equation (7), as 
 

( ) ytanhyFr.yx
2

2
1

=−  (31) 
 
where x and y are defined by Equations (3) and (4), and 
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( ) 2
1

gh/UFr p=  (32) 
 
is the Froude number for the component of current parallel to the wave direction (and 
can be negative). 
 
When the current is in the same direction as the waves, the wavelength becomes longer 
than the no-current case (and the wave height becomes smaller to conserve energy 
transmission).  When the current is in the opposite direction to the waves, the 
wavelength becomes shorter than the no-current case (and the wave height becomes 
larger).  Opposing currents of speed greater than the phase-speed of the waves prevent 
the wave from propagating.  This applies to the current component parallel to the waves 
from currents running in any direction in the opposing sector. 
 
The solution of Equation (31) for y (given x and Fr) is much less straightforward than 
for the no-current case, especially for opposing currents.  Even deciding whether an 
opposing current exceeds the limiting value is not straightforward.  Southgate and 
Oliver (1989) gave details of two methods: a Newton-Raphson iteration method and a 
look-up table method.  They are not repeated here, due to their complexity. 
 
Having solved Equation (31) for y, it is straightforward to obtain the wave orbital 
velocity by means of Equation (11).  The orbital velocity is larger than the no-current 
case for a following current, and smaller for an opposing current.  As an example, 
consider a wave of height H = 1m and period T = 6s in a water depth h = 5m.  With no 
current the orbital velocity Uw = 0.568ms-1.  With a following current of 1ms-1 this is 
increased to Uw = 0.601ms-1, whereas with an opposing current of 1ms-1 it is decreased 
to Uw = 0.511ms-1. 
 
The “exact” curves of UwTn/2H versus Tn/T can be derived by starting with y and 
calculating the corresponding x from Equation (31) and Fm from Equation (6), followed 
by Equations (9) and (10), in a similar way to the derivation of the “exact” curves in 
Figures 1 to 3.  Figure 5 shows curves derived in this way for Froude numbers of -0.5, -
0.2, -0.1, 0, 0.1, 0.2 and 0.5.  The relative effect of currents on wave orbital velocities 
can be gauged from this figure.  Froude numbers larger than 0.5 are very rarely 
encountered in coastal waters.  The curves for opposing currents with  Froude numbers 
of -0.2 and -0.5 show that only the longer period waves are able to propagate against the 
current, and their orbital velocities are strongly reduced from the no-current case (for a 
given wave height and water depth).  The right-most symbol on these curves shows the 
shortest period wave that can exist with this opposing current.  For following currents, it 
can be seen that a Froude number  of only 0.1 is sufficient to more than double the wave 
orbital velocity for Tn/T = 0.3 compared with no current. 
 
Other aspects of wave-current interaction were discussed by Soulsby et al (1993).  The 
extension to an irregular wave spectrum plus a current would involve transforming each 
wave frequency using the method described here, and combining the velocities.  This 
has not been addressed for this report. 

4.2 DIRECTIONAL SPREADING OF A RANDOM SEA 
An additional complication of a random sea is that there is an appreciable spread in the 
wave directions, which is generally expressed by multiplying Equation (23) by a 
spreading function.  For calculations of the wave energy dissipation rate the form of the 
spreading function can influence the dissipation rate by up to 20% (Brampton et al, 
1984).  However, because the bottom orbital velocity is related linearly to the surface 
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elevation, it can be deduced that the relationship between the quantities Urms and Hs is 
independent of the spreading function. 
 

5. Conclusions and choice of methods 
When calculating the wave orbital velocity amplitude Uw at the sea bed, a choice must 
be made between accuracy and simplicity.  In many cases, quick and easy methods are 
required for use in desk studies, or to compare a large number of wave conditions by 
means of spreadsheets.  In these cases, simplified methods are appropriate, provided 
that the limitations on accuracy are recognised.  Simple methods can also be useful for 
use in gridded computational models, because a reduction in run-time can allow longer-
term simulations to be made, or a stochastic approach to uncertainty to be used.  In 
other cases, particularly for final design purposes, as much accuracy as possible needs 
to be retained.  The methods examined in this report allow such choices to be made.  
They can be summarised as follows: 
 
• Linear wave theory gives a good approximation to the orbital velocity at the sea bed 

under the wave crest, this being the maximum velocity for force calculations on 
structures, or for sediment threshold or bed protection stability calculations. 

 
• The reverse orbital velocity beneath the wave trough may be considerably smaller 

than that under the crest, which can be important when calculating net wave-
averaged sediment transport rates. 

 
• For regular (monochromatic) waves, such as are sometimes used in laboratory 

experiments and which are a good approximation for narrow-banded swell waves, 
there are several methods available, with a trade-off between accuracy and 
simplicity. 

 
• For desk studies and spreadsheet use, the Nielsen method (Section 2.4) is accurate 

to within 1% for waves with period T > 5(h/g)1/2, but it should not be used for 
shorter wave periods. 

 
• The previously developed cosine approximation (Section 2.6) is reasonably accurate 

for longer period waves, to within 3.3% for waves with T > 7(h/g)1/2, but over-
predicts at shorter periods.  However, the new exponential approximation (below) is 
generally a better choice, because it is both more accurate and simpler to program 
into a spreadsheet. 

