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ABSTRACT

This report describes a recently developed numerical method, known as the
parabolic method, for computing wave transformations in coastal waters.

This method has potential advantages over traditional ray tracing methods
and has undergone rapid development since the late nineteen—seventies. A
review of technical literature during this time is contained in the report,
and the present stage of development and future requirements are assessed.
Some results are presented from a computational model based on the parabolic
method which is being developed at Bristol University and Hydraulics
Research Limited.
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INTRODUCTION

The prediction of wave conditions in coastal regions
forms an essential part of investigations in all types
of coastal engineering problems. An important step in
wave prediction exercises is the determination of how
waves transform from deep to shallow water. The sea
areas that have to be considered in these exercises
are often too big (of the order of several kilometres
square) to be represented in scaled physical models.
Numerical modelling is therefore the most common
method used.

Until quite recently, ray tracing models were the most
popular type of numerical method used by research
organisations and coastal engineers. These models do
have some important drawbacks and can give inaccurate
predictions in coastal regions with irregular depth
contours. Within the last few years a new type of
numerical method suitable for coastal areas has been
developed which potentially can overcome many of the
drawbacks with ray models. This new approach is known
as the parabolic method.

During this short time there has been a great deal of
interest shown in the parabolic method and many
publications have appeared in research journals.
Numerical models based on the parabolic method are now
beginning to be used as tools in practical wave
prediction problems. However, because of the short
time in which these developments have taken place,
many coastal engineers are probably unaware of the
existence of this type of numerical model and the
possibilities that it can offer. '

The purpose of this report is to assess the stage that
has been reached in the development of the parabolic
method and to suggest further work necessary for the
method to become a standard numerical modelling tool.
In Chapter 2 the deficiencies of ray tracing methods
and the possiblity of overcoming them with a parabolic
method are explained. In the next chapter a brief -
description of the theoretical basis of the parabolic
method is given and an indication of how it can be
represented in a computer model. In Chapter 4 there
is a review of published work on the subject, and in
the following chapter some results from a parabolic
model being developed jointly at Bristol University
and Hydraulics Research Limited are presented.
Finally, in Chapters 6 and 7 the present stage of
development is summarised and suggestions for further
work are made.

BACKGROUND TO THE

PARABOLIC METHOD

Until the late nineteen-seventies most numerical
models of wave transformation in shallow water used



ray tracing or finite difference methods. These are
collectively known as "refraction methods”™ and models
based on them as "refraction models”. 1In these
methods the equations to be solved represent the wave
processes of refraction and shoaling while wave
diffraction, which also occurs in quite general
coastal situations, is ignored. The need to
incorporate diffraction is the main motive behind the
development of the parabolic method. Before
considering this method it is important to understand
why refraction models can in some cases be
inaccurate.

Refraction models have been most successfully applied
to coastal regions where there is a fairly regular and
gentle decrease in depth from deep water to the
coastline. In fact, for a seabed with perfectly
straight and parallel depth contours and with a gentle
slope, no diffraction occurs and the refraction models
give accurate results. Many coastal regions do
approximate quite well to this idealised depth
profile, and refraction models have proved useful in
such situations. However, as the bathymetry becomes
more irregular, diffraction effects generally become
more important. In coastal areas with highly
irregular depth profiles, refraction models often give
poor results.

The effect of diffraction is generally to smooth out
(in a spatial sense) the extremes of wave height and
steepness that are quite frequently predicted by the
refraction models. Various improvements to these
models have been made (Refs 1, 5, 27) by introducing
numerical smoothing processes to mimic the effect of
diffraction, or by using a spectral representation of
the wave field (this reduces the importance of not
incorporating diffraction of individual components of
the spectrum). However, these improvements are
essentially a numerical redistribution of wave energy
and are not a genuine modelling of the diffraction
process. In some situations, for instance where waves
propagate over a system of shoals and channels,
diffraction effects can be so dominant that they
cannot be adequately represented by numerical
smoothing. In these circumstances it is desirable to
have a numerical wave model which incorporates
diffraction behaviour in the basic governing
equations.

