Single cell and spatial transcriptomics in human
tendon disease indicate dysregulated
immune homeostasis

Tendinopathy; encompassing multifactorial tendon disorders
characterised by pain and functional limitation remains a signifi-
cant burden in musculoskeletal medicine.' Recent findings high-
light a key role for immune mediated mechanisms in tendon
disease supporting the concept that pivotal immunological and
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Cell composition and interactions of healthy and diseased human tendon. (A) Normal (n=4, human hamstring tendon) and diseased
(tendinopathy, n=5, human supraspinatus tendon) human tendon were processed for single cell analysis using Chromium 10x 3'DEG chemistry.
Infographic shows number of donors and cells sequenced. Uniform manifold approximation and projection (UMAP) embedding of 22 124 single cells
delineating endothelial, immune, stromal tenocyte and stromal mural cells with marker genes. (B) Stromal cells of the tendon. UMAP embedding
with gene markers and distribution of seven delineated stromal cell populations from human tendons; mural tenocyte (mT), normal tenocytel (nT1),
normal tenocyte2 (nT2), diseased tenocytel (dT1), diseased tenocyte2 (dT2), diseased tenocyte3 (dT3) and diseased cycling tenocytes (dTc). (C)
Immune cells of the tendon. UMAP embedding with gene markers and distribution of 6 delineated immune cell populations from human tendons;
dendritic cells (DC), macrophage1 (Macro1), macrophage1 (Macro2), cycling macrophage (Macro-C), T-Cells1 (T-Cell1) and T-Cells2 (T-Cell2). (D)
Endothelial cells (EC) of the tendon. UMAP embedding with gene markers and distribution of seven delineated EC populations from human tendons;
(D36 high EC (CD36EC), E-Selectin EC (CD62eEC), collagen 4 vessel EC (COL4aEC), immune-like EC (ImmuneEC), LYVET positive EC (LYVE1EC) and
SEMA3G positive EC (SEMA3GEC). (E) Tenocyte—immune interactions in tendon (n=3 healthy, vs 4 diseased). Predicted cell-cell interactions using
CellphoneDB statistical framework on human tendon immune and stromal cells. Selected ligand receptor interactions showing APP and MIF ligand—
receptor pairs in tendon stromal and immune cells. Mean of combined gene expression of interaction pairs (Log2 mean) and p value of specificity

of interactions. Violin plots of APP and MIF expression in tendon stromal cells from healthy (pink) and diseased (green) tendon. Spatial expression
(log2FC) of stromal APP and macrophage LYVET in normal human tendon and stromal MIF and macrophage CD74 in tendinopathic tendon visualised
on 10x Genomics visium data, boxes highlight areas of coexpression. Violin plots of LYVET and CD74 expression in immune cells from healthy (pink)
and diseased (green) tendon. Biorender infographic summarising tenocyte—immune cell interactions in tendon disease. (F) EC—tenocyte interactions
in tendon. Predicted cell—cell interactions using CellphoneDB statistical framework on selected human tendon endothelial and stromal cells.
Ligand-receptor interactions showing NOTCH3 ligand-receptor pairs in tendon endothelial and stromal cells. Mean of combined gene expression

of interaction pairs (Log2 mean) and p value of specificity of interactions. Violin plots of NOTCH3 and JAGT expression in tendon stromal and ECs,
respectively from healthy (pink) and diseased (green) tendon. Spatial expression (log2FC) of NOTCH3 and MCAM from mural tenocytes and SEMA3G
and JAGT from SEMA3GEC's in human diseased tendon visualised on 10x Genomics visium data, boxes highlight areas of coexpression. Biorender
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biomechanical factors conventionally associated with inflam-
matory rheumatic and musculoskeletal diseases (RMDs) are
manifest in tendon.” Single cell technologies® (scRNAseq) are
increasingly applied in rheumatology to identify key cellular
phenotypes that drive disease pathogenesis. Despite efforts with
small cell numbers and heterogenous tendon biopsies® there
remains no detailed spatial tendon cell atlas to inform transla-
tional targeting. Herein, for the first time utilising scRNAseq and
spatial transcriptomics (S,), we carry out cell—cell interaction
analysis to build an atlas of the dynamic cellular environment
that drives the development of chronic human tendon disease.

