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PREFACE

This report deals with methods of predicting maintenance dredging in
those parts of navigation channels that are situated in the outer areas
of estuaries and offshore. It discusses the behaviour of channels
dredged across flow lines, and examines the influence of various factors
on channel shape.

It deals in turn with methods of predicting infill due to the action of
currents, gravity and wave activity, and the special problems that arise
when the bed is composed of a cohesive material such as mud or silt.
It discusses the application of tracers to estimate infill, and also trial
dredging.

The report was prepared in response to a demand for a critical assess-
ment of existing methods of predicting maintenance dredging in access
channels, and is based on a review of available literature backed by
experience gained in investigating practical problems at the Hydraulics
Research Station.
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LIST OF SYMBOLS
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2.8 =

Vg =

semi-width of top of channel

initial cross-section of channel
semi-width of bottom of channel
width between adjacent stream lines
kinematic wave velocity

velocity of kinematic shock

wave velocity

concentration of suspended particles in terms of the volume of
compacted bed sediment per unit volume of water

concentration by volume of sediment particles in unit volume of
the bed

friction factor = 7/pU?

undrained shear strength of sediment
thickness of movement of sediment
size of sediment particle

effective diffusion coefficient describing spread of channel in
tidal flow

effective diffusion coefficient describing gravity infill

rate of erosion of sediment from bed, volume of compacted bed
sediment per unit area per unit time

depth
wave height

infill rate per tide, in terms of volume of sediment per unit width
across flow lines

wave number
constant

mean coefficient of vertical sediment diffusion due to turbulent
fluctuations over depth

average distance moved by sediment on flood and ebb

average distance that particles eroded from bed move before
making subsequent contact with bed

velocity exponent
pressure

rate of deposition of sediment on bed, volume of bed sediment
deposited per unit area per unit time

water discharge per unit width
specific gravity of bed particles

sediment flux in terms of volume of compacted bed sediment per
unit width per unit time

sediment flux under waves in terms of volume of compacted bed
sediment per unit width of wave crest per unit time

time

wave period

= components of velocity in x,y,z directions

amplitude of orbit velocity at bed due to waves
mean velocity over the depth

friction velocity = (‘r/p)l/l

drift near the bed under waves at a point

fall velocity of sediment particles



W = erosion velocity, ie upward velocity with which sediment particles
are entrained from bed

Wq = particle drift near the bed under waves

X = longitudinal co-ordinate taken as positive downstream perpendicular
to the channel

X = width of channel

y = horizontal transverse co-ordinate

z = vertical co-ordinate

Z = bed elevation above a reference level

Z = distance of centroid of suspended particles in a vertical above the
bed

Z¢ = depth of sliding

ag = angle of sides of channel to horizontal

B = parameter characterising the velocity distribution over the depth

Br = slope of sides for failure for coherent sediments

By = ratio of mass (sediment particle) to momentum diffusion in
vertical direction

Y =209%h

Y = submerged weight per unit volume

= boundary layer thickness
= change in water surface elevation over the channel
= U*z/g(s_l)dm

o = angle of channel to flow (6, = 90° corresponds to a channel
normal to the flow)

D DD 3 O
|

K = Karman constant

Ad = angle of dynamic friction of particles with bed

A; = angle of internal friction of bed sediment
A= WiCk/VgCy
v = coefficient of kinematic viscosity
= Vgx/Uh
0 = water density
pt = density of saturated bed sand
o = density of sediment particles
oy? = variance of distribution of tracer after a single tide
T = bed shear
¢(z) = function describing velocity distribution over vertical, ie u = Up(z)
¥ = angle of particle paths on side slope to centre line of channel
¥(z) = function describing vertical diffusion distribution over vertical,
ic K, = Ky/(z)
w = angular velocity of the wave
r = — kx

A = hydraulic roughness of the bed

Suffixes 0,1 refer to quantities upstream and over the channel (respectively) at a
certain phase of the tide
x,y,z refer to components of quantities in x,y,z directions

b refers to quantities measured close to the bed



1 INTRODUCTION

Table 1
Quantities of sediment dredged
from British Ports in 1972

With the increasing size and draught of ships, port authorities are
concerned with the cost of increasing the depths and widths in their
access channels and dock areas, which includes the initial dredging cost
and the continuing charges for maintaining the new dimensions. In the
present report, attention is confined to the methods which can be used
to predict maintenance dredging and is further restricted to those parts
of the access channels which are situated in the outer parts of
estuaries and offshore. Similar problems are encountered in the more
sheltered areas inshore but here other factors such as the effect of
littoral drift along the coast, the current pattern caused by the local
geometry of the bed and shoreline and current drifts due to salinity
and their inter-relationship with the enlarged channel make it impossible
to give any general statement about channel infill; such cases must be
treated individually.

Some idea of the size of the problem may be gathered from Table 1
which gives estimated quantities of sediment dredged from British ports
during 1972 compiled from figures supplied to the National Ports
Council.

Type of Quantity dredged Cost
material (tons, dry weight) (1972)

Sand 5 077 000

Silty sand 6 693 000

Silt 8 588 000 SIS 590 000
Fine silt 739 000

The estimated cost includes capital charges based on the cost of a dredger
assuming a 15 year life expectancy. Not all of the dredgings are taken
from the approach channels, probably much of the ‘fine silt” and ‘silt’ is
deposited in the inshore areas. Generally, of course, deposition in a channel
is brought about by the reduction of velocity consequent on the increased
depth and is proportional to the amount of sediment carried in the water
or the sediment flux. Often the sediment flux is extremely large (eg in the
Outer Thames estuary the gross flux of fine silt and sand is about

4 x 10° m?/annum/km width) so that even if a small fraction is

deposited in the channel the maintenance toll will be quite high.

In the past, harbour engineers have tended to rely on the extrapolation of
past and existing dredging rates to forecast future requirements. However,
such methods become uncertain when large depth increases and associated
channel extensions become necessary. In some cases entirely new ports
need to be developed or alternative access routes are required where
previous experience is lacking. As an example for a new port in the Outer
Thames it was estimated that the eventual maintenance requirement to
keep the access channel clear for 200 000 DWT tankers would be about
10 x 10° m3/a, ie about half the dredging toll for the whole UK.

Some information can sometimes be obtained from an examination of
dredging rates of existing channels at ports subject to similar hydraulic
conditions. However, the type of bed sediment, wave and current climate,
channel dimensions, are seldom sufficiently similar for more than crude
estimates to be made in this way but, as experience accumulates, this
method could prove most useful. Work is undoubtedly required which
seeks to correlate dredging rates at existing ports with the factors
mentioned.

Two methods are in current use to estimate the dredging required to
maintain a new channel. In the first method trial trenches are dredged at

1



one or more sites along the line of the channel and the infill is estimated
from successive surveys. This method is direct but expensive since the
trenches need to be large to avoid effects associated with the edges of
the trench; this method is discussed further in Section 8. The second
method is based on estimates of the sediment flux approaching the
channel and its trapping efficiency, which in turn depends on the modi-
fication of the current pattern produced by the channel. Although simple
in principle, the method suffers from lack of knowledge concerning the
relationship between the sediment flux and the hydraulic parameters and
the way in which the current pattern and flux is modified by the channel.
Much of the report (Sections 2 and 3) is concerned with these questions.

For channels in line with the flow or inclined at very small angles to it,
infill occurs mainly by gravity. Particles moving in contact with the sides
of the channel move down the slope and the infill on this account has
been quantified (Fredsoe, 1976). In some places where the currents are
weak fine silts or muds accumulating on the surrounding bed could flow
under gravity as a suspension into the channel. Both these effects are con-
sidered in Section 4. Generally speaking, fine particles of clay or silt in
suspension in rivers flocculate when they come in contact with sea water and
may deposit on the bed where they consolidate and offer considerable resist-
ance to subsequent erosion. In some estuaries the areas of deposition are
fairly localised in a region where the landward drifts of water at the bed
caused by salinity gradients or wave (wind) effects balance the river flow.
In other estuaries, when the tidal currents are smaller and the rivers
larger, these areas of deposition may be more widespread. Navigation
channels dredged in such environments infill largely due to the disturbance
of the balance of depositional and erosional phases of the flow brought
about by the reduced velocity over the channel (Section 5).

When waves are present, the oscillatory flow at the bed which they cause can
increase the sediment flux in tidal currents and hence can increase the rate of
infill into dredged channels. Even in the absence of tidal currents, waves can in-
duce a set movement of sediment by setting up drift currents in the main body
of the water or more directly by asymmetry of the oscillation, which is
reduced in the increased depth over a channel thus causing infill. Methods
of evaluating infill when waves are present using relationships connecting
sediment flux with wave characteristics and by more direct field methods
using tracer particles, are discussed in Sections 6 and 7.

Generally dredged channels in offshore areas are not sufficiently wide or
deep to significantly affect the overall flow, so we are concerned only
with local changes in the flow pattern due to its presence. In more
restricted waters the presence of the channel may change the incident
flow distribution and this change is usually evaluated by recourse to
hydraulic or mathematical models. Such models are briefly referred to in
Section 9. However, in some harbours, entrance channels intercept the
coastal drift of sediment in the near beach area inshore of the breaker
zone and the channel is subject to infill from this cause. The rate of
infill may then depend on the redistribution of littoral sediment drift and
subsequent moulding of the coastline by the presence of breakwaters,
groynes etc, designed to protect the channel and beach areas against wave
action; the problem of estimating infill is then very specific to the
particular area involved. Such problems are not considered in the present
report.

In considering the local flow over a channel we make the usual assump-
tion that since the flow accelerations in tidal flow in deep water are
small, the flow over the channel at a certain phase of the tide is the
same as if the flow were steady. Thus the effects of the tidal flow are
considered to be the same as the summation of a series of steady flows at the
appropriate velocities, directions and depths. It may be noted here that while
this may be valid for the flow it is less so for the sediment flux. The quantity
of fine sediment in suspension, because of its low fall velocity, takes
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time to adjust to a reduction in velocity; thus there is a time lag

between changes in velocity and changes in concentration. In addition,
entrainment of sediment from the bed depends on the bed features

(ripples or dunes) and their form is dependent on the flow, thus the
sediment flux will be different in accelerated and steady flow on this account
also. Strictly, therefore, sediment flux relationships derived for steady condi-
tions cannot be applied in a tidal environment.

We start our discussion by considering the simplest case, viz the infill of a
channel crossing the flow at right angles. This case is of practical importance
and brings out several features which are of interest in more complex situa-
tions.

2 INFILL DUE TO ACTION
OF CURRENTS

2.1 Channel at right angles to Since the velocity over the channel will vary in inverse proportion to the
flow depth (discharge constant), and the capacity of the flow to transport sedi-
ment varies with the velocity, there will be deposition over the upstream
slope of the channel and erosion over the downstream slope. Thus in steady
flow the channel would migrate downstream with no change in cross-
sectional area. The latter statement may easily be verified by considering
the equation of continuity for the sediment, viz

_a_S+ a_Zzo

= w(2.1.1)

in which

S is the transport of sediment measured in terms of the volume of
compacted bed sediment passing unit width across the flow per unit
o time;

7 is the bed elevation above the bed level of the approach flow;

water flow +4e P, A .
r______,-—-Q_‘—J{'__,d_\/ x is the longitudinal co-ordinate taken as positive downstream;

t is the time.

Since S is the same, upstream and downstream of the channel, integrating
(2.1.1) with respect to x shows that

oe

[ Zdx = constant ...(2.1.2)

—o0

Thus the cross-sectional area of the channel remains constant and equal to
the initially dredged area.

However, the shape of the channel will change, eventually becoming wider
and shallower, due to the fact that the sediment flux is not a linear func-
tion of velocity. If, for example, we write S as a function of the velocity
U (U denotes the mean velocity over the depth) thus

S = S(U) f(2.1.3)

for the constant discharge (q) per unit width across the channel; it will be
evident that S is a function of Z only and multiplying or dividing (2.1.1)

by
¢ = (g_;) (2.1.4)
q constant
we obtain
¢4 % =0 (2.1.5)
X



water level

g Uq sediment flux S

L1}

J—

Channel becomes shallower but

" kinemnatic shock”

eroes —section ares remakna constant

Note:

k is a function of the size of
specific gravity of the particles
composing the bed sediments
and the size of the bed features
(ripples, dunes or sand waves)
formed by the action of the
current on the bed. It is also
weakly dependent on the depth;
partly because:

i) the shear velocity Uy (= T/p,
T = bed shear, p = density of
sea-water), which governs the
rate of erosion of particles from
the bed, is not quite proportion-
al to the velocity but is also
dependent on the depth. [If
Manning’s law of resistance
applied, the ratio U/U4 would
vary as (depth)]/6.]

ii) the size of the bed features
themselves depends upon Uy.

The transport of fine sediments
which travel largely in suspen-
sion is more dependent on depth
and we shall see in Section 2.2
that this leads to an important
contributory factor in channel
infilling. For the moment,
however, k is assumed indepen-
dent of depth.

with a similar relation for Z, viz

CQZ+3_Z=0

..(2.1.6
ax ot ( )

Thus Z and S are constant along waves travelling with velocity c. The
behaviour of these waves, the so-called “kinematic waves” — since they
arise solely from the equation of continuity — has been studied by
Lighthill and Whitham (1955) in connection with flood waves and traffic
flow problems. We note that if ¢ were constant (c,) and the dredged
section given by Z = F(x) initially, the solution of (2.1.6) is

Z = F(x—cqt) and the channel will simply travel downstream at velocity
¢o without change of form. However, since the velocity of the kinematic
waves is a function of Z, the channel changes shape as it advances
leading to the formation of discontinuities in the shape of the bed (and
of sediment flux) due to the overtaking of slower waves by faster ones —
the so-called “kinematic shocks”. These travel with a velocity

_Su-5

Cs
Zy - 1p

(2.1.7)

in which Sy, Zyy and Sp, Zpy are the sediment flux and bed elevations
in front and behind the shock.

For a “weak” shock, ie one in which (Zy—Zp) is small

¢ = 1/é(cU + cpy) approximately. -(2.1.8)
To illustrate the way in which shocks are formed let us approximate S by
a power law
S = ksUm -(2.1.9)
in which kg is a constant (see Note); m is usually a high power depending
on the proximity of U to the threshold velocity at which sediment just
moves.

Then,

¢ = (dS/dU)du/dZ = mk U™ (qu/az) .(2.1.10)

Since q = Ugh, = U(hy—Z) = constant, Uy, being the approach velocity
and depth, (Z is negative for a channel), the kinematic wave velocity

+
¢ = mk U™ ljg = ¢ [ j ~z)) ™! (2.1.11)

o being the wave velocity appropriate to the approach flow, ie the
velocity with which a small bed disturbance would move, is given by

¢y = k,mU M, = m(S,/h) wil(2.1.12)
Hence for Z negative, corresponding to a dredged channel, the waves travel
more slowly as the local depth increases, their velocity reaching a minimum
at the point of maximum depth. Thus the front of the depression steepens
as the waves from the front overtake those over the upstream slope, Fig 1.
The waves would ultimately cross but such an evantuality is physically
unacceptable since it would give two values of Z at the same point.
Evidently, continuity can only be satisfied by fitting a shock wave which
proceeds with the velocity given by equation (2.1.7) or approximately the
mean wave velocity on its upstream and downstream side (equation 2.1.8).
Thus the shock gradually overtakes the point of maximum depression

(its strength, measured by the change in Z across it, grows) passing this
point in a time given by

Xo/2(c,—cpp) (approximately) «(2.1.13)
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Figure 1
Evolution of channel section in
unidirectional flow

Time t(hrs)

Distance x x10? (m)

after the channel has been dredged (X, is the original width of the channel
and c)f is the wave velocity at the point of maximum depression).

During this time the width of the channel remains nearly constant

the wave velocity at the rear of the channel being approximately equal to
the mean velocity of the shock, but its shape has altered considerably.
Later, the shock strength gradually decays as more sediment from upstream
is fed into it (c, > cg) and the shock velocity increases and slowly tends
towards the velocity of waves travelling from the rear of the depression.

In the latter phase of the motion, the width of the channel increases and
is given by (Lighthill and Whitham, 1955)

X? = X (e —oppt (approximately) (2.1.14)
from which it appears that the maximum depth (Zpp) at time (t) is
related to the initial maximum depth (Zpg), in the channel by

ZM - ( X0

Y%
= ) (approximately) (2.1.15)
(ZM)O (C O—CM)t

The above analysis relates to a channel which, once dredged, is allowed to
progress without further attention. In fact navigation channels cannot be
allowed to change their position in this way and would need to be
continuously dredged to remove the sediment deposited from upstream.
For a wide trapezoidal channel with a level bed the rate of dredging
required to maintain its position on the upstreéam side in unidirectional
flow is

(Sy—S1) = (CO+01)(ZO—21)/2 (approximately) ..(2.1.16)
in which

S,= sediment flux approaching the channel,
S, = sediment flux over the bed of the channel.

To maintain the width of the channel, this material could simply be
dumped at the foot of the downstream slope. If the sediment flux were
a function of the local velocity only it is clear that in a tidal situation

. the channel would tend to migrate in the direction of the dominant drift
of sediment. To maintain the position of the channel on the updrift side
the required dredging over a tide would be
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2.2 Lag effects

; i—— tag L) —-!
b ——

. f
""‘h---—-l_.

Note:

We note that W does not
correspond to an upward flow
of water since there can be no
net movement of water at any
level, although there can be a
net upward flux of vertical
momentum near the bed.

- _— —S;)d . (2.1.17
fE(So S; )dt fF(So 1 )dt ( )

where the first integral refers to the excess of the transport from the
dominant direction (taken as the ebb direction) over that in the channel and
the second integral refers to similar quantities in the opposite direction. The
first integral is taken over the part of the tidal cycle occupied by flow in
the dominant drift direction and refers to accretion of the updrift slope;
the second integral is taken over the part of the tidal cycle when the flow
is reversed and refers to the erosion of this slope. Thus, in a perfectly
balanced tidal situation, the accretion on one half tidal cycle and erosion
on the next would result in no net change of bed level and the channel
would be self-maintaining. Experience shows that this desirable outcome
does not prevail in practice and the channel slowly fills in. It appears that
the initial premise (equation 2.1.3) that the sediment flux is dependent only
on the local velocity is inadequate; clearly some time (or distance) lag must
elapse before the sediment transport appropriate to the local flow state can
be established. We shall see in the next section that this leads to effects of
a diffusive character which tend to smooth out the discontinuities of bed
slope and which for balanced tidal flow becomes the main factor for
reduction of channel depth.

The way in which lag effects enter into the question of infill is most
readily explained by considering an extreme example. We revert to the case
of a steady uniform flow (Ugy,h,) approaching a channel (U,h;) of large
width and constant depth (h;), the sediment being carried in suspension.
According to the usual theory of suspension the sediment is distributed
over the depth by the turbulence in the flow which opposes the tendency
for the particles to fall to the bed at the rate Vg C per unit area, where
Vg is the fall velocity of the sediment and C is their concentration (which
we here measure in terms of the volume of compacted sediment per unit
volume of water). At the bed the sediment is assumed to be maintained
in suspension by re-entrainment at the rate

WC., (2.2.1)

per unit area of the bed, in which

Cs is the concentration by volume of sediment particles in the bed
(C« > ©) (for fine sand Cy = 0.61 approximately),

W is an erosion velocity (see Note).

In a “diffusive” description of suspension, we may equate WCy to

-, aC/az)bed — -(2.2.2)
in which K, is the vertical diffusion coefficient for the sediment at the
level of the bed forms and (3C/dz) is the concentration gradient at the
bed.

Here, we consider only short term changes, ic we suppose the time
to be sufficiently short after the channel has been dredged for
changes in bed level to be negligible. For simplicity we also assume
that the sediment is so fine (or the turbulence intensity so large)
that it is distributed nearly uniformly over the depth. Since the
approach flow is assumed steady and uniform the rates of erosion
and deposition are assumed to be in balance, so

W Cs = VgCy (2.23)

and since the velocity is assumed uniform over the depth, the flux of
sediment is given by



Figure 2
Infill rate (AS) for channel,
breadth X (finite depth)

Sy = Ugho(WCa/Vg) (2.24)

(Suffix o and suffix 1 refer to the approach and channel flow respectively.)

If the channel is sufficiently wide, at a great distance downstream from
the upstream edge (x = 0), the flow will again be steady and uniform
with a concentration C, determined by the new rate of erosion W,
appropriate to the velocity U,, thus

W1C* = VSCI, (225)

and
S; = Uyhy (W1 Cy/Vg)

= UOhO(Wl Cx/Vg) ....(2.2.6)
However the flux over the upstream edge cannot immediately decrease to
the new entrainment rate, since the particles can only fall out at their

settling velocity. The change in suspended concentration over the channel
is evidently given from continuity viz:

U;h; dC/dx = W,Cs — VgC (227
This equation is easily solved for C to give the change in sediment flux

over the channel

AS = (S,~5) (2.2.8)

=seewesm Exact solution
mammmm Lamblé approximation
mmwmmems  Equations 2.2.9 & 2.2.13

V,/U,=0.4

-

-
”- "-—
n o

V,/U,=0.054

T
t Vs/ U,=0.027
1 1

0 1 2 3 4
Breadth parameter X,U,/h, U,

Proportional change in sediment flux AS/(Sq— S)

thus
A = (8,-S1)(1— /Ly :(2:29)
with
L = Ushy/Vg {(2.2.10)

= 2Z[Vg)U, .(2.2.11)



Note:

Taking the usual expression for
the mean vertical diffusion
coefficient of the sediment over
a vertical viz:

K =04k hy Us/6 ...(2.2.16)

in which

Bs = ratio of sediment to
momentum diffusion
coefficient

k = Von Karman constant
(0.4)

Uy = shear velocity

Thus taking §=1, U,/JU=.05
for a rippled bed h, =15 m,
then for U=0.3m/s, L=90m
and 720 m for fine sand (0.12
mm diameter) and silt (0.06 mm
diameter respectively. The width
of the channel (X ) may be of
the order of 100—200 m.

