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ABSTRACT

Design of Mold to Yield Elastomeric Membrane Whose Shape and Size, When Inflated, Is
Similar to the Shape of the Human Heart. (August 2004)
Amit Lagu, B.E., University of Pune

Chair of Advisory Committee: Dr. John C. Criscione

Nearly five million Americans are living with heart failure and 550,000 new cases are
diagnosed each year in the US. Amongst the new approaches to develop a better solution for
Congestive Heart Failure, Ventricular Recovery (VR) holds the most promise. A team, under the
guidance of Dr. Criscione in the Cardiac Mechanics Lab at Texas A&M University, is currently
developing an investigative device which aims to assist in VR by restoration of physiological
strain patterns in the myocardial cells. The contribution of this thesis has been towards the
development of a molding apparatus that yields a polymeric membrane whose shape, when
inflated, is similar to the shape of the human heart. This membrane would surround the
epicardial surface of the heart, when used for the device being discussed and in particular for the
prototypes being developed. Contribution also includes a testing apparatus that measures the
inflation of a membrane and simulation to predict the behavior of isotropic ellipsoids upon
inflation.

After unsuccessful implementations of two processing techniques, the successful design,
fabrication implementation and attachment method meets the design criteria and is based on a
thermoforming technique. Inflation profiles for membranes developed using this technique were
studied at different pressures, with the axis length as variable. At 1kpa, which is the normal
coronary arterial pressure, the membrane with an axis length of 140mm was found to show a
shape which is similar to the shape of the human heart. In order to better understand and predict
the shape an isotropic ellipsoidal membrane would take upon inflation without experimentation,
simulations were carried out. Successful conversion of ellipsoidal geometry, with a few degrees

of freedom as parameters, aided in simulation.
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1. INTRODUCTION

1.1. Cardiac failure

Cardiac failure can be defined as that condition in which the heart cannot pump blood as a
volume adequate to meet the metabolic needs of the various tissues in the body, due to an
abnormality of cardiac function [1]. The abnormality in cardiac function can be attributed to any
reason ranging from an abnormality in the myocardial cells themselves, termed as myocardial
failure, or due to some other abnormality within the structure of the heart, such as valvular
stenosis or regurgitation.

Congestive heart failure (CHF) is a syndrome in which elevated pressure inside the heart
causes blood to back up in the body. CHF is known to have been caused by prior heart attack,
long-standing high blood pressure, diabetes, or a tight / leaking heart valve. However it is more
than often, the end stage of cardiac disease. Nearly five million Americans are living with heart
failure and 550,000 new cases are diagnosed each year in the United States of America. CHF is a

fatal disease more common among the elderly because of accumulated heart damage.

Percent of Population
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Fig. 1. Age adjusted prevalence of congestive heart failure by race and sex, ages 25-74, U.S., 1971-74 to
1991-94 [2].

The journal model is Bio-Medical Materials and Engineering.



Fig. 1, as shown above, illustrates some of the statistics with regards to CHF. In 1999, the
United States of America (US) ranked as the ninth highest country worldwide for heart failure
mortality in males and seventh highest for females [2].

The figure of 550,000 takes on added dimension when combined with the fact that the US
faces a growing number of ageing ‘baby boomers’. This ageing of the population will continue
for the next few decades and it is estimated that around the year 2030, the elderly will account
for more than quarter of the population.

The symptoms directly related to the heart failure range from chest pain, shortness of
breath, temporary loss of consciousness, palpitations, cough, fatigue, weakness etc. For patients
with CHF, typically the preliminary laboratory examination is a chest x-ray of the failure with a
cardiothoracic ratio of more than 0.5 to 0.6. The appearance of the lung fields, serves as an
estimate of the pulmonary capillary pressure. An increase in pulmonary pressures, as in case of
CHF patients, would cause the upper lobe pulmonary to be more prominent than those in the
lower lobe. The electrocardiogram (ECG) would help in defining the underlying etiology of the
heart failure as well confirm the presence of CHF. Cardiac catheterization is also sometimes
undertaken for defining the underlying abnormality of heart failure. Catheterization may also be
useful in assessment of effect of various pharmacological interventions [3].

The emergency room treatments for CHF patients are generally pharmacological in nature
and the therapy includes systematic use of several classes of drugs such as diuretics (except
spironolactone), angiotensin converting enzyme inhibitors, beta blockers, angiotensin receptor
blockers, digitalis glycosides, calcium channel blockers, inotropic agents, anti-thrombotic agents
and vasodilators etc [4]. Other general measures include decreasing obesity with diet and
stopping cigarette smoking, restriction of sodium intake.

The major parameters with respect to cardiac performance are heart rate, preload, afterload
and contractility. These factors primarily determine whether the heart or its substitute will be
able to meet the metabolic demands of the body as well as the metabolic demands of the cardiac
work. Patients with CHF, exhibit a higher left ventricular end diastolic pressure as compared to
normal patients. This results in increased hydrostatic pressure and transudation of fluid in the
pulmonary capillaries, with symptoms of pulmonary congestion. Advanced CHF patients exhibit
elevated systemic vascular resistance as a compensatory mechanism to maintain systemic blood

pressure.



1.2. Cardiac devices

The therapy of heart failure for CHF patients should ideally aim towards reducing the
workload of the heart and manipulating the various factors that control cardiac performance to
maximize the cardiac output without excessive strain on the myocardial cells. There have been
many attempts at solving this puzzle.

The use of artificial organs or donor organs has been a mainstay in clinical approaches to
treat chronic illnesses for several decades now. Heart transplantation is still considered in some
cases the most effective treatment for end-stage heart diseases. Studies have been carried out to
evaluate the long-term use of implantable assist devices for the purpose of enhancing survival
rates and quality of life and they have concluded the implantable assist devices to be acceptable
alternative therapy in selected patients who are not candidates for cardiac transplantation [5].
Advances in artificial heart and cardiac assist technology offer competitive options for the
treatment of CHF. The new technologies include new pumping techniques, new power sources,
and the combination of mechanical and biological therapies and join the latest in tissue and
cellular engineering technologies together with the most recent advances in pumping systems.
These developments have proved to be quite successful at relieving the symptoms of CHF and
even prolong the life span of the patients.

Some of the types of the devices aimed at treating CHF are mechanical circulatory support
systems such as continuous flow left ventricular assist devices, pulsatile flow devices, total
artificial hearts, devices without blood contact etc. However most of these devices have proved
to be only effective means of providing circulatory support as a bridge to heart transplant.

Continuous flow Left Ventricular Assist Devices are of two basic types — axial flow pumps
and centrifugal flow pumps. They have potential advantages over current pulsatile pumps as they
are smaller devices and are relatively simple as they have fewer moving parts than pulsatile
pumps and thus may be less prone to mechanical failures. They have lower energy requirements
and the small size of the device and the pocket is thought to decrease the risk of infection,
although this is also unproven. Some of the most well know axial flow pumps are the
Nimbus/TCI VAS, the Jarvik 2000 VAS and the DeBakey / MicroMed VAS.

As long-term clinical experience is being gained everyday with circulatory support systems
in transplant settings, the performance goals for future devices has to meet standards set by

others and excel beyond expectations set by designers, doctors and patients alike.