It is possible, in principle at least, to return to
the full wave equation incorporating diffraction as
well as refraction and shoaling. However, a model
based on this equation would have two important
disadvantages. Firstly, the model would be set up as
a boundary value problem requiring specification of
wave conditions on all boundaries of the grid. Except



3.1

in the simplest open-sea situations this would be
impossible to do with any accuracy. A second
disadvantage is that a minimum number of grid elements
per wavelength is needed. If N is the number of
elements along one side of the grid, the computational
effort is proportional to NY. The computational
effort therefore increases rapidly with the total grid
size per wavelength, and grid sizes in coastal wave
problems are typically of the order of hundreds of
wavelengths square. This type of model is therefore
often too costly and inflexible to be readily used.

It is for these reasons that in recent years a lot of
research effort has been devoted to the parabolic
approximation to the full wave equation. In this
approximation there are certain restrictions to the
types of waves that can be modelled, but diffraction
terms are retained, the problem with boundary
conditions is overcome, and much less computing time
is required compared with models using the full wave
equation (for parabolic models the computing effort is
proportional to N2).

The principal restriction required by the parabolic
approximation is that waves everywhere in the study
area should travel within a relatively narrow
directional range either side of a specified "main
propagation” direction. In practice this range can
often be quite large, typically up to 45° either side
of the main direction. It can be seen therefore that
the parabolic approximation is well suited to many
coastal applications in which most of the wave energy
travels towards the coast in a relatively narrow
directional band with little backscatter or deviation
from this band. The method would not be applicable
where there is significant reflected wave energy, for
instance in front of structures or within harbours.
The method may also break down where there are strong
refraction effects causing waves to bend too far from
the main propagation direction.

DESCRIPTION OF THE

PARABOLIC METHOD

The governing
equation

The full linear wave equation with time-dependence
removed is:

wzcgn _
. + - 1
v (cchn) < 0 (1)

In this equation c is the wave celerity, c, the group
velocity, n the complex wave amplitude and V the
two~dimensional horizontal gradient operator. This



equation describes the propagation of water waves over
regions of arbitrarily varying depth provided the bed
slopes are not too great. Eq 1l is usually known as
the "mild-slope equation” and derivations are given in
Berkhoff (1976) and Smith and Sprinks (1975). The
mild-slope equation is of the elliptic type, and its
method of solution requires that boundary conditions
are specified along the entire boundary of the study
area.

To derive the parabolic approximation to Eq 1, the
complex wave amplitude, m, is split into two
components representing transmitted
(forward-scattered) waves and reflected
(back-scattered) waves. In the derivation, the
reflected wave field is neglected as being small in
comparison with the transmitted wave field, and the
following equation is obtained.

. 0 i o) )
= [1k - ZEEE;'fE'(kCCg)]n + ZEEE; & (ccg 755 (2)

In this equation the x-coordinate is in the main wave
propagation direction and the y—coordinate is in the
transverse direction. This equation was first derived
in the late nineteen-seventies independently by Radder
(1979) and Lozano and Liu (1980). The reader is
referred to these papers for derivations. Eq 2 is of
the parabolic type, and this has important
consequences for its method of solution.

Before describing the computational model based on Eq
2, it is worthwhile to review briefly the physical
processes incorporated in Eq 1 and Eq 2. Refraction
and shoaling are incorporated in both equations.
Diffraction is additionally incorporated in Eq 1,
while in Eq 2 diffraction in the transverse direction
is included but not in the longitudinal direction (the
direction of wave travel). Diffraction effects in the
transverse direction, however, are usually more
important. Waves from all directions are modelled by
Eq 1, but Eq 2 is restricted to waves from a
relatively narrow directional band centred on the main
propagation direction. Reflected or back-scattered
waves are therefore not modelled. The effects of
currents on wave refraction are not included in either
equation, nor are any dissipative or generative
effects such as bottom friction, wave breaking and
wind growth. Both equations assume linear waves, and
therefore no non-linear effects are modelled. A
consequence of the linear treatment is that a random
sea (represented as a period and directional spectrum)
can be modelled by a simple superposition of the
period and directional components.