In healthy (4 biopsies, n=3040 cells) and diseased (5 biopsies,
n=19084 cells) tendon we find a mix of endothelial, immune
and stromal cells (figure 1A, online supplemental file 1). Each
cell type group is present in disease and healthy tissue but with
distinct quantitative and qualitative characteristics. Within
stromal populations we identified ‘mural type’ stromal cells
(figure 1B). Mural cells, which include pericytes, are possible
progenitor cells in tendon’ and interestingly, these cells are
phenotypically similar to NOTCH3 high mural cells described
in rheumatoid arthritis (RA) synovium which can differentiate
into fibroblasts following interactions with endothelial cells
(ECs) via JAG1.° Cell—cell interaction and S, analysis indicate a
similar phenomenon could occur within tendinopathy between
mural cells and SEMA3G ECs (figure 1F). In all diseased stromal
cell populations, there was greater expression of genes for
extracellular matrix proteins (eg, COL1A1, COL3A1, FNI,
BGN) which is considered the hallmark feature of tendinopathy
(online supplemental figure S2B). Furthermore, pathway anal-
ysis indicates stromal cell clusters shift from negative regulation
of immune cell and cytokine responses in normal tendon (online
supplemental figure S3A) to a state that promotes immune cell
recruitment and activation along with cytokine secretion and
response processes in diseased tendon (online supplemental
figure S3B,C).

Seven subtypes of PECAM1+ ECs were found (figure 1D),
including a population of LYVET1+ ECsthat produce CCL21
and have been shown to regulate dendritic cell (DC) migra-
tion.” Furthermore, CCL21 is upregulated in these cells in tend-
inopathy (online supplemental figure S2C). DCs comprise the
single largest immune cell population present in normal tendon
(figure 1B). Intriguingly, DCs are also present in diseased tendon
however, showing therein greater levels of DC activation and
lower levels of CIQ genes (regulatory DC markers) (online
supplemental figure S2D,E). The activation of DCs and subse-
quent T cell activation® in tendinopathy is further evidenced by
pathway analysis of differentially upregulated genes in disease
(online supplemental figure S3D,E). This activation may in part
be due to increased matrix protein expression, such as FN1,
which can activate DCs and resulting in alterations in T cell
populations within tissue potentially contributing to mechanisms
driving disease chronicity. Additionally, we found three popula-
tions of macrophages in diseased tendon, one of which, cycling
macrophages (figure 1C, online supplemental figure S2A) is
unique to diseased tissue. The transcript profile of macrophages
in normal tendon most closely resembled tissue repair and
debris clearance (figure 1E, online supplemental figure S2D).
Within normal tendon we found APP expression in tenocytes
which can induce a resolution promoting phenotype in macro-
phages. However, APP expression was reduced in the stromal
compartment in disease coinciding with diminished expression
of LYVE1 within diseased tissue macrophages (figure 1E, online
supplemental figure S2D). These macrophage subsets have
recently been associated with RA remission and we postulate the

phenotypic drift away from this phenotype promotes aberrant
tissue repair and attendant tendinopathy.”’

Further evidence suggesting that the stromal environment
may induce inflammatory changes comprises increased expres-
sion of MIF (figure 1E, online supplemental figure S2B) in
diseased tenocytes that can induce proinflammatory effects via
its receptor CD74, which is also upregulated in macrophages
from diseased tendon (figure 1E, online supplemental figure
§2C). S, generated indicative data from cell-cell interaction
analysis suggests stromal induced immune regulation. As such,
we postulate the primary role of the immune compartment
within the tendon is to regulate and resolve damage; however,
following cumulative microtrauma the fundamental process of
debris removal and matrix repair initiated by tenocytes could
lead to positive amplification of the immune compartment. We
further propose that within diseased tendon immune homoeo-
stasis may become imbalanced and activated immune cells,
primed by both endothelial and stromal cells, promote a cycle
of inflammation and aberrant tissue repair. The inflammatory
environment, including cytokine pathways that are unequiv-
ocally demonstrated in this preliminary tendon atlas, have
been targeted to yield potent immunological interventions in
a range of inflammatory RMDs—the potential to target and
investigate these pathways in human tendon disease is now
compelling.
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Methods