1.3. Polymers in cardiac devices and biomaterials

An outcome of the progress in medical sciences and engineering has been a steadily rising
demand for materials and devices, artificial or natural both, which mimic some of the functions
of the human body components or their chemical nature. It is from this demand that the
multidisciplinary science of ‘Biomaterials’ has emerged and serves as the storehouse of
information which the researcher’s continue to fill with new concepts, ideas and materials.

Even though this science was born out of the need to fulfill the demands of patients within
the set of restrictions enforced by physician skills, manufacturing industry limitations and human
body interactions, today it continues to serve as the melting pot of new ideas and materials. The
current definition of ‘Biomaterial’ can be termed and coined in different ways to convey the
same core meaning.

‘A biomaterial can be defined as a substance (with the exception of drugs) or a combination
of substances (both synthetic and natural) employed for the treatment, improvement or
substitution of organism tissues, organs or functions’[6].

A biomaterial is quite different from a biological material such as skin which is produced
by a biological system. The range of materials available to a person wanting to use it as a
biomaterial is vast and can include unusual or unfamiliar materials as well. The materials
available constantly undergo a change, with reasons ranging from development of new material
with help of rapid technological developments to removal of certain materials due to research
determining negative effects. There are ceramics which can mimic spring action, paper laminates
that can behave as a heat insulation material and all this considering the fact that plastics, which
have the properties of other generic groups, can be processed more easily and are cheaper as
well. Good design engineers should try and avoid the habit of selecting a known material just
because it is easier or safer, as each project must be examined from the start and the correct set
of requirements be drawn. The design engineer must be aware of the full range of materials
available and new formulations being presented else the design might be compromised for
company profits.

Currently used biomaterials can be broadly divided into two main categories: biological and
synthetic. The biological materials category can be considered to consist of polypeptides
(proteins), polysaccharides (Cellulose, Hyaluronate etc), nucleic acids or their composites etc.

The synthetic materials category would range from metal implants (Titanium, Ni-Cr, S.S. etc.) to



polymers. A polymer may be defined as a large molecule (macromolecule) built up by the
repetition of small, simple chemical units (monomers). Based on the arrangement of these units,
the various types of chains that can be synthesized, and the shapes that these chains can assume,
result in a class of materials (polymers) characterized by a very broad range of properties.

During the course of this thesis, the focus will be concentrated towards polymers only.
Polymers that are designed and employed for medical purposes present very delicate aspects
from the viewpoint of interaction between biological systems and synthetic materials [6].
Polymers have already been in use for some years now for prosthetic implants, for
extracorporeal purification treatments and even for therapeutically important applications, such
as the slow release of drugs or their targeting to specific organs.

The usage of polymers for medical purposes is not limited only to biomaterials. In fact most
of the devices used in medical applications nowadays are made of polymers. Examples range
from the operation table to syringes to the casing of most medical electronic equipment. The
ability of plastics to be molded into very complex shapes gives every designer the opportunity to
design products as per the assembly line, which is for reducing overall cost and producing a
more efficient end product. The device being discussed in the later portion of this thesis also has
a variety of components made from plastics. Due to the complex nature and the variety of
polymers and an even wider range of applications, the topics of applications of plastics in
medical arena and the involved structure property relationships will not be discussed during the
course of this thesis.

The chemical, physical and the processing properties of the polymers finding biomedical
uses, can be very different: from water-soluble or bio-degradable ones to rigid, hydrophobic and
designed to resist for many years mechanical stress and the hydrolytic action carried out in the
human body by chemical or enzymatic agents. Whichever the polymer, design engineers cannot
ignore the properties prior to selection of the appropriate material. Additionally the essential
requisite for the employment of biomaterials is ‘Biocompatibility’, which is specific to the
application, material and location in the human body. Biocompatibility of materials is sometimes

defined as compatibility of a technical system with a biological system [7].



1.4, Systemic aspects of biocompatibility

Biocompatibility is also termed as the ability of a man made material to exist in an in-vivo
environment for an acceptable period of time with no observed detrimental effect on the human
body. The term biocompatibility covers a wide range of material properties. Some of the
properties that gain relevance are chemical inertness, toxicity, resistance to hemolysis,
thrombogenicity, resistance to adhesions, protein deposition etc.

The regulations lay down by various governmental agencies such as Food and Drug
Administration (FDA), as well as by standardization agencies such as International Organization
for Standardization (1SO), address the issue of testing for biocompatibility prior to clinical
testing of devices or components. A majority of the tests in place establish specific materials
response in vivo and in vitro to predict the biological effects and properties of materials to be
used in contact with human tissue. However as with all newly developed materials, the lack of
prior data or prior standards stands as an obstacle for FDA approval.

The subject of biocompatibility becomes even more difficult to treat due to the use of
additives in improving the material properties or improving the processing. Due to the complex
nature and the variety of polymers and an even wider range of additives, this topic will not be

discussed during the course of this thesis.

1.5. Recent developments in cardiac devices

The clinical introduction of cardiopulmonary bypass, in 1953, ushered in the era of open
heart surgery and fueled the creativity of the cardiovascular device specialists. HeartMate, an
implantable, pneumatic left ventricular assist device developed by Thermo Cardiosystems Inc. in
1953 proved to be an effective way of providing long term circulatory support. In 1963,
DeBakey tested an implanted pulsatile pump in open heart surgery patients. This pump was air
driven with ball valves made of Dacron-reinforced Silastic. Some of the cardiac devices will be

discussed to analyze their mechanism and critical components.



1.5.1 Liotta Total Artificial Heart (TAH)

The Liotta TAH, developed in 1969, was diaphragm type and consisted primarily of a
pneumatic pump. It was positioned orthotropically, replacing the native ventricles. This device

paved the way for evolution of the TAH [8].

1.5.2 MagScrew Total Artificial Heart

The MagScrew TAH consists primarily of a blood pump, actuator and control logic. The
TAH device makes use of two pusher plate pumps, in which the pusher plate shafts are guided in
the actuator shaft alternatively, thereby always achieving a passive filling response in one
section. This device demonstrated good preload sensitivity and no signs of kidney or liver

dysfunction [9].

1.5.3 CardioClasp

The CardioClasp, which uses two indenting bars to reshape the left ventricle (LV) and
reduce wall stress, claims to improve systolic performance. The three primary components are:
two rigid bars with pads and an adjustable tether. The principle underlying the design is to
reduce afterload on the myocardial cells. Generally a reduction in afterload is achieved by
lowering vascular resistance. However the resulting lower arterial blood pressure can
compromise blood flow to other vital organs, such as the brain and kidney. CardioClasp reduced
LV diameter by reshaping the left ventricle and thereby decreased LV wall stress and increased

the fractional area of contraction [10].

1.5.4 Myosplint

Myosplint implants consist of two epicardial pads or buttons connected by a tension
member, which works on a similar principle as CardioClasp. This passive device decreased peak

left ventricular systolic wall stress value.



New radical approaches to develop a better and effective treatment option have been
Ventricular Recovery (VR), trans-myocardial laser revascularization surgery (TMLR) and
xenotransplantation (cross order/breed transplant). However VR holds the most promise amongst
these.