3.2 Numerical
representation

3.3 Boundary
conditions

A numerical solution to a parabolic equation such as
Eq 2 can be achieved by a "marching” finite-difference
scheme. This method involves superimposing a
rectangular grid over a plan of the coastal area of
interest, and taking depth values at each grid
intersection point (Fig 1). The grid should be
aligned with one axis (conventionally the y~-axis)
roughly parallel to the shoreline. The marching
solution method requires that boundary conditions are
specified on the offshore boundary (in the form of an
incident wave condition) and along the side
boundaries. The solution process is to start at the
offshore boundary (the first row) and to calculate
wave conditions at all points along the second row
using the incident wave values on the first row and a
finite difference formulation of Eq 2. The calculated
wave parameters on the second row are then used to
determine wave values on the third row. This process
is repeated until the last row, furthest inshore, is
reached.

Various schemes exist for a finite-difference
formulation of Eq 2, but the standard Crank-Nicholson
scheme is by far the most common choice in published
work. Examples of this scheme are given in Radder
(1979) and Kirby and Dalrymple (1983).

(a) Offshore boundary.
This takes the form of an incident wave condition
specified at each point on the offshore row. A
single wave energy, period and direction should be
specified at each point. It is possible to supply
different values of these parameters at different
points along the offshore row (to simulate a
spatial variation in the incident wave) but most
practical applications would involve the use of
identical values along the whole offshore row. If
all wave processes are treated linearly, a wave
spectrum can be represented by repeated running of
the model with different initial period and
direction values although this may involve
considerable computational effort.

(b) Inshore boundary

No boundary condition is required if the inshore
row has a finite water depth. Land boundaries can
be represented by an appropriate boundary
condition, but it is often simpler to represent
land areas as sea areas with a small constant
depth. This "thin-film" technique is also often



REVIEW OF RECENT
DEVELOPMENTS

Incorporation of
additional wave
processes

the best method of representing internal land
areas such as small islands.

(c) Side boundaries

Boundary conditions need to be specified along the
side boundaries. Generally, however, in open sea
situations it is not possible to specify these
boundary conditions correctly because the incoming
wave along the side boundaries is not known. The
usual method to overcome this problem is to assume
a simple boundary condition (such as a linear wave
absorption condition for waves from a given
direction), and then to extend the grid laterally
so that the errors which arise from the boundary
condition do not "propagate in" to the region of
interest. Fig 1 shows the areas adjacent to each
side of the grid that are affected in this way.
This method of overcoming the problem does involve
some extra computational effort (but not an
excessive amount) because of the larger grid size
needed.

Since the late nineteen-seventies much interest has
been shown in applying parabolic methods to water—wave
propagation, and much research effort has been devoted
to extending the basic equation, Eq 2, to include
other wave phenomena.

Booij (1981) has introduced a term describing wave
energy dissipation at the seabed, and this work has
been followed up by Dalrymple, Kirby and Hwang (1984)
and Liu and Tsay (1985). Additional terms to describe
the effects of currents on the refraction of waves
have been incorporated into Eq 2 by Booij (1981), Liu
(1983) and Kirby (1984 and 1986). An iterative scheme
to include weak reflections has been described by Liu
and Tsay (1983a). Most recently, the parabolic method
has been extended to incorporate non-linear deep—-water
waves (Kirby and Dalrymple (1983 and 1984), Liu and
Tsay (1984)) and shallow-water waves (Liu, Yoon and
Kirby (1985)).