2.2.1 The interpretation of lag
as a diffusive effect

in which Z is the centroid of the vertical distribution of concentration at
entry to the channel (equal to half the water depth in this case).

It is not difficult to show that L can be identified with the average step
length of the particles, defined as the distance particles move from the
point at which they are eroded from the bed to subsequent contact with
the bed (Lean, 1971). If the particles are less fine, they will be distributed
over the vertical in accordance with the usual theory of suspension by
turbulent motion (Rouse, 1949). One might expect that in this case the
change of sediment flux over the channel would still be given approxi-
mately by equations (2.2.9) and (2.2.11) but with Z modified to take
into account the non-uniformity of the sediment concentration in depth.
Thus for a constant eddy diffusivity (K) over the depth

Z = K/Vg[i- iVShO/K[exp(VShO/K—l] 3 wl(2.2.12)
For large water depths this becomes
Z =K/Vg (2.2.13)

which, when substituted in (2.2.11) and (2.2.9) gives flux changes in fair
agreement with a more accurate treatment, (Lean, 1970).

For smaller depths, Vgh/K or Vg/Ux small (see Note), the
agreement with the analytical solution (Appendix 1) is also good

(Fig 2).

From equation (2.2.9) we see that for a channel of limited width
(X) the reduction of flux rate at the downstream end of the channel
is given by

AS = (8,~S1)(1—¢ Yo/l (22.14)

This must evidently be equal to the infill rate.

Downstream of the channel, the bank will erode and the flux (S) will
increase due to the higher velocity over the bank according to

_XO/L e_Xl /L

(So—S) = (Si~S,) [1—¢ 1 (2.2.15)

in which X, is the distance from the downstream edge of the channel.

In a typical tidal situation with a fine sand or silt bed L is often
comparable with X, (see note). Thus the infill is considerably less
than (S;—S,), the infill rate which would occur if S were a function of
the local velocity only.

It is evident from equation (2.2.9) that in the decelerated flow over the
upstream edge of the channel, the flux lags that which would occur if the
transport were a function of the local velocity only by an average distance

L. Similarly in the accelerated flow over the downstream edge, the flux
increase lags that appropriate to the local velocity by a distance L. In.
fact, over a gently sloping bed, it would seem reasonable to approximate
the flux at x to that which would occur at the local velocity at (x—L),
viz:

S(x-L) = S(x) — L ? (22.17)
X
and
98(x-L) - 38 _ | &’ (2.2.18)
ox ox ax? B

in which S(x) is a function of the local velocity or local bed elevation (Z) only.
Thus in a spatially accelerated or retarded flow we must substitute (3S/dx—
La28/0x?) for 3S/9x. The second term —La>S/ax? may be regarded as

a correction term to express the fact that S depends not only on the
velocity but also on the rate of change of velocity.
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Note:

This is easily seen, if ¢ were
constant, by referring the
quantities (Z, for example) to an
origin moving at velocity c. In
this case the new length co-
ordinate x, = (x—ct) and dZ/0dt
must be replaced by

0Z/0t—c 0Z/0x;.

Thus the equation (2.2.20)
becomes

9Z/dt — D3%*Z/3x,2 =0
f2.2.22)

which is the well known form of
the diffusion equation.

2.2.2 Diffusion in tidal flow

With this substitution equation (2.1.5) becomes

2
08 4 08 1,078 =g (2.2.19)
ot ox ax?
with a similar relation for Z viz:
7 2
0Z , (L 1, 9Z_ (2.2.20)
at ax x>

(The latter equation can readily be deduced by differentiating (2.2.19) with
respect to x and substituting for 8S/0x from the continuity equation

(2.1.1))

Equations (2.2.19), (2.2.20) are typical of equations representing the
evolution of quantities (S,Z) diffusing about an origin moving with
velocity ¢ (see Note) with a diffusion coefficient given by

D =cL (2.221)

Generally ¢ is not constant but a general treatment which allows the
variation of Z and S along kinematic waves when diffusion is present is
given by Lighthill and Whitham (1955). However, for channels of small
incised depths ¢ will be approximately constant and equal to cg
(equation (2.1.11)). A typical solution of (2.2.20) is

7z =_A

2/7Dt

which represents the profile after a long time of a channel with an initial
incised area A. Thus the maximum depth Zg, at x = ¢t is given by

Z,= A/2A/mDt

It will be clear from the derivation of (2.2.19), (2.2.20) that these equa-
tions cannot be expected to apply when there are discontinuities in S or
8S/9x, as will occur, for example in the initial stages of the flow over a
channel with abrupt side slopes. The equations then give infill rates

tending to infinity as t approaches zero, which is physically unrealistic

and contrary to a more accurate equation (2.2.26) which is applicable when
t is small. However, they probably give reasonable estimates of infill rates
when t is large.

exp [—(x—cqt)? /4Dt] -.(2.2.23)

(2.2.24)

This is borne out in the case of steady flow of a “well-mixed” suspension over an
initial small step in the bed, when the bed is allowed to respond to changes in the
sediment flux. For this comparatively simple case an analytical solution is available
(Appendix 2) and the evolution of the step and flux changes can be traced,

Fig 3. Initially the change in concentration and sediment flux is given by
equation (2.2.9) but after a time, due to differential deposition (negative
step) or erosion (positive step), the step is gradually smoothed out and

the flux gradients become more gradual. The changes of flux and bed

levels are then approximated by the diffusion equations (2.2.19) and

(2.2.20) with a diffusion coefficient given by (2.2.21) (Appendix 2).

The “exact” analytical solution and the solution from the diffusion

equations are compared in Fig 3 for a particular example. It will be seen
that after a long time the bed profiles lag the concentration of flux changes by the
distance L (L = 0.125 km in the example). In the absence of lag changes in concen-
tration would parallel those of the bed profile — as the bed changed the concentratior
at the section would respond immediately.

We now return to the case of a balanced tidal flow. It is clear that for
times which are long compared with the tidal period, the convective
term in equations (2.2.19), (2.2.20) will disappear and D may be
considered as a long-term average over a flood or ebb cycle. With the
convective term omitted, (2.2.19), (2.2.20) correspond to the classic
diffusion equation and their solution for an initial step or “ramp” varia-
tion of Z is well known (Carslaw and Jaeger, 1959). From the latter
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Figure 3
Concentration and bed profiles -
“well stirred” case

= ‘Exact’ solution
== = = ‘Diffusion’ solution

e
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=}
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specified time

Bed elevation ratio

2 3
Distance downstream of step (km)

equation, the changes of bed level (Z) at a distance x from the centre line of an
initial trapezoidal shape channel, with a level bottom of width 2b, top width 2a,
incised depth Z, and side slopes Z,/(a—b) are given by

Z|Z, = [a F(X;y) — b F(X',Y)]/(a—b) (2.2.25)
in which

F(X,y) = (1-X) + % fierfc (A=2) + ierfe X)) — 2derfe (X/7) ], ....(2.2.26)
Y Y

X = x/a, X' = x/b, ..(2.2.27)
v = 2000%a , v = 2(D)%/b (2.2.28)
and

jerfe(¢) = f: erfe(s) . d (2.2.29)

The latter function is tabulated by Carslaw and Jaeger (1959).

The bed profiles for a channel in which a = 2b, for various values of 7
are given in Fig 4 (one side of channel only represented).

From equation (2.2.25), the average rate of deposition over the bed of
the channel (—b < x < b) for short times is given by

2b dZ/dt = D tanag ...(2.2.30)

in which tanag = side slopes of channel.

This equation is probably unreliable for ag large, since, as already
mentioned, the diffusion equation is not an accurate description when
gradients of 7y or 7 are large.
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Figure 4

Infill of trapezoidal channel
(a=2b)

2.3 Two phase description of
flow

When the tidal flux on the ebb and flood are not balanced, the channel will still
diffuse about its centre (change its shape) in the manner shown in Fig 4 but its
centre will travel in the direction of the dominant drift with a velocity equal

to the average value of ¢ over the spring-neap cycle (= 0 in this case).

Initial shape of channel

. Bed elevation ratio Z/Z
o
1)

o 1 2

Distance in half channel widths X/a

As an example we may cite the case of a trial channel dredged at right
angles to the coast near the port of Dunkirk (Lepetit, 1975). The channel,
300 m long was dredged in fine sand (Dso size 0.2 mm) below a mean
water depth of about 6 m. The dominant sediment drift was in the
flood direction (maximum current of the order of 1 m/s) parallel to the
coast. The channel migrated in the flood direction at the rate of about
20 metres in 11 months (¢ = 0.0025 m/hour) and in the same period the
maximum incised depth decreased by about half (3% m to 1% m) corres-
ponding to a value of 2(Dt)1/2/a = 1.6 (Fig 4). Since the half width of

the channel (a) was 40 m, the effective value of D = cL = 0.127 m?/hour
corresponding to L = 50 metres (approximately). If we assume that the
sand in movement was mainly composed of the finer fraction of the bed
sand (0.12 mm), fall velocity Vg = 0.009 m/s, this value of L would
correspond to that which would occur in 6 m water depth at a velocity
of 0.32 m/s. This is not an unreasonable value bearing in mind that this
current must be interpreted as the current which would give the same

lag distance in steady flow as that for the alternating flood and ebb
during the 11 month period.

So far our discussion has centred on the continuity equation (2.1.1) and
we have made certain simplifying assumptions with regard to the varia-
tion of S or Z with x in order to explain the infill mechanism. These
have enabled us to show how, when the sediment is carried in suspen-
sion, lag effects can arise and how, in the long-term these effects in
balanced or nearly balanced tidal situations are the main agent for
determining infill. However, it is useful, especially when we need to
consider short-term effects, to write the continuity equation in a form
in which the boundary conditions at the bed are given explicitly. Since
these conditions constitute one of the basic difficulties of the problem,
they are set down here for reference. Broadly the equations given
follow those of O’Connor (1975).
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K, % + VgC =0, z=h -(2.3.1)

9+ 44 w3 -3 C 4y, zZ<z<h —(2.3:9)
at 3x 9z 9z ‘oz
_ acC _
E =_ (g % z=17Z wei(2.3.3
&, az)bed ( )
C.Z=p_§ z=12 (2.3.4)
at
in which

u, w are the horizontal and vertical components of velocity at (x,z,t)

K, is the vertical diffusion coefficient

P is the volume of compacted sediment deposited on the bed per unit
area per unit fime

E is the volume of compacted sediment eroded from the bed per unit
area per unit time.

O’Connor includes a term 9Sp/dx on the left hand side of (2.3.2),

Sp, being the sediment transported along the bed by sliding or rolling,
which to be consistent must here be measured in terms of the volume
of compacted sand transported per unit width per unit time. Here Sy
has been omitted since C is presumed to include all the material in
motion independently of the way it moves. How far these equations can
be used to describe the physical processes involved in bed movement is
a matter of conjecture but it seems not unreasonable to combine
suspended and bed transport together especially as the main use of Sy,
in practice is to define a rate of erosion (W Cy). Thus for cohesionless
sediments it is usual to write

E =WCs= Vg Cg ..(2.3.5)

where CE is the concentration of sediment in the water at the bed under
uniform flow conditions corresponding to the local velocity and depth and

e —_—
Cp = S, /Uy dy, ..(2.3.6)

in which Uy, is the average velocity with which the bed load is moving
and dy, is a certain thickness over which the particles engaged in bed
movement are assumed to be spread (Appendix 3).

The bed load is assumed to respond very quickly to changes in the shear
at the bed, or what amounts to the same thing, the erosion rate E is
assumed to be a function of the local bed shear only. The formulation of
E is probably the most difficult which besets the infill problem. No direct
measurements of it in the field or laboratory exist and there are
comparatively few field measurements of C° from which it could be
indirectly determined, (equation (2.3.5)).

Usually the erosion rate is inferred from total flux measurements

assuming an equilibrium vertical distribution of concentration derived from
the theory of suspended flow (see Section 2.4) or from equation (2.3.6)
assuming a bed load formula which relates Sy, to the bed shear (Appendix
3). Many formulae of this type exist, most of which are based on an
analysis of measurements of the transport of coarse sediments in laboratory
flumes, which move mainly in contact with the bed. A survey of such
formulae is given by Yalin, 1970. However, it may be noted that the
extrapolation of laboratory measurements to determine the flux or E is
probably unreliable since these quantities are likely to be dependent on
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the scale of the bed features. The way in which these features affect
erosion rates is not fully understood.

The deposition rate, P, for cohesionless sediments is simply

P =VgC, 23.7)

in which Cy, is the local concentration of sediment close to the bed.
Cy, is determined from the solution of the equations (2.3.1) — (2.3.4).
To determine Z(x,t) it is necessary to solve equation (2.3.2) with the
initial values of Z(x,0) and boundary conditions (2.3.1), (2.3.2), (2.3.3)
and (2.3.5). The new value of Z for a given time step is then obtained
from (2.3.4) and the process repeated. Such a process is best done
numerically (O’Connor, 1975).

We note that the continuity equation (2.1.1) can easily be recovered by
integrating equation (2.3.2) over the depth with the conditions at the
surface (2.3.1) and the bed (2.3.4) given by

h
=0 yCcdz=E-P ..(2.3.8)

0x ox Z

provided the term representing the sediment stored in suspension
h
ag fZ C dz is negligible. This can be shown to be the case since the rate at
t

which the bed elevation changes (kinematic wave velocity c) is very small
compared with the current velocity u (Engelund, 1972).

With this assumption we can recover the results of the last section for steady
flow and in so doing obtain a rather more generalised form for the diffusion
coefficient (D), equation (2.2.21). We adopt the method of Aris (1959) but make
the additional simplifying assumptions that the incised depth of the channel is
small, so that changes in velocity over the channel are significant only insofar as
they affect the entrainment rate. The velocity (u) and vertical diffusion
coefficient (K,) are then independent of x in equation (2.3.2) (and w = 0),
although we may if we wish include a variation of these quantities over a
section viz, Up(z) and Ky(z) in which U and K represent mean values of

u and K, over the section.

We shall assume initially (t = Q) that the channel is represented by a very
localised depression in the bed (8 function) such that

[ Zdx = A ..{2.3.9)

in which A is its cross-sectional area.

It is found (Appendix 4), as already anticipated, that the channel
migrates downstream with velocity ¢ given by equation (2.1.4) maintaining
its cross-sectional area (A), and spreads out about its centre with an
effective diffusion coefficient given by

D, =cL, ..(2.3.10)
with

h z o h
L, =2/ {£(z) § Uge')de {dz / Vg I fe)iz A(2.3.11)
where
fz) = Up(z)exp [~ foz (Vg/Ky(2)] dz (23.12)
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If U and K are independent of z, ie ¢(z), ¥(z) = 1, L, becomes equal to
the lag distance L given by equations (2.2.11) and (2.2.12).

With a flat-bottomed channel, the initial rate of erosion (equation
2.3.5)) is equal to Vg Cp,» where Cp , is the bed concentration in
uniform flow at the specified velocity and depth over the channel.
Thus equation (2.3.8) then becomes

88/dx = Vg(Cp —Cp) (2.3.13)

and the initial infill rate given by the change of flux across the channel
with Z constant, once Cy,, is known, depends only on the concentration
at the bed Cy, which must be determined from the solution of equations
(2.3.1) — (2.3.3). The equation (2.2.9) may be regarded as an approximate
solution of these equations for this case with the initial condition S = S,
at x = 0.

2.4 Maintenance dredging In general we are less concerned with the way in which a channel would
change if left to itself than the dredging required to maintain a given
shape and position. Strictly, as maintenance dredging proceeds the bed
levels outside the channel will fall and the dredging required to maintain
a given width and depth will fall also. However in estimating dredging
rates it is usual to ignore this long-term effect and treat the channel and
surrounding bed as though it were static. Thus for a very wide channel
during an ebb tide the infill rate will be

$, (3o=S1)dt

and there will be erosion of the banks downstream at an equal rate,
which is ignored. Similarly during a flood tide, the infill rate will be
5, (3,8 )t

Dredging requirements o regain
position of originsl channel

G

i and there will again be an equal rate of erosion downstream, which is
sesration erosion ignored. Thus the tidal infill rate is

[=9 (8, Sdt + g (Sy'—S1 ")t (24.1)

In this expression

So,So denote the sediment flux approaching the channel during ebb and
flood tides respectively, and

S:,S;:’ denote the sediment flux appropriate to the reduced velocity over
the channel during ebb and flood tides.

To obtain the annual rate of infill this expression must be summed over
a year of tidal spring-neap cycles.

For channels of lesser width (X,,) the transport at the downstream edge
will be greater than S, so that the infill will be reduced by the factor
(1—exp(—X,/L)) which will vary with the fall velocity of the suspended
sediment. For very fine sediments the lag distance (L) will be so large
that the infill contributed by them will be small.

Two methods are currently used to estimate the values of sediment

flux at different stages of the tide. The first involves an extrapolation

of laboratory flume data to full scale depths and velocities. These are
described by formulae which are usually based on physical arguments
concerning the way in which the flux depends on certain non-dimensional
parameters describing the flow and properties of the sediment. Many
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Figure 5
Hysteresis of sediment flux in tidal
flow

formulae of this type have been devised (US Task Committee for
Preparation of Sediment Manual, 1971) but none has been widely
accepted. The most recent (White, 1975), unlike most of the others, is
based on a wide range of laboratory work. It gave fair agreement with
observed transport rates of fine sand at sites in the Thames estuary.

In the second method, the sediment flux is measured directly at several
stations along the proposed route of the channel over short time
intervals through both neap and spring tides. Each measurement involves
the integration of the product of the velocity and the concentration of
the suspended solids over the depth for a range of size fractions, (Thorn,
1975). This enables both Sy and S; (the flux appropriate to the velocity
over the channel) to be estimated and hence the infill at all tidal stages.

However, in this estimation it is important to reduce the flux measure-
ments to a series of steady flow conditions since to determine infill we
are concerned with the change in erosion rate (E) over the channel due
to the reduction of velocity (equation (2.3.13)). In general, in tidal flow,
the flux lags the velocity, ie at a given velocity the flux is less when

the current is increasing than when it is decreasing; thus the flux variation
with velocity over an ebb or flood tide takes the form of an hysteresis
loop. An example is shown in Fig 5(a) which relates to flux measure-
ments at a station in the Thames estuary taken at consecutive half-
hourly intervals starting at low water in a depth of about 17 metres.

18 - Q
— $=1.94 V*(U’-U})
. Ebb
-—$§=17U
— Q= 2001212
$=1.37 U U9 | Flood
——8=1.2 U

1.0}

Sediment flux (m3*/h/m width)

Y 0.8
Velocity {m/s) Velocity (m/s)

The same argument holds for the lag in time in the flux over the tidal
cycle. The lag is due to the time taken for the sediment to fall out of
suspension when the velocity decreases, the average time lag in flux
consequent on a small change of velocity being (L/U) (Appendix 5). The
flux measurements, reduced to a series of steady flow conditions by the
method given in the Appendix, are shown in Fig 5(b). It will be noted
that at this station for a given velocity the flux on the ebb is greater
than on the flood, although at other stations the reverse situation applied.
In Fig 5(b) two types of empirical formulae for representing the flux
versus velocity variation are contrasted, namely the simple power law
(equation 2.1.9)) and a formula of the type
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2.5 Alternative procedures for
calculating infill

2.5.1 Method of Lamblé

S = k,U(U2-U,?) we(2.4.2)

in which U; denotes the threshold velocity below which movement of
sediment is presumed no longer to occur. Although empirical, the latter
formula has some physical justification. It assumes that, for a given bed
sediment, the rate of erosion from the bed (WCs) is proportional to the
excess of the bed shear above the threshold shear and the size of the bed
forms is assumed not to change significantly with bed shear. The derivation
of this equation is given in Appendix 6. It will be evident that for practical
purposes either form of equation can be used.

An example in which this second method was used to determine infill rates
occurred in connection with the proposed sea port at Maplin. Initially it
was proposed that the access channel should follow a natural channel to a
point opposite the port-and would then cut across the estuary at right
angles to the main tidal flow. The results showed that the sediment in
motion consisted mainly of the finer fractions of the bed material (fine
sand, mean size 0.15 mm). The finest size fractions (less than 0.06 mm)
which made up the bulk of the sediment flux (but which was present in
insignificant proportions in the bed) contributed a negligible amount to the
infill. Typically the infill rates were for channels of incised depths 6—10 m
and 500 m width and were estimated to be about 1.6—2.4 x 10° m®/annum/
km length of channel.