Tissue collection and preparation

All procedures and protocols were approved by the NHS West of Scotland Ethics
Committee (REC14/WS/1035) and informed consent was obtained from all patients
according to standard procedures. Supraspinatus and tendon samples were collected
from patients with rotator cuff tears undergoing shoulder surgery (Table S1).
Standardised patient demographics were obtained preoperatively and included age,
sex, duration of shoulder symptoms experienced by the patient and the number of
subacromial steroid injections. Patients were only included if there was no clinically
detectable evidence of subscapularis tendinopathy on a preoperative MRI scan as
determined by a musculoskeletal radiologist or macroscopic damage to the
subscapularis tendon at the time of arthroscopy as determined by the senior author
(NLM)—by these criteria they represented a preclinical cohort. In this cohort, all
patients fulfilled the following criteria: (1) a history of shoulder pain and dysfunction,
(2) no previous surgery on the affected shoulder, (3) no radiographic sign of fracture
of the shoulder and (4) no history of RA or osteoarthritis. Healthy (hamstring) tendon
was obtained at the time of routine anterior cruciate ligament (ACL) reconstruction
were employed as an independent control group. We acknowledge the limitation of
utilising tendon from different anatomical sites. However, obtaining non-diseased
shoulder tendon tissue from human subjects is extremely difficult and hamstring
tendon has commonly been used in our own and other in vitro tendon studies as a

surrogate control when comparing to diseased shoulder tendon.

Single-cell RNA-seq

Single-cell suspensions of cells were derived from freshly digested tendon biopsies
following surgical excision. Tendon tissue was digested in 0.15mg/ml Liberase TM
(Sigma-Aldrich) in 10ml RPMI, kept in constant rotation at 37°C for a maximum of 2
hours. Digested tissue was then filtered and live cells were sorted using a FACS ARIA
llI. Isolated cells (13561 cells from healthy and 38040 cells from suprapinatus tendon
tissue) were lysed and then RNA was reverse-transcribed and converted to cDNA
libraries for RNA-seq analysis using a Chromium Controller and Chromium Single Cell
3' v2 Reagent kit (10x Genomics) following the manufacturer’'s protocol. Pooled

libraries were used for sequencing on a HiSeq 4000 (lllumina) to a depth of ~30,000
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reads per cell. Alignment of reads to the genome and generation of gene counts per
cell were performed by Cell Ranger software (10x Genomics). 4080 cells from healthy
and 22004 cells from supraspinatus tendon tissue were sequenced. Quality control
was performed on each sample and poor-quality cells were removed on the basis of
number of genes expressed (<200), of unique molecular identifiers (UMIs) and
percentage of mitochondrial reads mapped (>5%). Following this QC, we normalised
and scaled the data using Seurat v4.0 package (Sajita Lab) for all the cells (health k=
3040, supraspinatus k=19084). Then principal components analysis and high-quality
cells were clustered using a graph-based routine implemented in Seurat R package
and its integration method for multiple samples (Satija Lab). All cells from the tissue
were clustered and individual cell types were computationally isolated for further
analysis, including cluster markers and differential gene expression.

Cell—cell interactions

Using the cluster markers found from Seurat we ran CellPhoneDB as follows:
cellphonedb method statistical_analysis meta.tsv counts.tsv— counts-data =
gene_name-threads = 60. CellPhoneDB raw predictions were filtered by removing
those interactions with a P > 1.0 x 10-5. Significant pairs were then filtered for the
most significant predicted interactions.

Gene Ontology analysis
Gene ontology (GO) analysis was conducted by generating cluster markers and
differentially expressed genes using Seurat as described above. The list of genes was

then input into STRING (https:/string-db.org) for functional enrichment anlysis.

Spatial transcriptomics

Visualisation of gene expression within tendon tissue was conducted using 10x Visium
spatial gene expression kit(10x Genomics) as per manufacturers protocol on
independent tendon tissue from samples used for single-cell RNA-seq. Briefly,
additional healthy (n=3) and diseased tendon (n=4), collected as above, were
immediately embedded in Optimal Cutting Compound (OCT) media and frozen in
liquid-nitrogen-cooled isopentane bath, cutinto 10um sections using Thermo Scientific
CryoStar cryostat, and mounted on 10X Visium slides, which were pre-cooled to
-20°C. Slide were stained for H&E and then sections were imaged using Zeiss PALM
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MicroBeam laser capture microdissection system and the images were stitched
together using Zeiss software. The sections were then permeabilised for 10 minutes
and spatially tagged cDNA library cDNA libraries constructed using the 10x Genomics
Visium Spatial Gene Expression 3’ Library Construction V1 Kit. cDNA libraries were
sequenced on an lllumina NextSeq 500/550 using 150 cycle high output kits with
sequencing depth of ~5000 reads per spot. Sequencing data and images were
aligned using the Space Ranger 1.0.0 pipeline to derive a feature spot-barcode
expression matrix (10X Genomics). Seurat 4.0 spatial expression workflow

(https://satijalab.org/seurat/articles/spatial vignette.html) was adopted to integrate,

log-transform and normalised data before plotting genes of interest on section.
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