Wave breaking is a particularly complex phenomenon,
and an accurate numerical representation is not yet
avallable. Present methods for including breaking in
parabolic models attempt only to determine the amount
of wave energy dissipated and are not concerned with
the other details of the breaking process. Booij
(1981) and Dalrymple, Kirby and Hwang (1984) use a



4.2

Comparisons with
physical models
and different
types of
numerical model

general dissipation term which can include energy loss
from breaking. Calculation of this breaking term is
commonly based on the limiting wave height allowed by
the breaking process at a given depth. Once a wave
height has been calculated, it is compared with the
wave height at which breaking starts to occur at that
depth. If it exceeds this breaker height it is
reduced to that value. Recently more sophisticated
methods have been advanced. Dally, Dean and Dalrymple
(1985) describe a method similar to wave energy decay
in a hydraulic jump which has been incorporated in a
parabolic model by Kirby and Dalrymple (1986).
Dingemans et al (1984) use a similar approach in

their parabolic model based on the analogy with the
energy dissipated in a tidal bore (Battjes and Janssen
(1978), Battjes and Stive (1985)). The inclusion of
wave breaking also allows a convenient computation of
waves around islands by means of the "thin film"
procedure. This involves representing the land area
on the island as a shoal with a constant, very shallow
water depth. The breaking process will ensure that
negligible energy will travel over these land areas.
The advantage of this method is that there is no need
to specify special boundary conditions for internal
land areas (section 3.3).

The problem of widening the allowed directional band
centred on the main propagation direction has also
been investigated. Booij (1981) has proposed
additional terms to Eq 2 which improve general
accuracy and extend the width of the allowed band by
about 10°. Kirby (1986) provides a more rigorous
derivation of Booij's correction terms and discusses
other possible approaches to more accurate schemes,
including a "mini-max" procedure to extend the width
of the allowed direction band further still. With
this method wave angles out to about 70° from the main
direction can be computed accurately.

Parabolic models have been tested quite extensively
against other types of numerical model and laboratory
experiments. These comparisons have usually involved
simplified bathymetries representing test cases in
which refraction theory breaks down and diffraction
effects become important. The following are the most
common test cases encountered in the recent techmnical
literature.



(a)

(b)

(¢)

Single breakwater on a flat seabed.

Dalrymple, Kirby and Hwang (1984) have
investigated the problem of wave diffraction
around a single, semi-infinite, perfectly
reflecting breakwater on a flat seabed.
Comparison was made between a parabolic model and
the analytical solution to this problem
(Sommerfeld (1896), Penney and Price (1952)) for
the wave field in the shelter of the breakwater.
Two angles of incidence were investigated, 90° and
60° (see Fig 5 for definition of incident angle).
Good agreement for the 90° case was obtained, but
the 60° incident angle gave poor agreement in the
shelter, with the parabolic model underpredicting
by up to 50%. The single breakwater problem is
investigated further in Section 5.2 of this
report.

Circular shoal on a flat seabed.

This is another classical test case which has been
investigated by Radder (1979) and Kirby and
Dalrymple (1983). It represents a particularly
severe test for the parabolic method. The
refraction method predicts a cusped caustic and
therefore breaks down with strong diffraction
effects occurring. No analytical solution exists
for this problem, but it has been investigated
extensively with other types of model based on a
full wave equation. Radder has compared his
parabolic model predictions with published results
from these alternative models. There is
qualitative agreement over and behind the shoal,
but there are areas where significant differences
in wave height occur. Kirby and Dalrymple
investigated the effect of including their
deep-water non-linear term. Generally they found
that this term had the effect of reducing wave
heights still further at the focus, the effect
becoming more important with higher incident
waves. Although Kirby and Dalrymple did not
compare their results with other numerical or
laboratory models, other researches (see below)
have found that better predictions are made with
the inclusion of this type of non-linearity.

Elliptic shoal on a sloping seabed.