Lamblé (1958) has presented a method for predicting the efficiency of
sand traps in sewer mains which Vinje (1960) has applied to the estima-
tion of the infill of dredged cuts in field situations without, however,
giving details of the procedure. Essentially, Lamblé starts with the
equations (2.3.1)—(2.3.3) for the steady flow of a suspension (3C/dt = 0)
and determines approximate solutions applicable to cases in which the
initial concentration at entry is an arbitrary function of z and the traps
are such that sediment re-entrained from the bottom is negligible
(“perfect settling”).

We may apply Lamblé’s approximation to the settlement of a
suspension over a wide dredged channel by noting that if Cy(z) is the
initial distribution approaching the channel

Co(z) = (WO C*/VS) exp(—VSz/KZ) ..(2.5.1)

which satisfies equations (2.3.1) and (2.3.2) with aC/dt = 9C/ox = 0 and
the boundary condition for constant erosion rate (W, Cs) at the bed, viz

K, 3C/dz = W, Cs z2=0 l2.5.2)

Thus denoting the departure of the concentration over the channel from
the initial concentration by C ie

C =c-c, (2.5.3)

C satisfies equations (2.3.1), (2.3.2). At the bed, if the depth over the
channel is constant (h,), the erosion rate will be constant and equal to
a lower value from that at entry (W; Cy) so that equation (2.3.3)
becomes

W, Cx = — (K, C/32) z=0 f(2.5.4)

and substituting from (2.5.3), (2.5.2) we have
— K, 8C/oz = (W, —W)Cx = constant z=0 w(2.5.5)
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Thus with the substitution (2.5.3), the solution of the equations may be
written

C =[W,—W)Cu/Vglf(x,2) (2.5.6)
in which f(x,z) satisfies (2.3.1), (2.3.2) with

—(K,/Vg)affoz =1 z=0 .(2.5.7)
and C simply scales with (W;—W,)Cx/Vg ..(2.5.8)
Taking the mean .value of C over the depth and writing

f,x)= f: f(x,z)dz/h ...(2.5.9)
we find from (2.5.6)

C = [(W,—Wy)Cx/Vg] f,(x) ....(2.5.10)

For perfect settling, W; = 0 and the mean concentration (departure) is
then given by

Qp = [~ W, Cy/Vgl f,(x) ..(2.5.11)
For perfect settling with uniform vertical distribution of concentration

at entry, Lamblé gives the following approximate expression for the
ratio of the mean concentration Cp to that at entry C

EP/EO = L(x) ..(2.5.12)
with

L(x) = log? {—n; & —1)log[(E+A —1)/(\—1)] } (2.5.13)
in which

¢ = Vgx/Uh = Vgx/q .(2.5.14)
and

M= Wy Cyf/VgCy ....(2.5.15)

with C, denoting the mean concentration over the vertical at x = oo,

Thus

§p = Ep—éo = [L(x)-1]C, ..(2.5.16)
which gives with (2.5.11) and (2.5.10)

C = W;-Wg) [1-L(x)] C /W, .(2.5.17)

We note that when x = o, C = C;—C,, and L(x) = 0, so

C/Cy = [1-L)] .(2.5.18)
If the velocity is uniform over the depth, this is equivalent to
(85—8)/(Sp—S1) = [1-L(x)] ..(2.5.19)

and for constant eddy diffusivity (K; = K)
A = (Vghi/K) [1—exp (= Vgh,/K)] 1 ..(2.5.20)

Equation (2.5.19) with Vgh,;/K = 15 Vg/Us, is compared with the
analytical solution for this case in Fig 2. The agreement is good for
Vg/Uy small but less so for larger values of Vg/Us. This is expected
since the approximation (2.5.13) assumes uniform concentration over the
depth in the approach flow, which is clearly invalid when Vg/Us is large.

17



2.5.2 Method of Gole et al

3 INCLINED CHANNELS

3.1 General remarks

Although Lamblé gives a procedure for perfect settling which enables

the rate of settlement to be calculated for arbitrary vertical distributions of
concentration at entry, this procedure does not appear to be applicable to
dredged channels where A; = Ao (approximately).

Gole et al (1971) suggest that the rate of infill per unit width transverse
to the flow is given by the equation

AS = ki C Vg X [1-(ho/hy)?] /hy ..(2.5.21)
in which kg is a fitting constant with a value of about 0.3 for Indian ports.

The factor C, VgX/h, is evidently assumed to equal the rate of infill which
would occur if the velocity over the channel were small enough to allow
the sediment to settle completely (h; > h,). The depth factor in

equation (2.5.21) assumes that the carrying capacity of the current is
proportional to (mean velocity)?. Greater exponents would be expected

for fine sands.

It is often necessary for channels to be dredged at an angle to the dominant tidal
flow directions. For ease of navigation, channels are usually straight for consider-
able distances and in many cases the bed levels may be fairly constant along such
stretches. The channel may be subject to similar flow conditions from section to
section, ie the velocity and flux of sediment will be independent of the distance (y)
along the channel. Small scale experiments indicate that when steady flow occurs
over a straight inclined channel the flow lines are refracted down the channel. Thus
the width between adjacent stream lines decreases and this can lead to an increase

or decrease in velocity over the channel depending on whether or not this width
reduction is greater or less than the increase in depth. Generally if the angle between
the channel and the flow direction is greater than about 30° the velocity decreases,
but at lower angles provided the ratio of the depth over the channel to that over

the sides is sufficiently large, the velocity increases. Hence if Sy is the component of
sediment flux normal to the channel (x direction) ie Sy = U¢hC (approximately)
where Uy = velocity component normal to the channel, averaged over the depth h,
the equation of continuity becomes

3S,/dx +3Z/dt = 0 (3.1.1)

Assuming Sy will be the same at a great distance on each side of the channel, integra-
tion of (3.1.1) with respect to x shows, as for a channel normal to the flow, that the
cross-sectional area of the channel and adjacent banks will remain constant and equal
to that dredged initially, but the shape will change. To estimate the sediment flux

it is necessary to determine the velocity changes over the channel.

It will be evident that to satisfy flow continuity over the channel

Ugh = gy = constant ...(3.1.2)
and, by analogy with equation (2.1.4), the velocity cy of kinematic waves becomes
cx = (88x/ aZ)qX constant -(3.1.3)

If the flow were inviscid and irrotational, the component of velocity
in line with the channel (Uy) would be unchanged, ie

Uy, = constant -..(3.1.4)

Thus the flow would be refracted along the channel, the velocity being
reduced and the contraction between adjacent stream lines being less
than the increase in depth.

If we consider a very wide channel (wide in the direction of the flow)
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Note:

Again, in a balanced tidal
situation Cy. = 0.

of constant incised depth, and again use subscripts o and ; to denote
quantities upstream of and over the channel, then in steady flow the
reduction of velocity over the upstream slope is given by

U, {1 — [cos?0, + (sin2d o/H)] %} (3.1.5)

where

6, = angle of channel to flow (6, = 90° corresponds to a channel normal
to the flow) and
H = hl/hO'
o W
Thus if h; —hg is small the reduction in velocity becomes

U, hizhe gin2g, (3.1.6)
ho

with a similar increase in velocity over the downstream slope.

The channel will infill over the upstream slope and erode over the
downstream slope at the rate

By [So — Ens,l (3.1.7)
B0

in which B is the width between streamlines approaching the channel
and B, is the width between these streamlines over the channel.
Thus from (3.1.1) and (3.1.2)

(B1/B,) = (sin?0, + H2cos?0,) " ..(3.1.8)

Comparison of the infill for a wide oblique channel with one at right
angles to the flow, with S given by an equation of the form (2.1.9),
indicates that the infill is markedly reduced as the angle to the flow
becomes smaller. For such channels maintenance could be reduced at the
expense of an increase in capital dredging costs.

As previously discussed, when the bulk of the sediment moves in suspension
rather than as bed load, the infill will occur over an average distance L and
erosion will occur downstream of the channel. Thus for a channel of lesser
width the infill rate immediately after dredging will be given by

B, [So — B18;] [1 — exp(~s/L)] .(3.1.9)
B0 ,

where s is the length of the refracted flow lines over the channel. For a
channel of small incised depth, where refraction is small, s = (channel
width)/sinf, with L given by (2.2.11).

This expression must be summed over the year for all tidal stages on
neap and spring cycles to obtain the annual rate of infill.

In a balanced tidal situation, after a long time the sides will gradually
flatten and the channel become shallower due to the lag effects already
discussed. The kinematic wave velocity

)= X = _0_._9 [(Ei_s) sin6 , + (Ui)coszﬁo] ...(3.1.10)
= 0

and the effective diffusion coefficient due to these effects is approxi-
mately

D,(6,) = c(6,) - L sinf, (3.1.11)
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3.2 Distribution of velocity
in depth

So far we have assumed that the velocity is uniform over the depth but
generally the velocity is greatest at the surface, decreases slowly over most
of the depth and falls sharply to zero near the bed. For example, over a
rippled bed with a hydraulic roughness equivalent to 0.05 m in a depth
of 15 m, the velocity falls from 40% of its surface value to zero in the
bottom 10% of the depth. Engelund (1970) has found that the velocity
outside a thin bottom layer in steady parallel flow conforms to that
which would be expected if a fictitious “slip velocity” (Up,) is intro-
duced at the bed and the eddy viscosity (K,) is assumed constant
throughout the depth. According to Fredsoe (1974) a good approxima-
tion to the Yelocity at height z above the bed is

v ety

% )
U, =Ty, cos[A(1 — Z/h93] JcosB «..(3.2.1)

in which § is given by
g* =14 U*Ocosﬁ/Ubo .(3.2.2)
and the eddy viscosity
KZ = U*0h0/13 ...(3.2.3)

Evidently from (3.2.1) the surface velocity is given by Uy ,/cosf and
8 = 0 corresponds to uniform velocity over the depth.

Fredsoe (1974) using an inviscid form of the flow equations with
vorticity present has calculated the perturbed flow, including wave
disturbances, over an inclined channel. The deviation of the bed stream
lines is greater than those at the surface because the pressure distribution
in depth is hydrostatic so that changes in water surface elevation must be
balanced at all levels by equal centrifugal forces U?/r, where 1/r repre-
sents the stream line curvature. Hence r will decrease and the flow be
deflected to a greater extent near the bed. For a shallow channel of
cosine form inclined at large angles to the flow (6, = 45—-60°), the
lateral deviations of the bed and surface stream lines agreed with those
calculated by Fredsoe. However, the calculations are cumbrous, although they
can produce an approximate solution for a shallow channel with a flat bed at
low Froude numbers (where surface disturbances are minimal) which corres-
pond to the case of a navigation channel in deep water. In this case, neglecting
vertical velocity components (w) the rise in water surface (n) over the
channel is constant and given by

2 hl_h() ) 0
n = U0 B ) sin®f  M(B)  (approximately) ...(3.2.4)
)
with
M(B) = 28/[cosB . log § (1 + sinB)/(1 — sing) }] .(3.2.5)

and the velocity over the channel is independent of x,y. The fall of
velocity over the channel at the bed and surface is given by

h—hy
AU, = Uy ( ) sin®6 , M(B) (3.2.6)
)
_ hi-h, ,
AU = Uy (h—) sin®6 | M(8) . cos*B «.(3.2.7)
0

The change in bed velocity (AUp/Up,) for a channel inclined

at 30° to the flow O, = 30°) from (3.2.6) is in good agreement with
experimental values obtained in a laboratory channel (Whillock, 1973)
Fig 6. In these experiments the friction velocity Uy = .05 U

(U = mean velocity over vertical) which, from equations (3.2.1) and
(3.2.2), givesa value of g = 0.8. At lower values of 0, there are consider-
able divergences; these are discussed in the next section.
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Figure 6

Maximum bed velocity ratios and
breadth contractions over an
inclined channel

3.3 Channels at small
inclinations

3.3.1 Preliminary remarks

Velocity ratio U,(max)/Upo

(B1/Bo)

Breadth contraction

So far, in order to determine infill rates (equation (3.1.7)) it has been
assumed that the sediment flux (S) is related to the mean velocity over
the section obtained either from extrapolation of laboratory results or
from direct field measurements. However, since erosion rates are likely
to be more sensitive to the velocity near the bed (Up) than the mean
velocity it would seem more reasonable, in the present application, to
relate S to Uy,. For a hydraulically rough bed the slip velocity Uy, has
been defined by Fredsoe as

U, = Ux[83 + 245 In(h/13kg)] ...(3.2.8)

where kg is the equivalent hydraulic roughness of the bed and h is the
depth. Thus assuming the usual logarithmic velocity distribution to apply,
Uy, is the velocity at h/13. The reduced flux over the channel may then
be inferred from (3.2.6), or from the more accurate analysis given by
Fredsoe, and hence the infill determined.

I | t o 10°
ho  _ Upe h, U max

=
IS

=
(=]

— Eqn 3.3.6.
mmmmmm Eqn 3.2.6.

1 1 1 i

06

0 1 1 1 R
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Depth ratio (h,/hy)

As the angle of the channel to the flow decreases, the flow lines over
the channel lengthen and, for wide channels, the reduction of resistance
consequent on the increased depth becomes a major factor in the deter-
mination of the velocity changes which occur. The essentially inviscid
treatments described in sections 3.1 and 3.2 no longer apply without
modification, in particular the assumption that the tangential momentum
is constant over the channel (equation (3.1.2)) is no longer valid.
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Figure 7
Upstream movement of slightly
inclined channel

If, for the moment, we ignore momentum changes, these being small in
comparison with friction changes over the bed, then we can say that

the water surface slope due to friction along the channel will be equal to
that over the sides. Adopting, for simplicity, a Chezy friction law
coefficient (Cg) relating slope and mean velocity, equation (3.1.2) would
then be replaced by

U 2
cosf ) = lh cosf; «(3.3.1)

U,, U; being mean velocities over the depth and 05, 01, the angles of
the flow lines to the channel in the approach and cross-channel flow
respectively.

Combining (3.3.1) with the continuity equation (3.1.2) it is easy to show
that for Cg, = Cy, when 6, < 45°, the velocity over the channel is
greater than the approach velocity for all values of (hy/hg). It will also
be evident from (3.3.1) that for small inclinations,

U, = Uy (hy /hy)” (33.2)

so the breadth contraction of the flow lines is given by B, = BO(UOIU,)B.
Thus if the sediment flux is related to the velocity by a simple power law
(2.1.9), the flux between adjacent stream lines over the channel,

(B1Sy = BySy(U/Ug)™2) will be greater than the incident flux (BoSo)
when m > 3.
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|
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E
=
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3.3.2 Measured velocity changes
in steady flow

Over beds consisting of fine sand, values of m considerably greater

than 3 are common, so we would expect there to be an

increase in sediment transported over the upstream edge of the channel
and a corresponding decrease over the downstream edge. Thus the channel
would migrate upstream, the upstream edge eroding and the downstream
edge accreting.

We note that the kinematic wave velocity given by equation (3.1.3) can
be written, with h = hy—Z,

¢, = — d(SU,/U)/oh .(3.3.3)

and substituting for S from (2.1.9), with (3.1.2),
¢ = — kq, AU 1)/h)/ah i334)

If the variation of U with depth across the channel is given by (3.3.2),
viz U = Ugy(h/hg)* it is not difficult to show that

og = — (Sox/ho)[(m-3)/2] (h/ho)™-5)/2 (33.5)
confirming that when m > 3, the channel moves upstream. It will also be
noted that when m = 5, the channel moves upstream without change
of form but for other values of m a discontinuity develops (kinematic
shock) on the upstream or downstream side of the channel depending on
whether m is greater or less than 5, ie whether ¢y increases or decreases
with h. The formation of the shock is sketched in Fig 7.

Usually the velocity changes over channels with relatively small incised
depths are too small to be measured reliably in the field and recourse
must be made to laboratory studies. Experiments have been made with
steady flow over a trapezoidal channel with side slopes 1:12, bottom
width about 20 times the depth covering the ranges 1.2 < H < 2 and
inclinations 6, = 00, 109, 20° and 300 (Whillock, 1973). At the
largest inclination and at 6, = 20° for (h;/hy) less than about 1.35,
the bed velocities were fairly constant across the channel and lower
than those in the approach flow; in this range, as already mentioned,
the fall in bed velocity was in reasonable agreement with equation (3.2.6).
The refraction of the streamlines across the channel is shown in Photo 1.

At 8, = 20° with higher values of (h/hg) an initial fall in velocity

over the upstream slope again occurred but was followed by an accelera-
tion across the channel, a peak value of the bed velocity being attained
at or slightly downstream of the downstream edge of the channel (Fig 8).
Above a certain minimum value, h; /hy = 1.55, the average bed velocity
in the accelerated part was greater than in the approach flow; this would
evidently correspond to an initial eroding condition. Beyond the down-
stream edge the velocity fell gradually usually reaching the upstream
value in a distance equal to about twice the channel width. Similar
behaviour of the flow was exhibited at 0, = 10°; here, however, the
minimum depth ratio for accelerated flow was less (hy/hg = 1.39) as
might be expected. The maximum bed velocity ratios which occurred

at the downstream edge of the channel are shown in Fig 6.

It is of course of great importance to be able to predict velocities.
Fortunately, O’Connor and Lean (1977) have shown that the velocity
changes across the channel and downstream can be fairly well predicted
from the equation for the mean tangential momentum:

U, dU. jdx (UO2 o — U o) (3.3.6)
X = o COS o m COS el D00,
y CEoh, Ct hy
with
2 - 2 2
U= U2+, (33.7)
and
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Figure 8
Bed velocity distributions, channel
at 20° to flow

-

Uy given by continuity equation (3.1.2), (ie Ughysinf/h, over channel

and Ugsinf , upstream and downstream).

This assumes that no change of tangential momentum occurs over the
upstream and downstream slopes, ie equation (3.1.2) holds for flow
over the slopes. From (3.3.6) it would seem that across the channel
U increases and would eventually reach U; (given by equation (3.3.1))
for a very wide channel (x — o),

Channel
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Equation (3.3.6) assumes that the velocity is uniform in depth.
However, in the experiments, as predicted by Fredsoe, the flow at the
bed was refracted more than the surface flow so that the local bed
shear was at an angle to the mean flow. So far an analysis which takes
account of this factor is not available.

In Fredsoe’s experiments, the behaviour of particles suspended in the
flow was observed. The size and density of the particles was adjusted
so that the ratio of their fall velocity to the flow velocity was
approximately the same as for fine sand in typical tidal currents.
However, since the bed of the channel and banks were moulded in
smooth concrete, only the pattern of deposition and not erosion of the
particles could be observed. Usually the quantity of sediment in circula-
tion was adjusted to prevent continuous deposition on the bed upstream
of the channel.

Deposition always occurred on the upstream slope of the channel, where
velocities lower than those upstream had been shown to occur. The
deposition patterns generally reflected the velocity changes quite closely.
When 0, = 20° and hy/he = 1.2, deposition was fairly general over the
bed of the channel. At h;/hy = 1.6 (when the average velocity over the
channel was slightly greater than that upstream) deposition took place
mainly on the upstream slope and only spread into the channel as this
deposit grew. This also happened when 0, = 10° and h;/he = 1.4. In
all cases the downstream slope was swept clear by the flow and it seems
likely that this slope would have eroded had it been composed of mobile
material. This is perhaps most graphically illustrated in Photo 2. This was
taken at the end of an experiment with the 10° channel in which the
approach velocity had been reduced to allow the sediment to form
incipient ripples over the bed upstream. The sparseness of the deposits
beyond the centre line of the channel compared with that in the
approach flow and the lack of deposits over the downstream slope and
for a short distance downstream illustrates the likelihood of erosion in
these areas; it is probable that if the bed had been erodible the channel
would initially have migrated downstream.
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3.3.3 Sediment flux changes
over the channel

It will be evident from the preceding section that, in unidirectional flow,
channels at small angles to the flow will migrate downstream, infilling on
the upstream side and eroding over the downstream side. For hy/hy less
that the critical value the average velocity across the channel will be less
than the approach velocity so that to maintain the channel in a given
position sediment must be removed at rates given approximately by
equation (3.1.7) with B;S; appropriate to the breadth of adjacent stream
lines (B; = BoUpho/U;h;) having an average velocity (U;) over the
channel. In a tidal flow, this infill rate at each phase of the tide must
be integrated over a year to give the annual infill.

For h; /ho greater than the critical value, the average velocity over the
channel is greater than the approach velocity but over its upstream
portion it is less than the approach value. In unidirectional flow, to main-
tain the channel stationary the sediment deposited on this side must be
removed. A somewhat crude measure of the infill may still be given by
equation (3.1.7) but with the distance (s) now referring to the distance over
which the velocity is less than the approach velocity and By ,S; corresponding
to the average breadth of the stream lines and sediment flux over this distance.
However, over the downstream part of the channel (x > s) where the
velocity is greater than the approach velocity, erosion would occur and
the depth increase. Thus it would appear that initially the channel

would be unstable, tending to become deeper on the downstream side

as it migrates downstream. However, the sediment eroded from the channel
will deposit in the decelerating flow downstream, so raising the bank level

and decrease the velocity (equation (3.3.1)). Further, the rise in bank level
and increased thickness of sediment will tend to slow down the rate at
which the downstream slope moves downstream (and may even reverse

it, Fig 7 ) causing the channel to narrow, so reducing the velocity incre-
ment over the channel and the tendency for further erosion. Also, it is
likely that in the long term (unless the channel is successively trimmed back) the
upstream slope would steepen due to the formation of a kinematic shock,
causing flow separation, reduced bed velocities and increased deposition
over the upstream part of the channel.