It is known that throughout progression and aggravation of heart disease, there is constant
dilation of the left ventricular chamber walls. As the left ventricle wall dilates, the radius of
curvature increases and thereby increases the load on myocytes. This causes an increase in left
ventricle wall tension and hence a decrease in systolic functioning, in accordance with Laplace’s
law. The term “Ventricular remodeling’ is often used to denote a progressive process of
ventricular dilation and dysfunction. Most clinical research related to ventricular remodeling and
related effects have been based on echocardiography and radionuclide ventriculography.

VR based treatment options focus on inhibiting or reversing, as in the case of the device
being discussed in the next section, the remodeling process. In fact the devices developed
previously such as the CardioClasp, have been used in studies to show that the device when used
can reshape the left ventricle and improve left ventricular systolic performance in failing hearts
[11].



2. ATTEMPTING TO SOLVE THE UNIQUE PROBLEM

2.1. Problem identification and definition

There are some groups which are developing novel cardiac assist devices based on the
principle of VR. One of the groups is led by Dr. John Criscione at Department of Biomedical
Engineering, Texas A&M University. A team under the guidance of Dr. Criscione, in the
Cardiac Mechanics Lab at Texas A&M University, is currently developing an investigative
device, a portion of which is shown in Fig. 2 below. The device aims to assist in VR by
restoration of physiological strain patterns in the myocardial cells. The primary hypothesis being
that the restoration of a physiological strain pattern to a failing heart, will promote healthy

growth and recovery, which leads to VR [12].

Valve plane

Highly elastic membrane

Cuter rigid shell

Fight Ventricle

Stratn modulating elastomenc mesh
Left Ventricle

Drrwing fluid

Fig. 2. Schematic of investigative device.

An important component of this device is the deformable inner membrane which modulates
the outer-ventricular displacements. This membrane will be in direct contact with the epicardial
surface of the heart and will assist in restoration of typical strain pattern, which is hypothesized
to lead to good physiological growth, guide myocardial growth, reverse ventricular wall dilation
and remodel dilated, failing hearts of CHF patients [12]. The current objective of the group is not
whether this can be developed and promoted as a permanent cure or if it is an industry viable

technique, but only to test and prove the hypothesis.



10

As a part of this testing of hypothesis, prototypes have to be made and tested, both in-vitro
and in-vivo. Various team members have been involved in the development of various
components for prototypes of this investigative device. The scope of this thesis is limited to the
work done by the author and limits the discussions to the same.

The scope of the work done for this thesis focuses in particular on the design and
fabrication of equipment to develop and test the highly elastic membrane that would surround
the epicardial surface of the heart. This work is specific for the specifications of the prototypes
being developed by the team and utilizes only the facilities within the Texas A&M University, to

avoid any copyright issues, intellectual property or legal complications.

2.2. Research objectives

The research has been aimed at developing the highly elastic membrane from an ordinarily
available form of polymer (cast sheet, pellet form or block pieces). It is simultaneously aimed at
developing permanent polymer processing equipment for making similar membranes and testing
setup for inflation testing of membranes for future use by the same group.

This elastic membrane is to be set on the lip of the outer rigid shell such that it nearly
matches the shape and size of the outer rigid shell and the extra membrane portion sags towards
the base of the rigid shell. In the advanced prototypes, the membrane is going to be attached to
the apex of the shell, in some manner yet undecided. The testing technique should note this point
and should alter the testing mechanism to accommodate this fact. The testing apparatus, its
details and how it adjusts for the above attachment has been discussed in Section 4.1.

An o-ring, having slightly smaller perimeter than the outer rigid shell in the x-y direction,
should be fixed to the membrane to enable firm grip with the outer rigid shell and prevent
leakages. This fixation may be done preferably as a part of the processing, as it would enable
elimination of additional processing steps. The specifications of the shell are set by the problem
and are not within the purview of this thesis. The dimensions of the prototype have been
measured and the axis measures of the prolate-ellipsoidal shape are 100mm, 75mm and 150mm
in the x, y and z direction respectively.

The outer rigid shell of the investigative device has been fabricated such that is also of the
shape of the human heart and follows the contours of the heart, though slightly larger in size, so

as to accommodate the elastic membrane as well as the strain modulating elastomeric mesh. The
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primary reason for having the elastic membrane, strain modulating elastomeric mesh and the
outer rigid shell, similar to the shape of the human heart is quite obvious, as they can assist in
restoration of typical strain pattern and guide myocardial growth only if they have the right
boundary conditions.

The elastic membrane, when inflated by a pumping mechanism in the direction of the apex
of the heart, should yield a shape similar to the shape of the human heart, which is known to be
prolate-ellipsoidal. Given below in Fig. 3 is a comparison of shapes, each with four nodes and
three degrees of freedom per node, to give a better understanding of the difference between
planar, cylindrical, spherical and prolate-ellipsoidal. These shapes have been developed using a

MATLAB program, coded by the author.
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Fig. 3. Comparison of planar, cylindrical, spherical and prolate-ellipsoidal shapes.

The testing technique should make sure that elastic membrane, when stretched or inflated
either by suction or pressurization, yields a prolate-ellipsoidal shape. It could be misleadingly

assumed that if the elastic membrane when inflated, were to yield a shape similar to the outer
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rigid shell, it would be sufficiently prolate-ellipsoidal. It has to be noted that any flat membrane
(circular or elliptical or any other shape), when inflated would tend to minimize the surface area

and hence would inflate spherically.

2.3. Inflation

This section of the thesis is devoted primarily towards understanding, simulating and
predicting the inflation of any flat isotropic ellipsoidal shaped membranes.

Based on preliminary assumptions, the pressure inside the membrane remains almost
constant, while the volume increases as more air is added. The pressure required to expand the
membrane is almost entirely due to expansion of the gas against the earth’s atmosphere, plus a
small factor to stretch the rubber. Therefore, the pressure remains almost constant, independent
of volume. The tearing or breakage of the membrane is not due to the pressure increases, but
because the rubber molecules are stretched so far apart that the intermolecular forces can no
longer hold them together. In order to study and better understand the shape the isotropic
ellipsoidal membrane would take upon inflation, some amount of work has been done to
simulate the inflation of membrane. The simulation should account for the basic fact that
surfaces tend to minimize their surface energy.

To simulate the Okpa inflation or no inflation, we use the MATLAB program provided in
Appendix A to generate the starting state or reference configuration. The MATLAB program
simulates the membrane along the { 1 and { 2 axis. { 1 going from 0 to 1 in the first quadrant
along the hoop direction as 6 goes from 0 to II /2. {2 goes from 0 to 1 in the first quadrant

along the arc length direction as the radius goes from O to specified radius as shown in Fig. 4.



Fig. 4. Axis €1 and C2 and their limits as used in the simulations.
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0 can be assumed to be a function of the mean change in radius and can be easily calculated

as follows:

0 :%x (H2C )% &5 )+ Ha( )% (R + R )/ 2 Ron)
+H3({)x¢, )+ Ha(C )X (Rmin + Rumax )/ 2 Romax )}

3

The degrees of freedom were identified for the relevant expansion conditions. Due to time

constraints, the simulations carried out as a part of this thesis work are only for expansion

without rod. Seven degrees of freedom were identified for expansion without rod and are as

given below. For simulating the condition of expansion with rod, eight degrees of freedom can

be identified and used for the simulation.

. or
1. ~ o |¢=m
) 06> X
- or
11. N SE |
YA =
iii.) 0,
at ;= 0 at the base.
iv.) 0,
at ;= pi/2 at the base.
v.) Z
. or
vi) Bl 50
. or
Vll.) 8§2 412::?