This is a similar but somewhat more complex test
case to the previous one. As in that case, a
cusped caustic is obtained by refraction theory,
but the regular refraction behaviour caused by the
sloping seabed is superimposed on the caustic.
This problem was first investigated by Berkhoff,
Booij and Radder (1982) who compared predictions



(d)

(e)

from their parabolic model with those from a ray
tracing model and a full wave equation model.
Laboratory tests were additionally carried out.
The parabolic model compared well with both the
full wave equation model and the laboratory
measurements, and was somewhat better than the ray
tracing model. However, there were significant
deviations from the measured wave heights at
certain locations behind the shoal. The problem
was subsequently investigated by Liu and Tsay
(1983b) and Kirby and Dalrymple (1984). Liu and
Tsay obtained similar results, while Kirby and
Dalrymple obtained improved results using their
deep-water non-linear parabolic model. Liu and
Tsay extended the problem by introducing a single
breakwater in different areas, but did not compare
their results with other numerical models or
laboratory measurements.

Circular shelf.

As in the previous two cases, this type of depth
profile causes a focussing of wave rays and
therefore creates strong diffraction effects.
Whalin (1971) carried out a series of laboratory
experiments on wave propagation with this
bathymetry. Lozano and Liu (1980) compared their
linear parabolic model with Whalin's data with
reasonably good agreement. Liu and Tsay (1984)
compared their deep-water non-linear parabolic
model with some of Whalin's measurements (at
shorter periods, corresponding to deep water
conditions). Better wave height predictions were
obtained, particularly near the focus, compared
with the linear model. Energy exchange between
the first and second harmonics was also predicted.
Liu, Yoon and Kirby (1985) used their shallow
water non-linear parabolic model for a similar
comparison with Whalin's measurements at longer
periods. Up to five harmonic components were
considered in this numerical model. Wave height
predictions for the first three harmonics (the
only harmonics for which measured data were
available) were in reasonable agreement with
measurements.

Submerged island with uniform slopes.’

Tsay and Liu (1982) and Liu and Tsay (1983a) have
investigated the problem of waves travelling over
a submerged island with a profile consisting of
uniformly sloping sides and a flat or pointed top.
The purpose was to test the ability of the
parabolic model to include weak reflections.
Comparisons were made with wave heights from a
full wave equation model with good agreement,



4.3 Comparisons with
field data

although the reflected wave energy was found to be
small.

Published comparisons of parabolic models with
laboratory experiments and alternative numerical
models are quite extensive. In contrast, there exists
little published material comparing the predictions of
parabolic models with measured wave data.

Booij (1981) has compared his linear parabolic model
with wave data from the Oosterschelde Estuary in
Holland. He concluded that the model is in good
agreement with the field data, and the reader is
referred to Vrijling and Bruinsma (1980) for the
detailed comparison. Booij also investigated the
effects of tidal currents in his model and discovered
that they created little difference in the overall
spatial distribution of wave heights, but that at some
locations the differences could be significant. The
currents tested were, however, quite small, and more
severe effects could well occur in areas with stronger
tidal currents.

Liu and Tsay (1985) have compared their linear
parabolic model with two sets of wave measurements
from the research pier of the American Coastal
Engineering Research Centre at Duck, North Carolina.
The bathymetry of the area provides an interesting
test. The depth contours are generally reasonably
straight and parallel, but at the tip of the pier
there is a depression which causes waves to refract
away to either side leaving reduced wave heights along
the length of the pier. Wave measurements were made
at spatial intervals along the pier, and Liu and Tsay
achieved mixed success with their model. The first
set of measurements were well predicted with the
inclusion of an appropriate friction factor in their
model. The second set of measurements were, however,
significantly underpredicted. In both cases the model
performed much better than a pure refraction model.
Unfortunately, in these comparisons, no measured
offshore data were available and therefore the input
conditions to the model were somewhat unreliable.