For h, /b, greater than the minimum, similar effects might be expected

in an unbalanced tidal flow with a pronounced flux bias in one direction.
A small infill would again be expected on the dominant drift side since
the deposition on this side — assuming the flux is simply velocity
dependent — will not be entirely removed by the weaker scour by flow

in the reverse direction. However, on the downdrift side, the channel is
likely to erode initially and continue to do so until the bank level rises
significantly. In a balanced or nearly balanced tidal situation it seems
likely that the channel will erode on each side, the eroded sediment being
deposited on each bank. In time the rise in bank levels will tend to refract
the flow towards the normal, reducing velocity over the channel and hence
erosion.

Since the critical value of h;/ho decreases with angle (6,) even channels
with small incised depths at very small angles to balanced tidal flows

will be subject to erosion provided they are sufficiently wide to allow
the velocity increase, due to the reduced resistances, to become effective.
However, other factors, viz gravity and wave action, may then become
predominant in causing infill. These factors are discussed in sections 4
and 5. In addition, it is well known that natural channels in line with
the flow develop alternate shoals and deeps. Instabilities of this type may
also be present along dredged channels. Besides creating additional friction
losses and lower velocities over the channel, these instabilities may well
cause the channel to meander, giving rise to changes in the flow directions
over the channel and banks.
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3.3.4 Tidal flow in aligned
channels

So far we have assumed that the flow over a channel at a particular
tidal phase is the same as that in the steady state. However, in a tidal
flow only part of the head drop is expended in overcoming the resist-
ance of the channel, the rest being used to accelerate the flow. In order
to obtain an approximate estimate of the velocity changes on this
account let us consider the simple case of a straight channel dredged in
line with the flow along an estuary. We assume that (i) the effect of

the channel on the flow external to it is negligible, ie the tidal eleva-
tions and currents outside the channel are the same as before the channel
was dredged, and (ii) the water surface elevation over the channel is the same as
over the banks. (Strictly to satisfy this condition and flow continuity it is
necessary to include traverse currents into and out of the channel but
these currents are assumed small enough to be ignored).

The linearised equations of motion for the currents over the bank .and
channel are respectively

— g an/ox = aUy/ot + f,U, ...(3.3.8)
— gon/ox = dU /ot + £, U, ...(3.3.9)

where 7 is the surface elevation above mean tide level
and the quadratic friction term is approximately linearised by putting

f, =8CglU,l/3mh, .(3.3.10)
f; =8Cy [Uil/3nh, (33.11)

in which Cfo’ Cf1 denote the friction factors
and |Ugl, |U;| are the amplitudes of the tidal currents over the banksand
channel.

In most estuaries the phase difference between the surface slope (9n/0x)
and currents differ only slightly from a quarter of the tidal period,
depending on the shape and overall resistance of the estuary (Hunt, 1964).

Thus we may write,

— g onfox = gln,lcosat ....(3.3.12)
= i ...(3.3.13

U0 IUolsm(at+eo) ( )

U, = |U,lsin(ot+e;) (3.3.14)

in which

o = 2a/T, T denotes tidal period. ..(3.3.15)

Substituting in (3.3.8), (3.3.9), we find
ghny| = 1UI(0*+ )% = [U, |(o>+f, 2y .(3.3.16)

in which f, f; are given by (3.3.10), (3.3.11).l We note that when o =0
(steady flow) and Cgo = Cf, U, /U, = (hl/ho)/é, (equation 3.3.2).

As an example suppose |Uy|l = 1 m/s, hy = 10 m, C¢ = 0.0025 and

h; =20 m; for 0 = 1.45 x 10 s, we find from (3.3.16) that |Uy|=1.29
m/s, which is appreciably less than for steady flow (1.41 m/s). For slightly
inclined channels of large width where bed friction effects are important,
currents in steady flow experiments will exceed those in tidal flows and

the critical values of the ratio h;/hy for an initially eroding condition

will be greater.
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4 EFFECTS OF GRAVITY

4.1 Direct gravity infill

In some situations navigation channels follow the course of natural

channels and are, therefore, nearly in line with the dominant flow direction.
Clear water experiments (Whillock 1973) have shown that in wide channels of con-
stant incised depth in line with the current, the velocity is greater than over the
sides, approximately in proportion to the square root of the depth (equation
(3.3.2)). Secondary circulations over the banks were too weak to be

detected, the flow over the channel being directed parallel to the channel;
dye plumes adjusted in position to be along the channel edges showed no
pronounced tendency to diffuse more strongly into the channel than over

the banks (Photo 3).

However, due to gravity, sediment particles resting on the banks will be
subject to a force tending to cause them to move down the slope
resulting in infill. It is easy to show that the resultant force acting on
particles moving in contact with the bed will be inclined at an angle ¥
to the channel given by

tano
.22 (411
tanky tandy ox
in which ag is the inclination of the bank slope, tanhy is the coefficient
of dynamic friction (x is again the co-ordinate perpendicular to the channel
direction and Z is bed elevation above a horizontal datum).

Since the particles will be transported in the direction of the resultant
force, it seems reasonable to assume that the transverse component of the bed
sediment transport in the x direction is given by

Spo  9Z

S.. =S, tany = — s
bx ~ Spo ¥ tandy 9x

f(4.1.2)

in which Sy, is the transport per unit width of sediment in contact with
the bed in the longitudinal direction and the negative sign is introduced
to take account of the fact that Spy is negative when

9Z/ax > 0.

Since there is no change of transport in the y direction (along the
channel), the sediment continuity equation becomes

Bty , 3Z -

(413
ox ot ( )

Spx being measured in terms of the volume of compacted bed sediment
in movement for unit length along the channel per second. Substituting
for Spx we find

oZ - 1 0 9Zy

RAE k814
at  tanhg ox  °° ax @14

Provided the variation of Z is small compared with the water depth, Syq
can be taken as approximately constant and equation (4.1.4) then reduces
to the standard diffusion equation

0Z -y 9°Z
2 mD, £ . (4.1.5)

with the diffusion coefficient Dg given by

Dy = Spo/tandy .(4.1.6)
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With this value of the diffusion coefficient the degradation of the channel section
will be similar to that shown in Fig 4. Fredsoe, 1976, to whom the previous analy-
sis is due, has shown that for a channel with initial side slopes ag and incised depth
(hy—hg), the volume rate of infill per unit Jength of channel at time t after

dredging is given by
v/D
(h;—hg) —=E —1172 (41.7)
(i)
with
T (hl _h0)2
= — ...(4.1.8)

o 64 Dy(tanag)?

Fair agreement was found between measured and theoretical sections in
laboratory experiments on the evolution of an in line channel of initially
trapezoidal form (Fredsoe 1976). These experiments were performed with
coarse sand (1.2 mm mean diameter) which travelled entirely along the bed.
The bed transport could thus be identified with the volume transport
associated with migration of sand dunes over the bed. However, some
difficulty would be experienced in estimating S, with more commonly
occurting fine sands and silts which travel mainly in suspension. In suspen-
sion, the action of gravity will have no transverse component and the
bed dunes move partly by differential erosion, and deposition of particles
directly from suspension, as well as by rolling and sliding along the
surface of the dunes. For such sediments it would seem reasonable to
calculate S, by extrapolation to the finer grain size of one of the
existing formulae describing the transport of coarser particles which
travel solely in this way, eg Meyer—Peter and Muller, 1948.

Fredsoe suggests that in a tidal situation the above analysis is still approxi-
mately valid if Sy, is taken to be equal to the mean value of Sy, over
the tidal period. Further, if the channel is very slightly inclined to the
flow direction, the effect of gravity will be to enhance the transverse
component of transport on the upstream side and diminish it by an equal
amount on the downstream side so that the total infill will be the same
as for a channel aligned with the flow. This argument takes no account
of the changes in St,, due to change in bed current over the channel
discussed in section 3.3.3. However, it is clear that the effect of gravity
(equation (4.1.2)) is important, tending to increase infill and reduce
erosion.

4.2 Indirect gravity effects The previous analysis refers to particles which are moving in close proximity
to the bed such that their weight is directly taken by the bed. Fine
particles (sand and silt) travel mainly in suspension and their weight is

balanced by an increase in the hydrostatic pressure gradient (in the same
way as, for example, a liquid of heterogeneous density). In a channel

in line with the flow, due to the higher concentration of particles close

to the bed, there will generally be a greater pressure at a particular bed
level on the banks than at the same elevation over the channel. On the other
hand, near the surface, the concentration and pressure will be greater over the
channel than over the banks. These horizontal pressure gradients will tend to
set up currents towards the channel at the bed and away from the channel at
the surface. From continuity, the net inflow will be zero but since the water
will be more heavily laden with solids near the bed there will be a greater
flux of suspended solids into the channel than out of it. Some of
this sediment will deposit leading to infill. So far such effects

have not been quantified but in order to estimate the order of magnitude
of the inflow of suspended sediment let us assume that the suspension can
be idealised as a layer of uniform thickness, (d,) of uniform concentration
on each side of the channel. The slopes of the banks are generally

steep enough to allow free flow under gravity of suspension laterally from
the sides into the channel. The flow would be similar to that which

would occur over a broad crested weir, the critical depth being given by
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d =

. =24 (42.0)

o

W [

and the critical velocity
v, = \/g“’—(z (4.2.2)
where

g =g —p)lp (4.2.3)

is the effective gravity acting on the suspension,

p' = density of the suspension
and
p = density of sea water .(4.2.4)

Thus the volume rate of particles convected into the channel under
gravity per unit length of channel

v, d, (o' —p)/o (4.2.5)
is equivalent to a volume rate of compacted sand of

% ' 3/2
1 p &) 4 (0" =p)y / l(4.2.6)
Cy o 27 o »

If C is the volume of particles per unit volume averaged over the depth,
the weight of particles per unit area over the bed is

do(p' —p)g = hC(a—p) (42.7)

so that the rate at which particles are convected into unit length of the
channel in terms of volume of compacted sand is
/2

2 . (4.2.8)

P g

Cx 27
As an example, along a channel in the middle of the Thames estuary

where a navigation channel was proposed, the mean concentration of
particles greater than 40u diameter on a spring tide was 32 ppm by weight
(C = 12 x 10) and the depth at mean tide level was 15 m. This con-
centration should be reduced to 7.5 ppm. The calculated volume rate

from (4.2.8) with C4 = 0.61 was 10° m®/km/annum or double this quantity
for both sides of the channel. If the channel were slightly inclined to the
flow, the gravity current would be reduced on one side but reinforced on
the other so that the gravity inflow will be the same.

There is little doubt that this volume rate is extreme since it has been
assumed that the incised depth is large enough for critical flow to develop
and that all the inflow is deposited in the channel. It was for this reason
and because of its very small settling velocity that the size fraction less
than 40u was ignored in the case discussed. If particles in the

size range 40—60u were ignored for the same reason, the inflow would
have been reduced by a factor of about 50%. Nevertheless the

magnitudes involved suggest that infill of suspended solids due to induced
gravity currents could be important.

It should also be noted that transfer of suspended particles into a
channel can also occur by lateral diffusion in the absence of a gravity
current, The rate is given by

oC
= ox
where K is the coefficient of diffusion in the lateral direction. The
coefficient Ky will vary throughout the depth and the concentration
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5 CHANNEL INFILL WITH
BEDS OF COHESIVE
SEDIMENTS

5.1 Erosion and depositional
properties of cohesive
sediments

gradient will change sign, the lateral transfer being directed away from
the channel at the surface and towards the channel near the bed.

Where the currents in the upper layers are negligible Bagnold (1962)
has argued from energy consideration that a suspension can maintain
itself indefinitely in deep water over a gently sloping bed (angle ag).
The suspension will flow in a layer of uniform thickness dg with mean
velocity up given by

[(6—p)gC dp/up?] logio2(13.2 dp/k,) sin [og — (Vs/up)] = 0.045 ....(4.2.9)

in which k; is the hydraulic roughness of the boundary, provided the
flow in the layer is turbulent.

Gravity currents caused by density differences resulting from the presence
of suspended particles could evidently be an important contributory
factor to the siltation of channels in areas where currents are very weak.

In some areas, the tidal velocities are not sufficient to maintain the coarser
fractions of sediment in motion and the bed may consist of fine particles
which have been deposited from suspension. Such beds often contain silt
(of order of 0.06 mm diameter) with a varying admixture of clay (less
than 0.006 mm diameter) and differ from beds of fine sands in
possessing distinctive cohesive properties. The primary clay particles are
so fine that in a completely dispersed suspension they would be carried
by even the weakest currents and their settling rate would be extremely
slow, but when the concentration is large enough for the probability of
collision to become significant, the particles can cohere to form

clusters or flocs which have a larger rate of settlement than the
individual particles. The coherence depends on the size grading,
mineralogical composition and organic content of the particles as well

as the salinity and temperatures of the sea water. For given particles,
the size of the flocs (and their rates of scttlement) besides depending

on their concentration will also depend on the turbulence in the water.
Relatively mild turbulence will increase flocculation by increasing the

probability of particles colliding. Severe turbulence, on the other hand,
will reduce flocculation because although the probability of collision is
increased, the higher internal fluid shear rates will cause the floc bonds
to be broken. Since these factors cannot be adequately reproduced in the
laboratory, rates of settlement are best determined in the field, using
instruments which allow the settling velocity of silt flocs to be measured
in their natural state (Owen, 1971).

Fine sediments with cohesive properties also behave differently from
incohesive sediments with regard to their erosional and depositional
properties. Whereas for cohesionless particles the threshold shear (or
velocity) required to move the bed sediment is the same for both erosion
and deposition, with cohesive sediments the shear at which the bed
starts to erode (re) is greater than that required to allow deposition (74).

For bed shears (1) above 7, Partheniades (1962) has suggested that a
linear relation exists between the rate of erosion and the shear stress,
viz:

E = dm/dt = M(r—7p)/re , 7> 1, , M = constant ..(5.1.1)

Here dm/dt denotes the mass rate at which sediment is eroded per unit
area of the bed material. (The bed shear is related to the friction velocity
Vi by Vi = (T/'p)%, where p is the bulk density of the suspension.)
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Figure 9
Comparison of erosional and de-
positional equilibrium conditions

When silt is deposited on the bed it immediately begins to consolidate,
gradually increasing in density at all levels over a long period of time unless the
material is subsequently removed by erosion. Migniot (1968) and Owen
(1970) have shown that the consolidation of deposited silt proceeds more
rapidly for thin than for thick layers giving higher densities both during
deposition and for several hours thereafter. The critical shear stress (Te)
needed for erosion, which is partly a function of the density of the deposit,
also increases rapidly as consolidation proceeds and appears to be also a
function of the Bingham shear strength. This offers the possibility of deter-
mining 7, from shear tests on “undisturbed” silt samples from the bed.

Silt eroded from the bed appears to be transported entirely in suspension,

its distribution in depth being determined as for non-cohesive sediments with
the settling velocity appropriate to the size of silt flocs as governed by the
concentration and shear distribution. Concentration can be determined by the
Owen tube method (Owen 1971) and the shear distribution from the velocity
distribution over a section.

When the shear falls below 74, deposition from suspension occurs at a rate
given by Krone (1962) viz

P =dm/dt=C, Vo(r -7ty , 7<T ...(5.1.2)
b YS\d d d

where Cy, Vg are the concentration and settling velocity of the silt near
the bed.

The fall velocity of cohesive materials is a function of the floc size and
therefore depends on the concentration, eg field tests on Thames mud
showed that during spring tides with 50 < C < 3000 ppm the fall
velocity was given by

Vg=2x 10 C mm/s (approximately) ....(5.1.3)

At shears between 7, and 74 it appears that neither erosion nor deposi-
tion occurs and the bed plays no active part in the sediment movement.
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Almost any concentration of suspended sediment is stable between
these limits. According to Mehta and Partheniades, 1974 in the
“depositional” phase (7 decreasing, Fig 9) the concentration depends
only on the amount of sediment initially present in suspension in
the form of flocs which are too weakly bonded to attach them-
selves to the bed. Similarly according to recent work by Owen,
1975, in the “eroding” phase (7 increasing) the concentration of
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5.2 Deposition in tidal
channels

5.3 Fluid mud layers

suspended silt present depends only on the proportion of silt that will
ultimately be eroded. These remarks apply to steady state (equilibrium)
conditions, which, in the depositional phase for example, is attained after
7 has been decreased from a higher value and then held constant
indefinitely, ie a step decrease in 7. The delay constant which is a
measure of the rate at which the concentration assumes the new value
(and the bed accretes) ranges from several minutes to several hours
depending on the nature of the sediment. Methods have not yet been
developed for quantifying the changes which occur in time dependent
situations when 74 < 7 < 7 and in tidal flow situations it is usual to
assume that the net erosion and deposition is zero over this range.

In the outer parts of estuaries where the concentration of fine silt
particles is small the fall velocity of the sediment flocs can be so low
(usually less than about 2 mmy/s) that the suspended sediment concen-
tration is nearly uniform throughout the depth. The change in
concentration throughout a tidal period is also small and varies only
over longer times, from spring to neap tides for example. Thus,

contrary to the case of coarser sediment fractions, changes in sediment
flux due to changes in concentration over the depth (equation (2.3.2)) can
be ignored and changes in bed level (equation (2.3.4)) are given by the
direct imbalance of erosion and deposition, with C taken as constant or
changing only slowly with time. The amount of material eroded when

7 > 7o and deposited when 7 > r4 can then be determined by integrating
(5.1.1) and (5.1.2) over the appropriate stages of the tidal flow. Over a
dredged channel, the velocities are reduced (at a large angle to the flow)
thus allowing a longer period during the tide for deposition and shorter
times for erosion than outside the channel. Thus the rate at which
siltation occurs in the channel is given by the difference between the
net deposition outside and that over the channel.

Before equations (5.1.1), (5.1.2) can be used for estimating siltation,
values of C, Vg and 7 = p U} need to be obtained from field
measurements. Ideally the threshold values of 74,74, and the erosion
constant M at the field density of the bed deposits should be deter-
mined by tests in an experimental flume, but often such information

is lacking and one must have recourse to comparison with estuarial

muds in otherlocations for which these parameters are known. This was
necessary for example in the case of nine channels in the estuary of the
River Plate, which were subject to siltation from the suspended silt originat-
ing in the tributary rivers (Harrison and Owen, 1971). In this case the dredging
rates to maintain the depths in the channels were known and this allowed a
comparison between the rate given by equations (5.1.1) and (5.1.2) and
that observed. Unfortunately, sufficient information was not

available to allow the value of C . Vg to be determined. Instead a

value was chosen to give agreement with the two most heavily silting
channels and comparison made between the calculated and known
dredging rates in the other channels using the same value. The agreement
was close enough to justify the form, if not the actual values, of the
theoretical predictions. Extrapolation allowed the increased siltation rates
due to channel deepening to be estimated.

It may be noted that in some estuaries, high concentrations of mud in
suspension, with accompanying high settling rates and thick deposits

of mud, exist along reaches which consequently may need to be
dredged to maintain navigation depths. In the Thames, for example,
accumulations of mud occur in the adjacent Halfway, Barking and
Woolwich “mud” reaches although both upstream and downstream the
bed is relatively hard. These accumulations appear to be due to the
deposition of mud flocs convected into the region from both upstream
and downstream as a result of drifts near the bed. These drifts can be set up by
density or gravity horizontal gradients induced by differences in salinity between
the fresh water flow and sea water. In estuaries in which the tidal
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6 INFILL DUE TO WAVE
ACTION

6.1 Preliminary remarks
(Tidal currents weak)

currents are weak, there is a well marked interface between the fresh
water and underlying salt water (the so-called “salt water wedge”),

the shear at the interface causing a seaward flow of salt water at the
interface and a landward drift near the bed. At the apex of the wedge,
this landward drift is just balanced by the seaward drift of the river
flow.

When the tidal currents are stronger, the density is more nearly homogeneous
through the depth due to mixing but the drifts at the bed remain. In order
to calculate the changes in suspended concentration and the pattern of
siltation in such cases, Odd and Owen (1972) have used a two layer
model to schematize the flow in the Thames estuary. They assumed

that bed drift was confined to a relatively thin layer near the bed and that
the bed had constant thickness (dy ). The flow in this layer is assumed to

be induced by the interfacial shear _('ri) between the layers, the mean
longitudinal density distribution (8p/9x)/p)and mean depth variation
(dh/dx) along the estuary. It is not difficult to show that in such a
model if dj < h (h denotes the depth), the position of zero drift in
the lower layer occurs at a position where the tidal current amplitude

in the upper layer (Uy(1)] satisfies

807 /8x)/25 = (4/m)k U1 Qp/bh? dp (53.1)
in which

Qr = river discharge

bh = preadth and depth of estuary at null drift section

Uy,Up, = current velocity in upper and lower layers respectively.

k4 = constant of proportionality.

It will be noted that the null position is very dependent on the assumed
values of dy and kj. In the calculation the value of (dp/0x) was taken
from the observed distribution of salinity (proportional to density) during
a period when QR was approximately constant and dp, was chosen to give
agreement with the observed tidal drifts near the bed; however, the use of
a constant thickness dj, is unrealistic.