The change in arc length at {1 = pi/2 at the apex.

The change in Arc length at £; = pi/2 at the base.

The angle made by the surface of the membrane with the plane of base

The angle made by the surface of the membrane with the plane of base

The depth or the distance of the apex from the plane of the base

The change in Arc length at {; = 0 at the apex.

The change in Arc length at {; = 0 at the base.

Then assuming mirror symmetry along the axis since the simulation is being carried out for

isotropic material, which has same mechanical properties in all directions, the other portions of

the membrane are generated, to give the Fig. 5.
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Fig. 5. Simulated starting condition of membrane at Okpa or reference configuration.

Once this starting condition is achieved and its volume is calculated, the conditions for
expansion due to increase in pressure to lkpa are simulated to find the final resting condition, as
shown in Fig. 6, where the surface would tend to minimize its surface energy. The axis {1 and {2
are maintained in the same direction and having the same limits. For the purpose of minimizing,
the MATLAB program provided in Appendix A makes use of the constrained nonlinear
optimization function: fmincon. This function is used to minimize the difference between the
sum of energy stored in the membrane and the product of pressure and change in volume. This is
done to account for the fact that surfaces tend to minimize their surface energy.

The function ‘fmicon’ attempts to find a constrained minimum of a scalar function of
several variables starting at an initial estimate. It is also sometimes referred to as nonlinear
programming. As used in the code, the function defines a set of lower and upper bounds on the
design variables in X, so that the solution is always in the range Ib <= x <= ub. It is
recommended to set the arguments Aeq=[] and beq=[] if no equalities exist, as done in the code
in Appendix A. Details on the function, its arguments, algorithm and limitations can be found on

the MATLAB internet website.
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Fig. 6. Simulated final condition of membrane at 1kpa.

Given in Appendix B are the intermediate conditions from Okpa to lkpa. These simulation
results are corroborated by experimental results. Samples were tested using the testing apparatus
discussed in Section 4.1 of this document, sans the plastic rod. As we can see from results given
in Appendix C, as the membrane is inflated, the membrane tends to become more spherical.

All of these results, discussed above, are to be expected within the constraints set by the

limitations and delimitations and time frame in which the work has been completed.

2.4.  Setof limitation and delimitations for the problem

As with all research projects, this research work has its own set of limitations and
delimitations. These are due to variety of reasons such as the available resources, the timeframe
in which the work has been carried out and presence of numerous unknown variables.

The polymeric material selected as a part of the experimentation plays a vital role in the
entire device as well as the experimentation, as it essentially determines the physical properties,
the chemical interaction, the elongation characteristics and the biocompatibility. However the

current issue for the purpose of this thesis remains focused on design, fabrication of equipment
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to develop and test the highly elastic membrane that would surround the epicardial surface of the
heart as such equipment is not readily available within the Department of Biomedical
Engineering. Therefore it has been assumed that the polymeric material selected for
experimentation and the prototype membrane, exhibits satisfactory elongation properties and
tensile strength. At the same time, it should not exhibit permanent deformation characteristics for
the loading used in the techniques.

A major portion of deformation characteristics will be determined by the thickness of the
membrane. But the research work for this thesis doesn’t cover evaluation and analysis of
membrane thickness variation, primarily due to time limitations. However the processing
techniques considered, have been developed considering this fact and accommodate for variation
in membrane thickness.

It has also been assumed that the polymer complies with all relevant biocompatibility
standards, as available resources and the timeframe for work restrict biocompatibility studies on
the samples for this thesis.

The losses caused due to the friction between the membrane and all the surfaces it comes
into contact with, doesn’t fall within the purview of this thesis work. Neither do the losses
caused in pressure differences due to small diameter pipes. However they can safely be assumed
to be negligible.

The processing technique should be able to address and make sure that the o-ring is
completely attached to the membrane as any gaps could possibly result in wrinkle formation,
fold formation or possible rupture points if the membrane is too thin. Wrinkle formation, is
considered neither a limitation nor problem. Aesthetically it would not have the appeal of
smooth membrane, but if in the future this device is used for any animal experimentation, the

wrinkles would not affect the functioning in any manner.

2.5. Previous work and equipment available

At the Department of Biomedical Engineering, Texas A&M University, there has been no
reported work done in the field of investigative cardiac assist devices, VR and development of
polymer processing equipment, prior to current work done by the group led by Dr. Criscione.
There exists testing apparatus for measurement of mechanical properties within the Department

of Biomedical Engineering. The existing apparatus for membrane inflation testing within the
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Department of Biomedical Engineering, with the group led by Dr. Humphrey, is for very small
membrane inflation and hence a new apparatus setup had to be developed indigenously.

Judging by past experience, available information on similar products and based on
available resources, the polymer selected should be in a process-able form, should be readily
available in the market and would probably belong to the category of thermoplastics or rubbers.
Thermoplastics are linear or branched polymers that can be melted upon the application of heat.
Rubbers are materials that exhibit elastomeric properties i.e. they can be stretched easily to high

extensions and they tend to restore to their original dimensions upon release of stress.
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3. ANALYSIS OF MATERIAL, TECHNIQUE AND MOLD SELECTION

3.1. Research methodology

Since there is hardly any previous work done in the fields of investigative cardiac assist
devices, polymer processing equipment, membrane inflation testing at the Department of
Biomedical Engineering, the methodology heavily depends on text-based knowledge and limited
knowledge of the team. Knowledge accrued from texts on subjects of polymer processing and
physics of inflation, have helped define and guide the design most of the experimental and
testing setups. Inputs from personal knowledge of author and Dr. Criscione have helped fine tune
and guide some of the parameters for the experimentation. The primary steps in developing a
permanent, polymer processing equipment and testing setup for future use by the group, can be
listed sequentially as follows.

A working principle for a polymer processing technique is developed based on literature
and is evaluated for feasibility based on shape restrictions and other limitations. A feasible
technique is then extended and a working model or mold is drawn up on paper. It follows actual
fabrication of the mold, its various components and other accessories, followed by assembly of
the setup. A trial run was conducted whenever possible, using wax, which can be considered to
exhibit the same melt characteristics as general thermoplastics. Any defects in the functioning of
the setup are fine tuned at this stage and prepared for use with polymers. If the technique is
successful, the experimental setup is developed using similar procedure as the processing mold
setup. The samples are taken and tested, wherein the actual extent of inflation of the membrane
iS measured.

Only a limited number of elastomers have the demonstrated bio-stability and
biocompatibility to serve reliably in long-term medical implants. This can be primarily attributed
to the fact that FDA strictly regulates all instances of artificial materials being used inside the
human body. For more than thirty years, two biomaterials have been used extensively in implant
able devices: cross-linked silicone rubber and thermoplastic polyurethane (TPU). For products
that need to combine the need for high wear resistance with long implant time in the human
body, TPUs—and the closely related, solvent-cast, segmented polyurethanes (SPUs)—have
often been specified. However after deliberation on availability of raw materials and testing
needs, the testing for the work in this thesis has been carried out on Natural thin gauge latex
rubber sheet 0.006” thick.
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3.2.  Available processing techniques

Molding of plastics and medical devices applications development are always in
competition to outperform and leapfrog one another. An increase in functional requirements of
molded medical components essentially drives the molding technology advances required and in
turn the increased capabilities facilitates for innovations in design of new medical device
components.