A systematic comparison of results from the parabolic
model developed by the University of Delft, Holland
with field data from the Dutch coastline near the
Haringvliet sluice has been carried out (Dingemans et
al (1984)). This area has a complex, shallow
bathymetry in which strong diffraction effects can be
expected. Six inshore waverider buoys were deployed,
with one buoy capable of recording wave directions
deployed further offshore to provide the incident
boundary conditions for the parabolic model. It was

10



5.1

SOME RESULTS AND
COMPARISONS WITH
A PARABOLIC
MODEL

Circular shoal

found that the parabolic model gave good results (with
a 157 standard deviation) for those cases where the
offshore waves approximated reasonably well to a
single frequency and direction. Results were less
accurate after waves had broken.

In view of the sparsity of field data/parabolic model
comparisons, it is worth mentioning two other sets of
wave measurements which have been compared with pure
refraction models and which could be reanalysed using
a parabolic model. These studies are reported in Wang
and Yang (1981) who took measurements at Sylt on the
Dutch coast, and Tucker, Carr and Pitt (1983) who
investigated wave transmission over Dunwich Bank on
the East Anglian coast.

In this section, some results from a parabolic model
being developed at Bristol University and Hydraulics
Research Limited are presented. Two classical test
cases, namely the circular shoal and single
breakwater, are investigated.

The size of the modelled area, and the location and
dimensions of the shoal are shown in Fig 2. The depth
profile over the shoal is defined by the equation:

(ho—hm)r2
h=h +_°> " (3)
o] R2

in which h = depth at a general point on the shoal, hj,
is the constant depth outside the shoal, h, is the
minimum depth at the centre of the shoal, R is the
radius of the shoal and r is the distance from the
general point to the centre of the shoal. In these
tests, values of R = 5m, hy = 0.9375m, hy = 0.3125m
and a wavelength, L,, of 2.5m on the flat area were
used. Monochromatic waves were incident at one side
of the grid in the direction of the x-axis (the main
propagation direction). An element size of 0.3125m in
the x-direction by 0.15625m in the y-direction was
used in these tests. The values of R, h,, hy, L, and
element size correspond to those used by Radder (1979)
who investigated the same problem. A boundary
condition 31/ d = O was used on both side boundaries.

Results are presented in Fig 3 as contours of wave

height coefficient over the whole modelled area. A
very similar pattern to Radder's results is obtained.

11



This test was repeated with extra correction terms

introduced in the governing equation as suggested by
Kirby (1986). The governing equation with these terms

included reads:

o' _ 3 [y, 1 320’ S - 3 1 2%y’
o 3 [l g %k, L o
Ik 2k x ayz 2k X 4k 2 @(3}'2

(4)

where n' = 7 (ccg)% (3)

Fig 4 shows wave height coefficients using Eq 4 in the
circular shoal problem. The effect of the correction
terms is to slightly enlargen the area of big wave
heights at the focus and to shift this area upwave
from the shoal. This effect is, however, very small,
and even the original equation gave good results. An
important reason for the small effect of the
correction terms is that only small deviations in the
direction of wave travel occur in this problem. In
the single breakwater test case described below, the
effect of larger angles between the x-direction and
the wave direction is investigated.

5.2 Single breakwater
The position of the breakwater was chosen to lie along
the right-hand side of the grid in the x-direction as
shown in Fig 5. The tip was at the upwave end of the
grid, and the breakwater was assumed to continue
indefinitely in the downwave direction. A flat seabed
was assumed throughout, and the problem was
non~dimensionalised by measuring distances in terms of
wavelengths. An element size of 0.1 wavelength in the
x—-direction by 0.125 wavelength in the y-direction was
used. An area of 20 wavelengths (x-direction) by 10
wavelengths (y-direction) was modelled, giving a total
of 200 by 80 elements. Separate tests were carried
out for incident angles of 10°, 20°, 30°, 40° and 50°
(the incident angle is defined in Fig 5). Wave height
coefficients have been measured along a section normal
to the breakwater (ie in the y—direction) at a
distance of five wavelengths downwave from the tip of
the breakwater. Results from the parabolic model are
compared with the analytical solution to the problem.
These results are presented in Figs 6 to 9.