To determine the longitudinal distribution of mud concentration equations
(5.1.1) and (5.1.2) were used to specify erosion and deposition respectively.
Since the active part of the bed consists of freshly deposited flocs loosely
compacted (consolidation period < 6 hours on a spring tide) its bulk
density is low (y ~ 1.05 x 10% kg/m®). Such “fluid” mud beds are easy
to erode (2 <75 <5 dynes/cm?) compared with more consolidated muds.
It appears that when erosion takes place (1 > 7g) it does so by the
entrainment of particles directly into suspension rather than by surface
disturbances and breaking as would occur with a low density liquid.

In the model, it was assumed that the exchange of suspended particles between
the layers was due to the vertical movement of water. Accumulations in the
mud reaches and the variation of concentration of suspended sediment during
a spring tide in both layers were well represented. The model was used to pre-
dict the effect of a tidal barrier on the distribution of mud in the estuary.

Channels in deep water are generally exposed to waves as well as
currents. When the currents are weak channels may infill due to the
action of waves alone. Even moderate wave activity can generate
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oscillatory currents at the bed which are large enough to move fine sands and
silts in quite large depths (Fig 10a & b) (Komar and Miller, 1974). Measure-
ments of the amplitude of the oscillatory currents required to move
sediments with flat beds have been made, usually in the laboratory, but

it is likely that over ripple beds previously moulded by wave motion,

the threshold velocity would be less. This is because larger bed currents
can occur over the ripple crests.

Figure 10 (a) 200 T T J
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There is a dearth of information on the sediment flux to be expected
when these oscillatory currents are exceeded. Basically there are two
mechanisms which cause sediments to be transported under waves. The
first arises because the oscillatory velocity is not symmetric in time,
the forward velocity (in direction of the waves) being greater when the
crest passes than the backward velocity when the trough passes. Thus
if the instantaneous transport is proportional to a high power of the
velocity there will be a net movement of sediment in the direction of
the waves even in the absence of a net drift of water at the bed.

The second mechanism arises from the drift current at the bed induced
by the waves, which can transport sediment in the wave direction. This
drift current is a consequence of the rapid attenuation of the
oscillatory current by viscosity in a thin boundary layer close to the
bed (thickness § = 0(v"%4/w"), v = kinematic viscosity, w = angular
velocity of the waves, 8 about 1 mm for a 10 s wave) and occurs
whenever there is a spatial variation in the amplitude or phase of the
oscillation above the boundary layer. The drift velocity outside the
layer, Batchelor (1967), is given by

U, =— 3 [d,“zv_v_ + 202 40 (6.1.1)
d 8w = dx Wodx

in which the orbit velocity at the bed due to the waves is given by

U, cos(wt—kx) ..(6.1.2)
with

uy, = 7H/(T sinh kh) ..-(6.1.3)
H = wave height

w = angular velocity of the wave = 2m/T

k = wave number = 2m/(wave-length)

T = wave period

cy = wave velocity = w/k

r =—kx ...(6.14)

Thus for waves in deep water with uy, = constant

2

Uy=% 2 = %, (Kfw) (6.15)

Cw

It is remarkable that Uy is independent of viscosity which is essentially
a kinematic effect due to the variation in phase of the orbital velocity
along the wave. (Uq must be distinguished from the drift velocity of a
“water” particle under the waves which can occur in the absence of
viscous effects.) Near the bed this drift is given by

%(u? fc ....(6.1.6)

W)

which happens to be of the same form as Ug. Thus the particle drift
velocity (Wg) in the presence of viscous drift is given by

Wy= Uy + % udfey (6.1.7)

The drift velocity given by (6.1.5) is however very small. For example,
a wave 2 m high of 10 s period in 10 m depth of water gives Ugq = 0.058
m/s, compared with an oscillatory current at the bed uy = 0.85 m/s.

The variation of drift velocity in depth has been calculated by Longuet-
Higgins, 1953, taking account of viscous boundary layer effects at the
surface. Good agreement has been found with experimental results
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6.2 Channel infill when tidal
currents weak

(Russell and Osorio, 1958, over the range 0.7 < kh < 1.5) despite the
fact that the experiments were carried out with waves which generally
produced turbulent flow at the bed. In all cases there was a down-wave
drift at the bed and surface with a return flow in the opposite direction
at intermediate levels. Similar profiles have been found in
experiments with waves propagating up gently sloping bottoms (slopes
1:10—1:40) in deep water (Bijker et al, 1974) although the drift
velocities were smaller than those given by equation (6.1.7).

Published equations relating to sediment transport due to wave motion in
deep water are empirical or semi-empirical and have generally been derived
from small scale experiments. An exception is that obtained by Rance,
1968, from an analysis of experiments in a deep flume (depth 5 m), in
which the movement of 0.2 mm sand was derived from movement of

the centroid of fluorescent particles subjected to a range of wave condi-
tions. The transport equation was originally expressed in dimensionless
parameters but for fine sand it may be written

S,, = 0.034 }% ug, (62.1)

in which Sy, = sediment transport rate in cubic metres per second of
compacted sand per kilometre of wave crest and T, h, uy, are expressed
in m/s units. Tt will be noted that the transport decreases strongly with
increased depth due to the reduction of the orbit velocity (Up,,y) near
the bed so that a channel subject to waves will infill at a rate given by
the difference in the transport rates appropriate to the depths inside and
outside the channel. More recent data from small scale experiments
(Kamphuis, 1973) is in reasonable agreement with this formula.

Of course the transport formula (6.2.1) applies to a horizontal bed.

In applications to infill calculations for channels on a sloping foreshore
it is usual to resolve the flux Sy, (which is normal to the wave crests)
to components normal (Sy,;) and tangential (Sy,¢) to the bed contours
and to assume that the slope of the foreshore is in equilibrium with Swn
so that infill is due to Sy, only.

The equation (6.2.1) applies only to waves of a single frequency whereas
seas in nature consist of a spectrum of waves of different frequency and
height. Usually seas are defined in terms of a significant wave height
(Hg) and wave period (Tg), the first quantity being equal to the mean of
the highest one-third of all waves and the latter being equal to their
mean period. Generally, the significant wave heights and periods are
substituted in equation (6.2.1) to determine sediment transport rates.

In order to determine the annual siltation, it is necessary to consider the
local wave climate over a long period (one year for example). For this
purpose long-term, deep water wave-height statistics are required to give
the annual distribution of significant wave heights, periods and directions
for the site in question. These waves are then routed into the shallower
water near the channel using standard wave refraction procedures
(Abernethy and Gilbert, 1975) to determine the significant wave height
and direction at different points along the channel.

In some situations, channels may be cut through shoals which are of
sufficient height to cause the larger waves to break. As the waves move
into shallower water the larger ones will continuously spill energy into
turbulence thereby reducing their height to a value dictated mainly by
the local depth, bed slope and wave length. In shallow water, waves are
generally sufficiently long for their velocity to be dependent only on the
depth (non-dispersive) so that single waves will tend to move as solitary
waves without change of form. Thus those waves below the
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Plate 1 Refraction of dye plumes over channel (H = 1.4)

Channel inclination 20°
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Plate 2 Incipient rippling over channel (H = 1.4)

Channel inclination 10°



Plate 3 Diffusion of dye plumes along channel at 0° (H = 1.6)






6.3 Gravity effects in the
presence of waves

6.4 Infill with waves and
currents present

breaker height will be unaffected while the larger waves which originally
exceeded this height are reduced to the breaker height.

Abernethy, 1971, using an empirical formula for the breaker height, viz:

Hy = 0.1 &, tanh (kh + 37 tanay,) ..(6.2.2)
Ay = %If tanh (kh + 37 taney) ...(6.2.3)
m

where tanay, = bed slope, has calculated the effective wave height which
must be substituted in (6.2.1) to derive the sediment transport rate
for such situations.

Changes in water depth due to the tidal rise and fall have a direct effect
on the transport as described by equation (6.2.1) and also an indirect
effect by allowing larger waves to reach the channel at high tide without
breaking. Both these effects must be taken into account when determin-
ing the siltation rate.

A procedure, taking account of the factors mentioned, has been used to
estimate the infill of a channel dredged through an offshore bar at

the entrance to Phitti Creek, which serves as a gateway to a new port
(Qasim) to the east of Karachi (Abernethy, 1975). The channel will

be subject to high wave activity during monsoon months and knowledge
of likely infill was important in order to decide on the overdredging
necessary in non-monsoon months to maintain a minimum given depth.
The predicted annual infill was about 40% of that subsequently estimated
from an analysis of the measured infill into a trial pit. However, the
first prediction was based on insufficient wave data and the wave refrac-
tion techniques used to predict wave heights approaching the channel
have since been improved.

Equation (6.2.1) describes the transport of sand under waves over a
level bed. There will however be an increase in transport down the side
slopes of the channel due to gravity. If, as seems likely, the transport
under waves is linearly dependent on bed slope (positive downwards)
for small slopes, one would expect a “diffusive’” type widening and
shallowing of a channel due to gravity (as discussed in section 4.1) as
well as a lateral movement of the channel due to the convected flux
changes governed by equation (6.2.1). Such effects would be additional to
the diffusive type spread of the channel due to lag effects which occur
if an appreciable fraction of the bed sediment moves in suspension in
wave induced currents. However, the latter effects may be small when
waves predominate.

Little is known about the way in which sediment transport in currents

is affected by wave action, although field observations suggest that quite
small waves in moderate depths can significantly increase the concentra-
tion of suspended sediment over beds of fine sand. Byker (1971) in
discussing the transport along a foreshore by waves and currents suggested
that the distribution of the concentration of suspended sediment is
unchanged throughout most of the depth when waves are present, but that
the concentration near the bed is increased due to the additional stirring
action of the waves.

To quantify the transport of sediment with waves present B?/ker used
equation (2.3.6) with the bed transport (Sp) increased due 'to the waves.
Sp may generally be written
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Note:

For waves which are long com-
pared with the depth, at normal
incidence the ratio of the wave
height over the channel to the
incident wave height is

ZCWO/(CWO + cwl} ....(6.4.8)

in which ¢y, and ¢y, are the
wave velocities over the banks
and over the channel respec-
tively (Lamb, Hydrodynamics,
6th Edition, p 263).

When waves are propagating
towards the channel at a small
angle of incidence, since they
travel more slowly over the
banks than over the channel
they will be totally reflected
when the angle of incidence is
equal to the critical angle given
by sin’! (Cwo/Cw, )

However, at larger incidences
(near grazing angles) the
increased wave activity along the
channel edge is likely to act as
a source of energy radiating
waves across the channel, With
waves of sufficient steepness
along t{’le channel edge, shorter
waves gt harmonics of the main
frequency may occur over the
channel.

Sp = Usd, f(6,A/d)) w.(6.4.1)
in which the term Uy d;,, represents the convection of the particles
engaged in bed movement and the function f(6,A/d,) represents a
“stirring” parameter which governs the concentration near the bed.

In equation (6.4.1)

0 = Us/g(s—1)d ..(6.4.2)

A = hydraulic roughness of the bed forms

Sp = volume flux of sediment engaged in bed movement per second per
unit width normal to the flow.

Uy = friction velocity ('r/p)%, T = total shear stress at the bed and p is
the water density.

dm

S

size of sediment particles

specific gravity of sediment.

It may be noted that over self-formed beds the bed roughness (A) is
mainly caused by ripples or dunes and may itself be a function of 8
and the Reynolds number of the particles, Re = Usdp,/v. Generally
the depths are sufficiently great for the surface boundary to have no
significant effect on the flow at the bed.

Byker applies Frijlink’s empirical formula for the transport of sediment
at the bed in currents alone, to quantify the bed concentration due to
stirring, (Appendix 3). Omitting the ripple factor in the convective factor
this formula gives

f(8,A/D) = 5 exp [-0.27/u 0] ...(6.4.3)
and Byker identifies this function with the stirring factor whose value
will be changed when waves are present. Thus if fy, denotes the value

of 6 with waves present and 0, denotes the value of # in currents alone
he suggests that (6.4.3) should be replaced by

fw(f)w,/\w/dm)= 5 exp [-0.27/u,0,,] ...(6.4.4)
with

= 2 2 /-2
O = 0 [1 + %% (uy,*fu )] ....(6.4.5)
in which
u,, = amplitude of orbital velocity at the bed
Ec = mean current velocity
¢ =018 u/Us and ...(6.4.6)
By = By

Using these relations the transport (Syy,) of sediment engaged in bed
movement under waves and currents, viz:

Spw = Us d fw ...(6.4.7)
can be determined and hence the near bed concentration, Cpw» and the flux
of sediment in suspension (Appendix 3).

To determine the initial infill rate from equation (3.1.9), the flux has to
be calculated for the currerit and wave conditions in the approach flow

(Sow) and for the changed current and wave conditions over the channel
(S, w)- For the latter it is important to take into account the change of
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wave height over the channel due to wave reflection as well as the
reduction of orbit velocity due to the depth increase (see Note).

In a tidal situation, a channel under storm conditions is likely to change
its shape in the manner discussed in sections2 and 3, with an effective
diffusive coefficient given by c'L (equations (3.1.10) and (3.1.11) in
which ¢’ = 8Syy,/0Z, Syy, being the component flux normal to the
channel under the combined action of waves and currents). For a channel
in line with the flow one might expect a gravity infill at the rate given
by (4.1.2) but with Sy, modified by the presence of the waves Sy,
equation (6.4.7).

6.5 Stability of bank slopes
under waves

6.5.1 Sand beds
When breaking or near breaking waves pass over a sandy bed it is known
that just prior to the passage of the crest the bottom of the bed can “explode”
(Madsen, 1974). It appears that bed failure is due to the large horizontal
pressure gradients associated with the high water surface slopes of the
breaking waves rather than the vertical flow within the bed induced by
these gradients. It is easily shown, by considering the horizontal forces
on a thin slice of sediment at the bed-water interface, that incipient
failure can occur at a critical horizontal pressure gradient given by

+
1 9P ) _ PP

= tanA: ..(6.5.1)
pg 9X ¢ p

1

in which

py = density of the saturated bed sand
p = water density

+
]
(ap—b) = critical excess pressure gradient at the bed due to the wave
X c
and \; = angle of internal friction

For a horizontal bed of relatively loose sand in sea water the value of
the right hand side is about 0.5; thus the waves must be quite steep

for failure to occur. (The water surface slope of the wave will be
comparable with the left hand side of equation (6.5.1) in shallow water.)
The predicted failure should be interpreted as “momentary” in that it
will take place for the short period of time during which the critical
gradient is exceeded.  Due to inertia the failure may not cause an
appreciable parcel of bed sand to be forced out of the bed. Nevertheless
the failure causes a slight motion in which individual grains slide past
each other and exchange positions. Madsen’s experiments suggest that
grains could be disturbed in this way over a thickness § = 0.11 Hg,
where Hp is the height of the spilling wave.

On the side slopes of a channel, if the waves approach the channel
normally, the horizontal gradients for failure would be expected to be
wereed  less in the ratio

high head

\'_g!._‘?m directian e

sand bed liable to’ .xp-lode [I_(tanasf tan?\i)]
where ag is the slope of the sides.

For tan ag = 1:12, the right hand side of equation (6.5.1) is then
reduced to about 0.42 which is only a little less than the maximum
surface steepness for a deep water wave (tan 30° = 0.58). Thus it is
unlikely that the sides of channels can fail due to this cause except
perhaps in areas where channels are dredged through high shoals exposed
to breaking waves.
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6.5.2 Cohesive beds

7 APPLICATION OF TRACERS
TO ESTIMATE INFILL

Under storm conditions, pressure pulses due to waves have been thought
to induce catastrophic instabilities in soft gently sloping cohesive sediments
(Mitchell and Hall, 1974). Such instabilities could cause failure along the
edges of steeply dredged channels. Two mechanisms have been put
forward to explain such failures; one by Henkel, 1972, and a second by
Wright and Dunham, 1972. In both cases, failure is assumed to occur when
the horizontal pressure gradients under the waves near the bed (ap+/ax)
together with gravitational forces exceed the resisting forces derived from
the strength of the undisturbed sediment. Thus the failure mechanism is
akin to that for fine sand, but with soft sediments the angle of internal
friction is considerably less. Henkel suggested that failure occurred by a
sequence of circular arc slips whereas Wright et al attributed failure to
excessive shearing stresses being developed at some depth in the soil.

Consideration of static forces shows that sediment on a slope will fail
when the slope (B¢) is equal to a value given by

sin26p = 2C, /7' Zg .(6.5.2)
in which

CU.

o
Y

undrained shear strength of the sediment at depth Z;

submerged weight per unit volume averaged over the depth Z¢
Zp = depth of sliding.

For simply sedimented soil (that which is allowed to settle in a quiet
state) it appears that the undrained shear strength at depth Z below the
surface of the bed may be approximated by

C, = AZY .(6.5.3)

where Ag is a constant dependent on the degree of consolidation and
nature of the soil. Thus at any degree of consolidation the failure angle
depends simply on the value of Ag.

Mitchell et al, 1972 and 1974, have studied the stability of bed slopes
(8,) under wave action in the laboratory and compared the results with
static tilting tests as well as vane shear strengths made before and after
wave action. When B, < 8¢/2 no well defined slope failure occurred but
under relatively high sub-surface pressures the bed gradually flattened by
down-slope movement of sediment. At higher slopes, failure
occurred by a mass movement of sediment down to considerable depths
within the bed when the variation of pressure on the bed due to waves
(calculated from linear theory) exceeded 6pc+, given by

8p," ~ 2.5 [YZ] [sin2B;—sin2p,]/2 (6.5.4)

This failure was attributed to a loss of strength by “wave remoulding” as
revealed by the tilting and vane shear tests. When the ratio of depth to
wave length was less than 0.4, failure was marked by cyclic movements and
fissure patterns resembling circular arcs. In the experiments the depth of
failure was considerable (Z¢g/A = 0.2—0.6) and increased with sub-surface
pressures, in general accordance with the relation proposed by Henkel.

To assess the likelihood of such failures Mitchell suggested that in situ
field measurements of strength profiles should be carried out both before
and immediately after storms.

As explained in section 2.4, infill estimates are usually based on standard
type field measurements of sediment flux taken at frequent intervals
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Figure 11
Spacial tracer distributions

(half-hour) over several tides including springs and neaps. This method
has the advantage that the flux can be related directly to the current,
which allows both the flux approaching the channel and that appropriate
to the changed current pattern over the projected dredged channel to be
estimated, the difference giving the infill rate. Its main disadvantage is
that it cannot be used in periods of high wave activity when conditions
are too rough for survey vessels to operate. Thus its application is of
limited utility in situations where the tidal currents are weak and infill
occurs mainly when waves are present. In these situations alternative
methods supplementing or replacing direct flux measurements are
necessary.
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Spacial tracer distribution; lines of equal radioactivity
denoted by the log of the count rate

For many years radioactive tracers have been used to indicate the direc-
tion and magnitude of sediment drift in estuaries and offshore regions.

Usually the tracer has a fairly long half life so that it can be tracked
for several weeks or months. In fact, the tracking period is more

dependent on the dispersal of the tracer particles by the tidal currents
than on its half life, so that from the point of view of embracing
storm periods it is probably best applied in situations where the
currents are weak.

To determine the sediment drift, a small quantity of sediment particles
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is made highly radioactive and is released at the bed when the currents
are low. The subsequent movements are mapped at different times over
a period of several days or weeks. Contours of equal activity are then
drawn and subsequently interpreted in terms of the proportions of the
original weight of injected sediment, Fig 11. Core samples are taken,
usually near the point of injection, to determine the different depths
to which the particles become buried in the bed. The latter are used to
estimate the thickness of the bed layer involved in movement.

In practice, injections are made at several points over the area of
interest and mappings are carried out concurrently. Generally from each
injection point the centroid of the activity distribution moves in the
direction of the net tidal drift at the bed, the sediment transport being
seldom balanced in the ebb and flood directions. The contours are spread
about this point in approximately elliptical shape, the tracer particles
being dispersed more in the direction of the currents (flood and ebb
directions) than normal to it.

The net drift at each point is equal to the velocity of the centroid
multiplied by the thickness of the bed layer. However, as already
explained in section 2, for sediment travelling mainly in suspension,

infill into a dredged channel is dependent on the sum of the settlements
in the channel during the ebb and flood tides, rather than on the net drift.

If, for example, sediment down to a certain thickness d’ in the bed is assumed
to move through average distances ¢; and 2, during the flood and ebb tides,
a channel normal to the flow will intercept quantities €,d’ and 2,d’
respectively. Thus, if the channel has a trapping efficiency

n (m = 1, for the channel behaving as a perfect trap) the rate of infill

per unit width perpendicular to the flow will be

I =n@® +%)d per tide by volume -(7.1)

ie, the sum of the average transport rates on ebb and flood multiplied
by the trapping efficiency.

In these situations in which the sediment motion on the ebb and flood
is nearly balanced, I = 2n%,d’ (approximately) and the problem is then
reduced to determining ¢; and d' and the trapping efficiency. The
quantity (d') may be identified with the average depth below the mean
bed level at which tracer particles are found from core samples. The
length £; must be inferred from the distribution of tracer particles after
a number of tides, since the time required to make a survey does not
permit its measurement after a single half tide.