In the past and present, conventional injection molding technology has proved to be
sufficient to meet most of the needs of the applications developed. Injection molding can be
described as the process of replication of particular shape, by injection of molten plastic under
pressure into the cavity of a mold (replica of wanted shape), followed by cooling and removal of
the item.

Injection molding is done by large machines called injection molding machines. The
polymer to be cast is usually in the form of pellets and is fed to the machine through the hopper.
Upon entering the barrel, the resin is heated to the appropriate melting temperature. A controlled
amount of resin is injected into the mold by a reciprocating screw or a ram injector. The mold is
the part of the machine that receives and shapes the molten plastic. The mold needs constant
cooling to a temperature so that the resin solidifies. The two mold plates are held together by
hydraulic or mechanical force.

A modification of the conventional Injection molding has been Liquid injection molding.
This process makes use of Liquid Silicone Rubber (LSR), a two-part platinum catalyzed product
to mold the desired components. A pumping system mixes the two components in a precision
meter-mix process to a given ratio and delivers the mix to the tool in the injection machine to be
cast.

Injection molding has always been associated with large quantity production, whereas
compression molding is a process where larger control and accuracy can be achieved on a single
part. Compression molding is a method of molding in which preheated plastic melt is placed in
an open heated mold cavity. The mold is then closed with pressure being applied to force
material contact with all mold areas. Heat and pressure is maintained until the molding material
has cured. This process is most often used with thermosetting polymers.

In comparison with Injection molding, rotational molding or rotomolding can easily

produce both large, small precision and non-precision parts in a cost effective manner. It is
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generally recommended for one-of-a-kind prototypes. The process does not require any pressure
to be held and rotomolding tooling is far less expensive. Rotomolded parts are formed with heat
and rotation, but not with pressure. Therefore, molds don't need to withstand the high pressure of
injection molding.

When conventional molding techniques have fallen short, novel improvements and
modifications to the process have been devised to provide unique solutions. There have been
many such improvements. Pulsed cooling and induction coil heating modification to the
conventional molding process add a greater degree of process control. Gas-assisted injection
molding and multi-live feed molding are variations of conventional injection molding where
auxiliary equipment is incorporated to give better control over component wall thickness.
Injection molding of polymers filled with dispersed metallic or ceramic powders is a recognized
variation for the production of a large series of complex shaped parts at low cost and with high
accuracy.

As a part of this thesis, variations to conventional molding techniques have been sought as
the elastic membrane offers unique challenges in junction with the limitations under which work
is being carried out.

Conventional extrusion molding or its variations have not been considered as the technique
is mainly used for continuous type molding. Conventional rotomolding or its variations have not
been considered as the elastic membrane shape is very complex for this processing technique.
Conventional injection molding or its variations, such as gas assisted injection molding, have not
been considered as the mold making would have to be done with help sought outside the Texas
A&M University system, which is beyond the monetary budget constraints and could possibly
involve violations of intellectual property issues. Additionally since the raw material is natural
latex rubber and its form, thin gauge sheet 0.006” thick, it eliminates usage of all of the above
methods.

Additionally all of the above mentioned molding techniques would not provide for a
permanent solution to future demands of membrane as the available molding machines are with
departments within the Texas A&M University system, other than Department of Biomedical

Engineering.
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3.3. Setup and description of failed techniques and molds

Under the guidance of Dr. Criscione, in the Cardiac Mechanics Lab at Texas A&M
University, several attempts were made at developing a polymer membrane within the already
discussed set of limitations and delimitations. The first couple of attempts at processing
techniques failed. They will be discussed in brief, to highlight the components as well as the
failure mode so that any future work in this field, may avoid these pitfalls or overcome the

failure points faced by the author.

3.3.1. Open mold casting

Casting processes are generally characterized by their use of a molten starting material that
is shaped without the application of significant pressure. Pressure can be used in some casting
variations provided it is minimal. Some casting processes, for instance, utilize the weight of
mold components themselves to exert the minimal pressure. Such uses of pressure are considered
insignificant. The absence of significant pressure means that the molds and the assembly used in
the process need not be as strong as the ones used in high-pressure molding technigues such as
injection molding. Casting molds can be made from wood, plaster, plastic, aluminum, rubber and
other materials that may fit application specifications.

External heat is sometimes used to hasten the solidification process, although it is not
required. Materials can solidify via various mechanisms such as chemical reaction, external
heating and cooling or solvent evaporation.

Casting and its variations are not looked upon, by most of the polymer processing engineers
or product development engineers, as a good and viable technique. However it was felt that this
situation needed the casting process with natural air cooling and solvent evaporation accounting
for material solidification. This was primarily so, because of the prolate ellipsoidal shape and
also because at that time, there was ongoing deliberation on thermoplastic to be used and its
available form.

The mold, the rendered white part in Figs 7 through 10 as shown below, was machined
from a cylindrical block of teflon. One half of the block was machined as one-half of an ellipsoid
having radii 0.78”, 0.98” and 0.98”; while the rest was left cylindrical. The mold was mounted

and connected to a motor via various gear-cam mechanisms. Speed variation was needed as it
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was unclear at the time of assembly as to what speed of rotation would be needed. It would
depend on polymer viscosity, rate of solvent evaporation and rate of cooling. All this was
mounted on a wooden board along with additional safety measures such as spill protection walls.
The spill walls were in place to avoid injuries from flying lumps of polymer, if any from the
centrifugal force.

Fig. 7. Rendering of frontal view of various components of mold.

Fig. 8. Photograph of frontal view of various components of mold.
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Fig. 9. Rendering of side view of various components of mold.

Fig. 10. Photograph of side view of various components of mold.

The polymer in market form once melted using an oven, would then be poured onto the
Teflon mold. The mold, constantly rotated by the motor, was placed at an angle to the horizontal
ground since it was fixed to the board. This was done to achieve near simultaneous contact with
mold surface and uniform cooling of mold and membrane. It was envisaged that both the
gravitation pull and the centrifugal force generated due to mold rotation, would assist in uniform
distribution of melt on the mold surface, eventually leading to uniform membrane thickness. Fig.

11 shown below is cartoon depiction of the envisaged melt flow.
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Fig. 11. Cartoon depiction of the envisaged polymer melt flow.

Unlike normally used molds where the melt-mold contact surface is the outer surface of the
product, in this case the mold-melt contact surface would be the inner surface of the membrane.
This was done intentionally as the inner surface of the membrane, would be in touch with the
pericardium, and would need to be smoother than the outer surface. Also this method seemed
easier from machining perspective. It had been estimated that the inherent problems of melt
lines, warps and defects due to shrinkage would arise. However, it was decided at that point to
ignore any such defects in the membrane.

Once the membrane would be formed, while the membrane was still on the mold the o-ring
would be slipped on top of the membrane and permanently attached to the membrane using
commonly available cyanoacrylate based glues, or Super-Glue as it is known commonly.

This technique was deemed as failed as the membrane formed using this technique was not
up to mark. The major reasons seen for this failure were non-uniform cooling of mold as well as

melt; formation of lumps and excessive adhesion between mold surface and melt.



26

3.3.2. Gated casting

Upon failure of open mold casting, it was felt that those failures and disadvantages could be
overcome using surface / gated casting process with natural air cooling and solvent evaporation
accounting for material solidification. It also allowed for better control over thickness variation.