 
• The new exponential approximation (Section 2.7) gives a similar accuracy (±1.1%) 

to the Nielsen method for T > 5(h/g)1/2 and is better behaved at shorter periods.  It 
over-predicts at these shorter periods, but this is less important because the 
velocities are usually small.  Two sets of coefficients are given, which optimise the 
fit for either shallow-water or deep-water applications.  Either set of coefficients 
can be used over the whole range of periods and depths without great loss of 
accuracy. 

 
• For efficient calculations in computational models, Gilbert’s method (Section 2.3) 

and the Soulsby and Smallman method (Section 2.5) are both accurate to within 1% 
for all input conditions, and are both relatively fast and easy to use. 
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• For high precision, the Newton-Raphson (Section 2.1) and Hunt (Section 2.2) 
methods are both very accurate, with a maximum error of 0.02% for the Hunt 
method, and 0.15% by only one iteration of the Newton-Raphson method (and more 
accurate for further iterations). 

 
• For most practical applications, waves will generally be specified by spectral 

parameters such as significant wave height Hs and one (or more) of zero-crossing 
period Tz, spectral mean period Tm, or peak period Tp.  It should be noted that 
values of wave period derived from the analysis packages of wave measuring 
devices often yield much less statistically robust values of Tp than of Tm or Tz.  This 
is because they pick the single highest spectral estimate to derive Tp, whereas Tm 
and Tz are derived from the whole spectrum.  It is therefore preferable to use Tm or 
Tz when calculating the wave orbital velocity.  However, the most relevant period 
for use in force, shear-stress or sediment transport calculations is the peak period, 
because this is the period at which the energy is centred.  For a JONSWAP 
spectrum, it is a reasonable approximation to take Hs ≈ H1/3, Tz ≈ Tm, and Tp ≈ 
1.28Tz. 

 
• The root-mean-square orbital velocity produced by all the waves in a JONSWAP 

spectrum can be obtained with good accuracy and simplicity from the new 
exponential approximation for spectral waves given in Section 3.2.  This is accurate 
to ± 1.2% for waves with zero-crossing periods Tz > 2.9 (h/g)1/2.  It is very simple to 
use in spreadsheets and desk studies. 

 
• For computational models the slightly more complicated, but also more accurate, 

spectral method of Soulsby and Smallman (Section 3.1) can be used.  This is 
accurate to ±1% for all zero-crossing periods Tz > 1.8(h/g)1//2, which covers most 
cases of practical interest (e.g. Tz > 2s in a depth of 10m, or Tz > 4s in a depth of 
40m). 

 
• The effect of a current with a component directed with or against the wave 

propagation direction can be significant (Figure 5).  The size of the effect is 
determined by the Froude number, Fr = Up/(gh)1/2, where Up is the current 
component in the direction of wave propagation.  Froude numbers up to 0.1 or 0.2 
are not uncommon in the sea, and these can influence the wave orbital velocity by 
more than ±10% for typical waves and water depths.  Hence inclusion of the current 
can often have a bigger effect on the calculation of orbital velocity than the 
accuracy of the no-current methods described above.  An opposing component of 
current can completely block wave propagation, particularly for short period waves.  
The methods described by Southgate and Oliver (1989) should be used for 
monochromatic waves.  Methods of calculating the r.m.s. orbital velocity for a wave 
spectrum in the presence of a current have not been considered in the present report. 

 
• Directional spreading of a wave spectrum does not affect the r.m.s. orbital velocity. 

 
• Only non-breaking waves are considered in this report, although the methods are 

commonly (but not fully justifiably) applied to breaking waves as well. 
 
• For sediment transport purposes, many formulae require inputs in terms of 

monochromatic wave parameters.  For such cases, a good approach is to use a 
spectral method (Section 3.1 or 3.2) to calculate Urms, and then take a 
monochromatic orbital velocity amplitude of rmsw U2U = .  This gives the same 
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root-mean-square velocity as a sinusoidal wave.  The period can be taken as the 
peak period, but, for statistical stability, preferably calculated as Tp = 1.28Tz. 

 
• The relative errors associated with the various methods of calculating wave orbital 

velocity presented in the report are generally much smaller than the measurement 
errors of wave heights and periods, and even the value of g may vary with latitude 
by a few parts per thousand. 
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Figure 1 Bottom orbital velocity Uw for monochromatic waves of height H and period T.  
Exact curve, Nielsen’s approximation and extrapolation of Nielsen’s approximation 
(Eq. 18) 
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Figure 2 Bottom orbital velocity Uw for monochromatic waves of height H and period T.  
Exact curve and cosine approximation (Eq. 20) 
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Figure 3 Bottom orbital velocity Uw for monochromatic waves of height H and period T.  
Exact curve and exponential approximation (Eq. 22) with coefficients adjusted to fit 
for (a) shallow water (crosses), (b) deep water (circles) 
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Figure 4 Root-mean-square bottom orbital velocity Urms for a JONSWAP spectrum with 
significant wave height Hs and zero-crossing period Tz.  Exact curve and 
exponential approximation (Eq. 28) 
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Figure 5 Bottom orbital velocity Uw for monochromatic waves of height H and period T in the 
presence of a current component with Froude number Fr = Up/(gh)½.  Exact curves 
from Eq. 31 
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