It is usual to assume that £; represents the average movement on a
typical ebb or flood tide. The distribution of tracer after several tides

is calculated by integration assuming that all tides are similar. Comparison
of the calculated distribution with that measured then enables the value
of £; to be obtained. However, the result depends rather critically on the
assumed sediment distribution after a single half tide.

To illustrate, suppose that after one half cycle the fraction of the
sediment deposited on a strip of length dx originally in a strip of unit
length normal to the flow is

f(x)dx w(7.2)

so that

f0°° fx)dx = 1 (7.3)

and

0 =/ dx J Fx)dx! o (7.4)
(¢] X

Now suppose the sediment in the original strip is labelled with tracer
of volume Vo. After one half cycle its distribution is given by
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Vo f(x)dx ....(7.5)
and after one tide (two half cycles) its distribution F;(y) will be
symmetric (F;(=y) = F1(y)) and given by
-0
Fi(y) = Vo [ f(—x) f(—x + y)dx ....(7.6)
—00

The variance of this distribution (0V2) will be given by
O'VZ = f Fl(y) 5 y2 . dy .-..(7.7)

—00

oo )

= [ y*dy [ f(—x)f(—x + y)dx ..(7.8)
[s) —00

After n similar tides, the tracer distribution Fj(y) may be obtained from
the recurrence relation

(=]
Fa) =4 _Fa1) (X) Fi(X + y)dX .{(7.9)
and its variance is
2
oy ...(7.10)

whatever the form of f(x). Thus the measurement of the variance does
not enable the value of 2, to be obtained from equation (7.4) unless
some assumption is made about the form of f(x).

In theory it should be possible to obtain more information about the
form of f(x) by taking fourth and higher moments of the tracer
distribution but in practice the spread of the tracer is so great that
these become impossible to measure with precision. In order to proceed
one is therefore obliged to assume a form for f(x) which may be
justified either by physical arguments or by comparison of predicted
and measured distributions.

Hubbell and Sayre, 1964, produced a simplified model of the
sediment motion in uniform, uni-directional flow. The particles
moved in a series of steps such that at each step the fraction of
sediment leaving a transverse strip was exponentially distributed. If a
similar distribution, viz;

fx) = e X/

is also assumed to apply to the distribution of sediment from a strip of
the bed after one half tide, it is easy to show that

(7.11)

9 =g (7.12)

and the variance of distribution of tracer from an initial point injection
after n tides will be given by

0V2 = 28,%n w(7.13)
or
% = Voy/m/2 (7.14)

In an unbalanced tidal situation, having different length scales €1, £ on
the flood and ebb tides, the centroid of the distribution of tracer injected

at a point at slack water will be displaced a distance given by

X = (¥, — 2) per tide .{7.15)
and tracer will disperse about this point with a variance given by
@)% + 25,2) per tide. ..(7.16)
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Thus the tracer distribution allows both £, = €} and ¢ = £, to be
obtained and hence the infill rate.

The factor 2 appearing in equation (7.13) and the results given in (7.15)
and (7.16) depend on the form assumed for f(x). In a particular
case it is preferable to assume a form which gives a good fit to
the tracer distributions obtained after a number of tides. [A
procedure of this type was followed to predict the rate of mainten-
ance dredging for a navigation channel in Botany Bay (Crickmore,
1967)]. It is interesting to note that whatever the form of f(x) it
would be expected that after n similar tides the tracer would be
approximately distributed about the centroid as though it were subject
to a constant diffusion coefficient, ie the concentration of tracer at
distance x/+/n from the centroid will be proportional to n% or

Fi(x—x) = vn F, (X_%) (approximately) -(7.17)

Such a relation allows F;(x) and hence f(x) to be approximately deter-
mined for a “typical” tide.

However, there are two main complications in this procedure. The first
is associated with the irregularity in size of the bed forms (ripples and
dunes). As these forms progress, over a period of several tides, the tracer
particles become buried to deeper levels in the bed as the larger forms pass
over them. Experiments in unidirectional flow in which the flux of sedi-

ment is constant have shown that the velocity of the centroid of the
tracer distribution decreases with time as the depth of penetration

increases. The product of this velocity and the depth of penetration is
equal to the sediment flux (Crickmore and Lean, 1962). Similarly in
tidal situations, it is found that the depth to which tracer particles
become buried gradually decreases. This is reflected in a gradual
reduction both in centroid velocity (in unbalanced tidal situations) and
in the variance change per tide, ic the length scale of the distribution.
Thus, an analysis seeking to determine the function F;(y) for a single
tide (and hence f(x)) from the distribution after a number of tides
must take account of this feature. One could speculate that it might
be sufficient to scale down the measured radioactivity at a point and
increase its distance from the injection point in proportion to the ratio
of the depths of penetration at the time of survey to that after one
tide.

The second complication arises from the effects of storms. High wave
activity can lead to the tracer becoming buried deeper in the bed, due
either to the creation of larger bed forms or to a general dilatation of
the bed brought about by the oscillatory pressure gradients at the bed.
Where tidal currents are strong as compared with drift currents generated
by the waves, they will still be the main agency for conveying sediment.
To obtain representative values of £,,2, the derived values should be
increased in proportion to the increased depth of penetration during the
storm period.

So far tracer methods to determine infill have only been applied to
situations where the proposed channel forms a highly effective trap
(n = 1). In other situations the efficiency must be estimated.

If the effect of waves on the trapping efficiency of the channel is
ignored, the trapping efficiency may be obtained from standard type
measurements of sediment flux and currents taken during calm condi-
tions together with a formula such as (3.1.9) which gives

n=1[1- @&y [ - %Y, BT, <B,T, w(7.18)
B, T,

To take account of the reduced wave action on the bed of the channel,
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8 TRIAL DREDGES

as compared with that outside, T, and T, could be modified according
to equations (6.4.1) and (6.4.4).

Trial dredges are the most obvious method for determining the infill
rates of proposed navigation channels. Usually one or more areas are
dredged on the line of the channel to a depth similar to that proposed.
The rates of infill are observed over an extended period by comparing
successive surveys. Accurate methods are required both for position
fixing and for echo-sounding to obtain reliable estimates. Usually sections
are surveyed well beyond the limits of the dredged area to check the
stability of the surrounding bed and to aid in positioning the dredge.
Also samples of the bed sediment inside and outside the area are taken
during infilling.

Ideally the depth, width and side slopes of the trial dredge should be
the same as those of the proposed channel and its length sufficient to
suppress end effects. i

End effects constitute one of the main uncertainties in the application

of the method since neither the flow nor the flux changes over a depression
of limited length will be the same as over a long channel. The trial dredge
will attract flow towards itself over its ends leading to higher
velocities than would occur over a channel normal to the flow

and lower celocities than for channel in line with the flow. In

order to estimate the effect of the restricted dimensions, let us con-
sider the case of a dredged hole elliptic in plan and of constant depth

(h;) in a uniform flow (velocity Ug, depth hg) parallel to the major

axis of the ellipse. We assume that the changes of velocity head are

small enough to be ignored so that the flow is entirely governed by

bed friction and that this friction can be linearised. It may then be

shown (Appendix 7) that the velocity (Ug) over the elliptic depression

is uniform and given by

U 2
N a a 2a

in which a, b are the major and minor areas of the ellipse.

We note that when a > b, corresponding to an in-line channel, Ug/U, =+/H
which is the result already obtained and when a < b, corresponding to a
normal channel, Ug/U, = 1/H. Values of Ug/U, for other values of a/b

are shown in Fig 12 together with model results (Whillock, 1973) for
velocity ratios over the centre of rectangular holes of length /width ratios

9.8 and 3.8. We see that for moderate values of H (1—1.5) the length/width
ratio must exceed 8 for the velocity ratio to approximate (within 5%) the
value over a long channel. Similarly for a perpendicular channel the width/
length ratio must exceed 8 for the velocity over the ellipse to fall to within
7% of that over a perpendicular channel.

With rectangular holes in unidirectional flow, the velocity at the bed
showed a pronounced drop at entry which recovered along the length

but again showed a small drop at the downstream end followed by an
acceleration over the downstream edge. As might be expected, maximum
deposition occurred at the upstream end, increasing in extent during the
course of time. A similar result was obtained for trial dredges in an
estuary with a bed of fine sand in which the flow on the ebb and flood
was approximately balanced and parallel to the longer side of the trench.
It filled in at each end but showed little change in the middle during

a period of 7 months.

Generally the velocity changes over a trial hole are best determined by
small scale laboratory experiments. This information together with field
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Figure 12

Velocity ratio over an elliptic de-
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measurements of sediment flux allows an estimate to be made of the
infill of the hole (using the method outlined in Sections 2 and 3)which
can be compared with that inferred from successive surveys. Such a compari-
son lends confidence to the extrapolation of the measured hole infill to that
for the dredged channel. To the author’s knowledge this procedure has
been carried out in only one case, viz that of a trial hole in the

Mouse Cut in the Thames estuary when the flow was inclined at 20°

to the proposed channel. In this case the estimated infill was about 25%
less than that measured. However, the discrepancy may have been due

to progressive infilling from the ends, which encroached on the central
part of the hole giving a larger infill than would have occurred in a
longer channel.

Channels dredged in offshore locations usually have little effect on the
flow approaching them but in more limited areas, eg in inner estuaries, the
dredged depths may cause a significant redistribution of the currents

and in even more confined areas alter the overall currents in the estuary.
In such situations it is usual to employ hydraulic or mathematical
models to estimate the changed flow pattern. Both types of model

are essentially two-dimensional since although in hydraulic models the bed
friction can be adjusted to give tidal levels and average velocities similar
to those occurring in nature, the large depth exaggerations (necessary

to ensure turbulent flow in the model) distort the velocity profiles in
depth. In cross-flow over a channel, for example, the exaggerated bed
slopes can lead to flow separations (Section 10) where none exist in
nature. However, flow reversals behind sharp lateral constrictions at the
sides of estuaries and jetties, which can occur at the outlets of some
estuaries, are probably better accounted for in hydraulic models than in
conventional mathematical models. The latter basically solve the two-
dimensional equations with bed friction included but without the
addition of vorticity source terms which accompany sudden changes of
geometry.

Early hydraulic models often had beds of sand or lightweight particles
to determine the general shoaling and scour patterns consequent on
large scale changes in estuaries and useful qualitative predictions have
sometimes been made by such means. Similar predictions have been made
by means of mathematical models using the equation of continuity for
the sediment (equation (2.1.1)) and an empirical equation relating the
sediment flux to mean velocity. The prediction of infill over a dredged
channel depends on more detailed reproduction of the flow pattern in
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depth and the response of the bed silt to the flow. In hydraulic models,
apart from the error in velocity profiles just mentioned and the effective
foreshortening of the channel in terms of depth, the scouring properties
(or erosion velocity) depend upon the size of the bed forms which in turn
determine the turbulence and shear at the bed. However, bed forms on mobile
beds in models do not develop to scale and they are often similar in size

to the incised depth of the channel. This will alter the flow geometry,
and the scour, which is probably a function of the energy loss over

the channel, will be greater and hence the deposition less over the
channel than would occur over the natural channel. While mathematical
models do not suffer from this limitation, they demand a knowledge

of the factors governing the flow structure, its inter-relation with the

bed and scour rates, which we do not at the moment possess. Such
knowledge can only be obtained by further experiment.

Hydraulic models with fixed beds of smaller areas are sometimes used to investigate
flow patterns in tidal situations. These have the advantage that provided
they are constructed to a large enough scale the exaggeration can be
minimal and the velocity profiles in depth more representative. Such
models are particularly useful where tidal currents are weak since the
convected drifts generated mainly by wave momentum effects in inshore
areas can be reproduced. However, the problem of interpreting the
currents in terms of sediment flux still remains since the scaling laws
which describe shoaling in channels when waves are present are not yet
identified. Thus we are obliged to apply equations of type (6.4.1) and
(6.4.3) pending more accurate data describing the sediment flux under
tidal and wave conditions.

10 DISCUSSION The methods for determining infill of channel exposed to tidal currents
are discussed in sections 2 and 3, where it is assumed that the distribution
of velocity and the turbulence properties in depth at a point in the
channel are the same as that which would exist in uniform flow at the
same depth and mean velocity. However, energy losses initiated in the
expanded flow over the upstream face will generate additional turbulence,
and over the bed of the channel the velocity distribution and reduced
mean bed shear will only slowly revert to that for uniform flow. The
effect of the increased turbulence is to increase the fluctuations of bed

“shear at a point and hence the erosion rate. This causes lower deposition
in the channel than would otherwise occur (O’Connor, 1975). In an
unbalanced tidal flow, the upstream slope (referred to the dominant drift
direction) will get steeper as in Fig I, and when the slope exceeds about
1:10 the main flow will separate from it and re-attach itself at a distance
of about 7 (h; ~hg) from the upstream edge, leaving a slow moving
recirculating flow region between the slope and the main flow. This
region is likely to behave as a trap for sediment falling from suspension
and moving in contact with the bed, thus increasing the deposition.

Beyond the re-attachment point the turbulence is greater but the bed
shear less than that appropriate to steady parallel flow. These quantities
only slowly recover — in a distance of the order of 20 (h;—ho) (Tani
1968, Bradshaw and Wong, 1972). There is no evidence to show how the
erosion rate is affected in such situations, although White, 1940, demon-
strated that turbulence is an important factor. He conducted an experi-
ment with venturi flow over a flat bed of sand and observed that bed
movement first occurred in the more turbulent flow in the expansion
downstream of the throat. This lack of information concerning the
relation between the erosion rate, bed shear and turbulence is probably
the chief impediment to progress in predicting infill rates. A field method
of measuring such a relation seems to be outside the range of present
techniques but useful information might be obtained in the laboratory
with expanded flows over naturally formed beds. For cohesive sediments,
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11 CONCLUSIONS

where the beds are usually flat and sediment is taken directly into
suspension without re-deposition, tracer methods would seem directly
applicable provided the difficulty of incorporating the tracer sediment
with the bed could be overcome.

It is desirable to have certain additional information to quantify infill.
As described in Section 4, gravity can be an important factor but
there is little published information on the way bed slope affects
erosion and bed forms where fine sands are taken up into suspension.
To study such effects laboratory experiments with sandy beds inclined
transverse to the flow are clearly desirable.

When both waves and currents are present, the position is also unsatisfactory
since field measurements of erosion rates or sediment flux have not been
made even for level beds and we are obliged to rely on scaling factors
obtained from model experiments to enable calm weather measurements

to be extended to storm conditions. Since the bed forms in model
experiments seldom develop to scale such extrapolations are dubious.
Simultaneous field measurements of bed forms and concentrations of
suspended sediment close to the bed with a self-recording meter to
quantify the stirring function f(6 , A/d;,) (equation (6.4.1)) would be
valuable.

Finally, although the methods outlined in Sections 2 and 3 have been

used to estimate the infill of channels there is no recorded case where
such predictions have been compared with the subsequent maintenance
dredging. Occasionally more limited comparisons have been made

between predicted infill and that measured in a trial trench with fairly
encouraging results but it would be valuable to compare the infill predicted
from conventional flux measurements, supplemented by tracer experiments,
with the dredging rates for an existing navigation channel.

To estimate the maintenance dredging required to prevent infill under the
action of tidal currents, for channels at large angles to the flow (90° — 30°
approximately) it is probably sufficiently accurate to assume that for the
base flow over the channel the velocity component tangential to the
channel is constant; thus over the channel, the flow will be refracted and
the velocity between adjacent stream lines will diminish. The infill rate

can then be determined approximately by the application of equation
(3.1.9), once the sediment flux at each phase of the tide is known. The
latter is best obtained from measurements in the field.

A more accurate treatment, which has not so far been attempted, would
require first, an integration of the flow equations over the channel,
taking account of the velocity variation in depth and secondly an integra-
tion of equation (2.2.3) with the boundary conditions at the bed defining
the way in which the rate of erosion (E) depends on the bed shear

and turbulence.

Since the reductions in velocity and sediment flux are smaller when the channel
is less inclined to the flow it is evidently an advantage to reduce the

angle of the channel as much as possible, ie maintenance dredging can be
reduced at the expense of greater capital dredging. Although the oblique
channel is longer the reduction in sediment infill more than compensates

for this increase in length.

For broad channels at small angles to the flow with gentle side slopes the
reduced resistance over the channel due to the increased depth becomes
important. Experiments indicate that for a given width, when the depth
ratio exceeds a certain value the bed velocity averaged over the channel
can be greater than the approach bed velocity. This value decreases with
angle and width and channels with greater depth ratios in balanced or
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nearly balanced tidal situations would, in the short term, be self-
maintaining or eroding. In the long term, in such cases, it seems likely
that the sediment eroded from the channel will build up the banks
causing the local flow to refract towards the channel so increasing the
effective angle of incidence and arresting erosion.

Channels dredged along the flow lines will infill mainly due to gravity.
Sediment moving in close contact with the bed along the edges of the
channel is subject to a gravity component causing it to be deflected
towards the channel; the rate of infill due to this cause can be estimated
approximately from equation (4.1.2) together with a “bed transport
formula” relating the transport of sediment along the bed to the flow
variables (velocity and depth). A similar gravity infill will occur in
channels at a small angle to the flow.

Pressure changes due to the presence of suspended particles will tend to
produce gravity currents towards the channel near the bed with a return
flow at the surface and hence a net inflow of sediment. This could be
an important factor causing infill in situations where the currents are '
weak and the suspended silt is mainly confined to a thin layer close to
the bed.

In principle, the estimation of the rate of infill of channels dredged
through beds of fine (cohesive) sediments is simpler than for cohesionless
sediments in that erosion and deposition occur in distinct phases in the
tidal cycle. When the bed shear exceeds a certain threshold value (7o),
unlike cohesionless sediments, the net rate at which the bed erodes is
independent of the quantity of sediment in suspension. When the bed
shear is less than a lower threshold (rq < 7.) deposition occurs at a

rate which is proportional to the concentration of sediment in suspension
near the bed. For shears intermediate between 7 and 7q it is usually
assumed that neither deposition nor erosion takes place. In some cases
the fall velocity of the sediment flocs is so small that the concentration
of suspended sediment changes fairly slowly during a tide so that
deposition in the channel can be obtained by differencing the quantities
of sediment exchanged with the bed during the deposition and erosion
phases over the tide.

The main problem in carrying out this procedure is that of quantifying
the erosion and deposition rates. This involves the evaluation of 7 and
74 and the factor of proportionality M (equation (6.1.1)) by laboratory
measurements and has in fact been carried out for comparatively few
sediments. The other factors, namely the concentration and settling
velocity of the sediment flocs, may be obtained directly from

field measurements. The shear over the bed of the channel is
usually inferred from directly measured velocity profiles over the
undisturbed bed.

Formulae are available which relate the flux of fine sand to the wave
induced oscillatory currents near the bed both without and with tidal
currents present. The former is thought to be sufficiently firmly based
to allow predictions of infill by extrapolation of measured infill rates
from field trial dredges. When currents are present the additional bed
shear caused by waves increases the rate at which sediment is eroded
from the bed and convected by the current. Over a channel the added
bed shear, which is dependent on the oscillatory current at the bed
induced by the waves, will diminish due to the increased depth and
the reduction of wave height caused by wave reflection so that the
sediment flux will diminish and a larger infill occur than when waves
are absent. The formula available relating the sediment flux to the
current and the oscillatory bed velocities under waves is based on
model experiments and there is an urgent need for field measurements.

49



12 REFERENCES
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the same environmental conditions as the channel although for a limited
time. Ideally the depth and width of the trial dredge should be the same
as that of the navigation channel and its length should be great enough
to avoid end effects. However, the method is expensive and is only
practicable where dredgers are readily available. Occasionally the costs
can be reduced by using smaller trial dredges (smaller depth and width
than the projected channel) to “calibrate” infill determinations by conven-
tional methods. Simple considerations suggest that for the flow and
infill over the central part of the dredge to be similar to that over a
long channel its length/width ratio should exceed about 8.
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comparison of these methods of estimating infill rates with the known
dredging rates.

Abernethy C L, Estimate of siltation in approach channels, Phitti Creek.
Hydraulics Research Station, Wallingford, Report EX 575, 1971.

Abernethy C L, Trial dredging of Phitti Creek entrance. Hydraulics
Research Station, Wallingford, Report EX 698, 1975.

Abernethy C L and Gilbert G, Refraction of wave spectra. Hydraulics
Research Station, Wallingford, Report INT 117, 1975.

Antonia R A and Luxton R E, The response of a turbulent boundary
layer to a step change in surface roughness, Part I, Smooth to rough.
J Fluid Mech 48, part 4, 721-761, 1971.

Aris R, Dispersion of a solute by diffusion, convection and exchange
between phases. Proc Roy Soc 27, 252, 538-550, 1959.

Bagnold R A, Autosuspension of transported sediment; turbidity currents.
Proc Roy Soc A, 265, 315-319, 1962.

Batchelor G K, An introduction to fluid dynamics. Camb Univ Press,
359-366, 1967.

Byker E W, Longshore transport computations. Proc ASCE Journ.
Waterways, Harbour and Coastal Eng Div WWr 8546, 687-701, November
1971.

50



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Byker E W, Kalwijk J P and Pieters T, Mass transport in gravity waves
on a sloping bottom. Proc 14th Conf Coastal Eng, Copenhagen, 1,
Chap 25, 447-465, June 1974.

Bradshaw P and Wong F Y F, The reattachment and relaxation of a
turbulent shear layer. J F1 Mech 52, part 1, 113-135, 1972.