The mold, as shown below in Fig. 12 and Fig. 13, was machined from a cylinder of brass of
diameter 6”. It consists of two components and the gap between them would allow for the
membrane to be cast. Since brass is difficult to machine and precision machining for making
matching components is difficult to achieve, especially for prolate-ellipsoid, it was decided that
the shape of the cast membrane can be conical. The conical shape is considerably similar a shape
to the prolate ellipsoid. Additionally the conical shape of the membrane aided in it being
attached to the apex of the shell. The maximum radius of the conical shape fabricated was 4” at
distance of 3.5” from the tip.

Screws were mounted all around the circular mold at regular spacing. They served dual
purposes - to measure / control the distance between the two mold components and to exert

pressure by forcing the two components together.

Fig. 12. Photograph of the two components of mold in open condition.
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Fig. 13. Photograph of the two components of mold in closed condition.

To reduce temperature gradient between melt and brass mold, the mold was preheated.
Once sufficiently heated and the two components were in place, the polymer in market form
would be melted using an oven or using an appropriate solvent. The melt would then be poured
inside the brass mold via a feed line. It was envisaged that air cooling and solvent evaporation
would account for material solidification. Mold release agents were sprayed to ease the removal
of membrane from the mold.

Once the membrane would be formed and removed from the mold as shown in Fig. 14, the
o-ring would be slipped on top of the membrane via some external mechanism and then
permanently attached to the membrane using commonly available cyanoacrylate based glues, or

Super-Glueas it is known commonly.
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Fig. 14. Cartoon depicting various components of mold in different stages of the membrane forming

process.

This technique was deemed as failed as the membrane formed using this technique was not
up to mark. The major reasons seen for this failure were non-uniform cooling of mold; release of
lethal agents upon heating from solvent and slow delivery of melt to mold. Also it was felt that

this method would prove to be difficult for others to replicate easily and safely.

3.4. Setup and description of successful technique and mold

Upon failure of two variations of casting, it was felt that those failures and disadvantages
could not be overcome using casting process with natural air cooling or solvent evaporation
accounting for material solidification.

Since the membrane thickness needed to be quite small, a paradigm shift was the need of
the hour for both the raw material as well as the technique. It was decided at that point to use
natural latex rubber in the form of thin gauge sheet 0.006” thick, as it would eliminate any
heating or cooling. The use of such commercially available forms would also enable the team to
include more materials for making this membrane. It also led us to explore the option of
thermoforming as the processing technique.

Thermoforming is generally used in low-cost low-end applications and cannot be used to

form as rigid shapes as vacuum forming or compression molding is capable of. Thermoplastics
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are preferred for use in thermoforming because thermosetting plastics assume their final shape
through heat and so can not be molded with this process.

Thermoforming is a process in which sheet plastic is molded into the desired shape using
pressure. This pressure is usually applied using wooden or metal shape formers, which press into
the sheet.

External heat is used, though rarely, to ease the forming of the sheet plastic although it is
not required. Mechanisms such as chemical reaction, external heating and cooling or solvent
evaporation are not required as the material is in solid sheet form to begin with.

The equipment prepared consists primarily of three sections viz. an acrylic top and
Polyvinyl Chloride (PVC) pipes of two different cross sections. The two pipe sections are
connected using an easily available plastic throat. For use in this research, the pipes used were of
diameter 3.5” and 4.5, each of length 8” and 3’5” respectively. The length of the latter being
more, as it was felt that working at average human arm length would prove to be more
convenient. The former was selected as it was found to give better results, by trial and error
method. The acrylic top cover was fabricated, from a block of acrylic, having external diameter
of 3.5” and was machined as a press fit into the 3.5” PVC pipe section. A taper of 30° and 60°,
followed by file and smoothening by sand paper, was added on the upper surface to give a
smooth radius of curvature. It was then assembled to get an assembly as shown in Fig. 15 and
Fig. 16.

([T

Fig. 15. Cartoon depiction of frontal view of various components of setup.
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Fig. 16. Photograph of various components of setup.

Once this assembly was in place, a decision had to be made with regards to the dimensions
of the membrane that would need to be produced and whether the problem of wrinkle formation
would arise and o-ring attachment over the wrinkles, if any.

Upon inspection and study of the final functioning of the membrane, it was decided that the
membrane should be sufficiently taut when placed in the prototype. As per the envisaged
functioning, the membrane should be in a stretched condition when the heart would be placed in
it. The exact quantification for how much stretch is needed is not available.

The stretch ought to be related to the depth of the outer rigid shell in the z direction. The
actual depth of the prototype outer rigid shell was measured to be 75mm or the length the axis
(twice the radius) to be 150mm. If the axis length were to be assumed less than 150mm, it would
cause the membrane to stretch when used with the actual prototype. Hence this was defined as
the variable for the experimentation to be carried out. The choice and selection of axis length
values was based on primarily on feasibility and having sufficiently broad range. The values to
be studied were fixed as 100mm, 115mm, 130mm, 140mm, 145mm and 150mm.

The perimeter of the outer shell in the XY, YZ and XZ planes is calculated from known
axis lengths and for all six values of variable. Then for each variable, an ellipse having major
axis as half of XZ perimeter and minor axis as half of YZ perimeter is calculated and drawn
using AutoCad. The calculations of perimeter, major axis length and minor axis lengths are

given in Appendix D. The natural latex rubber sheet is then cut into parts to fit the exact shape
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and size of each ellipse. The outline of ellipse is then traced on the rubber sheet using permanent
markers.

Individual latex rubber sheets would then be stretched symmetrically as shown in Fig. 17
below, over the mold. By trial and error, a position was identified on the mold, till where the
rubber sheet would need to be stretched such that there would be no wrinkles inside the marked
elliptical area. Once the rubber sheet was in required position, it would be fixed using commonly
available Duck-tape. The o-ring would then be slipped over the membrane till it matches the
marked outline and then permanently attached to the membrane using commonly available
cyanoacrylate based glues, or Super-glue as it is known commonly. The membrane would then
be tagged for identification purposes and then released by cutting the portions beyond the

marked area. This is repeated for all samples.

Fig. 17. Cartoon depiction of various stages of membrane preparation.
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4. EXPERIMENTATION AND RESULTS

4.1.  Test method and setup

At the Department of Biomedical Engineering, Texas A&M University, there exists testing
apparatus for measurement of mechanical properties. However no testing apparatus exists for
membrane inflation testing within the Department of Biomedical Engineering and had to be
developed indigenously.

Judging by past experience and led by testing needs, the testing apparatus was designed and
fabricated with the key components being the pressurizing component; pressure measurement
and control component and recording component. A cartoon representing the test setup in is
entirety is given in Appendix E.

The pressurizing component, as highlighted in Fig. 18, consists of an easily available
continuous air pumping unit. For pressure measurement and control, a continuous U tube
monometer and reservoir, as shown in Fig. 19, was fabricated and water was used as the medium
in the monometer. While positive pressure from the pumping unit was applied to one leg, water
was forced down in that leg and up in the other. The difference in height indicated the pressure.
Since water was used as the medium in the monometer, the height was calibrated using the
known relation of 10.19716cm of water above the outlet for every kilo pascal (kpa) of pressure

applied.