The comparison for the 'non-corrected' parabolic model
(Figs 6 and 7) indicates reasonable agreement for 10°
and 20° incident angles, but becomes progressively
worse at larger angles. The differences are worst in
the transition region between the unsheltered area to
the left of the figures and the shelter on the right.
When the tests were repeated with the 'corrected'
parabolic model the same trend towards greater error

12



6

SUMMARY AND
CONCLUSIONS

at large incident angles was apparent (Figs 8 and 9).
However, results are generally much improved in
comparison with the non-corrected version,
particularly in the transition region.

(a)

(b)

(c)

(d)

Much research work has been carried out since the
late nineteen—-seventies on the application of
parabolic methods to the propagation of waves in
coastal regions. Traditiomally, methods which
incorporate the refraction and shoaling of waves,
but not diffraction, have been used for these
types of problems. These methods, known as
refraction methods, have proved successful in
areas where the seabed bathymetry is reasonably
regular. However, in areas of irregular
bathymetry, such as where shoals and channels
occur, these methods break down completely, and a
type of method that incorporates diffraction is
required. The parabolic method is one such type.
It is particularly well-suited to open-sea coastal
modelling because known boundary conditions are
required only on the offshore boundary of the
grid, and because the numerical solution process
involves considerably less computing effort than
alternative models which incorporate diffraction.

A lot of the research effort has been devoted to
extending the basic parabolic equation (Eq 2) to
include other wave phenomena such as bottom
friction, wave breaking, current refraction, and
various types of non-linearity. Most of the
published work has considered monochromatic and
monodirectional input wave conditions. Very
little consideration has been given to problems
concerned with random seas.

Most of the published comparisons of parabolic
models with alternative numerical models and
laboratory experiments have involved idealised
depth profiles which create important diffraction
effects. In these comparisons, parabolic models
invariably give better wave height predictions
than pure refraction models. The agreement with
laboratory measurements appears to be generally
adequate for most engineering purposes, although
commonly there are fairly large areas, downwave of
the diffracting feature, where significant
differences occur. There have been few published
comparisons involving irregular bathymetries as
would typically occur in practical problems.

Little comparison work with field data has been

carried out, and that which has been done is
inconclusive.

13
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8

(e) There has been little published work on the
accuracy of parabolic models with respect to
element size per wavelength, and on numerical
techniques to improve accuracy and increase the
allowed element size. The information that has
been published usually forms a small part of a
paper whose main theme is the comparison with
other types of model. However, it is probable
that unpublished work of this sort has been

carried out and incorporated into practical models

in use at research institutions.

FUTURE REQUIREMENTS
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(a) The computing effort in a parabolic model is
strongly dependent on the maximum allowable
element size. The accuracy of predicted wave
heights with respect to element sizes should be
systematically investigated and 1f possible a
criterion for a maximum element size per wave-
length should be established.

(b) Further development of parabolic models is
necessary to incorporate incident wave spectra,
and the additional computational effort compared
with monochromatic and monodirectional incident
waves should be assessed.

(c) Systematic comparisons of parabolic models (and
indeed all types of numerical wave model) with
field data are an urgent requirement. Different
types of bathymetry, seabed composition and the
effects of strong tidal currents should be
investigated.

(d) The usefulness of parabolic models to coastal
engineers will ultimately depend on their
accuracy, cost and flexibility when used in a
commercial environment. This is likely only to
become established by experience when the models
are used on a regular and fairly routine basis.
At the present time parabolic models are still .
something of a novelty, and therefore experience
gained in their use in real or realistically
simulated problems will be invaluable.
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out by Mr N Dodd.
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Model layout and grid for the circular shoal problem
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