Carslaw H S and Jaeger J C, Conduction of heat in solids. Oxford
Clarendon Press, 2nd Edition, 1959.

Crickmore M J and Lean G H, The measurement of sand transport by
means of radioactive tracers. Proc Roy Soc A 266, 402-421, 1962.

Crickmore M J, The use of tracers to determine infill rates in projected
dredged channels, Proc Inst Civ Eng Symposium, London, 1967, Paper
no 7, 55-60, 1967.

Engelund, F, Instability of erodible beds. J Fluid Mech, 42, 225-244,
1970.

Engelund, F, Sediment dispersion inflow with moving boundaries.
Discussion of a paper by Cheng-Lung Chen, Proc ASCE Journal Hyd
Div, 98, HY4, 726-728, 1972.

Fredsoe J, Rotational channel flow over small three-dimensional bottom
irregularities. J Fluid Mech, 66, part 1, 49-66, 1974.

Fresdoe, J, Sediment of river navigation channels. Submitted to ASCE
for publication, June 1976.

Frijlink H C, Discussion des formules de debit solide de Kalinske,
Einstein et Meyer-Peter et Mueller compte tenue des mesures recentes
de transport dans les rivieres Neerlandaises. 2nd Journal Hydraulics
Soc Hyd de France, Grenoble, France, 98-103, 1952.

Gole E V, Tarapore Z S and Brahms S B, Prediction of siltation in
harbour basins and channels. Proc 14th IAHR Paper No 5, August 1971,

Harrison A J M and Owen M W, Siltation of fine sediments in estuaries.
Proc 24th TAHR Conf, Paris, Paper D1, 1971.

Henkel D J, The role of waves in causing submarine land slides,
Geotechnique 20, 1, 75-80, 1972.

Hubbell D W and Sayre W W, Sand transport studies with radioactive
tracers. Proc ASCE Jour Hyd Div 90, HY3, Paper No 3900, 39-68,
May 1964.

Hunt J N, Tidal oscillations in estuaries. Geophysical Jour of Royal
Astronomical Society, 8, No 4, 1964.

Kamphuis J W, Sediment transport by waves over a flat bed. lst
Australian Conf in Coastal Eng, 228-233, May 1973.

Komar P D and Miller M C, Sediment threshold under oscillatory waves.
Proc 14th Conf Coastal Engineering, Copenhagen, Chap 44, 756-777,
June 1974.

Krone R B, Flume s$tudies of the transport of sediment in estuarial
shoaling processes. Univ of California, Hyd Eng Lab, June 1962.

Lamble J, Methode de calcul approchee des ouvrages de decantation.
La Houille Blanche Special B, 744-756, 1958.

Lean G H, Settling velocity of particles in channel flow. Stochastic
hydraulics, Univ of Pittsburgh, Part 4, 339-352, May 1971.

Lepetit, J P, Stability of the access channel to the new harbour of
Dunkirk. Proc 16th IAHR, Report No A28, 224-230, 1975.

51



30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

Lighthill M J and Whitham G B, On kinematic waves, Part I and II.
Proc Roy Soc A, 229, 281-345, May 1955.

Longuet-Higgins M S, Mass transport in water waves. Phil Trans Roy
Soc A 243, 903,245,535-581, 1953.

Longuet-Higgins M S, The mechanism of the boundary layer near the
bottom in a progressive wave. Proc 6th Conf Coastal Eng, Chap 10,
171-193, 1958.

Madsen O S, Stability of a sand bed under breaking waves. Proc 14th
Conf Coastal Eng, Copenhagen, II, 776-794, June 1974.

Mehta A J and Partheniades E, On the depositioned properties of
estuaries’ sediments. Proc 14th Conf Coastal Eng, Copenhagen, II,
Chap 72, 1232-1251, June 1974.

Meyre-Peter E and Muller R, Formulae for bed load transport. Proc
2nd Congress, IAHR, Stockholm, June 1948.

Migniot C, Etude des proprietes physique de different sediments tres
fins et de leur comportement sans des actions hydrodynamiques.
La Houille Blanche, Nov 7, 591-620, 1968.

Mitchell R J, Tsui K K and Sangrey D A, Failure of submarine slopes
under wave action. Proc 13th Coastal Eng Conf, Vancouver, 2, Chap
84, 1515-1541, 1972.

Mitchell R J and Hall J A, Stability and bearing capacity of bottom
sediments. Proc 14th Coastal Eng Conf, Copenhagen, 2, Chap 73,
1252-1273, 1974.

O’Connor B A, Siltation in dredged channels. First Int Symposium on
Dredging Technology, E2, September 1975.

O’Connor B A and Lean G H, Estimation of siltation in dredged channels
in open situations. PIANC Leningrad, Section II, Subject 2, September
1977.

Odd N V M and Owen M W, A two layer model of mud transport in
the Thames estuary. Proc Inst Civil Eng, Paper No 75175 and discussion
1972.

Owen M W, Properties of a consolidating mud. Hyd Res Station, Walling-
ford, Report No INT 83, December 1970.

Owen M W, The effect of turbulence on the settling velocities of silt
flows. Proc 14th TAHR Conf, Paris, Paper D4, 1971.

Owen M W, Erosion of Avonmouth mud. Hyd Res Station, Wallingford,
Report No INT 150, Second Impression, Nov 1977.

Partheniades E, A study of erosion and deposition of cohesive soils in
salt water. PhD Thesis, Univ of California, 1962.

Partheniades E, Erosion and deposition of cohesive soils. Proc ASCE,
Hyd Div, 91, HY1, 105-139, 1965.

Partheniades E, Cross R H and Ayora A, Further results on the
deposition of cohesive sediments, Chap 47. Proc 11th Conf Coastal
Eng, London, 1968.

Rance P J, Sand transport due to wave action. Proc 10th Conf Coastal
Eng, Tokyo, Extra 6, 1-5, September 1968.

Rouse H, Engineering Hydraulics, John Wiley & Sons Inc. Proc 4th Hyd
Conf, Iowa, Inst, Chap XII, 799-803, June 1949.

Russell R C H and Osorio J D C, An experimental investigation of drift

52



51

52

53

54

55

56

57

58

profiles in a closed channel. Proc 6th Conf Coastal Eng, Chap 10,
171-193, 1958.

Tani I, Review of some experimental results on the response of a
turbulent boundary layer to sudden perturbation. Computations of
Turbulent Layers Conference, 1, 483-494, 1968.

Thorn M F C, Deep tidal flow over a fine sand bed. Proc 16th IAHR
Congress, A128

US Task Committee for Preparation of Sediment Manual: H sediment
discharge formulae. Jour Hyd Div Proc ASCE 96, HY4, Paper No 8076
523-567, April 1971.

Vinje J J, Siltation in dredged trenches. Delft Hyd Lab Pub No 59,
QOctober, 1968.

Whillock A F, Laboratory studies of flow across dredged channels.
Hydraulics Research Station, Wallingford, Report No EX 618, June 1973.

White C M, The equilibrium of sand grains on the bed of a stream.
Proc Roy Soc A 174, 322, 1940.

White W R, Mﬂlﬁ H and Crabbe A D, Sediment transport theories, a
review. Proc Inst Civ Eng. Part 2, 59, 265-292, June 1975.

Yalin M S, Mechanics of sediment transport. Pergamon Press, 2nd Edition,
1977.

53






APPENDICES






APPENDIX 1

Initial infill rates into a channel
in steady flow

We consider the case of steady flow (uniform velocity U,, depth hg)
approaching a channel at right angles, represented by a step change in depth
at x = 0, in which the concentration (C) of suspended solids over the
depth in the incident flow is in equilibrium and the concentration
(Cop) at the bed from equation (2.2.3) is given by

VS Cob = WOC* ....(Al.].)
The vertical diffusion coefficient K, is assumed constant (K) and equal
to its mean value over a section. For a logarithmic distribution

K = kUsh/6 ...(A1.2)

in which k is the Von Karman constant and Uy is the friction velocity.
For a given bed roughness U4/U is approximately constant, hence K is
the same over the channel as in the incident flow.

The rate at which sediment is dispersed upwards from the bed is

— K aC/az, z=0 ...(A1.3)
so that in the incident flow

- K aco/az = W.Cx z=0 ...(Al4)
At the upstream edge of the channel (x = 0) it is assumed that the
velocity falls to U, giving rise to an immediate reduction in the erosion

velocity to W;, which remains constant over the channel. Thus the bed
concentration over the channel is given by

— K 8C/oz = W, Cx z=0 ..(ALS5)

In the steady flow of the suspension, the diffusive transport upward is
balanced by the rate of fallout and convection of particles through a
section, ie

K 32C/8z2 + Vg 9C/dz — U, aC[ax = 0 ..(A1.6)
S

and to obtain the way in which the sediment flux changes over the
channel, this equation must be solved with the bed condition (Al.4) and
the condition of zero net transport at the surface, ie

K 9C/3z + Vg€ = 0 z=h -.(A1.7)

Integrating (A1.6) over the depth with the boundary conditions (Al1.5)
and (A1.7) gives

3S/ax = W; Cx — VgCp(x) ....(A1.8)

which enables the change of sediment flux (S) and hence the infill rate
to be obtained once the bed concentration has been determined.

We note that at a great distance downstream from the edge of the channel
3C/ox = 0 and integrating (A1.6) over the depth then gives

CcC = Cb(°°) exp(——VS z/K) ....(A1.9)

and the transport, writing S(=°) = S;, becomes

S, = Cy()[U; K/Vg] [1 — exp(~Vgh/K)] ..(AL.10)
in which

Similar relationships apply to the vertical concentration distribution in
the approach flow with the bed concentration given by (Al.1) and
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h = h,,

To simplify the problem we assume that the change in depth or velocity
over the channel is significant only in so far as it effects the entrainment
rate. Thus we assume that the initial concentration distribution at entry
to the step is given by

C, = (W Cx«/Vg) exp[-Vgz/K] x=0 ..(A1.12)
and
S, = (W Ca/V)[Uy K/Vg] [1—exp(~Vghy /K)]  x =0 .(AL.13)

In order to solve equation (Al.6) it is convenient to consider changes in
the concentration rather than the concentration itself; thus we define

Cx,z) = C(x,z) — Cy(z) ..(AL.14)

which satisfies (A1.6) and the change in the sediment flux from the
initial rate satisfies (A1.8) which may be written

88/0x = (W, ~W)Ca—Vg Cy (%) .(AL.15)

In addition, we remove the second term in (Al.6) by substituting

Ci(x,2) = C(x,2) exp(——VS z/2K) ....(A1.16)

so that this equation becomes

K 92C,/0z% — V82C1/4K —U; 3aC,/ax = 0 «.(A1.17)

and the boundary conditions (A1.5), (Al1.7) become

(VgCi/2)— K 8C,y/0z = A z=0 ....(A1.18)
(VgCi/2)+ K aC,/3z = 0 z=h, ...(Al1.19)
and C; =0atx=0 ....(A1.20)

Equation (Al.5) also becomes
3S/0x = A — VgCy(x) ...(A1.21)

in which we have written

A = (W;—W)Cs .(A1.22)

To solve these equations we use the method of Laplace transforms defined
by

C@z) = f°° C,(x,2)e P* dx ....(A1.23)
(o]

Thus multiplying (A1.7) by e PX and integrating with respect to x with
the condition (A1.20), the equation is reduced to an ordinary linear
differential equation

K d?C/dz* — (Usp + Vg*/4K)C = 0 ....(A1.24)

which has the solution

C = B, exp(Az) + B, exp(—\z) ....(A1.25)
with
N = (p + VGH/4KUL AU, /K .(A1.26)

in which the constants B;, B, can be determined from the transformed
boundary conditions (A1.18), (A1.19) viz:
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(VgC/2 — K dC/dz) = Aflp z=0 -.(A1.27)
(VgC/2 + K dC/dz) = 0 z =h, ..(A1.28)

The transform of equation (Al.21) becomes
S = Alp* — Vg C/p .(A1.29)
in which from (A1.25)

C, = B; + B, ...(A1.30)

which, substituting (A1.27) and (A1.28) in (A1.25), becomes after a little
manipulation

3= Afl— { sinhAh/2 + coshih/2 }] /p?

= § LV gsinh\h/2+2\KcoshAh/2 ~ VgcoshAh/2+22Ksinhh/2
...(A1.31)

Transforming by standard methods we find

< = 2sinh2e 3 2

S=AUK }—=="=— — 8e*[S(a,) + S \% ...(A1.32

- ' {cosh2e+sinh2e (o) + SG] Vs ( )

where

€ = Vsh1/4K, .(A133)

05 B, are the positive roots of

atana = €, ....(A1.34)

BeotB + € =0 ....(A1.35)

and the sums S(an), S(8) are given by

n=ca

S©,) = nEI 6n2 exp[—(6n2+e2)VSx/eh1Ul]/(0n2+e2)2(0n2+e+ez)

..(A1.36)

We may express A in terms of the sediment flux change between that at
entry S, and that at a great distance downstream S; from equations
(A1.13) and (A1.10). Thus

Si — 8o = (AU; K/Vg?)[1—exp(—4e)] ..(A1.37)
and (A1.32) becomes
(S=So)(S1—Sg) = §1 — 8¢ [S(a,)) + S(B]/[1—exp(—4e)] } ...(A1.38)

When e is very small, only the root () is important, which by (A1.34)
becomes

o = e? ..(A1.39)
and (A1.38) becomes
(8—S0)/(81—S,) = 1—exp(~Vgx/h, U;) ....(A1.40)

which agrees with equation (2.2.9).

In most practical cases, € is small, and the first few terms of S(a) and
S(B,,) are required to achieve an adequate approximation.

The variation of the infill ratio given by (A1.38) has been calculated
for different values of Vg/Ux using the relation (A1.2) which gives

e=3Vg/2k Uy .(A1.41)

and taking ¥ = 0.4, which is applicable to suspensions in which the
concentrations are weak.
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APPENDIX 2

Bed and sediment flux changes
downstream of a step in steady
flow; “well-stirred case™

In order to clarify the way in which the finite settling velocity of the
sediment gives rise to horizontal diffusive effects it is of interest to
consider a simple case in which an analytical solution is available and
to compare this solution with that assuming an effective diffusion
coefficient (D) given by equation (2.2.19). We suppose that the sedi-
ment is sufficiently fine to be uniformly distributed over the depth at
a certain concentration C and that to maintain a quantity in suspension
particles falling to the bed are picked up again at the rate WCyx, in which Cx
is the concentration in the bed and W is an erosion velocity.

Upstream of the channel the suspension and bed are in equilibrium at
concentration C,. Also Z = 0, so that if Vg is the settling velocity of
the particles

WOC>,< = VSC0 .A2.1)
and the sediment flux

S, = aC, = qW Cx/Vg -..(A2.2)

At x =0, t = 0 we suppose the flux encounters a small step in the bed
of height Z, (Z, negative for a dredged channel) equivalent to a very
wide channel and we shall examine the subsequent changes in C and Z.

Downstream of the step the erosion velocity changes to W (W—W, < 0
for Z, negative), which we assume is a function of the local velocity
only. If the flux of sediment is represented by a power law with
exponent m (equation (2.1.9)), and the discharge (of water) is constant,
for small changes of bed elevation we may write

WCx = W Ca(l + mZ/h,) ..(A2.3)

And at a large distance downstream of the step (x = =), Z = Z, and the
sediment flux (S;) is given by

qCe0 = QW Cu[1 + (mZ /h )] /Vg (A2.4)
Thus the ultimate change of flux

(S1-So) = QW CsmZ /h Vg = qmC, Z [h, (A2.5)

(a) Analytical solution

If U, h are the velocity and depth over the step, from continuity of
the sediment flux, we have

aC oC _
h== + UhZx = WCy — VC ...(A2.6
at ax * U8 (A2.6)
0Z -
~9Z = we, — VoC (A2.7
5t * S (A2.7)

Substituting for WCyx from (A2.3), for Z small compared with h, these
equations may be approximated by

aC aC

1 7

ZrU = =1lmwel L - vec (A28

at  Oax ho[ O h, sl (A2.8)
7 z
_ 9 - pweel - vee .(A2.9
at o, ST (A2.9)

in which C is the departure of the concentration from the initial
concentration C o’ ie

c=C-¢C, ~.(A2.10)
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Equations of this type are well known in the theory of heat conduction
(Carslaw and Jaeger, p 393).

Putting

b = mWyCs/hy = m Vg Cy/hy ...(A2.11)
b' = Vg/h, .(A2.12)
a = bb'/U, ..(A2.13)

their solution for the case of an initial step change Z, and t > x/U, may
be written

¢ =0 ™%% |0 i)+ N0 (A2.14)
E L R — B X, X, ..(A2.
C Db h, 1 2
with
x (=b'x/U. + bx'/U %,
N;(x,t) = b bt I e( / o Uo) I, [4ax!(t— %)) dx!,
U0 U
(A2.15)
x (bx/U_. —b'x!/U %
N, (x,t) = ]IDTI ¢ bt f e( Wo / o) I, [4ax! (t — UL)] dx!

[e]
..(A2.16)

I, is the modified Bessel function of the first kind and of zero order.

The bed elevation (Z) can be derived directly from equations (A2.9) and
(A2.14).

Generally since the suspended concentrations are small and

= 0% =pcC (A2.17)

we may ignore the first term in (A2.14) and thus we have

C,Z
C = 2 20%0 N,(x,0) ..(A2.18)
h0
%
Z =z, [Ny + e Pt e Vo g [dax(t =21 | .(A2.19)

o]

We note that when t is small and hence x is small, I, = 1 (approximately)
and

c = m_C;_ZQ e Pt [1 — exp(—b'x/U,)] -(A2.20)
(¢]
zZ/z, = e Pt + br(1 — exp(—b'x/U))] .-(A2.21)

Thus for b = 0 (corresponding to no change of bed elevation downstream
of the step from equation (A2.6) with (A2.8)), the change of sediment flux
downstream of the step, qC, agrees with equations (2.2.9), (2.2.10)
since (qmC,Z,/h) is equal to (S5—S1)-

An example of the concentration and bed profiles (C/(m Cq Zy/h),2/Zg)
at different times calculated from equations (A2.18) and (A2.19) are
shown in Fig 3. In this example, the approach velocity (Uy) and

depth (hg) have been taken as 1200 m/hour and 10 m respectively.

The sediment is assumed to have a size of 0.2 mm (Vg = 96 m/hour)

so that b! = 9.6 (hour)™. At a great distance downstream of the step
(Zo = 1 m) the reduction of velocity is assumed to reduce the sediment
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transport, (S;—S1), by 5.0 m®/h/m width of compacted sediment.
So from (Al.5) and (Al.17)

b/b! = 1/240

and the kinematic velocity

So—S
c = (g_;) = 2% ! (approximately) = 5 m/hour.

Z,

It will be noted that initially, the deposit downstream of the step
thickens until it attains the upstream bed level and thereafter it slowly
spreads downstream, the centroid of the bed profile moving downstream
at the kinematic wave velocity. As expected, the bed profiles lag the
concentration profiles by the distance L given by equation (2.2.10) or
Uo/bl, which in the present example is 125 metres.

(b) “Diffusion” solution
The flux of sediment (S) at a section is given by
S =qC ...(A2.22)

in which q is the discharge of water per unit width (q = Uyhg). The
concentration (C) is given by

W C
Vg Vg

from equation (A2.3). Thus the kinematic wave velocity (c) defined by
equation (2.1.4) becomes

c = %% = mU, W, Cx/Vg = U, b/b? (A2.24)

from equation (A2.17).

Also the diffusion coefficient (D) for the present case is given by
(equations (2.2.10) and (2.2.21)

D =cL=cUjh/Vg=cU/b! ...(A2.25)

Inserting S = qC in equation (2.2.20) we find for the departure of the
concentration from that in the approach flow

ac  oC 32C
—+c¢c — — D —_ = 0 ..(A2.26)
ot 0x ox2

The solution of this equation for an initial step change in C at x = 0,
ie C=0 for x = 0and C, = C, for x > 0 (C_, is given by equation
(A2.4) and C, by equation (A2.1)) is given by

C/C.= 1 — % [erfe X=Ct + ¢oX/D e Xtct (A227)

2+/Dt 24/Dt

and this equation together with the equation of continuity (2.1.2) gives

2
7/ =1 — [t 2 —(x—ct)*/ADt , o g XCt
/1Z,, [ /i

VDt V1

cx/D c Xtet
e f1 + D(x+ct)}erfc o ] ..(A2.28)
These expressions are compared with the analytical solution for the
example previously given in Fig 3. It will be noted that after a long

time, the agreement is fairly close and that in this case also, as might

be expected, the bed profiles lag the concentration profiles by the

distance L = 125 metres.
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APPENDIX 3

Concentration of sediment in
steady flow

Note:

In view of these difficulties some
investigators have abandoned the
notion of separating the sediment
flux into suspended and bed
movement phases and deal only
with the total flux, a quantity
which is more readily measured
in the laboratory. Unfortunately
this approach, by itself, gives no
information on the rate of
erosion of sediments from the
bed, which, as we have seen, is
of crucial importance in channel
infill.

It is helpful to realize that
sediment load is derived from
an equation containing Cp,
which is derived from Sy, which
is bed transport.