Fig. 18. Air pumping unit (not to scale).
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Fig. 19. Monometer and reservoir (not to scale).

The recording component, as highlighted in Fig. 20, consists of an easily available camera
positioned to capture the inflation and a setup consisting primarily of the prototype shell. The
cross section of this setup is as shown in Fig. 21. The screws, when tightened, force the
membrane against a layer of rubber glued to the upper ply, thereby creating a seal which is leak
proof. A plastic rod, placed in the center of the prototype shell, helps the testing apparatus
account for the discussions in Section 2.3 of this document, where it was proved that pure
inflation would result in a spherical shape rather than prolate ellipsoid. The rod also extends the
membrane thereby simulating the condition wherein the membrane would be permanently

attached to the apex of the shell.

Fig. 20. Camera and inflation (not to scale).
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Fig. 21. Cross section (not to scale).

4.2.  Experimental results

The various membranes were tested using the apparatus discussed in previous section and at
different pressures of Okpa, 1kpa and 2kpa. The inflation for 1kpa is of prime importance as it is
known that the pressure in the epicardial region of the heart is about lkpa. Hence if the
membrane deformation at 1kpa matches closely the geometry and contours of the rigid shell, it
would be considered to be a good fit. Testing at Okpa is carried out to have information which
might be necessary for implantation surgery as well as for cases of pump failure. Testing at 2kpa
is carried out to have information about excessive pumping, a pump failure and to corroborate
the results of Section 2.3. The extent of inflation is recorded via the images taken by the camera.

The results are as tabulated below in Tables 1 through 6.
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Table 1

Results for axis length 200mm

Pressure (kpa) Image from front Image from side

0
1
2
Table 2
Results for axis length 115mm
Pressure (kpa) Image from front Image from side
0
1
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Table 3

Results for axis length 130mm

Pressure (kpa) Image from front Image from side

0
1
2
Table 4
Results for axis length 140mm
Pressure (kpa) Image from front Image from side
0
1
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Table 5

Results for axis length 145mm

Pressure (kpa) Image from front Image from side

0
1
2
Table 6
Results for axis length 150mm
Pressure (kpa) Image from front Image from side
0
1
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4.3. Results analysis

The images then have to be analyzed, scaled and compared to get a better understanding of
the test results. The images are analyzed using commonly available software such as Image J or
MS Paint and then scaled and compared using MATLAB or MS Excel. The various contours can
then be compared against each other as well as the contours of the outer rigid shell, for different
pressures or for different values of axis length. Below in Figs 22 through 33, are the comparisons

for different values of pressure for each value of axis length.
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Fig. 22. Front section profiles for axis length 100mm and pressures of Okpa, 1kpa and 2kpa.
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Fig. 23. Side section profiles for axis length 200mm and pressures of Okpa, 1kpa and 2kpa.
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Fig. 24. Front section profiles for axis length 115mm and pressures of Okpa, 1kpa and 2kpa.
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Fig. 25. Side section profiles for axis length 115mm and pressures of Okpa, 1kpa and 2kpa.
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Fig. 26. Front section profiles for axis length 130mm and pressures of Okpa, 1kpa and 2kpa.
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Fig. 27. Side section profiles for axis length 130mm and pressures of Okpa, 1kpa and 2kpa.
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Fig. 28. Front section profiles for axis length 140mm and pressures of Okpa, 1kpa and 2kpa.
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— 1400 Side
— [— 1401 Side
| (=140 2 Side

Fig. 29. Side section profiles for axis length 140mm and pressures of Okpa, 1kpa and 2kpa.

— 145 0 Front
— 145 1 Front
— 146 2 Front

Fig. 30. Front section profiles for axis length 145mm and pressures of Okpa, 1kpa and 2kpa.
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— 1450 Side
— 1431 Side
— 145 2 Side

Fig. 31. Side section profiles for axis length 145mm and pressures of Okpa, 1kpa and 2kpa.

— 1500 Front
— 150 1 Front
— 150 2 Front

Fig. 32. Front section profiles for axis length 150mm and pressures of Okpa, 1kpa and 2kpa.
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| |— 1500 Side
1| — 1501 Side
— 130 2 Side

Fig. 33. Side section profiles for axis length 150mm and pressures of Okpa, 1kpa and 2kpa.

Given below in Fig. 34 and Fig. 35 is a comparison of the actual profile and the three
dimensional reconstruction of the profile from the results for axis length 100mm and pressure of
2kpa. Similar reconstructions can be done for all axis lengths and all pressures, to get a better

understanding of the three dimensional inflation profiles.

Fig. 34. Actual inflated profile for axis length 100mm and pressure of 2kpa.
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Fig. 35. Three-dimensional reconstruction of inflated profile for axis length 100mm and pressure of 2kpa.

These profiles were then compared to the profile of the heart when at diastole as shown in
Fig. 36 below. This was done by matching the inflation profile with the profile of the outer rigid
shell, as the rigid shell was prepared using the exact profile and shape of the human heart at
diastole.

Cter Bigid Shell
100mm lkpa
115mm 1kpa
130mm lkpa
140mm lkpa
145mm 1kpa
150mm 1lkpa

Fig. 36. Comparison of inflation profiles.



46

As we can clearly see from the results, the best fit was the membrane with axis length of

140mm at 1kpa pressure, which is also the normal coronary arterial pressure.
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5. CONCLUSIONS AND FUTURE WORK

5.1. Conclusions

The research for this thesis was aimed at developing the highly elastic membrane, from an
ordinarily available form of polymer, which would surround the epicardial surface of the heart
when used in the investigative device being discussed and specifically for the prototypes being
developed.

The inflation profiles of the membranes, developed from the successful implementation of
the thermoforming technique, were compared to the profile of the heart when at diastole. This
was done by matching the inflation profile with the profile of the outer rigid shell, as the rigid
shell was prepared using the exact profile and shape of the human heart at diastole. It was found
that out of all the membranes studied at different pressures, the best fit was the membrane with
axis length of 140mm at 1kpa pressure, which is also the normal coronary arterial pressure.

The simulation for predicting the behavior of isotropic ellipsoids, upon inflation, was
successful in predicting the behavior and was aided by conversion of the ellipsoidal geometry to
a few degrees of freedom. Further improvements to the simulation fall beyond the scope of this

thesis.

5.2. Future work

The immediate future use for the membranes developed using the technique developed
would be for use in prototypes being developed by the team led by Dr. Criscione.

Future research work could be carried out in many directions. Hemocompatibility studies to
evaluate the interactions of the material and the prototype device with blood can be carried out.
Membrane morphology studies and molecular modeling to yield a molecular structure best suited
for inflation under current set of limitations would help refine and enable a better usability of
these results. Improvements in simulating the inflation behavior of isotropic ellipsoids can be
carried out. Simulation can also be carried out to cover the inflation behavior of anisotropic

membranes.
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5.3. Brief comparison of various methods

This section is for a brief comparison and discussion of the various methods of polymer
processing discussed previously, from the perspective of industrial implementation and large
scale manufacturing of the investigative device and in particular the highly elastic membrane.
Here the concerns of intellectual property, monetary limitations and copyright issues would tend
to pose diminutive problems than before as an industrial implementation would effectively mean
that these and other legal concerns have been met with before the implementation.

Effective comparison of different techniques for companies, on a level playing field would
be difficult as it would need to take into account the existing company facilities, workforce skill-
sets, available processing equipment, market conditions for the final product and pricing
limitations etc. However, the primary concerns and focal points of interest that can be easily

identified for this evaluation purposes are:

e  Adaptability of technigue to individual heart shapes and sizes: Even though the human
heart can be generalized as being prolate-ellipsoidal in shape and having certain dimensions,
individual patients would always have certain uniqueness and the membrane would have to be
adapted to each patient. To adapt the open mold and the gated casting techniques to this
uniqueness would pose problems, as the molds would need to be altered for each patient. The

thermoforming technique would prove to be more adaptable on this count.

e  Cycle time and total production time: The total production time, as identified while hands
on experience in the lab, was shortest for the thermoforming technique. The cycle time, in
industrial setting, would probably be shortest in the gated casting technique because of the

available expertise and equipment.

e  Rate of production: If one were to consider just the rate of production based on the cycle
time while ignoring the adaptability concern, the gated casting technique would have a higher
rate of production. Taking into account the adaptability concern, the thermoforming technique

would score nearly equal or slightly better than gated casting.
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e  Ease of manufacturing mold / processing technique: Based on normally available mold
manufacturing techniques and readily available skilled workforce in the mold making industry,

none of the three methods would score highly over any else.

e  Ease and time required for changing molds: Since the thermoforming technique requires no
change of mold to accommodate for any changes in membrane shape, it would score highly over

the other two methods on this point.

e  Possible production volumes: The gated casting technique would probably have a higher
production rate if it were to be assumed that no change in mold would be required. However this
assumption would be invalid in most cases in which case none of the three methods would fare

any better.

e  Need for training personnel on process and intricacies: In view of the fact that most of the
skilled workforce that industry would have access to, is trained on injection and extrusion
molding, some level of training would need to imparted for open mold and thermoforming.
However enough skilled labor can be found for thermoforming technique as well and would fare

evenly with gated casting.

e Limitations to any materials that can be processed using this technique: Gated casting
would score heavily on this point as its versatility for materials is well known. Thermoforming
would score the least on this point as the starting material would need to be in the form of a

sheet.

e  Hazardous chemicals involved and related disposal requirements: The gated casting and
open mold techniques make use of polymer in the form of pellets and require melting of the
polymer. Depending on the polymer being used, the solvent and the additives that could give off
toxic vapors on decomposition the hazardous nature would be decided. Since thermoforming
involves no melting, it poses little to none toxic hazard. However disposal requirements would

be evenly strict for all three techniques.
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APPENDIX A

MATLAB Code

% main file for solving the inflation model % requires the
following other m-files to be iIn the same directory: initvals.m,
getrefnodes.m, getxyz.m, post_process.m, d_energyfcn.m, amit_out

clear all close all

global history 1 stardofs N_steps global shear_mod thickness
Arefdels Omg_wts Omg_history num_els

Nz2incs Pts_irow global V_history global nv_history global
max_x_4plots min_x_4plots max_y_4plots min_y 4plots
max_z_4plots min_z_4plots global deltaP P_history

Rad _X=50; % Radius of shell In x direction %
Rad_Y=37.5; % y direction %
Rad _Z=75; % z direction %

max_x_4plots=Rad_X; min_x_4plots=0;
max_y 4plots=Rad_Y; min_y 4plots=0;
max_z_4plots=0; min_z_ 4plots=-Rad _Z;

P_final=1;
deltaP=0.05;
N_steps=round(P_Ffinal/deltaP);

if N_steps < 1; error("number of steps is less than 1%); end
history_i=1;

P_history=zeros(N_steps+1,1);
Omg_history=zeros(N_steps+1,1);
V_history=zeros(N_steps+1,1);
nv_history=zeros(N_steps+1,12);
P_history(history _i1)=0;
thickness = 1/6;
shear_mod=4*500;

Per_YzZ=2*pi*sqrt(0.5*((Rad_Y"2)+(Rad_Z"2)));
Per_XzZ=2*pi*sqrt(0.5*((Rad_X"2)+(Rad_2Z"2)));

ArcO=(Per_XZ2)/4; % Arc length for z1=0 %
Arcl=(Per_YZ)/4; % z1=pi/2 %
stardofs [ArcO Arcl pi/2 pi/2 Rad_Z ArcO Arcl];

starnode = getrefnodes(stardofs);
start_nvs = [Rad_X, Rad_Y, starnode];
nv_history(history i,:) = start nvs;



initvals
post_process(start_nvs)
x0O=stardofs”;

A=L1; Aeg=L1:

b=[1; beg=[1:

ub=[Arc0*2 Arcl*2 pi pi Rad _Z*4 Arc0*2 Arcl*2]";
Ib=[ArcO0*0.5 Arcl*0.5 -pi -pi Rad Z*0.2 Arc0*0.5 Arcl*0.5]";
soln_history=zeros(N_steps+1,7);

soln_history(1,:)=x0";

for i=1:N_steps X =

fmincon("d_energyfcn® ,x0,A,b,Aeq,beq, Ib,ub); x0=x;

history_i=i+1; soln_history(history_i,:)=x0"; cur_nvs
[Rad_X, Rad_Y, getrefnodes(x")]; nv_history(history_i,:)
cur_nvs; P_history(history_i) = P_history(history_i-
1)+deltaP; post_process(cur_nvs) pause(0.5)

[yl ","s");user."); end end

save soln_1 soln_history P_history Omg_history V_history
nv_history zlcomps z2comps N_steps max_x_4plots min_x 4plots
max_y 4plots min_y 4plots max_z_4plots min_z 4plots Nz2incs
Pts_irow num_els amitout
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APPENDIX C

e i A

Fig. C-1. Actual inflated profile for axis length 140mm and pressure of 1kpa.

Fig. C-2. Actual inflated profile for axis length 140mm and pressure of 2kpa.
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APPENDIX D
Table D-1
Calculations for axis length for each variable
Wanted Wanted
Direction Diameter Radius XY perimeter | YZ perimeter | XZ perimeter
(inches) (inches)

X 3.938 1.969
y 2.952 1.476 10.933 14.667 15.768
z 5.906 2.953

Half of Perimeter (inches) = axis length 51/2 71/3 78/9
X 3.938 1.969
y 2.952 1.476 10.933 14.275 15.404
z 5.709 2.854

Half of Perimeter (inches) = axis length 51/2 747 7517
X 3.938 1.969
y 2.952 1.476 10.933 13.890 15.048
z 5.512 2.756

Half of Perimeter (inches) = axis length 51/2 7 71/2
X 3.937 1.969
y 2.952 1.476 10.933 13.125 14.345
z 5.118 2.559

Half of Perimeter (inches) = axis length 51/2 6 5/9 71/6
X 3.937 1.969
y 2.952 1.476 10.933 12.007 13.330
z 4.528 2.264

Half of Perimeter (inches) = axis length 51/2 6 6 2/3
X 3.938 1.969
y 2.952 1.476 10.933 10.933 12.371
z 3.937 1.969

Half of Perimeter (inches) = axis length 51/2 51/2 6 1/5
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APPENDIX E
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Fig. E-1. Schematic of test setup and various components prior to testing (not to scale).
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Fig. E-2. Schematic of test setup and various components while testing at 1kpa (not to scale).
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