Fine sands and silts which usually compose bed sediments in estuaries
are mainly transported in suspension. The suspended load transport is
given by

h
S = fb C (z) U(z) dz ....(A3.1)
in which
Z*
h—zy b

Clz) =C, —) —) , ...(A3.2

@) = ¢, 5 by (A3.2)
u(z) = (Us/K) In (33z/k) ....(A3.3)
Z* = VS/KU* ....(A3.4)
K = Von Karman constant usually taken as 0.4
kg = equivalent hydraulic roughness of the bed forms
and
C = concentration at some reference level, usually taken at a small

height b above the mean bed level.

The determination of Cy, is central to the problem of relating the
sediment flux or erosion rate (WCy = VgCp) to the flow parameters.
Usually it is assumed to be given by equation (2.3.6) viz:

in which Sy, denotes the volume flux of sediment engaged in bed trans-
port per unit width transverse to the flow and Uy, dy, are the average
velocity and thickness of the layer over which this flux is assumed to be
distributed. None of these quantities can be defined precisely and may,
indeed, have little physical significance. Thus Sy, is usually taken as
referring to the fraction of the total particles in movement whose weight
is directly taken by the bed, ie by contact with other bed particles. (In
contrast the weight of the suspended particles is taken by the increased
hydrostatic pressure.) However, in the case of fine sands, individual
particles can sometimes move in suspension and sometimes in close
contact with the upstream faces of the bed forms. This may account,

to some extent, for the wide variety of formulae which have been proposed
relating Sy, to the hydraulic parameters (see Note).

In the case of coarse sands which at low transport rates move almost
entirely in the bed phase, Sy, is less equivocal and can be measured either
by trapping or by measuring the average volume of the bed forms and the
number passing a given point in unit time.

In order to prescribe Sy, for finer sands, formulae derived from coarse
sand experiments have been extrapolated to the fine sand range.
Bijker, 1971, takes the formula suggested by Frijlink, 1952, which is
based on measurements in the laboratory and in rivers and which takes
account explicitly of the influence of bed forms, viz;

S, = 5Du” Uy exp(—0.27/u,0) ..(A3.6)
in which
6 =U2/Gc-Dgd, ~(A3.7)

In these formulae

Sy, is the volume rate in terms of the volume of compacted sand per
metre width/second,
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Note:

If the high turbulence generated
by the bed forms is assumed to
reduce the boundary layer
thickness over the surface below
the size of the bed grains then
/2

w=lin(332)n (33 lug
kg dgo

(approximately ....(A3.8)

D is the particle diameter in metres,
s is the specific gravity of grains,
Uy = +/7/p in metres/second where 7 = bed shear and p = density, and

u, is a ripple coefficient representing that part of the total bed shear
(7) that is available for transporting sediment. Generally, u, is
taken equal to (V*(dgo)/V*)3/2 -

in which

Vi(dog) = shear velocity which would crest at the given mean velocity
if the bed were flat and composed of uniform grains of size
exceeded by 10% of the bed material (see note).

To determine Cy, Bijker, 1971, suggests that the particles engaged in
bed transport should be assumed to be uniformly distributed over a
layer of thickness equal to the average elevation of the bed ripples,

ie d, = r where r = half the average ripple height so that the particles
are travelling at the mean flow velocity in this layer. On the basis of
some unpublished work by van Breugel, Bijker assumes that for a
rippled bed z in equation (A3.2) should be measured from the average
bed level, ie distance r below the ripple crests and that the effective
roughness kg is also equal to r. He then deduces that the average
velocity in the layer is 6.35U, so that the discharge in the layer is
6.35 Ugr and

Cb = Sb/6-35 U*l’ .(A3.9)

The discharge of water in the rippled layer may be obtained by the
following argument. The shear at the level of the ripple crests (oUx?) is
almost wholly resisted by the form drag of the ripples, and falls to zero
at the level of the ripple troughs. It would seem reasonable to assume

a linear variation of shear (r) at levels above the troughs (z = 0) so that

1/p = U z/2r 0<z<2r ....(A3.10)

If we assume that Prandtl’s expression for the turbulent shear

r/p =12 4U | dU {(A3.11)
dz dz

can be applied in this region and that here also the mixing length (1) is

given by

1 =«kz ' -.(A3.12)

in which k is the Karman constant equal to 0.4, we find
g—U = Us/k (2r2)" .(A3.13)
z

so the velocity in the layer is given by
U = 2Usz%k (21)" .(A3.14)

Hence the discharge of water through the layer

2r
[ Udz = 6.7 Uyr ..(A3.15)
0

which is in fairly close agreement with that given by Bijker.

It may be noted that recent measurements (Antonia and Luxton, 1971)
also support the half power velocity profile (equation (A3.14)) close to
a rough bed although the arguments advanced for its existence are
different from those given here.
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The total transport in suspension (A3.1) is given by

Ss =1.83 Sb I, In 33 h/r + I, ....(A3.16)
with

I, =0216 (%)(Z**l) a - %)_Z* fbl/h(l —;)Z*(ﬁ)'z*d(i) .(A3.17)
and

I, =0216 (%)(Z*gl) ¢ —-E)J* fbll.h 1 - ?ﬁ)z*(ﬁ)_z*ln(ﬁ) a)

..(A3.18)
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APPENDIX 4

Application of Aris method to
determine lag distance

(a) Derivation of equations

We assume that the rate of erosion (WCy) is proportional to the flux
of solids which would be carried by a stream flowing at the local depth
and velocity, ie

WCy is proportional to U™
conforming with equation (2.1.9) or
WCy is proportional to [q/(hy—Z]™

in which q is the water discharge per unit width and hg, is the depth
upstream of the channel. Thus if (W,Cs) is the rate of erosion at the
bed upstream, for small changes of bed elevation (Z)

WC—W,Cs = (WoCy) mZ/h
Thus equation (2.3.4) and (2.3.5) become

02 - yoc, — W, Ca(l+mZ/h,) .(A4.1)
ot

- X, ac) = W Cu(1 +mZ/h ) .(A4.2)
in which subscript b refers to the bed.

It is convenient to consider departures of the concentration of suspended
solids from that existing upstream, so we write

C =c-c, ..{A4.3)

in which C, is the concentration upstream given by

V
CO = COb €xXp [foz— m dZ] 5 ....(A4.4)

with
C0b= WOC*/VS .(A4.5)

and the equations (2.3.1) — (2.3.4) become

oC _ ~
Kt,l/(z)a—Z +VgC =0 z=h (a)

g_tc + Ug(z) 52 = (Kll/(Z) — + VgC) 0<z<h, (b)
\ L -(A4.6)
S VsC -z z=0 (o)

oC
— Ky(o) = =¢Z z=0 ()
0z J
in which
g = WOC* m/h0
= VSCob m/h0 ...(A4.7)

(b) Derivation of moment equations

Following Aris, we cease to concern ourselves with the details of the
variation of the concentration C (x,z,t) and bed elevation Z(x,t) over
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the channel but rather consider the moments of these quantities in the
x direction referred to an origin which is moving with the channel.

Let U, be the velocity of the origin, which for the moment is unspecified
and let x, be the new co-ordinate in the x direction referred to this
origin, ie

x; =x — Ugt ....(A4.8)

We define moments of concentration and bed elevation thus

C(p) = foo x,P C(x,z,t)dx, ....(A4.9)

720 = ;7 %P 7(x, Ddx, ..(A4.10)

and to obtain equations for these quantities we multiply equations
(A4.6) by x,P and integrate, noting that C, Z and their derivatives are
zero at the limits (x; = * =0). Thus we find

oC®) _ ary 0y p D = 2y 2P 4y c®) )
ot ¢ 0z 0z
0<z<h, L.....(A4.11)
®) -
gTZ + U, p Z(—1) _ VSCb(p) _gz®  z=0 ()
— Ky(0) (%f-(p))b = ¢ 2(P) z=0 @

Integrating (A4.11(b)) with respect to z over the depth (O,h) using the
surface condition (A4.11(2)) and bed condition for

Cb(p) and (%(p))b gives

i [Z®) + fho cPz) = - U.p z(—1) +th(U¢ ~U)p cr-D g4,
) ° . (A4.12)

(c) Initial conditions

We assume that initially (t = 0) the channel can be represented by a
delta function situated at x = 0 such that its area is given by

700 =z x (A4.13)

with Z = 0 except at 0 < x < X where X is small and
7MW 7D eic=0att=0 (A4.14)

To find the pth moment from the equations (A4.11), which are essentially
recurrence formulae, we need to solve for the (p—1)th moment. To
simplify the calculations we shall ignore the time variation of concentration
in equation (A4.11(b)), ie we assume that changes in bed elevation are
entirely brought about by convection of the suspended solids by the flow
and exchange with the bed. Comparison with the results of Aris in an
analgous situation (where the time dependence was retained), shows that
this amounts to examining the asymptotic behaviour of the moments after
a long time.
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(d) Zero moments C(o), Z(O/

Substituting p = o in equations (A2.12) and (A2.11(c)) gives

z(0) = constant = Z /X ....(A4.15)
and
¢, (= gz_x/vg (A4.16)

and solving (A2.11(b)) gives
zZ \%
c® = ¢ © expp — S gy . (A4.17
b p [fo 0 ] ( )
which also evidently satisfies (A4.11(a)).

(e) First moments /1), z(1)

Let us choose Uc so that dZ(l)/dt = 0; since Z(l) =0 at t = 0 it follows
that

7Z(1) = ¢ ....(A4.18)

always. Thus this choice of U is equivalent to adjusting the position of
the origin of x to coincide with the centroid of the channel section.

To satisfy this condition we have from (A2.12)

h
UZoX =S ° (U¢—U)C) dz .(A4.19)
or
h h
U, =S °Uec@azyz X+s 0 dz) (A4.20)
0] 0]

Generally the term foh o C(O) dz which denotes the total quantity of
material in suspension at any time is very small by comparison with the
volume of the channel and hence can be neglected. Substituting for c(o)
from (A4.17) in (A4.20) gives

h z
U, = {/g—f © Ugexplf —(Vg/Ky)dz] (approximately) ...(A4.21)
S (o} [0}

It is not difficult to show that
U. = c (approximately) ..(A4.22)

in which ¢ denotes the kinematic wave velocity defined by equation (2.1.4);
thus since Z is small compared with h, the sediment flux is given by

h
S  =[0°U¢CE)dz ..(A4.23)
(6]
h
=/ 0% U¢(Co+ C)dz ...(A4.24)
(o]
Thus
ho aC
dS - ~o =
=48 = flo gy . (A4.25
¢ iz b Y (A4.25)
in which
C = (W,CamZ/Vgh ) exp[— /| (Vg/Ky)dz] .. (A4.26)
(o]
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from which with (A4.7), equation (A4.22) follows.
To obtain () we need to solve (A4.11(b)) with p = 1.

Neglecting the term ac(l)/at and integrating gives

Kg’C(I) + Vg c(l) = th (Uqb(z)—UC)C(O) dz ..(A4.27)
YA Z

which evidently satisfies the surface condition (A4.11(a)).

We write

F(z) = fho (U(z) U ) exp [le ——Vi,, dz''} dz’ ...(A4.28)
z o Ky@z)

so that substituting for c©) from (A4.17) and (A4.18), the equation
(A4.27) gives

C( ) gZ,X

S

Ky & a + vgeD = F(z) ..(A4.29)

which integrated gives

(1) _ gZOX B ho F(z' " V
c ~ -/ oo U Kw(,,)dz]dzm}exp[ I3 T() dz]

...(A4.30)

in which the constant A is to be determined from the bed condition
(A4.11(d)) viz:

c(1)

— K $(0) (a Y=gz =0 (A431)

(f) Second moment Z(2)

With p = 2, equation (A4.12) becomes (since z() = 0)

az® _, fh° Weo—U)Ccdz ..(A4.32)
dt 0
Thus Z(3) = 2z X)Dt ..(A4.33)

in which D is an effective diffusion coefficient given by
h (1)

D =/°(U¢-U)C"/dz/Z X (A4.34)
)

Substituting for C(l) from (A4.30) with (A4.31) is may be shown after a
somewhat tedious calculation that

h
D =2/ ° (Up—-UF(z)dz/Vg® ...(A4.35)
O

Generally U, = ¢ (approximately) is small compared with U¢(z) so that
(A4.35) becomes

r

h h , y2 VS " ,
D =2/ °U¢dz f OUp()explf — —dz"] dz' [V ...(A4.36)
o z o Ky@E'") S

(approximately)

which integrating by parts becomes

h zZ z
D =2f °f{Ugexplf — '] . f U¢@)dz Jdz/Vg ....(A4.37)
o] [} [0}

Vs
Ky(z")
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and writing

we find with (A4.21)

h 7 A r h
L =20 o4f(z) [ Up@)de }dz/Vg I © f(z)dz]
in which

fz) =U¢(@)exp [ f T) dz']

If U, K are constant, viz U, and K
_ Vs
flz) =U, exp (— < z)
and
e

= 2UOZ/VS

in which z is given by equations (2.2.11) and (2.2.12).
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L. =L=2U. %zexp(— )/ VafOexp(—-S)dz ...
Ofo p ( K)/ Sfo p ( K)

..(A4.38)

..(A4.39)

..(A4.40)

..(A4.41)

(A4.42)

..(A4.43)



APPENDIX 5§

Derivation of flux versus velocity
relation for steady flow from
tidal flow measurements

Let us consider the oscillatory (tidal) motion of a “well-stirred’
suspension in which the concentration and velocity at any time is
uniform in depth. Further, we assume that the velocity at any phase
of the motion is independent of x, ie U = U(t). Then considering the
changes of concentration in a block of fluid of unit length we have

hDC/Dt = WCy — VgC ..(A5.1)

in which, since the erosion velocity W is a function of U only, C is
independent of x.

If the flow were steady at the velocity U corresponding to a particular
phase of the tide, the concentration (C.) would evidently be given

by
WCyx = VgC, ..(A5.2)

So (A5.1) may be written
hDC/Dt = V4(C, — C) ...(A5.3)

which in terms of the sediment flux

S = UhC ...(A5.4)
S, = UhC, ....(A5.5)
becomes

hUDC/Dt = (S, — S)Vg/h ....(A5.6)

or neglecting variation of h with t

(38/t) — hC(aU/at) = (S, — S)Vg/h ..(A5.7)

However, the second term on the left hand side of (A5.7) is solely due to
the change of flux induced directly by changes in velocity., It would be
present if the particles had a zero settling rate (a passive contaminant, for
example); thus it cannot contribute to a lag or hysteresis effect and has
therefore been neglected in the present context.

Thus the steady or equilibrium flux is related to that observed at a tidal
phase by

S, =S+ (88/at)(h/Vg) ..(A5.8)

Se is greater than S if S (or U) is increasing with time and less if it is
decreasing with time.

We note that for the “well-stirred” case, from equation (2.2.10)

h/VS = L/U.

Thus it appears that (A5.8) may be generalized for cases in which the
concentration is not uniformly distributed in depth by

Se =S+ (9S/at)(L/U) ....(A5.9)
For U and K, uniform over the depth, L is given by equations (2.2.11)

and (2.2.12). Knowing L, equation (A5.9) can be used to correct the
values of S observed during a tidal cycle to give Se.
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APPENDIX 6

Derivation of flux equation
(2.4.2) for steady flow

It may be shown from equations (2.3.1) — (2.3.3) that in steady flow,
if the vertical diffusivity is constant (K, = K), the vertical distribution
of concentration is given by

C =G, exp(— Vg z/K) ....(A6.1)
= (W,Cx/Vg) exp(— Vgz/K) ...(A6.2)

Thus, if the velocity is approximately constant (U) over the depth (h)
the flux is approximately given by

S = WOC*(UK/VSZ)[I — exp(— Vgh/K)] ....(A6.3)

and substituting for K its mean value over the depth, viz;

K = «Uxh/6 ..(A6.4)
we find
2 Vv
s =wceh® U Usyg —expf- &S ..(A6.5
Coh g v () Pl P (46.5)

For fine sand, Vg = 0.01 m/s, U/Uy = 20, k = 0.4 and the exponential
term is fairly small compared with unity (U = 1 m/s) so that for a given
sand size and bed roughness.

S = CTWOC*U2 (approximately), cp = constant ....(A6.6)

If the rate of erosion is proportional to the excess shear above the
threshold shear, ie

W _Cx proportional to (Us* — Us})/Vg ...(A6.7)
and

Uy/U= constant ....(A6.8)
we have

S =cpU*(U* ~ U?), cp = constant ....(A6.9)

This equation may be compared with the simple power law form, viz;
S =kU* ....(A6.10)

The values of cp and k with S in units of m®/hour/m width of compacted
sand and U in m/s, taken from flux observations throughout a spring tide
at a number of stations along a natural channel (Black Deep) in the
Thames estuary are given in Table A6.1.
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TABLE A6.1

Flux of sediment in tidal flow in
size range 60—150 microns

The values of cp and k show considerable variation, which may reflect the
variable nature of the bed which was composed of fine sand with a small
admixture of shell. However, the size of the sediment in suspension was

remarkably similar at all stations.

Station Depth

m

16
14

9
15
16
17

(o N T N S

7 17

19
21

71

Size of bed sand

(microns)
Dio D,
80 150
80 150
80 150
80 125
90 200
90 150
120 225
100 225

D90

210
250
210
210
400

250

300

500

Mean

mfs

0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35

‘r

2.0

1.25
24

1.35
2.15
1.35
0.50
1.95
1.35
1.15
3.65
1.93

k Current
direction
E = Ebb
F = Flood

1.75 E&F

1.1 E&F

2.1 E&F

1.1 E

1.9 E&F

1.2 E

0.45 F

1.7 E

1.2 F

1.0 E&F

3.2 E&F

1.65



APPENDIX 7

Flow over an elliptic depression

Let us consider the flow over an elliptic depression (semi-axes a,b) in
which the depth (h,) is constant in an otherwise flat bed, depth hy,
the incident velocity having components Uy, V, parallel to the major
and minor axes respectively. We assume that outside the ellipse, velocity
head changes are small by comparison with losses due to friction and
further that these losses are represented by a Chezy type formula, ie

2
gf =_f ‘hL (AT.])
in which

V = mean velocity over the vertical at point x,y
h = local depth
f

friction coefficient (the inverse of the Chezy coefficient) and

g-{ = slope of the water surface in the direction of the velocity.
S

Thus, if u,v are the components of V in the x,y directions we have

A = _ v uh, % = _ fyyn ...(A7.2)
Ix dy

Since changes of V are assumed small outside the ellipse these equations
reduce to

& = _ foWoy, & = foWoy, (A73
o (ho Ju, o (ho ) (A7.3)
in which

Wo = (Gp? + Voz)% -..(A7.4)

These are similar to the equations for inviscid flow with a potential ¢,,
which may be identified with ¢, thus

po = (h1/f1Wo)¢

To find solutions which satisfy the equation of continuity outside the
ellipse with a uniform velocity Wg (components Ug, VE inside the
ellipse). Thus we write

oo = Uy x + Vyy + Ae$ cosp + Be ¢ sinn, outside ellipse  ....(A7.5)
¢1 =Ugx + Vgy inside ellipse ...(A7.6)

where the elliptic co-ordinates £,n are connected with x, y by the
relations

x = « coshf cosn -.(A7.7)
y = a sinhf sinn ..(A7.8)
and

¢1 = (hy/fy WpXE

We seek to determine A, B, Ug, Vg, which, at the edge of the ellipse
(¢ = £, satisfy continuity of flux and of surface slope along the boundary
ie

091 =h 002 = ...(A7.
ho 32 ¥ E=, (A7.9)
foWo 30 - TVE 2, =&, ...(A7.10)

ho o h:y on

72



n, £ are co-ordinates tangential and normal to the boundary and & = &

Substituting for ¢o, ¢; from (A7.5), (A7.6) in (A7.9), (A7.10), we obtain
two equations for A, B, Ug, Vg, but since these equations must be
satisfied at all points of the boundary the coefficients of sinn cosn must
vanish in both equations, which gives the following four equations

[Uob — Ae€o]ho = Ugbh, (AT.11)
[Voa — Be fo]ho = Vpah (A7.12)
[~Uoa — Ae o] (foWo/ho) = —Uga (f1Wg/h1) .(A7.13)
[Vob + Be 0] (foWo/ho) = Vb (f1Wg/h1) (A7.14)
since 2 = & cosh £, b = « sinhf,. (A7.15)

Eliminating A, B from (A7.11), (A7.13) and (A7.12), (A7.14) we find
the following equations for U;, V,,

(fle/foWo)(UE/Uo) + (sz/a)(UE/Uo) — H(@+b)a=0 ....(A7.16)
(£, WR/foW )(VE/Vo) + (H?a/b)(VE/V,) — H(a + b)/b =0 «.(A7.17)
in which we have written the depth ratio

H = h,/h, ...(A7.18)

These equations allow the velocity Wg = (Ug® + VE? )1/2 to be calculated
for a given velocity W, at an angle of incidence ¢ to the major axis of
the ellipse Uy = Wy cosf, Vo = W, sind.

We note that if the incident flow is parallel to the major axis of the
ellipse, Vo = VE = 0 and the velocity over the ellipse (Ug) is given by
equation (A4.16), thus (f, = f,)

(Ug/Uo) = [(bH?/22)* + (H(a + b)/a)]* — (bH?/22) .(A7.19)
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